GEOPHYSICAL REPORT

on the
E-D 1 PROPERTY
Kamloops Mining Division British Columbia
North Lat. $51^{\circ} 22^{\prime}$
NTS $92 \mathrm{G} / 14 \mathrm{~W}$ and $92 \mathrm{P} / 8 \mathrm{E}$
. Prepared for.
368061 B.C. LTD. 810-175 2nd Avenue Kamloops, B.C. V2C 5Wl
. Prepared by.
QUES'T CANADA EXPLORATION SERVICES P.O. BOX 11569

840-650 West Georgia Street Vancouver, B.C.

TABLE OF CONTENTS PAGE
INTRODUCTION 1
SUMMARY 1
LOCATION AND ACCESS 3
PROPERTY AND OWNERSHIP 4
HISTORY 4
GENERAL GEOLOGY 7
HLEM GENIE SURVEY 9
DISCUSSION OF RESUL'TS 9
CONCLUSIONS AND RECOMMENDATIONS 11
REFERENCES 13
STATEMENT OF QUALIFICATIONS 14
COST BREAKDOWN 16
ILLUSTRATIONS PAGE
FIGURE 1 - LOCATION MAP 2
FIGURE 2 - CLAIM MAP 5
FIGURE 3 - REGIONAL GEOLOGY MAP (FROM D.C. MILLER,1989) 8
-IN POCKET
FIGURE 4 - HLEM GENIE PROFILE MAP

APPENDICES

```
APPENDIX I - HLEM GENIE FIELD DATA
APPENDIX II - FIELD PROCEDURE & INSTRUMENT SPECIFICATIONS -
GENIE SE-88 HLEM SYSTEM.
```


INTRODUCTION

368061 B.C. Ltd. of Suite 810, 175 - 2nd Avenue, Kamloops, British Columbia holds an option to purchase 100% of the E-D 1 claim, located in the Kamloops Mining Division. This report, prepared at the request of the company, describes the Genie HLEM survey that was conducted on the property between June 23 rd and 30th, 1990.

SUMMARY

The E-D 1 claim consists of 20 units covering 500 hectares. It is located some 80 km north-northeast of Kamloops, in the Kamloops Mining Division, British Columbia. It is readily accessible by well maintained logging roads departing from Highway 16 at the town of Barriere.

The subject property is underlain mainly by Unit EBP of the Eagle Bay Assemblage and its contact with the Baldy Batholith. Unit EBP consists mainly of phyllite and slate with interbedded siltstone and sandstone with lesser carbonate, quartzite, chlorite-sericite-quartz schist and metavolcanic rocks. The Fennell Formation is in contact with Unit EBP near the western boundary of the claim along a steep easterly directed thrust fault.

The Enargite showing of Kam Creed Mines Ltd. lies about 600 m south of the E-D 1 claim and is located at the contact of Eagle Bay and Fennell rocks. Mineralization consists of galena, sphalerite, chalcopyrite and pyrite in quartz veins and lenses. Some high silver and moderate gold values are also present.

E-D1 CLAIM
LOCATION MAP

In 1985 Noranda Exploration Company Limited carried out an airborne magnetic and electromagnetic survey of a large area near Birk Creek which included the subject property. This work indicated a number of northwesterly trending conductors to be present on the E-D 1 property.

Previous geochemical surveys were carried out in the area of the E-D 1 claim by Craigmont Mines Limited in 1973. The target at this time was porphyry copper mineralization. North-south oriented lines were spaced 1000 ft . apart with samples at 200 ft . intervals along lines. Soil samples were analyzed for copper, molybdenum, lead and zinc. Some zinc anomalies were found, but not all were followed up.

In 1989, the company conducted a combine ground magnetometer and VLF-EM survey on the property. The results indicated a number of locations which warrant further exploration. The geophysical responses on the west side of the survey was interpreted to be representative of a lithologic contact between the Eagle Bay Assemblage and the Fennell Formation.

LOCATION AND ACCESS

The property is located 80 km north-northeast of Kamloops, B.C. on NTS Map Sheets $82 \mathrm{M} / 5 \mathrm{~W}$ and $92 \mathrm{P} / 8 \mathrm{E}$. Road access to the property from Barriere, B.C. is gained by following the Barriere Lakes road eastward some 16 km to the junction of the North and East Barriere Lakes roads. From this point the North Barriere Lake road is followed for 8 km where the Birk Creek logging road turns off to the north. The Birk Creek road is then followed some 12 km to the point where a subsidiary road turns right. The legal corner post is located some 700 m south of this road (Figure 2). The geographical coordinates of the claim are 51022' N. Latitude and ll9059' W. Longitude.

PROPERTY AND OWNERSHIP

The property is comprised of one M.G.S. claim totalling 20 units. The claim is located in the Kamloops Mining Division and is owned by 356586 B.C. Ltd. of 810-175, 2nd Avenue, Kamloops, B.C. The operator is 368061 B.C. Ltd. which holds an option to acquire a 100% interest of the property. The following table summarizes the pertinent claim data:
CLAIM NAME
E-D 1
RECORD
4742
UNITS
EXPIRY DATE
Sept., 161990

HISTORY

The area has been intermittently prospected and staked since the early 1900's. In 1924 the area immediately south of the property was staked and developed by trenches and an adit. Mineralization included galena, sphalerite, chalcopyrite and pyrite which is carried in quartz veins within metasedimentary rocks. Variable gold values and good silver values were reported. Two showings are described in the B.C. Minfile: 82M 064 and 065 which are referred to as the North Star north and south showings. The north showing is also known as the Ace or Enargite. In 1972, 4.5 tons of crude ore which contained 39.8 grams/tonne gold, 707.9 grams/tonne silver, 27.4% lead, 13.3% zinc and 0.25 \% copper was shipped from the north showing to the Trail smelter.

In 1984 Kam Creed Mines Ltd. completed 5 diamond drill holes totalling 1251 Ft. near the north Northstar showing. The best intersection was in hole one which was reported to cut $0.30 \mathrm{oz} . / \mathrm{t}$ gold from 331.2-333.0 Ft. in a pyritic, carbonaceous shale. This hole also intersected $0.16 \mathrm{oz./t}$ gold from $342-347 \mathrm{Ft}$. in a pale

green quartzite. Hole 3 intersected $0.06 \mathrm{oz./t}$ gold from 65-68 Ft. within pyritic shale.

In 1973 Craigmont Mines Ltd. carried out geochemical and ground geophysical surveys over a large area which included the present property. The surveys were carried out in search of porphyry copper mineralization along north-south lines spaced 1000 Ft. apart and along east-west lines spaced 3000 Ft. apart. Soil samples were taken along the lines at 200 Ft . intervals. Geochemical analysis was done for copper, molybdenum, lead and zinc. Several zinc anomalies were found, some of which were recently explored by Noranda Exploration Company Limited.

Noranda explored the adjoining B.C. claim with ground and airborne geophysics, geochemistry (2215 soil samples), 12 trenches and 14 diamond drill holes totalling 1036.9 m . The work was done between 1983 and 1987 and discovered pods of stratiform massive sulphides and stringer-type mineralization including silver, lead, zinc and minor barite.

In general, there has been considerable exploration activity in the region as a result of the discovery of the CC copper deposit in 1978 and the Rea-Samatosum silver-gold deposits in 1983-87.

In 1989, a ground magnetic survey and a VLF electromagnetic survey was conducted across the property. These surveys indicated a number of locations which warranted further exploration.

GENERAL GEOLOGY

The property lies mainly within Unit EBP of the Eagle Bay Assemblage near its contact with the Baldy batholith to the north and the Fennell Formation to the west (Figure 3). The Eagle Bay Assemblage includes a structurally complex group of volcanic and sedimentary rocks which have been altered by generally low grade regional metamorphism to phyllites, schists, quartzites, marbles and metavolcanics. Various rock units strike mainly northwesterly and dip at various angles both eastward and westward. Rocks within the Eagle Bay range in age from Lower Cambrian? and/Older? to Mississippian.

From an economic point of view, the Eagle Bay rocks are of interest because they are host rocks for several mineral deposits including the Rea-Samatosum silver-gold deposit which is currently in production. Reserves for this deposit are quoted by Rea Gold Corporation as being 666,000 tons grading $32.08 \mathrm{oz} / \mathrm{t}$ silver, $0.052 \mathrm{oz} / \mathrm{t}$ gold, 3.5% zinc, 1.7% lead and 1.2% copper (undiluted).

The Fennell Formation may underlie the extreme western part of the property in fault contact with Eagle Bay rocks. Fennell rocks include several lithologies as indicated on Figure 3. The CC copper deposit occurs in mafic volcanic rocks within the Fennell and is reported to contain over $2,000,000$ tons grading 2% copper.

Both the Eagle Bay and Fennell units have been intruded by the Baldy batholith near the north boundary of the property. No significant mineral showings are known within this intrusion, however, several occur along its border.

EOCENE KAMLOOPS GROUP
eTs Mainly andesite and bosalt, minor sediments cretaceous
Kg Granite and granodiorite
devcnian to permian fennell formation
Basalt, rhyolite, volcaniclastics, gabbro, diorite, chert ond conglomerate
LOWER CAMBRIAN/OLDER TO MISSISSIPPIAN
eagle bay assemblage
MISSISSIPPIAN
EBP Mainly phyllite, slate, siltstone and sandstone; lesser carbonates, quartzite, schist and metavoleanics
DEVONIAN/MISSISSIPPIAN
EBF] Mainty phyllite and schist derived from intermediate voleanics
oevonian
EBA] Moinly phyllite derived from felsic to intermediate volcanics.
LOWER CAMBRIAN?/ OLDER?
EBO Mainly quartzite, sehist and phyllite
lower cambrian
EAG Mainly greenstone and ehlorito achist derived from mafle 0 intermediare volcanics; EBGT-Limestone and dolomite
$X_{\text {cc }}$ Mineral property
4 Thrust foult (approx.)
Normal foult (apprax.
Geological boundary

1

REGIONAL GEOLOGY

HLEM GENIE SURVEY

A horizontal loop electromagnetic survey was completed across the western portion of the $E-D$ l claim to further delineate the VLF-EM conductors generated by the previous survey. The work was conducted between June 23 and 30 , 1990 and was performed by Flemming Thrane and Craig Johnson of Quest Canada Exploration Services Inc. using a Scintrex SE88 Genie. A total of 12 kilometres of surveying was completed across 15 lines, spaced on 200 metre centres, with readings taken at every 25 metres along the lines. Coil spacing was maintained at 100 metres during the course of the survey and data was gathered for 3 frequency pairs: 3037.5/112.5, 1012.5/112.5, and 337.5/112.5.

The data was presented to GeoSci Data Analysis Ltd., where Mr. Trent Pezzot, a geophysicist, analyzed and interpreted the data. The raw survey data accompanies this report as Appendix I. The survey data, in profile form, is presented in Figure 4. Conductive trends are also plotted on Figure 4 .

DISCUSSION OF RESULTS

The HLEM Genie survey was conducted with the intention of further delineating and categorizing the VLF-EM conductors previously mapped. Four conductive trends have been identified in the Genie data and are labeled 1 through 4 on the profile map. All four anomalies correlate with previously defined VLF-EM strike length, trending either northerly or north-westerly. Conductive overburden has produce a positive bias in the Genie profiles, most notably in the higher frequency data. Otherwise, in the absence of the conductive trends mentioned above, the data is very regular, suggesting a fairly homogeneous half-space.

Accurate quantitative analysis of this type of data requires that information be gathered at different frequencies and different coil separations. Since these conditions have not been met, absolute dip, depth and conductance information for the anomalous trends can not be reliably calculated.

Conductors 1 \& 2

Conductor 1 strikes northwesterly from grid location l200N, l200W and arcs to the north, paralleling the western claim boundary to line 2400 N . The anomaly is open in both directions. Conductor 2 runs parallel to and immediately east of conductor 1 . These 2 zones appear to converge and diverge along their mapped lengths. The most definitive responses are observed on line 1200 N where the zones appear to be most widely separated. It is possible that the anomalies are tracking a zone composed of many conductive, probably sulphide, lenses too closely separated and near the surface to be individually resolved with a 100 metre separation.

The anomaly amplitude for both conductors is very high, suggesting a shallow target. The character of the response infers the targets are thin, plate-like bodies which dip steeply to the east. The anomalies are observed on all three frequencies recorded, suggesting good conductors.

Conductor 3

Conductor 3 appears as a linear feature extending from l400N, 575 E to 2200 N , l50W. Although it's amplitude is much lower than that associated with conductors 1 and 2, it still forms a significant response. The zone is dipping steeply to the east at its' southern limit (line 1400 N) and appears to be rotating to a
more shallow easterly dip to the north. The effects of increasing overburden to the east produce a slight bias to the profile and enhance the appearance of an easterly dip. With the exception of line 2200 N , the anomalous response is only observed in the highest (3037/112) frequency data. This suggests the causative body is a relatively poor conductor. A rough estimate of depth, based on the response at line 1800 N is some 48 metres.

Conductor 4

Conductor 4 is a northwesterly striking feature, extending from 400 N , 330 W to $800 \mathrm{~N}, 375 \mathrm{~W}$. It has a similar amplitude to conductor 3 and exhibits a similar easterly dip. The trend follows the western edge of a conductive surface layer, most likely a change in the overburden composition or thickness. The anomalous responses are well defined on the high and middle frequency data and only weakly evident on the low frequency. This suggests a moderate conductivity. A rough estimate of depth, based on the response at line 600 N is some 35 metres.

CONCLUSIONS AND RECOMMENDATIONS

The Genie HLEM survey has outlined 4 conductive targets. The responses observed suggest that the causative bodies are thin, plate-like features which extend for considerable strike length. The westermost conductors (1 \& 2) appear to be at or very near the surface and dip vertically or steeply to the east. It is possible that the two anomalies are actually one zone composed of many conductive sulphide lenses, too closely separated and near surface to be individually identified by a 100 metre coil separation. Conductors 3 and 4 are deeper and exhibit a more shallow easterly dip. These two trends most likely track lithological contacts or faults.

Considering the geological target as being polymetallic (sulphide) bodies in quartz veins and lenses, induced polarization could be an useful tool in detecting sulphide mineralization within the conductors. Once further delineation of the conductors have been accomplished, backhoe trenching should then be implemented to test the anomalies that are close to the surface.

REFERENCE

Miller, D.C.,(1989): Report on the E-D l Claim, Kamloops Mining Division, For Wayne Tyner, D.C. Miller Geological Services.

Pezzot, E.T.,(1990): Interpretation of HLEM Genie data, E-D 1 Claim, For Quest Canada Exploration Services Inc., GeoSci DataAnalysis Ltd.

STATEMENT OF QUALIFICATIONS

I, Paul P.L. Chung, of the City of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:
(1) I am a Consulting Geologist with business address office at Suite 840 - 650 West Georgia Street, Vancouver, British Columbia, V6B 4N8; and President of Boa Services Ltd.
(2) I am a graduate in geology with a Bachelor of Science degree from the University of British Columbia, in 1981.
(3) I have practised my profession continuously since graduation.
(4) I am a Fellow of the Geological Association of Canada.
(5) I have conducted various mineral exploration programmes in B.C., Yukon, Manitoba, Ontario, Quebec, Nova Scotia, and Nevada.
(6) This report is based on data supplied to me by Quest Canada Exploration Services Inc.
(7) I have no direct, indirect, or contingent interest in the property nor do I expect to receive any

Dated at Vancouver, British Columbia, this end day of August, 1990.

I, E. Trent Pezzot, of the City of Richmond, Province of British Columbia, hereby certify as follows:

- I am a principal of GeoSci Data Analysis Ltd., a company incorporated under the laws of the Province of British Columbia with a business address of 3740 Lockhart Road, Richmond, B.C. V7C 1M3.
- I graduated from the University of British Columbia in 1974 with a BS. degree in the combined honors Geology and Geophysics program.
- I have practiced my profession continuously from that date.
- I hold no interest, direct or indirect, in Quest Canada Exploration Services Ltd. or company 356586 BC Ltd., holder of the ED - 1 claim, or any of their affiliates, nor do I expect to receive any.
- The geophysical interpretation is based upon information and data provided to me by Quest Canada Explorations Services Ltd.. I was not involved in the data aquisition, editing or reduction phases of this program.
- I consent to the use of this letter or the information contained within it, provided the context is not changed to alter the intended meaning, in or in connection with a Prospectus or in a Statement of Material Facts.

E. Trent Pezzot

BS. Geophysics/Geology
August 16, 1990

COST BREAKDOWN

GENIE－HLEM Survey
12 kms ＠$\$ 250.00 / \mathrm{km}$ $\$ 3,000.00$
Mobilization and demobilization
Wages
2 days＠$\$ 200.00 /$ day 400.00
Truck
10 days＠$\$ 40.00 /$ day 400.00
1395 kms ＠$\$ 0.35 / \mathrm{km}$ 487.55
Room and Board
9 days $x 2$ men $x \$ 40 /$ day 720.00
Report Costs
Geophysical interpretation
2 days at $\$ 275 /$ day 550.00
Report writing
4 days at $\$ 300 /$ day 1200.00
Drafting 350.00
Photocopying，reproduction and binding 75.00
TOTAL
\＄7，182．55 ＝ニニニーニー $=$＝

RespectefuIIy submitted

APPENDIX I

HLEM FIELD DATA

			Refere	Frequen	112 Hz
Station	Line	Station	\%Ratio	\%Ratio	\%Ratio
			337 Hz	1012 Hz	3037 Hz

Line 200

	0	200	0	2	6	14
	-25	200	-25	0	8	8
	-50	200	-50	2	6	10
	-75	200	-75	1	5	8
	-100	200	-100	0	4	10
	-125	200	-125	5	10	18
	-150	200	-150	3	9	19
	-175	200	-175	2	8	20
	-200	200	-200	2	11	23
	-225	200	-225	3	14	40
Line 400						
	0	400	0	0	6	4
	-25	400	-25	2	5	20
	-50	400	-50	4	6	15
	-75	400	-75	3	5	16
	-100	400	-100	4	7	15
	-125	400	-125	5	8	14
	-150	400	-150	3	6	11
	-175	400	-175	5	5	7
	-200	400	-200	-3	6	9
	-225	400	-225	-4	7	12
	-250	400	-250	4	. 10	25
	-275	400	-275	6	15	30
	-300	400	-300	3	5	12
	-325	400	-325	-4	-8	-12
	-350	400	-350	-3	-2	0
	-375	400	-375	-2	3	6
	-400	400	-400	1	3	5
	-425	400	-425	1	1	5
	-450	400	-450	2	2	10
Line 600 : 0^{-400}						
	0	600	0	0	5	11
	-25	600	-25	4	10	17
	-50	600	-50	1	8	18
	-75	600	-75	2	7	18
	-100	600	-100	2	6	14
	-125	600	-125	2	5	11
	-150	600	-150	3	7	14
	-175	600	-175	3	10	17
	-200	600	-200	2	11	22
	-225	600	-225	5	11	21
	-250	600	-250	4	10	24
	-275	600	-275	2	11	15
	-300	600	-300	0	5	6
	-325	600	-325	-1	-3	-5
	-350	600	-350	-2	-5	-8
	-375	600	-375	0	-1	-3
	-400	600	-400	0	0	3
	-425	600	-425	2	3	4
	-450	600	-450	2	5	5
	- 175	6nn	-475	?	3	5

$\sigma_{\underset{\sim}{N}}^{\sim}$				
$\begin{array}{r} \text { U } \\ \text { E } \\ + \\ +0 \\ \hline \end{array}$				
			1や゙	NTNTMMNNNNHINMNHOHOHNNNHTNM
$\stackrel{\sim}{\underset{i}{i}}$		$\begin{gathered} 8 \\ \underset{1}{50} \\ \hline \end{gathered}$	 $\underset{1}{\text { @infin }}$	
$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & -1 \end{aligned}$		000000000000000000000000001
$\stackrel{\sim}{\sim}$			 nonomonomonomonomonomonoinonining	onomonowomonomonowonowomons
			$\stackrel{\text { ¢ }}{\text { ¢ }}$	

APPENDIX II

FIELD PROCEDURE \& INSTRUMENT SPECIFICATIONS GENIE SE-88 HLEM SYSTEM.

The Scintrex SE88 Genie EM system uses a portable transmitter consisting of two transmitting coils and power supply, and a receiver with signal detection electronics. The transmitter and receiver coils are normally maintained in the vertical axis coplanar mode, commonly referred to as the horizontal loop mode.

The transmitter simultaneously generates two alternating magnetic fields - one referred to as the "signal frequency" and the other as the "reference frequency". The resultant electromagnetic fields set up in the ground are detected by the receiver coil located at a fixed distance from the transmitter. The receiver measures the received "signal frequency" amplitude, H, and the received "reference frequency" amplitude, Hr . The value of (Hs/Hr) x 100 (referred to as "Ratio") is digitally displayed on the receiver.

The survey plotting point is considered to be at the mid-point of the transmitter-receiver separation (L).

The survey was conducted using $T x-R x$ separation of 100 m and three frequency pairs (3037.5/112.5, 1012.5/112.5, 337.5/112.5) were monitored and recorded. Readings were taken every 25 m . along the lines.

Receiving Element

Receiving Frequency Pairs

Transmitter-Receiver Separation

Maximum Transmitter-Receiver Separation

Iron-cored coil

Five pairs.
112.5 Hz reference with one of $337.5,1012.5$ or 3037.5 Hz ; or 337.5 Hz reference with one of 1012.5 or 3037.5 Hz .

Primary selector: $6.26 \mathrm{~m}, 12.5$ $\mathrm{m}, 25 \mathrm{~m}, 50 \mathrm{~m}, 100 \mathrm{~m}, 200 \mathrm{~m}$, plus Multiplier: x 1, x 1.25, x 1.5 , x 1.75

200 m under most conditions. Greater separations may bo possible depending on atmospheric and power line noise.

Transmitting Element

Transmitting Frequency Pairs

Transmitting Moments

Relative Amplitude Stability

Iron-cored coil for each frequency

Five pairs.
112.5 Hz reference with one of $337.5,1012.5$ or 3037.5 Hz ; or 337.5 Hz reference with one of 1012.5 or 3037.5 Hz

150 A , at $112.5 \mathrm{~Hz}, 100 \mathrm{~A}$, at $337.5 \mathrm{~Hz}, 50 \mathrm{Am}$ at 1012.2 Hz 25 Am at 3037.5 Hz .

Better than 0.1%

FILE NO:

GEOPHYSICAL REPORT

on the
ED 1 PROPERTY
Kamloops Mining Division
British Columbia
North Lat. 51022' West Long. 119059'
NTS 92G/14W and 92P/8E
.Prepared for.
368061 BC. LTD.
810-175 and Avenue
Kamloops, B.C. VAC 5W1
.Prepared by.
QUEST CANADA EXPLORATION SERVICES INC.
PRO. BOX 11569
840-650 West Georgia Street
Vancouver, B.C.
V6B 4N8

Paul P.L. Chung, F.G.A.C. Consulting Geologist
TABLE OF CONTENTS PAGE
INTRODUCTION 1
SUMMARY 1
LOCATION AND ACCESS 3
PROPERTY AND OWNERSHIP 4
HISTORY 4
GENERAL GEOLOGY 6
VLF-EM AND MAGNETOMETER SURVEYS 8
DISCUSSION OF RESULTS 9
RECOMMENDATIONS AND CONCLUSIONS 10
REFERENCES 12
STATEMENT OF QUALIFICATIONS 13
COST BREAKDOWN 15
ILLUSTRATIONS PAGE
FIgURE 1 - LOCATION MAP 2
FIGURE 2 - CLAIM MAP 5
FIGURE 3 - REGIONAL GEOLOGY MAP (FROM D.C. MILLER,1989) 7
FIGURE 4 - GEOPHYSICAL INTERPRETATION MAP
figure 5 - RESIDUAL MAGNETIC PROFILE MAP
figure 6 - RESIDUAL MAGNETIC CONTOUR MAP
figure 7 - VLF-EM PROFILE MAP: ANNAPOLIS TRANSMITTERIN-PHASE AND QUADRATURE ATTRIBUTES
FIGURE 8 - VLF-EM CONTOUR MAP: ANNAPOLIS TRANSMITTERFRASER FILTERED IN-PHASE ATTRIBUTES
FIGURE 9 - VLF-EM PROFILE MAP: SEATTLE TRANSMITTERIN-PHASE AND QUADRATURE ATTRIBUTESfigure 10 - VLF-EM CONTOUR MAP: SEATTLE TRANSMITTERFRASER FILTERED IN-PHASE ATTRIBUTES

APPENDICES

APPENDIX I - VLE-EM UNEILTERED DATA
APPENDIX II - FIELD RESIDUAL MAGNETIC DATA
APPENDIX III - INSTRUMENT SPECIFICATIONS - IGS-2 SYSTEM

INTRODUCTION

368061 B.C. Ltd. of Suite 810, 175-2nd Avenue, Kamloops, British Columbia holds an option to purchase 100% of the E-D 1 claim, located in the Kamloops Mining Division. This report, prepared at the request of the company, describes the VLF-EM and the magnetometer surveys that were conducted on the property between October 6th and 11th, 1989.

SUMMARY

The E-D 1 claim consists of 20 units covering 500 hectares. It is located some 80 km north-northeast of Kamloops, in the Kamloops Mining Division, British Columbia. It is readily accessible by well maintained logging roads departing from Highway 16 at the town of Barriere.

The subject property is underlain mainly by Unit EBP of the Eagle Bay Assemblage and its contact with the Baldy Batholith. Unit EBP consists mainly of phyllite and slate with interbedded siltstone and sandstone with lesser carbonate, quartzite, chlorite-sericite-quartz schist and metavolcanic rocks. The Fennell Formation is in contact with Unit EBP near the western boundary of the claim along a steep easterly directed thrust fault.

The Enargite showing of Kam Creed Mines Ltd. lies about 600 m south of the E-D 1 claim and is located at the contact of Eagle Bay and Fennell rocks. Mineralization consists of galena, sphalerite, chalcopyrite and pyrite in quartz veins and lenses. Some high silver and moderate gold values are also present.

In 1985 Noranda Exploration Company Limited carried out an airborne magnetic and electromagnetic survey of a large area near Birk Creek which included the subject property. This work indicated a number of northwesterly trending conductors to be present on the E-D property.

Previous geochemical surveys were carried out in the area of the E-D 1 claim by Craigmont Mines Limited in 1973. The target at this time was porphyry copper mineralization. North-south oriented lines were spaced 1000 Ft . apart with samples at 200 Ft . intervals along lines. Soil samples were analyzed for copper, molybdenum, lead and zinc. Some zinc anomalies were found, but not all were followed up.

The ground magnetometer and VLF-EM surveys on the E-D 1 claim has indicated a number of locations which warrant further exploration. The geophysical responses on the west side of the survey may be representative of a lithologic contact between the Eagle Bay Assemblage and the Fennell Eormation. Sulphide mineralization in the area is commonly associated with such a lithological contact. Proposed work consists of geological mapping and a Horizontal Loop EM survey.

LOCATION AND ACCESS

The property is located 80 km north-northeast of Kamloops, B.C. on NTS Map Sheets $82 \mathrm{M} / 5 \mathrm{~W}$ and $92 \mathrm{P} / 8 \mathrm{E}$. Road access to the property from Barriere, B.C. is gained by following the Barriere Lakes road eastward some 16 km to the junction of the North and East Barriere Lakes roads. From this point the North Barriere Lake road is followed for 8 km where the Birk Creek logging road turns off to the north. The Birk Creek road is then followed some 12 km to the point where a subsidiary road turns right. The legal corner post is located some 700 m south of this road (Figure 2). The geographical coordinates of the claimare 51022' N. Latitude and 119059' W. Longitude.

PROPERTY AND OWNERSHIP

The property is comprised of one M.G.S. claim totalling 20 units. The claim is located in the Kamloops Mining Division and is owned by 356586 B.C. Ltd. of 810-175, 2nd Avenue, Kamloops, B.C. The operator is 368061 B.C. Ltd. which and holds an option to acquire a 100\% interest of the property. The following table summarizes the pertinent claim data:

| CLAIM NAME | RECORD NO. | UNITS | EXPIRY DATE |
| :--- | :---: | :---: | :---: | :---: |
| E-D 1 | 4742 | 20 | Sept. . 161990 |

HISTORY

The area has been intermittently prospected and staked since the early 1900^{\prime} s. In 1924 the area immediately south of the property was staked and developed by trenches and an adit. Mineralization included galena, sphalerite, chalcopyrite and pyrite which is carried in quartz veins within metasedimentary rocks. Variable gold values and good silver values were reported. Two showings are described in the B.C. Minfile: 82M 064 and 065 which are referred to as the North Star north and south showings. The north showing is also known as the Ace or Enargite. In 1972, 4.5 tons of crude ore which contained 39.8 grams/tonne gold, 707.9 grams/tonne silver, 27.4% lead, 13.3% zinc and 0.25% copper was shipped from the north showing to the Trail smelter.

In 1984 Kam Creed Mines Ltd. completed 5 diamond drill holes totalling 1251 Ft. near the north Northstar showing. The best intersection was in hole one which was reported to cut 0.30 oz ./t gold from 331.2-333.0 Ft. in a pyritic, carbonaceous shale. This hole also intersected $0.16 \mathrm{oz./t}$ gold from 342-347 Ft. in a pale

green quartzite. Hole 3 intersected $0.06 \mathrm{oz./t}$ gold from 65-68 Ft. within pyritic shale.

In 1973 Craigmont Mines Ltd. carried out geochemical and ground geophysical surveys over a large area which included the present property. The surveys were carried out in search of porphyry copper mineralization along north-south lines spaced 1000 Ft. apart and along east-west lines spaced 3000 Ft . apart. Soil samples were taken along the lines at 200 Ft . intervals. Geochemical analysis was done for copper, molybdenum, lead and zinc. Several zinc anomalies were found, some of which were recently explored by Noranda Exploration Company Limited.

Noranda explored the adjoining B.C. claim with ground and airborne geophysics, geochemistry (2215 soil samples), 12 trenches and 14 diamond drill holes totalling 1036.9 m . The work was done between 1983 and 1987 and discovered pods of stratiform massive sulphides and stringer-type mineralization including silver, lead, zinc and minor barite.

In general, there has been considerable exploration activity in the region as a result of the discovery of the cC copper deposit in 1978 and the Rea-Samatosum silver-gold deposits in 1983-87.

GENERAL GEOLOGY

The property lies mainly within Unit EBP of the Eagle Bay Assemblage near its contact with the Baldy batholith to the north and the Fennell Formation to the west (Figure 3). The Eagle Bay Assemblage includes a structurally complex group of volcanic and sedimentary rocks which have been altered by generally low grade regional metamorphism to phyllites, schists, quartzites, marbles and metavolcanics. Various rock units strike mainly
EOCENE KAMLOOPS GROUP
eTs Mainly andesite and basalt, minor sediments

cretaceous

Kg. Granite and granodiorite
devenian to permian fennell formation
F Basolt, rhyolite, volcaniclastics, gabbro, diorite, chert and conglomerate
LOWER CANBRIAN/OLDER TO MISSISSIPPIAN
eagle bay assemblage
MISSISSIPPIAN
EBP Mainly phyllite, slare, siltstone and sandstone; lesser corbonates, quartzite, schist and metavoleanics DEVONIAN/MISSISSIPPIAN
EBF] Mainly phyllite and schist derived from intermediate volcanics devonian
EBA Mainly phyllite derived from felsic to intermediate volcanics LOWER CAMBRIAN? I OLDER?
EBG Mainly quartzite, sehist and phyllite
LOWER CAMbrianMainiy greenstone and ehlorite schist derived from mafl to intermediate volcanics; EBGT-Limestone and dolomite

X ec	Mineral property
Thrust fault (approx.)	
Geological boundary	

E-D1 CLAIM			
REGIONAL GEOLOGY MAP			
To ecoompany a roport br		Report No:	
Neming Pr \%	Kamioops	N.TS.:	820/5
Date:	10/10/89	Map No:	3

northwesterly and dip at various angles both eastward and westward. Rocks within the Eagle Bay range in age from Lower Cambrian? and/Older? to Mississippian.

From an economic point of view, the Eagle Bay rocks are of interest because they are host rocks for several mineral deposits including the Rea-Samatosum silver-gold deposit which is currently in production. Reserves for this deposit are quoted by Rea Gold Corporation as being 666,000 tons grading $32.08 \mathrm{oz} / \mathrm{t}$ silver, 0.052 oz/t gold, 3.5% zinc, 1.7% lead and 1.2% copper (undiluted).

The Fennell Formation may underlie the extreme western part of the property in fault contact with Eagle Bay rocks. Fennell rocks include several lithologies as indicated on Figure 4. The CC copper deposit occurs in mafic volcanic rocks within the Fennell and is reported to contain over 2,000,000 tons grading 2% copper.

Both the Eagle Bay and Fennell units have been intruded by the Baldy batholith near the north boundary of the property. No significant mineral showings are known within this intrusion, however, several occur along its border.

VLF-EM AND MAGNETOMETER SURVEYS

A total of 21.3 kms of VLF-EM and magnetometer survey were completed on the property employing two IGS-2 Digital Acquisition Systems each of which is capable of reading/recording total field magnetics and up to 3 VLF-EM stations. Specifications for the instruments accompanies this report as Appendix III. Readings were taken at 30 metre station intervals along north-east (050ㅇ) lines spaced every 200 metres. Mr. T. Balyntine and Mr. F. Thane, both experienced operators conducted the survey between October 6th and 11th, 1989. The geophysical data was interpreted by Mr. J.C. Murton, a Professional Geophysicist.

The magnetic readings were taken using a backpack mounted sensor with the operator facing north and corrected for diurnal variations using a base station magnetometer taking readings at 5 second intervals. The residual field data accompanies this report as Appendix II. The residual magnetic data presented in profile format and plan view contoured format can be seen in Figures 5 and 6.

The VLF readings were taken with the operator, in all cases, facing the station to ensure correct (ie: left to right across grid) cross-over direction. The VLF transmitter station in Seattle, Washington was used, as it most favourably couples with the orientation of the grid. In addition, readings utilizing the Annapolis transmitter station were taken to check for possible conductive cross structures. The raw survey data accompanies this report as Appendix I. The dip angle profiles and the Fraser filtered maps for both transmitter stations are presented in Figures 7 i- 10. Conductor axes and magnetic anomalies are plotted on Figure 4.

DISCUSSION OF RESULTS

The magnetic response is complex. A survey magnetic maximum was observed on the west end of Line 2400 N . This high may be associated with Fennell Formation rocks. There is a series of roughly parallel bands of elevated and depressed magnetic readings each approximately 120 metres wide trending NNW and NW on the west side of the property. The magnetic expression of the Eagle Bay phyllite (EBP on Figure 3) should be depressed relative to the more mafic Fennell rocks. Based upon the magnetic response, a conclusive boundary between the Fennell and the Eagle Bay rocks can not be drawn until a study of the local geology has been performed.

The conductors induced by the Annapolis transmitter (figures 4, $7 \& 8$), trending predominantly northwest, correlate well with the results from the 1985 airborne EM and VLF-EM survey conducted by Noranda Exploration Company. The conductors induced by the Seattle transmitter (Figures 4, 9 \& 10) trend mainly north or north-northwest. A few seattle conductors in the southern portion of the E-D 1 claim are an exception; they trend northwest and are aligned with Annapolis conductors.

The VLF-EM conductors interpreted on Figure 4 are coincident or nearly coincident with the bands of local magnetic highs (Figures $4 \& 5$). Overall, the conductors observed are poor conductors; the quadrature response nearly mimics the in-phase response. Good conductors exhibit strong in-phase crossovers and the quadrature usually lags by up to 90 degrees or mirrors the in-phase response. The best conductors were the northwest trending conductors observed on the southwest corner of the property.

Predominantly, the observed magnetic and VLF-EM response reflects lithologic change and structural geology; outside of the drainages to the south, the geophysical responses recorded do not significantly reflect topography.

CONCLUSIONS AND RECOMMENDATIONS

The ground geophysical magnetometer and VLF-EM survey on the E-D 1 claim has indicated a number of locations which warrant further exploration. The geological targets are polymetallic ores in quartz veins and lenses typical of the North Star north showing which is located 600 metres south. These sulphides are associated with the contact between the Eagle Bay Assemblage (low grade, regionally-metamorphosed sedimentary and volcanic rocks). The geophysical responses on the west side of the survey may be representative of such a lithologic contact and associated mineralization.

Good conductors, typical of the pods of stratiform massive sulphides and stringer-type mineralization discovered by Noranda on the adjacent $B C-1$ claim to the east, have not been conclusively observed in the inferred Eagle Bay phyllite side of the survey.

Further geophysical surveying is not recommended until geological mapping has been done and mapped lithologies correlated with observed geophysical anomalies. Contingent upon favourable results of surface mapping, a horizontal loop - EM survey should be conducted over areas of interest to confirm mineralization and determine the approximate depth and attitude of the mineralization.

Respectfully submitted,

REFERENCE

Miller, D.C., (1989): Report on the E-D 1 Claim, Kamloops Mining Division, For Wayne Tyner, D.C. Miller Geological Services.

Murton, J.C.,(1989): Geophysical Report On The E-D 1 Claim, For Quest Canada Exploration Services Inc., J.C. Murton.

STATEMENT OF QUALIFICATIONS

```
I, J.C. Murton, certify that:
```

(1) I am a geophysicist employed by Western Geophysical Aero Data Ltd. and White Geophysical Inc. in Richmond, BIC.
(2) I am a graduate of the University of British Columbia and earned a B. Sc. Degree in Geophysics in 1984.
(3) I am a Professional Geophysicist.
(4) I interpreted the geophysical data on the E-D 1 claim which was supplied to me by Quest Canada Exploration Services Inc.
(5) I have no direct or indirect interest in the property nor do I expect to receive any.

STATEMENT OF QUALIEICATIONS

I, Paul P.L. Chung, of the City of Richmond, Province of British Columbia, DO BEREBY CERTIFY THAT:
(1) I am a Consulting Geologist with business address office at Suite 840 - 650 West Georgia Street, Vancouver, British Columbia, V6B 4N8; and President of Boa Services Ltd.
(2) I am a graduate in geology with a Bachelor of Science degree from the University of British Columbia, in 1981 .
(3) 1 have practised my profession continuously since graduation.
(4) I am a Fellow of the Geological Association of Canada.
(5) I have conducted various mineral exploration programmes in B.C., Yukon, Manitoba, Ontario, Quebec, Nova Scotia, and Nevada.
(6) This report is based on data supplied to me by Quest Canada Exploration Services Inc.
(7) I have no direct, indirect, or contingent interest in the property nor do I expect to receive any.

Dated at Vancouver, British Columbia, this $9 t h$ day of November, 1989.

COST BREAKDOWN

Magnetometer and" 2 station VLF-EM survey$21.3 \mathrm{kms} @ \$ 170.00 / \mathrm{km}$$\$ 3621.00$
Mobilization and demobilization
Expenses 96.72
Wages
2 days @ $\$ 200.00 /$ day 400.00
Truck
7 days @ $\$ 35.00 /$ day 245.00
982 kms @ $\$ 0.35 / \mathrm{km}$ 343.70
Report Costs
Geophysical interpretation
1.5 days at $\$ 225 /$ day 337.50
Report writing
4 days at $\$ 300 /$ day 1200.00
Drafting 342.50
Photocopying, reproduction and binding 75.00
TOTAL \$6661. 42
= = = = = = =
Respoctrualiviso
Paul

APPENDIX I

VLF-EM FIELD DATA

Station	Line	Statian	In-Fhase	Quad.	Fld. Str.
line	2400				
-570	2400	-570	0	-1	25
-540	2400	-540	6	2	30
-510	2400	-510	-9	1ϵ	17
-480	2400	-480	-21	5	ϵ
-450	2400	-450	-4	7	3
-420	2400	-420	0	5	11
-390	2400	-390	-6	1	12
-360	2400	-360	-2	-1	8
-330	2400	-330	2	-1	10
-300	2400	-300	3	-1	21
-270	2400	-270	-2	2	30
-240	2400	-240	-E	1	15
-210	2400	-210	5	1.	1ϵ
-180	2400	-180	5	-4	17
-150	2400	-150	11	0	30
-120	2400	-120	-4	-2	27
-90	2400	-90	0	0	27
-60	2400	-60	0	0	28
-30	2400	-30	1	1.	30
0	2400	0	-5	1	28
30	2400	30	-2	0	65
60	2400	60	-2	1	74
90	2400	90	-1	1	71
120	2400	120	-3	1	80
150	2400	150	-5	4	45
180	2400	180	-17	2	39
210	2400	210	-13	0	47
240	2400	240	-14	0	49
270	2400	270	-17	1	42
300	2400	300	-27	0	22
330	2400	330	-28	2	19
360	2400	360	-30	2	15
390	2400	390	-32	1	7
420	2400	420	-30	0	97.9
450	2400	450	-23	1	$9 \mathrm{E.2}$
480	2400	480	-24	3	97.3
510	2400	510	-17	3	0
540	2400	540	-14	0	79.2
570	2400	570	-12	-1	5
600	2400	600	-15	-8	92.6
630	2400	ESO	-10	-8	91.1
EEO	2400	660	-10	-6	94.2
E90	2400	6 ± 0	-9	- E	92.8
720	2400	720	-10	-8	89.3
750	2400	750	-9	-9	87.3
line	2600				
-420	2600	-420	-20	8	6
-390	2600	-390	-13	8	10
-360	2600	-360	-10	1	11
-330	2600	-330	-10	2	14
-300	2600	-300	-7	2	15
-270	2600	-270	-1	5	24
-240	2600	-240	-9	-2	13

Station	Line	Statign	In-Fhase	Quad.	Fld. Str.
-210	2600	-210	-Э	-	13
-180	2600	-180	-1	-2	13
-150	2600	-150	0	-1	17
-120	2600	-120	-2	-1	24
-90	2600	-90	$-E$	0	17
-60	EGOO	-EO	-	2	14
-30	2600	-30	-2	-1	14
0	FEOO	0	0	- -	13
30	2600	30	-1	-3	12
60	2600	EO	-1	0	21
90	2600	90	-9	2	17
120	2600	120	-2	0	19
150	2600	150	-6	1	15
180	2600	180	-2	5	13
210	2600	210	0	5	15
240	2600	240	-2	5	2
270	2600	270	-	4	13
300	2600	300	-5	$\underline{\square}$	19
330	2600	330	-8	1	21
360	2600	360	-12	4	25
390	2600	390	-25	3	20
420	2600	420	-33	5	5
450	2600	450	-31	4	94.7
480	2600	480	-29	4	92.3
510	2600	510	-28	3	8Э.4
540	2600	540	-28	2	82.8
570	2600	570	-27	0	79.5
EOO	2600	600	-16	-5	79
630	2600	E30	-10	$-E$	79.7
EEO	2600	EEO	-5	-7	77.4
690	2600	690	0	-6	71.7
line	2800				
-240	2800	-240	3	3	27
-210	2800	-210	0	0	27
-180	2800	-180	3	-1	25
-150	2800	-150	6	-1	25
-120	2800	-120	E	-1	31
-90	2800	-90	0	-3	31
-60	2800	-EO	0	-1	30
-30	2800	-30	-4	-1	27
0	2800	0	0	0	28
30	2800	30	-6	0	30
60	-800	60	-11	-2	2 E
90	2800	90	-4	0	23
120	2800	10	$-E$	0	27
150	2800	150	-6	0	29
180	2800	180	-1	-3	21
210	2800	210	2	-2	27
240	2800	240	-1	0	36
270	2800	270	-8	-4	25
300	2800	300	0	0	- 6
330	2800	330	-2	2	31
360	2800	360	-11	2	29
300	2800	390	-6	5	27
420	2800	420	-4	E	36

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
450	2800	450	-13	4	42
480	2800	480	-21	5	39
510	2800	510	-32	5	39
1ine	3000				
--90	3000	-90	-13	. 5	17
-60	3000	-60	2	0	38
\cdots	3000	-30	-7	$-E$	41
0	3000	0	-	0	46
30	3000	30	-2	4	42
60	3000	60	-17	0	46
90	3000	90	-17	1	31
120	3000	120	-12	2	27
150	3000	150	- E	1	30
180	3000	180	-10	0	37
210	3000	210	-13	-2	27
line	1800				
-1080	1800	-1080	27	-10	92.5
-1050	1800	-1050	13	-11	19
-1020	1800	-1020	5	-3	4
-970	1800	-990	-13	10	7
-960	1800	-960	- -	-2	96.7
-930	1800	-930	-3	-7	93.5
-900	1800	-900	3	4	93.6
-870	1800	-870	11	5	95.1
-840	1800	-840	10	1	0
-810	1800	-810	-2	3	9
-780	1800	-780	-15	2	4
-750	1800	-750	-12	6	95.1
-720	1800	-720	-3	5	97.6
-690	1800	-690	-4	0	98.5
-6EO	1800	-6EO	-1	-1	95.9
-630	1800	--630	-1	-2	96.7
--600	1800	-600	0	-1	75.8
-570	1800	-570	3	0	97
-540	1800	-540	2	0	97.5
-510	1800	-5.0	-6	0	97.9
-480	1800	-480	-3	0	94.3
-450	1800	-450	4	-2	95.3
-420	1800	-420	7	-4	92.2
-390	1800	-390	9	-4	95.2
--360	1800	-360	-3	-E	96.7
-330	1800	-330	-8	-4	95.8
-300	1800	-300	-10	0	74.4
-270	1800	-270	-8	3	90.3
-240	1800	-240	-9	2	92.4
-210	1800	-210	-8	2	84
-180	1800	-180	-8	3	82.9
-150	1800	-150	-4	3	85
-120	1800	-120	-2	2	85.2
--90	1800	-90	0	2	85.2
-60	1800	-6O	0	0	85.5
--30	1800	-30	0	1	83.6
0	1800	0	ϵ	4	74.75
30	1800	30	2	3	65
60	1800	60	5	3	63.6

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
90	1800	90	17	13	64.8
120	1800	120	7	8	73.3
150	1800	150	-2	4	71
180	1800	180	0	3	67.5
210	1800	210	2	3	67.5
240	1800	240	-1	2	69.1
270	1800	270	4	1	69.7
300	1800	300	5	0	70.2
330	1800	330	8	1	70.2
360	1800	360	10	2	69.2
390	1800	390	3	1	6E. 2
420	1800	420	2	0	65. 8
450	1800	450	7	3	64.8
480	1800	480	13	5	6E. 6
510	1800	510	16	ϵ	68. ϵ
540	1800	540	1ϵ	E	70.3
570	1800	570	1ϵ	ϵ	73.5
600	1800	600	14	5	78.8
630	1800	630	15	4	80.5
660	1800	E60	13	2	83.5
690	1800	690	14	0	85.6
line	2000				
-930	2000	-930	14	-5	12
-900	2000	-900	0	-3	19
-970	2000	-870	-2	-1	1ϵ
-840	2000	-840	-6	ϵ	12
-810	2000	-810	-3	4	12
-780	2000	--780	-9	1	10
-750	2000	-750	-3	ϵ	0
-720	2000	-720	7	14	ϵ
-690	2000	-690	-10	4	12
-660	2000	-6EO	-4	2	10
-630	2000	$\cdots 60$	0	3	ϵ
-600	2000	-600	7	2	13
-570	2000	- 570	3	O	17
--540	2000	-540	-4	0	14
-510	2000	--510	-3	-1.	12
-480	2000	-480	0	0	13
-450	2000	-450	$-E$	-1	10
-420	2000	-420	-2	-2	ϵ
-390	2000	-390	-1	-1	7
-360	2000	--360	0	-3	4
-330	2000	-330	\bigcirc	-4	2
-300	2000	-300	7	-3	7
-270	2000	-270	-4	-4	8
-240	2000	-240	-5	-1	3
-210	2000	-210	-14	-2	1
-180	2000	-180	-17	-4	99.7
-150	2000	-150	-10	-3	99.5
-120	2000	-120	-6	--3	98.5
-90	2000	-90	-8	-1	3
-60	2000	-60	-10	0	96.4
-30	2000	-30	-12	2	94.7
0	2000	0	-12	2	92. 1
30	2000	30	-7	2	86. 5

Station	Line	Statign	In-Fhase	Quad.	Fld. Str.
EO	2000	60	- 6	1	85.9
90	2000	90	-7	1	81.7
120	2000	120	0	0	82.4
150	2000	150	0	0	81
180	2000	130	3	0	73.6
210	2000	210	0	0	78.1
240	2000	240	5	4	75.3
270	2000	270	8	3	75.9
300	2000	300	11	5	74.8
330	2000	330	11	2	77.1
360	2000	360	9	2	7E.5
390	2000	390	10	5	80. 2
420	2000	420	7	5	78.7
450	2000	450	\exists	4	76.5
480	2000	480	11	5	74.4
510	2000	510	7	0	74.1
540	2000	540	8	-1	73.4
570	2000	570	11	2	73.7
600	2000	EOO	12	4	72.
E30	2000	ESO	17	7	70.6
EEO	2000	EGO	15	4	7\%. こ
690	2000	E90	15	$\underline{\square}$	74.1
720	2000	720	13	1	73.
line	2200				
-750	2200	-750	-8	9	43
-720	2200	-720	-11	7	28
-690	2200	-690	-9	10	23
$-E \in O$	2200	-660	0	9	-1
-ESO	2200	-6З0	-3	7	29
-600	2200	-600	$-E$	5	25
-570	200	-570	-2	3	24
-540	2000	-540	5	2	23
-510	2200	-510	E	1	-7
-480	2200	-480	4	0	31
-450	200	-450	4	1	29
-420	200	-420	0	0	31
-390	2200	-390	5	$\underline{2}$	29
-360	200	-360	1	1	30
-330	220	-330	1	1	28
-300	2200	-300	\because	2	30
-270	200	-270	-5	1	30
-240	200	-240	-3	0	21
-210	2200	-210	-5	0	18
-180	200	-180	-3	-1	24
-150	2200	-150	$-E$	-3	22
-120	200	-120	-4	0	17
-90	2200	-90	-3	0	23
-60	2000	-60	-8	3	16
-30	2200	-30	0	0	20
0	2200	0	-12	1	2
30	2200	30	-14	-	11
60	2200	EO	-9	1	10
90	2200	90	-23	$\underline{2}$	1
120	2000	120	-28	1	95. 3
150	2200	150	-23	-2	80.8

Statian	Line	Station	In-Fhase	Quad.	Fld. Str.
180	2200	180	-32	- 6	75
210	2200	210	-26	0	71.9
240	2200	240	-41	-16	61.5
270	2200	270	-30	-4	63
300	2200	300	-23	-1	E.
330	2200	330	-18	2	58.8
360	2200	360	-9	4	60.1
390	2200	390	-11	1	E2. 1
420	2200	420	-13	0	61.5
450	2200	450	-9	-1	63
480	2200	480	-12	-2	E3.E
510	2200	510	-8	-3	63.3
540	2200	540	-4	-4	61.7
570	2200	570	1	-2	E1.5
600	2200	600	5	2	62.3
E30	2200	E30	-4	ϵ	E1.4
E60	2200	E60	4	8	62.3
- 690	2200	690	7	7	65.2
720	2200	720	ϵ	4	E.5. 3
750	2200	750	10	-2	E3. 6
line	1200				
-1410	1200	-1410	23	-3	93.9
-1380	1200	-1380	27	-5	0
-1350	1200	-1350	25	-9	9
-1320	1200	-1320	13	-16	13
-1290	1200	-1290	17	-18	94.9
-1260	1200	-1260	28	-15	79.8
-1230	1200	-1230	17	-7	37
-1200	1200	-1200	-4	-1	37
-1170	1200	-1170	-21	1	19
-1140	1200	-1140	-8	-4	ϵ
-1110	1200	-1110	$-1 E$	-2	97.6
-1080	1200	-1080	-7	$-E$	8
-1050	1200	-1050	-14	-11	1
-1020	1200	-1020	-9	-3	1
-990	1200	-990	-14	-3	4
-960	1200	-960	-18	-4	1
-930	1200	-930	-9	-5	93
-900	1200	-900	-15	-9	96.4
-870	1200	-870	-12	-4	95.3
-840	1200	-840	-9	-8	91.3
-810	1200	-810	-3	-7	92
-780	1200	-780	3	-5	93.5
-750	1200	-750	13	1	94.5
-720	1200	-720	9	ϵ	5
-690	1200	-690	-10	5	95. 6
-660	1200	-6EO	-10	5	95.4
-630	1200	-630	-8	E	95.2
-600	1200	-600	$-\epsilon$	3	96
-570	1200	-570	-11	0	88.7
-540	1200	-540	-4	1	88
-510	1200	-510	-8	0	89.9
-480	1200	-480	-12	0	87.2
-450	1200	-450	-5	0	88.5
-420	1200	-420	-4	0	87

Statign	Line	Station	In-Fhase	Qutad.	Fld. Str.
-390	1200	-3'Э0	-1	0	8E.E
-360	1200	-360	0	-1	83.1
-330	1200	-330	1	0	88.4
-300	1200	-300	2	1	85.7
-270	1200	-270	4	-	8E. 8
-240	1200	-240	-3	-4	82.2
-210	1200	-210	8	-1	80.2
-180	1200	-180	10	3	85.4
-150	1200	-150	3	2	83.7
-120	1200	-120	5	1	82. 6
-90	1200	-90	10	-2	80.5
-60	1200	-60	1.1	0	80. 6
-30	1200	-30	13	3	84.3
0	1200	0	8	7	88.5
30	1200	30	ϵ	3	37
60	1200	60	15	0	38
90	1200	90	13	1	46
120	1200	120	1	3	50
150	1200	150	0	ε	37
130	1200	180	-.	4	31
210	1200	210	9	5	25
240	1200	240	8	1	30
270	1200	270	5	-7	18
300	1200	300	13	-4	18
330	1200	330	25	-3	20
360	1200	360	14	1	42
370	1200	370	3	0	32
420	1200	420	5	2	30
450	1200	450	E	4	31
480	1200	480	8	z	27
510	1200	510	16	1	27
540	1200	540	15	-2	25
570	1200	570	16	0	27
EOO	1200	600	18	5	32
ESO	1200	630	8	4	43
EEO	1200	EEO	-5	-1	34
E90	1200	690	-4	-1	21
720	1200	720	Σ	2	13
750	1200	750	E	4	13
780	1200	780	7	3	9
810	1200	810	8	7	1
840	1200	840	12	5	ϵ
1 ine	1400				
-1410	1400	-1410	0	0	78.4
-1380	1400	-1380	5	-3	81.2
-1350	1400	-1350	13	-	83.3
-1320	1400	-1320	14	-2	82.1
-1290	1400	-1290	17	$-E$	81.8
-1260	1400	-1260	20	-8	83.2
-1230	1400	-1230	二E	-9	83
-1200	1400	-1200	34	-4	86.1
-1170	1400	-1170	18	-9	5
-1140	1400	-1140	9	-4	4
-1110	1400	-1110	-4	0	1
-1080	1400	-1080	-3	1	94. 9

Station	Line	Station	In－Fhase	Quad．	Fld．Str．
-1050	1400	-1050	－5	2	Эこ．7
-1020	1400	-1020	－8	11	93
－990	1400	－990	$-1 E$	8	93.8
－ 960	1400	－960	－12	14	85.7
－930	1400	－930	-13	10	B2． 1
－900	1400	－900	－11	8	84.3
－870	1400	－870	－Э	4	83.2
-840	1400	－840	－9	3	84.7
-810	1400	－810	－8	7	85
－780	1400	-780	－9	6	86． 8
-750	1400	-750	－7	0	78.4
－720	1400	-720	1	5	80.4
－6＇50	1400	－6G0	－E	-3	82.4
－EEO	1400	$-6 \in O$	－5	－9	80.4
－630	1400	－ESO	3	$-E$	79
－600	1400	－600	7	－4	81.7
－570	1400	-570	5	－4	86．5
-540	1400	-540	-20	－4	87.9
-510	1400	-510	－6	3	81
-480	1400	-480	－3	θ	83.1
-450	1400	－450	－8	7	87．2
－420	1400	-420	-5	5	90．1
－390	1400	－390	2	ϵ	83.9
－360	1400	-360	5	5	77.3
-330	1400	－330	3	1	78.7
－300	1400	－900	7	1	73.1
－270	1400	－270	9	4	73．E
－240	1400	－240	0	1	78.3
-210	1400	-210	－4	1	77
-180	1400	-180	-4	1	72．
-150	1400	-150	－1	0	68
-120	1400	-120	0	0	$E \in . \epsilon$
－90	1400	－90	5	1	ES． 7
-60	1400	－60	0	2	59.9
-30	1400	-30	8	1	Eこ．3
0	1400	0	11	0	E4．4
30	1400	30	E	0	EF． 1
60	1400	EO	11	1	E4． 6
90	1400	90	18	5	E8． 9
120	1400	120	17	ϵ	70.5
150	1400	150	19	4	71.8
180	1400	180	23	7	フ玉．こ
210	1400	210	20	7	76．E
240	1400	240	22	10	86
270	1400	270	15	7	86． 8
300	1400	300	10	4	88.5
330	1400	330	13	9	Эこ．
360	1400	360	4	1	90.8
390	1400	390	3	－1	86． 9
420	1400	420	9	0	84.9
450	1400	450	12	1	87.5
480	1400	490	6	1	90.8
510	1400	510	11	5	90.2
540	1400	540	11	9	93.8
570	1400	570	12	E	93．E

Statiom	Line	Station	In－Fhase	Quad．	Fld．Str．
EOO	1400	600	7	\because	93.1
E30	1400	E30	12	7	94． 9
EEO	1400	EEO	15	5	93.6
E90	1400	690	12	-3	95． 4
720	1400	720	21	4	日Э．${ }^{\text {9 }}$
750	1400	750	16	ϵ	99.9
780	1400	780	E	5	ε
810	1400	810	E	4	98
840	1400	840	10	1	93.9
870	1400	870	17	5	95.3
1 ine	1600				
-1200	1600	-1200	40	-12	87.8
-1170	1600	-1170	41	$-\epsilon$	E
-1140	1600	-1140	1	－1	37
-1110	1600	－1110	-2	1	18
-1080	1600	-1080	-3	0	9
-1050	1600	-1050	$こ$	1	8
-1020	1600	-1020	$\underline{\square}$	7	3
－990	1600	-990	14	7	0
-960	1600	－960	-20	3	11
－930	1600	-930	－20	7	Ge． 1
－900	1600	－900	-10	10	90.8
－870	1600	－870	-3	11	89.9
-840	1600	－840	ϵ	10	94.7
－810	1600	－810	10	13	玉
-780	1600	－780	-5	8	3
-750	1600	-750	-2	7	8E． 3
-720	1600	－720	-10	E	94.4
－690	1600	－690	－7	3	95.8
$-6 \in O$	1600	$-E \in O$	－4	4	94.7
-630	1600	－630	－1	1	97.8
－600	1600	－600	0	1	99.1
-570	1600	－570	-3	1	94
-540	1600	－540	4	4	96． 1
-510	1600	－510	-15	－2	ЭЄ． 8
－－480	1600	-480	-18	－3	95
-450	1600	-450	-10	-2	G2．1
-420	1600	－420	-2	－1	91.1
－390	1600	-390	-7	-2	87
-360	1600	－360	-3	－1	84.5
－330	1600	－330	0	-1	82． 6
-300	1600	－300	9	1	8E．E
-270	1600	-270	5	-3	87．1
-240	1600	－240	9	-2	81
-210	1600	-210	10	0	87． 2
-180	1600	－180	9	0	88.5
-150	1600	-150	10	0	88.3
-120	1600	-120	4	4	92．8
－ 90	1600	-90	1	4	Э2．1
－60	1600	－EO	2	0	89.5
－30	1600	-30	7	0	93
0	1600	0	1	1	94.9
30	1600	30	0	1	88.5
EO	1600	EO	5	0	86．3
90	1600	90	9	-2	82．3

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
120	1600	120	3	--	79.3
150	1600	150	\cdots	-5	79
180	1600	180	10	0	78.1
210	1600	-10	11	3	78. 3
240	1600	240	12	4	79.7
270	1600	270	17	4	79.8
300	1600	300	18	7	76.7
330	1600	330	20	ϵ	84.8
360	1600	360	20	4	87.1
300	1600	390	17	2	8 E .3
420	1600	420	21	4	88. -
450	1600	450	15	1	9'
480	1600	480	10	-4	89.1
510	1600	510	14	-3	88.9
540	1600	540	13	-3	89.4
570	1600	570	10	-4	8E. 7
EOO	1600	600	12	-3	84.5
E30	1600	630	$1 E$	-1	84.5
EEO	1600	EEO	$1 E$	-	85.3
E90	1600	690	17	0	88.9
720	1600	720	14	-1	90.1
750	1600	750	9	-3	90. 3
780	1600	780	11	-3	85.5
810	1600	810	13	3	90.5
line	800				
-990	800	-990	3	-1	102
-960	800	-960	-3	0	87.8
-930	800	-930	-9	-4	97.6
-900	800	-900	-3	-1	92
-870	800	-870	0	-3	98.8
-840	800	-840	- -	-3	97.1
-810	800	-810	-5	-5	94.8
-780	800	-780	-7	-4	92.8
-750	800	-750	-9	-2	95.3
-720	800	-720	-16	1	93
-690	800	-690	-31	-1.	85.
-EEO	800	-660	-0	1	92.8
-630	800	-630	-20	0	89.4
-600	800	-600	-2	-1	87.1
-570	800	-570	-10	0	87.7
-540	800	-540	0	0	85.1
-510	800	-510	0	-1	84.4
-480	800	-480	-7	-4	97.3
-450	800	-450	-9	$-E$	87.4
-420	800	-420	-9	-7	84.6
-390	800	-390	-6	-5	85.8
-360	800	-360	-19	$-E$	86.7
-330	800	-330	-18	-7	82.E
-300	800	-300	-3	-4	Э6.4
-270	800	-270	0	-4	Э'.
-240	800	-240	-2	-5	101
-210	800	-210	-8	-2	102
-180	800	-180	-11	-2	93.3
-150	800	-150	-13	-1	94.3
-120	800	-120	-7	0	84.1

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
-50	800	-90	0	0	89.2
-60	800	-60	-3	-2	85.6
-30	800	-30	1	2	89.3
O	800	0	-11	5	97.2
30	800	30	3	8	92.2
60	800	60	7	7	91.5
90	900	90	8	7	95.1
120	800	120	5	3	90.1
150	800	150	5	3	94
180	800	180	2	2	96. 1
210	800	210	1	2	95.6
240	800	240	5	3	91.9
270	800	270	3	3	96.1
300	800	300	2	3	97
330	800	330	0	5	99
360	800	360	2	4	3
390	800	390	7	1.	4
420	800	420	10	0	0
450	800	450	8	5	3
480	800	480	-4	5	9
510	800	510	-11	0	1
540	800	540	-4	3	0
570	800	570	-5	0	3
600	800	600	$-\epsilon$	-2	1
630	800	E30	-2	0	78.8
line	600				
-720	600	-720	-8	1	. 05
-690	600	-690	-15	0	. 06
-660	600	-660	-24	-1	. 02
-630	600	-630	-26	-2	. 04
-600	600	-600	-13	0	.07
-570	600	-570	-5	1	. 05
-540	600	-540	0	1	. 115
-510	600	-510	E	2	. 1
-480	600	-480	5	1	. 02
-450	600	-450	5	0	. 05
-420	600	-420	3	1	.09
-390	600	-390	-1	-1	. 1
-360	600	-360	-2	-1	. 06
-330	600	-330	0	0	. 06
-300	600	-300	-8	-2	. 06
-270	600	-270	-7	2	. 06
-240	600	-240	3	1	. 06
-210	600	-210	2	1	. 05
-180	EOO	-180	0	0	. 11
-150	600	-150	-6	1	. 03
-120	600	-120	-2	2	. 04
-90	600	-90	3	1	. 02
-60	EOO	-60	2	0	. 05
-30	600	-30	3	0	. 08
0	600	0	9	-4	1
30	EOO	30	8	0	78.5
60	600	60	4	1	5
90	600	90	3	3	10
120	600	120	4	4	7

Station	Line	Statign	In-Fhase	Quad.	Fld. Str.
150	EOO	150	\square	1	9'ヨ
180	EOO	180	1	0	2
210	600	210	0	0	99.4
240	EOO	240	1	1	'78.8
270	600	270	0	3	1
300	EOO	300	-1	0	98.1
330	600	330	-2	4	0
360	E00	360	-1	5	94.7
30	EOO	390	-1	5	9\%. 9
420	600	420	-1	4	92.6
line	400				
-480	400	-480	-10	-3	93.8
-450	400	-450	0	0	93.
-420	400	-420	-	- -	1
-390	400	-350	-4	$-E$	97.4
-360	400	-360	-3	-5	93.3
-330	400	-330	-1	-5	93.1
-300	400	-300	-1	3	-
-270	400	-270	0	3	4
-240	400	-240	1	0	95.7
-210	400	-210	13	0	97.7
-180	400	-180	15	4	10
-150	400	-150	0	12	1
-120	400	-120	-3	ϵ	4
-90	400	-90	0	5	4
-60	400	-60	2	0	0
-30	400	-30	7	0	4
0	400	0	4	-3	3
30	400	30	0	$-E$	17
60	400	EO	$-1 E$	1	13
90	400	90	-7	3	10
120	400	120	-4	0	10
150	400	150	3	0	\exists
180	400	180	8	0	10
210	400	210	5	-2	18
240	400	240	3	-3	21
270	400	270	-11	-2	18
300	400	300	-9	0	7
330	400	330	-4	-3	10
line	1000				
-1230	1000	-1230	4	-1	15
-1200	1000	-1200	-18	0	15
-1170	1000	-1170	-5	2	13
-1140	1000	-1140	-9	0	14
-1110	1000	-1110	-11	-2	13
-1080	1000	-1080	-16	-5	13
-1050	1000	-1050	-15	0	98.4
-1020	1000	-1020	$-E$	-7	1
-990	1000	-990	-14	-1	1
-960	1000	-960	-15	-1	78.2
-930	1000	-990	-17	-5	ЭE.2
-900	1000	-900	-14	-5	98.6
-870	1000	-870	-E	-4	0
-840	1000	-840	-2	-3	7
-810	1000	-810	-2	-2	8

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
-730	1000	-730	0	-2	10
-750	1000	-750	14	1	11
-720	1000	-720	7	7	8
-690	1000	-690	0	ϵ	2
-6EO	1000	- EEO	-3	z	11
-630	1000	-630	2	1.	11
-600	1000	-600	7.5	0	46.3
-570	1000	-570	5	-2	7
-540	1000	-540	1	-2	10
-510	1000	-510	5	-2	E
-480	1000	-480	7	-1	12
-450	1000	-450	8	1	18
-420	1000	-420	0	0	22
-390	1000	-390	-9	0	21
-360	1000	-360	-5	4	18
-330	1000	-330	1	ϵ	13
-300	1000	-300	- -	3	15
-270	1000	-270	-7	1	11
-240	1000	-240	-7	0	1.
-210	1000	-210	-6	0	E
-130	1000	-180	4	3	3
-150	1000	-150	9	3	7
-120	1000	-120	12	0	9
-90	1000	-90	10	0	16
-60	1000	-60	3	-1	18
-30	1000	-30	0	1	15
0	1000	0	-4	1	17
30	1000	30	-1	2	12
60	1000	60	3	3	15
90	1000	90	4	3	17
120	1000	120	0	1	20
150	1000	150	-2	0	14
190	1000	180	0	1	15
210	1000	210	ϵ	1	12
240	1000	240	11	0	20
270	1000	270	14	-1.	21
300	1000	300	2	-3	ϵ
330	1000	330	9	0	9
360	1000	360	3	-1	13
390	1000	390	4	-2	11
420	1000	420	10	0	11
450	1000	450	11	1	12
480	1000	480	12	2	12
510	1000	510	10	2	17
540	1000	540	4	1	17
570	1000	570	-4	-3	15
600	1000	600	0	0	13
E3O	1000	E30	1	0	5
660	1000	EEO	0	-1	7
690	1000	690	2	0	ϵ
720	1000	720	1	-2	8
750	1000	750	4	0	8
780	1000	780	5	-1	11
810	1000	810	6	-2	8
line	200				

Station	In-Fhase
-240	4
-210	8
-180	6
-150	1
-120	1
-90	-
-60	0
-30	-9
0	-18
30	-13
60	-3
90	13
120	15
150	11

Quad.	Fld. Str.
3	93.2
4	99.6
2	4
0	1
-2	1
-3	0
-2	8
-4	6
-13	91.7
-13	84.5
-9	82.8
0	82.9
2	89.7
2	90.6

Station line -570 -540 -510 -480 -450 -420 -390 -360
-330 -300
-270 -240

$$
\begin{aligned}
& -210 \\
& -190
\end{aligned}
$$

$$
\begin{aligned}
& -150 \\
& -150
\end{aligned}
$$

$$
-120
$$

$$
\begin{aligned}
& -90 \\
& -60
\end{aligned}
$$

$$
-30
$$

$$
\begin{array}{r}
0 \\
30
\end{array}
$$

$$
\begin{aligned}
& 30 \\
& 60
\end{aligned}
$$

$$
\begin{array}{r}
90 \\
120
\end{array}
$$

$$
150
$$

180

 330 360 390 420 450
480 510 540 570 600 630 660 690 720 750 line

$$
\begin{aligned}
& -420 \\
& -390 \\
& -360 \\
& -300 \\
& -300 \\
& -270
\end{aligned}
$$

Line	Station	In-Fhas
2400		
2400	-570	18
2400	-540	27
2400	-510	15
2400	-480	4
2400	-450	17
2400	-420	22
2400	-390	18
2400	-360	19
2400	-330	22
2400	-300	21
2400	-270	20
2400	-240	ϵ
2400	-210	10
2400	-180	23
2400	-150	26
2400	-120	16
2400	-90	21
2400	-60	18
2400	-30	24
2400	0	20
2400	30	20
2400	60	19
2400	90	18
2400	120	19
2400	150	20
2400	180	16
2400	210	14
2400	240	12
2400	270	8
2400	300	8
2400	330	7
2400	360	8
2400	350	7
2400	420	11
2400	450	12
2400	480	14
2400	510	14
2400	540	16
2400	570	15
2400	EOO	14
2400	630	16
2400	$6 \in 0$	16
2400	690	18
2400	720	5
2400	750	-3
2600		
2600	-420	18
2600	-390	23
2600	-360	14
2600	-330	21
2600	-300	32
2600	-270	39

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
420	2800	420	15	3	7.53
450	2800	450	10	0	7.59
430	2800	480	9	3	7.66
510	2800	510	3	1	7.29
1 i пe	3000				
-90	3000	-90	27	-8	E.925
-60	3000	-EO	25	-8	6.32
-30	3000	-30	34	-8	E.02
0	3000	0	26	-8	E.28
30	3000	30	32	0	E. 81
60	3000	60	13	0	7.23
90	3000	90	20	3	E. 7
120	3000	120	22	1	6.75
150	3000	150	27	3	6.74
180	3000	180	21	0	6.79
210	3000	210	21	-2	6.53
line	1800				
-1080	1800	-1080	$5 E$	-15	3.9e
-1050	1800	-1050	37	-15	E. 17
-1020	1800	-1020	24	-3	6.12
-990	1800	-990	7	1	E. 75
-960	1800	-960	8	3	5.17
-930	1800	-930	10	3	4.82
-900	1800	-900	19	0	4.95
-870	1800	-870	21	-1	5.21
-840	1800	-840	12	0	5.35
-810	1800	-810	10	4	5.04
-780	1800	-780	E	3	4.89
-750	1800	-750	23	7	4.99
-720	1800	-720	14	4	5.48
-690	1800	-690	7	2	5.32
-EEO	1800	-EEO	5	1	5.26
-630	1800	-630	7	0	5.07
-600	1800	-600	8	2	5.09
-570	1800	-570	13	4	4.96
-540	1800	-5540	10	2	5.16
-510	1300	-510	11	3	5.15
-480	1800	-480	9	2	5.1
-450	1800	-450	ϵ	0	4.89
-420	1800	-420	14	0	4.52
-390	1300	-390	17	-1	4.8
-360	1800	-360	14	-1	4.96
-330	1800	-330	13	0	5.05
-300	1800	-300	9	-1	4.96
-270	1800	-270	15	0	4.97
-240	1800	-240	20	-1	5.02
-210	1800	-210	16	-6	5.37
-180	1800	-180	17	-5	5.14
-150	1800	-150	16	-5	5.67
-120	1800	-120	11	-4	5.49
-90	1800	-90	12	-3	5.62
-60	1800	-60	9	-1	5.46
-30	1800	-30	13	0	5.57
0	1800	0	18	1	5.24
30	1800	30	13	0	E

Statian	Line	Station	In-Fhase	Quad.	Fld. Str.
$E 0$	1800	EO	14	0	5.79
50	1800	90	25	0	5.77
120	1800	120	15	-1	E. F^{\prime}
150	1800	150	17	1	E. 24
180	1800	130	17	\cdots	E. 33
210	1800	210	20	4	E. 18
240	1800	240	21	5	E. 17
270	1800	270	14	3	E. $5 \in$
300	1800	300	13	3	E. 58
330	1800	330	15	1	E.19
360	1800	360	17	0	E.OE
390	1800	390	20	$\underline{2}$	E. $3 \in$
420	1800	420	20	1.	5.92
450	1800	450	14	1	E.54
480	1800	480	11	0	E.2.
510	1800	510	14	$\underline{\square}$	E. 26
540	1800	540	16	1	E. 18
570	1800	570	16	玉	6.35
600	1800	EOO	18	1	E. 11
630	1800	ESO	20	1	5.87
EEO	1800	EGO	18	0	E.1こ
EOO	1800	EOO	20	-1.	6.05
line	2000				
-930	2000	-930	20	8	4.98
-900	2000	-900	23	3	5.27
-870	2000	-870	11	-1	4.85
-840	2000	-840	13	1	4.73
-810	2000	-810	ϵ	1	5.68
-780	2000	-780	E	1	5.74
-750	2000	-750	13	1.	5.15
-720	2000	-720	18	E	5.65
-690	2000	-690	ϵ	F	5.55
-660	2000	-6EO	9	2	5.53
-630	2000	-E30	E	0	5.4
-600	2000	-600	11	0	5.2
-570	2000	-570	19	0	4.92
-540	2000	-540	18	1	5.11
-510	2000	-510	18	4	5.49
-480	2000	-480	15	3	5.57
-450	2000	-450	14	1	5.26
-420	2000	-420	23	1	5.21
-390	2000	-390	19	-	5.39
-360	2000	-360	20	$-E$	5.31
-330	2000	-330	28	-3	5.52
-300	2000	-300	21	-3	5.93
-270	2000	-270	13	-1	5.82
-240	2000	-240	15	0	5.68
-210	2000	-210	15	0	5.6
-180	2000	-180	13	0	5.67
-150	2000	-150	11	0	5.8
-120	2000	-120	11	0	5.68
-90	2000	-90	12	-1	5.86
-EO	2000	-EO	10	0	5.94
-30	2000	-30	9	0	5.89
0	2000	O	8	0	5.8

Statign	Line	Station	In-Fhase	Quad.	Fld. Str.
30	2000	30	14	1	5.52
60	2000	EO	16	$\underline{2}$	5.68
90	2000	90	1玉	0	5.76
120	2000	120	14	0	5.71
150	2000	150	7	1	5.78
180	2000	130	11	5	5.77
210	2000	210	8	4	5.88
240	2000	240	E	1	5.7\%
270	2000	270	5	0	5. 5.
300	2000	300	E	0	5.79
330	2000	390	12	1	5.47
360	2000	360	7	1	5.74
390	2000	390	ϵ	0	5.9
420	2000	420	4	-1	5.81
450	2000	450	5	-1	5.65
480	2000	480	E	-3	5.47
510	2000	510	12	-1	5.24
540	2000	540	19	4	5.15
E70	2000	570	17	3	5.71
EOO	2000	600	9	0	6.08
$\epsilon \bigcirc 0$	2000	E 30	1.	- -	5.35
EGO	2000	E6O	11	0	5.27
EGO	2000	690	14	0	5.03
720	2000	720	14	0	5.42
1 ine	2200				
-750	2200	-750	ϵ	3	5.03
-720	2900	-720	12	3	4.85
-690	2200	-630	10	2	5.2E
-EGO	2000	-EEO	14	-1	5.24
-630	2200	-630	14	-3	5.18
-600	2200	-600	19	0	5.45
-570	2000	-570	17	0	5.65
-540	2000	-540	18	0	5.43
-510	2200	-510	24	-1	4.35
-480	2 EOO	-480	23	-3	5.17
-450	2 OO	-450	23	-1	5.62
-420	2200	-420	1ϵ	-4	5.53
-300	2200	-390	2ϵ	$-E$	4.94
-360	2200	-360	23	-9	5. $6 \in$
-330	2200	-330	2-	-8	5.39
-300	2200	-300	25	-6	5.52
-270	2200	-270	23	-8	5.ES
-240	2200	-240	20	- -	5.E7
-210	2200	-210	17	-4	5.19
-180	2200	-180	13	-3	5.6
-150	2200	-150	8	-3	5.26
-120	2200	-120	8	0	5.1E
-90	2200	-90	13	-2	5.36
-60	200	-60	17	-3	5.35
-30	2200	-30	22	-3	5.63
0	2200	0	14	-2	5.65
30	2200	30	13	-1	4.67
EO	2200	60	$1 E$	0	5.93
90	2200	90	5	0	5.11
120	290	120	10	-1	5.52

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
150	2200	150	11	0	5.4
180	2200	180	16	E	5.45
210	-200	210	19	8	5.67
240	200	240	-5	1	E. 04
270	200	270	0	ϵ	5.48
300	2200	300	4	5	5. $2 \in$
330	2000	330	12	5	5.14
360	2200	360	14	3	5.14
390	2200	390	13	-	5.25
420	2200	420	13	3	5.24
450	2000	450	16	4	5.34
480	2200	480	17	-	5.14
510	2200	510	17	0	5.
540	200	540	16	0	5.38
570	2200	570	17	0	5.11
600	2200	EOO	19	-1	5.45
E30	2200	E3O	\exists	玉	5.57
EEO	2200	6EO	9	0	E.EG
690	2200	690	7	-2	5.53
720	2-00	720	11	1	E.49
750	2200	750	9	0	5.49
line	1200				
-1410	1200	-1410	E	-15	5.3
-1380	1200	-1380	9	-15	5.56
-1350	1200	-1350	24	-14	5.77
-1320	1200	-1320	2	-12	7.59
-1290	1200	-1290	-19	-17	5.98
-1260	1200	-12E0	-8	-14	5.19
-1230	1200	-1230	7	-3	E.7玉
-1200	1200	-1200	-14	8	E. 71
-1170	1200	-1170	-19	1	5.52
-1140	1200	-1140	-15	1	E. 62
-1110	1200	-1110	-15	8	5.07
-1080	1200	-1080	-18	3	5. 25
-1050	1200	-1050	-20	7	5.53
-1020	1200	-1020	-13	9	4.95
-990	1200	-990	-20	8	4.43
-960	1200	-9E0	$-1 E$	7	4.71
-930	1200	-930	-18	11	4.05
-900	1200	-900	-18	7	4.01
-870	1200	-870	-9	8	3.97
-840	1200	-840	-4	3	3.7
-810	1200	-810	3	2	3.85
-780	1200	-780	11	1	3.74
-750	1200	-750	31	4	3.77
-720	1200	-720	28	4	4.4
-600	1200	-E90	24	4	4.3
-660	1200	-6EO	-6	3	4.38
-630	1200	-630	39	4	4.54
-600	1200	-600	19	0	E.03
-570	1200	-570	5	0	5.61
-540	1200	-540	-1	0	5.48
-510	1200	-510	-1	1	4.89
-480	1200	-480	-1	1	4.58
-45	1200	-450	19	7	4.32

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
-420	1200	-420	24	5	4.95
-390	1200	-390	21	3	5.25
-360	1200	-360	19	1	5.4
-330	1200	-330	19	2	5.57
-300	1200	-300	20	3	5.42
-270	1200	-270	12	0	5.71
-240	1200	-240	13	-1	5.71
-210	1200	-210	17	-2	4.98
-180	1200	-180	18	-2	5.3
-150	1200	-150	20	-1	5.45
-120	1200	-120	23	0	5.75
-90	1200	-90	16	-3	5.59
-60	1200	-60	24	-1	5.3
-30	1200	-30	18	-1	5.77
0	1200	O	21	0	5.61
30	1200	30	31	0	2.72
60	1200	60	29	4	1.86
90	1200	90	27	5	1.98
120	1200	120	27	12	1.83
150	1200	150	23	11	1.83
180	1200	180	17	ϵ	1.7
210	1200	210	21	3	1.8
240	1200	240	23	1	1. 65
270	1200	270	25	4	1.45
300	1200	300	32	2	1.11
330	1200	330	30	1	1.35
360	1200	360	22	0	1.55
390	1200	390	28	5	1.42
420	1200	420	32	6	1.4
450	1200	450	24	E	1.65
480	1200	480	33	10	1.49
510	1200	510	27	E	1.69
540	1200	540	23	7	1.78
570	1200	570	21	8	1.73
600	1200	E00	24	7	1.85
630	1200	630	21	7	2
660	1200	6EO	21	1	2.13
690	1200	690	20	-1	2.09
720	1200	720	31	0	2
750	1200	750	27	0	2.17
780	1200	780	31	-2	2.6
810	1200	810	35	1	2.71
840	1200	840	34	-2	3.08
line	1400				
-1410	1400	-1410	-5	-4	4.48
-1380	1400	-1380	-4	-6	5.01
-1350	1400	-1350	-3	-7	5.07
-1320	1400	-1320	0	-	4.93
-1290	1400	-1290	-1	-9	5.13
-1260	1400	-1260	0	-15	4.73
-1230	1400	-1230	9	-17	4.74
-1200	1400	-1200	22	-17	4.66
-1170	1400	-1170	15	-22	5.1
-1140	1400	-1140	0	-10	6.34
-1110	1400	-1110	-27	2	5.37

Station	Line	Statign	In-Fhas	Quad.	Fld. Str.
-1080	1400	-1080	-15	1	4.72
-1050	1400	-1050	-18	ε	3.79
-1020	1400	-1020	-15	8	4.47
-990	1400	-950	-13	7	3.87
-960	1400	-960	-3	9	3.77
-930	1400	-930	0	4	3.71
-900	1400	-900	-2	2	3.6
-870	1400	-870	4	-2	3.43
-840	1400	-840	12	-3	3.01
-810	1400	-810	36	9	2.84
-780	1400	-780	36	9	3.89
-750	1400	-750	28	9	4.16
-720	1400	-720	23	7	4.7
-690	1400	-690	7	2	4.79
-660	1400	-6EO	3	-4	4.5
-630	1400	-630	13	-2	4.19
-600	1400	-600	17	-3	4.41
-570	1400	-570	9	-4	4.74
-540	1400	-540	9	0	4.02
-510	1400	-510	25	3	4.12
-480	1400	-480	2	0	4.47
-450	1400	-450	$1 E$	-3	5.12
-420	1400	-420	26	-3	4.4
-390	1400	-390	19	-3	5.05
-360	1400	-360	3	1	5.03
-330	1400	-330	4	0	5
-300	1400	-300	ϵ	0	4.65
-270	1400	-270	17	-1	4.3
-240	1400	-240	15	-2	4.77
-210	1400	-210	15	-1	4.88
-180	1400	-180	13	1	4.84
-150	1400	-150	14	3	4.77
-120	1400	-120	14	2	4.31
-90	1400	-90	15	4	4.69
-60	1400	-60	13	7	4.5
-30	1400	-30	16	7	4.67
0	1400	O	13	3	4.64
30	1400	30	11	3	4.5
60	1400	EO	17	1	4.49
90	1400	90	21	1	4.57
120	1400	120	21	1	4.6ϵ
150	1400	150	20	0	4.73
180	1400	180	21	2	4.67
210	1400	210	8	ϵ	4.41
240	1400	240	8	4	4.57
270	1400	270	10	2	4.54
300	1400	300	11	0	4.02
330	1400	330	20	2	4.08
360	1400	360	22	2	3.94
390	1400	390	23	1	3.95
420	1400	420	26	1	4.05
450	1400	450	25	0	4.09
480	1400	480	26	0	4.11
510	1400	510	30	2	3.87
540	1400	540	23	3	6.07

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
570	1400	570	22	0	3.89
600	1400	600	24	2	3.3
E 30	1400	EכO	24	0	3.79
E60	1400	EGO	20	0	4
690	1400	690	9	-13	3.64
720	1400	720	19	-5	3.59
750	1400	750	23	-1	3.73
780	1400	780	23	0	3.69
810	1400	810	29	3	3.48
840	1400	840	9	-3	3.85
870	1400	870	18	1	3.57
line	1600				
-1200	1600	-1200	14	-14	4.68
-1170	1600	-1170	19	-10	4.95
-1140	1600	-1140	-12	-1	5.48
-1110	1600	-1110	-5	0	5.25
-1080	1600	-1080	-23	5	4.33
-1050	1600	-1050	-4	2	4.69
-1020	1600	-1020	-3	ϵ	4.37
-990	1600	-990	-2	1	4.54
-960	1600	-960	-10	-3	4.11
-930	1600	-930	-2	-3	3.72
-900	1600	-900	18	3	3.56
-870	1600	-870	32	8	4
-840	1600	-840	29	5	4.82
-810	1600	-810	20	2	5.21
-780	1600	-780	13	0	5.29
-750	1600	-750	18	-1	5.1
-720	1600	-720	7	-4	5.22
-690	1600	-690	7	-9	4.92
-6EO	1600	-6EO	20	-3	4.95
-630	1600	-630	13	-4	5.57
-600	1600	-600	14	-3	5.56
-570	1600	-570	8	-2	5.47
-540	1600	-540	14	-1	5.5
-510	1600	-510	7	0	5.54
-480	1600	-480	9	1	5.52
-450	1600	-450	10	2	5.42
-420	1600	-420	10	1	5.98
-390	1600	-390	0	1	5.72
-360	1600	-360	4	5	5.32
-330	1600	-330	15	9	5.16
-300	1600	-300	12	5	5.4E
-270	1600	-270	7	0	5.47
-240	1600	-240	16	E	4.95
-210	1600	-210	17	2	5.51
-180	1600	-180	15	1	5. 61
-150	1600	-150	13	1	5.52
-120	1600	-120	13	1	5.66
-90	1600	-90	14	-2	5.69
-60	1600	-60	16	-2	5.9
-30	1600	-30	16	0	6.01
0	1600	0	9	0	6.12
30	1600	30	4	0	5.92
EO	1600	60	11	0	5.75

Station	Line	Statiam	In-Fhase	Quad.	Fld. Str.
90	1600	90	16	1	5. E E
120	1600	120	$1-$	-	5.72
150	1600	150	13	$こ$	5.6ϵ
130	1600	180	13	0	5.84
-10	1600	210	$1 E$	1	5. $\in \in$
240	1600	240	14	\because	5.77
270	1600	270	10	4	5.56
300	1600	300	10	3	5.38
330	1600	330	17	2	5.63
כEO	1600	360	-	4	5.74
390	1600	390	2	3	5.84
420	1600	420	23	4	E.12
450	1600	450	17	3	E. 17
480	1600	480	14	0	E.0G
510	1600	510	17	4	E.OL
540	1600	540	17	ϵ	E. 11
570	1600	570	9	2	E.13
600	1600	EOO	10	1	5.85
E30	1600	630	15	2	5.E
EEO	1600	EEO	21	0	5.69
6O0	$1 \in 00$	690	24	-2	5.84
720	1600	720	28	2	5.72
750	1600	750	23	-2	E. 15
780	1600	780	25	1	E. 34
810	1600	810	18	4	E.EZ
1 ine	800				
-1020	800	-1020	-65	0	4.3
-990	800	-990	-49	-1	3.79
-960	800	-9EO	-54	-2	4.39
-930	800	-930	-54	-7	4.27
-900	800	-900	-53	-4	2.92
-870	800	-870	-60	-10	3.13
-840	800	-840	-36	1	3.7
-810	800	-810	-42	1	3.44
-780	800	-780	-47	1	2.63
-750	800	-750	-23	1	3.55
-720	800	-720	$-E$	6	3.1
-690	800	-690	-6	10	3.34
-660	800	-EEO	-3	8	3.27
-630	800	-630	5	ϵ	3.86
-600	800	-E00	10	7	3.43
-570	800	-570	9	5	3.92
-540	800	-540	2	0	3.87
-510	800	-510	3	0	4.29
-480	800	-480	-13	-2	3.98
-450	800	-450	-25	-5	3.61
-420	800	-420	-17	-2	3.96
-390	800	-390	-12	-1	4.02
-360	800	-360	0	E	3.84
-330	800	-330	4	3	4.14
-300	800	-300	9	4	3. 96
-270	800	-270	15	2	4.16
-240	800	-240	8	0	4.13
-210	800	-210	10	1	4.71
-180	800	-180	14	0	4.75

Statian	Line	Station	In-Fhase	Quad.	Fld. Str.
-150	300	-150	14	0	4.38
-120	800	-120	2	-4	3.76
-90	800	-90	12	-5	4.13
-EO	800	-60	7	-4	3.62
-30	300	-30	14	-1	5.87
0	800	0	5	-3	3.28
30	800	30	27	0	3.9
EO	800	EO	30	-2	3.58
90	800	90	2e	-2	3.85
120	800	120	30	0	3.82
150	800	150	33	-1	3.97
180	800	180	27	-3	4.26
210	800	210	24	-3	4.24
240	800	240	26	-3	4.29
270	800	270	24	-4	4.04
300	800	300	2	-2	4.45
330	800	330	18	0	4.64
360	800	360	25	-1	4.53
390	800	390	2¢	-1	4.71
420	800	420	24	0	4.85
450	800	450	25	z	4.65
480	800	480	21	ϵ	4.82
510	800	510	20	7	4.91
540	800	540	24	9	4.89
570	800	570	22	9	4.69
600	800	600	19	7	4.75
630	800	630	22	8	4.58
line	1000				
-1230	1000	-1230	-21	E	6.04
-1200	1000	-1200	-43	7	5.37
-1170	1000	-1170	-26	7	5.47
-1140	1000	-1140	-21	1	4.93
-1110	1000	-1110	-18	-1	5.57
-1080	1000	-1080	-36	7	4.99
-1050	1000	-1050	-26	12	4.5
-1020	1000	-1020	-2e	2	4.32
-990	1000	-990	-23	E	3.8
-560	1000	-960	-19	4	3.4
-930	1000	-930	-19	E	3.9
-900	1000	-900	-12	12	3.53
-870	1000	-970	-17	11	2.85
-840	1000	-840	-19	5	3.34
-810	1000	-810	-11	5	3.35
-780	1000	-780	2	4	3.31
-750	1000	-750	14	-1	2.97
-720	1000	-720	22	7	3.53
-690	1000	-690	29	9	3.44
-660	1000	-660	24	ϵ	4.69
-630	1000	-630	12	0	4.35
-600	1000	-600	21	0	4.09
-570	1000	-570	25	1	4.36
-540	1000	-540	18	5	5.45
-510	1000	-510	0	3	4.92
-480	1000	-480	-2	1	5.04
-450	1000	-450	2	0	4.71

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
-420	1000	-420	' 9	0	4.1
-390	1000	-390	12	0	4.3
-360	1000	-360	28	3	4.52
-330	1000	-330	27	0	4.57
-300	1000	-300	31	0	4.61
-270	1000	-270	33	0	4.47
-240	1000	-240	32	1	5.27
-210	1000	-210	26	-2	5.3
-130	1000	-180	23	-3	5.22
-150	1000	-150	22	-2	5.19
-120	1000	-120	22	-4	4.52
-90	1000	-90	24	-3	5.1
-60	1000	-60	18	-5	5.33
-30	1000	-30	25	0	5
0	1000	0	23	0	4.87
30	1000	30	30	-2	5.19
60	1000	60	32	0	5.47
90	1000	90	20	0	E. 14
120	1000	120	20	2	5.24
150	1000	150	26	2	5.5
180	1000	180	27	0	5.52
210	1000	210	28	-1	5.74
240	1000	240	28	-3	5.23
270	1000	270	36	2	4.83
300	1000	300	22	5	5.06
330	1000	330	9	ϵ	5.26
360	1000	360	12	4	5.3
390	1000	390	21	4	5.11
420	1000	420	25	3	5.31
450	1000	450	20	4	5.47
480	1000	480	18	7	5.24
510	1000	510	26	10	4.97
540	1000	540	30	11	5.2
570	1000	570	22	7	4.9
600	1000	600	18	9	5.56
630	1000	630	24	9	4.12
660	1000	6EO	1ϵ	2	5.38
690	1000	690	21	4	4.86
720	1000	720	21	3	5.04
750	1000	750	24	2	5.1
780	1000	780	24	0	5.03
810	1000	810	27	0	4.96
line	200				
-240	200	-240	43	4	4.07
-210	200	-210	35	2	4.69
-180	200	-180	37	2	4
-150	200	-150	44	4	4.2
-120	200	-120	39	4	5.53
-90	200	-90	33	E	5.58
-60	200	-60	27	4	5.85
-30	200	-30	28	ϵ	5.86
0	200	0	29	9	5.9
30	200	30	28	10	5.88
EO	200	EO	29	8	5.55
90	200	90	25	7	5.78

Station	Line	Statign	In-Frasse	Quad.	Fld. Str.
120	200	120	23	5	5.97
150	200	150	22	5	5.9
1ine	400				
-480	400	-480	27	E	4.41
-450	400	-450	22	2	4.75
-420	400	-420	17	1	4.81
-390	400	-390	5	0	5.54
-360	400	$-3 \in 0$	-1	-2	4.5
-330	400	-330	0	-1	4.46
-300	400	-300	27	1	3.99
-270	400	-270	37	-2	4.54
-240	400	-240	40	1	5.03
-210	400	-210	39	0	4.92
-180	400	-180	$3 \in$	-1	5.5
-150	400	-150	41	0	5.02
-120	400	-120	45	1	5.52
-90	400	-90	43	2	5.65
-60	400	-60	30	1	5.69
-30	400	-30	27	-1	5.52
0	400	0	33	0	5.26
30	400	30	2e	0	E. 5.1
60	400	EO	\ni	ϵ	6.69
90	400	90	11	ϵ	5.8E
120	400	120	15	2	5.22
150	400	150	21	Σ	5.9
180	400	180	21	1	5.8
210	400	210	13	0	E. 1.4
240	400	240	20	2	6.14
270	400	270	16	5	6.48
300	400	300	13	ϵ	6.39
330	400	330	18	4	6.08
line	600				
-720	E00	-720	-23	2	3.91
-690	E00	-690	-18	3	3.78
-6EO	600	-EEO	-20	4	3.15
-630	600	-630	-14	2	3.63
-600	600	-600	-7	-1	3.12
-570	600	-570	10	1	2.83
-540	600	-540	19	1.5	3.245
-510	600	-510	23	3	3.52
-480	E00	-480	17	2	4.7
-450	600	-450	10	3	4.68
-420	600	-420	E	0	4.75
-390	600	-390	11	0	4.1
-360	600	-360	-8	-5	4.34
-330	600	-330	-17	-4	3.5E
-300	600	-300	13	5	3.84
-270	600	-270	17	4	4.19
-240	600	-240	26	1	3.71
-210	600	-210	29	2	4.26
-180	600	-180	27	3	4.32
-150	600	-150	23	1	4.77
-120	EOO	-120	25	-1	4.67
-90	600	-90	27	4	4.7
-60	600	-EO	26	5	4.33

Station	Line	Station	In-Fhase	Quad.	Fld. Str.
-30	600	-30	27	5	3.77
0	E00	0	21	3	5.52
30	600	30	22	3	5.82
60	EOO	EO	25	2	6.13
90	EOO	90	15	1	5.83
120	600	120	21	1	5.74
150	600	150	34	0	5.15
180	600	180	32	-2	5.83
210	EOO	210	32	-2	6.04
240	600	240	33	-1	E. $3 \in$
270	600	270	28	-1	5.94
300	600	300	33	0	6.15
330	E00	330	14	0	6.87
360	600	360	23	0	5.37
390	600	390	31	-2	6. 15
420	600	420	32	-2	E. 35

APPENDIX II

FIELD MAGNETIC DATA

Station	Line	Statign	Morr．Mag	Ees．Mag
line	2400			
-570	2400	-570	58078.6	479
-540	2400	-540	58345.5	746
－510	2400	-510	57976.9	377
-480	2400	－480	57891.5	2－2
-450	2400	-450	57785.1	185
-420	2400	-420	57706.4	106
-390	2400	－390	57806	206
-360	2400	－360	57886． 1	286
-330	2400	－330	57829.4	229
－300	2400	-300	57652	52
-270	2400	-270	57684.6	85
-240	2400	－240	57753.5	154
-210	2400	－210	57E5E． S $^{\text {S }}$	57
-180	2400	-180	5760	9
-150	2400	-150	575624	-38
-120	2400	-120	57631．6	32
－90	2400	-90	57678.6	79
-60	2400	-60	57657.4	57
－30	2400	-30	57701.8	102
0	2400	0	57654.5	55
30	2400	30	57644.9	45
60	2400	60	57E42． 1	42
90	2400	90	5フEこE．	$\Sigma \epsilon$
120	2400	120	57595.8	－4
150	2400	150	57647	47
180	2400	180	57638.2	38
210	2400	－10	57E57．4	57
240	2400	240	57ヒこ4．7	25
270	2400	270	57595.9	－4
300	2400	300	57529.7	-70
330	2400	330	57554.6	-45
360	2400	360	57579.5	－21
390	2400	390	576こ0．4	20
420	2400	420	57598.7	－1
450	2400	450	57601．4	1
480	2400	480	57593.2	-7
510	2400	510	57691	31
540	2400	540	57640.1	40
570	2400	570	57655.1	55
EOO	2400	600	57619	19
ESO	2400	ESO	$576 こ 7.2$	27
EEO	2400	660	57671.5	72
EGO	2400	E90	57648.7	49
720	2400	720	57686.6	87
750	2400	750	S7EЗE． 7	37
line	2600			
-420	2600	-420	57624	24
-390	2600	－390	576こ7．${ }^{\text {c }}$	28
－360	2600	－360	57821.4	ご
－330	2600	－330	57721	121
－300	2600	－300	57770.9	171
－270	2600	-270	57567.5	-33
-240	2600	－240	576E1．4	61
－210	2600	-210	57632.3	32

St $2 t i 0 n$	Line
-180	2600
-150	2600
-120	2600
-90	2600
-60	2600
-30	2600
0	2600
30	2600
60	2600
90	2600
120	2600
150	2600
180	2600
210	2600
240	2600
270	2600
300	2600
330	2600
360	2600
390	2600
420	2600
450	2600
480	2600
510	2600
540	2600
570	2600
600	2600
630	2600
660	2600
690	2600
$1 i n e$	2800
-240	2800
-210	2800
-180	2800
-150	2800
-120	2800
-90	2800
-60	2800
-30	2800
0	2800
20	2800
60	2800
90	2800
120	2800
150	2800
180	2800
210	2800
240	2800
270	2800
300	2800
330	2800
360	2800
390	2800
450	2800
	280

Station	Gorr. Mag	Ees. Mad
-130	57706.4	106
-150	$576 こ .7$	23
-120	57601	1
-90	57630.E	31
-60	57758.1	158
-30	57648.6	49
0	57639. 9	40
30	57653.9	54
60	57725.7	126
90	57645.7	46
120	57E67.7	68
150	57576.5	-24
180	57706.8	107
210	57679.9	80
240	57600	0
270	57575	-25
300	57864.9	265
330	57647.2	47
360	57643.7	44
390	57714.1	114
420	57595. 4	-5
450	57634	34
480	57631.8	32
510	57653.9	54
540	57623.8	24
570	57667.2	67
E00	57633.4	33
E30	57EEE.2	6ϵ
EEO	57628.5	29
690	57644.2	44
-240	57689	89
-210	57731.5	132
-180	57645.6	46
-150	57941.4	341
-120	57537.3	-63
-90	57617.2	17
-60	57625.1	25
-30	57694.5	95
0	57EEG. 6	70
30	5765E.E	57
EO	57578.8	-21
90	57592.5	-8
120	57602.3	2
150	57571.7	-28
180	57544.6	-55
210	57601.3	1
240	57781.9	182
270	57607.7	8
300	57634.3	34
330	57595	-5
360	57667.7	E8
390	57700.6	101
420	57679.5	80
450	57661.3	$E 2$

Statian	Line
480	2800
510	2800
line	3000
-90	3000
-60	3000
-30	3000
0	3000
30	3000
EO	3000
90	3000
120	3000
150	3000
180	3000
210	3000
line	1800
-1080	1800
-1050	1800
-1020	1800
-990	1800
-960	1800
-930	1800
-900	1800
-870	1800
-840	1800
-810	1800
-780	1800
-750	1800
-720	1800
-690	1800
-EEO	1800
-630	1800
-600	1800
-570	1800
-540	1800
-510	1800
-480	1800
-450	1800
-420	1800
-390	1800
-360	1800
-330	1800
-300	1800
-270	1800
-240	1800
-210	1800
-180	1800
-150	1800
-120	1800
-90	1800
-60	1800
-30	1800
0	1800
30	1800
60	1800
90	1800

Station

Girr. Mag
Fees. Maq

480	576e日. 3	$E \square$
510	STEE4.	ES
-90	57862.8	263
-EO	57608.3	8
-30	57606. 6	7
0	57658.5	59
30	57596	-4
60	57690.2	90
90	57792.8	193
120	57632. 8	33
150	576 ${ }^{\text {¢ }}$. 3	91.
180	57588.4	$-1=$
210	57632.5	33
-1080	57635	35
-1050	57573.7	-26
-1020	57621.8	2
-990	57616.4	16
-960	57632.9	33
-930	57659.7	54
-900	57671.3	71
-870	57716.1	116
-840	57797.5	198
-810	57902.1	302
-780	57868	268
-750	57827.6	228
-720	57741	141
-690	57704.6	105
-6EO	57896.9	297
-630	57629.7	50
-600	57731.7	132
-570	57939.9	340
-540	57710.1	110
-510	57637.4	37
-480	57717.5	118
-450	57746.4	$1+6$
-420	STE4E.2	46
-390	57670.6	71
-360	57674.9	75
-330	57701.2	101
-300	57686.6	87
-270	57648.1	48
-240	57631	31
-210	57597.4	-3
-180	57600.5	1
-150	57543.9	-56
-120	57592.7	-7
-90	57604	4
-60	57594.6	-5
-30	57614.3	15
0	57587.4	-13
30	57614	14
60	57485.5	-115
90	57600.3	0

Statian	Line	Statign	Egrr. Mag	Ees. Mag
120	1800	120	57529.3	-71
150	1800	150	57672.2	72
180	1800	180	57695	95
210	1800	210	57664.4	64
240	1800	240	57613.9	14
-70	1800	270	57750.3	150
300	1800	300	57684	84
330	1800	330	57568.7	-31
360	1800	360	57567	-33
390	1800	390	57606	E
420	1800	420	57777.5	178
450	1800	450	57715.9	116
480	1800	480	57588.2	-12
510	1800	510	57619.6	20
540	1800	540	57Eこ8.1	28
570	1800	570	57625.5	26
EOO	1800	600	57652. 9	53
ESO	1800	630	57637.5	38
E6O	1800	EEO	57640.1	40
690	1800	690	57639.6	40
line	2000			
-930	2000	-930	5762	28
-900	2000	-900	5765	59
-870	2000	-870	57641.8	42
-840	2000	-840	57776.3	176
-810	2000	-810	57851.8	252
-780	2000	-780	57907.7	308
-750	2000	-750	57746.1	146
-720	2000	-720	57678.2	78
-690	2000	-690	57820.7	221
-EEO	2000	-6EO	57913.9	314
-630	2000	-630	58013.3	419
-EOO	2000	-600	57761.1	161
-570	2000	-570	57693.1	93
-540	2000	-540	57667.5	E8
-510	2000	-510	57798.9	197
-480	2000	-480	57924.9	325
-450	2000	-450	5792.3	322
-420	2000	-420	57971.7	372
-390	2000	-390	57727.3	128
-360	2000	-360	57739.4	139
-330	2000	-330	57747.2	147
-300	2000	-300	57759.9	160
-270	2000	-270	57745.5	146
-240	2000	-240	57702.7	103
-210	2000	-210	57689.7	90
-180	2000	-180	57624.8	25
-150	2000	-150	57585.6	-14
-120	2000	-120	57603.4	3
-90	2000	-90	57624.4	24
-60	2000	-60	57647.4	47
-30	2000	-30	57630.6	31
0	2000	0	57636.3	36
30	2000	30	57643.7	44
60	2000	EO	57639.2	39

Station	Line	Statian	Gorr. Mag	Ees. Mag
210	2200	210	57591.1	-9
240	2200	240	574E9.6	-130
270	2200	270	57488.3	-112
300	2200	300	57539.7	-60
330	2200	330	57544.3	-56
360	2200	360	5755	-45
390	2200	300	57584.8	-15
420	2200	420	57598.2	-12
450	2200	450	57621.7	22
480	2200	480	57600.9	1
510	2200	510	57630.6	31
540	2200	540	57604.1	4
570	2 O 0	570	57591.1	-9
600	2200	600	57E21.2	21
ESO	2200	E30	57602.4	2
EGO	2200	EGO	57596.8	-3
690	2200	E90	57600.3	0
720	2000	720	57646	46
750	2200	750	57631.3	31
1ine	1200			
-1410	1200	-1410	57663	63
-1380	1200	-1380	57658.5	59
-1350	1200	-1350	57677.1	77
-1320	1200	-1300	57678.6	75
-1290	1200	-1290	57687.2	87
-1260	1200	-1260	57691.5	92
-1230	1200	-1230	57684.6	85
-1200	1200	-1200	57711.9	112
-1170	1200	-1170	57723.9	124
-1140	1200	-1140	57726. 3	126
-1110	1200	-1110	57757.8	158
-1080	1200	-1080	57774.3	174
-1050	1200	-1050	57783.2	183
-1020	1200	-1020	57763. 9	164
-990	1200	-990	57726.7	127
-960	1200	- 960	57694.7	95
-930	1200	-930	576ここ.8	93
-900	1200	-900	57705.1	105
-870	1200	-870	57694.4	94
-840	1200	-840	57706.3	106
-810	1200	-810	57718.9	119
-780	1200	-780	57712.5	113
-750	1200	-750	57703.4	103
-720	1200	-720	57713.9	114
-E90	1200	-690	57746.1	146
-EEO	1200	-EEO	57759.5	160
-E30	1200	-630	57840.3	240
-600	1200	-600	57985	385
-570	1200	-570	57895.3	295
-540	1200	-540	57885.1	285
-510	1200	-510	57798.1	198
-480	1200	-480	57768	168
-450	1200	-450	57797.9	198
-420	1200	-420	57798.7	199
-300	1200	-390	57735.7	136

Station	Line	Station	Bigr. Mag	Fies: Maq
-360	1200	-360	5776e.2	$16 E$
-330	1200	-330	57701.2	101
-300	1200	-300	57760.2	160
-270	1200	-270	57730.3	130
-240	1200	-240	576Є4.3	E4
-210	1200	-210	57EこE. 1	$2 E$
-180	1200	-180	57586	-14
-150	1200	-150	57612.3	12
-120	1200	-120	57613.5	14
-50	1200	-90	57633.3	33
-60	1200	-60	57642.4	42
-30	1200	-30	5760E. 2	E
0	1200	0	57609.4	9
30	1200	30	57566.1	-34
EO	1200	60	57554.3	$-4 E$
90	1200	90	57559.5	-41
120	1200	120	57602. 1	2
150	1200	150	5763.1	39
180	1200	180	57277.1	-323
210	1200	210	57593.3	-7
240	1200	240	57578.2	-2
270	1200	270	57585.9	-14
300	1200	300	57600. 5	1
330	1200	330	57576.6	-23
360	1200	360	57638.6	39
390	1200	390	57573.1	-27
420	1200	420	57596.9	-3
450	1200	450	S7E18.7	19
480	1200	480	578.10 .1	210
510	1200	510	57416	-184
540	1200	540	57634	34
570	1200	570	57644.5	45
600	1200	600	STEGE. 7	$E 7$
ESO	1200	630	57701.7	102
EEO	1200	EEO	57642.6	43
EOO	1200	690	576293	$2 ゙ 5$
720	1200	720	57649.9	50
750	1200	750	57638.2	38
780	1200	780	57649.1	49
810	1200	810	57763.9	164
840	1200	840	57465.3	-135
line	1400			
-1410	1400	-1410	57652.7	53
-1380	1400	-1380	57662.6	E3
-1350	1400	-1350	57622.1	22
-1320	1400	-1320	57627.6	28
-1290	1400	-1290	57644.4	44
-1260	1400	-1260	57660.8	E1
-1230	1400	-1230	57633.7	34
-1200	1400	-1200	57653.5	54
-1170	1400	-1170	57662.2	62
-1140	1400	-1140	57EES.6	$\epsilon \in$
-1110	1400	-1110	57661	E1
-1080	1400	-1080	57681.7	$8 \div$
-1050	1400	-1050	57701.9	102

Station	Line	Station	Sorr．Mag	Fee．Mag
-1020	1400	-1020	57763.4	163
－990	1400	－990	57828	228
－960	1400	－960	577724	172
－930	1400	－930	57785.2	185
－900	1400	－900	57743.5	144
－870	1400	－870	$577 \div 6.3$	$1 こ 7$
－840	1400	-840	57712.2	112
－810	1400	－810	57677.8	98
－780	1400	－780	57775.2	175
-750	1400	-750	57791.2	191
－720	1400	－720	57756． 7	157
－690	1400	－690	57712.4	112
－EEO	1400	$-E 60$	57722.2	12%
－630	1400	－690	57743.5	144
－600	1400	－600	57798.7	195
-570	1400	-570	57764.4	164
-540	1400	-540	57698	98
－510	1400	-510	57798.5	159
－480	1400	－480	57879	273
-450	1400	-450	57748.4	148
-420	1400	－420	57767.8	168
-390	1400	－300	57711.2	111
-360	1400	－360	57723．2	123
-330	1400	－330	57700.3	100
-300	1400	－300	57634.1	34
－270	1400	－270	57599.7	0
－240	1400	－240	57542.3	－58
-210	1400	－210	57537.4	-63
－180	1400	-180	57609．6	10
-150	1400	-150	57591.4	－9
-120	1400	－120	57576．7	－23
-90	1400	－90	57596.5	－64
-60	1400	－60	57541.7	-58
－30	1400	-30	57603.4	3
0	1400	－ 0	575ここ．2	－78
30	1400	30	57601.2	1
60	1400	60	57600.6	1
90	1400	90	57584	-16
120	1400	120	57596． 6	-3
150	1400	150	57603.1	3
180	1400	180	57575.1	-25
210	1400	210	57568	-32
240	1400	240	57745.7	146
270	1400	270	57662	$E=$
300	1400	300	57735.2	135
330	1400	330	57797	197
360	1400	360	57630.4	30
390	1400	390	57E68． 9	$6 \cdot$
420	1400	420	57614.3	14
450	1400	450	57699.7	100
480	1400	480	57627.1	97
510	1400	510	5762	2 V
540	1400	540	57595.2	－5
570	1400	570	57652． 6	53
600	1400	600	57374.1	-26

Station	Line	Station	Gorr: Maq	Ees. Maq
E30	1400	ESO	5765. 1	52
E60	1400	EEO	57652. 4	52
E90	1400	E90	57620.3	20
720	1400	720	57462.1	-138
750	1400	750	57563.5	-37
780	1400	790	57694.2	94
810	1400	810	58147.7	548
840	1400	8.40	56417.7	-1182
870	1400	870	57518.9	-81
line	1600			
-1200	1600	-1200	57629.5	30
-1170	1600	-1170	57645.2	45
-1140	1600	-1140	57632.8	33
-11.10	1600	-1110	57653. 4	53
-1080	1600	-1080	57658.4	58
-1050	1600	-1050	5766E. ${ }^{\text {F }}$	67
-1020	1600	-1020	57719.7	120
-990	1600	-990	57843.6	244
-960	1600	-960	57882.9	283
-930	1600	-930	57768.6	169
-900	1600	-900	57819.2	219
-870	1600	-870	57777.4	177
-840	1600	-840	57754.1	154
-810	1600	-810	57749.4	149
-780	1600	-780	57870.7	271
-750	1600	-750	57882.3	282
-720	1600	-720	57671.6	72
-690	1600	-690	57650	50
-660	1600	-6E0	57629	29
-630	1600	-630	57637.1	37
-600	1600	-600	57783.8	184
-570	1600	-570	57731.4	13.1
-540	1600	-540	57705	105
-510	1600	-510	576Э8.1	98
-480	1600	-480	57658.6	59
-450	1600	-450	57659.8	60
-420	1600	-420	57E65.6	6ϵ
-350	1600	-390	57627.5	23
-360	1600	-360	57580.9	-19
-330	1600	-330	57592.4	-8
-300	1600	-300	57626.8	27
-270	1600	-270	57657.5	58
-240	1600	-240	57596.1	-4
-210	1600	-210	57651.5	52
-180	1600	-180	57617.4	17
-150	1600	-150	57605	5
-120	1600	-120	57633.5	34
-90	1600	-90	57584.2	-1ϵ
-60	1600	-60	57591.6	-8
-30	1600	-30	57605.6	ϵ
0	1600	0	57654.2	54
30	1600	30	57689.4	89
EO	1600	EO	57655.3	55
90	1600	90	57711.4	111
120	1600	120	57E29.1	29

Statiom	Line	Station	Egrr．Mag	Fies．Man
150	1600	150	5760.3	ϵ
180	1600	180	57545.5	－55
210	1600	－10	57577．2	－20
240	1600	240	57579．2	－－1
270	1600	270	57634.7	35
300	1600	300	57581.6	－18
330	1600	330	57587.5	-13
360	1600	360	57565．	－34
390	1600	390	57569．	－30
420	1600	420	57594.6	－5
450	1600	450	STEE1．7	$\epsilon 2$
480	1600	480	57544.7	－55
510	1600	510	57600.5	1
540	1600	540	57612.9	13
570	1600	570	57636.7	37
600	1600	EOO	57592.6	-7
E30	1600	630	57592.7	－7
EGO	1600	EEO	57617.1	17
690	1600	690	57667.4	67
720	1． 600	720	S781E．1	$こ 16$
750	1600	750	57543.1	-57
780	1600	780	57EE1．1	$E 1$
810	1600	810	57811.6	玉12
1 ine	800			
－990	800	－990	57721.5	122
－960	800	－960	57725.1	125
－930	800	－930	57722.6	123
－900	800	－900	57758．9	159
－870	800	－870	57759.7	160
－840	800	-840	57763.7	164
－810	800	－810	57786.4	186
-780	800	-780	57767.4	167
-750	800	-750	57773.4	173
－720	800	-720	57742.8	143
－690	800	－690	57746.1	146
－EEO	800	－6EO	57753	153
－ 630	800	－630	57822.1	22
－600	800	－600	57759.1	159
-570	800	-570	57804.7	205
－540	800	-540	57845.2	245
-510	800	-510	57847.6	248
-480	800	－480	57879.6	290
－450	800	-450	57790.1	190
-420	800	－420	57731	131
－390	800	－390	57803.8	204
－360	800	-360	57917.9	318
－330	800	－330	57812.3	玉12
－300	800	－300	57780	180
－270	800	－270	57741.2	141
-240	800	－240	57717.6	118
-210	800	－210	57698.4	98
-180	800	-180	57704	104
-150	800	-150	57713.3	113
-120	800	-120	57712.1	11%
-90	800	－90	57738.9	139

Station

-60	800
-30	800
0	800
30	800
60	800
90	800
120	800
150	800
180	800
210	800
240	800
270	800
300	800
330	800
360	800
300	800
420	800
450	800
480	800
510	800
540	800
570	800
600	800
630	800
$1 i n e$	1000
-1230	1000
-1200	1000
-1170	1000
-1140	1000
-1110	1000
-1080	1000
-1050	1000
-1020	1000
-990	1000
-960	1000
-930	1000
-900	1000
-870	1000
-840	1000
-810	1000
-780	1000
-750	1000
-720	1000
-600	1000
-660	1000
-630	1000
-600	1000
-570	1000
-540	1000
-510	1000
-480	1000
-450	1000
-420	1000
-390	1000
-360	1000

Station Gorr. Mag Ees. Mag

-60	57731.7	132
-30	5773	132
0	57787.3	187
30	57715.1	115
60	57729	129
90	57693.7	94
120	57704.7	105
150	57659.7	60
180	57589.5	-11
210	57567.1	-33
240	57554	-46
270	57633.7	34
300	57637.2	37
330	57756.6	157
360	57605.6	6
390	57661.6	62
420	57648.5	49
450	57672.3	72
480	57663.7	64
510	576.49	49
540	57721.5	129
570	57631	31
600	57600	0
630	57660.2	60

95

104
115
110
123
136
155
143
120 97
107
110
99
95
111
206
112
182
219
189
147
114
168
247
238
203
145
100
100
118

Station	Line	Station	Sorr. Mag	Fies. Mag
-330	1000	-330	57699.1	95
-300	1000	-300	57746.2	146
-270	1000	-270	57768.3	$1 \in 8$
-240	1000	-240	57728.6	$12 \exists$
-210	1000	-210	57694.5	95
-180	1000	-180	57688.3	88
-150	1000	-150	57737.8	138
-120	1000	-120	57714.6	115
-90	1000	-90	57685.5	86
-60	1000	-60	57753.8	154
-30	1000	-30	57723.7	124
0	1000	0	57670.6	71
30	1000	30	57673.9	74
EO	1000	EO	57633.6	34
90	1000	90	57635.8	36
120	1000	120	576E'.5	76
150	1000	150	57635.6	36
180	1000	180	57594.2	$-\epsilon$
210	1000	210	57646.4	46
	1000	240	57731.8	13%
270	1000	270	57512.2	-88
300	1000	300	57646.5	47
330	1000	330	57702.3	102
360	1000	360	57712.2	112
390	1000	390	57717.6	118
420	1000	420	57658.8	59
450	1000	450	576E1.1	E1
480	1000	480	57648.1	48
510	1000	510	57633.3	33
540	1000	540	57644.1	44
570	1000	570	57723.7	124
600	1000	EOO	58201.1	EO1
630	1000	630	57698.6	99
EEO	1000	EGO	57695.1	95
690	1000	690	57709.7	110
720	1000	720	57791.9	19%
750	1000	750	57701.9	102
780	1000	780	57693.1	93
810	1000	810	57717.6	118
line	200			
-240	200	-240	57740.5	141
-210	200	- 210	57713.1	113
-180	200	-180	57740.2	140
-150	200	-150	57756.7	157
-120	200	-120	57748.3	148
-90	200	-90	57736	136
-60	200	-60	57747.3	147
-30	200	-30	57700.7	101
0	200	0	57651.2	51
30	200	30	57630. 9	31
EO	200	EO	576こ5.9	- 6
90	200	90	57571.4	-29
120	200	120	57633.6	34
150	200	150	57637.3	37
1ine	400			

Statiom
-480
-450
-420
-300
-360
-330
-300
-270
-240
-210
-180
-150
-120
-90
-60
-30
0
30
60
90
120
150
180
210
240
270
300
330

1ine
-72
-6
-630
-600
-570
-540
-510
-480
-480
-450

-420

-300
-360
-330
-300
-270
-240
-210
-180
-150
-120
-90
-60
-30

Station

400	-480
400	-450
400	-40
400	-300
400	-360
400	-300
400	-300
400	-270
400	-240
400	-210
400	-180
400	-150
400	-120
400	-90
400	-60
400	-30
400	30
400	60
400	50
400	120
400	150
400	180
400	20
400	240
400	270
400	300
400	330
400	

$57777.1 \quad 177$
$57819.1 \quad 219$
$57906.5 \quad 307$
57888.4288
57780.4180
$57916 \quad 216$
$57657.4 \quad 57$
5フモヒヨ． 1 6Э
57690．$\quad ~ Э 1$
$57735.5 \quad 136$
57719．6 120
57733.2133
$57747.3 \quad 147$
57760.2160
$57726.8 \quad 127$
$57729.8 \quad 130$
57EEO．6 EI
$57633.5 \quad 34$
5765ヒ． 1 56
$57641.8 \quad 42$
$57719.5 \quad 1=0$
57629．8 30
$57577.8 \quad-2$
$57609.8 \quad 10$
57639.139
$57613.6 \quad 14$
57636.3 36
57607.98
$57805.5 \quad 206$
$57799 \quad 199$
$57760.8 \quad 161$
57771.7172
$57797 \quad 197$
57747.4147
$57758.25 \quad 158$
$57865 \quad 265$
57889.1 289

268
202
155
196

20

171
147
262
236
210
175
151
192
193
153 54 56

Station	Line	Station	Gorr. Mag	Ees. Mag
EO	600	60	576E8. 1	68
90	600	90	57696	' 9
120	600	120	57696.1	96
150	600	150	57694.4	94
180	600	180	57511.1	-89
210	600	210	57624.3	24
240	600	240	57567.7	-32
270	600	270	57602.4	2
300	EOO	300	57609.1	9
330	600	330	57678.5	79
360	600	360	57602.7	3
390	600	390	57668.3	68
420	EOO	420	57615.7	1ϵ

APPENDIX III

General Information

The IGS-2 Integrated Geophysical System is a portable microprocessor-based instrument which allows more than one type of survey measurement to be performed by a single operator during a survey.

The IGS-2 is a modular system which can easily be configured to suit different and changing survey requirements. Reconfiguring the system is easy and offers both operational flexibility and minimal redundancy with a minimum number of spare consoles and/or modules.

When conflgured with any of the avallable sensor options, the IGS-2 System Control Console becomes a method-specific instrument according to the sensor option(s) utilized. In addition, the IGS-2 Console is an electronic notebook into which geophysical, geological or other data may be manually entered and digitally stored.

Data is stored in the IGS-2 in an expandable, solid state memory and can be output in the fleld by connecting the instrument to a printer, tape recorder, modem or microcomputer.

The 32 character digital display uses full words in most cases, ensuring clear communication. Both present and previous data are displayed simultaneously, allowing comparisons to be made at a glance during a survey.
The IGS-2 records header information, data values, station number, line number, grid number and the time of each observation in its internal memory. Data are first sorted by grid number, then in order of increasing line number and, within each line, by increasing station number. In this way, the data are organized logically regardless of the sequence in which they were taken. Ancillary data can also be manually entered and recorded at a given station, along with the survey parameters.

SPECIFICATIONS
Magnetometry specifications
Total Field Operating Range
20,000 to $100,000 \mathrm{nT}$ (1 nT = 1 gamma).

Gradient Tolerance For Total Field: $\quad+5000 \mathrm{nT} / \mathrm{m}$.

Total Fleld Absolute Accuracy	```+1 nT at 50,000 nT +2 nT over total fleld operating and temperature range.```
Resolution	0.1 nT .
Tuning	Fully solld-state. Manual or automatic mode is keyboard selectable.
Reading Time	2 seconds. For portable readings this is the time taken from the push of a button to the display of the measured value.
Continuous Cycle Times	```Keyboard selectable in 1 second increments upwards from 2 seconds to }99 seconds.```
Operating Temperature Time	-40 C to +50 C provided optional Display Heater $1 s$ used below - 20 C .

Sensor options
Portable Total Field Sensor Option
Includes sensor, staff, two 2 m cables and backpack sensor harness. Weight of sensor, cable and staff is 1.9 kg .

VLE Specifications

Frequency Tuning
Automatic digital tuning. Can be tuned to any frequency in the range 15.0 to 29.0 kHz with a bandwidth of 150 Hz . Up to three frequencies can be chosen by keyboard entry for sequential measurements.

Field Strength Range

Signal Filtering

Fields as low as $100 \mathrm{~mA} / \mathrm{m}$ can be received. In practice, background noise may require fields up to 5-10 times this level. Maximum received field is a $2 \mathrm{~mA} /$ metre. These values are specified for 20 kHz . For any other frequency, calculate the above limits by multiplying by the station frequency in kHz and dividing by 20.

Narrow bandpass, low pass and sharp cut-off high pass filters.

Measuring Time
0.5 seconds sample interval. As many as $2.0+$ E16 samples can be stacked to improve measurement accuracy.

VLF-Magnetic Field Components Measured

1) Horizontal amplitude,
2) Vertical in-phase component, and 3) Vertical quadrature components. Vertical components are displayed as a percentage of horizontal component and are related in phase to the horizontal components. Their range is +120\%; reading resolution 1\%.

Two air-cored coils in a backpack mounted housing with an electronic level for automatic tilt compensation. The error in the vertical in-phase component is less than 1\% for tilts up to +15.

