		A DESCRIPTION OF THE OWNER OF THE
LOG NO:	0815	RU.
ACTION:		
FILE NO:		•

SCUD PROPERTY - 1045

SCUD #1, 2, 3, ALICIA, ROBYN CLAIMS

(4845, 4846, 4847, 6493, 6492)

LIARD MINING DIVISION

N.T.S. 104-G/6

GEOLOGICAL, GEOCHEMICAL, PROSPECTING REPORT

JULY 1, 1990

OWNERS: LACANA EX (1981) INC CORONA CORPORATION

GEOLOGICAL BRANCH ASSESSMENT REPORT

Darrel Johnson B.Sc. Paul W. Jones CORONA CORPORATION

Latitude 57°21' Longitude 131°19'

TABLE OF CONTENTS

Pa	ge	No.

1.0	CONCLUSION 1
2.0	RECOMMENDATIONS 2
3.0	INTRODUCTION 3
4.0	GEOLOGY 4
	4.1 REGIONAL
	4.2 PROPERTY 5
5.0	GEOCHEMISTRY 6
6.0	STATEMENT OF COSTS 8
7.0	STATEMENT OF QUALIFICATIONS 10
8.0	BIBLIOGRAPHY 12

APPENDICES

APPENDIX A - GEOCHEMICAL METHODS APPENDIX B - SAMPLE DESCRIPTIONS APPENDIX C - ANALYTICAL RESULTS

LIST OF FIGURES

Figure 1	PROPERTY LOCATION MAP	After page 2
Figure 2	CLAIM LOCATION MAP	After page 3

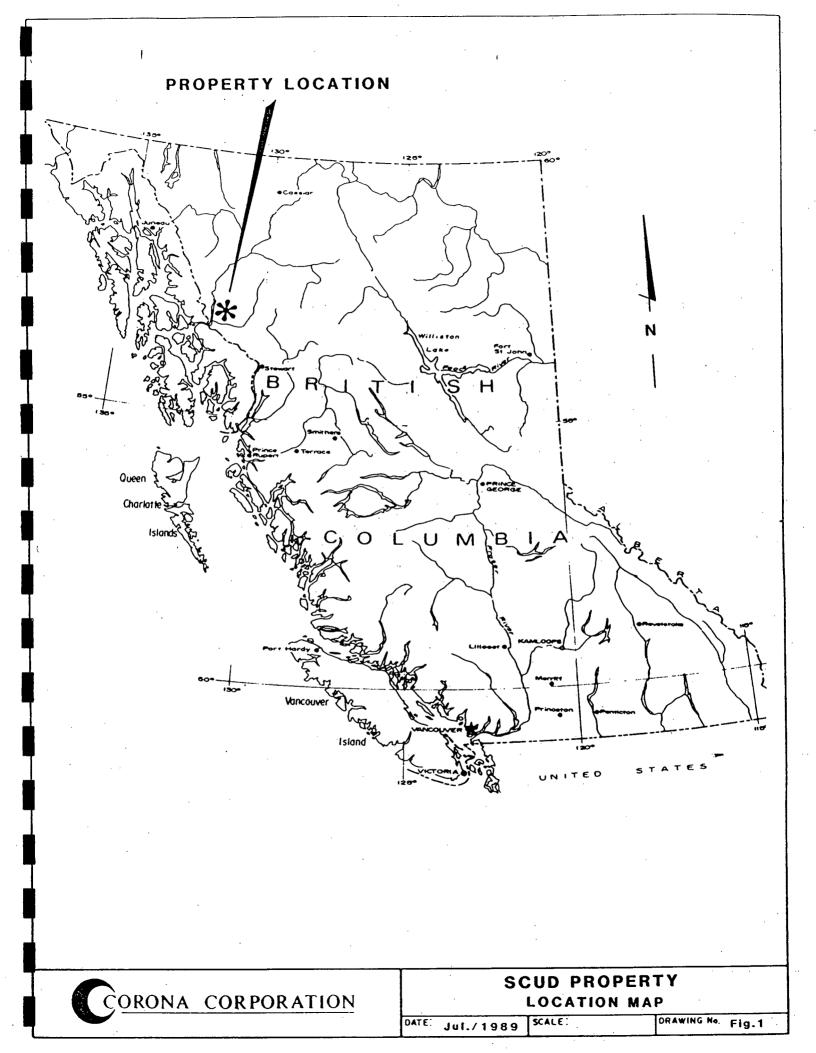
<u>MAPS</u>

Figure 4	Scud Property, Otis Showing	
	Geology 1:10,000	In Pocket
Figure 5	Scud Property, Otis Showing Rock	
	Geochemistry 1:10,000	In Pocket

1.0 <u>CONCLUSIONS</u>

Prospecting and geological work during August, September and October of 1989 on the Scud 1 (4845), Scud 2 (4846), Scud 3 (4847) Alicia (6493) and Robyn (6492) claims expanded knowledge of previously discovered showings and located new occurrences.

Detailed mapping and sampling of an auriferous arsenopyrite vein exposed a gold bearing arsenopyrite stockwork system. Peripheral to this showing, two separate arsenic rich vein outcrops with anomalous gold values were prospected.


In the vicinity of these occurrences Cu, Au mineralization, possibly related to a porphyry system, was discovered. The mineralization is composed of i) lenses and shears (fractures) with chalcopyrite, malachite, azurite, bornite and pyrite and ii) mafic lapilli metavolcanic tuff with disseminated chalcopyrite. The shears carry up to 38 g Au and 10% Cu. The lapilli tuff horizon returned values up to 1.6 g Au and 3% Cu.

A prominent, north dipping, east/west trending structure on which the arsenopyrite stockwork system is located is also evident 4 km to the west across the Scud Glacier. The Alicia and Robyn claims were staked to cover this lineament and subsequent prospecting discovered lenses and shears (fractures) of copper mineralization. The chalcopyrite, malachite and bornite showings ran up to 2 g Au and 6% Cu. This showing is a rediscovery of the North Scud occurrence as described in an American Smelting & Refining Co. report by R.E. Gale in 1964. The Gran #14 claim jointly-owned by Equity Silver and Homestake was staked to cover this showing but the occurrence had been misplotted and is actually covered by the Alicia claim.

The area appears to host abundant mineralization in a number of geologic settings with significant Au values. Additional trenching and sampling on the known showings and further detailed sampling and mapping away from the showings is warranted.

2.0 **RECOMMENDATIONS**

Systematic geological mapping of the group should be undertaken to delineate areas of mineral potential, which could then be mapped and sampled in detail. Due to the moraine cover in the area, trenching is often a necessary but informative part of geological mapping. Hopefully, trenching would assist in defining drill targets. This work could be completed from a base camp .5 km south of the Otis showing, serviced from either the Scud River or Galore Creek airstrip.

3.0 **INTRODUCTION**

The Scud 1 (4845)*, Scud 2 (4846)*, Scud 3 (4847)*, Robyn (6492) and Alicia (6493) claims are owned by Corona Corporation, and a wholly owned subsidiary, Lacana Ex (1981) Inc.(*). The Scud claims were staked on July 5, 1988 and the Alicia and Robyn claims on October 1, 1989. The claim group straddles the Scud Glacier 18 kms north of the toe where the Scud River emanates. The claims lie along the contact of the Coast Plutonic Complex and the Intermontane Belt.

Access is via helicopter from either the Scud airstrip at the confluence of the Scud and Stikine Rivers or the Galore Creek airstrip located 25 km to the southeast.

The claims cover both unaltered and metamorphosed Triassic Stuhini Group rocks with the middle Jurassic Yeheniko Pluton dominating the northern boundary. The metavolcanics grade from amphibolite facies through greenschist into fresh volcanics with a direct proximity to the Yeheniko Pluton. The volcanics/sediments on the **Alicia** claim were observed only briefly and the majority of the geologic information comes from the 1964 ASARCO report by R.E. Gale. The intrusive rock is of granite composition with biotite being the primary mafic mineral. During 1989, a 20 m diameter calc-alkaline feldspar porphyry plug was mapped, with increased copper mineralization noted in the adjacent metavolcanic rocks.

The mineralization prospected to date on the claim group is of three types; i) arsenopyrite in veins with associated quartz Fe oxidized stockwork and bands/pods of arsenopyrite within the metavolcanics ii) lenses and shears (fractures) with massive copper mineralization including chalcopyrite, malachite, azurite and bornite and iii) disseminated chalcopyrite within a mafic lapilli metavolcanic tuff that is locally brecciated. These showings are anomalous in gold, silver and copper, with arsenic being a pathfinder element.

A reconnaissance soil grid was established south of the Otis showing on Scud 1, which comprised 4 east/west lines and 47 "B" horizon soil samples. Results were inconclusive.

The work performed on the claim group included a 9 day base camp where the minor trenching, soil lines and local mapping and sampling was done, and a day (2 half man days) prospecting the Alicia claims at the beginning of October. A total of 104 rocks and 47 soil samples were collected. The programs were supported by helicopter from both the Galore Creek and Scud airstrips.

4.0 <u>GEOLOGY</u>

4.1 **REGIONAL GEOLOGY**

The claim area lies on the western margin of the Intermontane Belt at its contact with the Coast Plutonic Complex. Paleozoic sediments and Mesozoic sediments and volcanics are cut by intrusive bodies of the main Coast Belt and the satellite Hickman and Yeheniko Plutons. General tectonic fabric of the region trends northnorthwesterly.

The oldest rocks exposed in the area are Lower Paleozoic clastics including impure quartzites and limestones, overlain by crystalline schists and gneisses. A thick impure limestone unit caps the Paleozoic oceanic sequence.

The lower contact of Mesozoic units is described by F.A. Kerr, G.S.C. Memoir 246 and J.G. Souther, G.S.C. Paper 71-44, as gradational and in places unconformable. Triassic rocks consist of a thick sedimentary sequence overlain by an island arc volcanic assemblage which is in turn capped by volcanic derived sediments.

The Jurassic layered sequence consists of a thick, near shore sedimentary package and later volcanic (island arc?) rocks. Extensive intrusive activity during this period resulted in the emplacement of the multi phased 'Coast Complex' and related satellite plutons. Alkaline and calc-alkaline members of this suite are directly associated with most of the numerous mineral occurrences in the area. Cretaceous rocks consist mainly of marine sediments with thin basaltic to rhyolitic components.

Cenozoic stratigraphy includes mafic and felsic aerial volcanic units. These rocks are a major component of glacial and fluvial deposits throughout the area. Several active hot springs attest to ongoing geologic activity throughout the **Iskut-Stikine** region.

Most of the region has been subjected to Quaternary glaciation, resulting in rugged alpine terrain.

4.2 **PROPERTY GEOLOGY**

The Scud 1,2,3, Alicia and Robyn claim group encompasses a mixed package of Mesozoic volcanics, sediments and metamorphic units intruded by Jurassic granodiorites.

The Mesozoic rocks are part of the Stuhini Group and consist of a basal maroon and green epiclastic unit overlain by andesite flows, tuffs and volcanic breccia with minor phyric augite basalt sills and/or flows. Overlying sediments are polymictic conglomerates of augite basalt, volcanics and limestone clasts.

A prominent east/west structure cuts the claims and persists on both sides of the Scud Glacier. A north/south thrust fault as mapped by the B.C.G.S. is apparently truncated at its north end by the east/west lineament. The Otis Showing occurs near this junction. Detailed mapping, assisted by photo or satellite imagery interpretation is necessary to more fully understand the true structural picture.

Fresh volcanics observed on the Scud claims are of a dacite/andesite composition. The metamorphosed volcanics adjacent to the intrusive are more mafic with biotite being the major mafic component. Primary textures include lapilli to agglomeratic clasts and flow rim features. The Alicia claims host similar mafic lapilli volcanics, both weakly and strongly metamorphosed, plus lesser sediments including greywacke and a limestone unit.

5

Along with the major granitic Yeheniko pluton, smaller plugs ranging from diorite to quartz monzonite are present. Typical of these is the small calc-alkaline feldspar porphyry plug which is located amongst many of the showings on the **Scud** claims.

The previously discovered auriferous arsenopyrite vein, (Scud 1, 2, 3, 5, 7 Geological Report October, 1989) was exposed by trenching. This work showed the vein to be part of a stockwork system. The original showing, the Otis, consists of a 2 m thick zone of intensely fractured and oxidized volcanics containing veins and pods of arsenopyrite up to 30 cm x 150 cm. The stockwork system is well developed in andesitic volcanics but tightens to local thin arsenopyrite veins in the underlying diorite. The stockwork is overlain by a 0.5m - 1 m thick gossan which in turn is covered by volcanic talus including fragments of silicified, oxidized rock similar to the stockwork. The zone seems to pinch out to the east although overburden masked contacts on east, west and south sides.

The Moped Showing is located on the Scud 1 claim, 250 m south of the Otis, at about 30 m lower elevation. It consists of a 2-3 cm zone of oxidized and fractured arsenopyrite bearing volcanics in the hangingwall of a northeast striking, northwest dipping shear. The footwall is unmineralized chloritic diorite and volcanics.

Geological mapping north of the Otis Showing, apparently across the main east-west structure, found arsenopyrite, chalcopyrite and bornite, in both float and outcrop, in metavolcanics at the contact with a pink granite intrusive. Mineralization contained significant gold and copper values.

Prospecting on the Alicia claim to the west across the Scud Glacier discovered shears and talus boulders of chalcopyrite and bornite with anomalous Au values.

5.0 **GEOCHEMISTRY**

The 86 rock samples collected during the various phases of work on the Scud claims were submitted to Acme Analytical Laboratories of Vancouver for geochemical analysis for Cu, Pb, Zn, Ag, As and Au. In conjunction with the trenching work, reconnaissance soil geochemical work was undertaken on the treed slope south of the

Otis Showing. The limits of the survey were the talus up slope, the glacial moraine downslope and the major east/west Scud structure. Four lines were run at 50 metre spacing and 25m sample spacing. Soil development included a humus top soil with a brown partially leached "B" horizon and a basal "C" horizon. Good "B" horizon samples were obtained with the aid of a shovel. The 47 samples collected were placed in kraft paper bags and sent to Acme Analytical Laboratories of Vancouver for conventional 30 element ICP and gold geochemical analysis. Survey lines and sample sites are plotted on Fig 5. No distinct geochemical patterns are readily apparent, with only erratic, single station anomalies.

The 18 rock samples collected on the Alicia claims were also sent to Acme Analytical Laboratories for 30 element I.C.P. and gold geochemical analysis.

Analytical techniques are described in Appendix A, sample descriptions in Appendix B and the results are given in Appendix C.

6.0	STATEMENT OF COSTS	
	CLAIMS SCUD 1 20 Units SCUD 2 20 Units SCUD 3 20 Units ROBYN 8 Units ALICIA 20 Units 88 Units	
	Covering Period: July 22, 1989 - July 13, 1990	
	Personnel:	
	D. Johnson (Senior Geologist) 1 man day @ \$400/day	400.00
	R. Johnston (Geologist) 8 man days @ \$250/day	2,000.00
•	B. Liard (Geologist) 8 man days @ \$250/day	2,000.00
	P. Jones (Prospector) 8.5 man days @ \$250/day	2,125.00
	T. Hutchings (Prospector) 0.5 man days @ \$250/day	125.00
	Food & Accommodation: 25 man days @ \$30/day	750.00
	Accommodation - September 30, 1989	300.00
•	Helicopter Charges:	
	Aug 30 - Sept. 11/89 - 7.1 hrs @ \$725/hr Sept 30 - Oct 1/89 - 0.9 hrs @ \$725/hr	5,147.50 652.50
·	Mobilization - Demobilization	925.00

8

ł

STATEMENT OF COSTS Cont'd.

Assaying: ,

 104 Rocks @ \$25/sample (shipping included)
 2,600.00

 47 Soils @ \$20/sample
 "

 940.00

Equipment Rental:

Report Preparation: TOTAL:

Statement of Work filed July 13, 1990 From Corona P.A.C. account \$19,600.00 811.00

125.00

700.00

\$18,790.00

STATEMENT OF QUALIFICATIONS

DARREL L. JOHNSON

I, Darrel L. Johnson, resident of the District of Coquitlam, B.C. declare that:

1. I hold a B.Sc. degree in geology, granted by the University of British Columbia in 1970;

2. I have worked as a geologist in all phases of exploration work throughout British Columbia since 1970;

- 3. I have been employed by Corona Corporation as a Senior Geologist since 1988;
- 4. Work described in this report was conducted by Paul Jones under my overall supervision;

5. I co-authored this report based on published information for the area, extensive discussion with Paul Jones and visits to the area during the programmes described.

DATED THIS $\underline{/ 9}^{/L}$ DAY OF BRITISH COLUMBIA.

____1990 AT VANCOUVER,

PAUL W. JONES

- I, PAUL W. JONES, in the City of Vancouver, B.C. declare that:
- 1. I have been involved actively in the mining industry in Canada and the United States for 11 years.
- 2. I have personally performed the work enclosed in this report under the supervision of Corona Corporation's Senior Geologist, Darrel Johnson.

Paul W. Jones

DATED this _____ day of <u>august</u> 19 90, VANCOUVEZ, British Columbia. at

8.0 **<u>BIBLIOGRAPHY</u>**

Alldrick, D.J., Drown, T.J., Grove, E.W., Kruchkowski, E.R., Nichols, R.F. (1989, January). Iskut -Sulphurets Gold. <u>The Northern Miner Magazine</u>.

Allen, D.G., Pantelegev, A., Armstrong, A.T. (1976). Porphyry Copper Deposits of the Alkalic Suite, Galore Creek. <u>C.I.M.</u> Special <u>15</u>, Paper 41.

Barr, D.A., Fox, P.E., Northcote, K.E., Preto, V.A. (1976). Porphyry Copper Deposits of the Alkalic Suite, The Alkaline Suite Porphyry Deposits - A Summary. <u>C.I.M.</u> Special <u>15</u>, Paper 36.

Brown, D., Wojdak, P. (1989, April). <u>K-Feldspar Connection: Relationship of K-Feldspar Intrusions to Cu Porphyries and Au Veins, Stewart Iskut Belt, B.C.</u>; G.A.C. Copper-Gold Porphyry Workshop.

Buddington, A.F. (1929). Geology of Hyder and Vicinity Southeastern Alaska; U.S.G.S. Bulletin 807.

Grove, E.W. (1986). Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area. <u>B.C. M.E.M.P.R.</u> Bulletin 63.

Hodgson, C.J. (no date). <u>Recent Advances in the Archean Gold Model, With</u> <u>Implications for Exploration for "Mesothermal-Type" Gold Deposits in the Cordillera;</u> G.A.C. Cordilleran Section Short Course No. 14.

Kerr, G.A. (1948). Lower Stikine and Western Iskut River Areas, British Columbia. <u>G.S.C.</u> Memoir 246.

Lowell, J.D. (1988, January). <u>Gold Mineralization in Porphyry Copper Deposits</u>. Society of Mining Engineering, SME Annual Meeting.

Lowell, J.D., Guilbert, J.M. (1970). Lateral and Vertical Alteration - Mineralization Zoning in Porphyry Ore Deposits. <u>Economic Geology</u>, <u>65</u>, (4).

Souther, J.G. (1972). Telegraph Creek Map-Area, British Columbia. <u>G.S.C.</u>, Paper 71-44.

Souther, J.G., Brew, D.A., Okulitch, A.V. (1979). <u>Iskut River, British Columbia</u>, <u>Alaska</u>. G.S.C., Map 14/8A.

Sutherland Brown, A. (1976). General Aspects of Porphyry Deposits of the Canadian Cordillera; Mosphology and Classification. <u>C.I.M.</u> Special <u>15</u>, Paper 6.

APPENDIX A

GEOCHEMICAL METHODS

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

ICP - .5 gram sample is digested with 3 ml 3-1-2 HCI-HN03-H20 at 95 deg.C for one hour and is diluted to 10 ml with water. This leach is Partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K, Al.

Au* - 10 gram samples are ignited at 600 deg.C, digested with aqua regia at 95 deg.C for one hour, 50 ml aliquot is extracted into 10 ml MIBK, analysed by graphite furnace AA.

APPENDIX B

SAMPLE DESCRIPTIONS

SAMPLE DESCRIPTIONS

Sample No	Type	Description
30839	Talus	angular, rusty dark black intermediate-mafic metavolcanic, silicified, trace arsenopyrite, trace malachite.
30840	Talus	angular, hornblende rich metavolcanic, siliceous with 7- 10% disseminated chalcopyrite, resample of 1988 BH-SC- 2.
30841	Talus	angular, rusty magnetite skarn, banded.
30842	Grab	rusty aplite quartz dyke within pillowed unit.
30843	Grab	coarse grained hornblende metavolcanic with fracture copper stain and 3% disseminated pyrite and chalcopyrite
30844	Talus	angular, hornblende metavolcanic with blebs chalcopyrite, malachite, siliceous.
30845	Talus	angular, quartz epidote stockwork veins with chalcopyrite blebs.
30846	Talus	angular, dark metavolcanic, siliceous, magnetic, purple (skarn?), with 10% disseminated chalcopyrite.
30847	Chip,10 cm	hornblende metavolcanic with copper stained fractures including malachite, azurite and 5% disseminated chalcopyrite.
30848	Grab	mineralized intrusive, magnetite, pyrite, chalcopyrite.
30849	Grab	fracture face, azurite, chalcopyrite, pyrite quartz calcite within hornblende metavolcanic.
30850	Grab	Cu enriched siliceous hornblende metavolcanic adjacent to granodiorite plug, malachite, chalcopyrite, pyrite.
30951	Grab 2 m	pseudo skarn, metavolcanic with pyrite, pyrrhotite,

ŧ

Sample No	. <u>Туре</u>	Description
30952	Grab 20 cm	shear zone, ankerite.
30953	Grab	siliceous bleached metavolcanic with fracture pyrrhotite, pyrite.
30954	Float	subrounded moraine, siliceous volcanic rock with up to 5% arsenopyrite.
30955	Grab	fresh calc alkaline granite, biotite rich.
30956	Grab	contact of siliceous pink pegmatite dyke and granite.
30957	Grab	metavolcanic rock at granite contact, hornblende, amphibolite.
30958	Chip 10 cm	silicified contact zone, slickenside, malachite, bornite and magnetite veining.
30959	Chip 5 cm	high grade bornite vein.
30960	Chip 10 cm	magnetite, bornite and malachite vein.
30961	Grab	rusty siliceous metavolcanic rock with 1% pyrite.
30962	Talus	angular, white siliceous metavolcanic rock with bands and pods of arsenopyrite.
30963	Talus	angular, white-dark green metavolcanic rock brecciated with pods of arsenopyrite.
30964	Chip 1 m	siliceous white metavolcanic, equigranular, trace pyrite and -arsenopyrite, resample of 1988 BH-SC-1.
30965	Grab	minor rust, dark green, metavolcanic with trace pyrite.
30775	Chip 1 m	highly fractured volcanic, dacite-andesite, aphanitic with manganese stain, (cherty argillites?).
30776	Chip 1 m	highly fractured volcanic, trace hairline veinlets of quartz with pyrite, arsenopyrite?

(þ

Sample	Type	Description
39777	Chip 1 m	highly fractured volcanic, hairline veinlets with fine grained pyrrhotite.
30778	Chip 1 m	highly fractured volcanic, hairline veinlets with fine grained pyrrhotite.
30779	Chip 1 m	highly fractured zone with 10 cm area of quartz veinlets, cap of zone.
30780	Chip 1 m	location unknown, highly fractured volcanic with manganese stain.
30781	Chip .5 m	rusty quartz/chlorite/epidote altered zone within grey green volcanic.
30782	Chip 1 m	shear within green volcanic, quartz calcite infilling minor rust.
30783	Chip 1.5 m	rusty shear within bleached pale green volcanic, quartz calcite limonite shear with 1% disseminated pyrrhotite.
30784	Grab 1 m	rusty quartz vein with ankerite in shear within metavolcanics, 1-3% pyrite.
30785	Chip 1 m	grey green volcanic with disseminated pyrrhotite also ankerite quartz veining.
30786	Chip 1 m	grey to dark green andesite volcanic.
30787.	Chip 1 m	grey-green volcanic with pyroxene phenocrysts, moderately fractured.
30788	Chip 1 m	grey-green volcanic with pyroxene phenocrysts, moderately fractured.
30789	Chip 1 m	grey-green volcanic with pyroxene phenocrysts, moderately fractured.

ŧ

<u>Sample</u>	Type	Description
30790	Chip 1 m	grey-green volcanic with pyroxene phenocrysts, moderately fractured.
30791	Chip 1 m	ankerite zone with calcite veinlets.
30433	Chip .5 m	orange/red oxidized mixed clay and bedrock.
30434	Chip 1 m	green weathered, manganese stained fine clastic sediment? with Fe-oxidized fractures.
30435	Chip .5 m	orange/red oxidized clay.
30436	Chip 2 m	green weathered fine grained siliceous sediment? with Fe- oxidized fractures and arsenopyrite.
30437	Chip 2 m	grey green weathered fine grained sediment or porphyritic volcanic, local arsenopyrite fractures with minor pyrite and pyrrhotite.
30438	Chip 1 m	fresh grey weathered black porphyritic fine grained volcanic with disseminated pyrite, trace arsenopyrite on fractures.
30439	Chip 1 m	red/orange weathered clay/bedrock mixture with 2-5% arsenopyrite.
30440	Chip 1 m	semi competent sediment/volcanic? with Fe-oxidized fractures.
30441	Chip .5 m	red/orange weathered clay
30442	Chip 1 m	orange/red clay altered sediment/volcanic with 1/2 cm arsenopyrite filled fractures
30443	Chip 1 m	orange/red clay altered sediment/volcanic with minor arsenopyrite filled fractures and 20 cm x 1 cm vuggy quartz lenses.

V

Sample	<u>Type</u>	Description
30444	Chip 2 m	grey green sediment/volcanic with minor arsenopyrite stringers, locally oxidized.
30445	Chip 1.3 m	red weathered volcanic/sediment with rusty fractures that increase at bottom.
30446	Chip 1.5 m	orange/red clay altered gossan with numerous pods of arsenopyrite from 1 cm - 30 cm.
30447	Chip 1 m	porphyritic volcanic with fine grained disseminated pyrite and oxidized fractures, 5 mm arsenopyrite vein.
30448	Chip 1.3 m	gossan with no visible arsenopyrite.
30449	Chip 1 m	outcrop? subcrop? possibly slump block, green porphyritic volcanic with epidote, bleached veins with trace pyrrhotite, no arsenopyrite.
30450	Chip 2 m	grey green chlorite altered diorite with minor disseminated pyrite and fracture arsenopyrite.
30901	Grab	fresh green chlorite diorite with minor disseminated pyrite, no visible arsenopyrite.
30902	Chip 2 m	grey, green diorite with disseminated pyrite and local Fe oxidized fractures, no visible arsenopyrite.
30,903	Chip 1.5 m	diorite with 30 cm highly fractured zone with pyrite in fractures.
30904	Grab	green chlorite porphyritic biotite? altered diorite with trace disseminated pyrite and local Fe-oxidized fractures.
30905	Chip 1.5 m	grey, green diorite with minor disseminated pyrite and local rusty fractures.
30906	Chip 2 m	footwall from arsenopyrite vein, no arsenopyrite but rusty fractures.
30907	Chip 1 m	diorite with abundant rusty fractures.

Sample	<u>Type</u>	Description
30908	Chip 1.5 m	rusty fine grained porphyritic volcanic with Fe-oxidized fractures, trace pyrite, arsenopyrite?
30909	Grab	rusty weathered white quartz lens 3 cm x 30 cm within fine grained volcanic, no arsenopyrite.
30910	Chip 2 m	rusty fracture zone, locally porphyritic with altered biotite within diorite.
30911	Chip 2.5 m	5 x 15 cm pod of quartz with minor pyrite in rusty shear, intense fracturing Fe-oxidized in diorite.
30912	Chip 3 m	rusty zones with trace quartz calcite in fractures.
30913	Chip 2 m	sheared fractured zones, rusty, within grey chlorite altered diorite.
30914	Chip 3 m	porphyritic hematite/biotite altered diorite with local pyrrhotite veins.
30915	Grab 3 m	rusty andesite/diorite with flow textures arsenopyrite veins and pods 4 cm wide.
30916	Chip 4 m	rusty andesite/diorite with arsenopyrite veins and pods.
30917	Chip 2.5 m	rusty andesite/diorite with arsenopyrite veins and pods.
30918	Chip 3 m	rusty andesite/diorite with arsenopyrite veins and pods.
30919	Grab	grey weathered diorite vein .25 m ankerite zone.
30920	Grab	1 cm ankerite/pyrite vein, rusty.
30921	Chip 2 m	rusty and white grey diorite/andesite with .5 cm arsenopyrite veins.
30922	Chip 3 m	andesite/diorite with 2 cm arsenopyrite and quartz veins.
30923	Grab	footwall andesite/diorite.

I Q

Sample	Type	Description
30924	Chip 2 m	across rusty andesite/diorite footwall.
89920	Grab	volcanic skarn with massive pyrite and pyrrhotite.
89921	Grab	rusty argillite at contact with limestone.
89922	Grab	ankerite zone.
89923	Grab	rusty brecciated ankerite vein.
89924	Grab	quartz zone with hematite rim.
89925	Chip 1 m	quartz vein with trace pyrite.
89926	Grab	sediment with disseminated pyrite.
89927	Grab	pyritic seam at contact of sediments and volcanics.
89928	Grab	quartz carbonate ankerite shear within limestone sediments.
89929	Talus	angular, quartz flooded zone within sediments.
89930	Grab	ankerite shear within green and purple volcanics.
89931	Chip 1 m	malachite and bornite seam within metavolcanic rock.
89932	Grab	high grade of malachite and bornite.
89933	Chip 1 m	malachite and bornite seam within metavolcanic rock
89934	Chip 1 m	black mafic agglomerate with malachite and bornite.
89935	Talus	angular, high grade of quartz veins with chalcopyrite and pyrite.
89936	Grab	quartz vein with specular hematite.
89937	Grab	quartz vein with chalcopyrite.

 $\{Q\}$

APPENDIX C

ANALYTICAL RESULTS

Scud

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: SEP 9 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

SIGNED BY ... A ... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Corona Corporation PROJECT 1045 FILE # 89-3567 Page 1

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM	Au* PPB
D'30433	89	6	64	.3	1178	39
D'30434	49	4	53	.1	105	11
D'30435	57	4	44	.1	2350	390
	•				734	31
D 30436	68	6	54	.1		
D'30437	81	6	4 5 ·	.1	1992	60
D '30438	75	4	49	.1	532	. 13
D-30439	-25	10	18	1.0	82767	8030
D-30440	65	6	54	.2	1562	71
D-30441	74	3	50	. 1	818	101
D-30442	38	6	24	.1	4800	5.60
D ² 30443	17	5	19	. 3	9772	3830
D'30444	22	8	30	.1	2232	370
D-30445	69	6	43	.1	373	64
D'30446	24	13	20	1.0	80149	7380
D´30447	37	6	35	.1	2602	440
2 30117	0.		00		2002	
D' 30448	61	- 5	20	1	3760	590
D 30449	22	12	53	.1	75	20
D-30450	46	6	40	.1	1551	79
- D-30775	107	7	69	.2	57	6
D-30776	45	7	66	.1	196	20
D' 30777	42	8	60	.1	. 57	4
D 30778	44	13	67	.1	70	9
D-30779	27	5	38	.1	171	12
D-30780	37	8	73	.3	32	3
	43	· 4		.5		5
D-30781	43	4	14	. 1	117	
D-30782	31	6	53	.1	238	2
D-30 783	85	7	40	.1	67 -	3
D-30784	104	11	26	.3	35	4
D-30785	71	9	79	:1	225	.9
D-30786	58	2	62	.1	62	7
D-30787	102	9	76	.4	22	3
D-30788	74	6	61	.2	18	3
D-30789	38	3	61	. 1	99	13
D-30790	73	.3	78	.1	53	4
D-30791	84	2	108	.1	53	4
STD C/AU-R	64	43	132	6.8	39	505

Corona Corporation PROJECT 1045 FILE # 89-3567 Page 2

1

				•			
SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	AS PPM	Au* PPB	
D×30839 D≠30840	257 31489	3	122 169	.2 36.1	108 18 80	12 1670	
D'30841 D'30842 D'30843	584 4086 910	6 6 2	42 93 34	$1.4 \\ 4.9 \\ 4.1$	370 17	21 55 350	
D×30844 D×30845 D×30846 D×30847	2491 4137 6285 6016	10 73 12 6	96 14 264 104	1.9 7.8 8.6 5.4	21 43 107 37	73 980 370 590	
D√30848 D∕30849	161 2279	2	28 124	.1 1.4	19 16	6 330	
D/30850 D/30901 D-30902 D/30903	2332 120 111 84	6 10 9 7	107 57 45 48	4.3 .3 .2 .2	60 64 383 185	121 10 29 37	
D'30904 D'30905 D-30906 D'30907 D'30908	54 59 28 80 67	6 7 4 8 6	50 69 59 55 48	.1 .1 .1 .1	40 37 29 77 342	10 3 2 4 11	
D-30909 D-30910 D-30911 D-30912 D-30913	7 97 129 129 119	2 2 2 3 2	7 53 45 47 50	.1 .1 .1 .1	2157 164 1272 648 415	148 2 10 3 1	
D,30914 D/30915 D/30916 D/30917 D/30918	85 90 142 130 119	4 3 5 2 8	53 44 69 43 63	.1 .1 .2 .1 .1	545 278 425 24 148	1 2 1 1	
D- 30919 D- 30920 D- 30921 D-30922 D- 30923	107 159 129 29 59	3 2 8 10 2	101 57 55 21 60	.1 .2 .2 .5 .1	91 136 13107 99999 314	3 13 23 1280 1	
D~30924 STD C/AU-H	82 R 62	5 40	36 132	.1 6.6	35965 43	220 470	

. (orona corpora			1045	TTDD 4	0, 0,0,0,0	1090	-
	SAMPLE#	Cu	Pb	Zn	ΡĀ	As	Au*	
		PPM	PPM	PPM	PPM	PPM	PPB	
	D-30951	308	12	90	. 9	272	36	
	D-30952	76	9	86	.3	70	5	
	D· 30953	728	21	54	1.8	102	3	•
	D'30954	586	18	61	.7	25675	45	
	D'30955	18	7	19	.1	22	58	
	D-30956	18	4	9	· .2	212	16	
	D-30957	19	3	43	.1	20	1	
	D-30958	87998	13	1	92.1	14	10720 🗸	
	D≻ 30959	99999 🗸	19	1	277.1	2	38100 V	
	D-30960	7747	. 5	62	10.0	8	50	
	D-30961	941	11	35	1.5	119	300	
	D=30962	489	51	48	1.5	99999	2500 🗸	
	D-30963	45	19	18	.3	99999	2430 🖌	/
	D-30964	130	16	52	.4	1256	270	
	D~30965	96	17	42	. 2	615	15	
	STD C/AU-R	63	38	135	6.8	43	495	

Regular Assay suggested.

Corona Corporation PROJECT 1045 FILE # 89-3567

Page 3

ACME ANALYTÍCAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Sough

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SAMPLE#	Мо Ррм	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn. PPM	Fe X	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	SD PPM	Bi PPM	V PPM	Ca %	Р Х	La PPM	Cr PPM	Mg X	8a PPM	Ti X	BAL PPM X	Na %	K X	W PPM	Au* PPB
89920	2	2891	12	26	3.5	8	3	169	1.13	16	5	9	2	66	88 1 8	7	2	34	1.22	.072	2	20	.18	17	្មា	4 1.40	.12	.07	.6.3	430
89921	ī	107	5	18	ૼ૽ૼ	10	33	846	5.97	10	ŝ	ND	2	71	1	6	ž	93	3.97	.027	Ž	11	.06	16	.12	2 1.10		.02	1	2
89922	1	74	9	124		20	12	738	5.98	46	5	ND	5	11		4	2	22	.07	.030	14	10	.63	84	.01	3 2.31	.01	.16	- X-1-	5
89923	12	118	14	87	.1	10	13	455	5.51	82	5	ND	4	17	1	4	2	23	.07	.035	9	6	.04	193	.01	5.54	.02	.18	ີ່ວີ	1
89924	1	15	6	109	1	8		1399	3.98	4	5	ND	5	77	1	2	2	35	2.71	.048	18	4	.86	94	.02	7.70	.0z	.05	6.1	2
89925	10	44	28	46	1	4	6	168	3.87	254	5	ND	4	14		3	2	20	.12	.039	6	4	.03	222	.01	5.45	.02	. 19	୍ଟି	4
89926	5	. 11	7	42	1	6	18	822	7.82	7384	5	ND	4	80		5	2	59	5.81	.005	3	2	.59	12	.01	2.31		.06	ः 🎼 🏌	4
89927	2	7177	14	30	2.1	8	6	157	1.27	99	5	ND	2	53	1	4	2	31	1.24	.076	2	14	.20	44	.12	7 1.04	.08	.08	3	510
89928-	1	22	3	8	1	1	2	1402	.60	18	5	ND	5	113		2	2	9	28.26	.008	2	1	.39	90	.01	2.06	.01	.01	1	4
89929	2	9	10	28	.3	5	1	1088	.80	28	5	ND	3	207		2	2	5	14.71	.009	2	4	.22	308	.01	3.06	.01	.03	- 🔆 🖬 🛛	2
89930	1	6	5 ر	64	1	- 4	9	1596	4.27	140	5	ND	3	161		2	2	31	14.79		3	1	1.95	93	.01	3.23	.02	.04	୍ର 1 ି	2
89931	1	15721 •	/ 7	55	12.9	23	13	379	2.96	15	5	ND	2	89	2	3	2 '	54	1.20	.074	- 3	30	.92	167	.10	10 1.15		.08	1	· 3
89932	1	32934 🗸	4	68	26.5	16	11	360	2.79	10	5	ND	1	84	3	2	2	43	1.45	.079	2	20	.76	167	.08	2 .92	.01	.04	1	124
89933	1	13513 -	/ 2	53	.8	16	10	1288	8.32	8	5	ND	4	68	2	2	2	52	10.55	.037	2	13	.71	11	.03	4.59	.01	.02	2	29
89934	1	20657	/ 4	65	13.7	18	12	488	3.05	21	5	ND	2	134	2	2	Z	91	1.82	.078	4	34	1.11	25	.15	3 1.44	.01	.08	1	57
•			,																											
89935	20	63477.4	5	133	20.2	11	10	253	6.87	13	5	2	2	33	- 4	2	80	30	.43	.064	2	19	.54	38	.07	3.76	.01	.34	2	2100
89936	2	683	, 2	33	.1	13	12	561	16.63	13	5	ND	2	413		Z	2	62	3.55	.015	2	9	.27	11	.01	4.26	.01	.01	8	8 9
89937 -	14	67294√	5	140	17.7	14	13	275	9.01	7	5	2	3	40	4	2	36	34	.49	.048	2	15	.60	26	.06	3.82	.01	.38	- 88 🕏	1220
STD C/AU-F	₹ 18	58	36	133	7.0	67	30	1032	3.86	39	19	8	39	48	18	17	22	59	.46	.093	38	- 56	.85	177	.06	33 1.77	.06	.13	12	515

✓ ASSAY RECOMMENDED

· · · · · ,

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

ſ

Į.

É

í

-¢-

Ċ

ŧ

ł

(

٩.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HHO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MH FE SE CA P LA CR XG BA TI B W AND LIMITED FOR MA X AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesb AUM ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

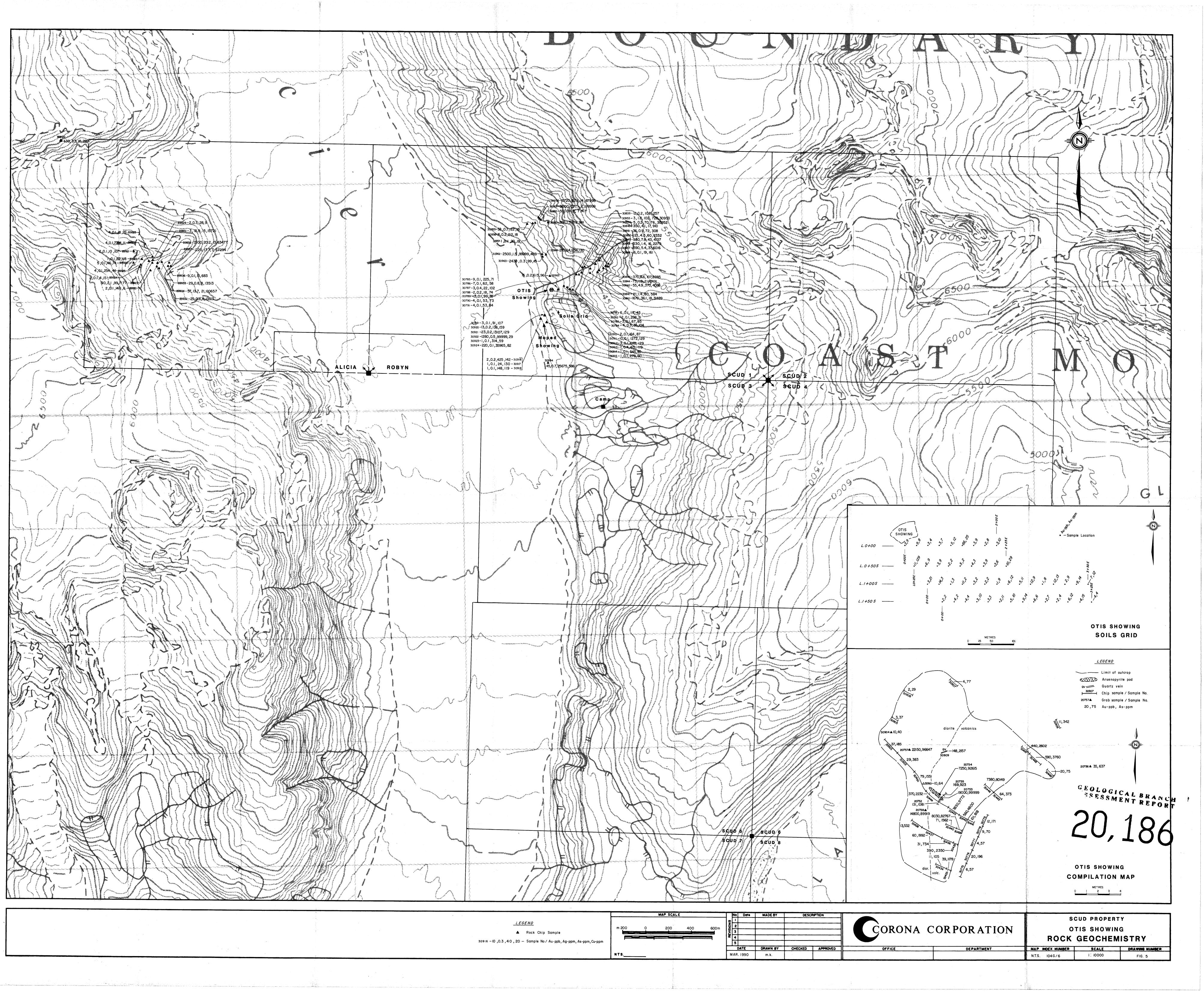
DATE RECEIVED: SEP 9 1989 DATE REPORT MAILED: . (//////// SIGNED BY. W. Suffy. D. TOYE, C. LEONG, J. WANG; CENTIFIED B.C. ASSAYERS

Corona Corporation PROJECT 1045 File # 89-3566 Page 1.

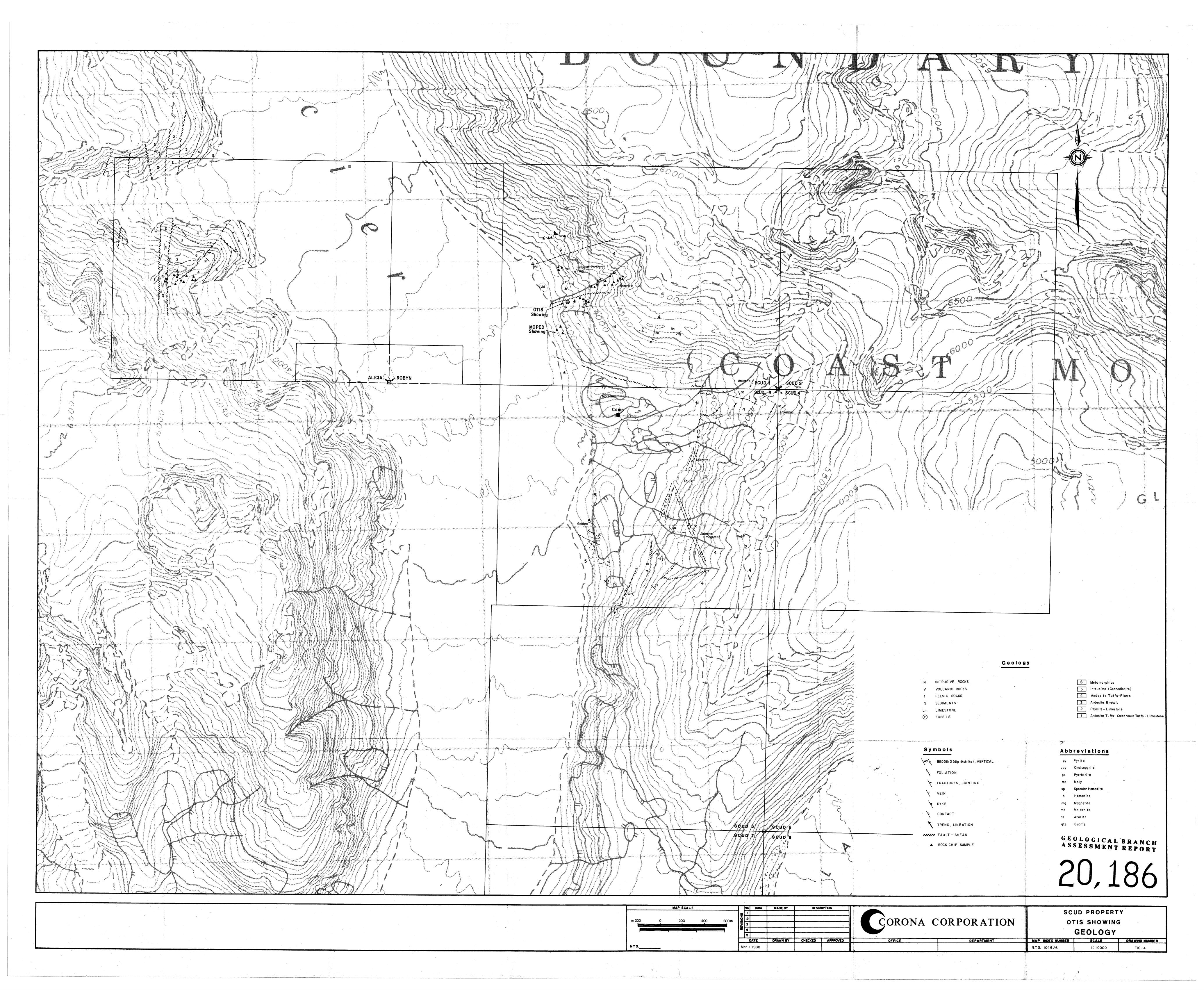
sample‡	80 895	CU PPN	20 292	ZB PPM	Ag PPK	928 11	Co PPN	DK PPN	Fe 3	ÅS PPK	U PPM	λu PPX	75 294	ST PPH	Cđ PPN	SD ?PN	BÍ PPN	PPK.	Ca t	P 1	La PPN	CT PPN	Xg L	Ba Pen	Ti t	B PPH	.kl †	Na B	K t	W PPX	Au* PPB
LO+OCN D+OOE LO+OON C+252 LO+OCN O+505 LC+OCN 0+538 LO+CON 1+005	4 6 3 5	9 12 12 20	9 10 7 3 10	16 17 23 10 47	.4 .6 .1 .3	1 1 2 1 24	2 2 3 1 10	31	2.08 2.43 3.32 .93 4.26	9 8 1 7 12	5 5 5 5 5	ND ND ND ND ND	2 3 7 2 2	2 3 4 3 8	1 1 1 1	2 2 2 2 2 2	2 3 2 2 4	32 21 28 17 115	.02 .04 .02 .02 .42	.031 .108 .034 .011 .064	4 5 3 4	3 7 7 8 122	.01 .03 .08 .03 .98	33 32 30 17 42	.12 .08 .08 .09	3 3 16 5 5	.77 .99 .90 .51 1.58	.01 .01 .01 .01 .01	.03 .04 .06 .02 .12	6 7 6 2 1	1 3 1 5
L0+00N 1+255 L0+00N 1+500 L0+00N 1+753 L0+00N 2+00Z L0+50S 0+252	5 7 3 3 4	24 17 5 27 54	5 4 7 8 12	55 24 10 49 50	1.1 .3 .2 .4 .8	31 1 29 22	[] 3 1 14 8	95 29 242	6.81 3.51 .84 6.62 5.28	25 9 8 10 129	5 5 5 5	ND ND ND ND ND ND	1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 4 13 9	1	2 2 3 2	2 3 2 4 2	133 61 24 118 68	.30 .05 .03 .38 .11	.040 .058 .017 .052 .079	5 5 5 8	170 32 12 192 53	1.29 .12 .02 1.12 .55	47 17 11 33 75	.29 .15 .15 .25 .10	14 2 4	3.36 .98 .42 2.73 2.70	.03 .01 .01 .03 ,01	.15 .05 .02 .08 .05	1 5 1 2 1	56 3 3 11
10+505 0+502 10+505 0+753 10+505 1+008 10+505 1+253 10+505 1+508	4 7 5 11	29 19 14 13 7	5 10 3 5	36 22 30 19 27	.3 .3 .3 - .9 .3	13 5 1 2 1	7 3 4 2 2	87 367	3.93 3.65 4.19 3.25 3.04	9 3 2 2 3	5 5 5 5	ND No Nd Nd Nd	1 3 1 3	7 3 4 2 4	1 1 1 1	2 2 2 2 2	2 3 3 2 2	71 62 47 32 30	.19 .04 .06 .01 .03	.069 .043 .036 .041 .030	4 6 8 5 5	106 31 21 16 10	.55 .12 .15 .05	40 25 37 28 51	.21 .13 .12 .07 .05	3 2 1	1.86 1.32 1.77 1.45 1.24	.01 .01 .01 .01 .01	.08 .04 .06 .03 .03]] 5 6	6 3 5 4
L0+508 1+758 L0+508 2+008 L0+508 2+258 L1+005 L+008 L1+005 0+293	2 11 6 5 5	16 6 22 15 9	5 4 9 11 4	69 24 40 24 16	.3 .4 .3 .9	18 2 7 7 2	22 3 7 5 2	109 174 150	6.63 3.31 5.39 3.59 3.28	9 6 29 21 3	5 5 5 5 5	ND ND ND ND ND	3 4	10 4 8 4 3	1 1 1 1	2 2 2 2 2	2 2 3 2 2	150 43 109 94 45	.45 .05 .13 .09 .04	.030 .047 .069 .035 .030	3 4 5 5 6	212 18 58 61 19	1.92 .12 .22 .32 .08	46 26 28 24 20	.23 .10 .28 .16 .12	9 2	2.96 .72 1.35 1.16 .88	.04 .01 .01 .01	.16 .05 .05 .05 .03	1 10 1 2 5	3 3 10 3 14
L1+005 0+50E L1+005 0+758 L1+005 1+00E L1+005 1+258 L1+005 1+258	5 4 2 5 3	11 12 1 33	3 7 4 3 13	24 19 6 7 47	.1 .2 .2 .1 .2	8 3 1 1 27	4 3 1 1 13	16 25	2.58 3.01 .26 .48 5.40	3 2 2 2 9	5 5 5 5 5	ND ND ND ND	2 2 1 1 1	4 2 2 8	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	53 47 9 11 133		.034 .026 .008 .011 .085	3 1 3 2 5	50 36 <u>4</u> 3 192	.31 .08 .01 .01 1.07	23 14 8 5 37	.17 .18 .07 .05 .29	16 18 22	1.00 1.08 .23 .15 1.67	.02 .01 .01 .01 .02	.05 .02 .02 .02 .02 .03	1 3 2 2	1 11 2 1
L1+00S 1+75E L1+00S 2+00E L1+00S 2+253 L1+00S 2+55E L1+00S 2+75E	4 4 3 3	28 11 2 16 25	5 15 9 10 9	25 29 15 20 37	.5 .4 .1 .2	7 12 2 3 14	4 6 2 3 1	123 53 79	3.11 2.79 .89 3.55 5.21	12 11 9 3 13	5 5 5 5	HD NC ND ND NC	2 2 1 2 2	5 8 7 6 12	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 	59 111 35 40 (21	.29 .11 .11	.051 .025 .027 .057 .052] 4 4 5 1	56 79 23 29 105	.24 .46 .08 .10 .34	25 21 17 28 63	.15 .38 .16 .19 .29	13	.92 1.01 .41 1.07 1.22	.01 .02 .01 .01 .01	.04 .07 .03 .03 .03	1 1 4 2	5 5 12 1 12
L1+005 3+002 L1+005 3+255 L1+005 3+302 L1+505 0+902 L1+505 0+252	3555	15 18 17 10 6	7 13 11 6 3	63 25 33 28 16	.2 .1 .1 .1 .1	45 7 7 1 2	19 5 4 3 2	177 158	5.54 4.72 4.25 3.56 2.43	9 14 12 2 2	5 5 5 5 5	НЭ 0 10 10 10 10 10 10 10 10	1 2 1 2 1	. 20 6 7 J 2	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	95 83 63 26 26	,09 ,09 ,03	.103 .028 .040 .032 .026	3 1 5 6 4	200 50 43 11 7	1.59 .27 .28 .11 .05	66 21 9 15 19	.15 .18 .20 .09 .09	12	2.08 1.18 1.40 1.63 .99	.01 .01 .01 .01 .01	. 25 .03 .04 .05 .03	2 3 4 7	2 9 7 2 4
LI-SOS 0-SOR STD C/AU-S	5 15	; 60	5 35	10 132	1.1 7.1	1 \$7	1 30	35 1041	.48 4.05.	4 38	5 18	NG F	3 37	2 47	l 19	2	2 21	20 56		.010 .088	31 31	; 56	.02 .91	L0 174	.17 .07	2 33	. 25 2.98	.01 .08	.02 .14	1 - 11	4 52

Corona Corporation PROJECT 1045 FILE # 89-3566

sakple!	KO PPN	CU PPX	PD PPK	2n PPH	AG PPN	NI PPK	CO PPX	Nn PPN	Fe S	As PPN	U PPH	AU PPH	Tb PPN	Sr PPK	Cd PPH	SD PPN	Bİ PPN	V PPN	Ca %	P %	La PPK	Cr PPN	Ng X	Ba PPK	Ti t	B PPN	Al ł	Na ł	K Ł	W PPN	λu* PPB
L1+505 0+732 L1+505 1+002 L1+505 1+233	4 2 5	19 13 16	3] 5	30 13 21	1.1 .2	5 2 2	4	109 54 85	2.46 .76 4.17	10 3 11	5 5 5	ND ND ND	1 1 2	9 4 5	1 1 1	2 2 2	5 2 2	63 20 42	.13 .06 .06	.055 .022 .054	3 3 4	44 22 30	.05	27 15 33	.14 .08 .09	2 2 2	.71 .25 1.25	.01 .01 .01	.06 .03 .04	5 2 7	3 3 2
L1+50S 1+50E L1+50S 1+75E	3 7	95 19	5	64 25	.2	25 5	14 5	389	5.19 4.04	10 14	5	ND ND	1 5	10 13	1	2	2	97 89		.052 .142	4	157 74	1.22	47 31	.22 .32	3 2	3.26 .68	.02 .01	.13 .05	2 5	5 9
L1+505 2+00E L1+505 2+25E L1+505 2+50E L1+505 2+50E L1+505 2+75E	4 8 9 7	12 14 9 32	6 7 7 10	25 28 20 49	.5 .6 .1	6 4 1 12	3 3 2 8	109 60	1,72 2.81 2.23 3.75	6 7 4 12	5 7 5 5	ND ND ND ND	2 2 2 2	12 6 3 9	1 1 1	2 2 2 2 2	2 3 3 2	65 47 19 69		.030 .047 .020 .048	5 7 5 6	40 31 9 73	.14 .14 .03 .50	29 19 22 22	.22 .11 .04 .13	2	.94 1.42 .78 2.45	.01 .01 .01 .02	.04 .04 .03 .05	2 7 10 4	6 2 2 6
L1+505 3+00E L1+505 3+252 STD C/AU-5	5 2 13 -	31 27 -62	6 3 37	33 - 43 132	.4 .3 6.6	9 23 68	7 10 31	139 203	5.97	15 4 36	5 5 22	ND ND 8	2 1 37	11 14 47	1 1 18	2 2 15	2 4 18	140 78 57	. 23	.076 .050 .088	4 4 37	80 124 57	.35 .77 .89	30 30 174	.23 .14 .07	3	1.35 1.15 1.98	.01 .04 .06	.04 .08 .14	3 2 12	4


Page 2

τ.


Ċ

Ç

(

÷

