LOG NO:	09/07	RÐ.
ACTION:		
,		
FILE NO:		

出下 U R

ZO

A A

2 🛋

**

11 <Z **(**) **(**) ΞΣ

GEOPHYSICAL REPORT

on the

E-D 1 PROPERTY

Kamloops Mining Division British Columbia

North Lat. 51⁰22' West Long. 119⁰59' NTS 92G/14W and 92P/8E

.Prepared for.

368061 B.C. LTD. 810 - 175 2nd Avenue Kamloops, B.C. V2C 5W1

.Prepared by.

S C QUEST CANADA EXPLORATION SERVICES IN ... P.O. BOX 11569 840-650 West Georgia Street 0.0 Vancouver, B.C. **()** V6B 4N8 3 1

> Paul P.L. Chung, F.G.A.C. Consulting Geologist

August 22, 1990

TABLE OF CONTENTS

INTRODUCTION1
SUMMARY1
LOCATION AND ACCESS
PROPERTY AND OWNERSHIP4
HISTORY
GENERAL GEOLOGY
HLEM GENIE SURVEY
DISCUSSION OF RESULTS
CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
STATEMENT OF QUALIFICATIONS
COST BREAKDOWN

ILLUSTRATIONS

PAGE

FIGURE	1	-	LOCATION MAP2
FIGURE	2	-	CLAIM MAP5
FIGURE	3		REGIONAL GEOLOGY MAP (FROM D.C. MILLER, 1989)8

-IN POCKET

FIGURE 4 - HLEM GENIE PROFILE MAP

PAGE

APPENDICES

APPENDIX I - HLEM GENIE FIELD DATA APPENDIX II - FIELD PROCEDURE & INSTRUMENT SPECIFICATIONS -GENIE SE-88 HLEM SYSTEM.

INTRODUCTION

Ltd. of Suite 810, 175 - 2nd Avenue, Kamloops, 368061 B.C. British Columbia holds an option to purchase 100% of the E-D 1 in the Kamloops Mining Division. This report, claim, located the request of the company, describes the Genie HLEM prepared at survey that was conducted on the property between June 23rd and 30th, 1990.

SUMMARY

The E-D 1 claim consists of 20 units covering 500 hectares. It is located some 80 km north-northeast of Kamloops, in the Kamloops Mining Division, British Columbia. It is readily accessible by well maintained logging roads departing from Highway 16 at the town of Barriere.

subject property is underlain mainly by Unit EBP of the The Eagle Bay Assemblage and its contact with the Baldy Batholith. Unit EBP consists mainly of phyllite and slate with interbedded siltstone and sandstone with lesser carbonate, quartzite, chlorite-sericite-quartz schist and metavolcanic rocks. The Fennell Formation is in contact with Unit EBP near the western boundarv of the claim along a steep easterly directed thrust fault.

The Enargite showing of Kam Creed Mines Ltd. lies about 600m south of the E-D l claim and is located at the contact of Eagle Bay and Fennell rocks. Mineralization consists of galena, sphalerite, chalcopyrite and pyrite in quartz veins and lenses. Some high silver and moderate gold values are also present.

In 1985 Noranda Exploration Company Limited carried out an airborne magnetic and electromagnetic survey of a large area near Birk Creek which included the subject property. This work indicated a number of northwesterly trending conductors to be present on the E-D 1 property.

Previous geochemical surveys were carried out in the area of the E-D l claim by Craigmont Mines Limited in 1973. The target at this time was porphyry copper mineralization. North-south oriented lines were spaced 1000 ft. apart with samples at 200 ft. intervals along lines. Soil samples were analyzed for copper, molybdenum, lead and zinc. Some zinc anomalies were found, but not all were followed up.

In 1989, the company conducted a combine ground magnetometer and VLF-EM survey on the property. The results indicated a number of locations which warrant further exploration. The geophysical responses on the west side of the survey was interpreted to be representative of a lithologic contact between the Eagle Bay Assemblage and the Fennell Formation.

LOCATION AND ACCESS

The property is located 80 km north-northeast of Kamloops, B.C. on NTS Map Sheets 82M/5W and 92P/8E. Road access to the property from Barriere, B.C. is gained by following the Barriere Lakes road eastward some 16 km to the junction of the North and From this point the North Barriere Barriere Lakes roads. East is followed for 8 km where the Birk Creek logging road Lake road off the north. The Birk Creek road is then followed turns to 12 km to the point where a subsidiary road turns right. The some corner post is located some 700m south of this road (Figure legal geographical coordinates of the claim are 51022' N. The 2). Latitude and 119059' W. Longitude.

PROPERTY AND OWNERSHIP

The property is comprised of one M.G.S. claim totalling 20 units. The claim is located in the Kamloops Mining Division and is owned by 356586 B.C. Ltd. of 810-175, 2nd Avenue, Kamloops, B.C. The operator is 368061 B.C. Ltd. which holds an option to acquire a 100% interest of the property. The following table summarizes the pertinent claim data:

CLAIM NAME	RECORD NO.	UNITS	EXPIRY DATE
E-D 1	4742	20	Sept., 16 1990

HISTORY

The area has been intermittently prospected and staked since the early 1900's. In 1924 the area immediately south of the property was staked and developed by trenches and an adit. Mineralization included galena, sphalerite, chalcopyrite and pyrite which is carried in quartz veins within metasedimentary rocks. Variable gold values and good silver values were reported. Two showings are described in the B.C. Minfile: 82M and 065 which are referred to as the North Star north and 064 The north showing is also known as the Ace or south showings. In 1972, 4.5 tons of crude ore which contained 39.8 Enargite. grams/tonne gold, 707.9 grams/tonne silver, 27.4% lead, 13.3% zinc and 0.25% copper was shipped from the north showing to the Trail smelter.

In 1984 Kam Creed Mines Ltd. completed 5 diamond drill holes totalling 1251 Ft. near the north Northstar showing. The best intersection was in hole one which was reported to cut 0.30 oz./t gold from 331.2-333.0 Ft. in a pyritic, carbonaceous shale. This hole also intersected 0.16 oz./t gold from 342-347 Ft. in a pale

green quartzite. Hole 3 intersected 0.06 oz./t gold from 65-68 Ft. within pyritic shale.

1973 Craigmont Mines Ltd. carried out geochemical and In geophysical surveys over a large area which included the ground The surveys were carried out in search of present property. porphyry copper mineralization along north-south lines spaced 1000 Ft. apart and along east-west lines spaced 3000 Ft. apart. Soil samples were taken along the lines at 200 Ft. intervals. Geochemical analysis was done for copper, molybdenum, lead and zinc. Several zinc anomalies were found, some of which were recently explored by Noranda Exploration Company Limited.

Noranda explored the adjoining B.C. claim with ground and geochemistry (2215 soil samples), airborne qeophysics, 12 and 14 diamond drill holes totalling 1036.9m. trenches The work between 1983 and 1987 and discovered pods of stratiform was done sulphides and stringer-type mineralization including massive silver, lead, zinc and minor barite.

In general, there has been considerable exploration activity in the region as a result of the discovery of the CC copper deposit in 1978 and the Rea-Samatosum silver-gold deposits in 1983-87.

In 1989, a ground magnetic survey and a VLF electromagnetic survey was conducted across the property. These surveys indicated a number of locations which warranted further exploration.

GENERAL GEOLOGY

property lies mainly within Unit EBP of the Eagle Bay The Assemblage near its contact with the Baldy batholith to the north the Fennell Formation to the west (Figure 3). The Eagle Bay and Assemblage includes a structurally complex group of volcanic and sedimentary rocks which have been altered by generally low grade regional metamorphism to phyllites, schists, quartzites, marbles and metavolcanics. Various rock units strike mainly and dip at various angles both northwesterly eastward and Rocks within the Eagle Bay range in age from Lower westward. Cambrian? and/Older? to Mississippian.

From an economic point of view, the Eagle Bay rocks are of interest because they are host rocks for several mineral deposits including the Rea-Samatosum silver-gold deposit which is currently in production. Reserves for this deposit are quoted by Rea Gold Corporation as being 666,000 tons grading 32.08 oz/t silver, 0.052 oz/t gold, 3.5% zinc, 1.7% lead and 1.2% copper (undiluted).

The Fennell Formation may underlie the extreme western part of the property in fault contact with Eagle Bay rocks. Fennell rocks include several lithologies as indicated on Figure 3. The CC copper deposit occurs in mafic volcanic rocks within the Fennell and is reported to contain over 2,000,000 tons grading 2% copper.

Both the Eagle Bay and Fennell units have been intruded by the Baldy batholith near the north boundary of the property. No significant mineral showings are known within this intrusion, however, several occur along its border.

LEGEND

EOCENE KAMLOOPS GROUP eTs Mainly andesite and basalt, minor sediments CRETACEOUS Kg Granite and granodiorite DEVCNIAN TO PERMIAN FENNELL FORMATION F Basalt, rhyolite, volcaniclastics, gabbro, diorite, chert and conglomerate LOWER CAMBRIAN/OLDER TO MISSISSIPPIAN EAGLE BAY ASSEMBLAGE MISSISSIPPIAN [EBP] Mainly phyllite, slate, siltstone and sandstone, lesser carbonates, quartzite, schist and metavolcanics DEVONIAN/ MISSISSIPPIAN EBF Mainly phyllite and schist derived from intermediate volcanics EBA Mainly phyllite derived from felsic to intermediate volcanics. LOWER CAMBRIAN ?/ OLDER ? EBQ Mainly quartzite, schist and phyllite LOWER CAMBRIAN Mainly greenstone and chlorite schist derived from mafic to intermediate volcanics; EBGt-Limestone and dolomite × _{cc} Mineral property A A Thrust foult (approx.) Normal fault (approx.) Geological boundary E-D1 CLAIM REGIONAL GEOLOGY MAP

To accompany a report by						
Project No: Report No:						
Mining Div: Kamloops	N.T.S.: 821/5W,92P/8E					
Date: 22/08/90	Map No: 3					
QUEST CANADA EXPLO	DRATION SERVICES INC.					

HLEM GENIE SURVEY

A horizontal loop electromagnetic survey was completed across the western portion of the E-D l claim to further delineate the VLF-EM conductors generated by the previous survey. The work was conducted between June 23 and 30, 1990 and was performed by Thrane and Craig Johnson of Quest Canada Exploration Flemming Scintrex SE88 Genie. A total of 12 Services Inc. using a of surveying was completed across 15 lines, spaced on kilometres 200 metre centres, with readings taken at every 25 metres along Coil spacing was maintained at 100 metres during the lines. the of the survey and data was gathered for 3 frequency pairs: course 3037.5/112.5, 1012.5/112.5, and 337.5/112.5.

The data was presented to GeoSci Data Analysis Ltd., where Mr. Trent Pezzot, a geophysicist, analyzed and interpreted the data. The raw survey data accompanies this report as Appendix I. The survey data, in profile form, is presented in Figure 4. Conductive trends are also plotted on Figure 4.

DISCUSSION OF RESULTS

HLEM Genie survey was conducted with the intention of The and categorizing the VLF-EM conductors further delineating Four conductive trends have been identified previously mapped. are labeled 1 through 4 on the profile in the Genie data and All four anomalies correlate with previously defined VLF-EM map. length, trending either northerly or north-westerly. strike Conductive overburden has produce a positive bias in the Genie profiles, most notably in the higher frequency data. Otherwise, the absence of the conductive trends mentioned above, the data in is very regular, suggesting a fairly homogeneous half-space.

Accurate quantitative analysis of this type of data requires that information be gathered at different frequencies and different coil separations. Since these conditions have not been met, absolute dip, depth and conductance information for the anomalous trends can not be reliably calculated.

Conductors 1 & 2

Conductor 1 strikes northwesterly from grid location 1200N, 1200W and arcs to the north, paralleling the western claim boundary to line 2400N. The anomaly is open in both directions. Conductor 2 runs parallel to and immediately east of conductor 1. These 2 zones appear to converge and diverge along their mapped lengths. The most definitive responses are observed on line 1200N where the zones appear to be most widely separated. It is possible that the anomalies are tracking a zone composed of many conductive, probably sulphide, lenses too closely separated and near the surface to be individually resolved with a 100 metre separation.

The anomaly amplitude for both conductors is very high, suggesting a shallow target. The character of the response infers the targets are thin, plate-like bodies which dip steeply to the east. The anomalies are observed on all three frequencies recorded, suggesting good conductors.

Conductor 3

Conductor 3 appears as a linear feature extending from 1400N, 575E to 2200N, 150W. Although it's amplitude is much lower than that associated with conductors 1 and 2, it still forms a significant response. The zone is dipping steeply to the east at its' southern limit (line 1400N) and appears to be rotating to a more shallow easterly dip to the north. The effects of increasing overburden to the east produce a slight bias to the profile and enhance the appearance of an easterly dip. With the exception of line 2200N, the anomalous response is only observed in the highest (3037/112) frequency data. This suggests the causative body is a relatively poor conductor. A rough estimate of depth, based on the response at line 1800N is some 48 metres.

Conductor 4

Conductor 4 is a northwesterly striking feature, extending from 400N, 330W to 800N, 375W. It has a similar amplitude to conductor 3 and exhibits a similar easterly dip. The trend follows the western edge of a conductive surface layer, most likely a change in the overburden composition or thickness. The anomalous responses are well defined on the high and middle frequency data and only weakly evident on the low frequency. This suggests a moderate conductivity. A rough estimate of depth, based on the response at line 600N is some 35 metres.

CONCLUSIONS AND RECOMMENDATIONS

The Genie HLEM survey has outlined 4 conductive targets. The responses observed suggest that the causative bodies are thin, plate-like features which extend for considerable strike length. The westermost conductors (1 & 2) appear to be at or very near the surface and dip vertically or steeply to the east. It is possible that the two anomalies are actually one zone composed of many conductive sulphide lenses, too closely separated and near be individually identified by a 100 metre coil. surface to 4 are deeper and exhibit a more separation. Conductors 3 and likely track These two trends most shallow easterly dip. lithological contacts or faults.

Considering the geological target as being polymetallic (sulphide) bodies in quartz veins and lenses, induced polarization could be detecting sulphide an useful tool in mineralization within the conductors. Once further delineation of the conductors have been accomplished, backhoe trenching should then be implemented to test the anomalies that are close to the surface.

DG141yo, submitted, Resp P.JELLPhung, FGAC. Paul

REFERENCE

Miller, D.C.,(1989): Report on the E-D l Claim, Kamloops Mining Division, For Wayne Tyner, D.C. Miller Geological Services.

Pezzot, E.T.,(1990): Interpretation of HLEM Genie data, E-D 1 Claim, For Quest Canada Exploration Services Inc., GeoSci DataAnalysis Ltd.

STATEMENT OF QUALIFICATIONS

I, Paul P.L. Chung, of the City of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:

- (1) I am a Consulting Geologist with business address office at Suite 840 - 650 West Georgia Street, Vancouver, British Columbia, V6B 4N8; and President of Boa Services Ltd.
- (2) I am a graduate in geology with a Bachelor of Science degree from the University of British Columbia, in 1981.
- (3) I have practised my profession continuously since graduation.
- (4) I am a Fellow of the Geological Association of Canada.
- (5) I have conducted various mineral exploration programmes inB.C., Yukon, Manitoba, Ontario, Quebec, Nova Scotia, andNevada.
- (6) This report is based on data supplied to me by Quest Canada Exploration Services Inc.
- (7) I have no direct, indirect, or contingent interest in the property nor do I expect to receive any, SSOCIATIOA

F.G.A.C. Paul ELLON

Dated at Vancouver, British Columbia, this 22nd day of August, 1990.

STATEMENT OF QUALIFICATIONS

I, E. Trent Pezzot, of the City of Richmond, Province of British Columbia, hereby certify as follows:

- I am a principal of GeoSci['] Data Analysis Ltd., a company incorporated under the laws of the Province of British Columbia with a business address of 3740 Lockhart Road, Richmond, B.C. V7C 1M3.
- I graduated from the University of British Columbia in 1974 with a BSc. degree in the combined honors Geology and Geophysics program.
- I have practiced my profession continuously from that date.
- I hold no interest, direct or indirect, in Quest
 Canada Exploration Services Ltd. or company 356586 BC
 Ltd., holder of the E D 1 claim, or any of their affiliates, nor do I expect to receive any.
- The geophysical interpretation is based upon information and data provided to me by Quest Canada Explorations Services Ltd.. I was not involved in the data aquisition, editing or reduction phases of this program.
- I consent to the use of this letter or the information contained within it, provided the context is not changed to alter the intended meaning, in or in connection with a Prospectus or in a Statement of Material Facts.

E. Trent Pezzot BSc. Geophysics/Geology

August 16, 1990

COST BREAKDOWN

GENIE-HLEM Survey	
12 kms @ \$250.00/km	\$3,000.00
Mobilization and demobilization	
Wages	
2 days @ \$200.00/day	400.00
Truck	
10 days @ \$40.00/day	400.00
1395 kms @ \$0.35/km	487.55
Room and Board	
9 days x 2 men x \$40/day	720.00
Report Costs	
Geophysical interpretation	
2 days at \$275/day	550.00
Report writing	
4 days at \$300/day	1200.00
Drafting	350.00
Photocopying, reproduction and binding	75.00
TOTAL	\$7,182.55
	=========

APPENDIX I

.

HLEM FIELD DATA

1

T

RAW DATA FOR THE GENIE HLEM SURVEY ON THE

.

۰.

E-D1 CLAIM

•				Reference	Frequency	112 Hz
	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz
Line	200					
	0	200	0	2	6	14
	-25	200	-25	0	. 8	8
	-50	200	-50	2	6	10
	-75	200	-75	1	5	8
	-100	200	-100	0	4	10
	-125	200	-125	5	10	18
	-150	200	-150	3	. 9	19
	-175	200	-175	2	8	20
	-200	200	-200	2		23
.	-225	200	-225	3	14	40
Line	400	400	n	0	6	А
	-25	400	-25	2	5	20
	-50	400	-50	4	6	$\tilde{15}$
	-75	400	-75	3	5	16
	-100	400	-100	4	7	15
	-125	400	-125	5	8	14
	-150	400	-150	3	6	11
	-175	400	-175	5	5	7
	-200	400	-200	-3	6	9
	-225	400	-225	-4	7	12
	-250	400	-250	4	.10	25
	-275	400	-275	6	15	30
	-300	400	-300	3	5	12
	-325	400	-325	-4	-8	-12
	-300	400	-300	-3	-2	0
	-375	400	-373	-2	3	5
	-425	400	-425	1	1	5
	-450	400	-450	2	2	10
	-475	400	-475	0	3	9
Line	600					
	0	600	0	0	5	11
	-25	600	-25	4	10	17
	-50	600	-50	1	8	18
	-75	600	-75	2	7	18
	-100	600	-100	2	6	14
	-125	600	-125	2	5	11
	-150	600	-150	3	10	14
	-1/5	600	-1/5	3	10	17
	-200	600	-200	2	11	21
	-225	600	-225	4	10	24
	-275	600	-275	2	11	15
	-300	600	-300	. 0	5	6
	-325	600	-325	-1	-3	-5
	-350	600	-350	-2	-5	-8
	-375	600	-375	0	-1	-3
	-400	600	-400	0	0	3
	-425	600	-425	2	· 3	4
	-450	600	-450	2	5	5
	-1/5	600	-4/5	,		n

	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz
	-500	600	-500	2	4	9
	-525	600	-525	1	3	12
	-550	600	-550	0	. 3	13
	-575	600	-575	1	2	9
	-600	600	-600	0	1	8
	-625	600	-625	0	3	9
	-650	600	-650	1	3	6
	-675	600	-675	0	3	5
	-700	600	-700	0	2	5
	-725	600	-725	0	0	5
Line	800					
	0	800	0	1	3	6
	-25	800	-25	2	4	6
	-50	800	-50	1	6	4
	-75	800	-75	2	9	12
	-100	800	-100	4	7	15
	-125	800	-125	1	6	16
	-150	800	-150	0	5	19
	-175	800	-175	2	7	14
	-200	800	-200	0	4	12
	-225	800	-225	2	5	10
	-250	800	-250	2	8	13
	-275	800	-275	3	8	15
	-300	800	-300	2	4	16
	-325	800	-325	1	2	8
	-350	800	-350	0	1	0
	-375	800	-375	0	-2	-5
	-400	800	-400	0	0	2
	-425	800	-425	2	2	6
	-450	800	-450	1	1	7
	-475	800	-475	2	2	8
	-500	800	-500	0	2	5
	-525	800	-525	0	1	7
	-550	800	-550	2	0	1
	-575	800	-575	1	1	5
	-600	800	-600	1	3	10
	-625	800	-625	2	4	12
	-650	800	-650	2	3	14
	-675	800	-675	2	4	12
•	-700	800	-700	2	5	8
	-725	800	-725	0	2	4
	-750	800	-750	0	4	9
	-775	800	-775	1	4	13
	-800	800	-800	0	1	/
	-825	800	-825	2	4	10
	-850	800	-850	2	3	10
	-875	800	-875	-1	2	10
,	-900	800	-900	0	3	11
	-925	800	-925	2	10	31
	-950	800	-950	8	3	14
	-975	80,0	-975	-2	2	14
	-1000	800	-1000	0	5	16
Line	1000	4	~	2	<i>c</i>	1 1
	0	1000	0	2	6 F	11
	-25	1000	-25	U	5	/
	-50	1000	-50	<u>ງ</u>	С С	10
	-/5	1000	~/3	2	U G	1 O
	-100	1000	-100	2	7	17
	-120	1000	-120	່ . ຊ	5	15
	- • •••			•	· · · · ·	1.7

.

Station	Line	Station	%Ratio 337 Hz	%Ratio	%Ratio 3037 Hz
-175	1000	-175	2	5	13
-200	1000	-200	0	5	14
-225	1000	-225	2	6	12
-250	1000	-250	3	6	13
-275	1000	-275	2	5	12
-300	1000	-300	1	6	14
-325	1000	-325	1	4	12
-350	1000	-350	0	3	8
-375	1000	-375	0	3	6
-400	1000	-400	1	2	5
-425	1000	-425	0	0	4
-450	1000	-450	0	0	3
-475	1000	-475	1	1	3
-500	1000	-500	0	1	5
-525	1000	-525	0	1	1
-550	1000	-550	0	0	0
-5/5	1000	-5/5	-1	1	3
-600	1000	-600	0	3 F	5
-620	1000	-625	0	C A	0
-675	1000	-675	1	4	0 9
-075	1000	-075	1	5	0
-700	1000	-700	2	0	4 8
-750	1000	-750	1	4	7
-775	1000	-775	2	9	17
-800	1000	-800	1	5	32
-825	1000	-825	Õ	· 5	16
-850	1000	-850	Õ	6	14
-875	1000	-875	2	14	17
-900	1000	-900	9	11	10
-925	1000	-925	6	7	6
-950	1000	-950	3	5	5
-975	1000	-975	1	2	4
-1000	1000	-1000	3	8	13
-1025	1000	-1025	2	0	0
-1050	1000	-1050	0	-5	-23
-1075	1000	-1075	0	-6	-25
-1100	1000	-1100	3	3	2
-1125	1000	-1125	U C	20	20
-1150	1000	-1150	6	21	20
-11/5	1000	-1175	C	-7	-17
-1200	1000	-1200	-4	- 7	-42
Line 1200	1000	1223	2	51	33
0	1200	0	2	7	14
-25	1200	-25	1	5	10
-50	1200	-50	3	5	8
-75	1200	-75	3	7	15
-100	1200	-100	2	8	26
-125	1200	-125	3	7	20
-150	1200	-150	2	7	18
-175	1200	-175	3	. 8	17
-200	1200	-200	2	. 7	12
-225	1200	-225	2	7	13
-250	1200	-250	2	5	14
-275	1200	-275	2	3	10
-300	1200	-300	2	4	8
-325	1200	-325	1	3	10
-350	1200	-350	0	4	9
- 275	1 200	- 375	0	2	я

·

	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz
	-400	1200	-400	0	3	9
	-425	1200	-425	1	2	7
	-450	1200	-450	1	3	6
	-475	1200	-475	2	2	7
	-500	1200	-500	1	2	5
	-525	1200	-525	1	$\overline{1}$	4
	-550	1200	-550	1	1	4
	-575	1200	-575	-1	-2	1
	-600	1200	-600	-2	-2	2
	-625	1200	-625	-2	-1	-3
	-650	1200	-650	õ	0	8
	-675	1200	-675	-1	Ő	-1
	-700	1200	-700	õ	1	4
	-725	1200	-725	0	. 3	9
	-750	1200	-750	1	2	13
	-775	1200	-775	0	2	18
	-800	1200	-800	1	2	11
	-825	1200	-825	2	3	11
	-850	1200	-850	1	5	11
	-875	1200	-875	2	17	12
	-900	1200	-900	0	15	13
	-925	1200	-925	-1	6	12
	-950	1200	-950	-2	6	12
	-975	1200	-975	-2	5	8
	-1000	1200	-1000	-3	-1	-12
	-1025	1200	-1025	3	3	-10
	-1050	1200	-1050	3	4	-7
	-1075	1200	-1075	4	14	38
	-1100	1200	-1100	6	19	30
	-1125	1200	-1125	7	18	9
	-1150	1200	-1150	14	23	28
	-1175	1200	-1175	-8	-37	-70
	-1200	1200	-1200	-29	-60	-72
	-1225	1200	-1225	-28	-60	-90
	-1250	1200	-1250	-20	-46	-59
	-1275	1200	-1275	12	24	20
	-1300	1200	-1300	10	16	18
	-1325	1200	-1325	5	9	10
	-1350	1200	-1350	2	5	/
	-1375	1200	-13/5	1	0	2
	-1400	1200	-1400	0	1	2
	-1425	1200	-1425	3	0	0
_ ·	-1450	1200	-1450	1	Ŧ	1
Line	1400	1 400	0	1	0	15
	0	1400	U 25		В О	
	-25	1400	-25	3	9	
	-50	1400	- 20	2	/	
	-/5	1400	-/5	4	07	10
	-100 -125	1400	-100 -105	∠ 2	/ g	12 12
	-120	1400	-120	2	7	13
	-175	1400	-175	2	, 6	14
	-1/2	1400	-175	2	5	15
	-200	1400	-200	3 2	7	14
	-225	1400	-250	2	, 6	13
	-275	1400	-275	2	5	14
	-300	1400	-300	3	- 5	13
	-325	1400	-325	2	4	11
	-350	1400	-350	3	4	9
	-375	1400	-375	1	3	6

Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz
-400	1400	-400	0	3	8
-425	1400	-425	1	3	6
-450	1400	-450	2	4	10
-475	1400	-475	3	4	9
-500	1400	-500	2 .	3	7
-525	1400	-525	1	2	6
-550	1400	-550	1	1	3
-575	1400	-575	0	0	0
-600	1400	-600	0	-1	3
-625	1400	-625	-1	3	9
-650	1400	-650	0	0	11
-675	1400	-675	-1	0	9
-700	1400	-700	2	5	6
-725	1400	-725	0	6	4
-750	1400	-750	1	4	7
-775	1400	-775	2	5	8
-800	1400	-800	3	2	9
-825	1400	-825	1 O	3	6
-850	1400	-850	0	5	
-875	1400	-875	0	D O	
-900	1400	-900	1	87	13
-925	1400	-925	. 4	. 0	10
-930	1400	-950	4 7	12	16
-1000	1400	-1000	7	10	-6
-1025	1400	-1025	-8	-18	-46
-1050	1400	-1050	-18	-51	-97
-1075	1400	-1075	-9	-16	-10
-1100	1400	-1100	-30	-78	-75
-1125	1400	-1125	-46	-79	-93
-1150	1400	-1150	-30	-73	-95
-1175	1400	-1175	-1	-24	-48
-1200	1400	-1200	8	11	15
-1225	1400	-1225	0	3	4
-1250	1400	-1250	2	2	0
-1275	1400	-1275	1	2	2
-1300	1400	-1300	0	0	-1
-1325	1400	-1325	-2	-2	-4
-1350	1400	-1350	-1	-3	-2
-1375	1400	-1375	-2	-1	-2
-1400	1400	-1400	0	-1	-4
time 1600					
Line 1600	1600	0	2	6	15
- 25	1600	- 25	3 2	6	11
-25	1600	-25	2	. 7	13
-75	1600	-75	2	, В	15
-100	1600	-100	2	6	14
-125	1600	-125	3	6	11
-150	1600	-150	2	6	12
-175	1600	-175	2	8	11
-200	1600	-200	2	9	17
-225	1600	-225	2	7	17
-250	1600	-250	2	6	21
-275	1600	-275	2	6	22
-300	1600	-300	2	9	23
-325	1600	-325	3	· 7	22
-350	1600	-350	2	7	19
-375	1600	-375	2	5	.9
	1600	_ & O D	1	h	· •

	-425	1600	-425	2 Reference	4 Frequency	9 112 Hz
	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz
	-450	1600	-450	1	6	12
	-475	1600	-475	2	4	$\overline{12}$
	-500	1600	-500	3	4	9
	-525	1600	-525	2	4	8
	-550	1600	-550	2	4	9
	-575	1600	-575	2	4	9
	-600	1600	-600	1	1	7
	-625	1600	-625	2	1	8
	-650	1600	-650	2	3	9
	-675	1600	-675	2	3	10
	-700	1600	-700	1	3	11
	-725	1600	-/25	2	4	12
	-/50	1600	-750	2	3	0
	~775	1600	-800	2	4	9
	-825	1600	-825	2	· 6	12
	-850	1600	-850	3	. ğ	18
	-875	1600	-875	2	9	19
	-900	1600	-900	5	9	25
	-925	1600	-925	4	10	18
	-950	1600	-950	4	11	3
	-975	1600	-975	4	4	-18
	-1000	1600	-1000	6	0	~28
	-1025	1600	-1025	0	-16	~48
	-1050	1600	-1050	-8	-34	~ 50
	-10/5	1600	-1100	-17	-31	- 70
	-1125	1600	-1125	-17	-40	-74
	-1150	1600	-1150	-8	-25	-49
	-1175	1600	-1175	-8	-30	~60
	-1200	1600	-1200	6	10	13
Line	1800					
	0	1800	0	2	9	16
	-25	1800	-25	2	6	12
	-50	1800	-50.	2	6	14
	-/5	1800	~/5	4	· 8	13
	-100	1800	-100	3	/ 0	11
	-125	1800	-125	2	q	17
	-175	1800	-175	$\frac{1}{2}$	8	16
	-200	1800	-200	2	8	20
	-225	1800	-225	2	7	23
	-250	1800	-250	1	6	20
	-275	1800	-275	5	6	17
	-300	1800	-300	2	5	7
	-325	1800	-325	3	3	4
	-350	1800	-350	2	4	3
	-375	1800	-3/5	1	4	С С
	-400 -/25	1800	-400	1	4 2	
	-423	1800	-450	0	4	9
	-475	1800	-475	1	4	10
	-500	1800	-500	$\overline{2}$	4	11
	-525	1800	-525	2	3	6
	-550	1800	-550	2	4	8
	-575	1800	-575	1	3	3
	-600	1800	-600	1	3 C	10
	-025	1000 1800	-620 -650	∠ 3	о 5	10

·

).

	-675	1800	-675	3 Reference	5 Frequency	8 112 Hz	•
	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz	
	-700	1800	-700	5	8	16	
	-725	1800	-725	4	8	13	
	-750	1800	-750	2	4	5	
	-775	1800	-775	3	3	6	
	-800	1800	-800	-1	-10	-28	
	-825	1800	-825	-2	-13	-40	
	-850	1800	-850	4	2	-14	
_	-875	1800	-875	6	10	-6	
	-900	1800	-900	6	7	-9	
	-925	1800	-925	4	-3	-26	
	-950	1800	-950	-4	-20	-50	
	-1000	1800	-1000	-16	-53	-01	
	-1025	1800	-1025	-18	-50	-61	
	-1050	1800	-1020	-8	-29	-46	
	-1075	1800	-1075	4	3	-8	
Lin	e 2000						
	0	2000	0	0	6	15	
	-25	2000	-25	1	7	13	
	-50	2000	-50	2	5	8	
	-75	2000	-75	3	5	6	
	-100	2000	-100	2	9	8	
	-125	2000	-125	1	; b	13	
-	-175	2000	-175	2	6	15	
	-200	2000	-200	. 2	5	18	
	-225	2000	-200	1	· 4	4	
	-250	2000	-250	2	4	5	
	-275	2000	-275	2	5	7	
	-300	2000	-300	2	. 5	11	
	-325	2000	-325	2	5	12	÷
	-350	2000	-350	1	4	10	
	-375	2000	-375	2	4	11	
•	-400	2000	-400	1	4	8	
	-425	2000	-425	1	4	8	
	-450	2000	-450	2	4	8	
•	-4/5	2000	-4/5	2	4	0	
	-500	2000	-500	2	ວ ຮ	11	
	-550	2000	-550	2	5	9	
	-575	2000	-575	3	6	11	
	-600	2000	-600	2	8	13	
	-625	2000	-625	4	9	14	
	-650	2000	-650	4	10	15	
_	-675	2000	-675	0	-2	-7	
	-700	2000	-700	-5	-14	-31	
	-725	2000	-725	-3	-10	-33	
_	-750	2000	-/50	2	-3	-32	
	-//5	2000	-//5	6 5	14 _1	- 3 _ 1 1	
•	-000	2000	-000 		-4	-44 -70	
	-023	2000	-850	-1 4	-42	-64	
	-875	2000	-875	-10	-37	-52	
	-900	2000	-900	-1	-11	-23	
	-925	2000	-925	$\overline{6}$	14	17	
Lin	e 2200	-					
	0	2200	0	2	4	-3	
	-25	2200	-25	1	7	6	
	_ 5 0	2200	-50	2	R	· a	

| | |

P

	-75	2200	-75	3 Reference	12 Frequency	17 112 Hz
	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz
	-100	2200	-100	3	13	25
	-125	2200	-125	3	9	12
	-150	2200	-150	2	2	5
	-1/5	2200	-1/5	· 3	5	12
	-200	2200	-200	2	7	13
	-250	2200	-225	3	7	14
	-275	2200	-275	2	5	11
	-300	2200	-300	4	5	8
	-325	2200	-325	3	4	9
	-350	2200	-350	3	4	7
	-375	2200	-375	2	3	8
	-400	2200	-400	1	3	8
	-425	2200	-420	1 2	ວ ຊ	0 T0
	-475	2200	-475	2	3	8
	-500	2200	-500	$\overline{1}$	4	8
	-525	2200	-525	2	3	6
	-550	2200	-550	3	2	9
	-575	2200	-575	2	4	11
	-000 -625	2200	-000	2	5 0	17
	-650	2200	-620	4 3	0 9	22
	-675	2200	-675	5	12	28
	-700	2200	-700	4	16	30
	-725	2200	-725	8	18	34
_ ·	-750	2200	-750	1	4	0
Line	e 2400	2400	0	1	Λ	Э
	-25	2400 2400	-25	1 1	4 5	2 3
	-50	2400	-50	2	7	3
	-75	2400	-75	1	. 8	3
	-100	2400	-100	2	8	2
	-125	2400	-125	4	10	10
	-150	2400	-150	4	6	2
	-1/5	2400	-1/5	5 1	5 5	2
	-200	2400 2400	-200	1)	ر ۸	5 N
	-250	2400	-250	3	6	15
	-275	2400	-275	Ō	5	14
	-300	2400	-300	1	3	8
	-325	2400	-325	0	1	1
	-350	2400	-350	2	2	3
	-3/5	2400	-3/5		კ ნ	5 10
	-400 -425	2400	-400 -425	2	כ 7	ъ ТО
	-450	2400	-450	2	8	13
	-475	2400	-475	2	ž	16
	-500	2400	-500	3	4	5
	-525	2400	-525	-7	-23	-48
	-550	2400	-550	-12	-36	-60
_ ·	-575	2400	-575	-10	-31	-57
Line	e 2600	26.00	n	Λ	1.0	Λ
	-25	2600	-25	4 2		4 11
	-50	2600	-50	4	10	8
	-75	2600	-75	1	7	7
	-100	2600	-100	3	8	6
	-125	2600	-125	3	4	6

·.*	-150	2600	-150	2	4	7	
				Reference	Frequency	112 Hz	۰.
	Station	Line	Station	%Ratio 337 Hz	%Ratio 1012 Hz	%Ratio 3037 Hz	
	-175	2600	-175	1	5	8	
	-200	2600	-200	2	6	10	
	-225	2600	-225	1	2	8	
	-250	2600	-250	2	3	7	
	-275	2600	-275	2	5	7	
	-300	2600	-300	1	4	6	
	-325	2600	-325	$\hat{\overline{2}}$	5	11	
	-350	2600	-350	- 3	6	11	
	-375	2600	-375	5	, ğ	15	
	-400	2600	-400	4	9	13	
	-425	2600	-425	4	3	-6	
Line	2800			-	-	•	
	0	2800	0	1	5	8	
	-25	2800	-25	2	4	8	
	-50	2800	-50	1	4	8	
	-75	2800	-75	2	6	10	
	-100	2800	-100	0	4	10	
	-125	2800	-125	1	4	12	
	-150	2800	-150	1	4	12	
	-175	2800	-175	1	4	11	
	-200	2800	-200	2	5	11	
	-225	2800	-225	2	4	9	
	-250	2800	-250	3	4	9	
Line	3000	·					
	0	3000	0	1	3	4	
	-25	3000	-25	1	5	8	· ·
	-50	3000	-50	3	6	10	
	-75	3000	-75	1	5	14	
	-100	3000	-100	2	5	15	
base	0				,		
	00	200	200	*	*	*	
	00	400	400	*	*	*	
	00	600	600	*	*	*	
	00	800	800	*	*	*	
	00	1000	1000	*	*	*	
	00	1200	1200	*	*	*	
	00	1400	1400	*	*	*	
	00	1600	1600	*	*	*	
	00	1800	1800	*	*	*	•
	00	2000	2000	*	. *	*	
	00	2200	2200	*	*	*	
	00	2400	2400	*	*	*	
	00	2600	2600	*	*	*	
	00	2800	2800	*	*	*	
	00	3000	3000	*	*	*	

.

•

APPENDIX II

FIELD PROCEDURE & INSTRUMENT SPECIFICATIONS GENIE SE-88 HLEM SYSTEM.

FIELD PROCEDURE:

The Scintrex SE88 Genie EM system uses a portable transmitter consisting of two transmitting coils and power supply, and a receiver with signal detection electronics. The transmitter and receiver coils are normally maintained in the vertical axis coplanar mode, commonly referred to as the horizontal loop mode.

The transmitter simultaneously generates two alternating magnetic fields - one referred to as the "signal frequency" and the other as the "reference frequency". The resultant electromagnetic fields set up in the ground are detected by the receiver coil located at a fixed distance from the transmitter. The receiver measures the received "signal frequency" amplitude, Hs, and the received "reference frequency" amplitude, Hr. The value of (Hs/Hr) x 100 (referred to as "Ratio") is digitally displayed on the receiver.

The survey plotting point is considered to be at the mid-point of the transmitter-receiver separation (L).

The survey was conducted using Tx-Rx separation of 100 m and three frequency pairs (3037.5/112.5, 1012.5/112.5, 337.5/112.5) were monitored and recorded. Readings were taken every 25 m. along the lines.

GENIE SE-88 HLEM Receiver

Receiving Element

Receiving Frequency Pairs

.

Transmitter-Receiver Separation

Maximum Transmitter-Receiver Separation

Iron-cored coil

Five pairs.

112.5 Hz reference with one of 337.5, 1012.5 or 3037.5 Hz; or 337.5 Hz reference with one of 1012.5 or 3037.5 Hz.

Primary selector: 6.26 m, 12.5 m, 25 m, 50 m, 100 m, 200 m, plus Multiplier: x 1, x 1.25, x 1.5, x 1.75

200 m under most conditions. Greater separations may be possible depending on atmospheric and power line noise.

GENIE SE-88 HLEM TRANSMITTER

Transmitting Element

Transmitting Frequency Pairs

Transmitting Moments

Relative Amplitude Stability

Iron-cored coil for each frequency

Five pairs.

112.5 Hz reference with one of 337.5, 1012.5 or 3037.5 Hz; or 337.5 Hz reference with one of 1012.5 or 3037.5 Hz

150 A, at 112.5 Hz, 100 A, at 337.5 Hz, 50 Am at 1012.2 Hz 25 Am at 3037.5 Hz.

Better than 0.1%

LOG NO:	09/07	RD.
ACTION:		
FILE NO.		

A N C P O R

M M

۲Z

0 G I C S S M E

して

0 0

虹ら

3 <

GEOPHYSICAL REPORT

on the

E-D 1 PROPERTY

Kamloops Mining Division British Columbia

North Lat. 51022' West Long. 119059' NTS 92G/14W and 92P/8E

.Prepared for.

368061 B.C. LTD. 810 - 175 2nd Avenue Kamloops, B.C. V2C 5W1

.Prepared by.

QUEST CANADA EXPLORATION SERVICES INC. P.O. BOX 11569 840-650 West Georgia Street Vancouver, B.C. V6B 4N8

> Paul P.L. Chung, F.G.A.C. Consulting Geologist

November 27, 1989

TABLE OF CONTENTS

INTRODUCTION1
SUMMARY1
LOCATION AND ACCESS
PROPERTY AND OWNERSHIP4
HISTORY4
GENERAL GEOLOGY
VLF-EM AND MAGNETOMETER SURVEYS
DISCUSSION OF RESULTS
RECOMMENDATIONS AND CONCLUSIONS10
REFERENCES12
STATEMENT OF QUALIFICATIONS
COST BREAKDOWN

ILLUSTRATIONS

PAGE

FIGURE	1 -	LOCATION MAP	. 2
FIGURE	2 -	CLAIM MAP	. 5
FIGURE	3 -	REGIONAL GEOLOGY MAP (FROM D.C. MILLER, 1989)	. 7

-IN POCKET

FIGURE	4 - GEOPHYSICAL INTERPRETATION MAP	
FIGURE	5 - RESIDUAL MAGNETIC PROFILE MAP	
FIGURE	6 - RESIDUAL MAGNETIC CONTOUR MAP	
FIGURE	7 - VLF-EM PROFILE MAP: ANNAPOLIS TRANSMITTER	
	IN-PHASE AND QUADRATURE ATTRIBUTES	
FIGURE	8 - VLF-EM CONTOUR MAP: ANNAPOLIS TRANSMITTER	
	FRASER FILTERED IN-PHASE ATTRIBUTES	
FIGURE	9 - VLF-EM PROFILE MAP: SEATTLE TRANSMITTER	
	IN-PHASE AND QUADRATURE ATTRIBUTES	
FIGURE	10 - VLF-EM CONTOUR MAP: SEATTLE TRANSMITTER	
	FRASER FILTERED IN-PHASE ATTRIBUTES	

PAGE

APPENDICES

APPENDIX	I	- VLF-EM UNFILTERED DATA
APPENDIX	II	- FIELD RESIDUAL MAGNETIC DATA
APPENDIX	III	- INSTRUMENT SPECIFICATIONS - IGS-2 SYSTEM
INTRODUCTION

368061 B.C. Ltd. of Suite 810, 175 - 2nd Avenue, Kamloops, British Columbia holds an option to purchase 100% of the E-D 1 claim, located in the Kamloops Mining Division. This report, prepared at the request of the company, describes the VLF-EM and the magnetometer surveys that were conducted on the property between October 6th and 11th, 1989.

SUMMARY

The E-D 1 claim consists of 20 units covering 500 hectares. It is located some 80 km north-northeast of Kamloops, in the Kamloops Mining Division, British Columbia. It is readily accessible by well maintained logging roads departing from Highway 16 at the town of Barriere.

The subject property is underlain mainly by Unit EBP of the Eagle Bay Assemblage and its contact with the Baldy Batholith. Unit EBP consists mainly of phyllite and slate with interbedded siltstone and sandstone with lesser carbonate, quartzite, chlorite-sericite-quartz schist and metavolcanic rocks. The Fennell Formation is in contact with Unit EBP near the western boundary of the claim along a steep easterly directed thrust fault.

The Enargite showing of Kam Creed Mines Ltd. lies about 600m south of the E-D 1 claim and is located at the contact of Eagle Bay and Fennell rocks. Mineralization consists of galena, sphalerite, chalcopyrite and pyrite in quartz veins and lenses. Some high silver and moderate gold values are also present.

In 1985 Noranda Exploration Company Limited carried out an airborne magnetic and electromagnetic survey of a large area near Birk Creek which included the subject property. This work indicated a number of northwesterly trending conductors to be present on the E-D property.

Previous geochemical surveys were carried out in the area of the E-D 1 claim by Craigmont Mines Limited in 1973. The target at this time was porphyry copper mineralization. North-south oriented lines were spaced 1000 Ft. apart with samples at 200 Ft. intervals along lines. Soil samples were analyzed for copper, molybdenum, lead and zinc. Some zinc anomalies were found, but not all were followed up.

ground magnetometer and VLF-EM surveys on the E-D 1 claim The has indicated a number of locations which warrant further The geophysical responses on the west side of the exploration. may be representative of a lithologic contact between the survey Bay Assemblage and the Fennell Formation. Sulphide Eagle mineralization in the area is commonly associated with such a lithological contact. Proposed work consists of geological mapping and a Horizontal Loop EM survey.

LOCATION AND ACCESS

located 80 km north-northeast of Kamloops, The property is B.C. on NTS Map Sheets 82M/5W and 92P/8E. Road access to the property from Barriere, B.C. is gained by following the Barriere road eastward some 16 km to the junction of the North and Lakes East Barriere Lakes roads. From this point the North Barriere Lake road is followed for 8 km where the Birk Creek logging road The Birk Creek road is then followed turns off to the north. 12 km to the point where a subsidiary road turns right. some The corner post is located some 700m south of this road (Figure legal geographical coordinates of the claim are 51°22' N. 2). The Latitude and 119°59' W. Longitude.

PROPERTY AND OWNERSHIP

The property is comprised of one M.G.S. claim totalling 20 units. The claim is located in the Kamloops Mining Division and is owned by 356586 B.C. Ltd. of 810-175, 2nd Avenue, Kamloops, B.C. The operator is 368061 B.C. Ltd. which and holds an option to acquire a 100% interest of the property. The following table summarizes the pertinent claim data:

CLAIM NAME	RECORD NO. UNITS		EXPIRY DATE		
E-D 1	4742	20	Sept., 16 1990		

HISTORY

The area has been intermittently prospected and staked since the early 1900's. In 1924 the area immediately south of the staked and developed by trenches and an adit. property was Mineralization included galena, sphalerite, chalcopyrite and is carried in quartz veins within metasedimentary pyrite which Variable gold values and good silver values were rocks. showings are described in the B.C. Minfile: 82M reported. Two 065 which are referred to as the North Star north and 064 and The north showing is also known as the Ace or south showings. Enargite. In 1972, 4.5 tons of crude ore which contained 39.8 grams/tonne gold, 707.9 grams/tonne silver, 27.4% lead, 13.3% zinc and 0.25% copper was shipped from the north showing to the Trail smelter.

In 1984 Kam Creed Mines Ltd. completed 5 diamond drill holes totalling 1251 Ft. near the north Northstar showing. The best intersection was in hole one which was reported to cut 0.30 oz./t gold from 331.2-333.0 Ft. in a pyritic, carbonaceous shale. This hole also intersected 0.16 oz./t gold from 342-347 Ft. in a pale

green quartzite. Hole 3 intersected 0.06 oz./t gold from 65-68 Ft. within pyritic shale.

1973 Craigmont Mines Ltd. carried out geochemical and In ground geophysical surveys over a large area which included the The surveys were carried out in search of present property. porphyry copper mineralization along north-south lines spaced apart and along east-west lines spaced 3000 Ft. apart. 1000 Ft. samples were taken along the lines at 200 Ft. intervals. Soil Geochemical analysis was done for copper, molybdenum, lead and zinc. Several zinc anomalies were found, some of which were recently explored by Noranda Exploration Company Limited.

Noranda explored the adjoining B.C. claim with ground and airborne geophysics, geochemistry (2215 soil samples), 12 trenches and 14 diamond drill holes totalling 1036.9m. The work was done between 1983 and 1987 and discovered pods of stratiform massive sulphides and stringer-type mineralization including silver, lead, zinc and minor barite.

In general, there has been considerable exploration activity in the region as a result of the discovery of the CC copper deposit in 1978 and the Rea-Samatosum silver-gold deposits in 1983-87.

GENERAL GEOLOGY

The property lies mainly within Unit EBP of the Eagle Bay Assemblage near its contact with the Baldy batholith to the north and the Fennell Formation to the west (Figure 3). The Eagle Bay Assemblage includes a structurally complex group of volcanic and sedimentary rocks which have been altered by generally low grade regional metamorphism to phyllites, schists, quartzites, marbles and metavolcanics. Various rock units strike mainly

LEGEND

EOCENE KAMLOOPS GROUP eTs Mainly andesite and basalt, minor sediments Kg Granite and granodiorite DEVCNIAN TO PERMIAN FENNELL FORMATION F Basalt, rhyolite, volcaniclastics, gabbro, diorite, chert and conglomerate LOWER CAMBRIAN/OLDER TO MISSISSIPPIAN EAGLE BAY ASSEMBLAGE EBP Mainly phyllite, slate, siltstone and sandstone, lesser carbonates, quartzite, schist and metavolcanics DEVONIAN/MISSISSIPPIAN [EBF] Mainly phyllite and schist derived from intermediate volcanics EBA Mainly phyllite derived from felsic to intermediate volcanics. LOWER CAMBRIAN ?/ OLDER? EBQ Mainly quartzite, schist and phyllite LOWER CAMBRIAN [EBG] Mainly greenstone and chlorite schist derived from mafic to intermediate volcanics; EBGt-Limestone and dolomite Mineral property X CC Thrust fault (approx.) Normal fault (approx.) Geological boundary E-D1 CLAIM REGIONAL GEOLOGY MAP o accompany roject No: Report No: ing Div: Kamloops N.T.S.: 82M/5W.92P/8E 10/10/89 Map No: 3 Date:

QUEST CANADA EXPLORATION SERVICES INC.

northwesterly and dip at various angles both eastward and westward. Rocks within the Eagle Bay range in age from Lower Cambrian? and/Older? to Mississippian.

From an economic point of view, the Eagle Bay rocks are of interest because they are host rocks for several mineral deposits including the Rea-Samatosum silver-gold deposit which is currently in production. Reserves for this deposit are quoted by Rea Gold Corporation as being 666,000 tons grading 32.08 oz/t silver, 0.052 oz/t gold, 3.5% zinc, 1.7% lead and 1.2% copper (undiluted).

The Fennell Formation may underlie the extreme western part of the property in fault contact with Eagle Bay rocks. Fennell rocks include several lithologies as indicated on Figure 4. The CC copper deposit occurs in mafic volcanic rocks within the Fennell and is reported to contain over 2,000,000 tons grading 2% copper.

Both the Eagle Bay and Fennell units have been intruded by the Baldy batholith near the north boundary of the property. No significant mineral showings are known within this intrusion, however, several occur along its border.

VLF-EM AND MAGNETOMETER SURVEYS

A total of 21.3 kms of VLF-EM and magnetometer survey were completed on the property employing two IGS-2 Digital Acquisition Systems each of which is capable of reading/recording total field magnetics and up to 3 VLF-EM stations. Specifications for the instruments accompanies this report as Appendix III. Readings were taken at 30 metre station intervals along north-east (050°) lines spaced every 200 metres. Mr. T. Balyntine and Mr. F. Thane, both experienced operators conducted the survey between October 6th and 11th, 1989. The geophysical data was interpreted by Mr. J.C. Murton, a Professional Geophysicist.

The magnetic readings were taken using a backpack mounted sensor with the operator facing north and corrected for diurnal variations using a base station magnetometer taking readings at 5 second intervals. The residual field data accompanies this report as Appendix II. The residual magnetic data presented in profile format and plan view contoured format can be seen in Figures 5 and 6.

The VLF readings were taken with the operator, in all cases, facing the station to ensure correct (ie: left to right across grid) cross-over direction. The VLF transmitter station in Seattle, Washington was used, as it most favourably couples with the orientation of the grid. In addition, readings utilizing the Annapolis transmitter station were taken to check for possible conductive cross structures. The raw survey data accompanies this report as Appendix I. The dip angle profiles and the Fraser filtered maps for both transmitter stations are presented in Conductor axes and magnetic anomalies are Figures 7 - 10. plotted on Figure 4.

DISCUSSION OF RESULTS

The magnetic response is complex. A survey magnetic maximum was observed on the west end of Line 2400N. This high may be with Fennell Formation rocks. associated There is a series of bands of elevated and depressed magnetic roughly parallel readings each approximately 120 metres wide trending NNW and NW on the west side of the property. The magnetic expression of the Eagle Bay phyllite (EBP on Figure 3) should be depressed relative the more mafic Fennell rocks. to Based upon the magnetic response, a conclusive boundary between the Fennell and the Eagle Bav rocks can not be drawn until a study of the local geology has been performed.

The conductors induced by the Annapolis transmitter (Figures 4, 7 & 8), trending predominantly northwest, correlate well with the results from the 1985 airborne EM and VLF-EM survey conducted by Noranda Exploration Company. The conductors induced by the Seattle transmitter (Figures 4, 9 & 10) trend mainly north or north-northwest. A few Seattle conductors in the southern portion of the E-D 1 claim are an exception; they trend northwest and are aligned with Annapolis conductors.

VLF-EM conductors interpreted on Figure 4 are coincident The or nearly coincident with the bands of local magnetic highs 5). Overall, the conductors observed are poor (Figures 4 & conductors; the quadrature response nearly mimics the in-phase response. Good conductors exhibit strong in-phase crossovers and the quadrature usually lags by up to 90 degrees or mirrors the in-phase response. The best conductors were the northwest trending conductors observed on the southwest corner of the property.

Predominantly, the observed magnetic and VLF-EM response reflects lithologic change and structural geology; outside of the drainages to the south, the geophysical responses recorded do not significantly reflect topography.

CONCLUSIONS AND RECOMMENDATIONS

The ground geophysical magnetometer and VLF-EM survey on the E-D 1 claim has indicated a number of locations which warrant further exploration. The geological targets are polymetallic ores in quartz veins and lenses typical of the North Star north showing which is located 600 metres south. These sulphides are associated with the contact between the Eagle Bay Assemblage (low grade, regionally-metamorphosed sedimentary and volcanic rocks). The geophysical responses on the west side of the survey may be representative of such a lithologic contact and associated mineralization.

Good conductors, typical of the pods of stratiform massive sulphides and stringer-type mineralization discovered by Noranda on the adjacent BC-1 claim to the east, have not been conclusively observed in the inferred Eagle Bay phyllite side of the survey.

Further geophysical surveying is not recommended until geological mapping has been done and mapped lithologies correlated with observed geophysical anomalies. Contingent upon favourable results of surface mapping, a horizontal loop - EM survey should be conducted over areas of interest to confirm mineralization and determine the approximate depth and attitude of the mineralization.

Respectfully submitted, cOCIA+ Paul FGAC. CELLON

REFERENCE

- Miller, D.C.,(1989): Report on the E-D 1 Claim, Kamloops Mining Division, For Wayne Tyner, D.C. Miller Geological Services.
- Murton, J.C.,(1989): Geophysical Report On The E-D 1 Claim, For Quest Canada Exploration Services Inc., J.C. Murton.

STATEMENT OF QUALIFICATIONS

I, J.C. Murton, certify that:

- (1) I am a geophysicist employed by Western Geophysical Aero Data Ltd. and White Geophysical Inc. in Richmond, B.C.
- (2) I am a graduate of the University of British Columbia and earned a B.Sc. Degree in Geophysics in 1984.
- (3) I am a Professional Geophysicist.
- (4) I interpreted the geophysical data on the E-D 1 claim which was supplied to me by Quest Canada Exploration Services Inc.
- (5) I have no direct or indirect interest in the property nor do I expect to receive any.

P.Geoph. Murton.

November 9, 1989

STATEMENT OF QUALIFICATIONS

I, Paul P.L. Chung, of the City of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:

- (1) I am a Consulting Geologist with business address office at Suite 840 - 650 West Georgia Street, Vancouver, British Columbia, V6B 4N8; and President of Boa Services Ltd.
- (2) I am a graduate in geology with a Bachelor of Science degree from the University of British Columbia, in 1981.
- (3) I have practised my profession continuously since graduation.
- (4) I am a Fellow of the Geological Association of Canada.
- (5) I have conducted various mineral exploration programmes in B.C., Yukon, Manitoba, Ontario, Quebec, Nova Scotia, and Nevada.
- (6) This report is based on data supplied to me by Quest Canada Exploration Services Inc.
- (7) I have no direct, indirect, or contingent interest in the property nor do I expect to receive any.

SOCIATIC PAULCHUNG Pau L. Chum G.A.C. FELLON

Dated at Vancouver, British Columbia, this 9th day of November, 1989.

ł

COST BREAKDOWN

Magnetometer and 2 station VLF-EM survey	
21.3 kms @ \$170.00/km	\$3621.00
Mobilization and domobilization	
Expenses	96.72
Wages	
2 days @ \$200.00/day	400.00
Truck	
7 days @ \$35.00/day	245.00
982 kms @ \$0.35/km	343.70
Report Costs	
Geophysical interpretation	
1.5 days at \$225/day	337.50
Report writing	
4 days at \$300/day	1200.00
Drafting	342.50
Photocopying, reproduction and binding	75.00
TOTAL	\$6661.42
	-

APPENDIX I

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	<u>Quad.</u>	<u>Fld. Str.</u>
line	2400				
-570	2400	-570	0	-1	25
-540	2400	-540	6	2	30
-510	2400	-510	-9	16	17
-480	2400	-480	-21	5	6
-450	2400	-450	-4	7	З
-420	2400	-420	0	5	11
-390	2400	-390	-6	1	12
-360	2400	-360	-2	-1	8
-330	2400	-330	2	-1	10
-300	2400	-300	3	-1	21
-270	2400	-270	-2	2	30
-240	2400	-240	-6	1	15
-210	2400	-210	5	1.	16
-180	2400	-180	5		17
-150	2400	-150	11	0	30
-120	2400	-120	-4	-2	27
-90	2400	-90	0	Ō	27
-60	2400	-60	0	0	28
-30	2400	-30	1	1	30
0	2400	0	-5	1	28
30	2400	30	-2	0	65
60 60	2400	БО СО	-2	1	74
90	2400	90	-1	1	71
120	2400	120	-3	1	80
100	2400	190	 		
180	2400	180	-17	~	33
210	2400	210	-13	0	47
240	2400	240	-17	1	47
300	2400	270	-27	Ō	22
330	2400	330	-28	2	19
360	2400	360	-30	2	15
390	2400	390	-32	1	7
420	2400	420	-30	ō	97.9
450	2400	450	-23	- 1	96.2
480	2400	480	-24	ŝ	97.3
510	2400	510	-17	3	0
540	2400	540	-14	ō	79.2
570	2400	570	-12	-1	5
600	2400	600	-15	-8	92.6
630	2400	630	-10	-8	91.1
660	2400	660	-10	-6	94.2
690	2400	690	-9	-6	92.8
720	2400	720	-10	-8	89.3
750	2400	750	-9	-9	87.3
line	2600				
-420	2600	-420	-20	8	6
-390	2600	-390	-13	8	10
-360	2600	-360	-10	1	11
-330	2600	-330	-10	2	14
-300	2600	-300	-7	2	15
-270	2600	-270	-1	5	24
-240	2600	-240	-9	-2	13

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	Fld. Str.
-210	2600	-210	9	-2	13
-180	2600	-180	-1	-2	13
-150	2600	-150	0	1	17
-120	2600	-120	-2	-1	24
-90	2600	-90	-6	0	17
-60	2600	-60	-2	2	14
-30	2600	-30	-2	-1	14
Ő	2600	Ō	0	-2	13
30	2600	30	1	-3	12
60	2600	60	- 1	ō	21
90	2600	90	- - -	2	17
120	2600	120	-2	ō	19
150	2000	150	-6	1	15
100	2600	100	-0	1	10
180	2600	180	-2	 	13
210	2600	210	0	ີ ຮ	20
240	2600	240		ل.	20
270	2600	270	-2	÷+ .⊸	13
300	2600	300	-5	<u>~</u>	19
330	2600	330	-8	1	<u> </u>
360	2600	360	-12	4	25
390	2600	390	-25	3	20
420	2600	420	- JJ	5	
450	2600	450	-31	4	94./
480	2600	480	-29	4	92.3
510	2600	510	-28	3 0	87.4
540	2600	540	-28	4	82.8 70 5
570	2600	570	-2/	0	73.0
600	2600	600	-16	-5	כי/ די היד
630	2600	630	-10	-6	/ 3. /
660	2600	660	-0	-/	//.+ "7+ "7
14	2600	650	0	-0	/1./
iine	2800	240	-	-	· · · ··
-240	2800	-240	3	3	27
-210	2800	-210	0	0	27 05
-180	2800	-180	ت ح	-1	20
-100	2800	-100	6		20
-120	2800	-120	ь 0		31
-50	2800	- 50	0		31
-20	2800	-60	0 	1	30
-30	2800	-30	-4	-1	27
20	2800	20		0	20
50	2800	30 60	-6	-0	30 96
90	2800	00		-2	20
120	2000	120		Ő	23 77 ·
150	2000	120		0	4/ 00
100	2800	100	-8	-2	44 04
210	2000	210		-3	21 07
240	2000	210	ئد 1 ـــ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20
270	2000	240		ب 1- س	30 25
200	2000	200	0		20 76
220	2000	200	-2		20
330	2800	330 760	— <u>~</u> 11		31 70
390	2800	200 200		4 5	22
420	2800	420	-4	6	36

<u>Station</u>	Line	<u>Station</u>	<u>In-Fhase</u>	Quad.	<u>Fld. Str.</u>
450	2800	450	-13	4	42
480	2800	480	-21	5	39
510	2800	510	-32	5	39
line	3000		·	p +++	
90	3000	-90	-13	.5	17
-60	3000	-60	2	O -	38
-30	3000	-30	-7	-6	41
0	3000	O	-6	0	46
30	3000	30	-2	4	42
60	3000	60	-17	Ō	46
90	3000	90	-17	1	31
120	3000	120	-12	2	27
150	3000	150	-6	1	30
180	3000	180	-10	0	37
210	3000	210	-13	-2	27
line	1800				
-1080	1800	-1080	27	-10	92.5
-1050	1800	-1050	13	-11	19
-1020	1800	-1020	5	-3	4
-990	1800	-990	-13	10	7
-960	1800	-960	-6	-2	96.7
-930	1800	-930	-3	-7	93.5
-900	1800	-900	3	4	93.6
870	1800	-870	11	5	95.1
840	1800	-840	10	1	Ō
-810	1800	-810	-2	3	9
-780	1800	-780	-15	2	4
-750	1800	-750	-12	6	95.1
-720	1800	-720	-3	5	99.6
-690	1800	-690	-4	ō	98.5
660	1800	-660	1	-1	95.9
-630	1800	-630	-1	-2	96.7
600	1800	-600	Ō	1	95.8
-570	1800	-570	3	Ō	97
-540	1800	-540	2	ō	97.5
-510	1800	-510	6	Ō	97.9
-480	1800	-480	-3	Ō	94.3
-450	1800	-450	d	-2	95.3
420	1800	-420	7		92.2
-790	1900	-290	, a		as 2
	1000	-250	-2		96.7
-360	1800	-330	-3		
-330	1800	-330	-10	4	94 A
-300	1000	-300	-10	2	24.4
-270	1000	-270	-a	о О	90.3 00.4
-240	1800	-240		<u>ل</u> م	72.4 0.1
-210	1800	-210	-8	2	04 00 0
-180	1800	-180	-8	ت م	02.7
-150	1800	-150		ن م	ರದ ೧೯ ೧
-120	1800	-120	-2	4	00.2 05.2
- 90	1800	-90	0	4	00.2
EQ	1800	-EO.	Û	U	ປ ີ.ວິ

-30

Ö

30

60

65 63.6

83.6 74.75

1 4

33

-30

Ō

30

60

1800

1800

1800

1800

- 3 -

C+-+	1		T		rin 1 al colle a
<u>Station</u>		<u>station</u>	<u>in-Fhase</u>	Uuad.	<u>F10. Str.</u>
100	1800	90 100	17	13	54.8
150	1800	120		8	/್.್ ‴≁
100	1800	130	-2	ч С	
180	1800	180	0	3	67.0
210	1800	210	2	3	67.0
240	1800	240	-1		69.1
270	1800	270		1	70 7
300	1800	300		1	70.2
330	1800	330	8	1	70.2 20 0
360	1800	360	10	<u>ب</u> ند ۱	60.2 66 0
390	1800	390	3	1	00.2 CE 0
420 4 2 0	1800	420	4	0	60.8
450	1800	450	/	ು ೯	64.8
480	1800	480	13	3	66.6
510	1800	510	16	6	68.6
540	1800	540	16	6	70.3
570	1800	570	16	6	73.5
600	1800	600	14	5	78.8
630	1800	630	15	4	80.5
660	1800	660	13	2	83.5
690	1800	690	14	0	85.6
line	2000				
-930	2000	-930	14	-5	12
-900	2000	-900	0	-3	19
-870	2000	-870	-2	-1	16
-840	2000	-840	-6	6	12
-810	2000	-810	-3	4	12
-780	2000	-780	-9	1	10
-750	2000	-750	-3	6	• O
-720	2000	-720	7	14	6
-690	2000	-690	-10	4	12
-660	2000	-660	-4	2	10
-630	2000	-630	Q	З	6
-600	2000	-600	7	2	13
-570	2000	-570	З	0	17
-540	2000	-540	-4	0	14
-510	2000	-510	-3	1.	12
-480	2000	-480	0	0	13
-450	2000	-450	-6	- 1	10
-420	2000	-420	-2	-2	6
-390	2000	-390	-1	-1	7
-360	2000	-360	0	-3	4
-330	2000	-330	0		2
-300	2000	-300	7	-3	7
-270	2000	-270	-4	-4	8
-240	2000	-240	-5	-1	Э
-210	2000	-210	-14	-2	1
-180	2000	-180	-17		99.7

-150

-120

-90

-60

-30

Q

30

2000

2000

2000

2000

2000

2000

2000

-150

-120

-90

--60

-30

Ō

30

-10

-6

-8

-10

-12

-12 -7 -3

--3

-1

0 N N N

99.5

98.5

96.4

94.7

92.1

86.5

З

-- 4 ---

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
60	2000	60	-6	1	85.9
90	2000	90	-7	1	81.9
120	2000	120	Q - 1	Ō	82.4
150	2000	150	Ō	Ō	81
180	2000	180	3	O	78.6
210	2000	210	0	Ō	78.1
240	2000	240	5	4	75.8
270	2000	270	8	Э	75.9
300	2000	300	11	5	74.8
330	2000	330	11	2	77.1
360	2000	360	Э	2	76.5
390	2000	390	10	5	80.2
420	2000	420	7	5	78.9
450	2000	450	Э	4	76.5
480	2000	480	11	5	74.4
510	2000	510	7	0	74.1
540	2000	540	8	-1	73.4
570	2000	570	11	2	73.7
600	2000	600	12	4	72.2
630	2000	630	17	7	70.6
660	2000	660	15	4	72.2
690	2000	690	15	2	74.1
720	2000	720	13	1	73.2
line	2200				
-750	2200	-750	-8	Э	43
-720	2200	-720	-11	7	28
-690	2200	-690	-9	10	23
-660	2200	-660	0	Э	21
-630	2200	-630	-3	7	29
-600	2200	-600	-6	5	25
-570	2200	-570	-2	З	24
-540	2200	-540	5	2	23
-510	2200	-510	6	1	27
-480	2200	-480	4	0	31
-450	2200	-450	4	1	29
-420	2200	-420	Ō	0	31
-390	2200	-390	5	2	29
-360	2200	-360	1	1	30
-330	2200	-330	1	1	28
-300	2200	-300	2	2	30
-270	2200	-270	-5	1	30
-240	2200	-240	-3	0	21
-210	2200	-210	-5	0	18
-180	2200	-180	-3	-1	24
-150	2200	-150	-6	-3	22 `
-120	2200	-120	-4	0	17
-90	2200	-90	-3	0	23
-60	2200	-60	-8	3	16
-30	2200	-30	0	0	20
0	2200	0	-12	1	22
30	2200	30	-14	2	11
60	2200	60	-9	1	10
90	2200	90	-23	2	1
120	2200	120	-28	1	95.8
150	2200	150	-29	-2	80.8

Station In-Phase Fld. Str. Line <u>Station</u> Quad. 75 180 2200180 -32 -6 2102200 210 -26 Q 71.9 2402200 240-41 61.5 -16 270 2200 270-30 ---4 63 300 2200 300 -23 -161 330 2200330 -18 2 58.8 -9 360 4 60.1 360 2200 390 2200390 -11 1 62.1 -13 61.5 420 2200 420 Ō 450 450-9 -1 63 2200 -12 -2 480 2200 480 63.6 510 2200 510 -8 -3 63.3 540 540 -4 -4 61.7 2200 -2 570 2200 570 1 61.5 5 2 600 2200 600 62.3 630 2200 630 -4 6 61.4 8 660 2200 660 4 62.3 7 7 × 690 2200 690 65.2 720 2200720 6 4 65.8 750 2200 750 10 -2 63.6 line 120023 -3 -14101200-141093.9 -1380 27 -5 Õ -13801200 9 -1350-135025 -9 1200 13 -1320 1200 -132013 -16 -1290 -129017 94.9 1200 -18 28 -15 99.8 -12601200 -126017 -7 37 -1230 1200 -1230 37 -12001200 -1200-4 -1 -11701200 -1170-21 1 19 -4 6 -1140-1140-8 1200 -2 97.6 -1110-1110-16 1200-1080 8 1200 -1080-7 -6 -14 -111 -10501200 -1050-10201200 -1020-9 -3 1 -990 -3 1200 -990 -14 4 -960 -18 -4 1200-960 1 -5 -930 1200-930 -9 93 -900 -15 -9 96.4 1200 -900 95.3 -870 -12-4 1200-870-840 -9 -8 91.3 1200-840 -810 1200 -810 -3 -7 92 -780 -780 З -5 93.5 1200-750 -750 13 1 94.5 1200 Э 5 -720-7206 1200-690 5 1200 -690 -1095.6 5 -660 -660 -1095.4 120095.2 -630 -630 --8 6 1200З -600 -6 96 1200-600 -570 1200 -570-11 Ō 88.7 -540 1 88 -540-4 1200-510-510-8 Ō 89.9 1200-480 1200 -480 -12 O 87.2 -450 1200 -450 -5 Õ 88.5

-4

Q

87

-420

1200

-420

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
-390	1200	-390	-1	Ō	86.6
-360	1200	-360	0	-1	83.1
-330	1200	-330	1	Ō	88.4
-300	1200	-300	2	1	85.7
-270	1200	-270	4	2	86.8
-240	1200	-240	-3	-4	82.2
-210	1200	-210	8	-1	80.2
-180	1200	-180	10	З	85.4
-150	1200	-150	З	2	83.7
-120	1200	-120	5	1	82.6
-90	1200	-90	10	-2	80.9
-60	1200	-60	11	Ō	80.6
-30	1200	-30	13	3	84.3
0	1200	0		7	88.5
30	1200	30	6	3	37
60 60	1200	60	15	Ö	38
90	1200	90	13	1	46
120	1200	120	1	3	50
150	1200	150	Ō	Ĕ	37
180	1200	180	-1	4	31
210	1200	210	- 	5	25
240	1200	240	8	1	30
270	1200	270	5	-7	18
300	1200	300	13		18
330	1200	330	25	-3	20
360	1200	360	14	1	42
390	1200	390	З	0	32
420	1200	420	5	2	30
450	1200	450	6	4	31
480	1200	480	8	2	27
510	1200	510	16	1	27
540	1200	540	15	-2	25
570	1200	570	16	0	27
600	1200	600	18	5	32
630	1200	630	8	4	43
660	1200	660	-5	-1	34
690	1200	690	-4	-1	21
720	1200	720	2	2	13
750	1200	750	6	4	13
780	1200	780	7	З	9
810	1200	810	. 8	7	1
840	1200	840	12	5	6
line	1400				
-1410	1400	-1410	Ō	0	78.4
-1380	1400	-1380	5	-3	81.2
-1350	1400 .	-1350	13	-2	83.3
-1320	1400	-1320	14	-2	82.1
-1290	1400	-1290	17	-6	81.8
-1260	1400	-1260	20	-8	83.2
-1230	1400	-1230	26	-9	_ 83
-1200	1400	-1200	34	-4	86.1
-1170	1400	-1170	18	-9	5
-1140	1400	-1140	9	-4	4
-1110	1400	-1110	-4	0	
-1080	1400	-1080	-3	1	J4

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	<u>Quad.</u>	<u>Fld. Str.</u>
-1050	1400	-1050	-5		92.7
-1020	1400	-1020	-8	11	- 33 97 9
-960	1400	-960	-10	ی 1.4	93.0 05 a
-930	1400	-930	-12	14	00.3
-900	1400	-900	-1-0	10	04 7
-900	1400	-970	-11	0 4	04.0
-870	1400	-870		-+	0J.2 04 7
-040	1400	-840		ು ಇ	04./
-810	1400	-810	-0	ć	
-780	1400	-780	- 3	0	70 4
-730	1400	-700	-/	0 E	70.4
-720	1400	-720		3	80.4
-690	1400	-690	-6	-3	82.4
-660	1400	-660		~ 3	70
-630	1400	-630	ت ج		/ 9
-600	1400	-600	/ 5	-4	81.7
-570	1400	-570			86.3
-540	1400	-540	-20	-4	87.3
-310	1400	-310	-0	ت ح	07 1
-480	1400	-450	-3	5	83.1 07 7
-430	1400	-400	-0	/ 5	901
-290	1400	-790	- -	с С	00 G
-350	1400	-350	4	0 4	03.9 77 0
-380	1400	-360		ل +	77.0
-330	1400	-330	ت ح	1	
-300	1400	-300	<u>_</u>	1	/J.1 70 /
-270	1400	-270	9	4 1	/J.C. 70 7
-240	1400	-240	4	1	/0.3
-210	1400	-210		1	70 0
-150	1400	-180			/ <u>4</u> . <u>4</u>
-130 (1400	-100	-1	0	66 6
-120	1400	-120	5	1	66.6
	1400	-50		1	63./ E0 0
-80	1400	-60	0	* 1	JJ.J CO 0
-30	1400	-30	- C - 1 +		04.0 CA A
20	1400	20	1 I ~	0	04.4
30	1400	30 60		0	62.1 C+ C
60 00	1400	80	10	1	64.6
100	1400	50	10	3 ~	68.9 70 F
120	1400	120	17	с 	70.0
100	1400	100	13	4 7	/1.8
210	1400	210	20	7	/ Z = Z 7C C
210	1400	210	20	10	/0.0 0/
240	1400	240	يني شر 1 استر	10	00 02 0 `
270	1400	270	10	· /	00.0
300	1400	300	10	4	00.J
330	1400	330	تت ۱ ه	9	92.6 DO D
360	1400	360 000	4	1	9V.8 or o
330	1400	390	ය ප	-1	86.J
420 450	1400	4 <u>∠</u> 0 ∢⊑≏	E E	Ų _	84.7
450	1400	450	1 🛫	1	87.3
480	1400	480	6	1	90.8
510	1400	510	11	5	90.2
540	1400	540	11	'9 ~	93.8
570	1400	570	12	6	93.6

<u>Station</u>	Line 1400	<u>Station</u> Eco	<u>In-Phase</u> 7	<u>Quad.</u>	Fld. Str.
600	1400	620	10		90.I 94 9
630	1400	630	12	/	24.2 02.6
660 490	1400	600	10		23.C Q5 4
720	1400	7:20	21	्य 	23.4 89.9
750	1400	750	16	- -	99.7 99 9
780	1400	790	10	0 5	ر.رر ع
910	1400	700 910	6 4	ں ار	0 90
940	1400	940	10		07 07 0
870	1400	870	17	1	93.9
lina	1600	070	17		2 0 • 0
-1200	1600	-1200	40	-12	87.8
-1170	1600	-1170	41	-6	6
-1140	1600	-1140	1	-1	37
-1110	1600	-1110	-2	1	18
-1080	1600	-1080	-3	ō	
-1050	1600	-1050	2	1	Ř
-1020	1600	-1020	5	7	3
-990	1600	-990	14	, 7	Ŏ
96.0	1600	-960	-20	3	11
-930	1600	-930	-20	7	96.1
-900	1600	-900	-10	10	90.8
-870	1600	-870	-3	11	89.9
840	1600	-840	6	10	94.7
-810	1600	-810	10	13	2
-780	1600	-780	-5	8	З
-750	1600	-750	-2	7	86.9
-720	1600	-720	-10	6	94.4
-690	1600	-690	-7	З	95.8
-660	1600	-660	-4	4	94.7
-630	1600	-630	-1	1	97.8
-600	1600	-600	0	1	99.1
-570	1600	-570	-3	1	94
-540	1600	-540	4	4	96.1
-510	1600	-510	-15	-2	96.8
-480	1600	-480	-18	-3	95
-450	1600	-450	-10	-2	92.1
-420	1600	-420	-2	1	91.1
-390	1600	-390	-7	-2	87
-360	1600	-360	-3	-1	84.5
-330	1600	-330	0	-1	82.6
-300	1600	-300	9	1	86.6
-270	1600	-270	5	-3	87.1
-240	1600	-240	Э	-2	81
-210	1600	-210	10	0	87.2
-180	1600	-180	9	0	88.5
-150	1600	-150	10	0	88.3
-120	1600	-120	4	4	92.8
-90	1600	-90	1	4	92.1
-60	1600	-60	2	Ō	89.5
-30	1600	-30	7	0	93
Ō	1600	0	1	1	94.9
30	1600	30	0	1	88.6
60	1600	60	5	0	86.3
90	1600	90	9	-2	82.3

- 9 -

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
120	1600	120	З	-2	79.3
150	1600	150	2	-5	79
180	1600	180	10	Ō	78.1
210	1600	210	11	3	78.9
240	1600	240	12	4	79.7
270	1600	270	17	4	79.8
300	1600	300	18	7	76.7
330	1600	330	20	6	84.8
360	1600	360	20	4	87.1
390	1600	390	17	2	86.8
420	1600	420	21	4	88.2
450	1600	450	15	1	92
480	1600	480	10	-4	89.1
510	1600	510	14	-3	88.9
540	1600	540	13	-3	89.4
570	1600	570	10	-4	86.7
600	1600	600	12	-3	84.5
630	1600	630	16	-1	84.5
660	1600	660	16	-2	85.3
690	1600	690	17	Q	88.9
720	1600	720	14	-1	90.1
750	1600	750	Э	-3	90.3
780	1600	780	11	-3	85.5
810	1600	810	13	З	90.5
line	800		_		
-990	800	-990	3	-1	102
-960	800	-960	-3	0	87.8
-930	800	-930	-9	-4	97.6
-900	800	-900	-3	-1	92
-870	800	-870	0	-3	98.8
-840	800	-840	-2	-3	99.1
-810	800	-810	-5	-5	94.8
-780	800	-780	-/	-4	92.8
-/50	800	-750	-9	-2	95.3
-720	800	-720	-16	1	93
-690	800	-690	-31	1	85.2
-660	800	-660	-20	1	92.8
-630	800	-630	20	U +	89.4
-600	800	-600	-22	-1	87.1
-370	800	-570	-10	0	8/./
-340	800	-540	0	U 4	83.1
-310	800	-510	U 7	-1	07 0
-480	800	-480	-/	-4	07.J
-430	800	-430		-6	0/.4
-420	800	-420		-/	04.0
-390	800	-390	-6	-5	83.8
-360	800	-380	-13	-0	00./ 07 /
-330	800	-330	-18	-/	04.5
-300	800	-300	-3		76.4 00 /
-270	800	-270			27.0 101
-240	800	-240	-4		101
-210	800	-210			102
-150	800	-180	-17	- <u>~</u>	20.0 94 9
-120	800	-120	-7	Ō	84.1
	week the take		•	-	

.

- 10 -

5

- 11 -

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	<u>Quad.</u>	<u>Fld. Str.</u>
-90	800	-90	0	O	89.2
-60	800	-60	-3	-2	85.6
-30	800	-30	1	2	89.3
Ô	800	0	-11	5	87.2
30	800	30	3	8	92.2
60	800	60	/	/	91.5
90	800	90	8	/	95.1
120	800	120	5	ೆ ೧	90.1
150	800	150	0	j n	74 06 1
180	800	180	ے۔ 1	2	90.1 95 £
240	800	240	5	3	91.9
270	800	270	3	3	96.1
300	800	300	2	3	97
330	800	330	ō	5	99
360	800	360	2	4	3
390	800	390	7	1	4
420	800	420	10	Ō	0
450	800	450	8	5	З
480	800	480	-4	5	÷Э
510	800	510	-11	0	1
540	800	540		З	<u> </u>
570	800	570	-5	<u>o</u> -	3
600	800	600	-6	-2	1
630	800	630	-2	O	98.8
line	600		-	4	05
-720	600 600	-720	-8	1	.03 .05
-690	Б00 Боо	-690	-10	-1	.08
-630	600 600	-620	-24	-2	.02 04
-630	600 600	-600	-13	Ō	- 07
-570	600	-570	-5	1	.05
-540	600	-540	ō	1	.115
-510	600	-510	6	2	. 1
-480	600	-480	5	1	.02
-450 /	600	-450	5	0	.05
-420	600	-420	З	1	.09
-390 i	600	-3.30	-1	-1	. 1
-360	600	-360	-2	-1	.06
-330	600	-330	0	0	.06
-300	600	-300	-8	-2	.06
-270	600	-270	-7	2	.06
-240	600	-240	3	1	.06
-210	600	-210	2	1	.05
-180	600	-180	0	0	.11
-150	600	-150		1	.03
-120	600	-120	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ے۔ ۱	.04
	600 600		с С	- -	.02
-20	800 800	-20	2 4	0 0	.03 .08
0 0	600	0	a a	-4	
30	600	30	Ř	Ö	98.5
60	600	60	4	1	5
30	600	90	3	3	10
120	600	120	<u>4</u>	4	7

- 12 -

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	<u>Quad.</u>	<u>Fld. Str.</u>
150	600	150	2	1	99
180	600	180	1	0	2
210	600	210	0	Ō	99.4
240	600	240	1	1	98.8
270	600	270	Ō	З	1
300	600	300	-1	0	98.1
330	600	330	-2	4	0
360	600	360	-1	5	94.7
390	600	390	— 1	5	92.9
420	600	420	-1	4	92.6
line	400				
-480	400	-480	-10	-3	93.8
-450	400	-450	0	0	93.2
-420	400	-420	2	-2	1
-390	400	-390	-4	-6	97.4
-360	400	-360	-3	-5	93.3
-330	400	-330	-1	-5	93.1
-300	400	-300	-1	3	2
-270	400	-270	0	3	4
-240	400	-240	1	0	95.7
-210	400	-210	13	0	97.7
-180	400	-180	15	4	10
-150	400	-150	0	12	1
-120	400	-120	-3	6	4
-90	400	-90	0	5	4
-60	400	-60	2	0	0
-30	400	-30	. 7	0	.4
0	400	Ō	4	-3	З
30	400	30	0	-6	17
60	400	60	-16	1	13
90	400	90	-7	3	10
120	400	120	-4	0	10
150	400	150	З	0	Ģ
180	400	180	8	0	10
210	400	210	5	-2	18
240	400	240	Э	-3	21
270	400	270	-11	-2	18
300	400	300	-9	0	7
330	400	330	-4	-3	10
line	1000		,	,	
-1230	1000	-1230	4	-1	15
-1200	1000	-1200	-18	0	15
-1170	1000	-1170	-5	2	ت ا ب ب
-1140	1000	-1140	—·	0	14
-1110	1000	-1110	-11		13
-1080	1000	-1080		-5	نا ب مد
-1050	1000	-1050	-13		20.4 1
-1020	1000	-1020		-/ _1	1
-990	1000	-330	-14 _15	1	1 00 0
-360	1000	-900	-13	-1	70.1 05 7
-230	1000	-73U	-1.1	-0	70.∠ 00 C
-900	1000	-900	-14		70.0 N
-870	1000	-840	-0		7
-810	1000	-810	-2	-2	ŝ
	at 'a' 'a' 'a'	had at 14-			—

-

P

- 13 -

Station	Line	<u>Station</u>	<u>In-Fhase</u>	<u>Quad.</u>	<u>Fld. Str.</u>
-780	1000	-780	0	-2	1 O
-750	1000	-750	14	1	11
-720	1000	-720	7	7	8
-690	1000	-690	0	6	2
-660	1,000	-660	-3	2	11
-630	1000	-630	2	1	11
-600	1000	-600	7.5	0	46.3
-570	1000	-570	5	-2	7
-540	1000	-540	1	-2	10
-510	1000	-510	5	-2	6
-480	1000	-480	7	- 1	12
-450	1000	-450	8	1	18
-420	1000	-420	Ō	Ō	22
-390	1000	-390	-9	Ŏ	21
-360	1000	-360	-5	4	18
-330	1000	-330	1	6	13
-300	1000	-300	-6	3	15
-270	1000	-270	-7	1	11
-240	1000	-240	-7	ō	11
-210	1000	-210	-F.	Ō	6
-180	1000	-180	4	3	3
-150	1000	-150	9	3	7
-120	1000	-120	t2	Ŏ	9
-90	1000	-90	10	ŏ	16
-60	1000	-60	3	1	18
-30	1000	-30	õ	- 1	15
0	1000	0	-4	- 1	17
30	1000	30	-1	ž	12
60	1000	60 60	3	3	15
90	1000	90	. 4	3	17
120	1000	120	Ö	1	20
150	1000	150	-2	ō	14
190	1000	180	ō	1	15
210	1000	210	Ē.	1	12
240	1000	240	11	ō	20
270	1000	270	1.4	-1	21
200	1000	200	- · ·		<u> </u>
220	1000	220	4 Q	0	0 0
250	1000	200	ت ت	-1	10
290	1000	200	ت را	-0	11
420	1000	390	10	 ()	1 1
420	1000	450	11	0 1	10
400	1000	400	11		1 ×
480	1000	480	12	2	17
510	1000	510	10	4	17
340	1000	540			17
570	1000	570	-4	-3	10
Б <u>О</u> О СОО	1000	600	Ų ↓	0	تا =
630 666	1000	630			
660	1000	660	0	-1	
690	1000	690	4	0	ь С
/20	1000	720	1	-2	8
750	1000	750	4	O	8
780	1000	780	5	1	11
810	1000	810	6	-2	8
line	200				

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
-240	200	-240	4	З	93.2
-210	200	-210	8	4	99.6
-180	200	-180	6	2	4
-150	200	-150	1	0	1
-120	200	-120	1	-2	1
-90	200	-90	- 2	-3	0
-60	200	-60	0	-2	8
-30	200	-30	'Э	-4	0
0	200	0	-18	-13	91.7
30	200	30	-13	-13	84.5
60	200	60	-3	-9	82.8
90	200	90	13	0	82.9
120	200	120	15	2	89.7
150	200	150	11	2	90.6

MANNAPOLIS TRANSMITTER

- 1 -

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	<u>Quad.</u>	<u>Fld. Str.</u>
line	2400				
-570	2400	-570	18	-5	4.84
-540	2400	-540	27	-3	4.62
-510	2400	-510	15	4	4.66
-480	2400	-480	4	2	4.45
-450	2400	-450	17	2	4.23
-420	2400	-420	22	0	4.27
-390	2400	-390	18	-3	3.88
-360	2400	-360	19	-5	4.03
-330	2400	-330	22	-4	3.89
-300	2400	-300	21	4	3.98
-270	2400	-270	20	-4	3.25
-240	2400	-240	6	-3	3.12
-210	2400	-210	10	-4	3.01
-180	2400	-180	23	-1	2.97
-150	2400	-150	26	-1	2.78
-120	2400	-120	16	-3	3.04
-90	2400	-90	21	-2	2.88
-60	2400	-60	18	-4	2.98
30	2400	-30	24		3.1
0	2400	0	20	-5	3.32
30	2400	30	20	-2	5.97
60	2400	60	19	0	6.04
90	2400	90	18	· O	5.91
120	2400	120	19	0	6.01
150	2400	150	20	2	6.32
180	2400	180	16	4	6.49
210	2400	210	14	Э	6.56
240	2400	240	12	4	6.69
270	2400	270	8	7	6.19
300	2,400	300	8	7	6.37
330	2'400	330	7	6	6.3
360	2400	360	8	5	6.46
390	2400	390	7	З	6.31
420	2400	420	11	. 4	6.28
450	2400	450	12	4	6.3
480	2400	480	14	6	6.2
510	2400	510	14	5	6.11
540	2400	540	16	4	5.75
570	2400	570	15	1	5.51
600	2400	600	14	0	5.29
630	2400	630	16	0	4.92
660	2400	660	16	0	4.97
690	2400	690	18	1	5.05
720	2400	720	5	З	5.53
750	2400	750	-3	З	5.42
line	2600				
-420	2600	-420	18	1	6.4
-390	2600	-390	23	2	6.33
-360	2600	-360	14	-4	6.08
-330	2600	-330	21	-3	5.9
-300	2600	-300	32	-2	5.76
-270	2600	-270	39	-2	5.79

- 2 -

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
-240	2600	-240	26	4	6.14
-210	2600	-210	24	-5	5.9
~180	2600	-180	30	-2	5.74
-150	2600	-150	32	-1	6.29
-120	2600	-120	23	-4	6.3
90	2600	-90	26	_5	6 05
	2600	~50	20		6.00
-20	2600	-60	40		6./3 C CO
30	2600	~30	19	1	0.0x
0	2600	0	19	1	6.32
30	2600	30	24	-2	6.35
60	2600	60	21	-1	6.65
'90	2600	90	19	2	6.49
1/20	2600	120	23	O	6.28
150	2600	150	22	-1	6.6
180	2600	180	19	-1	6.5
210	2600	210	20	2	6.82
240	2600	240	17	1	6.85
270	2600	270	17	2	6.59
300	2600	300	18	3	6.93
330	2600	330	15	2	7 17
360	2600	360	5	4	7.28
290	2600	200	5	·	7 04
420	2600	420		. 4	C C)
450	2000	420	÷	0	0.02
400	2600	400	5	0	6.32 6.37
480	2600	480	/	0	6.27
510	2600	510	10	O	6.06
540	2600	540	13	2	6.08
570	2600	570	13	1	6.06
600	2600	600	6	1	6.34
630	2600	630	1	0	5.74
660	2600	660	-4	0	5.26
690	2600	690	-3	2	4.02
line	2800				
~240	2800	-240	24	1	6.47
210	2800	-210	19	-2	6.49
-190	2800	190	10		5 75
-150	2000	-150	10	÷	
-100	2000	-100	4.4. 		J.07
-120	2800	-120	<u> </u>		0.9
-90	2800		26	-6	6.26
-60	5800	-60	22	-6	6.69
-30	2800	-30	24	-5	6.17
Ō	2800	0	24	-3	6.74
30	2800	30	20	-2	6.86
60	2800	60	23	-2	6.75
90	2800	90	20	0	7.15
120	2800	120	13	Ō	7.16
150	2800	150	9	3	7.18
180	2800	180	10		F. F.
010	2000	100 100	11.42 		2 50
210	2000	210	201 		0.07
24U	2800	24Q	21	* 1	ы./D
270	2800	270	20	4	6.82
300	2800	300	22	5	6.89
330	2800	330	21	4	7.29
360	2800	360	16	1	7.57
	b a a a				

<u>Station</u> 420	<u>Line</u> 2800	<u>Station</u>	In-Phase	Quad.	<u>Fld. Str.</u>
450	2800	450	10	0	7.33
480	2800	480		- -	7.65
510	2800	510	Č -	1	7.00
lipe	2000	010	L L	*	/ • エ ノ
-90	2000	-90	·-,- 7	_0	6 005
-60	3000	-60	4/ 05	-0	0.J2J C 00
-20	2000	-20	24	-0	C.C4 4 07
-30	2000	-30	34 54	-0	0.V2 2 00
0 00	3000	20	20	-8	C.20
30	3000	30	<u>ن</u> دت م	0	0.01
60 80	3000	60	13	0	1.23
90	3000	90	20	ت ،	t./
120	3000	120	22 	1	6./5
150	3000	150	27	ت ہ	5. /4
180	3000	180	21	0	6.79
210	3000	210	21		6.53
line	1800	1000			<u> </u>
-1080	1800	-1080	56	-15	3.96
-1050	1800	-1050	3/ 04	-15	. 6.17
-1020	1800	-1020	∠4 →		5.12 c 7c
-990	1800	-990	0	ت ۲	0./0 5.17
- 300	1800	-900	۵ ۱۵		J D D D
-900	1900	-900	19	ů O	
-970	1900	-970	21	- 1	-T.JJ 5 71
	1800	-840	12	Ó	5 25
-810	1800	-810	10	ব	5.04
-780	1800	-780	6	3	4.89
-750	1800	-750	23	7	4,99
-720	1800	-720	14	4	5.48
-690	1800	-690	7	2	5.32
-660	1800	-660	5	1	5.26
-630	1800	-630	7	ô	5.07
-600	1800	-600	8	2	5.09
-570	1800	-570	13	4	4.96
-540	1800	-540	10	>	5.16
-510	1800	-510	11	3	5.15
-480	1800	-480	9	2	5.1
-450	1800	-450	6	O Í	4.89
-420	1800	-420	14	0	4.52
-390	1800	-390	17	1	4.8
-360	1800	-360	14	-1	4.96
-330	1800	-330	13	0	5.05
-300	1800	-300	Ġ	-1	4.96
-270	1800	-270	- 15	0	4.97
-240	1800	-240	20	-1	5.02
-210	1800	-210	16	-6	5.37
-180	1800	-180	17	-5	5.14
-150	1800	-150	16	-5	5.67
-120	1800	-120	11	-4	5.49
-90	1800	-90	12	-3	5.62
-60	1800	-60	Э	-1	5.46
-30	1800	-30	13	Ŏ	5.57
0	1800	Ō	18	1	5.24
30	1800	30	13	Õ	6

- 3 -

<u>Station</u>	Line	Station	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
60	1800	60	14	0	5.79
90	1800	90	25	0	5.//
120	1800	120	15	-1	6.2
150	1800	150		1	6.24 c 77
180	1800	180	17	<u>ين</u>	ర.చచ ర : అ
210	1800	210	20	4	6.18
240	1800	240	21	5	6.1/
270	1800	270	14	3	6.36
300	1800	300	13		6.58
330	1800	330	15	1	6.19
360	1800	360	17	0	6.06
390	1800	390	20	2	6.36
420	1800	420	20	1	5.92
450	1800	450	14	1	6.54
480	1800	480	11	0	6.22
510	1800	510	14	2	6.26
540	1800	540	16	1	6.18
570	1800	570	16	2	6.35
600	1800	600	18	1	6.11
630	1800	630	20	1	5.87
660	1800	660	18	0	6.1 2
690	1800	630	20	1	6.05
line	2000			-	
-930	2000	-930	20	8	4.98
-900	2000	-900	23	3	5.2/
-870	2000	-870	11	-1	4.85
-840	2000	-840	13	1	4.73
-810	2000	-810	6	1	5.68
-780	2000	-780	6	1	5./4
-750	2000	-750	13	1	5.15
-720	2000	-720	18	5	3.63
-690	2000	-690	6	2	5.55
-660	2000	-660		2. 	5.53
-630 -	2000	-630	6	0	0.4 E 0
-600	2000	-600	11	0 ô	J.2
-570	2000	-570	19	O .	4.92
-540	2000	-540	18	1	5.11
-510	2000	-510	18	4	5.49
-480	2000	-480	15	3	5.5/
-450	2000	-450	14	1	5.26
-420	2000	-420	23	1	5.21
-390	2000	-390	19	-2	5.39
-360	2000	-360	20	-6	5.31
-330	2000	-330	28	-3	5.52
-300	2000	-300	21	-3	5.93
-270	2000	-270	13	-1	5.82
-240	2000	-240	15	0	J.68 E /
-210	2000	-210	15	0	<u>э.</u> ь — /¬
-180	2000	-180	13	0	J.6/
-150	2000	-150	11	0	5.8 E (0
-120	2000	-120	11	, O	J.68 E 02
-90	2000	-90	12		J.86 E c.
-60	2000	-60	10	0	J.94 E 00
-30	2000	-30	E E	0	5.89
Q	2000	, O	В	Q	5.8

!

Station	Line	Station	In-Phase	Quad.	Fld. Str.
30	2000	30	14	1	5.52
60	2000	60	16	2	5.68
'90	2000	90	12	0	5.76
120	2000	120	14	0	5.71
150	2000	150	7	1	5.78
180	2000	180	11	5	5.77
210	2000	210	8	4	5.88
240	2000	240	6	1	5.72
270	2000	270	5	0	5.56
300	2000	300	6	Ō	5.78
330	2000	330	12	1	5.47
360	2000	360	7	1	5.74
390	2000	390	6	O	5.9
420	2000	420	4	-1	5.81
450	2000	450	5	1	5.65
480	2000	480	6	-3	5.47
510	2000	510	12	-1	5.24
540	2000	540	19	4	5.15
570	2000	570	17	Э	5.71
600	2000	600	9	0	6.08
630	2000	630	1	-2	5.39
660	2000	660	11	0	5.27
690	2000	690	14	0	5.03
720	2000	720	14	0	5.42
line	2200			-	
-750	2200	-750	6	3	5.03
-720	2200	-720	12	3	4.89
-690	2200	-690	10	2	0.26 E 04
-660	2200	-660	14	-1	J.24 5 10
-630	2200	-630	14	-3	0.18 E 4E
-600	2200	-600	19	0	0.40 E (E
-570	2200	-570	17	0	3.60 E 40
-540	2200	-540	18	0	3.43
-510	2200	-510	24	-1	4.JD = 17
-480	2200	-480	23		5.00
-430	2200	-430	<u>ک</u> ے ۱۵	- 1 1	J.04 5 57
-420	2200	-420	10		J.JJ 4 04
-350	2200	-350	20	-9	5 66
-330	2200	-330	20	-8	5.00
-300	2200	-300	25	-6	5.52
-270	2200	-270	23	-8	5.63
-240	2200	-240	20	-6	5.67
-210	2200	-210	17	-4	5.19
-180	2200	-180	13	-3	5.62
-150	2200	-150	-0 8	-3	5.26
-120	2200	-120	8	ō	5.16
-90	2200	-90	13	-2	5.36
-60	2200	-60	17	-3	5.35
-30	2200	-30	22	-3	5.63
0	2200	0	14	-2	5.65
30	2200	30	13	-1	4.67
60	2200	60	16	0	5.93
90	2200	90	5	0	5.11
120	2200	120	10	-1	5.52

<u>Station</u> 150	<u>Line</u> 2200	<u>Station</u> 150	<u>In-Phase</u> 11	Quad. 0	<u>Fld. Str.</u> 5.4
180	2200	180	16	6	5.45
210	2200	210	19	8	5.67
240	2200	240	-5	1	6.04
270	2200	270	õ	é	5.48
300	2200	300	4	5	5.26
330	2200	330	12	5	5.14
360	2200	360	14	3	5.14
390	2200	390	13	2	5 75
420	2200	420	1.2	ت +-	5.24
450	2200	450	15	ت 1	5 74 5 74
490	2200	480	17	2	5.14
400 510	2200	510	17	<u>^</u>	5.14 E 7
540	2200	540	16	0	
570	2200	570	10	0	
500	2200	500	10	1	
600	2200	600	1.7	1 1	
660	2200	630	<i>7</i> 0	2	u.u/ ლ. <i>cc</i>
680	2200	660	7		
700	2200	720	11		 5 de
720	2200	750		0	5.49
lina	1200	/ 30		·_/	0.10
-1410	1200	-1410	E.	-15	5.3
-1390	1200	-1380	q	-15	5.56
-1350	1200	-1350	24	-14	5.77
-1320	1200	-1320	2	-12	7.58
-1290	1200	-1290	-19	-17	5.98
-1260	1200	-1260	-8	-14	5.19
-1230	1200	-1230	7	-3	6.72
-1200	1200	-1200	-14	8	6.71
-1170	1200	-1170	-19	1	5.52
-1140	1200	-1140	-15	1	6.62
-1110	1200	-1110	-15	8	5.07
-1080	1200	-1080	-18	З	5.25
-1050	1200	-1050	-20	7	5.53
-1020	1200	-1020	-13	9	4.95
-990	1200	-990	-20	8	4.43
-960	1200	-960	-16	7	4.71
-930	1200	-930	-18	11	4.05
-900	1200	-900	-18	7	4.01
-870	1200	-870	-9	8	3.97
-840	1200	-840	-4	З	3.7
-810	1200	-810	Э	2	3.85
-780	1200	-780	11	1	3.74
-750	1200	-750	31	4	3.77
-720	1200	-720	28	4	4.4
-690	1200	-690	24	4	4.3
-660	1200	-660	26	3	4.38
-630	1200	-630	39	4	4.54
-600	1200	-600	19	0	6.03
-570	1200	-570	5	0	5.61
-540	1200	-540	-1	0	5.48
-510	1200	-510	-1	1	4.82
-480	1200	-480	-1	1	4.58
-450	1200	-450	19	7	4.32

• • • • • •

1

r
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-420	1200	-420	24	5	4.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-390	1200	-390	21	ت.	0.20 F 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-360	1200	-360	1.7	1	J.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-330	1200	-330	19	2	5.5/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-300	1200	-300	20	3	5.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-270	1200	-270	12	O	5.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-240	1200	-240	13	-1	5.71
-180 1200 -180 16 -2 5.3 -150 1200 -150 20 -1 5.45 -120 1200 -90 16 -3 5.59 -90 1200 -90 16 -3 5.59 -90 1200 -90 18 -1 5.3 -30 1200 -30 18 -1 5.77 0 1200 -30 18 -1 5.72 60 1200 -30 18 -1 5.72 60 1200 30 31 0 2.72 60 1200 60 29 4 1.86 90 1200 90 27 5 1.98 120 1200 150 23 11 1.83 150 1200 150 23 11 1.85 270 1200 270 25 4 1.45 300 1200 240 23 1 1.65 270 1200 300 32 2 1.11 300 1200 390 28 5 1.42 420 1200 420 32 6 1.4 450 1200 450 23 7 1.78 390 1200 570 21 8 1.73 600 1200 570 21 8 1.73 600 1200 630 21 7 2.59 7	-210	1200	-210	17	-2	4.98
-150 1200 -150 20 -1 5.45 -90 1200 -120 23 0 5.75 -90 1200 -90 16 -3 5.59 -60 1200 -60 24 -1 5.77 0 1200 -30 18 -1 5.77 0 1200 30 31 0 2.72 60 1200 60 29 4 1.86 90 1200 90 27 5 1.98 120 1200 120 27 12 1.83 150 1200 150 23 11 1.83 180 1200 210 21 3 1.8 240 1200 240 23 1 1.65 270 1200 270 25 4 1.45 300 1200 300 32 2 1.11 330 1200 350 30 1 1.39 360 1200 350 22 0 1.55 390 1200 350 22 0 1.55 390 1200 450 24 6 1.64 450 1200 450 23 7 1.78 570 1200 570 21 8 1.73 600 1200 540 23 7 1.78 570 1200 570 27 0 2.17 780 <	-180	1200	-180	18	-2	_5.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-150	1200	-150	20	-1	5.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-120	1200	-120	23	0	5.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-90	1200	-90	16	-3	5.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-60	1200	-60	24	1	5.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-30	1200	-30	18	-1	5.//
301200303102.72601200602941.86901200902751.98120120012027121.8315012001601761.721012002402311.6527012002702541.4530012003003221.1133012003602201.5539012003602201.5539012003902851.4242012004203261.44450120048033101.4951012005102761.6554012005402371.7857012005702181.7360012006002471.8563012006302172660120065020-12.0972012007502702.17780120078031-22.6810120078031-22.6810120078031-23.081ine1400-1-3-75.07-13201400-1380-4-65.01-13501400-1	O	1200	0	21	O	5.61
60 1200 60 29 4 1.86 90 1200 90 27 5 1.98 120 1200 150 23 11 1.83 150 1200 180 17 6 1.7 210 1200 240 23 1 1.65 270 1200 270 25 4 1.45 300 1200 300 32 2 1.11 330 1200 330 30 1 1.39 360 1200 360 22 0 1.55 390 1200 360 22 0 1.55 390 1200 360 24 6 1.66 480 1200 450 24 6 1.65 480 1200 450 24 6 1.65 480 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 750 27 0 2.17 750 1200 750 27 0 2.17 790 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 $11ne$ 1400 -1410 -5 -4 4.48 -1350	30	1200	30	31	Q	2.72
90 1200 90 27 5 1.98 120 1200 120 27 112 1.83 150 1200 150 23 11 1.83 180 1200 210 21 3 1.8 240 1200 240 23 1 1.65 270 1200 270 25 4 1.45 300 1200 300 32 2 1.11 330 1200 360 22 0 1.55 390 1200 360 22 0 1.55 390 1200 360 24 6 1.65 480 1200 450 24 6 1.65 480 1200 450 24 6 1.65 480 1200 510 27 6 1.69 540 1200 570 21 8 1.73 600 1200 570 21 8 1.73 600 1200 600 24 7 1.85 630 1200 630 21 7 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 $11ne$ 1400 -1410 -5 -4 4.48 -1320 1400 -1380 -4 -6 5.01 <t< td=""><td>60</td><td>1200</td><td>60</td><td>29</td><td>4</td><td>1.86</td></t<>	60	1200	60	29	4	1.86
120120012027121.83150120015023111.8318012002102131.821012002402311.6527012002702541.4530012003003221.1133012003303011.3936012003902851.4242012004203261.445012004502461.6548012004502461.6951012005102761.6954012005402371.7857012005702181.736001200630217266012006602112.1369012006502702.1778012007502702.1778012007502702.17840120084034-23.081ine1400-1410-5-44.48-13801400-1380-4-65.01-13501400-1350-3-75.07-12301400-12309-174.74-12001400-12600-154.73-1230 </td <td>90</td> <td>1200</td> <td>90</td> <td>27</td> <td>5</td> <td>1.98</td>	90	1200	90	27	5	1.98
150120015023111.8318012001201761.721012002102131.824012002402311.6527012002702541.4530012003303011.3936012003602201.5539012003902851.4242012004203261.445012004502461.65480120048033101.4951012005102761.6954012005402371.7857012005702181.7360012006002471.8563012006302112.13660120069020-12.097201200720310275012007502702.17780120078031-22.6810120084034-23.081ine1400-1410-5-44.48-13801400-1380-4-65.01-13501400-1380-4-65.01-13501400-120022-174.66-1200<	120	1200	120	27	12	1.83
18012001801761.721012002102131.824012002402311.6527012002702541.4530012003003221.1133012003602201.5539012003902851.4242012004203261.445012004502461.65480120048033101.4951012005102761.6954012005402371.7857012005702181.7360012006002471.8563012006302112.1366012006602112.136901200720310275012007502702.17780120078031-22.6810120084034-23.081ine1400-1380-4-65.01-13501400-1360-3-75.07-13201400-120022-174.66-1701400-120022-174.66-11701400-120022-174.66 <td>150</td> <td>1200</td> <td>150</td> <td>23</td> <td>11</td> <td>1.83</td>	150	1200	150	23	11	1.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180	1200	180	17	6	1./
240 1200 240 23 1 1.65 270 1200 300 32 2 1.11 330 1200 330 30 1 1.39 360 1200 360 22 0 1.55 390 1200 360 22 0 1.55 390 1200 390 28 5 1.42 420 1200 420 32 6 1.4 450 1200 450 24 6 1.65 480 1200 480 33 10 1.49 510 1200 510 27 6 1.69 540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 $11ne$ 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1250 1400 -1320 0 -6 4.93 -1290 1400 -1260 0 -15 4.73 <	210	1200	210	21	ت ن	1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240	1:200	240	23	1	1.65
300 1200 300 32 2 1.11 330 1200 330 30 1 1.39 360 1200 360 22 0 1.55 390 1200 390 28 5 1.42 420 1200 420 32 6 1.4 450 1200 450 24 6 1.65 480 1200 480 33 10 1.49 510 1200 510 27 6 1.69 540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 $1ine$ 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1290 1400 -1290 -1 -9 5.13 -1290 1400 -1200 9 -17 4.73 -1200 1400 -1200 22 -17 4.66	270	1200	270	25	4	1.45
33012003303011.3936012003602201.5539012003902851.4242012004203261.445012004502461.65480120048033101.4951012005102761.6954012005402371.7857012005702181.7360012006002471.8563012006302172660120069020-12.097201200720310275012007502702.17780120078031-22.6810120084034-23.081ine1400-1410-5-44.48-13501400-1350-3-75.07-13201400-12000-64.93-12901400-12009-174.73-12001400-12009-174.66-11701400-117015-225.1-11401400-11400-106.34	300	1200	300	32	2	1.11
360 1200 360 22 0 1.35 390 1200 390 28 5 1.42 420 1200 420 32 6 1.4 450 1200 450 24 6 1.65 480 1200 480 33 10 1.49 510 1200 510 27 6 1.69 540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 630 21 7 2 660 1200 660 21 1 2.13 630 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 11 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1200 9 -17 4.74 -1200 1400 -1200 9 -17 4.66 -1170 1400 -1200 22 -17 4.66 -1170 1400 -1200 22 -17 <	330	1200	330	30	1	1.39
39012003902851.42 420 12004203261.4 450 12004502461.65 480 120048033101.49 510 12005102761.69 540 12005402371.78 570 12005702181.73 600 12006002471.85 630 12006302172 660 12006602112.13 690 120067020-12.09 720 12007502702.17 780 120078031-22.6 810 120084034-23.08line1400-1410-5-44.48-13801400-1380-4-65.01-13501400-13200-64.93-12901400-120022-174.66-12001400-12009-174.74-12001400-120022-174.66-11701400-117015-225.1-11401400-11400-106.34	360	1200	360	22	U E	
420 1200 420 32 6 1.4 450 1200 450 24 6 1.65 480 1200 510 27 6 1.69 510 1200 510 23 7 1.78 570 1200 570 21 8 1.73 600 1200 630 24 7 1.85 630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 $1ine$ 1400 -1410 -5 -4 4.48 -1350 1400 -1380 -4 -6 5.01 -1350 1400 -1380 -4 -6 5.01 -1320 1400 -1200 9 -17 4.73 -1290 1400 -1200 9 -17 4.74 -1200 1400 -1200 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	390	1200	390	28	5	1.42
450 1200 450 24 6 1.65 480 1200 480 33 10 1.49 510 1200 510 27 6 1.69 540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 600 24 7 1.85 630 1200 660 21 1 2.13 690 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1320 0 -6 4.93 -1290 1400 -1260 0 -15 4.73 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1170 15 -22 5.1	420	1200	420	32	6	1.4
480 1200 480 33 10 1.49 510 1200 510 27 6 1.69 540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 600 24 7 1.85 630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 $1ine$ 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1200 9 -17 4.74 -1200 1400 -1200 9 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	450	1200	450	24	5	1.60
510 1200 510 27 6 1.69 540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 600 24 7 1.85 630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 $1ine$ 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1200 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	480	1200	480	33	10	1.49
540 1200 540 23 7 1.78 570 1200 570 21 8 1.73 600 1200 600 24 7 1.85 630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 750 27 0 2.17 780 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	510	1200	510	27	<u>ь</u>	1.69
570 1200 570 21 8 1.73 600 1200 600 24 7 1.85 630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	540	1200	540	23	/	1.78
600 1200 600 24 7 1.85 630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 $1ine$ 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1320 0 -6 4.93 -1290 1400 -1200 9 -17 4.73 -1260 1400 -1200 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	570	1200	570	21	8	1.73
630 1200 630 21 7 2 660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1170 15 -22 5.1	600	1200	600	24	7	1.85
660 1200 660 21 1 2.13 690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1320 1400 -1350 -3 -7 5.07 -1320 1400 -1290 0 -6 4.93 -1290 1400 -1290 9 -17 4.74 -1200 1400 -1200 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	630	1200	630	21	/	2 -
690 1200 690 20 -1 2.09 720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1200 0 -15 4.73 -1260 1400 -1200 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	660	1200	660	21	1	2.13
720 1200 720 31 0 2 750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	690	1200	690	20	-1	2.09
750 1200 750 27 0 2.17 780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	720	1200	/20	31	0	~ 47
780 1200 780 31 -2 2.6 810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	750	1200	/50	2/	0	2.17
810 1200 810 35 1 2.71 840 1200 840 34 -2 3.08 line 1400 -1410 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	780	1200	780	31 0F		2.0 0.7:
840 1200 840 34 -2 3.08 line 1400 -1410 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	810	1200	810	33	1	2.71
11 ne1400 -1410 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1260 1400 -1260 9 -17 4.74 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	. 840	1200	840	4 ت	-2	3.08
-1410 1400 -1410 -5 -4 4.48 -1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1260 1400 -1260 9 -17 4.74 -1230 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	line	1400		F ***		
-1380 1400 -1380 -4 -6 5.01 -1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1410	1400	-1410	-5	-4	4.48
-1350 1400 -1350 -3 -7 5.07 -1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1380	1400	-1380	-4	-5	5.01
-1320 1400 -1320 0 -6 4.93 -1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1350	1400	-1350	-3	-/	3.07
-1290 1400 -1290 -1 -9 5.13 -1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1320	1400	-1320	0	-6	4.33 5 10
-1260 1400 -1260 0 -15 4.73 -1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1290	1400	-1290	-1		J.13 4 70
-1230 1400 -1230 9 -17 4.74 -1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1260	1400	-1260	Q O	-13	ਜਾ∎/ਤਾਂ ਮ ⊐ਾਮ
-1200 1400 -1200 22 -17 4.66 -1170 1400 -1170 15 -22 5.1 -1140 1400 -1140 0 -10 6.34	-1230	1400	-1230		-1/	4./4 4.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1200	1400	-1200	22	-1/	4.66
-1140 1400 -1140 0 -10 5.34	-1170	1400	-11/0	15	-22	3.1 6 74
-1110 1400 -1110 -27 2 5.37	-1140	1400	-1140	-07	-10	5.37

•

- 7 -

Station	Line	Station	In-Phase	Quad.	Fld. Str.
-1080	1400	-1080	-15	1	4.72
-1050	1400	-1050	-18	6	3.79
-1020	1400	-1020	-15	8	4.47
-990	1400	-990	-13	7	3.87
-960	1400	-960	-3	·Э	3.77
-930	1400	-930	Ō	4	3.71
-900	1400	-900	-2	2	3.6
-870	1400	-870	4	-2	3.43
-840	1400	-840	12	-3	3.01
-810	1400	-810	36	9	2.84
-780	1400	-780	36	Э	3.89
-750	1400	-750	28	9	4.16
-720	1400	-720	23	7	4.7
-690	1400	-690	7	2	4.79
-660	1400	-660	Э	-4	4.5
-630	1400	-630	13	-2	4.19
-600	1400	-600	17	-3	4.41
-570	1400	-570	9	-4	4.74
-540	1400	-540	9	Ō	4.02
-510	1400	-510	25	Э	4.12
-480	1400	-480	22	ੁ	4.47
-450	1400	-450	16	-3	5.12
-420	1400	-420	26	-3	4.4
-390	1400	-390	19	-3	5.05
-360	1400	-360	3	1	5.03
-330	1400	-330	4	0	3 4 65
-300	1400	-300	17	- 1	4.60
-270	1400	-270	17	-1	4.3
-240	1400	-240	10	- <u>~</u>	4.99
-180	1400	-210	10		4 94
-150	1400	-150	1.1	ت +	4.77
-120	1400	-120	14	2	4.81
-90	1400	-90	15		4.69
-60	1400	-60	13	7	4.5
-30	1400	-30	16	7	4.67
0	1400	0	13	3	4.64
30	1400	30	11	3	4.5
60	1400	60	17	1	4.49
90	1400	90	21	1	4.57
120	1400	120	21	1	4.66
150	1400	150	20	0	4.73
180	1400	180	21	2	4.67
210	1400	210	- 8	6	4.41
240	1400	240	8	4	4.57
270	1400	270	10	2	4.54
300	1400	300	11	0	4.02
330	1400	330	20	2	4.08
360	1400	360	22	2	3.94
390	1400	390	23	1	3.95
420	1400	420	26	1	4.05
450	1400	450	25	Ō	4.09
480	1400	480	26	0	4.11
510	1400	510	30	2	3.8/
540	1400	D40.	23	ت	54 a U /

- 8 -

I

<u>Station</u>	<u>Line</u>	<u>Station</u>	<u>In-Phase</u>	<u>Quad.</u>	Fld. Str.
500	1400	500	24	0 2	3.07 7 0
600	1400	600	27	- O	
630	1400	630	27	0	ر / • ت ار
660	1400	660	20	-12	
890	1400	700	10	-13	3.04 7 53
740	1400	720	17		3.35
730	1400	730	20	-1	3./O ന മവ
780	1400	760	20 70	ی 0	0.07 7.40
810	1400	810 940	27 C	-3	0.40 7 Q5
840	1400	040	10	· 1	0.00 7 57
	1400	870	10	Т	0.0/
	1600	-1200	1.4	1.4	4 68
-1170	1600	-1170	19	-10	4 95
-1170	1600	-1140	-10		5 49
-1140	1600	-1140	-12	- I O	0.70 5 75
-1110	1600	-1110	-J 	5	4 77
1080	1600	-1050	-23		4.33
1030	1600	-1030	-4	<u>~</u>	4.07
-1020	1600	-1020	-3	1	्म•्य/ त इ.स
-990	1600	-990	- <u>-</u>	1	4.J4
-930	1600	-930	-2		3 70
-900	1600	-900	18	3	3.56
-970	1600	-970	30	8	4
-840	1600	-840	29	5	4-82
-810	1600	-810	20	2	5.21
-790	1600	-780	13	õ	5.29
-750	1600	-750	18	- 1	5.1
-730	1600	-720	7	-4	5.22
-690	1600	-690	7		4.92
-660	1600	-660	20	-3	4.95
-630	1600	-630	13	-4	5.57
-600	1600	-600	14	-3	5.56
-570	1600	-570	2 2	-2	5.47
-540	1600	-540	14	1	5.5
-510	1600	-510	7	ō	5.54
-480	1600	-480	ģ	1	5.52
-450	1600	-450	10	2	5.42
-420	1600	-420	10	1	5.98
-390	1600	-390	Ō	1	5.72
-360	1600	-360	4	5	5.32
-330	1600	-330	15	9	5.16
-300	1600	-300	12	5	5.46
-270	1600	-270		ō	5.47
-240	1600	-240	16	6	4.95
-210	1600	-210	17	2	5.51
-180	1600	-180	15	1	5.61
-150	1600	-150	13	1	5.52
-120	16.00	-120	13	-	5.66
-90	1600	-90	14	-2	5.69
-60	1600	-60	16	-2	5.9
-30	1600	-30	16	ō	6.01
Ŏ	1600	ō	9	Ō	6.12
зŏ	1600	зõ	4	Ō	5.92
60	1600	60	11	0	5.75

ł

In-Fhase Quad. Fld. Str. Station Line <u>Station</u> 16 90 1600 90 1 5.66 22 125.72 120 120 1600 13 150 1600 150 5.66 Ō 1600 180 13 5.84 180 210 16 1 5.66 2101600 2 14 5.77 2401600 2404 5.56 270 1600 27010300 10 Э 5.38 300 1600 2 330 17 5.63 330 1600 4 22 5.74 360 1600 360 З 390 1600 390 22 5.84 420 23 4 6.12 4201600 З 17 6.17 450 1600 450 14 Ō 6.09 480 1600 480 5104 510 1600 17 6.02 540 1600 54017 6 6.11 570 9 2 6.19 570 1600 10 1 5.85 1600 600 600 630 630 15 2 5.6 1600 Ō 1600 660 215.69 660 690 24 -2 5.84 690 1600 2 28 5.72 720 1600 720 -2 1600 750 23 6.15 750 1600 25 1 6.34 780 780 18 4 6.62 810 1600 810 800 line 800 -1020-65 Ô 4.3 -1020-49 3.79 -990 800 -990 -1 -2 4.39 -960 800 -960 -54 -54-7 4.27 -930 -930 800 -900 800 -900 -53 -4 2.92 -870 -60 -10 3.13 -870 800 -840 -840 -36 1 3.7 800 -421 3.44 -810 800 -810 2.63 -47 -780 800 -780 1 -23 3.55 -750 800 -7501 -6 6 3.1 -720800 -720 10 3.34 -690 800 -690 -6 -660 -3 8 3.27 -660 800 -630 800 -630 5 6 3.86 -600 7 -600 800 103.43 -570 800 -570 9 5 3.92 2 Ö -540800 -540 3.87 -510800 -510З Ō 4.29 -2 3.98 -480800 -480 -13 -25 -5 -450 800 -450 3.61 -2 -420800 -420 -173.96 -390 800 -390 -12 -1 4.02 Ô 6 3.84 -360 800 -360 З -330 800 4 4.14 -330 9 -300 800 -3004 3.96 2 15

l

-270

-240

-210

-180

800

800

800

800

-270

-240

-210

-180

4.16

4.13

4.71

4.75

Ō

1

Ō

8

Station Line Station In-Phase Quad. Fld. Str. -150800 -15014 Õ 4.38 2 -120-120-4 800 3.76 12 -90 -90 -5 4.18 800 7 3.62 -60 800 -60 -4 -30 5.87 -30 800 14 -1 5 Ō -3 3.28 Ō 800 30 800 30 27 Q з.9 30 -2 60 800 60 3.58 -2 90 26 3.85 90 800 30 Ō 3.82 120800 12033 3.99 -1 150 800 150-3 180 800 18027 4.26 24 -Ξ 4.24 210800 21028 -3 4.29 240240 800 270 24 -4 4.04 270 800 300 800 300 22 -2 4.49 330 18 Õ 4.64 800 330 25 4.53 -1 360 800 360 390 26 4.71 -1 390 800 4.85 24Õ 420 800 420 25 2 450 800 450 4.65 6 480 800 480 214.82 510510 20 7 4.91 800 24 9 4.89 540800 540Э 22 4.69 570 570 800 7 600 800 600 19 4.75 22 8 4.58 630 800 630 line 1000 -216 6.04 -12301000 -1230-1200 7 -1200-43 5.37 10007 -26 5.47 -11701000 -1170-21 1 4.93 -11401000 -1140-18 5.57 -11101000-1110- 1 -10801000 -1080-36 7 4.99 12 -264.5 -10501000-1050-10204.32 -1020-26 2 1000 6 -990 1000 -990 -23 3.8 4 -19 3.4 -960 1000 -960 -930 -930 -196 3.9 100012-12 3.53 -900 -900 1000-1711 2.85 -870 1000 -870 5 -19 3.34 -840 1000 -840 5 -810 -810 -113.35 10002 4 3.31 -780 -780 1000 14 2.97 -1 -750-75010007 3.58 -720 1000 -72022 9 -690 -690 29 3.44 1000 6 4.69 24 -660 -660 100012 O 4.35 -630 -630 1000Õ -600 1000 -600 21 4.09 -570 25 1 4.36 -570 1000 5 -540 18 5.45 -540 1000 4.92 З 0 -510-510 1000 -2 1 5.04-480 1000 -480 2 Ő 4.71

1

-450

1000

-450

<u>Station</u>	Line	<u>Station</u>	<u>In-Phase</u>	Quad.	<u>Fld. Str.</u>
-420	1000	-420	Έ	O	4.1
-390	1000	-390	12	O	4.3
-360	1000	-360	28	3	4.52
-330	1000	-330	27	0	4.57
-300	1000	-300	31	0	4.61
-270	1000	-270	33	0	4.47
-240	1000	-240	32	1	5.27
-210	1000	-210	26	-2	5.3
-180	1000	-180	23	-3	5.22
-150	1000	-150	22	-2	5.19
-120	1000	-120	22	-4	4.92
-90	1000	-90	24	-3	5.1
-60	1000	-60	18	-5	5.33
-30	1000	-30	25	0	5
Ŏ	1000	0	23	0	4.87
30	1000	30	30	-2	5.19
60	1000	60	32	0	5.47
90	1000	90	20	0	6.14
120	1000	120	20	2	5.24
150	1000	150	26	2	5.5
180	1000	180	27	0	5.52
210	1000	210	28	-1	5.74
240	1000	240	28	-3	5.23
270	1000	270	36	2	4.83
300	1000	300	22	5	5.06
330	1000	330	' '	6	5.26
360	1000	360	12	4	5.3
390	1000	390	21	4	5.11
420	1000	420	25	3	5.31
450	1000	450	20	4	5.47
480	1000	480	18	7	5.24
510	1000	510	26	10	4.97
540	1000	540	30	11	5.2
570	1000	570	22	7	4.9
600	1000	600	18	9	5.56
630	1000	630	24	9	4.12
660	1000	660	16	2	5.38
690	1000	690	21	4	4.86
720	1000	720	21	3	5.04
750	1000	750	24	2	5.1
780	1000	780	24	0	5.03
810	1000	810	27	O	4.96
line	200				
-240	200	-240	43	4	4.07
-210	200	-210	35	2	4.69
-180	200	-180	37	2	4
-150	200	-150	44	4	4.2
-120	200	-120	39	4	5.53
-90	200	-90	33	6	5.58
-60	200	-60	27	4	5.85
-30	200	-30	28	5	5.86
0	200	0	29	9	5.9
30	200	30	28	10	5.88
60	200	60	29	ਸ ਸ	5.55
90	200	.90	25	/	0./B

- 12 -

ł

<u>Station</u> 120	<u>Line</u> 200	<u>Station</u> 120	<u>In-Phase</u> 23	<u>Quad.</u> 5	<u>Fld. Str.</u> 5.99
150	200	150	22	5	5.9
line	400				
-480	400	-480	27	6	4.41
-450	400	-450	22	2	4.75
-420	400	-420	17	1	4.81
-390	400	-390	5	ō	5.54
-360	400	-360	-1	-2	4.5
-330	400	-330	ō	-1	4.46
-300	400	-300	27	1	3.99
-270	400	-270	37	-2	4.54
-240	400	-240	40	1	5.03
-210	400	-210	39	ō	4.92
-180	400	-180	36	-1	5.5
-150	400	-150	41	ō	5.02
-120	400	-120	49	1	5.52
-90	400	-90	43	2	5.65
-60	400	-60	30	1	5.69
-30	400	-30	27	1	5.52
0	400	0	22	Ō	5.26
30	400	30	26	ŏ	6.51
60	400	60	9	6	6.69
90	400	90	11	6	5.86
120	400	120	15	2	5.22
150	400	150	21	2	5.9
180	400	180	21	1	5.8
210	400	210	13	ō	6.14
240	400	240	20	2	6.14
270	400	270	16	5	6.48
300	400	300	13	6	6.39
330	400	330	18	4	6.08
line	600				
-720	600	-720	-23	2	3.91
-690	600	-690	-18	3	3.78
-660	600	-660	-20	4	3.15
-630	600	-630	-14	2	3.63
-600	600	-600	-7	-1	3.12
-570	600	-570	10	1	2.83
-540	600	-540	19	1.5	3.245
-510	600	-510	29	З	3.52
-480	600	-480	17	2	4.7
-450	600	-450	10	З	4.68
-420	600	-420	6	0	4.75
-390	600	-390	11	0	4.1
-360	600	-360	-8	-5	4.34
-330	600	-330	-17	-4	3.56
-300	600	-300	13	5	3.84
-270	600	-270	17	4	4.19
-240	600	-240	26	1	3.71
-210	600	-210	29	2	4.26
-180	600	-180	27	3	4.32
-150	600	-150	23	1	4.77
-120	600	-120	25	-1	4.67
-90	600	-90	27	4	4.7
-60	600	-60	26	5	4.33

i

- 14 -

1

t I

.

<u>Station</u>	Line	<u>Station</u>	<u>In-Fhase</u>	Quad.	<u>Fld. Str.</u>
-30	600	-30	27	5	3.77
0	600	0	21	З	5.52
30	600	30	22	З	5.82
60	600	60	25	2	6.13
90	600	90	15	1	5.83
120	600	120	21	1	5.74
150	600	150	34	0	5.15
180	600	180 (32	-2	5.83
210	600	210	32	-2	6.04
240	600	240	33	-1	6.36
270	600	270	28	-1	5.94
300	600	300	33	Ō	6.13
330	600	330	14	0	6.87
360	600	360	23	0	5.37
390	600	390	31	-2	6.15
420	600	420	32	-2	6.35

.

``

APPENDIX II

FIELD MAGNETIC DATA

i i

÷

line2400-57058078.6479-5702400-54058345.5746-5102400-5405785.1222-4502400-48057821.5222-4502400-42057785.1185-4202400-42057786.1286-3902400-39057806206-3002400-30057852.1286-3002400-3005765252-2702400-27057684.685-2402400-21057652.5154-2102400-180576099-1502400-1205767.679-602400-1005767.679-602400-1005767.679-602400-9057678.679-602400-9057678.679-502400-9057678.679-6024006057657.457-30240012057595.8-4150240012057595.9-4150240018057638.238210240021057657.457240240024057595.7-70330240030057547.457240240024057595.7-71330240030057631.4114802400450 <th>Station</th> <th>Line</th> <th><u>Station</u></th> <th><u>Corr. Maq</u></th> <th><u>Res. Maq</u></th>	Station	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	line	2400			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-570	2400	-570	58078.6	479
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-540	2400	-540	58345.5	746
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-510	2400	-510	57976.9	377
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-480	2400	-480	57821.5	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-450	2400	-450	57785.1	185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-420	2400	-420	57706.4	106
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-390	2400	-390	57806	206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-360	2400	-360	57886.1	286
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-330	2400	-330	57829.4	229
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-300	2400	-300	57652	52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-270	2400	-270	57684.6	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-240	2400	-240	57753.5	154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-210	2400	-210	57656.9	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-180	2400	-180	57609	Э
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-150	2400	-150	57562.4	-38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-120	2400	-120	57631.6	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-90	2400	-90	57678.6	79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-60	2400	-60	57657.4	57
024000 57654.5 55 30240030 57644.9 4560240060 57642.1 4290240090 57626.2 261202400120 57595.8 -4 1502400180 57638.2 382102400210 57657.4 57 2402400210 57657.4 57 2402400200 57595.9 -4 3002400300 57559.9 -4 3002400300 5759.9 -4 3002400300 $5759.5.9$ -4 3002400300 $5759.5.9$ -4 3002400300 $5759.5.9$ -4 3002400300 $5759.5.9$ -4 3002400300 $5759.5.9$ -4 3002400300 $5759.7.5.7.7.70$ 3302400300 $5759.7.5.7.7.70$ 3002400360 57620.4 204202400420 57593.2 -7 5102400510 57631.1 315402400540 $5767.5.1$ 556002400630 57627.2 276302400630 57627.2 276402600 -300 57626.7 377502400750 57636.7 377502400730 57627.9 28 <td>-30</td> <td>2400</td> <td>-30</td> <td>57701.8</td> <td>102</td>	-30	2400	-30	57701.8	102
30 2400 30 57644.9 45 60 2400 60 57642.1 42 90 2400 90 57626.2 26 120 2400 120 57595.8 -4 150 2400 180 57638.2 38 210 2400 210 57657.4 57 240 2400 240 57624.7 25 270 2400 270 57595.9 -4 300 2400 300 57529.7 -70 330 2400 330 57554.6 -45 360 2400 360 57593.7 -11 450 2400 420 57598.7 -11 450 2400 420 57598.7 -11 450 2400 480 57593.2 -77 510 2400 480 57593.2 -77 510 2400 540 57651.1 40 570 2400 570 57655.1 55 600 2400 630 57627.2 27 660 2400 630 57627.2 27 660 2400 630 57627.2 27 690 2400 630 57627.9 28 -320 2600 -330 57721 121 -330 2600 -330 57721 221 -330 2600 -330 57770.9 171 -270 2600	0	2400	0	57654.5	55
60 2400 60 57642.1 42 90 2400 90 57626.2 26 120 2400 120 57595.8 -4 150 2400 150 57647 47 180 2400 180 57638.2 38 210 2400 210 57657.4 57 240 2400 240 57624.7 25 270 2400 270 57595.9 -4 300 2400 300 57529.7 -70 330 2400 330 57554.6 -45 360 2400 360 57579.5 -21 390 2400 390 57620.4 20 420 2400 420 57598.7 -1 450 2400 450 57601.4 1 480 2400 480 57593.2 -7 510 2400 510 57631 31 540 2400 540 57640.1 40 570 2400 570 57655.1 55 600 2400 630 57627.2 27 660 2400 660 57671.5 72 690 2400 750 57636.7 37 $1ine$ 2600 -390 57627.9 28 -360 2600 -330 57721 121 -300 2600 -300 5770.9 171 -270 2600 -270 </td <td>30</td> <td>2400</td> <td>30</td> <td>57644.9</td> <td>45</td>	30	2400	30	57644.9	45
90240090 57626.2 261202400120 57595.8 -41502400150 57647 471802400180 57638.2 382102400210 57657.4 57 2402400240 57624.7 252702400270 57595.9 -43002400300 57529.7 -703302400330 57554.6 -453602400390 57620.4 204202400420 57598.7 -14502400450 57601.4 14802400480 57593.2 -75102400510 57631 315402400540 57640.1 405702400570 57655.1 556002400600 57619 196302400630 57627.2 276602400660 57671.5 726902400690 57628.6 877502400720 57636.7 371ine2600-420 57624 24-3302600-390 57721 121-3002600-300 57770.9 171-2702600-270 57567.5 -33-2402600-240 57661.4 61-2102600-240 57661.4 61 <td>60</td> <td>2400</td> <td>60</td> <td>57642.1</td> <td>42</td>	60	2400	60	57642.1	42
120 2400 120 57595.8 -4 150 2400 150 57647 47 180 2400 180 57638.2 38 210 2400 210 57657.4 57 240 2400 2400 57524.7 25 270 2400 270 57595.9 -4 300 2400 300 57529.7 -70 330 2400 330 57554.6 -45 360 2400 360 57579.5 -21 390 2400 390 57620.4 20 420 2400 420 57593.7 -1 450 2400 450 57601.4 1 480 2400 480 57593.2 -7 510 2400 510 57631 31 540 2400 540 57640.1 40 570 2400 570 57655.1 55 600 2400 630 57627.2 27 660 2400 630 57627.2 27 660 2400 690 57648.7 49 720 2400 720 57636.7 37 $1ine$ 2600 -320 57721.5 28 -330 2600 -330 57721.4 221 -330 2600 -330 57721.4 221 -300 2600 -300 57661.4 61 -270 2600 <t< td=""><td>90</td><td>2400</td><td>90</td><td>57626.2</td><td>26</td></t<>	90	2400	90	57626.2	26
150 2400 150 57647 47 180 2400 180 57638.2 38 210 2400 210 57657.4 57 240 2400 240 57624.7 25 270 2400 270 57595.9 -4 300 2400 330 57529.7 -70 330 2400 330 57554.6 -445 360 2400 360 57579.5 -21 390 2400 390 57620.4 20 420 2400 420 57598.7 -1 450 2400 450 57601.4 1 480 2400 450 5763.1 31 540 2400 570 57655.1 55 600 2400 630 57627.2 27 660 2400 630 57627.2 27 660 2400 630 57627.2 27 660 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 $1ine$ 2600 -420 57624 24 -390 2600 -330 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57661.4 61 -270 2600 -240 57661.4 61	120	2400	120	57595.8	-4
180 2400 180 57638.2 38 210 2400 210 57657.4 57 240 2400 240 57624.7 25 270 2400 270 57595.9 -4 300 2400 300 57529.7 -70 330 2400 330 57554.6 -45 360 2400 360 57579.5 -21 390 2400 390 57620.4 20 420 2400 420 57598.7 -1 450 2400 450 57601.4 1 450 2400 480 57593.2 -7 510 2400 510 57631 31 540 2400 570 57655.1 55 600 2400 630 57627.2 27 660 2400 630 57627.2 27 660 2400 630 57627.2 27 660 2400 690 57648.7 49 720 2400 720 57636.7 37 750 2400 750 57636.7 37 750 2600 -420 57624 24 -390 2600 -390 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57661.4 61 -240 2600 -240 57661.4 61	150	2400	150	57647	47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180	2400	180	57638.2	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	2400	210	57657.4	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240	2400	240	57624.7	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270	2400	270	57595.9	-4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	2400	300	57529.7	-70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	330	2400 j	330	57554.6	-45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	360	2400	360	57579.5	-21
420 2400 420 57598.7 -1 450 2400 450 57601.4 1 480 2400 480 57593.2 -7 510 2400 510 57631 31 540 2400 540 57640.1 40 570 2400 570 57655.1 55 600 2400 600 57619 19 630 2400 630 57627.2 27 660 2400 660 57671.5 72 690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 $1ine$ 2600 -420 57627.9 28 -360 2600 -390 57627.9 28 -360 2600 -330 57721 121 -330 2600 -300 57770.9 171 -270 2600 -270 5767.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	390	2400	390	57620.4	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	420	2400	420	57598.7	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450	2400	450	57601.4	1
510 2400 510 57631 31 540 2400 540 57640.1 40 570 2400 570 57655.1 55 600 2400 600 57619 19 630 2400 630 57627.2 27 660 2400 660 57671.5 72 690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -330 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	480	2400	480	57593.2	-7
540 2400 540 57640.1 40 570 2400 570 57655.1 55 600 2400 600 57619 19 630 2400 630 57627.2 27 660 2400 660 57671.5 72 690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57627.9 28 -360 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -240 57632.3 32	510	2400	510	57631	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	540	2400	540	5/640.1	40
600 2400 600 57619 19 630 2400 630 57627.2 27 660 2400 660 57671.5 72 690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 577567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	570	2400	570	5/655.1	35
630 2400 630 37627.2 27 660 2400 660 57671.5 72 690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 577567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	600	2400	600	5/613	13
680 2400 680 57671.5 72 690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -300 2600 -300 57770.9 171 -270 2600 -270 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	630	2400	630	3/62/.2 67/71 E	2/
690 2400 690 57648.7 49 720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	660	2400	660	3/8/1.3	12
720 2400 720 57686.6 87 750 2400 750 57636.7 37 line 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	890	2400	690	3/648./ 57006 6	47
1ine 2600 730 37636.7 37 1ine 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	720	2400	720	0/000.0 F7000 7	27
-420 2600 -420 57624 24 -390 2600 -390 57627.9 28 -360 2600 -360 57821.4 221 -330 2600 -330 57721 121 -300 2600 -300 57770.9 171 -270 2600 -270 57567.5 -33 -240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	· 700	2400	7.00	J/030./	37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2600	-420	57604	74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-420	2000	-420	57627 9	47 70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-350	2000	-330	57821 4	20 221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-220	2600	-350	57701	171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-330	2600	-300	57770.9	171
-240 2600 -240 57661.4 61 -210 2600 -210 57632.3 32	-270	2600	-270	57567.5	-33
-210 2600 -210 57632.3 32	-240	2600	-240	57661.4	61
	-210	2600	-210	57632.3	32

<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
-180	2600	-180	57706.4	106
-150	2600	-150	57622.7	23
-120	2600	-120	57601	1
-90	2600	-90	57630.6	31
-60	2600	-60	57758.1	158
-30	2600	-30	57648.6	4'9
0	2600	0	57639.9	40
20	2600	20 	57653 9	54
50	2600	50 60	57705 7	126
90	2000	90	57645 7	46
120	2600	120	57667 7	-+0 -20
120	2600	150	57576 5	- 24
100	2600	100	57706 0	107
180	2600	180	J//06.0 57670 0	107
210	2600	210	57600	O
240	2600	240	37600 E7575	0 05
270	2600	270	3/3/3 E70/4 0	-20
300	2600	300	57864.9	260
330	2600	330 950	5/64/.Z	4/
360	2600	360	5/643./	•+•+ • • .•
390	2600	390	0//14.1 E7E0E 4	114
420	2600	420	57574	-3
400	2600	400	J/634 E7601 0	-+C
480	2600	480	5/631.8 E7/E7 0	പ്പ ലെപ
510	2600	510	57653.9	04 04
540	2600	540	5/623.8	<u>~</u> 4
570	2600	570	5/66/.2	67
600	2600	600	3/633.4	ವರು ೧೧
630	2600	630	5/666.2	66
660	2600	660	5/628.5	29
690	2600	690	5/644.2	ներներ
line	2800	~		
-240	2800	-240	5/689	68
-210	2800	-210	5//31.5	132
-180	2800	-180	5/645.6	46
-150	2800	-150	5/941.4	341
-120	2800	-120	57537.3	-63
-90	2800	-90	57617.2	17
-60	2800	-60	57625.1	25
-30	2800	-30	57694.5	95
0	2800	0	57669.6	70
30	2800	30	57656.6	57
60	2800	60	57578.8	-21
90	2800	90	57592.5	-8
120	2800	120	57602.3	2
150	2800	150	57571.7	-28
180	2800	180	57544.6	-55
210	2800	210	57601.3	1
240	2800	240	57781.9	182
270	2800	270	57607.7	_8
300	2800	300	57634.3	34
330	2800	330	57595	-5
360	2800	360	57667.7	68
390	2800	390	57700.6	101
420	2800	420	57679.5	80
450	2800	450	57661.8	62

- ** ^{*}.

4

.

:

•

.

<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>	
480	2800	480	57668.9	69	
510	2800	510	57664.6	65	
line	3000				
-90	3000	-90	57862.8	263	
-60	3000	-60	57608.3	8	
-30	3000	-30	57606.6	7	
0	3000	0	57658.5	59	
30	3000	30	57596	-4	
60	3000	60	57690.2	90	
90	3000	90	57792.8	193	
120	3000	120	57632.8	33	
150	3000	150	57691.3	91	
180	3000	180	57588.4	-12	
210	3000	210	57632.5	33	
line	1800				
-1080	1800	-1080	57635	35	
-1050	1800	-1050	57573.7	-26	
-1020	1800	-1020	57621.8	22	
-990	1800	-990	57616.4	16	
-960	1800	-960	57632.9	33	
-930	1800	-930	57653.7	54	
-900	1800	-900	57671.3	71	
-870	1800	-870	57716.1	116	
-840	1800	-840	57797.5	198	
-810	1800	-810	57902.1	302	
-780	1800	-780	57868	268	
-/50	1800	-750	57827.6	228	
-720	1800	-720	57741	141	
-690	1800	-690	57704.6	105	
-660	1800	-660	57896.9	297	
-630	1800	-630	3/629.9 E7704 7		
-500	1800	-600	3//31./ E7000 0	132	
-570	1800	-570	3/939.9 E7740 1	340	
-540	1800	-340	3//IU.I 57607 d	110	
-490	1800	-310	3/83/.4	/ت ۱۱۵	
-480	1800	-480	57746 4	118	
-430	1800	-430	J//40.4 57646 0	140	
-390	1800	-230	57670 S	71	
-360	1800	-360	57674 9	75	
-330	1800	-330	57701 2	101	
-300	1800	-300	57686.6	87	
-270	1800	-270	57648.1	48	
-240	1800	-240	57631	31	
-210	1800	-210	57597.4	-3	
-180	1800	-180	57600.5	1	
-150	1800	-150	57543.9	-56	
-120	1800	-120	57592.7	-7	
-90	1800	-90	57604	4	
-60	1800	-60	57594.6	-5	
-30	1800	-30	57614.9	15	
Ō	1800	0	57587.4	-13	
30	1800	30	57614	14	
60	1800	60	57485.5	-115	
90	1800	90	57600.3	0	

<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
120	1800	120	57529.3	-71
150	1800	150	57672.2	72
180	1800	180	57695	95
210	1800	210	57664.4	64
240	1800	240	57613.9	14
270	1800	270	57750.3	150
300	1800	300	57684	84
330	1800	330	57568.7	-31
360	1800	360	57567	-33
390	1800	390	57606	6
420	1800	420	57777.5	178
450	1800	450	57715.9	116
480	1800	480	57588.2	-12
510	1800	510	57619.6	20
540	1800	540	57628.1	28
570 /	1800	570	57625.5	26
600	1800	600	57652.9	53
630	1800	630	57637.5	38
660	1800	660	57640.1	4Ŭ
690	1800	690	57639.6	40
line	2000			
-930	2000	-930	57628	28
-900	2000	-900	57659	59
-870	2000	-870	57641.8	42
-840	2000	-840	57776.3	176
-810	2000	-810	57851.8	252
-780	2000	-780	57907.7	308
-750	2000	-750	57746.1	146
-720	2000	-720	57678.2	78
-690	2000	-690	57820.7	221
-660	2000	-660	57913.9	314
-630	2000	-630	58019.3	419
-600	2000	-600	57761.1	161
-570	2000	-570	57693.1	93
-540	2000	-540	57667.5	68
-510	2000	-510	57798.9	199
-480	2000	-480	57924.9	325
-450	2000	-450	57922.3	322
-420	2000	-420	57971.7	372
-390	2000	-390	57727.9	128
-360	2000	-360	57739.4	139
-330	2000	-330	57747.2	147
-300	2000	-300	57759.9	160
-270	2000	-270	57745.5	146
-240	2000	-240	57702.7	103
-210	2000	-210	57689.7	90
-180	2000	-180	57624.8	25
-150	2000	-150	57585.6	-14
-120	2000	-120	57603.4	3
-90	2000	-90	57624.4	24
-60	2000	-60	57647.4	47
-30	2000	-30	57630.6	31
Ö	2000	0	57636.3	36
30	2000	30	57643.7	44
60	2000	60	57639.2	39

- 4 -

_

,

<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
90	2000	90	57642	42
120	2000	120	57669.1	69
150	2000	150	57581.1	-19
180	2000	180	57593.8	-6
210	2000	210	57535.4	-65
240	2000	240	57555	-45
270	2000	270	57495	-105
300	2000	300	57537.9	-62
330	2000	330	57565.9	~34
360	2000	360	57660.1	60
390	2000	390	57665.7	66
420	2000	420	57652.8	53
450	2000	450	57652.6	53
480	2000	480	57637.6	38
510	2000	510	57689.2	89
540	2000	540	57692.6	93
570	2000	570	57600.9	1
600	2000	600	57572.5	-28
630	2000	630	57656.9	57
660	2000	660	57640.4	40
690	2000	690	57644.9	45
/20	2000	720	5/626./	27
line	2200		······	101
-/50	2200	-/50	5//34.4	134
-720	2200	-720	5///2.9	1/3
-690	2200	-690	5/860.1	260
-660	2200	~660	57903 E7006 0	303
-630	2200	-630	37306.2 57005 0	306 204
-600	2200	-600	J/00J.0 57000 5	200
-370	2200	-570	57007 4	303
-540	2200	-510	57060 0	32/
-490	2200	-310	57692 6	270 94
-480	2200	-450	57718 2	119
-420	2200	~420	57979 6	280
-790	2200	-290	57845 9	200
-360	2200	~360	57670 7	<u>-</u>
-330	2200	-330	57688-8	89
-300	2200	~300	57752.9	153
-270	2200	-270	57705	105
-240	2200	-240	57647.7	48
-210	2200	-210	57599	-1
-180	2200	~180	57649.2	49
-150	2200	-150	57674	74
-120	2200	-120	57609.3	9
-90	2200	-90	57573.9	~26
-60	2200	-60	57577.5	-23
-30	2200	-30	57606.3	6
0	2200	0	57631.7	32
30	2200	30	57646.7	47
60	2200	60	57651.1	51
90	2200	90	57669.2	69
120	2200	120	57614.6	15
150	2200	150	57513.3	-87
180	2200	180	57530	-70

•

- 5 -

210 2200 210 57591.1	
	-9
240 2200 240 57469.6 -1	30
270 2200 270 57488.3 -1	12
300 2200 300 57539.7 -	-60
330 2200 330 57544.3 -	-56
360 2200 360 57555 -	-45
390 2200 390 57584.8 -	-15
420 2200 420 57588.2 -	-12
450 2200 450 57621.7	22
480 2200 480 57600.9	1
510 2200 510 57630.6	31
540 2200 540 57604.1	4
570 2200 570 57591.1	-9
600 2200 600 57621.2	21
630 2200 630 57602.4	2
660 2200 660 57596.8	-3
690 2200 690 57600.3	0
720 2200 720 57646	46
750 2200 750 57631.3	31
line 1200	c o
-1410 1200 -1410 57663	63 E0
	33
-1330 1200 -1330 37677.1	770
-1320 1200 -1320 37678.8	/ 3 97
-1250 1200 -1250 57691 5	97
-1230 1200 -1230 57684.6	85
-1200 1200 -1200 57711.9 1	12
-1170 1200 -1170 57723.9 1	24
-1140 1200 -1140 57726.3 1	26
-1110 1200 -1110 57757.8 1	58
-1080 1200 -1080 57774.3 1	74
-1050 1200 -1050 57783.2 1	83
-1020 1200 -1020 57763.9 1	64
-990 1200 -990 57726.7 1	27
-960 1200 -960 57694.7	95
-930 1200 -930 57692.8	93
-900 1200 -900 57705.1 1	05
-870 1200 -870 57694.4	94
-840 1200 -840 57706.3 1	06
-810 1200 -810 57718.9 1	19
-780 1200 -780 57712.5 1	13
-/50 1200 -/50 5//03.4 1	03
-690 1200 -720 57746 1 1	14
	40
	40 40
-600 1200 -600 57985 3	85
-570 1200 -570 57895.3 2	95
-540 1200 -540 57885.1 2	:85
-510 1200 -510 57798.1 1	98
-480 1200 -480 57768 1	68
-450 1200 -450 57797.9 1	98
-420 1200 -420 57798.7 1	99
-390 1200 -390 57735.7 1	36

١

- 6 -

. 1

		- 7 -		
<u>Station</u>	Line	Station	<u>Corr. M</u>	
-360	1200	-360	57766.2	
-330	1200	-330	57701.2	
-300	1200	-300	57760.2	
-270	1200	-270	57730.3	
-240	1200	-240	57664.3	
-210	1200	-210	57626.1	
-180	1200	-180	57586	
-150	1200	-150	57612.3	
-120	1200	-120	57613.5	
-90	1200	-90	57633.3	
-60	1200	-60	57642.4	
-30	1200	-30	57606.2	
0	1200	0	57609.4	
ЗÒ	1200	30	57566.1	
60	1200	60	57554.3	
90	1200	90	57559.5	
120	1200	120	57602.1	
150	1200	150	57639.1	
180	1200	180	57277.1	
210	1200	210	57593.3	
240	1200	240	57578.2	
270	1200	270	57585.9	
300	1200	300	57600.5	
330	1200	330	57576.6	
360	1200	360	57638.6	
390	1200	390	57573.1	
420	1200	420	57596.9	
450	1200	450	57618.7	
480	1200	480	57810.1	
510	1200	510	57416	
540	1200	540	57634	
570	1200	570	57644.5	
600	1200	600	57666.7	
630	1200	630	57701.7	
660	1/200	660	57642.6	
690	1200	690	57629.3	
720	1200	720	57649.9	
750	1200	750	57638.2	
780	1200	780	57649.1	
810	1200	810	57763.9	

-1410

-1380

-1350

-1320

-1290

-1260

-1230

-1200

-1170

-1140

-1110

-1080

-1050

57465.3

57652.7

57662.6

57622.1

57627.6

57644.4

57660.8

57633.9

57653.5

57662.2

57665.6

57681.7

57701.9

57661

810

840

line

-1410

-1380

-1350

-1320

-1290

-1260

-1230

-1200

-1170

-1140

-1110

-1080

-1050

1200

1400

1400

1400

1400

1400

1400

1400

1400

1400

1400

1400

1400

1400

1400

Res. Maq

166

101

160

130

64

26 -14

12

14

ЭЭ

42

е

Э

2

39

--7

-22

-14 1

-23 39

-27

-3

19

34

45

67

43

29

50

38

49 164

53

63

22

28

44

61

34

54

62

66

61

82

102

-135

102

210

-184

-323

-34

-46 -41

<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
-1020	1400	-1020	57763.4	168
-990	1400	-990	57828	228
-960	1400	-960	57772.4	172
-930	1400	-930	57785.2	185
-900	1400	-900	57743.5	144
-870	1400	-870	57726.8	127
-840	1400	-840	57712.2	112
-810	1400	-810	57697.8	98
-780	1400	-780	57775.2	175
-750	1400	-750	57791.2	191
-720	1400	-720	57756.7	157
-690	1400	-690	57712.4	112
-660	1400	-660	57722.2	122
-630	1400	-630	57743.5	144
-600	1400	-600	57798.7	199
-570	1400	-570	5//64.4	164
-540	1400	-540	57698	98
-510	1400	-510	5//98.5	199
-480	1400	-480	5/8/3	2/3
-400	1400	-450	57748.4 E7767 0	148
-720	1400	-420	57711 0	168
-350	1400	-390	3//11.2 57702 0	1.1.1
-330	1400	-330	57700 2	100
-300	1400	-300	57634 1	100 7:4
-270	1400	-270	57599.7	0
-240	1400	-240	57542.3	-58
-210	1400	-210	57537.4	-63
-180	1400	-180	57609.6	10
-150	1400	-150	57591.4	-9
-120	1400	-120	57576.7	-23
-90	1400	-90	57536.5	-64
-60	1400	-60	57541.9	-58
_ − 30	1400	-30	57603.4	З
• • • • •	1400	• O	57522.2	-78
30	1400	30	57601.2	1
60	1400	60	57600.6	1
90	1400	90	57584	-16
120	1400	120	57596.6	-3
150	1400	150	57603.1	З
180	1400	180	57575.1	-25
210	1400	210	57568	-32
240	1400	240	57745.7	146
270	1400	270	57662	62
300	1400	300	57735.2	135
330	1400	330	57797	197
360	1400	360	5/630.4	30
390	1400	390	3/668.3 57614 7	
420 450	1400	420 450	3/814.3 57690 7	14
400	1400	430	J/033./ 57607 1	100
70V 510	1400	480 510	U/OZ/.1 57670	4/ 70
540	1400	010 540	U/047 57505 0	<u> </u>
570	1400	570	57650 C	-0 -0
600	1400	600	57374.1	-226

- 8 -

! ;

- 9-	_
------	---

	<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>		
	630	1400	630	57652.1	52		
	660	1400	660	57652.4	52		
	690	1400	690	57620.3	20		
	720	1400	720	57462.1	-138		
	750	1400	750	57563.5	-37		
	780	1400	780	57694.2	94		
	810	1400	810	58147.7	548		
	840	1400	840	56417.7	-1182		
	870	1400	870	57518.9	-81		
	line	1600	0,0	0/01010	<u> </u>		
	-1200	1600	-1200	57629 5	30		
	-1170	1600	-1170	57645 2	45		
	-1140	1600	-1140	57632 8	22 		
	-1140	1600	-1140	57652.0	53		
	-1110	1600	-1080	57658 4	59		
	-1050	1600	-1050	57666 9	67		
	-1000	1600	-1020	57719 7	120		
	-1020	1600	-1020	57042 E	244		
	-350	1600	-990	3/843.U 57000 9	~~~~		
-	-360	1600	-920	57760 6	169		
	-930	1600	-930	57010 0	100		
	-900	1600	-970	57777 d	177		
	-070	1600	-070	57754 1	154		
	-840	1600	-040	3//34.1 57740 4	1.74		
	-810	1600	-810	J//43.4	143		
)	-780	1600	-780	3/8/0./	2/1		
	-750	1600	-750	3/882.3	282		
	-720	1600	-720	3/6/1.0	72 E0		-
	-690	1600	-690	37630	20		
	-660	1600	-660	3/623 E707 1	29		
	-630	1600	-630	5/63/.1	/ت ۲۵۹		
	-600	1600	-600	3//83.8	104		
	-570	1600	-370	3//31.4	101		
	-340	1600	-340	57703 E7600 1	100		
	-510	1600	-510	5/698.1	98		
	-480	1600	-480	57658.6 E76E0 0	 		
	-450	1600	-450	3/639.8	БО СС		
	-420	1600	-420	5/663.6	55		
	-390	1600	-390	5/62/.3	28		
	-360	1600	-360	5/580.9	-19		
	-330	1600	-330	5/592.4	-8		
	-300	1600	-300	5/626.8	2/		
	-270	1600	-270	5/65/.3	28		
	-240	1600	-240	3/396.1			
	-210 .	1600	-210	3/631.3	32		
	-180	1600	-180	5/61/.4	17		
	-150	1600	-150	3/603	0		
	-120	1600	-120	5/633.3	34		
	~90	1600	-90	3/384.2	-16		
	~60	1600	-60	3/391.6	-8		
	-30	1600	-30	3/603.6	5		
	0	1600	0	5/654.2	54		
	30	1600	30	3/689.4	89		
	<u>БО</u>	1600	БО	5/655.3	55		
	90	1600	90	5//11.4	111		
	120	1800	$1 \ge 0$	D/629.1	- 7		

- 10 -

		- 10			
<u>Station</u>	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>	
150	1600	150	57605.9	6	
180	1600	180	57545.5	-55	
210	1600	210	57577.2	-23	
240	1600	240	57579.2	-21	
270	1600	270	57634.7	35	
300	1600	300	57581.6	-18	
330	1600	330	57587.5	-13	
360	1600	360	57565.6	-34	
390	1600	390	5/569.6	-30	
420	1600	420	5/594.6	-0	
430	1600	400	37661.7 57544 7		
480	1600	480	57600 5		
540	1600	540	57612 9	13	
570	1600	570	57636 7	37	
600	1600	570 600	57592.6	-7	
630	1600	630	57592.7	-7	
660	1600	660	57617.1	17	
690	1600	690	57667.4	67	
720	1600	720	57816.1	216	
750	1600	750	57543.1	-57	
780	1600	780	57661.1	61	
810	1600	810	57811.6	212	
line	800			a	
-990	800	-990	57721.5	122	
-960	800	-960	57725.1	125	
-930	800	-930	3//22.6 57750 0	123	
-900	800	-900	3//38.9 57750 7	109	
-840	800	-840	57763 7	164	
-810	800	-810	57786 4	186	
-780	800	-780	57767.4	167	
-750	800	-750	57773.4	173	
-720	800	-720	57742.8	143	
-690	800	-690	57746.1	146	
-660	800	-660	57753	153	
-630	800	-630	57822.1	222	
-600	800	-600	57759.1	159	
-570	800	~570	57804.7	205	
-540	800	-540	57845.2	245	
-510	800	-510	57847.6	248	
-480	800	-480	57879.6	280	
-450	800	-450	3/790.1	190	
-420	800	-420	3//31 57007 0	204	
-390	800	-350	57917 9	318	
-330	800	-330	57812.3	212	
-300	800	-300	57780	180	
-270	800	-270	57741.2	141	
-240	800	-240	57717.6	118	
-210	800	-210	57698.4	98	
-180	800	-180	57704	104	
-150	800	-150	57713.3	113	
-120	800	-120	57712.1	112	
-90	800	-90	57738.9	139	

.

.

- 11 -	•
--------	---

<u>Station</u>	Line	<u>Station</u>	<u>Corr. Mag</u>	<u>Res. Mag</u>	
-60	800	-60	57731.7	132	
-30	800	-30	57732	132	
0	800	0	57787.3	187	
30	800	30	57715.1	115	
60	800	60	57729	129	
90	800	90	57693.7	94	
120	800	120	57704.7	105	
150	800	150	57659.7	60	
180	800	180	57589.5	-11	
210	800	210	57567.1	~33	
240	800	240	57554	-46	
270	800	270	57633.7	34	
300	800	300	57637.2	37	
330	800	330	57756.6	157	
360	800	360	57605.6	6	
390	800	390	57661.6	62	
420	800	420	57648.5	49	
450	800	450	57672.3	72	
480	800	480	57663.7	64	
510	800	510	57649	49	
540	800	540	57721.5	122	
570	800	570	57631	31	
600	800	600	57600	0	
630	800	630	57660.2	60	
line	1000				
-1230	1000	-1230	57695.2	95	
-1200	1000	-1200	57703.5	104	
-1170	1000	-1170	57714.5	115	
-1140	1000	-1140	57710.2	110	
-1110	1000	-1110	57722.7	123	
-1080	1000	-1080	57735.5	136	
-1050	1000	-1050	57754.5	155	
~1020	1000	-1020	57742.9	143	
-990	1000	-990	5//19.5	120	
-960 	1000	-960	5/696./	97	
-930	1000	-930	57707.4	107	
-900	1000	-900	57709.9	110	
-870	1000	-870	57635	27 05	
-840	1000	-840	57710 6	111	
-780	1000	-780	57806 3	206	
-750	1000	-750	57712 3	112	
-720	1000	-720	57782.3	182	
-690	1000	-690	57819.2	219	
-660	1000	-660	57788.8	189	
-630	1000	-630	57746.7	147	
-600	1000	-600	57714.1	114	
-570	1000	-570	57768.1	168	
-540	1000	-540	57847	247	
-510	1000	-510	57838.1	238	
-480	1000	-480	57803.1	203	
-450	1000	-450	57745.3	145	
-420	1000	-420	57700.4	100	
-390	1000	-390	57699.5	100	
-360	1000	-360	57718	118	

- 12	2 —
	<u> </u>

-	-		

<u>Station</u>	Line .	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
-330	1000	-330	57699.1	99
-300	1000	-300	57746.2	146
-270	1000	-270	57768.3	168
-240	1000	-240	57728.6	129
-210	1000	-210	57694.5	95
-180	1000	-180	57688.3	88
-150	1000	-150	57737.8	138
-120	1000	-120	57714.6	115
-90	1000	-90	57685.5	86
-60	1000	-60	57753.8	154
-30	1000	-30	57723.7	124
0	1000	0	57670.6	71
30	1000	30	57673.9	74
60	1000	60	57633.6	34
90	1000	90	57635.8	36
120	1000	120	57669.5	70
150	1000	150	57635.6	36
180	1000	180	57594.2	-6
210	1000	210	57646.4	46
240	1000	240	57731.8	132
270	1000	270	57512.2	-88
300	1000	300	57646.5	47
330	1000	330	57702.3	102
360	1000	360	57712.2	112
390	1000	390	57717.6	118
420	1000	420	57658.8	59
450	1000	450	57661.1	61
480	1000	480	57648.1	48
510	1000	510	57633.3	33
540	1000	540	57644.1	44
570	1000	570	57723.7	124
600	1000	600	58201.1	601
630	1000	630	57698.6	99
660	1000	660	57695.1	95
690	1000	690	57709.7	110
720	1000	720	57791.9	192
750	1000	750	57701.9	102
780	1000	780	57693.1	93
810	1000	810	57717.6	118
line	200		,	
-240	200	-240	5//40.5	141
-210	200	-210	5//13.1	113
-180	200	-180	37740.Z	140
-150	200	-130	0//06./ E7740 0	137
-120	200	-120	57796	196
-50	200	-50	57747 2	130
-20	200	-20	57700 7	101
-30	200	-30	57651 2	
20	200	20	57630 9	21 21
60 60	200	60 60	57625.9	26
90	200	90	57571-4	-29
120	200	120	57633-6	34
150	200	150	57637.3	37
line	400		<u></u>	

	13	
--	----	--

Station	Line	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>			
-480	400	-480	57777.1	177			
-450	400	-450	57819.1	219			
-420	400	-420	57906.5	307			
-390	400	-390	57888.4	288			
-360	400	-360	57780.4	180			
-330	400	-330	57816	216			
-300	400	-300	57657.4	57			
-270	400	-270	57669.1	69			
-240	400	-240	57690.6	91			
-210	400	-210	57735.5	136			
-180	400	-180	57719.6	120			
-150	400	-150	57733.2	133			
-120	400	-120	57747.3	147			
-90	400	-90	57760.2	160			
-60	400	-60	57726.8	127			
-30	400	-30	57729 8	130			
0	400	0	57660.6	61			
30	400	30	57633.5	34			
60 60	400	60	57656.1	56			
90	400	90	57641.8	42			
120	400	120	57719.5	120			
150	400	150	57629.8	30			
180	400	180	57577.8	-22			
210	400	210	57609.8	10			
240	400	240	57639.1	39			
270	400	270	57613.6	14			
300	400	300	57636.3	36			
330	400	330	57607.9	8			
line	600						
-720	600	-720	57805.5	206			
-690	600	-690	57799	199			
-660	600	-660	57760.8	161			
-630	600	-630	57771.9	172			
-600	600	-600	57797	197		,	
-570	600	-570	57747.4	147			
-540	600	-540	57758.25	158			÷
-510	600	-510	57865	265			
-480	600	-480	57889.1	289			
-450	600	-450	57868.4	268			
-420	600	-420	57801.8	202			
-390	600	-390	57754.8	155			
-360	600	-360	57796	196			
-330	600	-330	57620.3	20			
-300	600	-300	57770.5	171			
-270	600	-270	57746.6	147			
-240	600	-240	57861.5	262			
-210	600	-210	57836.1	236	·		
-180	600	-180	57809.6	210			
-150	600	-150	57774.7	175			
-120	600	-120	57751.1	151			
-90	600	-90	57791.9	192			
-60	600	-60	57792.5	193			
-30	600	-30	57753.4	153			
0	600	0	57654.2	54			
30	600	30	57656.2	56			

- 14 -

<u>Station</u>	<u>Line</u>	<u>Station</u>	<u>Corr. Maq</u>	<u>Res. Maq</u>
60	600	60	57668.1	68
90	600	90	57696	96
120	600	120	57696.1	96
150	600	150	57694.4	94
180	600	180	57511.1	-89
210	600	210	57624.3	24
240	600	240	57567.7	-32
270	600	270	57602.4	2
300	600	300	57609.1	9
330	600	330	57678.5	79
360	600	360	57602.7	З
390	600	390	57668.3	68
420	600	420	57615.7	16

.

.

.

APPENDIX III

INSTRUMENT SPECIFICATIONS - IGS-2 SYSTEM

General Information

The IGS-2 Integrated Geophysical System is a portable microprocessor-based instrument which allows more than one type of survey measurement to be performed by a single operator during a survey.

The IGS-2 is a modular system which can easily be configured to suit different and changing survey requirements. Reconfiguring the system is easy and offers both operational flexibility and minimal redundancy with a minimum number of spare consoles and/or modules.

When configured with any of the available sensor options, the IGS-2 System Control Console becomes a method-specific instrument according to the sensor option(s) utilized. In addition, the IGS-2 Console is an electronic notebook into which geophysical, geological or other data may be manually entered and digitally stored.

Data is stored in the IGS-2 in an expandable, solid state memory and can be output in the field by connecting the instrument to a printer, tape recorder, modem or microcomputer.

The 32 character digital display uses full words in most cases, ensuring clear communication. Both present and previous data are displayed simultaneously, allowing comparisons to be made at a glance during a survey.

The IGS-2 records header information, data values, station number, line number, grid number and the time of each observation in its internal memory. Data are first sorted by grid number, then in order of increasing line number and, within each line, by increasing station number. In this way, the data are organized logically regardless of the sequence in which they were taken. Ancillary data can also be manually entered and recorded at a given station, along with the survey parameters.

SPECIFICATIONS

1

Magnetometry Specifications	
Total Field Operating Range	20,000 to 100,000 nT (1 nT = 1 gamma).
Gradient Tolerance For Total Field:	+5000 nT/m.
Total Field Absolute Accuracy	+1 nT at 50,000 nT +2 nT over total field operating and temperature range.
Resolution	0.1 nT.
Tuning	Fully solid-state. Manual or automatic mode is keyboard selectable.
Reading Time	2 seconds. For portable readings this is the time taken from the push of a button to the display of the measured value.
Continuous Cycle Times	Keyboard selectable in 1 second increments upwards from 2 seconds to 999 seconds.
Operating Temperature Time	-40 C to +50 C provided optional Display Heater is used below - 20 C.

Sensor Options

Portable Total Field Sensor Option Includes sensor, staff, two 2 m cables and backpack sensor harness. Weight of sensor, cable and staff is 1.9 kg.

SPECIFICATIONS

VLF Specifications

Frequency Tuning

Automatic digital tuning. Can be tuned to any frequency in the range 15.0 to 29.0 kHz with a bandwidth of 150 Hz. Up to three frequencies can be chosen by keyboard entry for sequential measurements.

Field Strength Range

Fields as low as 100 mA/m can be received. In practice, background noise may require fields up to 5-10 times this level. Maximum received field is a 2 mA/metre. These values are specified for 20 kHz. For any other frequency, calculate the above limits by multiplying by the station frequency in kHz and dividing by 20.

Signal Filtering

Narrow bandpass, low pass and sharp cut-off high pass filters.

Measuring Time

0.5 seconds sample interval. As many as 2.0+E16 samples can be stacked to improve measurement accuracy.

VLF-Magnetic Field Components Measured Horizontal amplitude,
Vertical in-phase component, and 3) Vertical quadrature components.
Vertical components are displayed as a percentage of horizontal component and are related in phase to the horizontal components. Their range is +120%; reading resolution 1%.

VLF Specifications (cont.)

VLF-Magnetic Field Sensor

Two air-cored coils in a backpack mounted housing with an electronic level for automatic tilt compensation. The error in the vertical in-phase component is less than 1% for tilts up to +15.

•

. . .

.

