LOG NO:	0629	20
ACTION:	and the second s	·······
FILE NO:		

Geological Report

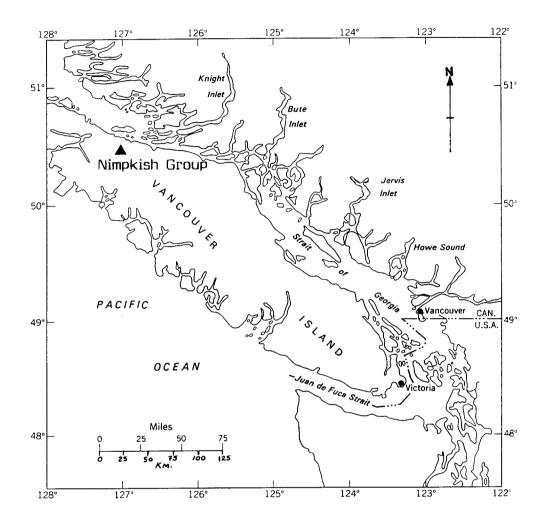
on the

SUB-RECORDER STOUP

BELEINED

JUN 2 0 1990

NTS 92L 7W Lat. 50°22'N Long. 126°52'W


Nanaimo Mining Division

James W. Laird

Prospector

GEOLOGICAL BRANCH June 1990 ASSESSMENT REPORT

20,092

Nimpkish Group
Property Location Map

Figure 1

Table of Contents

Property Location Map	Figure 1
Introduction	1
Summary	1
Location, Access, Topography	2
Environment	3
Claims Map	4
List of Claims	5
Regional Geology	6
Regional Mineralization	6
Ore Deposits	7
Property History	7
Property Geology	8
Conclusions and Recommendations	9
Bibliography	10,11
Statement of Expenses	12
Statement of Qualifications	13
Declaration	14
Declaration	15
Sample Descriptions and Assays	Appendix 1

Maps

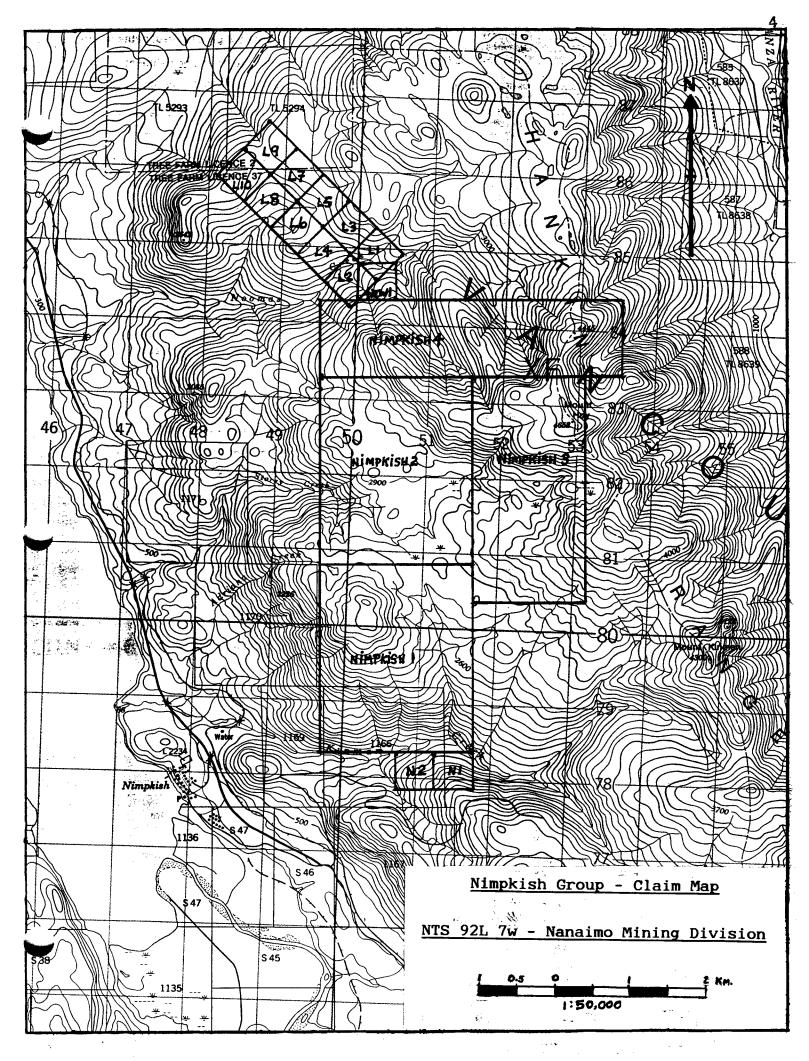
Geological Compilation Map	
of the Nimpkish Area - 1:20,000	In Pocket
- ,	
Goolean of the Norman Greek Area 1.5 000	In Doglast
Geology of the Noomas Creek Area - 1:5,000	In Pocket
Geology of the Kinman Creek Area - 1:5,000	In Pocket

Introduction

This report details the results of a preliminary program of geological mapping, prospecting, and rock sampling on the Nimpkish Claim Group of 87 metric units, situated between Nimpkish and Bonanza Lakes on Northern Vancouver Island, in the Nanaimo Mining Division. The Nimpkish Group is owned and operated by James W. Laird of 3868 Mt. Seymour Parkway, North Vancouver, B.C.

Summary

The claims were staked to cover favorable geologic areas with some reported showings of bornite, galena, and magnetite in skarns and replacements (Minfile 92L 073, 121), and a possible copper/gold porphyry environment reported near Mt. Hoy (Gunning 1931). During the program, several new showings of chalcopyrite, bornite, sphalerite, galena, and magnetite were located, with additional assay values in gold, silver, cadmium, bismuth, and cobalt. Also, a large tonnage of pure, fine to coarse-grained high calcium marble and limestone occurs near Noomas Creek and on the Noomas Plateau, and is suitable for any industrial or decorative purpose.


Field work was mainly carried out by James Laird, with mapping, sampling, and report preparation assistance from geologists Tiro Clarke, B.Sc. and Kathleen Dixon, B.Sc.

Location, Access, and Topography

The Nimpkish Group is located approximately 30 km. southeast of Port McNeill via the Island Highway, then by 4 km. of gravel logging road up Noomas Creek to the northern section of the claims, or by 2 km. of gravel logging road up Kinman Creek to the southern section. The Noomas Creek area has been recently logged off on the L claims, and on the western side of the Nimpkish 2 & 4 claims. The southern section has been logged on the south side of Kinman Creek on the N1 & N2 claims, and is currently undergoing road building and logging on the north side of Kinman Creek, on the Nimpkish 1 claim. Extensive logging and road building is planned in areas of favorable geology for 1990 and beyond.

Elevation varies from 700' at the southwest end of the group on Kinman Creek, to 4652' on Mt. Hoy. Topography is moderate to rugged, with deeply eroded streams and local cliffs slowing traverses. However, most of the central and northern claim area is underlain by an elevated plateau, and is open and park-like in areas of first-growth trees. Outcrop exposure is excellent in steeper areas and streams, but is moderate to poor on the plateaus.

Another feature of note is widespread Karst topography in areas underlain by limestone and marble, causing large caves and sinkholes, even in areas with no outcrop. A large cave, locally called Giant's Cave, has recently been found by timber cruisers on the Noomas Plateau.

Environment

The climate of the Nimpkish area is mostly mild and wet, with about 400 cm. of rain annually. Heavy snowfall covers the higher areas from late November to early April, but seldom persists at lower elevations for more than a few weeks in January and February.

First-growth forest covers a large part of the claims, with red cedar, fir, hemlock, spruce, and yellow cedar being harvested. Undergrowth is light in areas underlain by marble and limestone, but can been quite dense in lower elevation valley bottoms, and consists of mainly huckleberry, salal, and salmonberry. The claims area is covered by a Canfor Tree Farm Licence, and observed logging practices are of a high standard. Logging roads and bridges are well maintained and slashes are burned and replanted quickly.

Wildlife observed in the area include deer, black bear, and grouse, with cougar and wolf rarely seen. The local streams and lakes have resident trout and seasonal steelhead populations, but waterfalls eliminate upstream migrations on most streams in the claim area. No endangered wildlife species are present in the area, and deer ranges are managed, maintained, and rotated by Canfor under Provincial guidance.

No parks or preserves are proposed for the area, and are unlikely in the future. An exception to this may be the Giant's Cave on Noomas Plateau, and possibly other caves remaining to be discovered.

Nimpkish Group - List of Claims

Claim Name	Record Number	Record Date	No. of Units
Nimpkish 1	3295	March 20,1989	20
Nimpkish 2	3296	March 21,1989	20
Nimpkish 3	3297	March 21,1989	18
Nimpkish 4	3298	March 21,1989	16
N1	3299	March 20,1989	1
N2	3300	March 20,1989	1
New 1	3301	March 21,1989	1
L1	3302	March 21,1989	1
L2	3303	March 21,1989	1
L3	3304	March 21,1989	1
L4	3305	March 21,1989	1
L5	3306	March 21,1989	1
L6	3307	March 21,1989	1
L7	3308	March 21,1989	1
L8	3309	March 21,1989	1
L9	3310	March 21,1989	1
L10	3311	March 21,1989	1

87

Regional Geology

The Nimpkish Lake area is underlain by a conformable sequence comprised of, from oldest to youngest, Karmutsen Formation basalt, Quatsino Formation limestone, Parson's Bay Formation sediments and carbonates, and Bonanza Group sediments and volcanics, which are collectively known as the Vancouver Group. The age ranges from Upper Triassic to Late Jurassic.

Intruding the Vancouver Group are the Island Intrusions of Mid to Late Jurassic age, ranging in composition from gabbro to granite, with granodiorite and diorite being the commonest. Tertiary intrusive activity is known from some areas of Vancouver Island, but has not been identified in the Nimpkish map area as yet.

The regional structure appears to have originally been a geosynclinal basin between Nimpkish and Bonanza Lakes, but major faulting, uplift, folding, and intrusive activity has made interpretation difficult.

Regional Mineralization

Most of the major economic mineral deposits in the Vancouver Group are related to Jurassic intrusive activity, and can be classified as skarns, replacements, mantos, and related hydrothermal systems. Local structures, bedding, and lithology play an important part in forming the deposits.

Ore Deposits

Several mineral deposits in the Nimpkish Lake area have produced ore, notably the Klaanche magnetite deposit on the Nimpkish River, the Hab copper deposit near Steele Lake, and the Hazel Open Pit copper-zinc deposit on the Kinman Property. Also, a small tonnage of high-grade gold-copper ore has been drilled at the Kinman Adit, and a high-grade zinc-lead-copper ore zone has been drilled off at the Storey Creek Property. The East Hazel Zone on the Kinman Property may also contain mineable pods of gold-copper-zinc.

Property History

The Nimpkish Group area has been explored in the 1930's during the Kinman Copper boom but access was difficult and work was very limited. In the 1950's, during development of the Nimpkish Iron Mine, the Wolf magnetite deposits on upper Storey Creek were examined, but no detailed exploration took place, again due to access. In the late 1960's and early 1970's, some geochemistry and geophysics was done on the ridge between Storey and Kinman Creeks, but results were inconclusive. Regional geochemical and geophysical surveys show several anomalous areas on the Nimpkish Group.

Property Geology

The property covers strategic ground and favorable geology between the Kinman and Storey Properties, and several new mineralized zones have been located. The main focus for exploration is the contact area between the Quatsino limestone and the granodiorite intrusion, preferably in areas of structural deformation. Major regional structures cross the property, such as the Kinman anticline, and the Kinman Fault Zone. The fault has an estimated west-side down movement of at least 1 km., and is filled with slices, rotated blocks, and various intrusions.

Mineralization located to date is similar to the Kinman and Storey Properties, and is composed of skarns, mantos, replacements, and mineralized dikes. Of particular interest are the high-grade copper-zinc-silver showings near Noomas Creek, and the large tonnage, low-grade zinc-copper zone north of Storey Creek. The porphyry-style showings on Mt. Hoy and the Wolf zone have not been examined yet. Specimens of all types of mineralization were cut with a diamond saw and examined under a microscope to determine the nature of potential ores, and conductivity and magnetism were tested as well.

The higher-grade ores were usually rich in copperiron sulphides, conductive, occasionally magnetic, with anomalous amounts of Bi, Co, and Sb. The presence of much sphalerite seems to indicate low gold content.

Conclusions and Recommendations

The work done to date on the property was of a mainly reconaissance nature, yet was successful in discovering several new potential ore zones worthy of further detailed work. The future logging activities in the claims area will certainly aid discovery and development. A large part of the property covering favorable geology remains unexplored. The large tonnage of pure marble near Noomas Creek has an excellent industrial mineral potential as well.

Detailed mapping, sampling, and trenching should be done on the ore-grade showings, with geochemistry and geophysics used to delineate and expand the zones. Prospecting and mapping along the favorable contacts and structures on other parts of the property should locate new mineralized zones for assessment. A year-round field season and excellent local services are a definite advantage to economical claim development. Future drill programs should be contingent upon results of the trenching and sampling.

Bibliography

B.C. EMPR Annual Reports - 1928 p. 379; 1929 p. 381-383; 1930 p. 298-300; 1965 p. 230; 1966 p. 68.

B.C. EMPR Assessment Reports for Nimpkish Lake Area

B.C. EMPR Minfile PC, 1989 - NTS 92E, 92K, 92L

Clarke, T., 1989. Preliminary Report on the Nimpkish Group

Ettlinger, A.D., and Ray, G.E., EMPR Paper 1989-3 - Precious Metal Enriched Skarns in British Columbia.

Gunning, H.C.,1930 - Geology and Mineral Deposits of the Quatsino - Nimpkish Area, Vancouver Island, GSC Summary Report 1930, Pt. A, p. 94-143.

Gunning, H.C., 1932 - Form and Mechanics of Intrusion of the Nimpkish Batholith, Transactions of the Royal Society of Canada, Section IV, p. 289-304.

Gunning, H.C., 1932 - Preliminary Report on the Nimpkish Lake Quadrangle, Vancouver Island, GSC Summary Report 1931, Pt. A, p. 22-35.

Hoadley, J.W., 1953 - Geology and Mineral Deposits of the Zeballos-Nimpkish Area, Vancouver Island, GSC Memoir 272

Muller, J.E., Northcote, K.E., and Carlisle, D., 1974 - Geology and Mineral Deposits of the Alert Bay-Cape Scott Map Area, Vancouver Island, GSC Paper 74-8, Map 1552A

Statement of Expenses

Wages		
March 20,21,22		
Tiro Clarke - 3 days @ 200.00) pd -	600.00
March 22		
James Laird - 1 day @ 200.00	pd -	200.00
July 15		
James Laird - 1 day @ 200.00	pd -	200.00
November 17-24		
James Laird - 8 days @ 200.00) pd -	1600.00
March 13-17		
James Laird - 4 days @ 200.00) pd -	800.00
Т	'otal Wages -	3400.00
Expenses		
Accomodation -		250.57
Gas -		486.80
B.C. Ferries -		105.00
Photography -		78.98
Food -		366.22
Flagging, String, Sample Bags	: -	100.00
Air Photos -		324.84
Assays -		1353.50
4x4 Rental - 14 days @ 50.00	pd -	700.00
Report Costs -		300.00
	Total Expenses -	4065.91
	Grand Total -	7465.91

Statement of Qualifications

- I, James W. Laird, do state that;
- I reside and maintain a business office at 3868 Mt.
 Seymour Parkway, North Vancouver, B.C.
- 2. I am a self-employed prospector and mining exploration contractor and have been full-time for 10 years.
- 3. I have completed the EMPR course " Advanced Mineral Exploration for Prospectors , 1980 ".
- 4. I have extensively explored Vancouver Island for mineral deposits for several years and am very familiar with the geology and mines thereof.
- 5. I am the registered owner of the Nimpkish Group of 87 mineral claims.

James W. Laird

James W. Laird

June 1990

DECLARATION

I, Tiro Clarke of #301-357 E. 2nd St., North Vancouver, B.C., V7L 1C6, hereby certify that:

- I graduated from the University of British Columbia with a B.Sc. in Geology in 1988.
- 2. I have practised geology since graduation.
- Work detailed in this report was carried out or supervised by myself.

Date: June	13,1990
Signature:	Clark

DECLARATION:

I, Kathleen Dixon of #301 - 357 East 2nd Street, North Vancouver, B.C., V7L 1C6, hereby certify that:

- I graduated from the University of British Columbia with a B. Sc. in Geology in 1990.
- 2. I have practised geology since graduation.
- 3. Work detailed was carried out or supervised by myself.

Date: June 13, 1990
Signature: Kothleen Dixon

Sample Descriptions

And

Assays

Sample Descriptions

(including anomalous values)

Noomas Creek Area

NORS-1 Roadside sub-crop of massive coarse pyrite intergrown with magnetite in a tan coloured siliceous garnetite.

Magnetic, conductive. Fe 56.2%; Cu 2838 ppm; Pb 940 ppm;
Zn 1573 ppm.

NORS-2 Roadside sub-crop of massive to fine grained pyrite in densely fractured siliceous garnetite. Non-magnetic, non-conductive.

NORS-3 Granodiorite and marble contact zone, with fine grained disseminated pyrite in siliceous marble. Mildly magnetic, non-conductive.

NORS-4 Roadbed sub-crop of chalcopyrite veins in massive pyrite and marcasite (?) with scattered tan coloured garnet crystals. Alters to covellite, melanterite, and limonite. Non-magnetic, conductive. Cu 11.6%; Ag 102 ppm; As 238 ppm Bi 117 ppm; Co 820 ppm; Ni 902 ppm; Zn 1854 ppm.

NORS-5 Diorite and marble contact zone, with magnetite and minor pyrite and chalcopyrite in a siliceous tan coloured garnetite and quartz. Magnetic, non-conductive. Cu 3086 ppm.

NORS-6 Granodiorite and marble contact zone, with sub-crop of crystalline diopside skarn with veinlets of quartz and greenish-brown garnet, scattered blebs of calcite, and some disseminated pyrite. Iron and manganese oxide alteration. Non-magnetic, non-conductive.

NORS-7 Granodiorite and marble contact zone, with diopside skarn cut by quartz veinlets and scattered calcite blebs. Iron and manganese oxide alteration. Mildly magnetic, non-conductive.

NORS-8 Granodiorite and marble contact zone, with massive magnetite and minor chalcopyrite and pyrite in tan garnetite with minor tremolite. Magnetic, non-conductive. Cu 1891 ppm

NORS-9 Massive magnetite sub-crop in marble. Magnetic, non-conductive.

NORS-10 Talus blocks below cliff outcrop of green diopside skarn with tan coloured garnetite, quartz, and calcite. Abundant red-brown sphalerite with scattered molybdenite and chalcopyrite. Manganese oxide alteration. Non-magnetic, non-conductive. Cd 348 ppm; Cu 1400 ppm; Mo 1796 ppm; Zn 4.96%; Au 367 ppb.

NORS-11 Talus blocks below cliff outcrop of tan coloured siliceous garnetite with scattered chalcopyrite and bornite. Non-magnetic, conductive. Ag 51 ppm; Au 1000 ppb (Fire Assay = 0.034 oz/ton); As 114 ppm; Bi 231 ppm; Cu 8.3%; Mo 260 ppm.

NORS-12 Massive bornite and red-brown sphalerite with chalcopyrite and covellite, in tan siliceous garnetite at the contact of marble and a felsite dike. Malachite, azurite, and chalcanthite (?) alteration. Non-magnetic, conductive. Ag 323 ppm; Au 175 ppb; Bi 1092 ppm; Cd 1319 ppm; Co 223 ppm; Cu 20.3%; Pb 265 ppm; Sb 194 ppm; Zn 20.6%.

KD-1 Same sample location as NORS-1. Co 109 ppm; Cu 5877 ppm; Ni 117 ppm; Zn 1674 ppm.

KD-2 Roadside subcrop of an altered, pyritized felsite dike in marble. Non-magnetic, non-conductive. Cu 1583 ppm; Zn 687 ppm.

KD-3 Same sample location as NORS-12. Ag 192 ppm;
Au 300 ppb; Bi 586 ppm; Cd 999 ppm; Co 180 ppm; Cu 17.2%;
Pb 187 ppm; Sb 145 ppm; Zn 17.6%.

NLC-1 Granodiorite and marble contact zone, with fine grained disseminated pyrite in a tan siliceous garnetite.

Non-magnetic, non-conductive. Pb 1420 ppm 0.16%; Zn 1290 ppm 0.13%.

NLM-1 Outcrop of an altered, pyritized felsite dike in marble. Non-magnetic, non-conductive.

421503 Sample of a finely pyritized marble with light green bands near a diorite contact. Non-magnetic, non-conductive

- 421504 Sample of a medium grained marble with small veins of carbonaceous material. Non-magnetic, non-conductive.
- NOS-1 Moss-mat stream sediment. Zn 328 ppm.
- NOS-2 Moss-mat stream sediment.
- NOM-1 Sample of a fine to medium grained white marble with minor dumortierite. CaO 53.48%; MgO 0.34%.
- NOM-2 Sample of a coarse grained white marble with rare small lemon-yellow garnets (?). CaO 53.56%; MgO 0.36%.
- NOM-3 Sample of a coarse grained grey marble with minor dumortierite. CaO 54.26%; MgO 0.38%.
- NOM-4 Sample of a coarse grained black marble. CaO 53.5%; MgO 0.69%.

Lower Noomas Creek Area - South Main

NOCS-1 20 cm. wide pyritized chlorite shist with minor chalcopyrite cutting granodiorite in a roadside pit near a contact with Karmutsen Formation. Magnetic, non-conductive. Au 255 ppb; Cu 5135 ppm.

West-Mar Res. Property - Magnetite Hill Zone

SZ-1 Massive magnetite and sphalerite on the contact between chloritized diorite and marble. Magnetic, non-conductive. Cd 1013 ppm; Co 167 ppm; Cu 2592 ppm; Zn 14.9%.

Story Creek - Wolf Area

- WRS-1 Large altered greenstone intrusion with widespread disseminated red-brown sphalerite and magnetite. Magnetic, non-conductive. Cd 210 ppm; Cu 2532 ppm; Zn 3.18%.
- WRS-2 Float of massive magnetite with malachite and azurite staining. Magnetic, non-conductive. Cu 558 ppm; Fe 52.9%.
- W90-1 Lens of massive chalcopyrite and magnetite in a large altered greenstone intrusive near a contact with an altered diorite. Magnetic, conductive. Ag 114 ppm; Bi 82 ppm Co 374 ppm; Cu 10.0%; Ni 128 ppm; Zn 2694 ppm.
- W90-2 Same location as WRS-1. Cd 266 ppm; Cu 2092 ppm; Zn 3.82%.
- W90-3 Large altered greenstone intrusion with massive, scaley magnetite and epidote. Magnetic, non-conductive. Cu 713 ppm; Zn 954 ppm.

Kinman Creek Area

NLS-1 Shear hosted lens of massive sphalerite, galena, and chalcopyrite in cherty quartzite with felsic intrusives. Greenish gangue with sulphides may be fine grained mixture of epidote and diopside. Non-magnetic, non-conductive. Ag 38 ppm; Cd +100 ppm; Cu 2.97%; Mo 379 ppm; Pb 4.34%; Zn 8.5%.

- NLS-2 Same location as NLS-1, 1 meter chip sample across lens. Minor minerals include tetrahedrite, covellite, pyrite and greenockite. Alteration minerals include malachite, azurite, smithsonite, iron and manganese oxides, possibly pyrolusite. Ag 24 ppm; Bi 38 ppm; Cd 811 ppm; Cu 3.51%; Mo 388 ppm; Pb 34500 ppm; Sb 81 ppm; Zn 9.74%.
- NLS-3 Small shear near NLS-1, with chalcopyrite stained with malachite and rare azurite. Non-magnetic, conductive. Ag 61 ppm; Cu 33757 ppm; Zn 819 ppm.
- NLS-4 Subcrop of rhythmically banded quartz, with white, black, and greenish bands. Non-magnetic, non-conductive. Cu 442 ppm.
- NLS-5 Small pyritic shear zone in cherty quartzite. with disseminated magnetite. Magnetic, non-conductive. Cu 328 ppm.
- NLS-6 40 cm. gougy silicified, limonite stained shear zone in quartz diorite. Non-magnetic, non-conductive.
- NLS-7 Small shear zone in cherty quartzite with pyrite and disseminated magnetite. Magnetic, non-conductive.
- NLS-8 Small shear zone in cherty quartzite with pyrite.
 Non-magnetic, non-conductive. Cu 240 ppm.
- NLS-9 Small shear zone in cherty quartzite with pyrite.

 Non-magnetic, variable conductivity. As 128 ppm; Cu 355 ppm.

- NLS-10 Small shear zone in cherty quartzite with pyrite and epidote. Non-magnetic, non-conductive. Co 193 ppm; Cu 269 ppm.
- NLS-11 Roadside subcrop of brecciated, silicified rock with disseminated to massive red-brown sphalerite, coatings of greenockite, and minor disseminated pyrite. Non-magnetic, non-conductive. Cd 528 ppm; Cu 212 ppm; Zn 6.37%.
- NLS-12 Float in boulder till of green diopside skarn with disseminated red-brown sphalerite and manganese oxide alteration. Non-magnetic, non-conductive. Cd 129 ppm; Zn 2.24%.
- NLS-13 Coarse pyroxene gabbro in Karmutsen Fm. basalts.
 Magnetic, non-conductive. Cr 393 ppm; Zn 668 ppm.
- NLS-14 Small chloritized shear zone in basalt with pyrite and magnetite. Magnetic, non-conductive. Co 380 ppm; Cu 748 ppm; Zn 343 ppm.
- NTC-1 Small shear zone in cherty quartzite with pyrite. Mildly magnetic, variable conductivity. Cu 1405 ppm, 0.11%; Co 217 ppm; Pb 1185 ppm, 0.13%; Zn 2480 ppm, 0.22%.
- NCR-1 Banded cherty quartzite with disseminated pyrite, pyrhotite, and minor chalcopyrite. Mildly magnetic, variable conductivity. Cu 538 ppm, 0.05%; Pb 128 ppm; Zn 168 ppm.

Kinman Property

(assay specimens taken for comparative purposes)

KA-1 Kinman Adit - sample of massive chalcopyrite and pyrhotite on contact of marble and granodiorite. Magnetic, conductive. Ag 79 ppm, 86 ppm; Au 5600 ppb, FA 5200 ppb; Bi 314 ppm; Co 611 ppm; Cu 12.6%; Pb 122 ppm; Sb 97 ppm; Zn 1454 ppm.

KP-1 Hazel Open Pit - sample of massive chalcopyrite with disseminated sphalerite in a manto pod in marble near a granodiorite contact. Non-magnetic, Stongly conductive. Ag 283 ppm; Au 190 ppb; Bi 951 ppm; Cd 1163 ppm; Co 101 ppm; Cu 21.95%; Pb 4050 ppm; Sb 215 ppm; Zn 15.2%.

KP-2 Hazel Open Pit - sample of massive to disseminated red-brown sphalerite with lesser chalcopyrite in a gangue of white calcite and quartz, in a manto pod in marble near a granodiorite contact. Non-magnetic, conductive. Ag 25 ppm; As 156 ppm; Bi 27 ppm; Cd 1687 ppm; Co 219 ppm; Cu 3.98%; Pb 133 ppm; Sb 64 ppm; Zn 18.9%

Lower Kinman Creek

NPO-1 Pyritized, silicified, quartz porphyry granodiorite intruding cherty quartzite. Non-magnetic, non-conductive.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

: LAIRD, JAMES W.

3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4

Project : NIMPKISH

Comments: CC: TIRO CLARKE

:10-APR-89 Date'

Invoice #: I-8913748 P.O. # :1989-1

CERTIFICATE OF ANALYSIS A8913748

SAMPLE DESCRIPTION	PRE		A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
NLC-1 NLM-1 NLS-1	299 299 299 299 299	233 233 233	5.76	< 2.0 2.0 < 2.0 38.0 2.0	< 50 < 50 < 50 < 50 < 50	60 40 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 < 2 < 20 < 2	0.47 7.21 7.19 1.95 3.09	0.5 6.5 1.5 >100.0 16.5	25 41 45 66 217	45 30 89 51 69	538 130 95 >10000 1405	6.35 5.11 6.20 7.66 9.90	20 30 30 20 20	< 5 < 5 < 5 < 5 < 5	< 0.01 0.08 0.05 0.04 0.02	10 30 40 30 30	0.31 0.11 0.85 0.95 0.41	185 230 280 1150 245	< 37 1
:	-																				

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 : LAIRD, JAMES W.

3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4

Project: NIMPKISH

Comments: CC: TIRO CLARKE

**Pag : 1-B
Tot ges: 1
Date : 10-APR-89
Invoice #: I-8913748
P.O. #: 1989-1

CERTIFICATE OF ANALYSIS A8913748

SAMPLE DESCRIPTION	PRE		Na 96	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm
NLC-1 NLM-1 NLS-1	299 299 299 299 299	233 233 233	0.04 0.52 0.49 0.01 0.18	24 13 68 16 64	5 50 9 30 1070 480 770	128 1420 64 >10000 1185	< 5 < 5 < 5 < 5 < 5	2 2 10 5 4	34 5690 1785 193 125	0.06 0.13 0.23 0.10 0.16	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	29 30 90 39 57	< 10 < 10 < 10 30 < 10	168 1290 162 >10000 2480

CERTIFICATION: B. Carlo

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

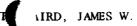
LAIRD, JAMES W.

3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4

Project : NIMPKISH Comments: CC: TIRO CLARKE Date

:10-APR-89 Invoice #: I-8913747 P.O. # :1989-1

CERTIFICATE OF ANALYSIS A8913747


SAMPLE DESCRIPTION	PRE COD	Au FA oz/T	Ag FA oz/T	Cu %		Zn %		
NCR-1 NLC-1 NLM-1 NLS-1 NTC-1	208 208 208 208 208 208	 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003	< 0.01 0.13 0.16 1.05 < 0.01	1 2.97	< 0 01	0.02 8.50		
	:							

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4

Project: NIMPKISH Comments:

: 31-JUL-89 Date Invoice #: I-8920882 P.O. # NONE

CERTIFICATE OF ANALYSIS A8920882

421503 205 238 70 0.27 < 0.2 180 20 < 0.5 < 2 >15.00 < 0.5 2 8 10 0.59 < 10 < 1 0.02 < 10 0.55 355 421504 205 238 < 5 2.80 < 0.2 20 90 < 0.5 < 2 >15.00 < 0.5 4 10 25 1.23 < 10 < 1 0.07 < 10 0.50 65	SAMPLE DESCRIPTION	PREI		Au ppb FAHAA	Al %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	к %	La ppm	Mg %	Mo ppm
1 1 1	DESCRIPTION 421503	205 2	E 238	70	% 0.27	ppm < 0.2	ppm 180	p p m 20	ppm < 0.5	<pre>ppm < 2 > < 2 ></pre>	% >15.00 >15.00	ppm < 0.5	ppm	ppm 8	ppm 10	% 0.59		ppm < 1	% O.O2	p p m < 10	% O.55	ppm 355

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To IRD, JAMES W.

3868 MT. SEYMOUR PARKWAY NORTH VANCOUVER, BC V7G 1C4

Project : NIMPKISH

Comments:

* Page No. 1 -B

Date : 31-JUL-89 Invoice #: I-8920882 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8920882

SAMPLE DESCRIPTION	PRI		Mo ppm	N a %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm
421503 421504	205 205	238 238	< 1 < 1	0.01	1	< 10 160	< 2 < 2	< 5	1 4	78 5 79 3 0	0.01 0.06	< 10 < 10	< 10 < 10	5	< 10 < 10	< 2 6
			i													
										······································						

CERTIFICATION: B. Carlo

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 ◆ FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Assay Certificate

0V-0194-RA1

Company:

LAIRD EXPLORATION

Date: MAR-15-90

Project:

NIMPKISH

Copy 1. LAIRD EXPLOR., NORTH VANCOUVER, B.C.

Attn:

JAMES LAIRD

He hereby certify the following Assay of 8 ROCK samples

submitted	MAR-13-90	bу	JAMES	LAIRD.
-----------	-----------	----	-------	--------

CU %	FE %	ZN %	
	ter ander meter måter sener stelle felde kom at	3.18	
	52.90		
3.510		9.74	
	56.20		
12.600			
21.950		15.20	
3 .98 0		18.90	
		14.90	
	% 3.510 12.600 21.950	% % 52.90 3.510 56.20 12.600 21.950	% % % 3.18 52.90 3.510 9.74 56.20 12.600 21.950 15.20 3.980 18.90

Certified by_

MIN EN LABORATORIES

COMP: LAIRD EXPLORATION PROJ: NIMPKISH

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-0194-SJ1 DATE: 90/03/20 * * (ACT:F31)

ATTN: JAMES LAIRD V ZN GA SN W CR AU AL AS B BA BE BI PPM PPM PPM PPM PPM FE K LI MG MN NA NI SB TH U SAMPLE PPM NUMBER PPM 12 87 32840 410 8 4720 1150 1 760 17 1050 14 1 1 117.8 328 2 1 1 113.2 111 1 16 1.1 20730 7 9170 .8 NOS-1 66 75 6 12070 38 NOS-2 1.1 24480

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Geochemical Analysis Certificate

0V-0194-RG1

Company:

LAIRD EXPLORATION

Date: MAR-23-90

Project:

NIMPKISH

Copy 1. LAIRD EXPL., NORTH VANCOUVER, B.C.

Attn: JAMES LAIRD

He hereby certify the following Geochemical Analysis of 9 ROCK samples submitted MAR-13-90 by JAMES LAIRD.

Sample Number	AU-WET PPB	AG PPM	
WRS-1	35		
WRS-2	5		
NLS-2	25		
NORS-1	45		
KA-1	5600	85.8	
P-1	190		
KP-2	30	•	
SZ-1	40		

Certified by_

M-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867
TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate Analysis Geochemical

0V-0194-RG2

Company:

LAIRD EXPLORATION

Date: MAR-23-90

Project:

NIMPKISH

Attn:

JAMES LAIRD

Copy 1. LAIRD EXPL., NORTH VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 1 ROCK samples submitted MAR-13-90 by JAMES LAIRD.

Sample

AU-FIRE

PT-FIRE

PD-FIRE

Number

PPB

PPB

PPB

KA-1

5200

1

1

MIN-EN LABORATORIES

COMP: LAIRD EXPLORATION

PROJ: NIMPKISH

ATTN: JAMES LAIRD

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-0194-RJ1

DATE: 90/03/27

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	ÇU PPM		K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM 1	NI PPM	P PPM	PB PPM	SB PPM	SR PPM F	TH PPM F	U	V PPM	ZN PPM	GA PPM	SN PPM F	W CR
WRS-1 WRS-2 NLS-2 NORS-1 KA-1	7.5 8.0	3830 5820 20040 3050 800	26 1 53 5	14 13 12 11	20 3 5 1	.9 .1 .9 .1	6 1 38 1	14500 16330 17430 15290 13270	210.7	71	2572	53990 426400 78480 494890 354350	170	1 2 5 1	3550 4880 8580 2210 460	4438 1315 1219 848	6 1 388 1	40 220 30 30	1 1 12 1	170 10	27 67 34500 940 122	6 1 81 1 97	13 1 92 1	2 1 3 1	1 1 1	6.0	25395 159 112090 1573 1454	1 1	1 1 3 1	1 11 1 1 1 40 1 1 1 1
KP-1 KP-2 SZ-1	283.0 24.6 6.3	3170 16970 1130	63 156 1	18 16 21	1 3 1	.7 1.0 1.1	951 27 15	25110 68610 6230	1163.3 1687.3	101 219	198320 35370	176130 84780 269290	60 50 100	4 6 1	5030 15620 1210	501 4129 3094	24 31 6	10 10 70	1 1	3880 580 200	4050 133 61	215 64 12	37 85 7	1 1 1	1 1 1	14.1	160360 194100 140860	2	3 3 1	15 1 27 1 7 1
											·																	·		
																								•						
																							·							
										·																			·	
								•						· · · · · · · · · · · · · · · · · · ·									<u></u>							
																					 									
		, ·																												

COMP: LAIRD EXPLORATION PROJ: NIMPKISH

ATTN: JAMES LAIRD

MIN-EN LABS - WHOLE ROCK ANALYSIS

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-0194-RL1 DATE: 90/03/27

* ROCK * (ACT:FIRE)

SAMPLE NUMBER	AL203	BA %	CAO %	FE203	K20 %	MGO %	MNO2 %	NA20 %	P205 %	\$102 %	SR %	T102 %	S %	L01 %		
NOM-1 NOM-2 NOM-3 NOM-4	.25 .22 .21 .28	.005 .005 .005 .005	53.48 53.56 54.26 53.50	. 15 . 25 . 17 . 16	.13 .13 .10 .13	.34 .36 .38 .69	.01 .01 .01 .01	.03 .02 .03 .01	.13 .12 .12 .11	1.02 .92 .56 1.24	.520 .365 .140 .315	.01 .01 .01 .01	.11 .09 .05 .06	42.90 43.00 43.40 42.60		
								-, -								
															 ,	
											· · · · · · · · · · · · · · · · · · ·	*			 	
							,	· · · · · · · · · · · · · · · · · · ·								
																-
															 	-
															 	_
							,						······································		 	
							·····						······································		 	
														,		_

COMP: LAIRD EXPLORATION

MIN-EN LABS - ICP REPORT

PROJ: V.I.

ATTN: J.LAIRD

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 0V-0237-RJ1 DATE: 90/03/27 * ROCK * (ACT:F31)

(604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	PPM	PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM I	U PPM	V PPM	ZN PPM	GA PPM I	SN PPM P	W CR PM PPM	Al
NPO-1 NOCS-1	.8	10790 15100	15	1 3	28 5	1.5		7760 6200	:1	6 54	18 5135	18770 163600	710 120	2 6	4530 7660	277 298	2 5	590 90	25 2	390 1610	14 5	1 9	16 4	1	1 1	20.0 370.4	18 28	1	1	1 114	45 25
														. <u>.</u>														•			
						· · · · · · · · · · · · · · · · · · ·		·	,,,,,	· · · · · ·																					
										14							•														
							 · · ·		· ·									· · · · · · · · · · · · · · · · · · ·									······································		· · · · · · · · · · · · · · · · · · ·		
															, , ,																

		· · · · · · · · · · · · · · · · · · ·						············		<u></u>																					
												. 474																			
		;																													
					*****							·												·							
				<u>-</u> .				.,																							
																		**** wit ***													

COMP: LAIRD PROJ: NIMPKISH

ATTN: J.LAIRD

MIN-EN LABS · ICP REPORT
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2
(604)980-5814 OR (604)988-4524

DATE: 90/03/27

* ROCK * (ACT:F31)

AIIN. G.LAIND																	46.7													
SAMPLE Number	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM		CU PPM	FE PPM	PPM	LI PPM	MG PPM	MN PPM			NI P PPM PPM	PB PPM		SR PPM I	TH PPM PP	U M P	V PM		GA PPM P		W CR	
NLS-3 NLS-4	61.5 1.5	35570 2990	48 12	8	6 3	1.4	2	12670 5060	5.0 .1	33 3	33757 442	112140 7710	180 80	1	17310 890	1542 91	12 3	50 60	9 400 3 90	8	39 1	88 20 79		1 111 1 12 1 55	.8 .2	819 79	2	2	2 82 2 211 1 62	40 20
NLS-5 NLS-6	1.8	13100 22340	35 14	5 3 9	82	1.4	4	34430 6670	.1	16 11	328 147	98350 27440	120 1780	1 5	3120 9520 6500	439 1051	1 3 1	40 100	5 380 4 460	9 17 3	3 1	18	1	1 40	.4	19 129 12	1 2	1	1 62 1 126 1 1	30
NLS-7 NLS-8	2.5	26640 23930	96 41	7	14	1.6	11	18090 14440	. 1	24 51	240	143730 111770	130	4	6820	622 336	4	260 30	11 780 3 570	9 3	2	104 61	1 1	1 52 1 55	.5	34	2 2 2	1	1 36	10
NLS-9 NLS-10	1.9	23880 13850	128 54 38 23	10 7	6 4	2.1	4	50330 50370 19430	.1	65 193	355 269	232180 159900 72660	90 70	1	2120 1120 14010	593 627 1302	23 13	50 50 1740	37 140 67 490 1 160	4	3 5 11	35 16 117		1 77 1 114 1 99	.8 .2 .6 6!	1 3 5/70	1	3 2 3	1 11	`Š
NLS-11 NLS-12	4.7	1770		12		1.2	13	17580	128.9	30	17	30190	130	1	2650	19918	8	90	53 220	87	10	28	1	1 10	.5 2	1588	3	1	1 163 1 15	5
NLS-13 NORS-2 NORS-3	2.9 3.8	59720 28040 118220	21 56 1	7 7 1	10 5 74	.9 1.3 .7	10	23380 83 260 77100	2.5 .1	35 31 18	45 530 50	46110 119900 56320	130	1	35410 1210 410	681 2131 97	1	50 3640	258 290 20 100 1 600	17 3	2 8 1	32 1 8223		1 120 1 60 5 32	.7	668 119 30	2 2 1	2 3 1	4 393 1 138 1 32	5 5 45
NOKS-3	4.3	110220	ı		74	• '	10	77100	• '		27	30320	670	_	410	71	•	3040	, 000	J	•	JELJ	1 20	J JE		30	•	•	, JL	. 43
						 											-													
												 													•					
													····																	
																									•					
																														
	÷																													
																									·	•			<u> </u>	
																														
																														
																									•					
1	ı																													

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

VANCOUVER OFFICE:

Geochemical Analysis Certificate

0V-0194-RG3

Company:

LAIRD EXPLORATION

Date: MAR-28-90

Project:

NIMPKISH

Copy 1. LAIRD EXPL., NORTH VANCOUVER, B.C.

Attn:

JAMES LAIRD

He hereby certify the following Geochemical Analysis of 4 ROCK samples submitted MAR-13-90 by J.LAIRD.

Sample Number	B PPM	
SICOM 1	+	
NOM-1	i	
NOM-2	1	
NOM-3	1	
NOM-4	1	

Certified by

MYN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Assay Certificate

0V-0238-RA2

Company:

LAIRD EXPLORATION

Date: MAR-28-90

Project:

NIMPKISH

Copy 1. LAIRD EXPL., NORTH VANCOUVER, B.C.

Attn:

J.LAIRD

He hereby certify the following Assay of 3 ROCK samples

submitted MAR-23-90 by J.LAIRD.

Sample FE ZN Number 7. % NLS-11

NLS-12

6.37

2.24

NORS-2

16.70

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Assay Certificate

0V-0523-RA1

Company:

LAIRD EXPLORATION

Date: MAY-24-90

Project: Attn: NIMPKISH J.LAIRD Copy 1. LAIRD EXPL., NORTH VANCOUVER, B.C.

He hereby certify the following Assay of 7 ROCK samples

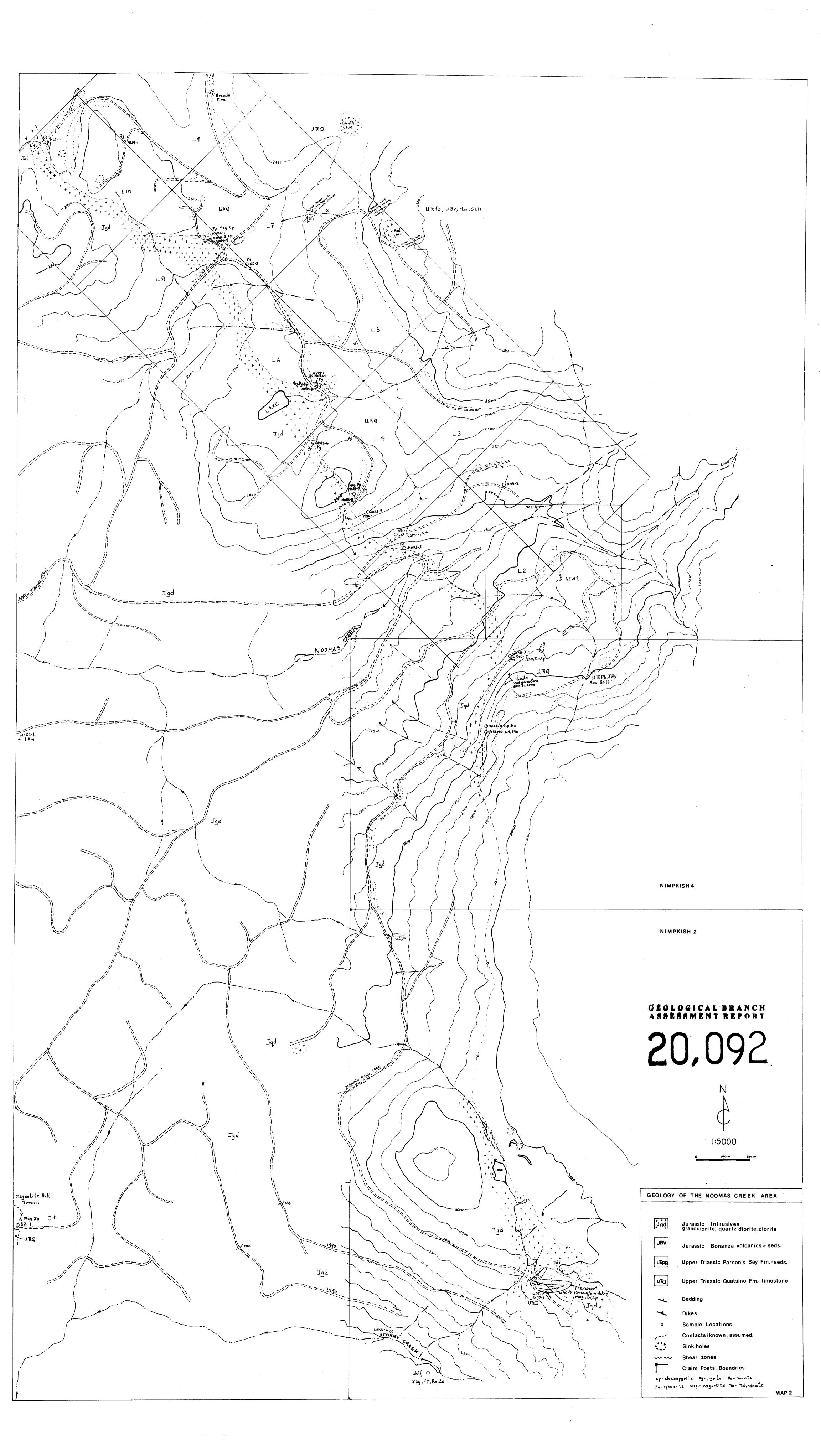
submitted MAY-19-90 by J.LAIRD.

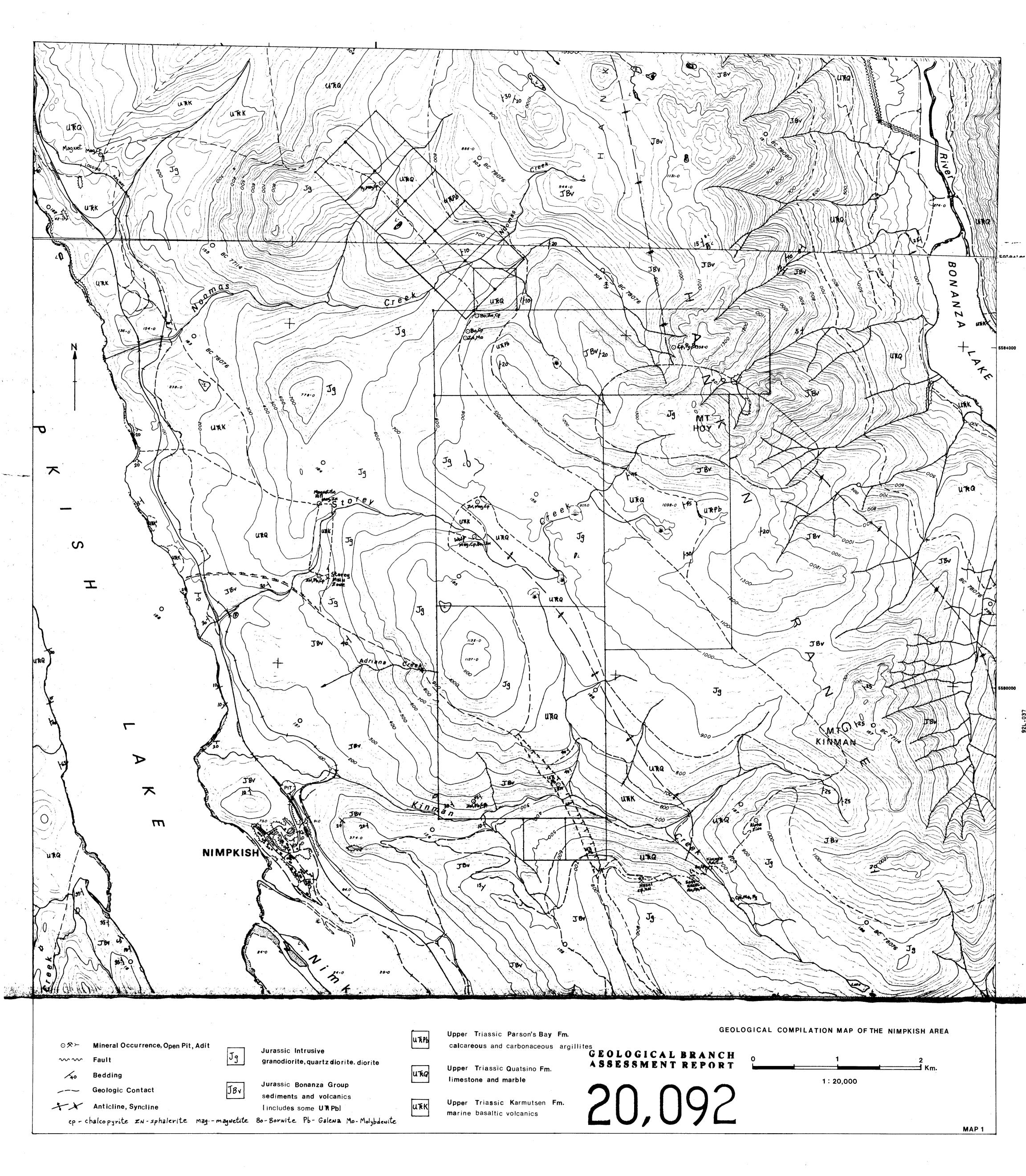
and the second s	of the second that		*		
Sample	AU	AU	CU	ZN	
Number	g/tonne	oz/ton	%	%	
NORS4			11.600		
NORS10				4.96	
NORS11	1.17	.034	8.300		
NORS12			20.300	20.60	
K D- 3			17.200	17.60	
W90-1			10.000		
W9 0-2				3.82	

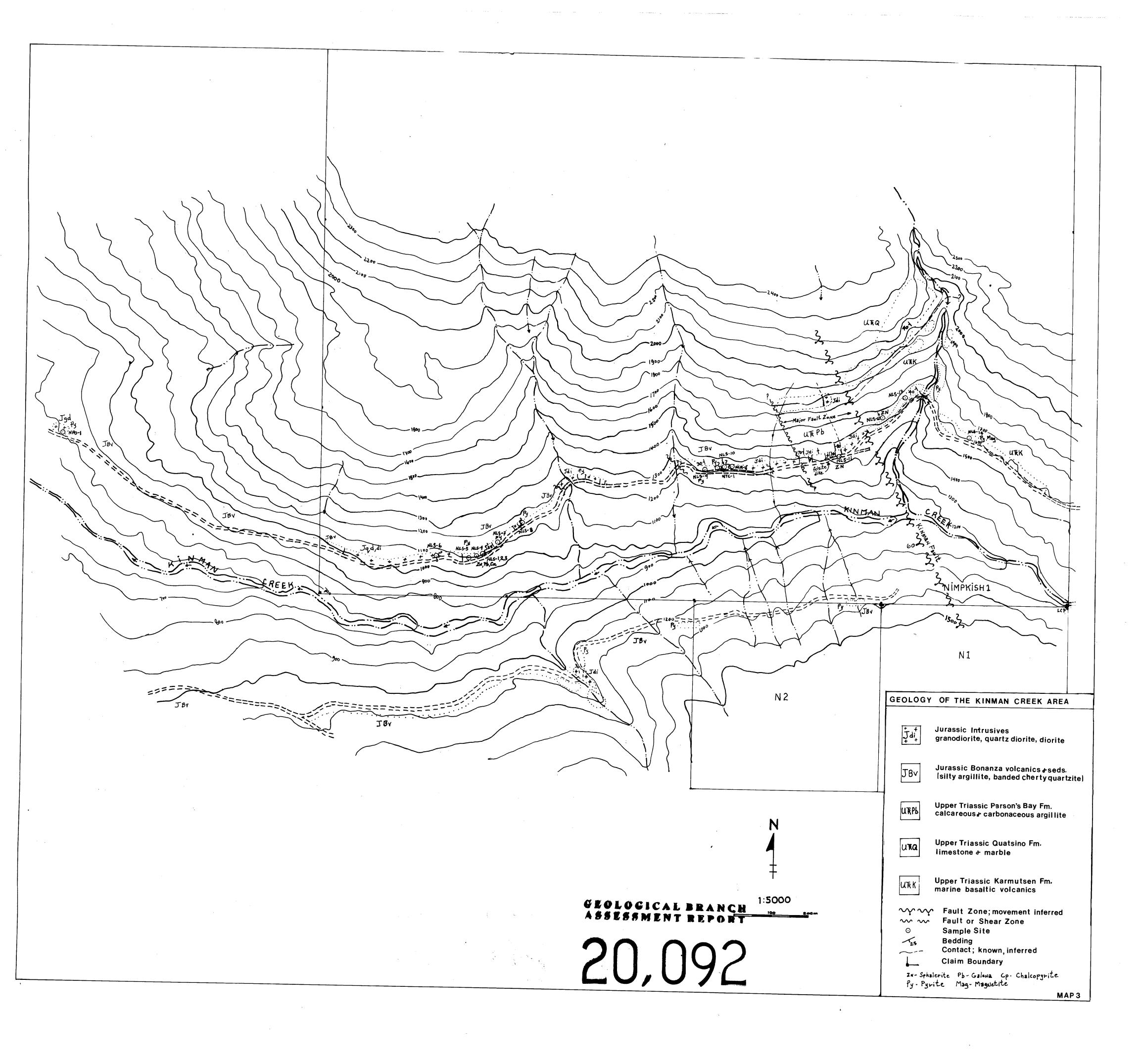
Certified by_

MIN-EN LABORATORIES

PROJ: NIMPKISH


ATTN: J.LAIRD


705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524


DATE: 90/05/24

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA BE	BI PPM	CA PPM	CD PDM	CO PPM	CU PPM	FE PPM		LI PPM	MG PPM	MN PPM	MO PPM		NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	U PPM	V PPM	ZN PPM	GA PPM	SN PPM			AU PPB
NORS4 NORS5 NORS6 NORS7	102.0 4.5 .8	1770 1880 1430 610	283 24 1 47	11 7 1	1 1.6 3 2.0 26 .6 12 1.9	117 3 3	6240 30610 19440 24980	54.0 .1 1.6 1.6	820 48 22	115900	261620 159110 28670 73990	40 50 60	1 1 1	510 470 2700 4340	146 573 2551	1 1 2	<u> </u>	902 1 6	1160 60 40 80	60 6 18 37		4 1 8 6	1 1 1	1 1 1	1.1 4.0 2.0 2.9	1854 27 66 63	1 1 1	1 1 1	2 1 1	1 1 12 0	90 74 10 12
NORS8	.3	2450	54	13	1 1.7	<u>i</u>	34940	1	78	1891	266750	60	<u>i</u>	2100	1208	<u>i</u> _	10	<u>i</u>	10	5	<u>i</u>	1	<u>i</u>		18.4	42	i	<u>i</u>	<u>i</u>	<u> </u>	<u>'2</u>
NORS9 NORS10 NORS11 NORS12 KD-1	3.6 51.1 322.9 9.6	2820 3310 14260 880 16380	1 32 114 33 36	18 30 32 25 5	1 .1 3 .6 1 1.2 2 1.0 2 1.1	1 18 231 1092 20		348.1 348.1 6.4 1318.7 13.8	46 59 33 223 109	332 1400 82500 200100 5877	516970 25190 118990 63030 85140	60 60 20	1 1 1 1	5570 1550 1240 1000 870	3887 1186 220	1 1796 260 38 5	30 10 10 10 10	1 9 16 13 117	10 190 11330 4280 410	36 92 265 28	1 69 194 1	1 43 14 28 1	1 1 1	1	13.3 5.3 42.0 1.4 36.1	39 29389 543 196400 1674	1 1 1 1	1 1 1 1	1 5 70 3		367 1000 175 8
KD-2 KD-3 W90-1 W90-2 W90-3	3.8 192.1 114.2 3.8 .1		9 28 19 6 1	9 20 12 4 20	1 1.1 2 1.1 1 1.5 19 .7 35 .2	13 586 82 12 1	25050	2.3 998.7 22.0 265.9	180 374	2092	64600 73310 214020 29820 451830	30 80 150	5 1 1 1	4410 1130 2480 3690 700		3 24 1 9 1	70 10 10 10 60	1 8 128 14 1	1140 2680 1150 180 10	18 187 64 45 5	1 145 78 1 1	9 29 1 9	1 1 1 1	1	69.2 1.9 22.2 3.3 1.7	687 169530 2694 34171 954	1 1 1	1 1 1	26 3 1 1	26 1 1 3	12 300 90 2 3
NLS-14	1.2	17410	1	10	6 2.2	10	6450	.9	380	748	216670	400	5	17230	424	1	490	51	140	5	1	13	1	1	38.8	343	1	1	1	1	24

