Geological and Diamond Drill Report

Power Project

Osoyoos and Greenwood Mining Divisions, B.C.

NTS Location 82E/6W

49°23'N latitude / 119°21'W longitude

Mineral Claims

Blocks: Fox 1-3, Fox 4, Power 1 and 2

Claims: Lynx 1-4, Moon 1-4

Owners:

Yukon Minerals Corporation, Allendale Resources Corporation Florence E. Bechtel, Alta Explorations Inc.

Operator:

Yukon Minerals Corporation 522 - 625 Howe Street Vancouver, B.C. V6C 2T6

Consultant / Author:

Brian P. Fowler, P.Geol, FGAC

Date Submitted:

U M ZC 4 4 2 ∞ ≈ **~** Z C E Σ 10.00 0 5 0 0 0 0 1 0 5 <

November, 1989

TABLE OF CONTENTS

		Page
I.	Summary	1
II.	Recommendations	3
III.	Introduction	
	1. Geographic and Physiographic Position	5
	<pre>2. Property Definition</pre>	5
	i) Claims	5
	ií) Work History	7
	3. Summary of Work Done	11
	i) Road Clearing	11
	ii) Grid	
	iii) Geological Survey	
	iv) Geochemical Survey	
	v) Geophysical Surveys	12
	vi) Diamond Drilling	13
	vii) Petrography	13
	4. Claims on which work was performed	13
IV.	Technical Data and Interpretation	
	1. Purpose \ldots	13
	2. Results and Interpretation	15
	i) Regional Geology	15
	ii) Local Geology	
	iii) Structure	
	iv) Mineralization	
	v) Geochemistry	
	vi) Geophysics and Diamond Drilling .	22
	vii) Conclusions	
	$3. \text{ References} \dots \dots$	20
		20
v.	Statement of Qualifications	32
VI.	COST STATEMENTS	33

ILLUSTRATIONS

۶.

3

Figure	1.	Location Maps	•	•	•	•	•		•	•	•	•	•	•	•	٠	9
Figure	2.	Claim Map	•	•	•	•	•		•	•	•	•	•	•	•	•	10
	~	- · ⁻ - ·		-													- · ·
Figure	3.	Geology, Geochem	&	A	ssa	Y	$\mathbf{P1}$	an	•	•	•	•	•	•	(j	in.	pouch)

APPENDICES

I	Thin	and	polished	section	petrography
---	------	-----	----------	---------	-------------

II Diamond Drill Logs III Assay Certificates

1. SUMMARY

1. The Power Project consists of 14 mineral claims (120 units), located in the Greenwood and Osoyoos Mining Divisions, 18 km east of the community of Okanagan Falls, B.C. Access is provided along a well maintained logging road, a distance of approximately 25 kilometres from Highway No. 97 at Okanagan Falls.

2. The claims are located over copper/gold/silver mineralization in a Tertiary syenite stock. Mineralization was first discovered on the property in the early 1960's, and the area has since undergone intermittent exploration by several operators directed towards the definition of a porphyry copper type deposit(s). Portions of the property have undergone routine soil geochemical, ground magnetometer, induced polarization and resistivity and limited diamond drill exploration. Prior to the 1989 programme, there was no evidence the property was ever geologically mapped on a normal grid scale.

3. The 1989 Power Project consisted of clearing existing roads of overgrowth, rehabilitating a portion of the grid, geological mapping at 1:2500 scale, a spot check soil geochemistry survey, a test geophysical survey (I.P. and resistivity, VLF-EM and MaxMin-EM) along three test lines, petrographic examination of rock and ore specimens, and 247.49 metres of NQ diamond drilling in 4 holes.

. The principle rock type on the property is a fresh, coarse grained biotite syenite, with accompanying lithologically similar intrusive phases. Geological mapping in the grid area indicates this syenite stock is fresh, massive and unaltered with minimal structural features. Geological interpretation of previous eperators' work indicated that an arcuate basin centered at L4N +00W may be the center of a younger structural and/or intrusive Qctivity. This possibility was substantiated by a broad magnetic low, ringed by soil geochemical and I.P. anomalies, and remains to be adequately tested by diamond drilling.

The most effective geophysical exploration tools were determined to be ground magnetics and the I.P. and resistivity Surveys. Ground magnetics reveals magnetic lows over most of the low laying ground and drift filled gullies, suggesting a recessive, different rock type or intrusive phase. I.P. and resistivity were effective in defining contacts of intrusive phases, and locating Sulfide mineralization (principally pyrite) as chargeability highs flanking marked resistivity contrasts indicating an intrusive phase change.

Significant porphyry type copper mineralization was not discovered on the property during the 1989 Power Project. The lack of large zones of hydrothermal alteration, brecciation, fracturing and disseminated epigenetic copper sulfide mineralization does not support the concept of the immediate area hosting a porphyry copper

deposit. The presence of well mineralized (with respect to copper) aplite xenoliths, however, indicates a geological environment favourable to porphyry copper mineralization, and future work should be directed towards locating the source of this material.

2. RECOMMENDATIONS

While the results of the 1989 Power Project detract from the potential of the immediate grid area hosting economic proportions of porphyry copper-gold-silver mineralization, the existence of copper mineralized xenolith material indicates an environment favourable for porphyry copper mineralization, and future exploration efforts should be directed towards establishing the source of this material. The following two-phase programme is recommended.

PHASE I

1. Petrographic examination of selected rock and mineralized samples to establish parentage and genesis.

2. Systematic prospecting and sampling of southern and northern portions of the claims area. The syenite stock contact should be established and investigated, in hopes of locating a significant alteration envelope and the possible source of the well mineralized xenoliths.

Costs of the above program are estimated to be \$15,000.00

PHASE II

1. Establish a grid over the more favourable target areas, trench accessible showings, conduct a routine soil geochemical survey and map the geology on grid scale.

2. Conduct an I.P. and resistivity survey for definition of alteration and mineralized zones.

The scope and costs of this phase are contingent upon results of Phase I.

III. INTRODUCTION

1. Geographic and Physiographic Position

The Power Project consists of 14 mineral claims centered at 49° 23'N, 119° 21'W (NTS 82E/6W). The claims are located 18 kilometres east of Okanagan Falls, B.C., and are readily accessible by a well maintained gravel logging road to Allendale Lake, a distance of 24 km, and 1.5 kilometres west along a 4x4 dirt road. The western and northern portion of the claims area straddle the northward continuation of the logging road, and are easily accessed.

The claims area is in the Okanagan Highland physiographic subdivision of B.C., along the divide between the Okanagan and Kettle River valleys. Relief is moderate, characterized by glacially carved rolling landscape with occasional rocky knolls and cliff faces. Elevations range from 1500 metres a.s.l. to 1850 metres a.s.l. Overburden and glacial outwash is typically most pronounced in depressions and at lower elevations, where broad swampy areas effectively conceal bedrock.

The area is timbered with mature pine, and commercial logging in the area remains active.

2. Property Definition

i) Claims

The Power Project area consists of fourteen mineral claims, eight of which are located by the two post method, and six located by the Modified Grid System (MGS) of staking. Claims and pertinent details are listed below:

Name	Type	Rec. No.	<u>No. of Units</u>	<u>Mining Div.</u>	<u>Anniv.</u>
Lynx 1	2-post	15423	1	Osoyoos	06-10-90
Lynx 2	2-post	15424	1	Osoyoos	06-10-90
Lynx 3	2-post	1422	1	Osoyoos	07-16-90
Lynx 4	2-post	1423	1	Osoyoos	07-16-90
Moon 1	2-post	1400	1	Osoyoos	06-10-90
Moon 2	2-post	1401	1	Osoyoos	06-10-90
Moon 3	2-post	1402	1	Osoyoos	06-10-90
Moon 4	2-post	1403	1	Osoyoos	06-10-90
Fox 1	M.G.S.	3103	20	Greenwood	06-21-90
Fox 2	M.G.S.	3104	20	Greenwood	06-21-90
Fox 3	M.G.S.	3105	20	Greenwood	06-21-90
Fox 4	M.G.S.	3106	20	Greenwood	06-22-90
Power 1*	M.G.S.	3013	16	Osoyoos	09-01-90
Power 2*	M.G.S.	3014	16	Osoyoos	09-01-90

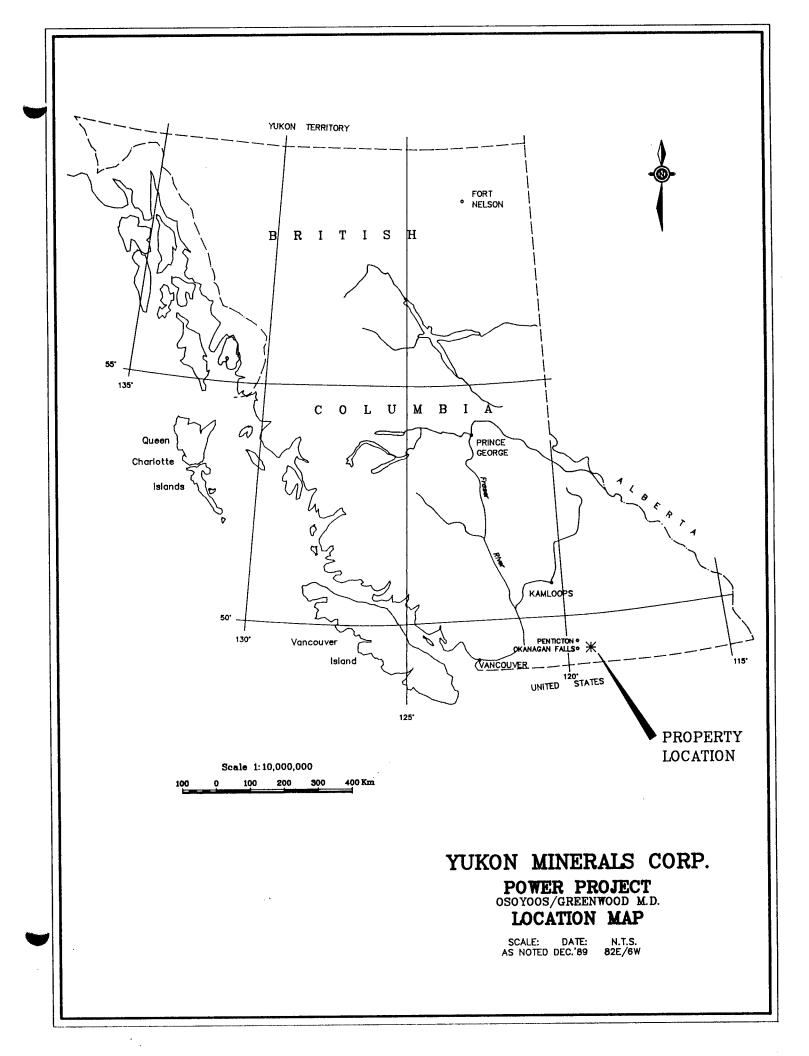
* denotes assessment applied for by Mike Nielsen on August 28th, 1989. The reader is advised to verify this anniversary date at the Gold Commissioners Office, Osoyoos Mining Division.

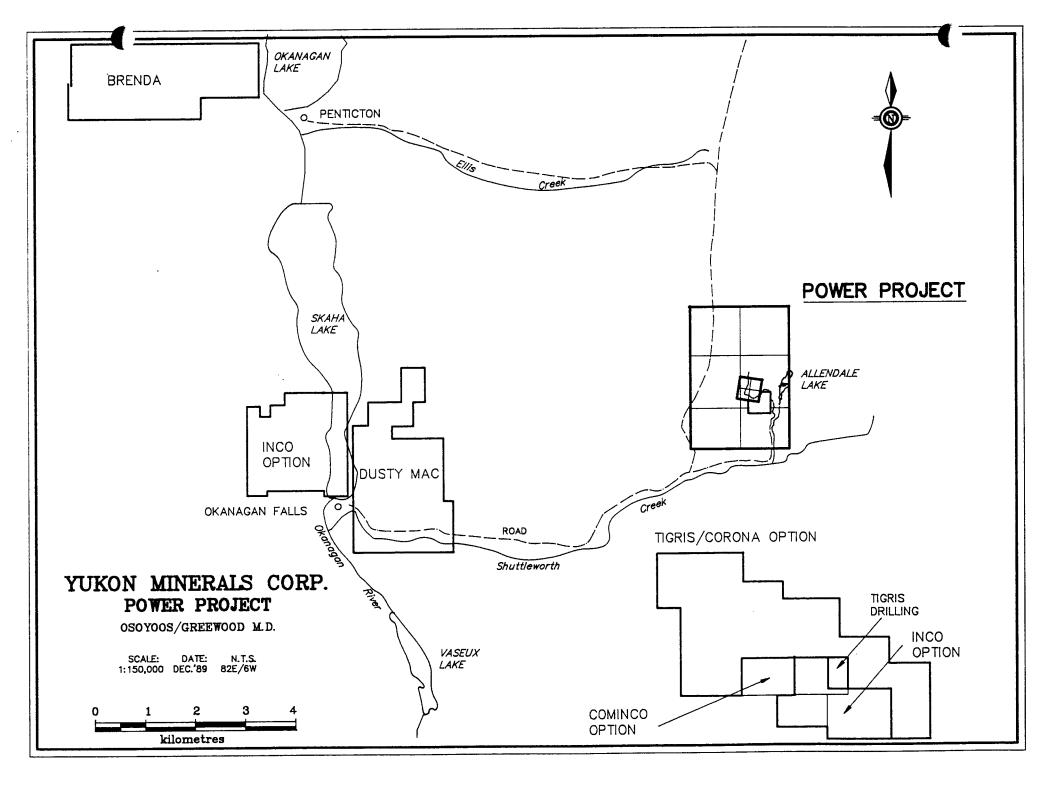
The Power 1 - 2 and Fox 4 claims are recorded in the name of Yukon Minerals Corporation. The Fox 1-3 claims are recorded in the

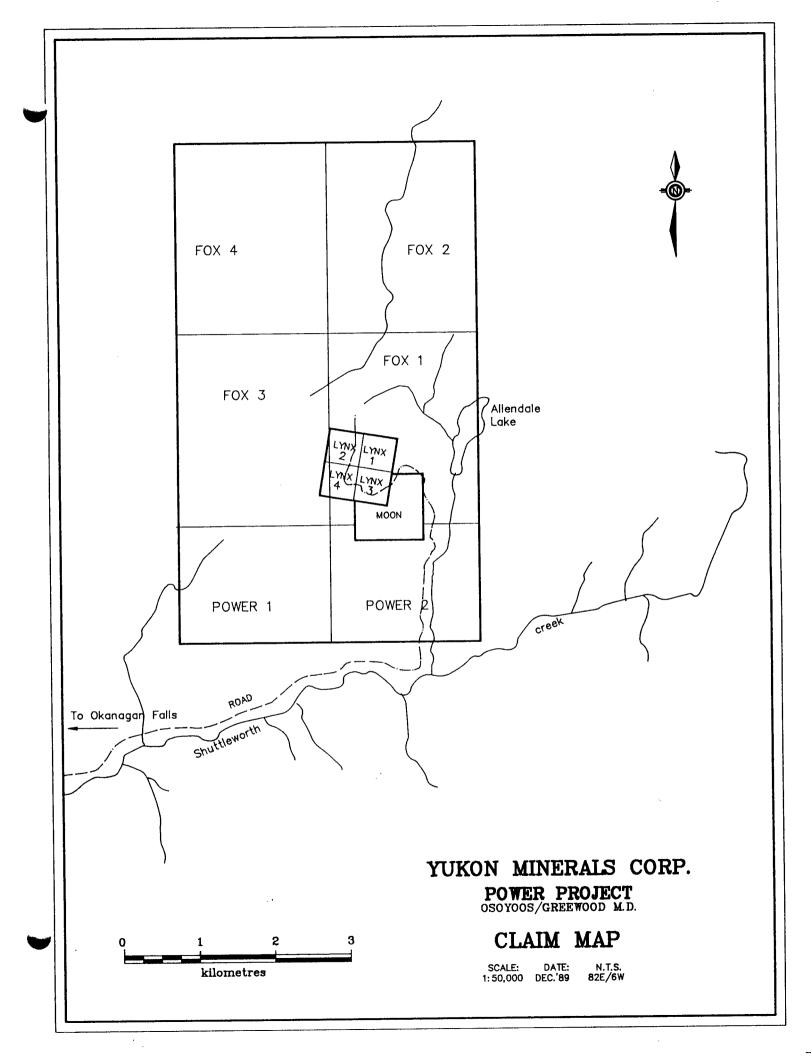
name of Allendale Resources Corporation. The Moon 1-4 claims are recorded in the name of Alta Explorations Incorporated. The Lynx 1-4 claims are recorded in the name of Florence E. Bechtel.

ii) Work History

Copper mineralization was first discovered in the area and subsequently staked by R.W. McLean and K.G. Ewers in 1966, on a hilltop 1.25 km west of Allendale Lake. The occurrence of porphyry style copper mineralization and the potential for a large volume, low grade deposit was recognized almost immediately. The claims area has since been the subject of sporadic exploration efforts by several mining companies.


The initial Lynx-Late claims were optioned to General Resources Ltd., who reportedly spent \$25,000 on trenching and access road construction. Gunnex Limited optioned the property in 1968, installed a compass and chain grid, and completed a detail geochemical and magnetometer survey over the mineralized area.


Selco Exploration Company Limited optioned the property in 1971, and drilled 2 diamond drill holes on targets defined by a limited induced polarization survey. Results were poor and the option was allowed to lapse.


Allendale Resources acquired interest in the property in 1982, and completed a 5 hole diamond drill programme. Kerr, Dawson and Associates logged the drill core in the Fall of 1982, and recommended additional exploration. In 1983, Kerr, Dawson and Associates, on behalf of Allendale Resources, established a reconnaissance grid over the area. A 5 km baseline and 44 km of grid lines were cut and flagged at 500 metre intervals with stations marked every 50 metres. A comprehensive program of soil geochemical, magnetometer and induced polarization surveys was completed. Five anomalous areas were defined, and diamond drilling was recommended.

Noranda Exploration Company acquired an option to the property, and in 1986 conducted a reconnaissance soil geochemical survey on the Nora claims, immediately south of the Moon claims. Results were poor and the option was allowed to lapse.

Yukon Minerals Corporation acquired an option on all claims in the area in the Spring of 1989 and completed a limited geological mapping, geophysical and diamond drill programme during the period August 1st - November 5th, 1989. Results of this programme are the subject of this report.

3. Summary of Work

The author first inspected the claims area on May 8th, 1989, for a duration of one day. The 1989 surface exploration programme took place during the period August 1st to August 30th, 1989. The field crew consisted of the author, Mr. Rob Klettl - contract geologist and Mr. Mike Nielsen - operations manager, Yukon Minerals Corporation.

Geotronics Surveys Ltd. conducted their test geophysical surveys on the claims area during the period August 24th-25th, 1989, 1989. The geophysical field crew consisted of 3 men. The diamond drill program was carried out during the period October 28th to November 3rd, 1989, contracted by Beaupre Diamond Drilling Ltd. of Princeton, B.C.

i) Road Clearing

A 966 front end loader was contracted for one day to clear overgrowth off the existing road network.

ii) Grid Establishment

The old baseline was refurbished (cut, chained and re-flagged) for a distance of 1.3 km, and 14 grid lines between L4N and L16N were re-flagged and chained east and west of the baseline for a total distance of 16.15 grid km.

iii) Geological Survey

The above grid was geologically mapped at 1:2500 scale. A total of 17 rock chip samples were collected and submitted for analysis.

iv) Geochemical Survey

Soil samples from selected grid lines were collected and analyzed in an attempt to validate former soil geochemical anomalies as defined by past surveys. A total of 23 soil samples from 3 grid lines were collected and analyzed.

v) Geophysical Survey

A 2 day geophysical test program was conducted by Geotronics Surveys Ltd. of Vancouver, B.C. in an attempt to define the best method for locating subsurface sulphide mineralization. I.P. and resistivity, VLF-EM and MaxMin EM geophysical techniques were tested along 3 lines. The I.P and resistivity survey tested a total of 1,140 grid metres. VLF-EM and MaxMin EM techniques were tested along 210 grid metres.

The geophysical staff of Geotronics Surveys Ltd. compiled all geophysical data and have submitted their interpretation under a separate report. A summary of these results is included with this report.

vi) Diamond Drilling

A skid-mounted Longyear Super 38 diamond drill drilled four NQ sized holes on 2 geophysical and geological targets, totalling 247.49 metres. A total of 35 core samples were split and submitted for geochemical analysis for Cu, Au and Ag. Drill logs, complete with assays are presented in Appendix II

vii) Petrographic Analysis

Petrographic examination of 2 polished thin sections and 1 thin section by Paul Ramaekers, FGAC, of Calgary, AB. was completed. Results are presented in Appendix I.

4. Claims on which work was performed

Claim Blocks	- Fox 1 and 3	Two Post Claims	- Lynx 1-4
	- Power 1 and 2		- Moon 1-4

IV. TECHNICAL DATA AND INTERPRETATION

1. Purpose

The 1989 Power Project exploration programme was designed to evaluate the claims area in terms of the potential for hosting a large volume, low grade copper-gold-silver porphyry type deposit(s). The programme scope was to establish a control grid, map the geology, test geochemical signatures obtained by previous operators, determine the most effective means of geophysical exploration, and diamond drill test the better targets.

Petrographic analyses of selected samples was used to verify whether porphyry type intrusive and copper mineralization occurred in the area. A limited soil geochemistry survey of selected areas was designed to validate large copper soil anomalies, as delineated by previous operators using similar techniques.

Geological mapping was geared towards the definition of large scale alteration envelopes typical of most porphyry deposits, ground truthing geochemical soil anomalies, mapping the location of known mineral occurrences, and tracing conspicuous overburden filled broad gullies.

Geophysical test surveys were designed to establish which procedure (I.P. and resistivity, VLF-EM and MaxMin-EM) provides the best and most reliable response over observable mineralization and geology, and determine which procedure(s) could provide the most reliable means of locating porphyry type copper deposits.

The better defined target areas (based on coincidental observable mineralization, soil geochemical anomalies, and geophysical anomalies) were diamond drill tested in an attempt to determine causative sources for the anomalous response(s).

2. Results and Interpretation

i) Regional Geology

The general geology of the area was compiled by H.W. Little in 1958 and 1959 at 1 inch = 4 miles on the Kettle River G.S.C. map sheet No.15-1961. This work has since been updated and compiled by D.J. Tempelman-Kluit in 1989, in G.S.C. Open File 1969, Penticton Map Area.

The claims are centered around a small (8 km²) syenite stock, one of several Eocene Coryell intrusions in the district believed to be coeval with Tertiary epithermal mineralization in the district. This particular stock occupies a unique structural position, in that it intrudes an apparent point of structural weakness at the junction of the Eocene Okanagan Gneiss, the granitic Cretaceous and/or Jurassic Okanagan Batholith and a presently poorly dated Eocene(?) hornblende granodiorite batholith.

Open File 1969 indicates all the above described rock units occur within the Power Project claim area, with the Okanagan gneiss and northern Eocene(?) granodiorite batholith towards the west, and the Okanagan Gneiss occupying the eastern edge of the claims area. Only the Coryell Syenite and its differentiates were found to occur in the grid area, with the exception of xenolithic material probably derived from the Okanagan Batholith and Gneiss.

ii) Local Geology

The grid was mapped at 1:2500 scale, and data is presented in Figure No. 3. The predominant rock type occurring within the grid area is a coarse grained biotite syenite, characterized by a spongy framework of chunky, smoky grey orthoclase feldspar phenocrysts, 1 to 3 cm in diameter, with finer grained, intersertal biotite. Magnetite content is generally quite high, ranging from 1 to 5 %.

Hydrothermal alteration typical of most porphyry deposits is generally negligible within the mapped grid area. Weak propylitic alteration can be observed in isolated fracture zones in the form of 1 to 2mm thick smears of epidote along fracture faces and minor calcite veining. Locally strong zones of secondary biotite development commonly occur adjacent to quartz feldspar pegmatite dykes and blows. Veins of pink albite occur as joint infills, are confined, and generally average 1 cm in thickness. Argillic alteration (hydrothermal clay alteration of feldspars) is very weak at best, and usually most pronounced near faults and shears.

Geological mapping and drill core examination indicates four distinct phases of Coryell sympite occurs in the grid area.

 Coarse grained, dark grey biotite +/- hornblende rich syenite, distinguished by chunky, smoky grey coarse phenocrysts of orthoclase. The rock is generally massive, homogenous, weakly fractured and fresh. Magnetite content is quite high, ranging from 3 - 5%. Occasional pyrite grains occur as disseminations and as fracture fill.

2. Fine - medium grained, biotite rich dark grey/black syenite. It has been suggested this phase represents an early crystal segregation of the magma during emplacement of the stock (<u>Kerr,</u> <u>1983</u>). Sharp and gradational contacts with (1) have been observed. Weak-moderate fracturing is observed with weak chlorite and clay development. This rock generally contains appreciable disseminated pyrite (up to 3%), with traces of chalcopyrite and molybdenite. Sulphide content is observed to increase in areas of increased fracture density and is spatially related to biotite. Magnetite content is generally lower than (1), and is most pronounced towards the centre of the intrusive phase.

3. Light grey, fine-medium grained syenite or monzonite. The mafic content is appreciably lower than the main syenite phase, and is predominantly biotite. The rock is fresh, massive, dense, and shows little sign of secondary alteration. Contacts are variable, but it is believed this rock type represents a separate and later intrusive event.

4. Dark grey, fine grained fresh biotite feldspar (Minette) dykes. Categorized as a lamprophyre dyke, this unit contains 40% fine grained feldspar, up to 10% magnetite, and up to 50% fine grained biotite. This unit probably represents a finer grained counterpart of (1). Two other significant rock types in the grid area include:

Small pods, dykes(?) and sills(?) and xenoliths of fine i) grained buff/white /light grey granodiorite, granite or aplite. Variable in composition, this is the only rock type evident in the area with primary quartz occurring as grains and masses in the Alteration is variable, ranging from weak to strongly rocks. silicified, serecitized, with K-feldspar and clay alteration noted. Locally well mineralized, pyrite, chalcopyrite, bornite and tetrahedrite exist as clots and disseminations. These rocks are typically well oxidized along surface, with good development of malachite and azurite stain. The majority of occurrences of this particular rock type are xenolithic in nature. This rock exhibits alteration and mineralization typical of porphyry copper deposits, unfortunately large volumes of it have not been located to date. This rock type probably represents digested fragments of the earlier Okanagan gneiss and Okanagan Batholith, which form the main walls of the Coryell stock.

ii) Quartz Feldspar pegmatite dykes and blows occur throughout the grid area, mainly in the form of irregular veins and blows, occupying joint planes and zones of weakness. The pegmatite is quartz rich, and coarse albite constitutes the feldspar component.
The larger pegmatite dykes are well zoned, and usually have a strong biotite alteration zone along contacts. Biotite, hornblende, magnetite and traces of fluorite and chalcopyrite are

also noted to occur in this dyke material.

Field mapping indicates that the distribution of rock types other than the coarse grained biotite syenite (1) is restricted, in a presently poorly explained fashion. Previous work (Figure 4) on the property has suggested that a swamp filled arcuate land feature south of L9N could possibly represent the centre of a major structural, intrusive, and/or extrusive event. Geophysical and geochemical evidence can be interpreted to outline a major fault centre, a later felsic intrusion, a breccia pipe or a volcanic caldera. Diamond drill hole 89-4, drilled eastward from L5N 0+60E, did not encounter alteration or brecciation one would expect proximal to such a tectonic feature.

iii) Structure

The results of a statistical study of fractures and lineaments undertaken in 1971 (<u>Church, 1971</u>) indicate the main fractures within the Coryell stock in the claims area have a mean attitude of 035 degrees dipping 80 degrees southeast. Strong subsidiary fractures strike about 065 degrees dipping 55 degrees northwest and two weaker sets were noted striking roughly 010 degrees dipping 55 degrees northwest and 135 degrees vertical.

The knob and kettle topography of the area generally reflects the main fracture direction (035 degrees). While indicative of the overall glacial direction, major geological features such as faults and intrusive contacts also trend in this direction.

The Road Show occurs in a recessive gulley trending along this trend, and probably represents mineralization along the contact of two intrusive phases, one of which is more resistant to erosion. Magnetic lows generally occur along these gulley features, indicative of a different and/or altered intrusive phase. The frequency and distribution of these long recessive gulleys probably represents other intrusive contacts or recessive dykes, and the possibility of other Road Show "type" occurrences along these gulleys is considered very good.

iv) Mineralization

Mineralization within the grid area of the Power Project occurs in three distinct modes, described below:

1. The most widespread mode of mineralization within the grid area consists mainly of sulphide replacements in xenoliths. This mineralization can be quite spectacular, and consists of disseminations and clots of pyrite, chalcopyrite, bornite, chalcocite and tetrahedrite in rounded digested aplite, ranging in size from 10 cm to 1 metre.

Alteration can be intense, usually taking the form of silicification and potassic alteration. These rocks are typically well oxidized, with good development of malachite and azurite stain. A well mineralized grab sample (81259) of this material obtained from L13+30N 0+10E returned 3.56% Cu, 100 ppb Au and 2.24

ounce/ton Ag.

The xenoliths tend to occur in clusters, and a 33 foot (10.06 metre) channel sample obtained by previous operators reportedly averaged 0.75% Cu and 0.6 ounce/ton Ag. This sample was probably obtained from a blast trench located at L13+30N 0+40E. Similar clusters of xenoliths were noted to occur near L6+50N 04+00E, L9+00N 0+50E, L10+00N 5+50W and L12+00N 10+50W.

2. The second form of epigenetic sulphide mineralization occurs as shear zone / contact metasomatic accumulations of sulphide, confined to narrow zones apparently bordering distinct phases of the intrusion complex (<u>ie. The Road Show</u>).

Strongly oxidized pyritic intrusive float was exposed during logging operations on the property during the winter of 1988 near L8+60N 2+00E. The Road Show was partially exposed by a front end loader utilized at the onset of the programme to clear overgrown roads. A sulphide rich, fine grained syenite hosts 5-15% veined and clotted pyrite, .1-1% disseminated chalcopyrite and traces of tetrahedrite near a contact with fresh, coarse grained biotite syenite. A 2.65 metre continuous channel sample (66201) across the exposed portion of the showing returned 0.44% Cu, <0.002 ounce Au/ton and 0.07 ounce Ag/ton.

Petrographic examination of Road Show mineralization indicates a complete lack of quartz (primary or secondary), moderate argillization of feldspar (especially plagioclase), and that most biotite is secondary in origin.

The Road Show appears to occupy a narrow northeast trending draw, approximately 17 metres wide, and traceable along surface for over 200 metres. The above sample was derived from the east wall, and vuggy, bleached fine grained monzonitic material containing traces of disseminated bornite were located along the west wall, approximately 35 metres towards the west. A grab sample of this material (66203) assayed 0.90% Cu.

Mineralized samples from the Spoon, Tessa and Antler zones can also be loosely categorized under this deposit type. The Spoon Show is a thin shear hosted accumulation of chalcopyrite, bornite and tetrahedrite located at L14N 0+95W. The occurrence appears to be one of a series of widely spaced shears (3-5 metres) in fresh coarse grained biotite syenite striking 82° dipping 26° north. A selected grab sample returned 13.77% Cu, 0.128 ounce Au/ton, and 5.25 ounce Ag/ton. Mineralization here is spotty and limited.

The Tessa showing is a zone of intense secondary biotite development marginal to a fine grained, pyritic syenite(?) exposed along a road cut 30 metres south of L10N 5+75W. A grab sample of this material (80954) returned 0.06% Cu, <0.002 ounce Au/ton and 0.03 ounce Ag/ton.

The Antler Zone is similar to the Tessa Zone, with the absence of pronounced secondary biotite. Situated alongside the road 20 metres north of L10N(B) 4+80W, a grab sample (80953) of this material returned 0.06% Cu, <0.002 ounce Au/ton and 0.05 ounce Ag/ton.

3. The third type of mineralization in the claims area is

disseminated pyrite and lesser chalcopyrite in fine to medium q mineralization can occur across considerable widths, overall well below any economic threshold.

Geochemistry

A total of 23 soil samples were obtained from 3 grid lines during the 1989 Power Project. The purpose of this exercise was to reproduce comparable geochemical copper and silver values within geochemical anomalies defined by previous operators (Allendale resources - 1983). If results proved comparable, the existing geochemical database could be utilized with a degree of confidence.

Soils were obtained across 3 copper soil anomalies (> 150ppm 1) along L4N 0+00 to 4+00E, L5N 0+00 to 4+00E and L10N 4+00W to +00W. The B soil horizon was sampled with the aid of a maddock at a depth of 25 cm and samples were placed in standard open ended kraft envelopes for shipping and handling. Samples were sent to Mondar-Clegg & Company of 130 Pemberton Avenue, North Vancouver MAd analyzed by atomic absorption techniques.

Overall, results were lower, but 3 samples did run in excess

of 150 ppm Cu, establishing a satisfactory degree of confidence in the available data.

vi) Geophysics and Diamond Drilling

In an attempt to locate significant deposits of low grade copper sulphide mineralization, past operators resorted to I.P. and magnetometer surveys of the claims area.

I.P. and resistivity surveys were carried out in 1971 and 1983 Phoenix by Siegel Associates Ltd. and Geophysics Ltd., respectively, utilizing the time domain method. Moderate I.P. highs of 10 - 13 milliseconds were defined out of a background of 3 to 4 milliseconds. These highs correlated with the edges of resistivity highs, indicating the possibility of sulphide mineralization being related to intrusives as reflected by resistivity highs.

A magnetic survey by Kerr Dawson and Associates in 1983, utilizing a proton precession magnetometer measuring total field, was carried out over most of the initial grid. The intensity of the magnetic field was determined to vary from 52,330 gammas to 69,930 gammas, indicating a range of 17,600 gammas. A northerly trend is evident, suggesting geological structures persist in this direction.

Magnetic highs correlate well with ridge tops and topographic highs, reflecting unaltered, magnetite rich coarse grained syenite. Linear magnetic lows occur along the western portion of the grid, trending in a northerly direction, and probably reflect large fault structures. A broad magnetic low overlays the swamp in the south central grid area, supporting the theory of this area being the site of large scale alteration, cross-faulting, and/or a different rock type.

A 2 day geophysical test program was conducted by Geotronics Surveys Ltd. of Vancouver, B.C. in an attempt to define the best method for locating subsurface sulphide mineralization and subsequent drill testing. I.P. and resistivity, VLF-EM and MaxMin EM geophysical techniques were tested along 3 lines. The I.P and resistivity survey tested a total of 1,140 grid metres (Test Line No.1, L5N 0+00 to 3+75W, and L10N(B) 0+60E to 4+20W). VLF-EM and MaxMin EM techniques were tested along 210 grid metres (Test Line No.1).

Geophysical results and survey methods are described in a separate report by David G. Mark, of Geotronics Surveys Ltd. The following observations and conclusions were, for the most part, obtained from Mark's 1989 report.

A limited diamond drill program was designed to test the Road Show and geophysical anomalies outlined by the 1989 geophysics. Beaupre Diamond Drilling of Princeton, B.C. drilled 4 NQ diamond drill holes along two sections during the period October 28th -November 3rd, 1989. Core samples were split and submitted to Kamloops Research and Assay Laboratory Ltd. for geochemical analysis of Cu, Ag and Au.

VLF-EM and MaxMin EM profiles across the road show (Test Line

No.1) registered a flat response, indicating low conductivity over the showing. I.P. and resistivity across this same line showed a strong I.P. high dipping west, correlating with a resistivity contact due to a resistivity high to the east and low to the west.

Based on these results, drill hole 89-1 was collared west of the Road Show and drilled at -60° towards the northeast in an attempt to intersect the west dipping chargeability high. No alteration or significant sulphide mineralization was intersected.

Drill hole 89-2 was collared along section on the northeast side of the Road Show, and drilled at -45° towards the southwest to cover for an east dipping mineralized structure. Significant sheared, skarn type sulphide mineralization was intersected between 12.19 and 16.30 metres, with a 1.22 metre section assaying 0.68% Cu, 3.8 ppm Ag and <5ppb Au.

The head was tilted and drill hole 89-3 was drilled vertically from the same set-up. Three pyritic zones were intersected, with the widest and best mineralized intersected across 2.65 metres and assaying 0.19% Cu, 0.9 ppm Ag and <5ppb Au. The lower, smaller zones returned 0.61% Cu, 0.3 ppm Ag and <5 ppb Au across 0.80 metres and 0.24% Cu, 1.5 ppm Ag and <5 ppb Au across a core length of 0.42 metres.

The Road Show can be described as a north-east dipping (50°) sulfidic contact metasomatic (skarn) accumulation occurring along the contact of two lithologically similar syenite phases of the Coryell stock. Striking roughly 50° east, and probably of significant lateral and vertical extent, overall grade and width

falls quite short of economic requirements.

The I.P and resistivity survey effectively outlines this zone as a flat laying moderate chargeability (24-27 milliseconds) crosscutting a marked resistivity boundary denoting an intrusive contact.

On L5N, the IP chargeability showed low amplitude highs of 10 to 20 milliseconds against a background of 10 to 11 milliseconds. A correlation with resistivity highs suggests sulphide association with intrusive phases. Diamond drill hole 89-4 was collared on L5N 0+60E and drilled at -45° eastward. Collared near a soil geochemical anomaly bordering the southern swamp area, this hole was drilled to test the I.P results and provide a glimpse of bedrock in this postulated plug/vent area.

Drill hole 89-4 intersected a sulphide rich, medium grained to porphyritic biotite rich syenite phase between 50.93 metres and 76.15 metres. Up to 3% disseminated pyrite (generally 1-2%) occurs within this plug(?), most pronounced near the contacts and gradually decreasing towards the centre. Traces of chalcopyrite and molybdenite occur randomly, generally along fractures and in clots with biotite. Alteration is weak, mainly expressed as selective chloritization and clay alteration of feldspar and along shears.

Overall copper content was quite low, with no interval assaying greater than 0.039% Cu. Gold and silver values were generally below detection limits. The pyrite content easily explains the chargeability high, which again occurs proximal to a marked resistivity change indicating separate intrusive phases.

I.P. was also run along L10N(B) between 0+60E - 4+20W during the 1989 programme. A marked resistivity contrast occurs at 0+90W and 0+60W, probably representing a resistant (relative) vertical intrusive plug. Chargeability highs up to 27 milliseconds flank this plug which has a background averaging 11 milliseconds. A broad resistivity low occurs towards the west between 2+40W and 3+30W, and has been interpreted to possibly represent a broad alteration envelope associated with an epithermal vein structure. There is no surface geological evidence to support this, however surface trenching in the area is recommended. Line 10N(B) was not drilled in 1989 due primarily to expenditure of the budget.

vii) Conclusions

The 1989 Power Project field program effectively substantiated previous operators data and results with respect to copper mineralization in the grid area. Geophysical surveys, in particular I.P. and resistivity, and geological mapping indicates the area is underlain by a multi-phased intrusion, and that known mineralization to date occurs as chargeability highs flanking different intrusive phases described by a marked resistivity contrast.

Soil geochemistry anomalies, as defined by previous operators, are accepted as legitimate, and are of significant size and areal distribution. Diamond drilling is probably the most effective method of testing geophysical anomalies, owing principally to depth of overburden.

While geochemical and geophysical signatures can be compared to porphyry deposit models, geological mapping and diamond drilling did not reveal zones of widespread brecciation, fracturing, alteration and disseminated mineralization, crucial elements of almost all porphyry copper deposits. If a porphyry copper deposit occurs within the Power Project claims area, it is not in the immediate grid area.

The well mineralized aplitic xenoliths contained in the fresh Coryell syenite are indicative of a favourable geological environment for porphyry copper deposits. Future work should concentrate on the source of these xenoliths, and the margins of the central syenite stock would be the logical place to investigate.

Road Show type mineralization is probably metasomatic (skarn) in nature, and not of the porphyry type. Typically much smaller in size, these deposits usually occur along the flanks of porphyry systems and with noted exceptions are rarely economic.

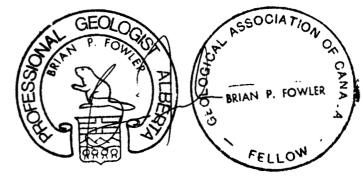
3) References

- Amemdolagine, E., 1982, Property prospecting and geologic observations on the Moon and Dick claims. Unpub. Rpt. for Knie Resources Inc.
- Cartwright, P.A., 1983, Report on the induced polarization and resistivity survey on the Allendale Lake Property. Assesment Report 12290.
- Church, N., 1971, Lynx, Late. Geology, Exploration and Mining in British Columbia, 1971.
- Gill, G., 1986, Geochemical survey on the Allendale Lake Property. Assessment report 15,466.
- Gruenwald, W., 1984, Geological, geochemistry, and geophysical report on the Allendale Lake Property. Unpub. Rpt for Allendale Resource Corp.
- Kerr, J.R., 1982, Report on the Lynx, Cam and Fox claims. Unpub. Rpt. for Allendale Resources Ltd.
- Kerr, J.R., 1983, Summary report on the Allendale Lake Property. Unpub. Rpt. for Allendale Resource Corp.
- Little, H.W., 1961 Geology Kettle River (West Half), G.S.C. Map 15-1961.
- Mark, D.G., 1989, Summary report on geophysical surveys on the Power Project. Unpub. Rpt. for Yukon Minerals Corp.
- Reed, L.E., 1971, Induced polarization survey, Allendale Lake area, Assessment report 3481.

- Rose, K.C., 1968, Geochemical and geophysical report on the Lynx and Late claims. Assessment Report 1741.
- Templeman-Kluit, D.J., 1989, Geological Map with mineral occurrences, fossil localities, radiometric ages and gravity field for Penticton Map Area (NTS 82E), Southern British Columbia; G.S.C. Open File 1969.

STATEMENT OF QUALIFICATIONS

I, Brian P. Fowler, do hereby certify that:


1. I am a practising Mining Geologist and my address is 105 -Shannon Crescent S.W., Calgary, Alberta T2Y 2T7.

2. I am a 1981 graduate in Geology from the University of Alberta, and have engaged in practising my profession on a full time basis for 9 years.

3. I am a member of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta and a Fellow of the Geological Association of Canada.

4. This report is based on my personal participation in and supervision of the 1989 Power Project, and various public and private reports made available to the author by Yukon Minerals Corporation.

5. I have no interest direct or indirect in the properties of Yukon Minerals Corporation or in any companies with contiguous property to the Power Project claim area.

Brian P. Fowler, P.Geol., FGAC

COST STATEMENT

<u>Phase I:</u>

Geological mapping, geological prospecting, grid + linework, geochemical and sampling program:

Chief Geologist	19.5	days	6	\$300.00/day	\$ 5,850.00
Geologist	22	days	6	\$150.00/day	3,300.00
Consultant	2.5	days	0	\$300.00/day	750.00
Prospectors	66	mandays	6	\$200.00/day	13,200.00
Linecutters+gridworkers	31.5	mandays	6	\$200.00/day	6,300.00
Expediting					225.00
Assays and thin sections					888.90
Mob - demob					1,858.35
Room & board					2,841.15
Truck rental					2,416.67
Fuel and oil	626.21				
Equipment rental (ATV, c)	1,000.00				
Access, CAT 966 loader	778.00				
Communications	334.96				
Field and geological supp	2,194.71				
General Supplies					584.57
Freight					369.18
TOTAL THIS PHASE					\$43,617.70

Geophysical Program:

Contractor incl report			\$4,072.00
Mob - demob			462.60
Chief Geologist	3	days @ \$300.00/day	900.00
TOTAL THIS PHASE			\$5,434.60

Cost Statement con't

Diamond Drill Program:

Drill contractor 812 feet @ \$18.00\foot \$14,616.00 Chief geologist 16 days @ \$300.00/day 4,800.00 Core splitting + 13.5 mandays @ \$200.00/day 2,700.00 handling + storage Site location, access timber cutt.+reclamation 19.5 mandays @ \$200.00/day 3,900.00 Mob - demob 2,193.60 Room & board 1,478.72 Truck rental 1,350.00 Fuel and oil 214.70 Equipment rental (ATV, chainsaws, radioes) 700.00 Core boxes and lids 313.00 452.25 Assays Field supplies 163.70 252.00 Freight Expediting \$ 1,350.00 TOTAL DRILLING PROGRAM \$34,483.97

TOTAL 1989 EXPLORATION PROGRAM

\$83,536.27

The above Cost Statement is, to the best of my knowledge, correct as presented:

Michael Nielsen General Manager Yukon Minerals Corporation

APPENDIX I

PETROGRAPHIC DESCRIPTIONS

	n Minerals C		on, Allendale Project	SAMPLE NO: 1 Description by: Paul Ramaekers
PETROGRAPHIC I	NAME: Syenit	e, closo	e to monzonite compositional b	oundary
DESCRIPTION:	replacemen	t of mos		e originally. Intense potassium alteration resulting in anied by the introduction of minor freibergite. Later of major bornite.
LITHOLOGIC UN	II: Coryell	Stock	of Early Tertiary Age	MAX. GRAIN SIZE (MM) in sample: 15
HYDROTHERMAL /	a) F F b) A	otassic atch to patite	accompanied by intense alterat alteration consisting of orth rod perthite ite forming in altered feldspa	oclase replacement of albite along fronts marked by
	a)]		ring and some faulting accompa biotite forming in and adjac	nied by: ent to fractures, and associated with
		-	hermal alteration or weatherin zation of feldspar	g alteration:
		-	izable phase of fracturing wit e in fractures	h:
	•		lcite in fractures	
	b) Sericitic al Malachite ar	inor ca teratio d calci	lcite in fractures n of feldspars especially the te alteration may be part of w	albite weathering along glaciation induced fractures:
PRIMARY MINER.	b) m Sericitic al Malachite ar ALS PERCEN	teratio d calci	lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS	weathering along glaciation induced fractures:
PRIMARY MINER QUARTZ	b) Sericitic al Malachite ar ALS PERCEN 	teratio d calci IT SIZ	lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph	eathering along glaciation induced fractures:
PRIMARY MINER QUARTZ	b) Sericitic al Malachite ar ALS PERCEN 	teratio d calci IT SIZ	lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph	eathering along glaciation induced fractures:
PRIMARY MINER QUARTZ ALBITE MICROCLINE	b) Sericitic al Malachite ar ALS PERCEN 4 0.0 20 5	inor ca teratio d calci IT SIZ 	lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligood Sericitized, twins very re i Intergrown with and around	weathering along glaciation induced fractures: te; some replaced by K-spar along block perthitic fronts reline. Finely twinned. Ab-An content that were possible indicate a composition relase boundary. regular, not spindly; possibly albite with pericline twin I albite; uniaxial negative, part of this may be apatite
PRIMARY MINER OUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE	b) Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 5	ninor ca teratio d calci IT SIZ 5 5 5 5 4 5 4 4	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligood Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn </pre>	weathering along glaciation induced fractures: Te; some replaced by K-spar along block perthitic fronts reline. Finely twinned. Ab-An content that were possible indicate a composition clase boundary. regular, not spindly; possibly albite with pericline twin d albite; uniaxial negative, part of this may be apatite o relief. relief. relief. relief. relief. relief. relief. relief. relief.
PRIMARY MINER QUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE MAGNETITE + I SECONDARY MIN	b) m Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 5 5 5 5 5 5 10.5 M	inor ca teratio d calci tr SIZ 5 5 5 5 4 0.	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligoc Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn }</pre>	weathering along glaciation induced fractures: te; some replaced by K-spar along block perthitic fronts reline. Finely twinned. Ab-An content that were possible indicate a composition relase boundary. regular, not spindly; possibly albite with pericline twin I albite; uniaxial negative, part of this may be apatite relief. relief. roism in browns retic, although some samples are magnetic.
PRIMARY MINER QUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE MAGNETITE + I SECONDARY MIN	b) m Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 5 5 5 5 5 5 10.5 M	inor ca teratio d calci tr SIZ 5 5 5 5 4 0.	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligoc Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn }</pre>	weathering along glaciation induced fractures: Te; some replaced by K-spar along block perthitic fronts reline. Finely twinned. Ab-An content that were possible indicate a composition clase boundary. regular, not spindly; possibly albite with pericline twin d albite; uniaxial negative, part of this may be apatite o relief. relief. relief. relief. relief. relief. relief. relief. relief.
PRIMARY MINER QUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE MAGNETITE + I SECONDARY MIN ALBITE? ORTHOCLASE	b) m Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 LM ERALS 5 35	ninor ca teratio d calci IT SIZ 	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligood Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn Untwinned, about as clear Nost is in part perthitic</pre>	eathering along glaciation induced fractures: Te; some replaced by K-spar along block perthitic fronts Teline. Finely twinned. Ab-An content that were possible indicate a composition clase boundary. Pgular, not spindly; possibly albite with pericline twin t albite; uniaxial negative, part of this may be apatite orelief. Troism in browns Tetic, although some samples are magnetic. as the other feldspar, biaxial positive, moderate 2V and replacing albite.
PRIMARY MINER QUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE MAGNETITE + IN SECONDARY MIN ALBITE? ORTHOCLASE BIOTITE	b) m Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 5 5 5 5 5 5 5	inor ca .teratio .d calci 	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligoc Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn Untwinned, about as clear Most is in part perthitic Strongly pleochroic in bro fractures with bornite</pre>	weathering along glaciation induced fractures: Te; some replaced by K-spar along block perthitic fronts reline. Finely twinned. Ab-An content that were possible indicate a composition relase boundary. regular, not spindly; possibly albite with pericline twin albite; uniaxial negative, part of this may be apatite relief. relief. relief. relief. retic, although some samples are magnetic. as the other feldspar, biaxial positive, moderate 2V and replacing albite. we and green-browns; as thin fissure fillings in
PRIMARY MINER QUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE MAGNETITE + II SECONDARY MIN ALBITE? ORTHOCLASE BIOTITE ILLITE fine g MALACHITE	b) Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 5 5 5 5 5	inor ca teratio d calci n SIZ 5 5 5 5 5 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligoc Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn Untwinned, about as clear Most is in part perthitic Strongly pleochroic in bro fractures with bornite 1 Present only as sericite; Cryptocrystalline; no pleo</pre>	<pre>weathering along glaciation induced fractures: </pre>
PRIMARY MINER. QUARTZ ALBITE MICROCLINE NEPHELINE? BIOTITE MAGNETITE + II SECONDARY MIN ALBITE? ORTHOCLASE BIOTITE ILLITE fine g MALACHITE APATITE	b) Sericitic al Malachite ar ALS PERCEN 0.0 20 5 5 5 5 5 5 5 5	inor ca teratio d calci IT SIZ 5 5 5 5 5 4 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	<pre>lcite in fractures n of feldspars especially the te alteration may be part of w E COMMENTS Largely altered to sericit some as inclusions in neph The few determinations of close to the albite-oligoc Sericitized, twins very re Intergrown with and around oriented so as to show low 2 Books with moderate pleoch None seen, sample not magn Untwinned, about as clear Most is in part perthitic Strongly pleochroic in bro fractures with bornite 1 Present only as sericite; Cryptocrystalline; no pleo</pre>	<pre>weathering along glaciation induced fractures: </pre>

1

BORNITE	;	7	ł	BLEBS¦	In blebs up	to 10	mm in fractur	es associat	ed with I	biotite				
FREIBERGITE	1 1	0.01	i	0.1	In anhedral	grains	disseminated	in orthocl	ase, lati	e albite?,	apatite,	and s	SOMe	in
					fractures									

PORE SPACE 0

DISCUSSION

The thin section shows that the rock originally was a typical albite-microcline syenite, perhaps slightly quartz deficient, if the identification of nepheline is correct. The plagioclase shows an index of about An 10-13, on the only determination possible. This indicates that the composition is close to that of a monzonite.

The rock was extensively altered, during two fracturing phases. The oldest alteration consists of healed fractures accompanied by largescale potassium alteration of the albite to orthoclase. Fractures in the newly formed orthoclase are sealed by younger orthoclase. Apatite was introduced at this time or slightly later.

Small specks of freibergite can be found in the orthoclase and apatite, away from the later brittle fracturing; thus, it was probably introduced with the orthoclase and the apatite.

Later brittle fracturing is extensive. Along the fractures is evidence of further potassium alteration in the form of lamellar biotite. This can be distinguished by its from the primary biotite by its location along the fractures and its lamellar shape, unlike that of the early biotite found only as very small books.

Also along these late fractures is bornite in blebs and stringers. It is homogenous, showing no sign of intergrowths with other sulphides (in this section).

Sericitization of the feldspar may be due in part to late hydrothermal alteration and perhaps also to weathering alteration.

Extensive later fracturing may be due to glaciation or the processes that led to the unroofing of the stock. Very fine grained malachite and calcite are present along these, suggesting that this occurred near the surface and probably as part of the weathering.

The simple mineralogy of the copper minerals indicates that the supergene zone of enrichment is no longer present; it was probably removed by glacial erosion.

The alteration pattern shown in this slide is typical of porphory copper deposits.

PETROGRAPHIC DESCRIPTION			SAMPLE NO: A-1739-2
Project: Yukon Minerals Corporation, Power Project	Northing: 8+60	Easting: 1+90	Elevation:

PETROGRAPHIC NAME: Altered Syenite

DESCRIPTION: Grey, possibly porphyritic syenite; euhedral sanidine and a few oligoclase crystals are present in a strongly altered fine-grained groundmass composed of feldspars, illite, calcite and probably chlorites and epidote group minerals. Patches of matrix with similar optical orientation suggest that the altered material may have been of similar size to the euhedral large sanidine.

LITHOLOGIC UNIT: Coryell Stock

MAX. CRYSTAL SIZE (MM) in sample: 2

HYDROTHERMAL ALT: (1) Biotite may be an alteration product, but the slide is too altered to establish this.
 (2) Calcite is present as fine grained material replacing randomly oriented sheet-like crystals, possibly apatite or perhaps sphene. It is also present as irregular patches in the matrix and as remnants or replacements within the sanidine, possibly as a replacement of plagioclase perthitic inclusions.

Illite is present as fine grained material after biotite and within the matrix without a readily identifyable precursor.

FRACTURING: None seen.

PRIMARY MINERALS		PERCENT		SIZE	COMMENTS
LIGOCLASE coarse	ł	0.5			A few of the large crystals show some polysynthetic twins. These are optically positive and are plagiclase, in the albite to oligoclase composition range.
SANIDINE fine		15+?	0	.5-2	Fine graimed bladed material, possibly sanidine or oligoclase.
					Euhedral, clear, carlsbad twins, voids and calcite inclusions after perthite.
					Thin sheafs, green, and pleochroic. Possibly secondary.
					'Euhedral, at times with minor limonitic alteration.
IRCON+XENO+MONA	1	tr	: 0	.05	
RUTILE + Ti Oxides	s¦	tr	ł		¦After magnetite
SECONDARY MINERALS	S				
ine grained mat.		70	¦ t	o .03	Groundmass of inclusion filled material of greenish high-relief particles (some of which may be epidote and zoisite), low relief length-fast bladed material (possibly plagioclase) and low relief very low birefringent length-fast material (chlorites?). Blocks of material of 0.5-2 mm with irregular edges have the same elongation, suggesting that they may be alteration after a coarser grained precursor.
ILLITE	ł	2	; 0	.03	Sheeted length-slow with first order birefringence
IEMATITE					¦ Stain on weathered surface
IMONITE	1	tr	!		¦After magnetite
CALCITE	i i	2.0	10.1	05-1	After equigranular and lath (0.05x2) shaped precursors (apatite ?);
					as irregular masses in the matrix, and in K-spar.
YRITE	ł		!		
HALCOPYRITE	1		1		1
PATITE	1		1 1		Precursor to some calcite possibly.
PORE SPACE	ł	1.0	ו י ח	01	Largely in K-spar and calcite

PETROGRAPHIC DESCR Project: Yukon Min		rporation	, Power Project	Northing: 8+60	Easting: 1+95	SAMPLE NO: A-1939-1 Elevation:
PETROGRAPHIC NAME:	Mineral	ized Syen	ite			
DESCRIPTION: Grey,	finely	crystalli	ne, weakly porphyrit:	ic syenite composed l	argely of orthoclas	e and oligoclase.
LITHOLOGIC UNIT:	Coryell	Stock			MAX. CRYSTAL SIZE (MM) in sample: 2
HYDROTHERMAL ALT:	(2) Apat	tite, biot	introduced, possibly tite, chlorite? pyrite eration of feldspar, e	e and chalcopyrite al	long a different set	; of fractures.
FRACTURING:	(2) Frac	turing co	early set along which ontaining pyrite and ite and chalcopyrite.			h masses of biotite,
PRIMARY MINERALS	PERCEN	I SIZE				
OLIGOCLASE ORTHOCLASE coarse ORTHOCLASE fine BIOTITE MUSCOVITE	15 2 70 tr? tr tr tr	0.2 2 0.15 0.1-1 0.1 0.003	Most biotite is sec Thin acicular cryst	ondary als in bundles		
SECONDARY MINERAL	8					
LIMONITE	l tr	.0031 0.1-1	Feldspar alteration Stain around weathe Associated with pyr Largely in equidime	red surfaces ite in thin laminae nsional masses conne a poorly reflective	forming between feld sted by thin (0.01 m	lspars.
CHALCOPYRITE TETRAHEDRITE APATITE CHLORITE?	0.2 2 0.1	.05~.5 0.15 0.05	 Disseminated, gener Disseminated masses Equidimensional gra Green, non pleochro apatite and biotite 	ally with pyrite. cut by pyrite vein. ins with high relief ic material in thin ; probably an altera	fracture fillings, a tion product after b	nce between feldspars; at times with pyrite, biotite.
PORE SPACE	1 -	ŀ	Much apparent poros	ity due to slide pre	paration.	

SIGNIFICANCE OF SAMPLES A-1739-1 and A-1739-2

Samples 1 and 2 were found close together at the surface; the mineralized sample 1 was the only one in place. The composition of the oligoclase suggests that they were not part of the same intrusive body. The plagioclase of sample 2 is more albitic than that of sample 1 in so far as the limited amount of plagioclase permits accurate determinations. Sample 2 has sanidine K-spar and was formed in a higher temperature environment than the orthoclase rich mineralized sample 1.

Much of the intense alteration of sample 2 may be due to near surface weathering. This obscures most of the earlier alteration history. The sample has patches of matrix material that show similar optical orientation are of the same size as the relatively unaltered larger crystals. This may indicate that originally the rock was an equigranular symple rather than the porhpyry that it seems to be at first glance.

Sample 1 shows a definite grain-size contrast between a few large (2 mm) orthoclase grains and a matrix of finely crystalline feldspars. Thus, while it is not obviously porphyritic, there are definitely two generations of minerals present. In this respect it is similar to the mineralized sample examined previously.

Sample 1 may have undergone some potassic alteration involving alteration of the plagioclase to orthoclase in addition to the biotite alteration that is obvious; however, evidence for this is not definite.

The mineralized sample 1 thus shows several of the characteristics of porphyry copper mineralization: potassic alteration, multiple fracturing, and multiple introduction of sulphides, involving tetrahedrite, chalcopyrite and pyrite.

Paul Ramacher Ph.D. Seit 26 '39

APPENDIX II

DIAMOND DRILL LOGS

DIAMOND DRILL RECORD

PRO	PERT	Υ _Ρ ς	WER PRO	WECT					D.	D.H. _	89-1							Pa	ge <u>1</u>	of 3
AREA		Al	lendale	a Lake, E	3C				SECTIO	N Tes	t line No.l				DATE	Started	October 28	1, 1989		
CLAIM		LY	NX 2						AZIMUT	H (T)	128 degr	•		_	1	Completed	October 29	, 1989		
GRID C	o-ORDS	Line							INCLIN	ATION	-60 degr	•			CONTRAC	TOR	Beaupre Dia	mond Drill	ing Ltd.	
0.20 0	• •••	Statio	n							Hole	44.50 m		<u> </u>	<u> </u>	LOGGED	BY	B.P.Fowler			
SURVEY	· CO-ORDS	Northi	ng	ņ.					DEPTH	Casing	4. 27 m			_	CORE SI		NQ			
		Bastin	g							Overburden	4.27 m				CORE RE	COVERY	100%			
elevat	ION								VERT.	COMP.				<u> </u>	CORE SI	ORED AT	T. McCrory	Residence,	Salmon Ar	≖, BC
STICK	UP				_				HORIZ.	COMP.				_						
COMMEN	TS	Drill	ed to t	est I.P.	anomaly	- Test	line no	.1 and pos	sible (east dip of	Road Show.	No min	eraliza	tion in	tersect	ed.				
										•	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	<u>/-2</u> ,	SU	RVEI	DA1	۲.						GEOLOG	Y				SIGNIFIC	ANT ASSAY A	VERAGES		
DEPTH	INCL.	AZ (T)	TYPE	DEPTH	INCL.	AZ (T)	TYPE	FROM	TO	L	THOLOGY	INT.	T.W.	H.W.	HMP	Ag oz/ton	Pb 🕯	Zn 🐐	Au ppb	Recov %
																			}	

DDH 89-1

PROPERTY POWER PROJECT

DIAMOND DRILL LOG

Page 2 of 3

					,	<u></u>	1						
DEPTH(m	etres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au	}	1	RU	N	RUN	RECOV	RECOV
FROM	то		INTERVAL	•	ppm	ppb]	FROM	10	(22)	(2)	(1)
			İ				<u>↓</u>	† -				╞╼═┥	
0.00	4.27	CASING -(14')- No recovery.						1]		1		
4.27	40.00	COARSE GRAINED BIOTITE SYENITE.					ł	{]	1 1	
		Creamy white, light grey in color, with zoned orthoclase crystals ranging in									1		
		size from 0.5-2.0 cm. Interstitial biotite clots and plates - black in color,						f				f	J
		composing about 10% of interval. Biotite contains magnetite component and is		1				`					
		observed to be altering to chlorite.]	. .			ł]				
								f	Ff			f	
		Core is moderately fractured with locally strong shear fabric @ 20 degr. to											
		core axis.]	ļj				
		Numerous hairline fractures, (locally) - some with biotite +- hematite stain											
		+- chlorite.		1									
		INTERMITTENT FELDSPAR +- QUARTZ PEGMATITE BLOWS.											
	1	Coarse grained pink K-spar with diffused bleached contacts over 1-3 cm.											
		Commonly contain clotted magnetite, +- epidote +- hornblende. Blows average										<u> </u>	
		5 cm wide and occur approximately 4 per metre core, tends to favour 30 degr.							1	ł			I
		to core axis.											
									<u> </u>	{	{	<u> </u>	
1	Ì	5 cm fault breccia @ 25.30 m @ 60 degr. to core axis and)]	
		1 cm wide @ 39.47 m @ 55 degr. to core axis.		ļj									
									{	{		{	{
		Core is moderately magnetic throughout.											
									}	}	J	ļ	
		Core tends to break along +- epidote rich, clay rich +- hematite +- calcite								1	- 1		
		fractures, generally between 30-50 degr. to core axis. Fractures may have											
		contained pyrite at one time.							/				
		Overall hydrothermal alteration is very weak.			ł	}	l l		ļ		ł		
		Propylitic in nature, +- calcite, +- epidote, +- carbonate along fractures.											
				{	{							— - 	ł
		Very minor chalcopyrite mineralization - clots observed in fractures at 15.50 m			1	Í	1	<u> </u>	Ì	ł	ł	1	
		and 24.86 m.											
	{			{			{	f		f			
)])])]
]	J	ļ	ļ	J	J	J	J	ļ	J

DDH 89-1

PROPERTY POWER PROJECT

DIAMOND DRILL LOG

Page 3 of 3

DEPTH (m FROM	etres) TO	DESCRIPTION	SAMPLE No. INTERVAL	Cu %	Ag ppm	Au ppb			RU FROM	<u>ля</u> то	RUN (m)	RECOV (m)	RECOV
40.00		SYENITE, AS PREVIOUS Blocky, broken core with 2% ff fine uchedral pyrite.					{ 	{]	 		
40.40	44.50	COARSE GRAINED BIOTITE SYENITE. Medium grey, homogenous, as previous. Intersertal biotite (15%) with magnetite - magnetic throughout. No pegmatite material present.						 					
		I.P. anomaly probably due mainly to increased magnetite content in pegmatites and clay filled fractures. Nothing resembling Road Zone mineralization seen in core											
		END OF HOLE: 44.50 m (146.00')						 					
									{				
										{	1		
										(
										{			{
										({		
						{				{	{		
						{	{			{	{	{	(

DIAMOND DRILL RECORD

PRC	OPERTY POWER PROJECT								D.	D.H.	89-2							Pa	ge <u>1</u>	of
AREA		A	llendal	e Lake, i	BC		<u></u>	<u></u>	SECTIC	N Te	est line No.1	,_,			1	Started	October 2	9, 1989		
CLAIM		L	(NX 2						AZIMUT	'Н (T)	308 degr	•			DATE	Completed	October 30), 1989		
CRID (CO-ORDS	Line					-		INCLIN	ATION	-45 degr	•		_	CONTRAC		Beaupre Dia	amond Drill	ling Ltd.	
GRIDC	-0AD3	Static	n							Hole	25.60 m	_			LOGGED	BY	B.P.Fowler			
SUDUEY	CO-ORDS	Northi	ng						DEPTH	Casing	4.27 m				CORE SI	.ZB	NQ			
JURVEI		Eastin	g 							Overburde	en 3.67 m				CORE RE	COVERY	100%			
ELEVAT	TION					·			VERT.	COMP.					CORE SI	ORED AT	T. McCrory	Residence,	Salmon Ar	т, ВС
STICK	UP								HORIZ.	COMP.										
COMMEN	ITS	Drill	ed to t	est I.P.	anomaly	' - Test	line no	.1 and pos	sible (east dip o	ff Road Zone.									
																	<u></u>			
	<u></u>	<u> </u>	BVE	Y DA				I		<u></u>	GEOLOG	v				T	<u> </u>			
·	1 1					T	j		<u> </u>		920208	т Т	T		1	<u> </u>	ANT ASSAY A	VERAGES	[<u> </u>
DEPTH	INCL.	AZ (T)	TYPE	DEPTH	INCL.	AZ (T)	TYPE	FROM	το		LITHOLOGY	INT.	T.W.	H.W.	HMCP	Ag oz/ton	Pb 🕯	Zn 🕯	Au ppb	Recov %
])	<u> </u>]
																	}	}	}	}
											-							}		
]	}
																				}
															1			}		

YUKON MINERALS CORPORATION

DDH 89-2

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 2 of 3

DEPTH(m	netres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au			R		RUN	RECOV	RECOV
FROM	TO		INTERVAL	8	ppm	ppb			FROM	TO	(=)	(m)	(1)
0.00	4.27	CASING - 0.60 m SYENITE - Broken core. Overburden 0-3.67 m.											
4.27	12.19	BIOTITE SYENITE Coarse grained, with zoned orthoclase phenocrysts ranging in size from 0.25-1.0 cm. Intersertal biotite (10%) occurs along phenocryst boundaries and lesser along fractures. 5-8% disseminated magnetite - occuring with biotite. Moderately fractured with pronounced stretched fabric parallel to core axis. Blocky core, breaks along chloritic fractures. Slightly bleached interval. 5 cm fault breccia @ 65 degr. to core axis @ 6.10 m. 11 cm quartz - K-spar pegmatite @ 8.39 m. Upper contact sharp @ 70											
12.19	16.30	degr. to core axis and lower contact @ 40 degr. to core axis. No associated alteration. Sharp, broken lower contact. MINERALIZED ZONE								 	 		
		12.19-13.41 m	80501 12.19-13.41	0.65	3.80	ৎ					1.22		100.0
		Fine grained, medium grey, blocky sulfide shear zone. Remnants of stretched feldspar phenocrysts floating in a fine groundmass of feldspar and biotite (10%) and chlorite. Pyrite occurs disseminated as irregular clots up to 1 cm and as frac- ture filling - hairline. Pyrite about 10% and chalcopyrite about 4% occurs in a similar fashion, increasing towards base. Overall shearfabric is 0 50 degr. to core axis.											
		13.41-14.51 m Bleached, white coarse grained syenite as above, but with less biotite - 5-8%. Gives leached appearance. Zones of secondary, fracture control- led biotite. Weak chlorite alteration. Minor, <<1% fracture filled pyrite.	80502 13.41-14.51	0.007	<.1	<5					1.10		100.0

YUKON MINERALS CORPORATION

DDH 89-2

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 3 of 3

DEPTH (n	etres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au	{	1	R	UN	RUN	RECOV	RECOV
FROM	то		INTERVAL	8	ppm	ppb)]	FROM	το	(=))(m)	$ \infty $
		Conspicuous absence of magnetite, - altered to biotite and pyrite. Sharp broken lower contact. Well fractured, generally @ 40 degr. to core axis.											
		14.51-15.70 Same as between 12.19-13.41 m, but better mineralized. Shear zone between 14.51-15.03 m with 15% pyrite and 2% chalcopyrite. Unit becomes very biotite rich towards base - 40%, indicative of intense alteration. Locally vuggy, suggesting cavity in-filling by sulfides.	80503 14.51-15.70	0.20	0.60	ব					1.19		100.0
		15.70-16.30 Bleached, highly fractured symmite as between 13.41-14.51 m. 8% clotted /ff pyrite, 3% fine ff tetrahedrite, and 1% chalcopyrite. 5-8% secondary biotite.	80504 15.70-16.30	0.15	0.90	ব					0.60		100.0
16.30	20.15	ELEACHED, WHITE COARSE GRAINED SYENITE. 10% biotite, 2% secondary biotite, 2% magnetite. Good coring. Becomes more fresh looking towards base. 6.0 cm fault breccia ê base ê 70 degr. to core axis. Minor disseminated chalcopyrite, especially ê 19.40 m.											
20.15	25.60	COARSE GRAINED SYENITE. Relatively fresh syenite - equivalent to above. 10-15% biotite, minor secondary ff biotite, 3% hornblende. Weak chlorite alteration. 2-5 cm quarts-feldspar pegmatite blows @ 22.56 and 22.76 m.								{			
		Good competent core End of hole 25.60 m (83.99′)											
												-	{

× (

YUKON MINERALS CORPORATION

DIAMOND DRILL RECORD

PRC	PERT	Y	WER PRO	OJECT					D.	D.H.	89-3							Pa	ge	of
AREA		A	lendale	a Lake, E	9C	8.0. <u></u>			SECTIC	N Te	st line No.1				1	Started	October 30), 1989		
CLAIN		LY	אא 2						AZIMUT	"H (T)	000 degr	•		_	DATE	- Completed	October 30), 1989		
CRID C	O-ORDS	Line							INCLIN	ATION	-90 degr	•			CONTRAC		Beaupre Dia	amond Drill	ling Ltd.	
GRIDC	.0-0125	Statio	n							Hol e	39.01 m				LOGGED	BY	B.P.Fowler			
SURVEY	CO-ORDS	Northi	ng						DEPTH	Casing	1.22 m				CORE SI	ZB	NQ			
		Eastin	g							Overburde	n 1.22 m				CORE RE	COVERY	100%			
ELEVAT	ION			<u></u>					VERT.	COMP.					CORE SI	ORED AT	T. McCrory	Residence,	Salmon Ar	т, ВС
STICK	UP								HORIZ.	сомр			· ·	_						
COMMEN	TS	Drill	ed to t	est dept.	h extent	of Road	Zone.									<u>.</u>				
	- <u>-</u>										<u>.</u>							<u>.</u>		
		SU	RVEI	DA1	۲ ۸						GEOLOG	Y				SIGNIFIC	ANT ASSAY A	VERAGES		
DEPTH	INCL.	AZ (T)	TYPE	DEPTH	INCL.	AZ (T)	TYPE	FROM	το	1	ITHOLOGY	INT.	T.W.	H.W.	HMP	Ag oz/ton	Pb %	Zn 🔹	Au ppb	Recov %
								· · · · ·]]	
]	}	
																			}	

DDH 89-3

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 2 of 4

DEPTH(# FROM	etres) TO	DESCRIPTION	<u>SAMPLE No.</u> INTERVAL	Cu	Ag ppm	Au ppb			R	<u>ля</u> то	RUN (m)	RECOV	RECOV
0.00		CASING - OVERBURDEN						<u> </u>	[
1.22	8.05	COARSE GRAINED BIOTITE SYENITE							[, 		[
		Light grey, smoky in color. Anhedral, stretched phenocrysts of feldspar 0.5-3.0 cm in size. Intersertal biotite altering to chlorite (10-15%).											
		Sheared fabric @ 30 degr. to core axis at top of interval, decreasing with depth. Modestly fractured - hairline. Breaks along clay/epidote rich fractures @ 55 degr. to core axis. Minor (5 cm) diffused feldspar/quartz pegmatite blows.											
		Weakly magnetic throughout (5-8% magnetite). Pronounced slickensides.											
8.05	8.33	FAULT/SHEAR BRECCIA											
		Dark grey fine groundmass (40%) with stretched phenocrysts of feldspar. Sharp, broken upper and lower contacts @ 50 and @ 65 degr. to core axis respectively.	·····										
8.33	15.92	COARSE GRAINED BIOTITE SYENITE								l			
		As between 1.22-8.05 m, but increasing propylitic vein/epidote alteration. Moderately fractured with minor secondary biotite. Slickensides - to core axis on well developed fracture faces & 40 degr. to core axis.								{			
15.92	18.57	MINERALIZED ZONE	80505 15.92-18.57	0.19	0.90	<5	{				2.65		100.
		Feldspar porphyry dyke (?) with inclusions of recrystallized syenite. May be sheared syenite as above, but some phenocrysts are not recrystallized. Chilled, dark grey, sulfide rich margins with strong shear fabric @ 60 degr. to core axis.											
		degr. to core axis. Interval may be fault/shear zone of syenite, but phenocrysts do not appear to be preferentially oriented.								}]		

DDH 89-3

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 3 of 4

					T_		{	1			\		
DEPTH (1 FROM	metres) To	DESCRIPTION	<u>SAMPLE NO.</u> INTERVAL	Cu	Ag ppm	Au ppb			RI FROM	TO TO	RUN (m)	RECOV	RECOV
					<u> </u>	<u> </u>		 	{	[[\vdash	<u> </u>
		Sharp upper and transitional lower contacts @ 60 degr. and 40 degr.	· · · ·				<u> </u>				<u> </u>	<u> </u>	<u> </u>
		to core axis respectively. Overall, 20% pyrite occurs as disseminated, clots up to 1 cm, and fracture				{		{	\	ł	l l	i 1	\ \
		filling. Minor (1%) fine disseminated chalcopyrite. Fractures contain fine, dark grey submetallic coatings up to 3 mm	L	<u> </u>	<u> </u>		<u> </u>	<u> </u>	4	 	 	<u> </u>	}
		thick - soft.		1		1	1	1	\ \	}	}	1	\
		Matrix supported porphyry with feldspar phenocrysts, rounded, soned											
		in places, ranging from 0.1-1.0 cm.		ļ			 	<u> </u>) 	/	<u> </u>	
		Up to 30% very fine biotite (secondary) and 3% fine masses of epidote		1	1	1	1	1	۱ ^۱	1	1	1	}
		in porphyry groundmass.							I				
							<u> </u>	<u> </u>	f1	, 	(íI	
18.57	20.90	TRANSITIONAL ZONE - POSSIBLE PORPHYRY ?	80506	0.12	<.1	<5	1	1	\ '		2.33		100.0
			18.57-20.90	t									
		White, creamy, recrystallized syenite. Can still make out coarse feldspar					<u> </u>	 			f	<u> </u>	·
		crystal boundaries in places. 5-10% secondary ff and blotchy biotite.	1]	}]		1 1		1	ן ו	
		Well fractured core, generally @ 35-45 degr. to core axis.		1									
		Local vugs - solution cavities lined with fine biotite and feldspar.	}					<u> </u>	[[[
		Minor (3%) disseminated pyrite. Chlorite +- grey submetallic clay (2 mm) on]]	ן ו				
		some better developed fracture faces.									ļ		
		•						[<u> </u> [[[
20.90	26.63	RECRYSTALLIZED SYENITE/POTASSIC ALTERATION ZONE									-		
		Homogenous, white, sugary feldspar (fine grained) with "welts" of fine		i					 				
		grained secondary biotite - 20-25%. Biotite rims ghost feldspar crystals.		1				}	ן ו) '	ון	
		Weakly magnetic - 3% fine magnetite.											
		Weak epidote coating on fractures - no K-spar veining.						({		<u> </u>	f	
	Í	Good coring. Moderately fractured, with minor calcite ff. Broken, transi-		1				1))			ון	
		tional lower contact.											
				 				[[f			— [
26.63	27.43	PYRITE/MAGNETITE ZONE	80507	0.061	0.30	ব]			0.80		100.0
			26.63-27.43										
		Broken, blocky pyritic recrystallized syenite.		{ −−−−					 {	[t	
		8-10% disseminated, ff, wispy fine pyrite in rock unit as above.											
		10-15% fine blotches of magnetite.	J						ļ	ļ		ļ	
		Sharp, broken lower contact.							t				
			ļ					ļ .	ļļ			L]	

DDH 89-3

PROPERTY POWER PROJECT

DIAMOND DRILL LOG

Page 4 of 4

BPTH (m	etres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au				<u>/////////////////////////////////////</u>	RUN	RECOV	RECOV
FROM	то		INTERVAL	*	ppa	ррь			FROM	TO	(m)	(=)	(1)
27.43	28.11	COARSE GRAINED SYENITE											
		Less altered/recrystallized than above intervals.						{		/ 	{	{	{
		(feldspar crystal boundaries visible), but with 15% secondary biotite clots and ff. Minor solution cavities.											
28.11	28.53	PYRITE/MAGNETITE ZONE	80508 28.11-28.53	0.24	1.50	ব					0.42]] 100.0
		As between 26.36-27.43 m. Sharp upper contact @ 35 degr. to core axis. Well fractured, with submetallic, grey clay coating.						<u> </u>		1	<u> </u>		ζ
		Transitional lower contact @ 20 degr. to core axis.											
28.53	33.87	COARSE GRAINED BIOTITE SYENITE											
_		Weakly altered syenite as previous. 15% biotite clots and minimum secondary						{	 				
		biotite ff conspicuous lack of magnetite - other phase of syenite intrusion ? Good coring, weakly fractured.											
33.87	34.64	RECRYSTALLIZED SYENITE						{				[[
		White, smoky feldspar rich interval. Crystal outline diffused.											
		<3% biotite - mafics destroyed and leached out. Sharp broken upper contact @ 62 degr. to core axis and transitional lower contact.											
34.64	39.01	COARSE GRAINED SYENITE								T			
		As between 28.53-33.87 m, but with 5-10% fine magnetite with biotite clots.				{				{			
		Fresh interval. Minor recrystallized/pegmatic interval between 36.27- 36.35 m and 36.67-37.30 m.								ļ			ļ
		Weakly fractured with trace of epidote and biotite ff.											
		End Of Hole: 39.01 m (127.99′)								{	{		
]]							
					1					{	{	{	

DIAMOND DRILL RECORD

PRO	PERT	Y PC	WER PRO	JECT					D.	D.H. -	89-4	<u></u>					- <u> </u>	Pa	ge 1	of 8
AREA		A1	lendale	a Lake, i	BC	· · · · · · · · · · · · · · · · · · ·			SECTIO	N Li	ne 5N	6 7 h Mehikusa			DATE	Started -	October 31	, 1989		
CLAIN		M O	ON 4						AZIMUTI	H (T)	090 degr	•				completed	November 0	3, 1989		
		Line							INCLIN	ATION	-45 degr	•			CONTRAC		Beaupre Dia	mond Drill	ing Ltd.	
GRID C	O-ORDS	Statio	n							Hole	138.38 m				LOGGED	BY	B.P.Fowler			
		Northi	ng						DEPTH	Casing	7.92 m				CORE SI		NQ			
SURVEY	° CO-ORDS	Eastin	g							Overburde	n 7.92 m				CORE RE	COVERY	100%			
ELEVAT	ION								VERT. C	OMP.					CORE SI	ORED AT	T. McCrory	Residence,	Salmon Ar	m, BC
STICK	UP								HORIZ.	COMP.										
COMMEN	TS	Drill	ed to t	est coin	cidental	geochem	ical an	d I.P. and	maly -	Line 5+001	i east.									
		511		/ DA1	<u>г л</u>						GEOLOG	.v							· · · · · · · · · · · · · · · · · · ·	
	·			<u>, </u>	1							·		[<u> </u>	<u> </u>	ANT ASSAY A	,		Ţ
DEPTH	INCL.	AZ (T)	TYPE	DEPTH	INCL.	AZ (T)	TYPE	FROM	70		ITHOLOGY	INT.	T.W.	H.W.	HMP	Ag oz/ton	Pb %	Zn %	Au ppb	Recov %
														<u> </u>		<u> </u>]			
																		}]	
															}			}	}	
]		}	}	
											<u> </u>							i]	
															{			}		

DDH 89-4

PROPERTY POWER PROJECT

DIAMOND DRILL LOG

Page 2 of 8

DEDMU (-		DESCRIPTION	SAMPLE NO.	Cu	Ag	Au	{	1		/N	RUN	RECOV	RECOV
DEPTH (1 FROM	TO		INTERVAL	\$	ppm	ppb]]	FROM	TO	(m)	(m)	(\$)
0.00	7.92	CASING - OVERBURDEN - No recovery		Ī									(
7.92	27.15	COARSE GRAINED BIOTITE SYENITE											
		Smoky grey, with 10% clotted biotite and magnetite, intersertal to subhedral, zoned feldspar crystals ranging from 0.5-3.0 cm in size. Relatively fresh, good coring unit. Very minor carbonate alteration in places. Weakly fractured, and core tends to break along chloritic clay filled partings, - 0.1-2.0 mm thick.										[1 1	
27.15	28.15	Strongly magnetic throughout. COARSE GRAINED BIOTITE SYENITE				 							
		Weak potassic alteration: 12% secondary patchy biotite and 3% primary clots. Bleached in places, less magnetic than above unit. Sharp, sheared biotite rich lower contact.											
28.15	28.98	PYRITE ZONE	80509 28.15-28.98	0.071	0.80	ৎ					0.83	0.00	100.0
		Pyrité gneiss - light grey and black compositional banding. Up to 25% fine disseminated pyrite in upper 0.5 m of interval. Fine recrystallized feldspar, major white colored component, and 5-8% secondary biotite with <1% magnetite mafic component. Sharp upper contact @ 17 degr. to core axis and transitional lower contact into 10 cm of fresh coarse grained biotite sympite. 2 mm vein pyrite @ 50 degr. to core axis in lower interval.								{			
		Interval may represent gneissic xenolith with hanging-wall alteration zone, but foot-wall relatively fresh.											
28.98	32.73	AMPROPHYRE DYKE - MINETTE											
		Fine grained, fresh, competent interval. Dark, grey in color, with 35% fine grained feldspar, 15% magnetite, and 50% fine biotite. Homogenous interval, with porphyritic texture in places. Probably syenitic in composition. No fabric.								{			

DDH 89-4

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 3 of 8

DEPTH (1	metres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au		{		<u>/////////////////////////////////////</u>	RUN	RECOV	RECOV
FROM	то		INTERVAL		ppm	ppb	ļ]	FROM	TO)(2)) (m)) (9)
		Sharp upper and lower contacts @ 25 degr. and 30 degr. to core axis respectively. Cut by minor white feldspar veins, epidote filled hairline fractures, and feldspar/quartz pegmatite (2 cm) blows. Contains minor symmite (recrystallized) inclusions.											
32.73	34.84	COARSE GRAINED BIOTITE SYENITE As between 7.92-27.15 m, but slightly recrystallized and bleached in appearance. Minor diffused pink patches of feldspar. Feldspar crystal boundaries descernible only by intersertal biotite (10%). Sharp lower contact @ 35 degr. to core axis. Uppermost lower unit sheared parallel to contact.											
34.84	36.58	LAMPROPHYRE DYKE - MINETTE As between 28.98-32.73 m Weak gneissic fabric. Sharp, broken lower contact with minor ff pyrite in bottom 3 cm.											
36.58	37.10	POTASSIC ALTERATION ZONE Syenite as before, but intense secondary biotite development - up to 35%, with feldspar exhibiting good argillic (clay) alteration. Immidiate foot-wall of dyke									{		
37.10	39.82	COARSE GRAINED SYENITE	80510 37.10-38.70	0.013	0.30	<5					1.60		100.0
		Moderately recrystallized, with occasional 10 cm wide feldspar/quartz pegmatite blows. Blocky core, with grey clay +- fine disseminated pyrite ff. Well fractured, with patches of intense secondary biotite development. Fractures @ 30-50 degr. to core axis. Overall pyrite <1%. 5% fine clotted magnetite.	80511 38.70-39.82	0.011	0.30	<5					1.12		100.0

DDH 89-4

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 4 of 8

DEPTH (I	metres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au		R	ท	RUN	RECOV	RECOV
FROM	то		INTERVAL	8	ppm	ppb]	FROM	10	(m)	(m)	(1)
39.82	41.48	QUARTS/FELDSPAR PEGMATITE/POTASSIC ZONE	80512 39.82-40.84	0.013	0.30	ব্য	×			1.02		100.0
		Intensely recrystallized syenite with altered/bleached felsic dykes (aphanitic) or recrystallized feldspar pegmatite. Intense argillic/clay alteration of feldspar - selective, with good secondary biotite development.	80513 40.84-41.48	0.007	<.1	<5				0.64	[100.0
		Blocky core, well fractured, with epidote rich stringers and <1% pyrite ff. Transitional lower contact. <1% magnetite.										
41.48	42.98	COARSE GRAINED BIOTITE SYENITE	80514 41.48-42.98	0.027	1.00	<5				1.50		100.0
		As previous, relatively fresh, with patchy bleaching and secondary biotite. <1% pyrite ff. Magnetic throughout.										
42.98	50.93	RECRYSTALLIZED FELDSPAR/SYENITE PORPHYTY ?	80515 42.98-44.80	0.005	<.1	ব]			1.82		100.0
		White, light grey homogenous interval. Feldspar phenocrysts ghosts (3-10 mm) in a fine sugary white matrix - no quartz visible. Contains up to 8% clotted (up to 2 cm) and disseminated magnetite. 5% wispy secondary biotite.	80516 44.80-46.93	0.011	<.1	<5				2.13		100.0
		Well fractured, with 1% fine euhedral pyrite ff throughout. Chloritic partings/ff with occasional (<1%) clotted chalcopyrite ff - observed in 3 places in interval.	80517 46.93-49.37	0.013	<.1	<5				2.44		100.0
		Developing sheared fabric from 49.37 m towards base ê 25 degr. to core axis. Sharp lower contact ê 45 degr. to core axis.	80518 49.37-50.93	0.005	<.1	ব				1.56		100.0
50.93	62.87	POTASSIC/ARGILLIC ALTERATION/SULFIDE ZONE - SYENITE PORPHYRY ? -	80519 50.93-53.03	0.024	<.1	ব				2.10		100.0
		Black and white, medium grained to porphyritic syenite. Up to 40% fine patchy clotted intersertal biotite. Selective argillization of feldspar phenocrysts and groundmass.	80520 53.03-56.08	0.039	0.20	<5				3.05		100.0
		Disseminated/clotted pyrite throughout, intimately associated with biotite. Probably 3% pyrite throughout. Lesser chalcopyrite, erratically distributed as clots and fracture fillings. Chalcopyrite about 0.5-1.0%.	80521 56.08-58.98	0.023	<.1	ব				2.70		100.0
		Unalcopyrite about 0.3-1.04. Weakly magnetic throughout - 3-5% clotted magnetite.	80522 58.98-60.80	0.009	<.1	<5				1.82		100.0

DDH 89-4

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page 5 of 8

	تعليقتين		7	T	<u></u>	<u> </u>	 	<u> </u>		<u></u>	<u> </u>	
<u>DEPTH (1</u> FROM	TO	DESCRIPTION	<u>SAMPLE NO.</u> INTERVAL	Cu S	Ag ppm	Au ppb		RI FROM	n TO	RUN (m)	RECOV (m)	RECOV
		Good coring interval, weakly fractured, with weak chlorite alteration and calcite ff. Molybdenum clot observed with chalcopyrite @ 55.60 m.	80523 58.98-60.80	0.009	<.1	<্য				2.07		100.0
62.87	71.04	COARSE GRAINED/PORPHYRITIC BIOTITE SYENITE	8052 4 62.87-65.23	0.005	<.1	<5				2.36		100.0
		As above, with much less clay alteration and noticeable lack of sulfides. Very transitional upper contact. Appearant increase in magnetite content. Trace clotted/ff pyrite <1% and chalcopyrite <<1%.	80525 65.23-68.27	0.006	<.1	<5				3.04		100.0
71.04	76.15	POTASSIC/ARGILLIC/SULFIDIC SYENITE PORPHYRY	80526 68.27-71.04	0.004	<.1	ব				2.77		100.0
		As between 50.93-62.87 m. About 1-2% clotted, disseminated pyrite, with trace of chalcopyrite. Not as rich as upper interval.	80527 71.04-72.24	0.028	0.10	ৎ				1.20		100.0
		Contains thin, pyritic breccia @ 77.29 m (5 cm) 60 degr. to core axis. Contains quarts/feldspar pegmatite between 74.25-74.61 m. Sheared, sharp upper contact @ 27 degr. to core axis and sharp lower contact @ 60 degr. to core axis.	80528 72.24-74.37	0.004	0.10	<5				2.13		100.0
		Syenite porphyry with transitional lower contact with coarse grained biotite syenite.	80529 74.37-76.15	0.010	<.1	ৎ				1.78		100.0
76.15	78.54	QUARTZ/FELDSPAR PEGMATITE	80530 76.15-78.54	0.003	<.1	ণ				2.39		100.0
		0.6 m pegmatite core with recrystallized syenite hanging-wall and 0.2 m porphyritic foot-wall. Wallrock exhibits good clay alteration and secondary biotite, about 10%. Large - up to 1.5 cm - magnetite with hematite stained, rimmed rosettes										
		in pegmatite. 2% pyrite ff in wallrock. Biotite fabric @ 25 degr. to core axis. Sharp contacts @ 60 degr. to core axis.										
]	
78.54	80.36	PYRITIC SYENITE PORPHYRY	80531 78.54-80.36	0.015	0.30	ব				1.82		100.0
		As between 71.04-76.15 m. 8 cm clay fault gauge at upper contact @ 45 degr. to core axis.										

DDH 89-4

PROPERTY POWER PROJECT

DIAMOND DRILL LOG

Page 6 of 8

DEPTH (n	netres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au		1	RI	JN	RUN	RECOV	RECOV
FROM	TO		INTERVAL		ppm	ppb]		FROM	TO	(11)	(=)	(1)
		5% disseminated pyrite throughout. 30 % fine biotite matrix with 3-5% magnetite. Sharp lower contact near perpendicular to core axis. Moderate argillic (clay) alteration of feldspars and along fractures.											
80.36	81.46	RECRYSTALLIZED SYENITE (PORPHYRY ?) Felsic looking, porphyritic unit with 1-3 mm smoky grey phenocrysts in a	80532 80.36-81.46	<0.001	<.1	ধ					1.10		100.0
		white sugary (fine grained) groundmass. 5% wispy biotite and trace of magnetite clots. No visible sulfides. Good competent coring. Transitional upper and lower contacts.											
81.46	86.49	COARSE GRAINED BIOTITE SYENITE Smoky grey, very coarse grained syenite (feldspar crystals up to											
		3 cm wide) with 10% intersertal biotite with magnetite. Feldspar crystal boundaries diffused - recrystallized. Weak clay/chlorite partings on fracture planes. Zoning evident in feldspars. Fine grained biotite/feldspar (50% / 50%).								(
		Xenolith @ 85.70 m - 20 cm wide.		·									
86.49	89.89	COARSE GRAINED BIOTITE SYENITE +- PYRITE	80533 86.49-89.89	0.007	0.30	ব্য					3.40		100.0
		As above, but more fractured with disseminated and ff fine euhedral pyrite. Fracturing @ 60 degr. to core axis. Chloritic in places.											
89.89	95.93	COARSE GRAINED BIOTITE SYENITE								I		T	
		As between 81.46-86.49 m.					{	{			{	{	{

DDH 89-4

PROPERTY POWER PROJECT

CIAMOND DRILL LOG Page 7 of 8

			T					Ţ					
DEPTH(1		DESCRIPTION	SAMPLE No.	Cu	Ag	Au			RU FROM	TO TO	RUN	RECOV	
FROM	то		INTERVAL	8	ppm	ppb			FROM	10	(=)	())	(%)
95.93	98.13	MEDIUN GRAINED BIOTITE SYENITE											
		30% fine secondary biotite with fine recrystallized feldspar groundmass - may be a series of xenoliths. Weak chlorite alteration of biotite. No preferred fabric. 20 cm based quartz/feldspar pegmatite.											
		Magnetic throughout.											
98.13	122.84	COARSE GRAINED BIOTITE SYENITE											
		As between 81.46-86.49 m and 89.89-95.93 m. Quartz/feldspar pegmatite with fine biotite syenite hanging-wall between 100.20-100.69 m.				-							
		Fresh interval, good solid coring. Weak chlorite alteration. Contains 20-50 cm of fine grained biotite syenite sections - possibly xenoliths or dykes. No visible sulfides.											{
		Minor epidote/chlorite stringers in norrow bleached zones - 122.13 m.											
122.84	123.57	BIOTITE SYENITE PORPHYRY											
		Same as mineralized host rock at top of hole. Feldspars range in size from 1-20 mm, with 30% fine biotite matrix. Good chlorite alteration of biotite. Also, selective carbonatization in								(
		felted masses. Sharp upper contact @ 15 degr. to core axis. Well fractured, with chloritic manganese ? stain. General fracturing @ 70 degr. to core axis.											
		General fracturing e /0 degr. to core axis.											
123.57	123.91	QUARTZ/FELDSPAR PEGMATITE					l						
		3% clotted hornblende					(

YUKON MINERALS CORPORATION DDH 98-4

PROPERTY POWER PROJECT

DIAMOND DRILL LOG Page s of s

DEPTH(1	metres)	DESCRIPTION	SAMPLE No.	Cu	Ag	Au		}	RU	IN	RUN	RECOV	RECOV
FROM	то		INTERVAL	•	ppm	ppb]		FROM	TO	(m)	(=)	<u>)</u> (N)
123.91	126.00	RECRYSTALLIZED SYENITE/PYRITE ZONE	80534 123.91-126.00	0.032	0.90	<্য					2.09		100.0
		Overall, beige colored, highly fractured coarse grained symite ? Most mafics destroyed in more bleached zones. Crosscut by quartz veins - up to 1 cm @ 55 degr. to core axis. Gives shattered appearance, with numerous grey hairline fractures. 3% 05-1.0 mm clotted ff pyrite. Gradational lower contact. Contains sections (40 cm) of bleached, coarse grained biotite symite.											
126.00	133.00	COARSE GRAINED BIOTITE SYENITE As between 98.13-123.84 m. Low angle (5-8 degr. to core axis) transitional lower contact. 3% magnetite with 15% biotite.											
133.00	133.85	RECRYSTALLIZED SYENITE PORPHYRY	80535 133.00-133.85	0.054	1.80	<্য		([[{	0.85	((100.0
		Light grey/white - Smoky feldspar phenocrysts (1-3 mm) in fine sugary white feldspar groundmass. As between 80.36-81.46 m. Mafics (biotite <3%), magnetite clots with chlorite about 3%. Trace of chalcopyrite clots <<1%. Weakly fractured, bleached zone.								{			
133.85	138.38	COARSE GRAINED BIOTITE SYENITE											[
		As between 98.13-123.84 m and 126.00-133.00 m.								{		[
		End Of Hole 138.38 m (454.01′)											
											t		

APPENDIX III

ASSAY CERTIFICATES

522, 625 Howe Street,

Vancouver, B.C. V6C 2T6

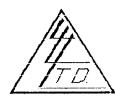
File No. <u>32432</u> Date <u>May 30, 1989</u> Samples <u>Rock</u> PROJECT: "O.K."

ATTN: Mike Nielsen

<u>cc: B. Fowler - Calgary</u>

Certificate of Assay LORING LABORATORIES LTD.

SAMPLE NO. O	Z./TON GOLD	OZ./TON SILVER	%Cu	OZ./TON PLATINUM	OZ./TON PALLADIUM
"Assay Analysis"					
ROAN SHOW					
GRAD 81257	-	-	1.54	<0.001	<0.001
ROAN SHOW (South)81258 GRAB	-	-	.09	<0.001	<0.001
XENCLITH GRAB 81259	-	2.24	3.56	<0.001	<0.001
XENDLITH GRAB 81260	_	-	1.57	<0.001	<0.001
XENDLITH CRAB 81261	-	-	.18	<0.001	<0.001
۲۲۹۶ 81262	_	-	.19	<0.001	<0.001
SPOLIN SHOW (RAB81263	.062	4.56	10.75	<0.001	0.015


I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

To:	YUKON	MINERALS	CORPORATION,

522, 625 Howe Street,

Vanceuver, B.C. V6C 2T6

File No. <u>3243</u>	32
Date <u>May 30,</u>	1989
Samples <u>Rock</u>	·····
PROJECT: "O.	.K."

ATTN: Mike Nielsen

7

cc: B. Fowler - Calgary

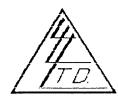
Certificate of Assay LORING LABORATORIES LTD.

	Page # 2		
SAMPLE NO.	PPB GOLD	PPM SILVER	

Geochemical Analysis

81257	95	8.3
81258	15	3.0
81259	100	+30.0
81260	NIL	22.2
81261	NIL	1.5
81262	10	2.8
81263	+1000	+30.0

I Hereby Certify that the above results are those assays made by me upon the herein described samples....


Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

Assayer 1

To:	YUKON	MINERALS	CORPORATION

522, 625 Howe Street,

Vancouver, B.C. V6C 2T6

File	No.	3245	6
Date	<u>May</u>	30,	1989
Sampl	les <u>F</u>	lock	

ATTN: Mike Nielsen

cc: B. Fowler - Calgary

Certificate of Assay LORING LABORATORIES LTD.

		Page # 1			
SAMPLE NO.	OZ./TON	OZ./TON	ж	OZ./TON	OZ./TON
	GOLD	SILVER	Сu	PLATINUM	PALLADIUM

"Assay Analysis"

1 ROCK	.128	5.25	13.77	.048	.015
--------	------	------	-------	------	------

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Dejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

aley.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

1

ł

1

ŧ

 $\langle \cdot \rangle$

(

ICF - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED 70 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Pulp

DATE RECEIVED: MAY 18 1989 DATE REPORT MAILED: Min 25/89 SIGNED BY LORING LABORATORIES LTD. PROJECT 32432 File # 89-1126

SANPLE	No PPM	Cu PPN	Pb PPN	2n PPM	ÀG PPH	NI PPM	CO PPM	HD PPN	Fe %	AS PPM	U PPN	AU PPN	Th PPN	Sr PPN	Cd PPN	SD PPM	Bi PPM	Ų PPM	Ca १	P %	La PPN	Cr PPM	Hợ B	Ba PPM	Ti 3	B PPN	A1 3	Na z	R %	W PPN
81257	4	14751√	43	220	5.9	61	27	155	6.50	4	5	ND	2	82	1	2	2	58	. 52	.205	38	107	. 33	15	.09	2	1.26	.04	.50	1
81258		836																												1
B1259		34770 -																												1
81260	2	15414 /	43	46	22.5	38	11	163	2.29	2	5	ND	18	151	1	2	2	55	.75	.301	102	71	. 49	324	.15	3	.67	.07	. 53	1
81261		1808																												1
81262	6	1963	26	56	1.2	44	59	167	7.10	5	5	ND	23	164	1	2	13	49	1.42	.477	135	81	.24	24	.09	9	.73	.07	. 27	1
B1263	3	94516√	6 7	17	148.1/	19	4	269	1.81	15	62	8	214	817	1	6	69	24	14.21	5.038	1651	25	.11	71	.04	2	.97	, 32	.54	1

ASSAY REQUIRED FOR CORRECT RESULT -

		ILOOPS EARCH & ASSAY	912 - 1 LAVAL CRE		CERTIFIED ASSAYERS S, B.C. V2C 5P5 PHONE (604) 372	-2784 FAX 372-1112	
\checkmark		ORATORY LTD.		**	GEOCHEM REPORT	* *	
	То:	Yukon Minerals Lt			Number:	G 2224	
		522-625 Howe St., Vancouver, B.C. V6C 2T6			Date:	Nov 10, 1	989
	Attn:	Mike Neilsen			Proj.:		

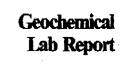
No.	Description	Au	Ag	Cu	Cu 40	
		ppb	ppm	percent		
1	80501	<5	3.8	>.40	0.65	
2	80502	< 5	<.1	.007		
3	80503	< 5	.6	.20		
4	80504	< 5	.9	.15		
5 6	80505	< 5	. 9	.19		
6	80506	< 5	<.1	.012		
7	80507	<5	. 3	.061		
8	80508	<5	1.5	.24		
9	80509	< 5	.8 .3 .3	.071		
10	80510	<5	.3	.013		
11	80511	< 5	.3	.011		
12	80512	<5	. 3	.013		
13	80513	<5	<.1	.007		
14	80514	<5	1.0	.027		
15	80515	<5	<.1	.005		
16	80516	<5	<.1	.011		
17	80517	< 5	<.1	.013		
18	80518	< 5	<.1	.005		
19	80519	< 5	<.1	.024		
20	80520	<5	.2	.039		
21	80521	< 5	<.1	.023		
22	80522	< 5	<.1	.009		
23	80523	< 5	<.1	.013		
24	80524	30	<.1	.005		
25	80525	<5	<.1	.006		
26	80526	<5	<.1	.004		
20	80527	<5	.1	.028		
	80528	<5	.1	.004		
28	80529	<5	<.1	.010		
29		<5	<.1	.003		
30	80530	<5	.3	.015		
31	80531		<.1	<.001		
32	80532	<5				
33	80533	<5	.3	.007		
34 35	80534	<5	.9			
	80535	<5	1.8	.054		

RCV BY:XEROX TELECOPIER 7010 ;11-14-89 6:32PM ;

604 688 9895→ TEST

000

4032592026;# 5


PAGE 05

NOV 14 '89 16:29 FROM

Bondar-Clegg & Company Ltd. Pemberton Ave. Forth Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

.

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE-PRINTED: 5-0CT-89 PROJECT: POWER REPORT: 989-06091.0 PAGE 1D SAMPLE ELEMENT Nī Cr Ĉu Au Ag. **PPH** PPH NUMBER UNITS PPH **PPN PPB** SI LION 6+00W 8.2 52 S1 LION 5+50H 8.2 164 SAMPLES Soil 281 S1 LION 5+DEM 8.4 S1 LION 4+50N 0.1 -69 55 S1 LION 4+BOH 0.3 R2 66208 121 -> ROAD SHOW - WEST WALL GRAB R2 80955 19 2.5 Pegmatite wall rock - biotite alteration zone RLIAN 4+00 W R2 80956 168 280 Massive divite (?) Float LI4N 4+COW 194 R2 80957 56

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. 77P 2R5 (604) 985-0681 Telex 04-352667

-

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V8	9-0601	9.0 (COMPLET	E)			RE	FERENCE INFO:
CLIENT: YU PROJECT: P		NERALS CORP.					IBMITTED BY: M. NIEISON NE PRINTED: 3-OCT-89
ORDER		ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	ne thod
1 2	Pt. Pd	Platinum Palladium		6 6	10 PPB 1 PPB	FIRF-ASSAY FIRE-ASSAY	
3	Au Cu	Gold - Fir Copper	re Assay	6 24	1 PPB 1 PPH	FIRF-ASSAY HN03-HCL HOT	EXTR Atomic Absorption
5 6 7	Ni Cr	Nickel Chromium		6	2 PPN 2 PPN 0 1 DDM	HN03-HCL HOT	EXTR Atomic Absorption X-Ray Fluorescence
/	Ag	Silver		18	0.1 PPM	HNO3-HCL HOT	EXTR Atomic Absorption
SAMPL	.E TYP		NUMBER	SIZE F	RACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
S SO B RA		BED ROCK	18 6	1 -8 2 -1		18 6	DRY, SIEVE -80 18 CRUSH,PUI VFRIZE -150 5
		ssay of high (N19.6		
		ssay of high (IES TO: YUKON			N19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					N19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					N19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					N19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					N19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					Π19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					Π19.6		F TO: YUKON MINFRALS CORP.
					N19.6	INVOIC	F TO: YUKON MINFRALS CORP.
					N19.6		F TO: YUKON MINFRALS CORP.
					Π19.6	INVOIC	F TO: YUKON MINFRALS CORP.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. 'brth Vancouver, B.C. 'P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

			······				1	IE PRINTED:	<u>3-0CI-89</u>	
REPORT: V89-06019.0							PROJECT: POWER			PAGE 1
SAMPLE	ELEMENT	Pt	Pd	Au	Cu	Ni	Cr	Ag		
NUMBER	UNITS	PPB	PPB	PPB	PPN	PPM	PPM	PPn		
S1 L5N B/L					49			0.2	}	
S1 L5N 0+50F					205			0.7		
S1_L5N_1+00E					24			0.1	1	
S1 L5N 1+5UF					4			0.1		
S1 L5N 2+DDE					24			0.2		
\$1 L5N 2+50F					56		<u> </u>	0.1		
S1 L5N 3+00E					108			0.3		
S1 L5N 3+50F					132			0.5 /		
S1 L5N 4+00E					9			0.2		
S1 L4N B/I					30			0.1		
S1 L4N 0+50E					30		· ··· · · · · · ·	0.2	·····	
S1 L4N 1+UNF					6			0.1	Soil	SAMPLE
S1 L4N 1+50E					17			0.6		
S1 L4N 2+00F					57			0.7		
S1 L4N 2+50E					13	· · · · · · · · · · · · · · · · · · ·		0.5		
S1 L4N 3+00F			· ,		14			0.3	\	
S1 L4N 3+50E					7			0.3	1	
S1 L4N 4+00F					8			0.2)	
R2 66202		<15	2	8 5	>20000	53	57	\neg $-$	/	
R2 66203	2	<15	45	5	9010	9	65			
R2 66204		15	20	68	12500	146	57	Paca	5,10, 1	GRAB S
R2 66205		15	30	22	4270	176	57			UKAB J
R2 66206		<15	30	99	11630	150	87	\ M.	Nielsen	
R2 66207		<15	30	24	6250	299	<2	}	-	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. 7P 2R5 (604) 985-0681 Telex 04-352667

.

_

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V89-D6D91.D (COMPLETE)

CITENT: YUKON MINERALS CORP. PROJECT: POWER

SUBMITTED BY: M. NIELSON DATE PRINTED: 8-OCT-89

REFERENCE INFO:

			NUMBER OF	LOWER			
ORDER		ELEMENT	ANALYSES	DETECTION LIMIT	EXTRACTION	METHOD	
1	Ag	Silver	2	0.2 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
2	As	Arsenic	2	5 PP H	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
3	Ba	Barium	2	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
4	Be	Beryllium	2	0.5 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
5	81	Bismuth	2	2 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
6	Cd	Cadmium	2	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
7	Ce	Cerium	2	5 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
8	Co	Cobalt	2	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
9	Cr	Chromium	2	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
10	Cu	Copper	2	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
11	Ga	Gallium	2	2 PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma	
12	La	Lanthanum	2	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
13	Li	Lithium	2	1 PPM	HN03-HCL HOT FXTR	Ind. Coupled Plasma	
14	No	Nolybdenum	2	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
15	Nb	Niobium	2	1 PPM	HN03-HC1 HOT EXTR	Ind. Coupled Plasma	
16	Ni	Nickel	2	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
17	Pb	l ead	2	2 PP H	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
18	Rb	Rubidium	2	20 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
19	Sb	Antimony	2	5 PPN	HN03-HCL HOT FXTR	Ind. Coupled Plasma	
20	Sc	-	2	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
21	Sn	Tin	2	20 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
22	Sr	Strontium	2	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
23	Та	Tantalum	2	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
24	Ĭe	Tellurium	2	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
25	V	Vanadium	2	1 PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma	
26	и	Tungsten	2	10 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
27	Y	Yttrium	2	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
28	Zn	Zinc	2	1 PPM	HNO3-HCL HOT EXTR	Ind. Coupled Plasma	
29	Zr	Zirconium	2	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma	
30	Pt	Platinum	2	10 PP8	FIRE-ASSAY		
31	Pđ	Palladium	2	1 PPB	FIRE-ASSAY		
32	Au	Gold - Fire Assay	2	1 PPB	FIRE-ASSAY		
33	Cu		2	1 PPM	HN03-HCL HOT EXTR	Atomic Absorption	
34	Ni	Nickel	2	2 PPN	HNO3-HCL HOT EXTR	Atomic Absorption	
35	Cr		2	2 PPN		X-Ray Fluorescence	
36	Au	Gold - Fire Assay	1	5 PPB	FIRE-ASSAY	Fire Assay AA	
37	Ag	Silver	6	0.1 PPM	HN03-HCL HOT EXTR	Atomic Absorption	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (6)4) 985-0681 Telex 04-352667

Geochemical Lab Report

	YUKON Power		ALS CO	RP.							 			D BY: I NTED:			
ORD		ELE	NENT Copper				MBER ALYS 6			LOWER TION LI 1 PPM	EXTRACTI HN03-HCL	ON		MET			tion
 SAI	IPLE TY	PES		N	UMBER		SIZ	E FR	ACTION	S	 NUMBER		SAMPL	E PREP	ARATI	ONS	NUMBE
	SOILS Rock (ROCK		5 4		1 2	-80 -15			 5 4		DRY, CRUSH	SIEVE ,PULVF SURCH	-80 RIZE ·		5
 RE	PORT CI	OPIES	TO: YL	JKON M	INERALS	S CORP.					 II	NOICE	TO: Y	UKON M	INERA	LS CO	RP.

Bondar-Clegg & Company Lt 130 Pemberton Ave. Porth Vancouver, B.C. P 2R5 (604) 985-0681 Telex 04-35266					R-CLEGQ		012010 11019 2101	189 1920	1	nemical Report	
REPORT: V89-D6	/ 001 1	A [INCHCAPE INS	SPECTION & IT	STING SERVIC	DA	ATE PRINTE ROJECT: PO		[-89	
											PAGE 1A
SAMPLE NUMBER	ELEMENT UNITS	Ag PPN	As PPN	Ba PPN	Be PPN	Bi PPM	Cd PPĦ	Ce PPN	Со РРМ	Cr PPM	Cu PPM
S1 L10N 6+00W S1 L10N 5+50W S1 L10N 5+00W S1 L10N 4+50W S1 L10N 4+00W	1										
R2 66208 - Por R2 80955	phyry float	<0.2	17	159	<0.5	<2	<1	49	4	53	19
R2 80955 7 R2 80956 R2 81957	"Oad shun	<n.2< td=""><td>49</td><td>>2000</td><td><0.5</td><td><2</td><td><1</td><td>242</td><td>44</td><td>84</td><td>154</td></n.2<>	49	>2000	<0.5	<2	<1	242	44	84	154
•											

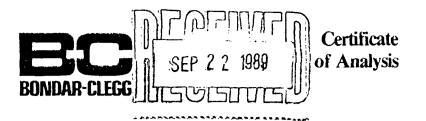
- - -

-

Bondar-Clegg & Company Ltd 130 Pemberton Ave. North Vancouver, B.C. 77P 2R5 (604) 985-0681 Telex 04-35266				BONDA		1			Geoch Lab	emical Report	
((04) 785-0081 1002 04-55200	1	AI	DIVISION OF I	NCHCAPE INS			CES		D. 0.001		
REPORT: V89-06	091.0	<u> </u>						ATE PRINTE ROJECT: PC		-89	PAGE
SAMPLE NUMBER	FLEMENT UNITS	La PPN	Li PPM	No PPN	Nb PPM	Ni PPM	Pb Pph	Rb PPN	Sb PPM	Sc PPN	Si PPI
S1 L10N 6+0NW S1 L10N 5+50W S1 L10N 5+00W S1 L10N 4+50W S1 L10N 4+00W											
R2 66208		22	5	1	<1	4	3	97	<5	2	<2
R2 80955 R2 80956 R2 80957		97	51	4	<1	164	<2	1501	<5	5	<2
							<u></u>				
			·········								

Bondar-Clegg & Company 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352				BONDA	R-CLEGG					emical Report	
		ΑI			PECTION & TE	STING SERVIC	ΈS				
REPORT: V89-	06091.0							DJECT: PO	<u>D: 8-0CT</u> WER	-89	PAGE
SAMPLE NUMBER	FLEMENT UNITS	Ta PPN	Te PPM	V PPM	N PPN	Y PPM	Zn PPN	Zr PPN	Pt PPB	Pd PPB	P
S1 L10N 6+001 S1 L10N 5+50 S1 L10N 5+001 S1 L10N 4+50 S1 L10N 4+901	น ม ม	9 14 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4									
R2 66208		<10	<10	19	<10	8	50	11		,	
R2 8D955 R2 80956 R2 80957		16	15	123	<10	13	97	2	<15 20	6 5	
1											

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. Nuth Vancouver, B.C. 2R5 (604) 985-0681 Telex 04-352667


Geochemical Lab Report

REPORT: V89-06	091.0						PROJECT: POWER	PAGE
SAMPLE	ELEMENT	Ni	Cr	Au	Âg	Cu	······································	
NUMBER	UNITS	PPN	PPN	PPB	PPN	PPN		
S1 L10N 6+00W					0.2	52		
S1 L10N 5+50W					0.2	164		
S1 L10N 5+00W					0.4	281		
S1 L10N 4+50H					0.1	69		
S1 L10N 4+00W					0.3	55		
R2 66208				·····				
R2 80955				19	2.5	121		
R2 80956		160	200					
R2 80957		194	56					

.

Certificate Bondar-Clegg & Company Ltd. 130 Pemberton Ave. of Analysis 'orth Vancouver, B.C. P 2R5 1969 Bondar-Clegg (604) 985-0681 Telex 04-352667 REPORT: V89-D6D19.4 (COMPLETE) **REFERENCE INFO:** SUBMITTED BY: M. NIELSON CLIENT: YUKON MINERALS CORP. DATE PRINTED: 15-SEP-89 PROJECT: POWER NUMBER OF LOHER ORDER ELEMENT ANAL YSES DETECTION LIMIT EXTRACTION METHOD 0.002 OPT Gold 4 Fire Assay 1 Αu 5 0.02 OPT 2 Silver Fire Assay Ag 3 Cu Copper 4 0.01 PCT Atomic Absorption 0.01 PCT Atomic Absorption 4 Pb Lead 1 5 Zn Zinc 1 0.01 PCT Atomic Absorption SAMPLE PREPARATIONS NUMBER SAMPLE TYPES NUMBER STZE FRACTIONS NUMBER R ROCK OR BED ROCK 5 2 -150 . 5 ASSAY PREP 5 INVOICE TO: YUKON MINERALS CORP. REPORT COPIES TO: YUKON MINERALS CORP.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. • th Vancouver, B.C. • 2R5 (604) 985-0681 Telex 04-352667

						- - -	DATE_PRINTED: 15-SEP-	89
REPORT: V89-	06019.4						PROJECT: POWER	PAGE 1
SAMPLE	ELEMENT	Au	Âg	Cu	РЪ	Zn		
NUMBER	UNITS	OPT	OPT	PCT	PCT	PCT		
R2_37525	· _ · · · · · · · · · · · · · · · · · ·		57.08					
R2 80951		<0.002	2.29				ZONE - L'13+30N, 04	355
R2 80952		<0.002	0.10	0.72 -	> Ro	IAD SHO	W GRAB	
R2 80953		<0.002	0.05	0.06 -	> An	TLER	ZONE GRAZ	
R2 80954		<0.002	0.03	0.06 -	-> TE	ESSA ZO	NE GRAB	

•

...l. ----//

Registered Assaver. Province of British Columbia

۰.

Bondar-Clegg & Company Ltd. 130 Pemberion Ave. h Vancouver, B.C. 2R5 (x04) 985-0681 Telex 04-352667

Geochemical Lab Report

REFERENCE INFO:

SUBMITTED BY: M. NIELSON

DATE PRINTED: 25-SEP-89

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-06170.0 (CONPLETE)

CLIENT: YUKON MINERALS CORP.

PROJECT: POWER

NUMBER OF LOWER ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION METHOD 2 5 PPB FIRE-ASSAY Fire Assay AA Au Gold - Fire Assay 1 HN03-HCL HOT EXTR Ind. Coupled Plasma 0.2 PPM 2 1 Ag Silver 1 Ind, Coupled Plasma 5 PPM HN03-HCL HOT EXTR 3 As Arsenic Ind. Coupled Plasma Barium 1 1 PPM HN03-HCL HOT EXTR 4 Ba 5 Beryllium 1 0.5 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma Be HN03-HCL HOT EXTR Ind. Coupled Plasma 2 PPN 6 Bi Bismuth 1 **1 PPI** HN03-HCL HOT EXTR Ind. Coupled Plasma 7 Cd Cadmium 1 5 PPN HN03-HCL HOT EXTR Ind. Coupled Plasma 8 Св Ceriu 1 HN03-HCL HOT EXTR Ind. Coupled Plasma 9 Cobalt 1 1 PPN Co 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 10 Cr Chronium 1 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 1 11 Çu Copper Ind. Coupled Plasma 2 PPN HN03-HCL HOT EXTR 12 Gallium 1 Ga HN03-HCL HOT EXTR Ind. Coupled Plasma 13 La Lanthanu 1 1 PPM Ind. Coupled Plasma 14 Lithium 1 1 PPM HN03-HCL HOT EXTR Li 1 1 PP# HN03-HCL HOT EXTR Ind. Coupled Plasma 15 Мo llo l ybdenum 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma Niobium 1 16 Nb 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 17 Nickel 1 Ni 1 2 PPN HN03-HCL HOT EXTR Ind. Coupled Plasma 18 PЬ Lead 20 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 19 RЬ Rubidium 1 Ind. Coupled Plasma 20 Sb Antimony 1 5 PPN HN03-HCL HOT EXTR 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 21 Sc Scandium 1 20 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 22 Sn Tin 1 HN03-HCL HOT EXTR Ind. Coupled Plasma 23 Sr Strontium 1 1 PPN Ind. Coupled Plasma Tantalu **10 PPM** HN03-HCL HOT EXTR 24 Ĩа 1 Ind. Coupled Plasma 10 PPM HN03-HCL HOT EXTR 25 Te Tellurium 1 Ind. Coupled Plasma 26 U Vanadium 1 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma u **10 PPM** HN03-HCL HOT EXTR 27 Tungsten 1 Y 1 1 PPN HN03-HCL HOT EXTR Ind. Coupled Plasma 28 Yttrium Ind. Coupled Plasma 1 PPN HN03-HCL HOT EXTR 29 Zn Zinc 1 1 PPN Ind. Coupled Plasma 30 1 HN03-HCL HOT EXTR Zr Zirconium Atomic Absorption 0.1 PPM HN03-HCL HOT EXTR 31 Aq Silver 1 HN03-HCL HOT EXTR Atomic Absorption 32 Cu Copper 1 1 PPM

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. 71º 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V89-D6170.0 (COMPLET	E)			REFERENCE INFO:	······································
CLIENT: YUKON MINERALS CORP. PROJECT: POWER				SUBMITTED BY: N. NIELSON DATE PRINTED: 25-SEP-89	
SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	IUNBER
R ROCK OR BED ROCK	2	2 -150	2	CRUSH,PULVERIZE -150 BATCH SURCHARGE	2 1
REMARKS: ASSAY OF HIGH A V89-06170.6	<i>دی</i> او,445 to follo	I ON			
REPORT COPIES TO: YUKON	MINERALS CORP.		<u>ш</u>	VOICE TO: YUKON MINERALS CO	RP
	······				
		· · · · · · · · · · · · · · · · · · ·			
`					

Bondar-Clegg & Company Ltd. EVIT Subsetion Ave. NUMP Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPIE INSPECTION & TESTING SERVICES

REPORT: V89-	06170.0							TE PRINTER			PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Ag PPN	As PPM	Ba PPN	Be PPM	Bi PPN	Cd PPN	Ce PPN	Co PPH	Cr PPM	Cu PPN
E R2 66209 E R2 66210		606 780	5.1	75	5	<0.5	<2	<1	<5	96	80	781
Ain locati	erolized fl in unknow	loat - un	Fox	1 cla	im -	Submi	Hed b	y Bill	Prest	on		

.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. 30 Vancouver, B.C. 2185 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V89-00	5170.0							TE PRINTE			PAGE 1B	
SAMPLE NUMBER	ELEMENT UNITS	Ga PPM	La PPN	Li PPN	No PPN	Nb PPM	Ni PPN	Р ь РР11	Rb PPti	Sb PP fi	Sc PPM	Sn PPM
R2 66209 R2 66210		<2	<1	2	17	<1	223	<2	114	<5	<1	<20
				<u></u>		anv						
•												

__ . . .

Geochemical Lab Report

Bondar-Clegg & Company Ltd. B0 Pemberton Ave. h Vancouver, B.C. P 2R5 (604) 985-0681 Telex 04-352667

A DIVISION OF	INCHEAPE	INSPECTION &	HESTING SERVICES

			A DIVISION	OF INCHCAP	E INSPECTIC	ON & HESTING		IE PRINIE	D+ 25-6E	D_89		
REPORT: V8	9-06170.0							OJECT: PO			PAGE 1C	
SAMPLE NUMBER	ELEMENT UNITS	Sr PPM	Ta PPN	Te PPN	V PPN	N PPN	ү РР Н	Zn PPN	Zr PP11	Ag PPM	Cu PPM	
R2 66209 R2 6621D		17	41	<10	36	<10	2	43	8	>50.0	>20000	
		<u> </u>										
							_					
[

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. th Vancouver, B.C. P 2R5 (604) 985-0681 Telex 04-352667

REPORT: V89-06170.6 (COMPLETE)		REFERENCE	INEO:
CLIENT: YUKON MINERALS CORP. Project: Power			BY: M. NIELSON ED: 29-SEP-89
ORDER ELEKENT	NUMBER OF LOWER ANALYSES DETECTION LIMIT	EXTRACTION	KETHOD
1 Ag Silver 2 Cu Copper	1 0.02 OPT 1 0.01 PCT	HE-HN03-HC104-HC1	Atomic Absorption Atomic Absorption
SAMPLE TYPES NUMBER	SIZE FRACTIONS		PREPARATIONS NUMBER
R ROCK OR BED ROCK 1	2 -150		EIVED, NO SP 1
REPORT COPIES TO: YUKON MINERALS	CORP.	INVOICE TO: YU	CON MINERALS CORP.
·			
	101 <u>1</u> - 1 <u>1</u> 11 - 111		
		<u> </u>	
\checkmark			

Bondar-Clegg & Comp 130 Pemberton Ave. orth Vancouver, B.C. P 2R5 (604) 985-0681 Telex 04	-352667	JES V	- ،، 1989: 3- –	BONDA	R-CLEGG			Certif of Ana	
REPORT: V89-(A DIAIÈIÓN (DE INCHÇAPE IN	SPECTION & TES	DATE	- Printed: 29-sep- IECT: Power		E 1
SAMPLE NUMBER	ELEMENT UN ITS	A9 Opt	Cu PCT						
R2 66209		3.65	3.97 ->	Float -	Fox A	claim.	Submitted	by Bill	Presta
			·····	·····					
								1	
\checkmark									
							$ \rightarrow $		
							<u>I</u>	542	

Bondar-Clegg & Company Ltd. Even oberton Ave. Norm Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

- 1

Certificate of Analysis

REPORT: V89-05279.4 (COMPLETE)			R	REFERENCE INFO:			
CLIENT: YUKON MINERALS CORP. PROJECT: POWER				UBMITTED BY: UNKNOWN ATE PRINTED: 17-AUG-89			
ORDER EI EMENT	NUMUER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD			
1 Au Gold 2 Ag Silver	1 1	11.11112 OPT 11.1112 OPT		Fire Assay Fire Assay			
3 Cu Copper	1	11.111 PCT		Atomic Absorption			
SAMPLE TYPES NUMBER	SIZE FR	ACTIONS	NUNBER	SAMPLE PREPARATIONS NUMBER			
	2 -15	H	1	ASSAY PREP 1			
REPORT COPTES TO: MR. MIKE NEIL	SFN		INVOIC	CF TO: MR. MIKF NEILSEN			

· · ·

Bondar-Clegg & Company Ltd.

- -----

Certificate of Analysis

_

 a) Pemberton Ave. a) the Vancouver, B.C. a) 2R5 b) 985-0681 Telex 04- 	Pemberton Ave. th Vancouver, B.C. 2R5 4) 985-0681 Telex 04-352667 BONDAR-CLEGG					GG	of Analysis			
			A DIVISE	ON OF INCHC	APE INSPECTION	& TESTING SERV	TCES DATE PRINTED: 17-AU	12-89		
REPORT: V89-II	5279.4						PROJECT: POWER	PAGE 1		
SAMPLE NUMBER	ELFMENT UNITS	Au 01º 1	Ag Op t	Cu PC I						
R? 66201		<11.0112	0.07	0.44	> KOAD 2.65 m	SHOW channel	sample			
	··· <u>··</u> ·······························			·····						
									. –	
				<u>.</u>	<u></u>	<u></u>	Que -	The C		
							Remistered Assayer,	Province of Britich	Colum	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. Ab Vancouver, B.C. AP 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V89-052	P79.0 (COMPLETE)	REFERENCE INFO:					
CLIENT: YUKON I PROJECT: POHER	ITNERALS CORP.				BY: UNKNOWN TED: 22-AUC-89		
ORDER	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD		
1 Ag 2 As	Silver Arsenic	1	0.2 PPM 5 PPM	HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR	Ind. Compled Plasma Ind. Compled Plasma		
3 Ba 4 Be 5 Bi 6 Cd 7 Ce	Barium Beryllium Bismuth Cadmium Cerium	1 1 1 1 1	1 PPM 0.5 PPM 2 PPM 1 PPM 5 PPM	HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR	Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma		
8 Co 9 Cr 111 Cu 11 Ga 12 La	Chromium Copper - Callium	1 1 1 1 1	1 PP# 1 PP# 1 PP# 2 PP# 1 PP#	HN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTR	Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma		
13 Li 14 Mc 15 Nb 16 Ni 17 Pb	Niobium Nickel	1 1 1 1 1	1 PPM 1 PPM 1 PPM 1 PPM 2 PPM	HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR	Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma		
18 Rt 19 St 20 Sc 21 Sc 22 St	antimony Scandium A Tin	1 1 1 1 1	20 PPM 5 PPM 1 PPM 20 PPM 1 PPM	HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT EXTR	Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma		
23 10 24 10 25 V 26 W 27 Y		1 1 1 1 1	10 PPM 10 PPM 1 PPM 10 PPM 1 PPM	HNO3-HCL HOT EXTR HNO3 HCL HOT EXTR HNO3 HCL HOT EXTR HNO3-HCL HOT EXTR HNO3-HCL HOT FXTR HNO3-HCL HOT FXTR	Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma Ind. Coupled Plasma		
28 7 29 2		1	1 PPn 1 PPn	HN03-HCL HOT EXTR HN03-HCL HOT EXTR	Ind. Coupled Plasma Ind. Coupled Plasma		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. orth Vancouver, B.C. 7P 2R5 (004) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V89 05279.0 (COMPLETE)		REFERENCE INFO:				
CLIENT: YUKON MINERALS CORP. PROJECT: POWER	SUBMITTED BY: UNKNOWN DATE PRINTED: 22-AUG-89					
SAMPLE TYPES NUMBER	SIZE FRACTIONS	NUNBER	SAMPLE PREPARATIONS			
R ROCK OR BED ROCK 1		1	ASSAY PREP NATCH SURCHARGE	1		
REPORT COPIES TO: MR. MIKE NEILSEN		<u>.</u> INV	DICE TO: MR. MIKE NEILOFN			
		-				
~						

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. 14th Vancouver, B.C. 14 P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

			A	DIVISION	OF INCHCA	PI-INSPECTI	ona h:stin			N. 00 AUS	20		
RÉP	REPORT: V89 05279.0							DATE-PRINTED:-22-AUX PROJECT: POWER				PACE 16	<u></u>
Слл UM	euf: BER	FLEDENT UNITS	Ag PPM	As PPm	Ba PPM	Be PPN	Bi Plih	Cd PPM	Ce PPM	Co PPM	Cr FPn	Cu Přin	Ga PP n
	66201 D		1.6	<5	34	<0.5	<2	<1	58	69	63	3985	0
	۲	> ROAD	SHOW		2.65 v	m ch	anrel	san-pla					
													<u> </u>
			# -										
•													

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. 7P 2R5 (604) 985-0681 Telex 04-352667

, . · · · · ·

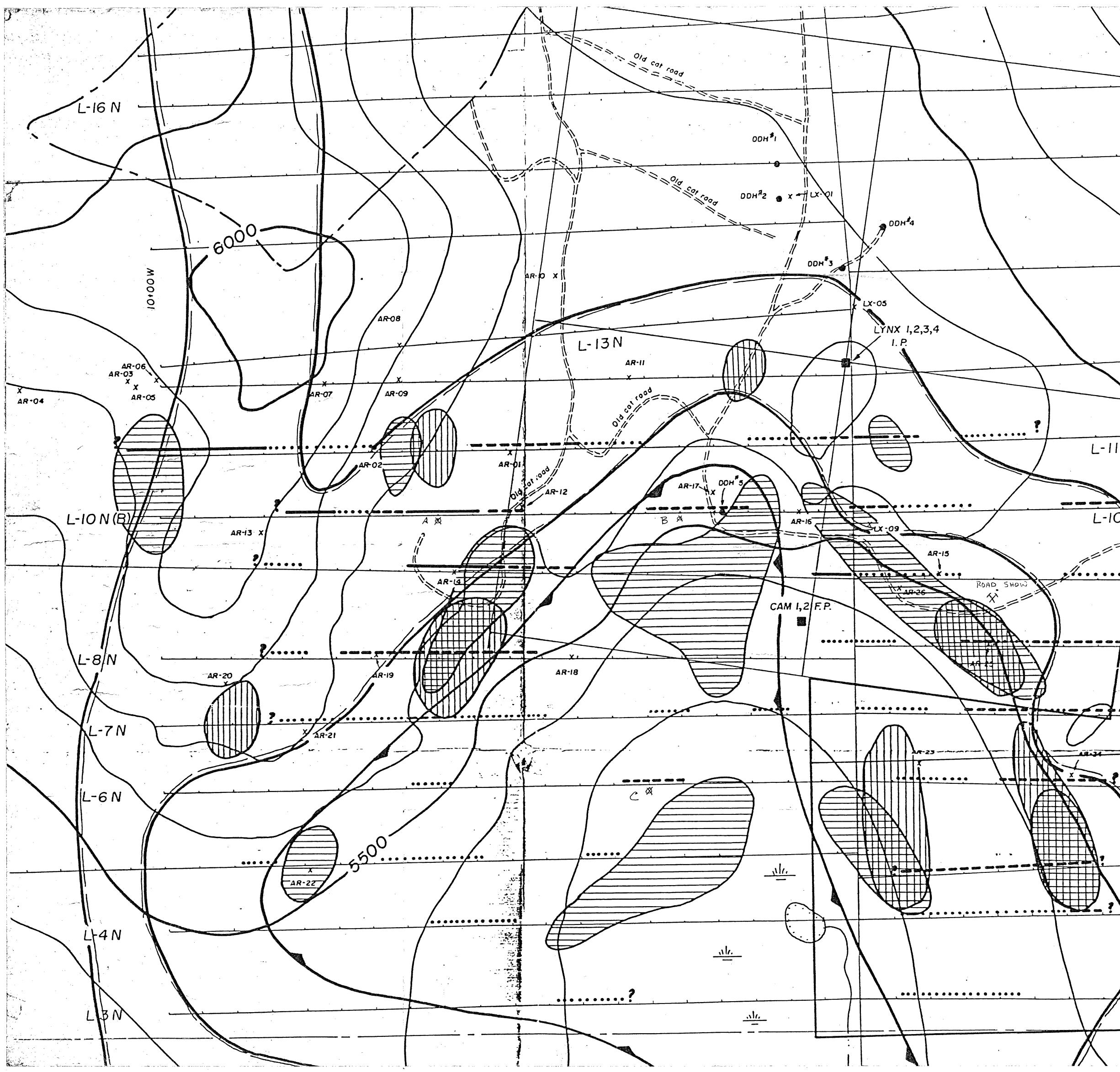
_

Geochemical Lab Report

REPORT: V89-	05279.0							DATE-PRINTED: 22 AUG PROJECT: POWER			PAGE 18	
SAMPLE NUMBER	ELEMENT UNITS	t.a PPM	L i PPM	Mo PFn	Nb PPn	N î PFrл	Pb PPM	Rь PPM	Sb PPM	Sc PPri	Sn Pfin	St PPI
K2 66201		29	12	13	<1	165	</td <td>42</td> <td>26</td> <td>1</td> <td><20</td> <td>78</td>	42	26	1	<20	78
		· · · · · · · · · · · · · · · · · · ·										

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. 97th Vancouver, B.C. 1712 2R5 (604) 985-0681 Telex 04-352667

· · ·



Geochemical Lab Report

A DIVISION OF INCHCAPE	INSDUCTION R	FUSTING SURVICES
A DIVISION OF INCHCAPE	TROUGC FION &	TESTING SERVICES

REPORT: 089	05279.0				T. INSPECTR		DA	TE PRINTED: 22-AUG-85 OJECT: POWER	PAGE 1C
SAMPLE NUMBER	ELEMENT UNITS	Ta PP n	Te PPn	V PPM	и PPn	Y PPn	Zn PPM	Zr PPM	
R2 66201		24	<1.0	37	<10	7	38	2	
						<u></u>			
			 				· · · · · · · · · · · · · · · · · · ·		
~								<u></u>	
<u></u>	<u></u>								

A SESSMENT REPORT PART 2 OF 2 Fig 4 21.46% Nz L-IIN L-10 AR-27 411-,........ 2 AR-31 VIL AR-32 DICK 1-4 1007 3,4 I.F. CLAIMS ₩∞n I,2 F.P. FRANK SAME IN A HOUSE LOSS AND A SAME AND A ----LECEND SCLO TERCERAFHIC CONTOUR IN FEET (ASL) SUL ANOMALT - CUPPER > ISU FFM -> CREEK Soil ANCHIALY, SILVER > 7 ppm ~?? LAKE I.P. ANOMALIES SWAMP <u>N</u> E=== ROAD DEFINITE ---- PROBARLE - CLAIM BOUNDART PossiBLE GRID LINE WITH SAMPLE STATION YUKON MINERALS CORPORATION PDH DIAMOND DRILL HOLE COMPILATION OF GEOCHEMICAL AR 17 X ROCIL SAMPLE LOCATION MAGNETIC & INDUCED POLARIZATION ZENG. LE ERRATIC MAGNETIC RESPONSE DATA POWER PROJECT ZONE OF GENERAL MACNETIC CSETCOS & GREEN WOOD MINING DIVISION CEICINAL BY KERF, DAVISON & ASSCILATES 50 25 0 25 50 100 156 .156 SCALE 1:2500 CEULOCICAL ASSESSMENT REPURT 12,290