| GEOCHEMICAL HEAVY MINERALS ASSESSMENT | REPORTB-RECORDER |
|---------------------------------------|------------------|
| on the                                | AUG 1 7 1990     |
| LONG ISLAND MINERAL CLAIMS GROUP      | M.R. #           |
| Kamloops M.D.                         | VANCOUVER, B.C.  |

Lat. 51 30'N

Long. 120 27'W

92P/8W

| LOG NO:  | 08/24 | RD. |
|----------|-------|-----|
| ACTION:  |       |     |
|          |       |     |
|          |       |     |
| FILE NO: |       |     |

For Owner

Baril Developments Limited

EULUGICAL BRANCE SESSMENT REPOPT

July, 1990. Vancouver, B.C. S. Zastavnikovich Geochemical Consultant

### TABLE OF CONTENTS

| 1. | Introduction & Description   | 1 |
|----|------------------------------|---|
| 2. | Physiography                 | 1 |
| 3. | General Geology              | 2 |
| 4. | Geochemical Survey           | 2 |
|    | Stream Sediment Geochemistry | 3 |
|    | Soils Geochemistry           | 3 |
|    | Rock Geochemistry            | 4 |
| 5. | Conclusions                  | 5 |
| 6. | References                   | 6 |
| 7. | Statement of Expenditures    | 7 |
| 8. | Statement of Qualifications  | 8 |

## APPENDICES

Appendix I. Rock Sample Descriptions Appendix II. Analytical Procedures Appendix III. Certificates of Assay

### MAPS

|    | After                                         | page |
|----|-----------------------------------------------|------|
| 1. | Index Map, Fig. 1                             | 1    |
| 2. | Claim Location Map, 1:50,000, Fig. 2          | 1    |
| 3. | Geology Map, 1:63,000, Fig. 3                 | 2    |
| 4. | Geochemical Map, 1:10,000 with topography and |      |
|    | claim outlines, sample location numbers and   |      |
|    | analytical results, Fig. 4 in pocket          | 3    |

### GEOCHEMICAL HEAVY MINERALS REPORT ON THE LONG GROUP Kamloops M.D., Central B.C.

#### INTRODUCTION & DESCRIPTION

The LONG GROUP of mineral claims contains 56 units and consists of the LONG 1 (20 units), LONG 2 (20 units), and LONG 3 (16 units) mineral claims. The claim group is located on Long Island Lake in South-central B.C., some 20km east of thr town of Bridge Lake in the Kamloops Mining Division, on maps 92P/8&9W, Figs. 1&2.

The Long 1&2 mineral claims were staked in May, 1988, while the Long 3 claim was staked in October, 1988. The present status of the claims is as indicated below:

| <u>Claim Names</u> | <u>Units</u> | <u>Record No.</u> | Expiry Date * |  |  |  |  |  |  |  |
|--------------------|--------------|-------------------|---------------|--|--|--|--|--|--|--|
| Long 1             | 20           | 7677              | May 18, 1991  |  |  |  |  |  |  |  |
| Long 2             | 20           | 7678              | May 18, 1991  |  |  |  |  |  |  |  |
| Long 3             | 16           | 8091              | Oct. 08, 1990 |  |  |  |  |  |  |  |

\* Upon approval of this report.

On Sept. 94-104 and 19-204, 1989, the writer visited the Long claims to collect stream sediment and soil samples for heavy minerals processing in order to help identify geochemical parameters best suited for geochemical evaluation of the mineral potential of the claims. As outcrops are scarce on the property due to extensive glacial cover, some forty-nine rock samples, mostly float, were collected along the sampling traverses, as described in Appendix I and shown on the geochemical map, Fig. 4, in pocket.

Access to the claim group is 20km east from Bridge Lake via the newly paved Hwy 24 between 100 Mile House and Little Fort, which bisects the property.

### PHYSIOGRAPHY

The Long group mineral claims area, located to the south, west and northwest of Long Island Lake, is one of rolling upland in which small lakes and swamps abound and, except for a few sparse hilltops and creek gullies, rock exposurers are scattered and poor. The whole claims area is covered by a considerable mantle of glacial drift. As shown on Fig. 4, the elevations on the property range from 5,100' (1,650m) in the north to 3,900' (1,250m) in the south in the Eagle Creek valley, for a total relief of some 400 meters.

Except for Eagle Creek and its main tributary from Cecilia Lake, the drainage network on the claims is poorly developed, and was for the most part dry. Several old and new logging roads traverse the property, as shown on Fig. 4.







### GENERAL GEOLOGY

As indicated on the regional geology map, Fig 3 overleaf, from GEM 1970, p. 307, by V. Preto, the Long group claims straddle an east-west contact between Triassic-Jurassic granodiorites to the south and Triassic Nicola Group metasediments and volcanics to the north. Numerous feldspar porphyry dikes cut the intrusives.

A prominent set of lineaments strikes northwesterly and includes the major lineament shown on the geology map west of Long Island Lake. Moderate alteration has been observed in the granodiorite outcrops near the fault zone.

### GEOCHEMICAL SURVEY

Based on the previous season's limited drainage sampling in the claims area (Assmt. Rep. Feb. 1989), which identified the presence of anomalous gold values in the heavy minerals fraction in the Phinetta and Eagle Creek valleys, additional drainage sampling totaling 14 sediment samples was completed in September 1989 along the eastern and western sides of the Long 1 claim in order to intersect the major regional lineament and the east-west intrusive/volcanic contact crossing the claims.

In addition, an east-west line of 10 B-horizon soil samples weighing 1 kg each was collected at 50 m intervals just west of Long Island Lake in an area of previously anomalous gold values in the Eagle Ck. sediments, and in proximity to the intrusive contact, Fig.s 3 and 4.

Due to lack of outcrops on the heavily overburdened slopes, 49 rock samples, mostly float, were collected along the drainage sampling traverses, as shown on the geochemical map, Fig. 4, and described in Appendix I.

The drainage sediment samples and the soil samples were processed for their <u>heavy minerals</u> content and analyzed for <u>30 trace elements</u> by ICP and for <u>gold</u> by geochemical fire-assay at Min-En Laboratories in N. Vancouver using standard geochemical methods described in Appendix II. For comparison, the regular -80 Mesh fraction was likewise analyzed for both soils and sediments, as were the rock samples. Complete analytical results are directly inscribed on the 1:10,000 scale geochemical sample location map, Fig. 4 in pocket, and are enclosed as Appendix III at the back of the report as well.



### STREAM SEDIMENT GEOCHEMISTRY

A specially constructed perforated pan and sieve was used for field sieving the drainage sediments in order to provide uniformly sampled material, which enhances the detectability of subtle trace element anomalies.

The analytical results presented on the geochemical sample location map, Fig. 4, indicate good correlation between the ICP trace elements in the -80 Mesh and the Heavy Minerals fractions. Thus the area of SEDs 04/05 in the east is clearly anomalous in trace elements Ag,Cu,Ni,Pb,Zn, and the alteration-related major elements Al,Ca,Fe,K, and Mg. In the western drainage, SEDs 25/26 are highly anomalous in potassium in both fractions, suggesting the presence of alteration minerals nearby.

Gold values in sediments in the regular -80Mesh fraction are present as 170 ppb Au in SED 04, 21ppb Au in SED 05, and 133ppb Au in SED21, 61ppb Au in SED26, and 980ppb Au in SED27. These are only confirmed in the H.M. fraction as 220ppb Au in SED04, and as 140ppb Au in SED21, while additional gold values are present in the heavies as 50ppb Au in SED03, and 55ppb Au in SED24. These descreptancies can best be explained as being caused by the inherent 'nugget effect' present in gold analysis.

Based on the southerly movement of glacial ice in the claims area (Map 1293A, GSC Bull. 196, H.W. Tipper), both of the areas of anomalous geochemistry need to be investigated, particularly to the north and upstream of individual anomalous stream sediment sites.

### SOIL GEOCHEMISTRY

As the analytical results in Fig. 4 indicate, soil sample number S104 is by far the most anomalous in both fractions in trace elements Ag, Ba, Ca, Cu, Fe, K, Na, Ni, P, V, and Zn. The neighboring samples are anomalous in gold in the H.M. fraction, with 150ppb Au present to the west, and 100ppb Au to the east. Sample S110 is similarly highly anomalous in trace elements in both fractions, indicating the need for systematic detailed sampling to identify the source of the anomalies.

### ROCK GEOCHEMISTRY

To provide direct lithological analytical values, 49 rock samples, mostly float, were collected, due to scarcity of outcrops in the claims area. As shown on the geochemical map, Fig. 4, and described in rock sample notes, Appendix I, siliceous, rusty, and/or sulfide-bearing rock samples were selectively collected where found along the drainage sampling traverses.

The analytical results indicate that the gold values in rocks are associated with the degree of silicification, as in samples RF109,110, and RF144, and are highest where both sulfides and quartz veins are present, as in sample RF106 yielding 212ppb Au. Conversly, the base metal rich sample number RF139, with 282ppm Cu and 684ppm Zn, which has abundant pyrite but lacks silica, does not contain detectable gold.

The three strongly silicified, but sulfide poor, sedimentary rock float samples RF102, 112, and 149, are strongly anomalous in cadmium and zinc, with up to 36.8ppm Cd and 953ppm Zn, suggesting hydromorphic enrichment in the Fe-Mn precipitates along fractures and shear zones.

Other siliceous float rocks such as samples RF123 and 131 carry anomalous arsenic, with 163ppm As in the latter, which is a good indicator of precious metals enrichment, such as in sample RF106 with 36ppm As and 212ppb Au.

### CONCLUSIONS

1. Anomalous levels of gold and trace elements Ag,Ba,Cu,Ni,Pb, and Zn, and of alteration-related elements Al,Ca,Cr,Fe,K,Mg,Mn, and Na are present in both fractions in drainage samples SEDs04/05 on the east side, and similarly in SEDs25/26 on the west side of the Long 1 claim, indicating possible presence of precious metals mineralization and the associated alteration envelope.

2. Similarly anomalous soil sample S104, with adjacent gold values in the H.M. fraction may be indicative of the source of previously identified gold anomaly in the nearby drainage of upper Eagle Creek.

3. Strongly silicified sedimentary rock float samples are anomalous in arsenic, cadmium, silver, copper, and zinc values, and where altered and enriched in sulfides, carry anomalous gold values as well.

4. The bedrock source of the anomalous float samples can be expected to lie upstream and up-ice to the north of the anomalous stream sediments geochemistry.

### BIBLIOGRAPHY

Preto, V., GEM B.C., 1970: Geology of the Area Between Eakin Ck. and Windy Mtn., p.307-312.

Tipper, H.W., GSC Bull. 196, Surficial Geology Map 1293A, Bonaparte Lake, B.C.

•

## STATEMENT OF EXPENDITURES

## Long Group Mineral Claims

## Fieldwork -

| S <b>alaries,</b> S.Zastavnikovich, Geochemist<br>3 days @ 275/day               | 825.00                     |
|----------------------------------------------------------------------------------|----------------------------|
| Lodging, 3 nights                                                                | 105.00                     |
| Food, 3 days @ 30/day                                                            | 90.00                      |
| Travel, 4x4 truck, 3 days @ 40/day<br>Gasoline<br>Tolls & Mileage, 1420 km @ 10¢ | 120.00<br>159.74<br>160.20 |
| Field expenses, supplies, maps,<br>Sample Delivery                               | 65.00<br>40.00             |
|                                                                                  | 1,564.94                   |

## Analysis -

| 73 Samples for 30 element ICP fire Au,<br>-80 Mesh + prep. @ 16.25          | 1,186.25 |
|-----------------------------------------------------------------------------|----------|
| 17 Samples for 30 element ICP, fire Au,<br>H.M. fraction + H.M. prep.@48.25 | 820.25   |
|                                                                             | 2,006.50 |
|                                                                             |          |

## Report Preparation-

| Writing, drafting, filing, 3 days @ 275 | 825.00   |
|-----------------------------------------|----------|
| Typing, Maps & Report Reproduction      | 160.00   |
| Mileage and Parking                     | 35.00    |
|                                         | 1,020.00 |

Total Expenditures, <u>\$ 4,591.44</u>

### STATEMENT OF QUALIFICATIONS

I.- Sam Zastavnikovich, do hereby certify that: 1. I am a graduate of the University of Alberta with the Degree of B. Ed. in Physical Sciences, 1969. 2. I have been a practicing exploration geochemist with Falconbridge Ltd. of Toronto and Vancouver for thirteen continuous years as: 1969-1975: Field geochemist, international. 1975-1979: Project geologist-geochemist, B. C. 1979-1982: Exploration geochemist, worldwide, where I was engaged in all aspects of geochemical exploration, including research and development of improved sampling techniques, and advanced geochemical interpretation, as well as the writing of final, budget, and assessment reports. 3. I am a voting member of the Association of Exploration Geochemists. 4. I am a consulting geochemist with offices at 5063 - 56th. St., Delta, B. C.

Geochemist

8

Appendix I.

Rock Sample Notes, Long Claims:

-Rock float samples, except where noted as outcrop. RF101 - calcareous siltstone with rusty fractures, outcrop. 102 - very siliceous, fine grained, with Mn on fractures. 103 - calcareous siltstone 104 - silicified sediment 105 - outcrop, shale with 1cm qtz-carbonate vertical veinlets, striking 110°. 106 - rusty calcareous sandstone, 2% pyrite, 1mm qtz. veins. 107 - outcrop, rusty silicified shale. 108 - fractured calcareous shale. 109 - outcrop, calcareous siltstone, with 1% dissem. pyrite. 110 - same as no. 109. 111 - silicified siltstone. 112 - very siliceous sediment, rusty fractures. 113 - silicified sediment. 114 - silicified fine-grained sediment. 115 - rusty hornfelsed sandstone. 116 - fine-grained siliceous sediment. 117 - fine-grained hornfelsed sediment. 118 - 2cm wide quartz veinlet. 119 - feldspar porphyry. 120 - 5 cm quartz vein float. 121 - quartz-feldspar-hornblende pegmatite. 122 - hornblende diorite. 123 - 1-2 mm wide quartz veinlets in calcareous sediment. 124 - quartz-feldspar pegmatite. 125 - silicified shale with 1% dissem. pyrite. 126 - quartz-feldspar-mica pegmatite. 127 - dark volcanic sediment?, with 1mm pyrite crystals. 128 - siliceous sediment with 1% dissem. pyrite. 129 - rusty, silicified shale. 130 - rusty, dark, fine-grained sediment. 131 - very siliceous sediment. 132 - same as no. 130. 133 - hornblende diorite. 134 - hornfelsed fine-grained sediment. 135 - same as 133. 136 - hornblende diorite. 137 - very rusty 2 cm wide quartz vein float. 138 - outcrop, hornblende diorite. 139 - siltstone, with 1mm massive pyrite veinlets. 140 - bleached intrusive float. 141 - rusty, fractured shale. 142 - same as no. 141. 143 - biotite quartz diorite. 144 - altered, bleached, with 1% dissem. pyrite. 145 - hornblende porphyry. 146 - rusty, siliceous, bleached, with pyrite crystals. 147 - rusty, siliceous sediment. 148 - dark, fine-grained hornfels. RF149 - 1cm wide quartz veinlet in siltstone.

### APPENDIX II.

<u>Analytical Procedure</u> - The samples were analyzed by Min-En Laboratories Ltd. of 705 West 15th St., N.Vanc, as follows:

The stream sediments were oven-dried in their original water-resistant kraft paper bags at 95°C and screened to obtain the minus 80 mesh fraction for analysis. The rock samples were crushed and pulverized in a ceramic-plated pulverizer.

A suitable weight og 5.0 or 10.0 grams is pretreated with HNO<sub>3</sub> and HClO<sub>4</sub> mixture.

After pretreatment the samples are digested with Aqua Regia solution, then taken up with 25% HCl to suitable volume and aliquot used for the 26 element ICP trace element analysis.

From the major remaining portion of the sample, Gold is preconcentrated by standard fire assay methods, then extracted with Methyl Iso-Butyl Ketone and analyzed by Atomic Absorption.

For Mercury analysis, 1 gram of sieved material is sintered at 90°c for 4 hours, then digested in HNO<sub>3</sub> and HCl acids mixture, and analyzed by the Hatch and Ott flameless AA method.

1. 3 8.

# MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

#### ASSESSMENT REPORT FOR:

### HEAVY MINERAL SAMPLING AND CONCENTRATIONS

A large sample is collected from stream sediments or soils big enough to yield a minimum of 0.5 kg of the desired minus fraction. After sieving through any of the sieve mesh sizes they are adapted for the survey. After seiving the samples, the minus fraction is grinded to -80 mesh.

Then 0.4 kg of sample is weighed into a suitable centrifuge containers. The prepared concentrations of liquids are added to obtain a 3.1 specific gravity flotation.

The heavy fractions are then washed cleaned and dried. After drying the samples they are separated . The sink float Heavy Minerals are separated into Magnetic and Non Magnetic fractions and both fractions are weighed. The percent of the Magnetic and non Magnetic fractions are calculated and reported with the analytical data.

The analysis are than carried out in the ususal analytical manner by I.C.P. or A.A. method.

## APPENDIX III

# Analytical Results

|                                                 | ſ                              |                                           |                  |                  |                             |                            |                       |                                      |                            |                                               |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|-------------------------------------------------|--------------------------------|-------------------------------------------|------------------|------------------|-----------------------------|----------------------------|-----------------------|--------------------------------------|----------------------------|-----------------------------------------------|------------------------------|-------------------------------------------|-----------------------------------|----------------------------|------------------------------------------|---------------------------------|-----------------------------|---------------------------------|----------------------------|-----------------------------------|----------------------------|-----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-----------------------|-------------------------------------------------------|-----------------------------|---------------------------|
| COMP: BARAKSO<br>PROJ: WILLOW<br>ATTN: J.BARKSO | CONSUL                         | TANTS                                     | OVIC             | н                |                             |                            |                       |                                      |                            | <b>M</b> ]<br>705 W                           | [ <b>N-</b> ]<br>EST 1       | <b>EN I</b><br>15th st<br>(604)98         | <b>ABS</b><br>1., NC<br>30-581    | RTH V<br>4 OR              | IC)<br>ANCOUN<br>(604)5                  | <b>P RE</b><br>/ER, B<br>288-45 | E <b>POI</b><br>.c. v<br>24 | <b>RT</b><br>7м 1т              | 2                          |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               | FILE<br>* SO          | NO: 0<br>DATE<br>IL *                                 | V-0987<br>: 90/(<br>(ACT:   | '-SJ1<br>)8/07<br>:F31)   |
| SAMPLE<br>NUMBER                                | AG<br>PPM                      | AL<br>PPM                                 | AS<br>PPM        | B<br>PPM         | BA<br>PPM                   | BE<br>PPM                  | BI<br>PPM             | CA<br>PPM                            | CD<br>PPM                  | CO<br>PPM                                     | CU                           | FE<br>PPM                                 | K<br>PPM                          | LI<br>PPM                  | MG<br>PP <b>m</b>                        | MN<br>PPM                       | MO<br>PPM                   | NA<br>PPM                       | NI<br>PPM                  | P<br>PPM                          | PB<br>PPM                  | SB<br>PP <b>m</b>     | SR T<br>PPM PP             | H U<br>M PPM                                                                                                                                   | V<br>PPM F                             | ZN<br>PPM P                   | GA<br>PPM P           | SN W<br>Pm PPm                                        | CR<br>PPM F                 | AU<br>PB                  |
| \$101<br>\$102<br>\$103<br>\$104<br>\$105       | .8<br>.5<br>1.0<br>2.8<br>1.3  | 19790<br>18080<br>21180<br>34420<br>23230 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1 | 94<br>84<br>64<br>265<br>58 | .5<br>.5<br>.8<br>.8       | 44466                 | 7360<br>6350<br>5250<br>8410<br>6230 | .1<br>.1<br>.1<br>.1       | 12<br>13<br>19<br>19<br>16                    | 100<br>66<br>50<br>198<br>56 | 27830<br>27940<br>34650<br>45740<br>40560 | 1190<br>760<br>830<br>2120<br>750 | 28<br>17<br>20<br>36<br>20 | 8430<br>7890<br>8460<br>9270<br>8260     | 280<br>324<br>356<br>467<br>312 | 1<br>1<br>1<br>1            | 170<br>110<br>90<br>190<br>110  | 31<br>32<br>31<br>58<br>19 | 770<br>590<br>1110<br>810<br>1300 | 11<br>18<br>21<br>25<br>25 | 1<br>1<br>1<br>1      | 12<br>12<br>11<br>12<br>11 | $     \begin{array}{ccc}       1 & 1 \\       1 & 1 \\       1 & 1 \\       1 & 1 \\       1 & 1 \\       1 & 1 \\       1 & 1   \end{array} $ | 78.1<br>76.6<br>78.9<br>122.2<br>100.3 | 58<br>71<br>89<br>32<br>54    | 1<br>1<br>1<br>1      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 25<br>36<br>34<br>46<br>31  | 2<br>1<br>3<br>2          |
| \$106<br>\$107<br>\$108<br>\$109<br>\$110       | 1.8<br>1.1<br>.7<br>1.5<br>.6  | 24590<br>19280<br>12570<br>22660<br>16260 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1 | 70<br>69<br>58<br>56<br>55  | .6<br>.6<br>.5<br>.7<br>.8 | 64344                 | 8120<br>6920<br>6170<br>4260<br>6050 | .1<br>.1<br>.1<br>.1<br>.8 | 14<br>14<br>11<br>11<br>19                    | 57<br>55<br>39<br>22<br>80   | 36980<br>33130<br>23590<br>28780<br>33540 | 880<br>660<br>650<br>440<br>550   | 20<br>17<br>13<br>17<br>14 | 7780<br>8220<br>7450<br>5140<br>7620     | 422<br>374<br>350<br>203<br>604 | 1111                        | 170<br>130<br>100<br>90<br>80   | 17<br>27<br>17<br>11<br>32 | 760<br>490<br>640<br>1070<br>1310 | 20<br>25<br>24<br>20<br>33 | 1<br>1<br>1<br>1      | 22<br>19<br>11<br>8<br>13  | 1 1<br>1 1<br>1 1<br>1<br>1                                                                                                                    | 94.7<br>85.7<br>68.3<br>74.4<br>76.7   | 87<br>106<br>89<br>101<br>171 | 1<br>1<br>1<br>2      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 21<br>38<br>32<br>35<br>42  | 2<br>1<br>3<br>1<br>34    |
| SED 01<br>SED 02<br>SED 03<br>SED 04<br>SED 05  | 1.1<br>1.0<br>.9<br>1.1<br>1.1 | 21490<br>17160<br>17880<br>20770<br>19860 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1 | 136<br>94<br>87<br>82<br>78 | .8<br>.6<br>.8<br>.7<br>.8 | 44455                 | 8030<br>8130<br>9540<br>9690<br>9110 | .3<br>.3<br>.4<br>.1<br>.1 | 15<br>17<br>19<br>20<br>19                    | 51<br>75<br>86<br>93<br>109  | 31200<br>34020<br>33730<br>39130<br>37520 | 550<br>710<br>770<br>730<br>780   | 22<br>14<br>14<br>21<br>19 | 8050<br>10050<br>11160<br>11400<br>12040 | 645<br>742<br>776<br>806<br>723 | 1<br>1<br>1<br>1            | 140<br>130<br>110<br>160<br>140 | 45<br>41<br>46<br>52<br>55 | 750<br>900<br>940<br>820<br>850   | 19<br>27<br>27<br>29<br>34 | 1<br>1<br>1<br>1<br>1 | 18<br>28<br>26<br>25<br>27 | 1 1<br>1 1<br>1 1<br>1 1<br>1                                                                                                                  | 70.9<br>81.5<br>84.3<br>95.3<br>91.2   | 93<br>109<br>93<br>155<br>152 | 1<br>1<br>2<br>1<br>1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 51<br>60<br>63<br>74<br>65  | 1<br>17<br>2<br>170<br>21 |
| SED 06<br>SED 07<br>SED 21<br>SED 22<br>SED 23  | 1.0<br>1.2<br>1.1<br>1.0<br>.8 | 17300<br>14710<br>14050<br>12830<br>10260 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1 | 72<br>60<br>70<br>73<br>59  | .7<br>.7<br>.7<br>.4<br>.2 | 4<br>5<br>5<br>4<br>3 | 9190<br>8120<br>8430<br>7880<br>6120 | .6<br>.1<br>.1<br>.1       | 16<br>15<br>15<br>9<br>7                      | 73<br>57<br>35<br>13<br>8    | 32740<br>31840<br>39490<br>19330<br>15500 | 710<br>570<br>470<br>390<br>310   | 17<br>14<br>15<br>16<br>10 | 10650<br>9810<br>9990<br>9290<br>8600    | 614<br>534<br>556<br>226<br>211 | 11111                       | 140<br>110<br>90<br>90<br>140   | 68<br>39<br>35<br>28<br>16 | 870<br>840<br>810<br>810<br>550   | 22<br>24<br>24<br>12<br>8  | 1<br>1<br>1<br>1      | 17<br>15<br>19<br>16<br>10 | 1 1<br>1 1<br>1 1<br>1 1<br>1 1                                                                                                                | 80.0<br>79.9<br>91.2<br>61.3<br>46.2   | 99<br>87<br>75<br>61<br>35    | 1<br>2<br>2<br>2<br>2 | 1 1<br>1 1<br>1 2<br>1 1<br>1 1                       | 56<br>57<br>159<br>43<br>29 | 17<br>5<br>133<br>2<br>10 |
| SED 24<br>SED 25<br>SED 26<br>SED 27            | 1.1<br>1.1<br>1.2<br>.9        | 15470<br>20010<br>21380<br>11780          | 1<br>1<br>1      | 1<br>1<br>1<br>1 | 45<br>135<br>142<br>55      | .5<br>.6<br>.8<br>.4       | 4654                  | 9930<br>10160<br>10010<br>7370       | .1<br>.1<br>.1             | 13<br>15<br>17<br>12                          | 24<br>47<br>84<br>28         | 27820<br>33020<br>37370<br>23240          | 500<br>2460<br>2770<br>870        | 13<br>16<br>18<br>14       | 13250<br>10890<br>12950<br>8480          | 410<br>783<br>873<br>439        | 1<br>1<br>1                 | 90<br>370<br>320<br>120         | 30<br>23<br>29<br>36       | 1290<br>1050<br>1180<br>900       | 14<br>18<br>18<br>16       | 1<br>1<br>1<br>1      | 17<br>49<br>43<br>15       | $   \begin{array}{cccc}     1 & 1 \\     1 & 1 \\     1 & 1 \\     1 & 1 \\     1 & 1   \end{array} $                                          | 89.4<br>91.5<br>105.0<br>64.9          | 65<br>79<br>77<br>50          | 2222                  | 1 1<br>1 1<br>1 1                                     | 65<br>40<br>47<br>45 9      | 1<br>1<br>61<br>980       |
|                                                 |                                | p                                         |                  |                  |                             |                            |                       |                                      |                            |                                               |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|                                                 |                                |                                           |                  |                  |                             |                            |                       |                                      |                            |                                               |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       | ****                       |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|                                                 |                                |                                           |                  |                  |                             |                            |                       | *                                    |                            |                                               |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       | • •                        |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|                                                 |                                |                                           |                  |                  |                             |                            |                       |                                      |                            |                                               |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|                                                 |                                |                                           |                  |                  |                             |                            |                       |                                      |                            | <u>, ,                                   </u> |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|                                                 |                                |                                           |                  |                  |                             |                            |                       | ····                                 |                            |                                               |                              |                                           |                                   |                            |                                          |                                 |                             |                                 |                            |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |
|                                                 |                                |                                           |                  |                  |                             |                            |                       |                                      |                            |                                               |                              |                                           | -                                 |                            |                                          | <u>_</u>                        |                             |                                 |                            |                                   |                            |                       |                            |                                                                                                                                                |                                        |                               |                       |                                                       |                             |                           |

PROJ: WILLOW

### MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

ATTN: J.BARKSO/S.ZASTAVNIKOVICH

SAMPLE AS В BA BE BI CA CD CO CU FE K LI MG MN MO NA NI P PB SB SR TH U V ZN GA SN W CR AU HM AG AL NUMBER PPM PPB % 5.03 SED 03 1.0 10030 5 26 9300 16 48 38880 270 6 6970 373 90 16 1410 8 16 88.2 51 1 105 50 .1 .1 1 1 1 1 13 24 13 118.7 103.5 97.1 18 22 19 6 6530 390 700 970 62 220 81 10 SED 04 9100 6650 39 44900 190 80 10 9 72 7.99 9 5 .1 22 .1 17 1 1 1 1 1.2 11840 .9 9900 83 52010 270 26 33870 250 90 7 8260 446 29 15 SED 05 9 .1 8600 .1 19 1 1 1 1 96 6.67 23 2 7 7900 364 840 10 50 Š 6750 100 **4**5 SED 06 4 .1 .1 13 1 1 1 1 1 20 3 7510 26 37240 260 6 7980 384 12 **910** 1 106.5 5 8,58 SED 07 1.0 10260 4 .1 15 1 110 1 11 1 48 1 64 .1 21 18 237 SED 21 9930 5 7360 18 36 55890 180 6 7900 420 70 8 690 10 130.9 48 2 208 140 14.04 1.1 2 .1 .1 SED 22 SED 23 SED 24 14 12 13 46 26 .<u>9</u> 8340 Ĵ 3 7400 9 9 20850 140 6 6070 218 90 10 1290 68.0 36 5 10.06 .1 .1 1 1 1 10 11.38 55 11.05 5 7.80 11 14200 100 17 23480 190 4 5970 196 7 9590 353 35 39 7670 Ĵ. 16 2 7320 3 9680 7 1 100 7 1380 1 44.0 .6 .1 .1 1 1 4õ 110 23 .8 12420 4 14 11 1 10 1030 1 1 SED 25 35 . 9 .6 8360 2 5650 27 29460 850 6 5750 339 1 130 7 740 70.9 43 48 3 .1 .1 12 1 1 1 1 35 17 27 2 6480 2 7190 2 8110 .7 9260 14 41 37010 850 6 6590 372 130 8 850 2 9 95.9 35 77 10 9.94 SED 26 4 .1 .1 50 10 13.86 66 150 6.05 32 5 2.56 SED 27 .7 8360 ġ, 28 3 .1 10 16 26160 390 7 6230 291 110 6 1270 86.6 .1 1 4 1 1 120 220 8 1470 102.5 \$101 & \$102 .9 10100 5 13 30 34520 350 6 5930 288 6 1 12 1 36 .1 .1 1 1 1 55 42 41 45190 780 22 S103 & S104 1.6 7900 3 . 1 4 9440 .1 16 5 4300 314 1 2 3350 1 6 1 1 185.1 1 25 100 4 7270 19 34 50550 410 9 6540 401 1 160 õ 56 1.3 10330 1 1770 1 160.1 S105 & S106 6 16 .1 .1 1 1 1 1 5.73 12 18 36800 250 13 50 S107 & S108 .9 8970 16 3 7250 6 5890 288 1 80 2 810 11 1 123.2 47 5 8.19 6 .1 .1 1 1 24 2 7280 żž 61 57420 330 7 6930 382 7Ŏ ġ 19 94 **4**7 5 4.81 \$109 & \$110 2.2 10830 1 13 1170 1 155.6 7 .1 .1 1 1 1 1 1 1

FILE NO: OV-0987-HJ1

DATE: 90/08/07

\* HEAVY MINERAL \* (ACT:F31)



PROJ: WILLOW

### MIN-EN LABS - ICP REPORT

FILE NO: 0V-0987-RJ1+2 DATE: 90/08/07

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

\* ROCK \* (ACT:F31)

| ATTN: J.BARKS                             | SO/S.ZAS                        | TAVNI                                    | COVICH                    | I                      |                               |                            |                       |                                           |                             |                           | (6                             | 5 <b>04)98</b> 0                          | -5814                                | OR (6                     | 04)988                                   | 8-4524                           |                           |                                  |                            |                                      |                            |                                        |                       |                                        |                              | * R(                  | оск *                 | (AC                                     | :T:F31                     |
|-------------------------------------------|---------------------------------|------------------------------------------|---------------------------|------------------------|-------------------------------|----------------------------|-----------------------|-------------------------------------------|-----------------------------|---------------------------|--------------------------------|-------------------------------------------|--------------------------------------|---------------------------|------------------------------------------|----------------------------------|---------------------------|----------------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------------------|-----------------------|----------------------------------------|------------------------------|-----------------------|-----------------------|-----------------------------------------|----------------------------|
| SAMPLE<br>NUMBER                          | AG<br>PPM                       | AL<br>PPM                                | AS<br>PPM                 | B<br>PPM               | BA<br>PPM                     | BE<br>PPM                  | BI<br>PPM             | CA<br>PPM                                 | CD<br>PPM                   | CO<br>PPM                 | CU<br>PPM                      | FE<br>PPM                                 | K<br>PPM                             | LI<br>PPM                 | MG<br>PPM                                | MN<br>PPM                        | MO<br>PPM                 | NA<br>PPM                        | NI<br>PPM                  | P<br>PPM                             | PB<br>PPM                  | SB SR<br>PPM PPM                       | TH L<br>PPM PPM       | I V<br>I PPM                           | ZN<br>PPM i                  | GA<br>PPM I           | SN<br>PP <b>m p</b> f | W CR                                    | AU<br>I PPB                |
| RF101<br>RF102<br>RF103<br>RF104<br>RF105 | 2.1<br>1.6<br>2.7<br>.3<br>3.1  | 1910<br>4790<br>1090<br>710<br>9250      | 9<br>20<br>35<br>11<br>19 | 24<br>4<br>1<br>113    | 43<br>13<br>37<br>52<br>48    | .1<br>.1<br>.1<br>.1<br>.3 | 3<br>3<br>3<br>1<br>5 | 50280<br>52130<br>109930<br>9910<br>87800 | .1<br>6.8<br>.1<br>.1       | 8<br>4<br>4<br>9          | 80<br>14<br>27<br>35<br>59     | 15070<br>7170<br>9150<br>21820<br>19200   | 380<br>480<br>180<br>230<br>1180     | 1<br>2<br>1<br>1<br>18    | 1100<br>2320<br>960<br>150<br>7820       | 211<br>776<br>456<br>725<br>2027 | 4<br>2<br>2<br>1<br>2     | 210<br>60<br>30<br>30<br>40      | 34<br>19<br>16<br>3        | 1090<br>670<br>1010<br>320<br>930    | 13<br>15<br>15<br>14<br>99 | 1 43<br>4 24<br>5 350<br>1 10<br>2 101 | 1 1                   | 18.6<br>28.8<br>8.7<br>7.9<br>23.7     | 50<br>633<br>25<br>44<br>300 | 1<br>1<br>6<br>1<br>3 | 1<br>1<br>1<br>1      | 1 55<br>1 31<br>1 13<br>1 80<br>1 27    | 1 2 2 1 2                  |
| RF106<br>RF107<br>RF108<br>RF109<br>RF110 | 2.0<br>1.6<br>1.9<br>1.9<br>2.0 | 3550<br>18190<br>2710<br>2900<br>1700    | 36<br>1<br>9<br>21<br>19  | 2<br>3<br>4<br>1<br>1  | 39<br>90<br>41<br>36<br>20    | .8<br>.1<br>.1<br>.1       | 1<br>5<br>3<br>2<br>2 | 51990<br>7010<br>47140<br>50180<br>61750  | .1<br>.1<br>.1<br>.1        | 35<br>17<br>10<br>8<br>7  | 49<br>40<br>64<br>56<br>49     | 41590<br>46170<br>19080<br>14140<br>11930 | 1360<br>790<br>470<br>340<br>250     | 3<br>47<br>2<br>1         | 31090<br>20180<br>1160<br>1330<br>710    | 1276<br>895<br>287<br>249<br>487 | 7<br>1<br>6<br>1<br>4     | 30<br>300<br>270<br>200<br>260   | 247<br>1<br>35<br>30<br>27 | 580<br>1080<br>990<br>990<br>630     | 15<br>14<br>13<br>13<br>15 | 1 76<br>1 18<br>1 27<br>1 55<br>2 148  | 1 1                   | 76.6<br>92.5<br>15.7<br>14.0<br>13.2   | 62<br>39<br>35<br>33<br>47   | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1      | 2 207<br>1 10<br>1 40<br>1 53<br>1 55   | 212<br>1<br>5<br>12<br>9   |
| RF111<br>RF112<br>RF113<br>RF114<br>RF115 | 1.6<br>1.8<br>1.7<br>2.0<br>1.0 | 8130<br>3950<br>5680<br>17530<br>2300    | 14<br>57<br>12<br>7<br>9  | 3<br>10<br>1<br>3<br>1 | 25<br>12<br>18<br>209<br>22   | .1<br>.1<br>.1<br>.1       | 3<br>3<br>4<br>6<br>3 | 21080<br>48320<br>21210<br>29450<br>8510  | .1<br>3.1<br>.1<br>.1<br>.1 | 12<br>6<br>11<br>13<br>8  | 67<br>22<br>110<br>95<br>41    | 14970<br>8870<br>14750<br>24590<br>11900  | 530<br>250<br>370<br>5770<br>170     | 6<br>1<br>19<br>2         | 3390<br>1280<br>1840<br>10670<br>1190    | 375<br>541<br>105<br>982<br>269  | 1<br>2<br>1<br>6          | 180<br>100<br>280<br>860<br>380  | 37<br>21<br>49<br>33<br>19 | 1360<br>1100<br>1380<br>1220<br>990  | 16<br>70<br>10<br>12<br>6  | 1 21<br>3 19<br>1 28<br>1 29<br>1 8    | 1<br>1<br>1<br>1      | 39.4<br>14.7<br>24.0<br>76.0<br>18.9   | 75<br>364<br>29<br>147<br>31 | 2<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 1 42<br>1 61<br>1 61<br>1 79<br>1 129   | 5<br>18<br>18<br>16<br>3   |
| RF116<br>RF117<br>RF118<br>RF119<br>RF120 | 1.6<br>1.4<br>.9<br>1.0<br>.4   | 6720<br>15820<br>1230<br>9340<br>1580    | 20<br>4<br>13<br>7<br>11  | 1<br>1<br>1<br>1       | 25<br>140<br>71<br>94<br>18   | .1<br>.1<br>.1<br>.1       | 3<br>5<br>1<br>4<br>2 | 20760<br>5400<br>390<br>6900<br>4080      | .1<br>.1<br>.1<br>.1<br>.1  | 7<br>13<br>2<br>8<br>2    | 66<br>117<br>8<br>39<br>14     | 8220<br>29330<br>6490<br>21610<br>8670    | 300<br>7120<br>920<br>3070<br>210    | 1<br>20<br>1<br>9<br>1    | 1950<br>19030<br>530<br>6480<br>820      | 265<br>515<br>26<br>332<br>130   | 1<br>2<br>4<br>1<br>2     | 160<br>440<br>150<br>740<br>310  | 18<br>33<br>2<br>1<br>4    | 1490<br>660<br>50<br>910<br>440      | 14<br>10<br>10<br>14<br>9  | 1 53<br>1 5<br>1 3<br>1 11<br>1 5      | 1<br>1<br>1<br>1      | 20.2<br>89.6<br>6.2<br>48.8<br>9.4     | 23<br>72<br>3<br>47<br>12    | 1<br>2<br>1<br>2<br>1 | 1<br>2<br>1<br>1      | 1 65<br>2 132<br>1 126<br>1 44<br>1 132 | 1<br>21<br>1               |
| RF121<br>RF122<br>RF123<br>RF124<br>RF125 | .2<br>.5<br>1.1<br>.4<br>1.2    | 5760<br>6450<br>12210<br>2600<br>4890    | 2<br>12<br>65<br>15<br>8  | 41221                  | 39<br>53<br>52<br>16<br>33    | .1<br>.3<br>.1             | 2<br>2<br>1<br>2<br>3 | 4950<br>4960<br>51960<br>2900<br>13160    | .1<br>.1<br>.1<br>.1        | 5<br>5<br>27<br>3<br>10   | 32<br>10<br>126<br>9<br>30     | 11570<br>12660<br>53460<br>6320<br>25020  | 2670<br>3320<br>1070<br>720<br>680   | 4<br>5<br>17<br>2<br>7    | 3180<br>3620<br>29450<br>1340<br>1590    | 182<br>182<br>1261<br>104<br>102 | 1<br>4<br>1<br>3<br>4     | 370<br>410<br>190<br>260<br>240  | 4<br>31<br>4<br>43         | 380<br>340<br>980<br>150<br>1540     | 11<br>13<br>14<br>11<br>11 | 1 6<br>1 6<br>1 111<br>1 4<br>1 22     | 2<br>3<br>1<br>3<br>1 | 22.8<br>26.8<br>90.9<br>8.8<br>25.4    | 15<br>19<br>51<br>8<br>64    | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 1 92<br>1 76<br>1 71<br>1 132<br>1 119  | 3121                       |
| RF126<br>RF127<br>RF128<br>RF129<br>RF130 | .2<br>1.2<br>1.4<br>1.4<br>2.0  | 2840<br>20020<br>12310<br>3850<br>20960  | 15<br>1<br>9<br>8<br>1    | 1<br>1<br>1<br>4       | 69<br>55<br>29<br>81<br>18    | .1<br>.1<br>.1<br>.1       | 15536                 | 1780<br>9370<br>13350<br>9710<br>40450    | .1<br>.1<br>.1<br>.1        | 2<br>17<br>7<br>10<br>25  | 3<br>159<br>64<br>182          | 2890<br>44860<br>19300<br>19470<br>55080  | 1200<br>1380<br>900<br>780<br>920    | 3<br>14<br>12<br>1<br>14  | 430<br>13650<br>13740<br>1070<br>15640   | 39<br>605<br>461<br>60<br>803    | 1<br>1<br>6<br>1          | 380<br>190<br>220<br>260<br>250  | 3<br>7<br>7<br>32<br>10    | 60<br>250<br>170<br>900<br>1540      | 12<br>9<br>12<br>7         | 1 6<br>1 6<br>1 2<br>1 23<br>1 19      | 1 1                   | 1.0<br>90.1<br>40.5<br>28.0<br>193.5   | 8<br>49<br>25<br>32<br>50    | 1<br>1<br>2<br>1<br>1 | 1<br>1<br>1<br>2      | 1 84<br>1 36<br>1 70<br>1 86<br>1 18    | 1<br>2<br>1<br>1<br>1      |
| RF131<br>RF132<br>RF133<br>RF134<br>RF135 | 1.0<br>1.9<br>1.6<br>1.7<br>1.4 | 7080<br>25800<br>13140<br>17630<br>19070 | 163<br>1<br>14<br>14      | 1<br>5<br>2<br>4<br>1  | 35<br>51<br>75<br>94<br>188   | .1<br>.1<br>.1<br>.1       | 27546                 | 11170<br>15250<br>11900<br>16610<br>9010  | .1<br>.1<br>.1<br>.1        | 19<br>34<br>14<br>12      | 9<br>178<br>153<br>99<br>49    | 8010<br>69520<br>38870<br>20990<br>41720  | 880<br>650<br>5500<br>2490<br>10620  | 5<br>25<br>11<br>17<br>18 | 3340<br>25020<br>8780<br>5610<br>11270   | 172<br>1164<br>546<br>430<br>680 | 2<br>1<br>3<br>1<br>14    | 380<br>330<br>770<br>1550<br>630 | 47<br>32<br>1<br>24<br>1   | 1140<br>1670<br>2760<br>1190<br>2130 | 14<br>6<br>13<br>12<br>15  | 2 12<br>1 14<br>1 9<br>1 29<br>1 16    |                       | 25.4<br>271.8<br>96.7<br>62.9<br>107.0 | 23<br>63<br>55<br>43<br>50   | 2<br>1<br>2<br>3<br>3 | 1<br>2<br>1<br>1      | 3 43<br>5 45<br>3 28<br>3 47<br>4 38    | 1<br>1<br>2<br>1<br>1<br>1 |
| RF136<br>RF137<br>RF138<br>RF139<br>RF140 | 2.0<br>.5<br>1.7<br>1.0<br>1.5  | 13450<br>3810<br>8100<br>19450<br>5490   | 1<br>23<br>9<br>30<br>25  | 2<br>1<br>4<br>12      | 27<br>23<br>28<br>47<br>31    | .1<br>.1<br>.1<br>.1       | 61<br>533             | 10190<br>1540<br>8810<br>1020<br>10160    | .1<br>.1<br>.1<br>.1        | 17<br>4<br>11<br>16<br>12 | 187<br>50<br>154<br>282<br>217 | 41530<br>18020<br>28110<br>79530<br>16960 | 2620<br>860<br>2280<br>1060<br>730   | 10<br>3<br>7<br>29<br>3   | 7840<br>1940<br>4540<br>11320<br>1740    | 412<br>112<br>298<br>1072<br>87  | 43<br>107<br>6<br>4<br>20 | 380<br>130<br>440<br>110<br>390  | 1<br>1<br>40<br>38         | 2700<br>270<br>1690<br>340<br>1420   | 19<br>11<br>17<br>29<br>11 | 1 9<br>1 3<br>1 7<br>1 2<br>1 23       | 1 ·<br>1 ·<br>1 ·     | 88.3<br>21.4<br>55.0<br>49.3<br>23.7   | 67<br>12<br>39<br>684<br>24  | 33532                 | 2<br>1<br>1<br>1      | 4 29<br>8 178<br>4 50<br>4 61<br>2 39   | 4 1 1 2 2                  |
| RF141<br>RF142<br>RF143<br>RF144<br>RF145 | 1.4<br>1.0<br>1.7<br>1.0<br>2.2 | 10480<br>10380<br>19880<br>3620<br>26210 | 23<br>18<br>3<br>13<br>1  | 1<br>1<br>3<br>3<br>4  | 162<br>259<br>108<br>33<br>21 | .3<br>.4<br>.1<br>.6<br>.1 | 1<br>16<br>17         | 45440<br>4460<br>8860<br>46740<br>40540   | .1<br>.1<br>.1<br>.1        | 7<br>8<br>22<br>29<br>21  | 46<br>67<br>85<br>80<br>125    | 15400<br>16950<br>44060<br>59830<br>40290 | 1640<br>2100<br>1730<br>2690<br>4360 | 13<br>11<br>18<br>1<br>13 | 10080<br>7350<br>15880<br>28220<br>19230 | 309<br>148<br>437<br>1660<br>867 | 10<br>29<br>1<br>1        | 140<br>160<br>450<br>200<br>400  | 21<br>28<br>1<br>20<br>18  | 500<br>690<br>850<br>1340<br>1470    | 22<br>20<br>9<br>22<br>6   | 2 72<br>1 10<br>1 14<br>1 50<br>1 75   | 1 ·<br>1 ·<br>1 ·     | 28.6<br>23.8<br>141.3<br>51.0<br>144.8 | 55<br>58<br>33<br>87<br>44   | 6<br>5<br>2<br>1<br>2 | 1<br>2<br>1<br>2      | 3 64<br>3 39<br>5 30<br>1 5<br>4 33     | 1<br>1<br>2<br>40          |
| RF146<br>RF147<br>RF148<br>RC149          | 1.0<br>.5<br>1.4<br>2.8         | 15600<br>3790<br>21050<br>9820           | 7<br>15<br>12<br>8        | 3<br>2<br>1<br>1       | 90<br>57<br>2047<br>91        | .6.5<br>.2<br>.1           | 1<br>1<br>4<br>4      | 45540<br>30580<br>3780<br>7680            | .1<br>.1<br>.1<br>36.8      | 22<br>14<br>11<br>8       | 76<br>66<br>33<br>114          | 52710<br>39680<br>27030<br>16420          | 2210<br>2200<br>11440<br>1650        | 16<br>2<br>22<br>7        | 26900<br>4760<br>14250<br>3980           | 1370<br>1292<br>545<br>289       | 1<br>1<br>82              | 290<br>490<br>510<br>560         | 25<br>12<br>30<br>61       | 3640<br>1240<br>240<br>950           | 18<br>17<br>15<br>18       | 1 49<br>1 27<br>1 12<br>1 16           | 1 ·<br>1 ·<br>1 ·     | 128.7<br>40.3<br>71.1<br>442.2         | 70<br>54<br>70<br>953        | 1<br>2<br>4<br>2      | 1<br>1<br>2<br>1 1    | 2 33<br>1 8<br>6 103<br>14 194          | 28<br>1<br>2<br>1          |
|                                           |                                 |                                          |                           |                        |                               |                            |                       |                                           |                             |                           |                                |                                           |                                      |                           |                                          |                                  |                           |                                  |                            |                                      |                            |                                        |                       |                                        |                              |                       |                       |                                         |                            |
|                                           |                                 |                                          |                           |                        |                               |                            |                       |                                           |                             |                           |                                |                                           |                                      |                           |                                          |                                  |                           |                                  |                            |                                      |                            |                                        |                       |                                        |                              |                       |                       |                                         |                            |

