ASSESSMENT REPORT

ON THE

GOLDEN LODE PROPERTY

SIMILKAMEEN MINING DIVISION BRITISH COLUMBIA

FOR
Page
INTRODUCTION 1
LOCATION AND ACCESS 1
PHYSIOGRAPHY 3
CLAIM DATA 3
ECONOMIC CONSIDERATIONS 5
HISTORY AND PREVIOUS WORK 5
MAGNETOMETER SURVEY 8
GEOLOGY 11
GEOCHEMISTRY 11
SAMPLE PREP AND PROCEDURE 12
STATEMENT OF COSTS 13
CERTIFICATE 14

FIGURES

1. Location Maps 2
2. Claim Maps 4
3. Grid Location 7
4. Geology 9
5. Mag Survey 10AppendixMag Data
Appendix II
Geochem Data

INTRODUCTION

Abstract

At the request of Mr. Harold Adams and Ms. Elizabeth Van Luttervolt, the writer compiled this report on the Golden Lode Property situated 50 kilometres northeast of the town of Princeton, British Columbia, in south central British Columbia.

This report is based on a work program of the Golden Lode Property from May 23, 1990 to June 10, 1990. The program consisted of detailed mag surveying two anomolies, soil test holes and sampling vein material.

LOCATION AND ACCESS

The Golden Lode Property is situated immediately north of Trout Creek, 50 kilometres northeast of Princeton, British Columbia, (Fig. 1). More precisely, it lies at 49 degrees 44 minutes north latitude and 120 degrees 5 minutes west longitude. (National Topographic System Map 92H/9E).

From Princeton, British Columbia, access to the property is via the Princeton-Peachland gravel road for 50 kilometres then via the Kathleen Lake logging road for 3 kilometres. A series of secondary logging roads provide access to most of the claim group.

PHYSIOGRAPHY

The claims cover the slopes and rolling plateau north of Trout Creek. Elevations on the claim group range from 1,100 metres at Trout Creek to 1,460 metres at the north end of the property. Most of the claim block has been clear-cut logged with local areas of merchantable timber. Despite the subdued topography, rock exposures are common.

CLAIM DATA

The Golden Lode Property consists of six mineral claims located under the British Columbia Modified Grid System (Fig. 2). The current status of these claims is summarized as:

Claim Name	Number of Units	Record No.	Expiry
Golden Cat 1	20	2948	July 7, 1990
Golden Lode 1	10	3006	Aug. 28, 1990
Golden Lode 3	4	2685	Sept. 29, 1991
Golden Lode 2	1	3007	Aug. 8, 1990
Golden Cat 3	15	2949	July 7, 1990
Golden Cat 2	6	2943	June 16, 1990

All interests in the above described mineral claims are owned by Mr. Harold Adams and Ms. Elizabeth VanLuttervolt.

The claim posts and claim lines examined by the writer conformed to the regulations of the British Columbia Mineral Act.

ECONOMIC CONSIDERATIONS

The Golden Lode Property is linked to the towns of Summerland and Princeton byy 50 kilometres and 60 kilometres of all-weather gravel road, respectively. The infrastructure at either Summerland or Princeton could easily support any development in the Golden Lode area.

High voltage hydroelectric linmes pass within 16 kilometres of the Golden Lode Property. A reliable source of water is readily available from Trout Creek, and there is adequate area on the Golden Lode Property for waste and/or tailings disposal.

HISTORY AND PREVIOUS WORK

The vicinity of the Golden Lode Property has a long history of mining dating back to the turn of the century. In the Hedley Gold Camp, lying 40 kilometres south of the Golden Lode Property, 1.6 million ounces of gold were won from several mineralized skarn ore bodies between 1902 and 1982 (Ray et al, 1987).

In 1987, mining of one of the orebodies, the Nickle Plate mine, resumed. Open pit reserves in the Nickle Plate mine are reported 5.1 grams gold per tonne (Ray and Simpson, 1986).

Twenty-three kilometres north of the Golden Lode Property lies the Brenda mine. From 1970 to 1984 , the Brenda mine has produced over $168,250,000$ kilograms of copper and $27,000,000$
kilograms of molybdenum from a stockwork of closely spaced quartz veins. Reserves from the Brenda mines as of March 1984 were stated in the British Columbia Mineral Inventory File as $110,000,000$ tonnes grading 0.148 percent copper and 0.0320 percent molybdenum.

The earliest reported exploration in the area of the Golden Lode Property was in 1928 when an 18 centimetre quartz vein was discovered on the Jessie Claim. Subsequently, the vein was explored with an open cut and two short adits. The vein is described by H.M.A. Walker in Geological Survey of Canada Memoir 243 as being from 2 to 18 centimetres thick. Two samples collected by Walker, one a picked sample from the upper adit and the other a general sample from the lower adit assayed 0.56 ounce per ton and trace gold respectively. The Jessie vein occurs on 2 two-post mineral claims which are owned by Barry R. Moway of Princeton, British Columbia. These claims called the Jessie 1 and 2, lie at the southern boundary of the Golden Lode Property.

Approximately 1,500 metres northwest of the Jessie Claim ad shallow shaft and a series of trenches were excavated on banded magnetite-manganese mineralization. This work was not documented, and the results are unknown. In 1979, Grande Trunk Resources Inc. reopened and sampled the trenches. Trenching exposed the mineralization along strike for 130 metres. (Rotzien, 1979). Continuous chip samples from the magnetite-manganese mineralization returned assays up to 0.374 ounces per ton over 1.5 metres. From 1980 to 1987, only mineral assessment work was carried out on the property.

MAGNETROMETER SURVEY

Survey Procedure

A Scintrex MP2 proton precision magnetometer was used for the survey. Readings were taken at 5 metre intervals along and north and south of the geochemical grid lines. Total field readings were recorded. Corrections for diurnal drift were made by use of a base station. On each loop the time and magnetic reading of the starting station and each subsequent station on the traverse was recorded. At the end of the traverse, the base station was re-read and the diurnal variation noted. A correction for the diurnal drift was then applied to each station read during the traverse.

Theory

A magnetometer measures the magnetic component of rock and is affected by magnetic minerals such as magnetite and pyrrhotite. Variations in the content of magnetic minerals between different rock types can be measured by magnetometer surveys. This makes magnetometer surveys helpful in mapping rock types in areas of poor rock exposures. Also, if an ore-body contains a high percentage of magnetic minerals, the magnetometer survey is useful in the detection of such bodies. Interpretation of magnetic surveys requires adequate understanding of the geology.

Results

The corrected magnetometer readings were initially plotted and then contoured at 100 gamma intervals. The contoured magnetic data is presented on Figure 5.

Mag Results

The detailed surveys indicated that each one station anomaly on the previous 25 meter interval survey should be detailed. The prominent highs should be trenched. Of the two anomalies tested one is a known gold occurrence. The survey indicates the magnetometer may be an excellent tool to locate economic mineralization.

GEOLOGY

Regional Geology

The Golden Lode Property lies within the Intermontane Belt of the Canadian Cordillera. Mapping by H.M.A. Rice of the Geological Survey of Canada (Memoir 243) shows the area of the claims to be underlain by a large mass of Jurassic Coast Intrusive granodiorite that is intruded 1.5 kilometres to the west by a small granitic stock of the upper Cretaceous Otter Intrusives. No regional structures project into or pass through the area of the claims.

GEOCHEMISTRY

Three soil pits were dug at a depth of 1 meter over and around station $8035 \mathrm{~N}+6725 \mathrm{E}$. The soil consisted of clay loam and glacial drifts. No bedrock was encountered. These samples were tested by I.C.P. The test results were inconclusive. A quartz vein outcrop was located 150 m east (sample GL $0529-1$). The high Cr may indicate skarning effect nearby.

SAMPLING, SAMPLE PREPARATION AND ANALLYTICAL PROCEDURE

At each station, a sample of " B " horizon soil was collected and placed into a numbered kraft paper envelope. The soil samples were forwarded to Min-En laboratories in North Vancouver where they were oven dried at 30 degrees C. Dried samples were passed through an 80 mesh sieve. A 10 gram sample of the 80 mesh material from each sample was digested with hot dilute aqua regia followed by a methyl isobutyl ketone (M.I.B.K.) extraction. Gold was determined in the M.I.B.K. extract by atomic absorption using background correction. A 0.6 gram sample of the 80 mesh material from each sample was analysed for 29 other elements by standard I.C.P. analytical techniques. The total number of samples analysed was 3 analytical results are provided in Appendix 11.
Mob demob 2,000.00
2 men $\times \$ 300.00 \times 7$ days 4,200.00
Truck on job $\$ 80.00 \times 7$ days 560.00
RoomlBoard $2 \times \$ 125.00 \times 7$ days $1,750.00$
Mag $\$ 70.00 \times 7$ 490.00
Assays 125.00
Report prep and drafting 560.00

CERTIFICATE

I, J. Paul Stevenson, Prospector, of 303-475 Howe Street, in the City of Vancouver, in the Province of British Columbia, hereby certify as follows:

1. that I am not a Professional Engineer or Professional Geologist;
2. that the work covered in this report was compiled under my supervision;
3. that I have practiced my vocation continuously since 1965 in British Columbia, the Yukon Territories, and the Southwestern United States.

Respectfully submitted,

J. Paul Stevenson

PAUL STEVENSON AND MAGNETOMETER SURVEY GOLDEN LODE

\left.| | | | gammas |
| :--- | :--- | :--- | :--- |
| 8145 | N | 6205 | E |$\right) 56896$

PAUL STEVENSON AND MAGNETOMETER SURVEY GOLDEN LODE

			gammas	
8125	N	6215	E	60043
8125	N	6220	E	58000
8125	N	6225	E	57427
8125	N	6230	E	57300
8125	N	6235	E	57193
8120	N	6135	E	57044
8120	N	6140	E	57027
8120	N	6145	E	57004
8120	N	6150	E	56981
8120	N	6155	E	56967
8120	N	6160	E	56971
8120	N	6165	E	56958
8120	N	6170	E	56940
8120	N	6175	E	56986
8120	N	6180	E	56805
8120	N	6185	E	56675
8120	N	6190	E	56631
8120	N	6195	E	56443
8120	N	6200	E	57230
8120	N	6205	E	60659
8120	N	6210	E	56758
8120	N	6215	E	59700
8120	N	6220	E	57792
8120	N	6225	E	57346
8120	N	6230	E	57289
8120	N	6235	E	57200
8120	N	6240	E	57140
8120	N	6245	E	57202
8120	N	6250	E	57198
8120	N	6255	E	57169
8110	N	6135	E	57037
8110	N	6140	E	57011
8110	N	6145	E	56976
8110	N	6150	E	56928
8110	N	6155	E	56925
8110	N	6160	E	56946
8110	N	6165	E	57035
8110	N	6170	E	56974
8110	N	6175	E	56911
8110	N	6180	E	56833
8110	N	6185	E	56780
8110	N	6190	E	57960
8110	N	6195	E	60780
8110	N	6200	E	58320
8110	N	6205	E	57636
8110	N	6210	E	57372
8110	N	6215	E	57280
8110	N	6220	E	57217
8110	N	6225	E	57121
8100	N	6135	E	57022
8100	N	6140	E	57025
8100	N	6145	E	57030
8				

PAUL STEVENSON AND MAGNETOMETER SURVEY GOLDEN LODE
gammas

8070	N	6205	E	57223
8055	N	6705	E	57110
8055	N	6710	E	57125
8055	N	6715	E	57176
8055	N	6720	E	57164
8055	N	6725	E	57240
8055	N	6730	E	57223
8055	N	6735	E	57241
8055	N	6740	E	57151
8055	N	6745	E	57119
8055	N	6750	E	57050
8055	N	6755	E	57035
8050	N	6155	E	57124
8050	N	6160	E	57116
8050	N	6165	E	57230
8050	N	6170	E	56999
8050	N	6175	E	57545
8050	N	6180	E	57512
8050	N	6185	E	57070
8050	N	6190	E	57100
8050	N	6195	E	57151
8050	N	6200	E	57181
8050	N	6205	E	57200
8050	N	6700	E	57068
8050	N	6705	E	57108
8050	N	6710	E	57147
8050	N	6715	E	57165
8050	N	6720	E	57217
8050	N	6725	E	57500
8050	N	6730	E	57554
8050	N	6735	E	56912
8050	N	6740	E	56984
8050	N	6745	E	57063
8050	N	6750	E	57065
8045	N	6705	E	57126
8045	N	6710	E	57185
8045	N	6715	E	57209
8045	N	6720	E	57285
8045	N	6725	E	58242
8045	N	6730	E	56410
8045	N	6735	E	56568
8045	N	6740	E	56920
8045	N	6745	E	57016
8045	N	6750	E	57031
8045	N	6755	E	57062
8040	N	6705	E	57172
8040	N	6710	E	57225
8040	N	6715	E	57430
8040	N	6720	E	58060
8040	N	6725	E	53300
8040	N	6730	E	53750
8040	N	6735		56610

PAUL STEVENSON AND MAGNETOMETER SURVEY GOLDEN LODE

		gammas		
8040	N	6740	E	56946
8040	N	6745	E	57006
8040	N	6750	E	57055
8040	N	6755	E	57121
8035	N	6705	E	57161
8035	N	6710	E	57150
8035	N	6715	E	57370
8035	N	6720	E	58100
8035	N	6725	E	61765
8035	N	6730	E	57028
8035	N	6735	E	56965
8035	N	6740	E	57021
8035	N	6745	E	57076
8035	N	6750	E	57102
8035	N	6755	E	57094

AIIN: J.P.STEVENSON

 (604)980-5814 OR (604)988-4524* ROCK \& SOIL * CACT:F31)

