LOG NO:	10-10	RD.
ACTION:		
FILE NO:		

DIAMOND DRILLING

REPORT

THE LUMBY PROPERTY

VERNON MINING DIVISION, B.C.

D.D. HOLE Z90-2

ON THE OK CLAIM

PREPARED FOR:

ZICTON GOLD LIMITED 602-543 Granville Street Vancouver, B.C. V6C 1X8

BY:

Alfred R. Allen, P.Eng.,
ALLEN GEOLOGICAL ENGINEERING LTD.
827 West Pender Street
Vancouver, B.C.
V6C 3G8

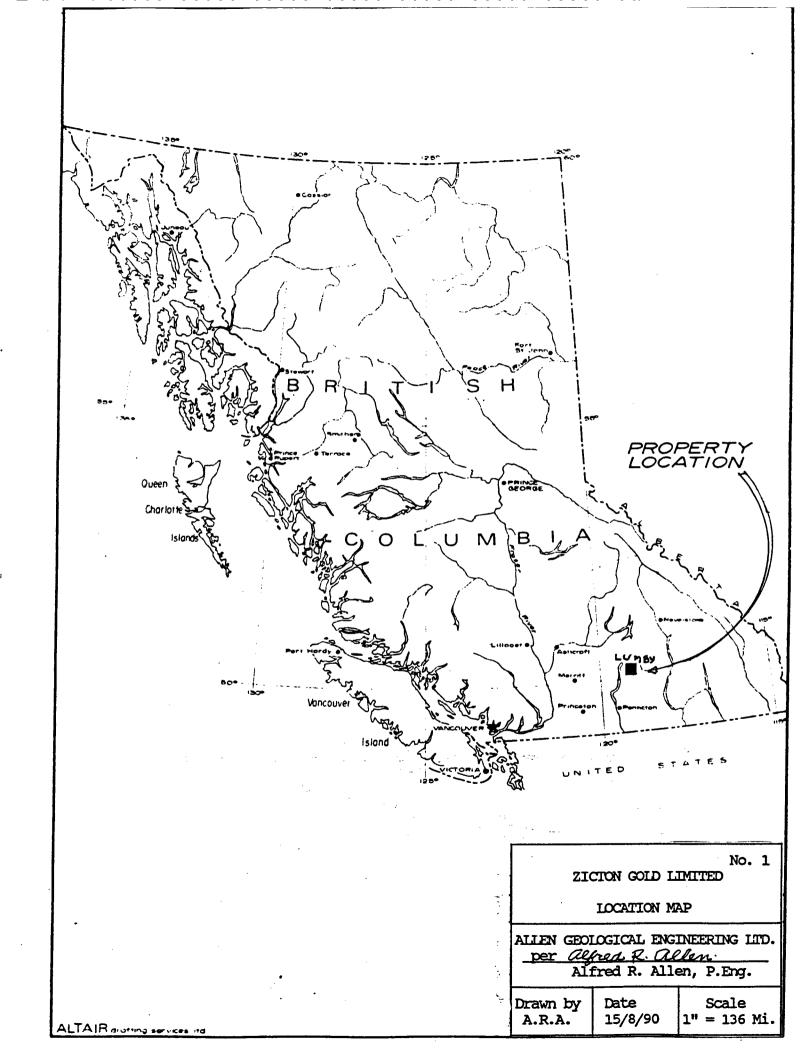
SUB-RECORDER
RECEIVED

GOT 3 1990

M.R. # \$
VANCOUVER, B.C.

826/7W 50° 19' 118° 59'

DATED: SEPTEMBER 1990


GEOLOGICAL BRANCH ASSESSMENT REPORT DOMESTRANCH

CONTENTS

TITLE PAGE AND SUMMARY

	Page
A. INTRODUCTION	1
B. LOCATION	1
C. PROPERTY	1
D. PHYSIOGRAPHY	1
E. HISTORY	1
F. THEORY	2
G. GEOLOGY	2
H. PREVIOUS WORK	3
I. OBJECT OF THE DRILLING	4
J. DIAMOND DRILLING	4
K. DRILLING RESULTS	4
L. DISCUSSION	5
M. RECOMMENDATIONS	5
REFERENCES	6
COSTS STATEMENT OK AND HAZ #5 CLAIMS	7
CERTIFICATE	8
CONSENT LETTER	
MAPS	
 Location Zicton Gold Properties O.K., HAZ 5 Mineral Claims and Adjoining Quinto Claims Topography and Mineral Claims Geology, Geophysical anomalies, D.D. Holes Z90-2, OK89-1 Geology Regional 	
APPENDIX	

Diamond drill record Laboratory assay report

A. INTRODUCTION

The site selected for diamond drill hole Z90-2 is collared in the northeast area of the OK claim, 49 m. N 75° E from the collar of the OK 89-1 drill hole, and 5 m. lower in elevation. It is directed N 5° E at - 65°, and NQ core recovery is estimated at 90% for the full 61.6 m. It was drilled to check the mineralized zone penetrated by hole Z89-1.

B. LOCATION

The Zicton Gold property is located in the Vernon Mining Division-Okanagan region of South Central British Columbia.

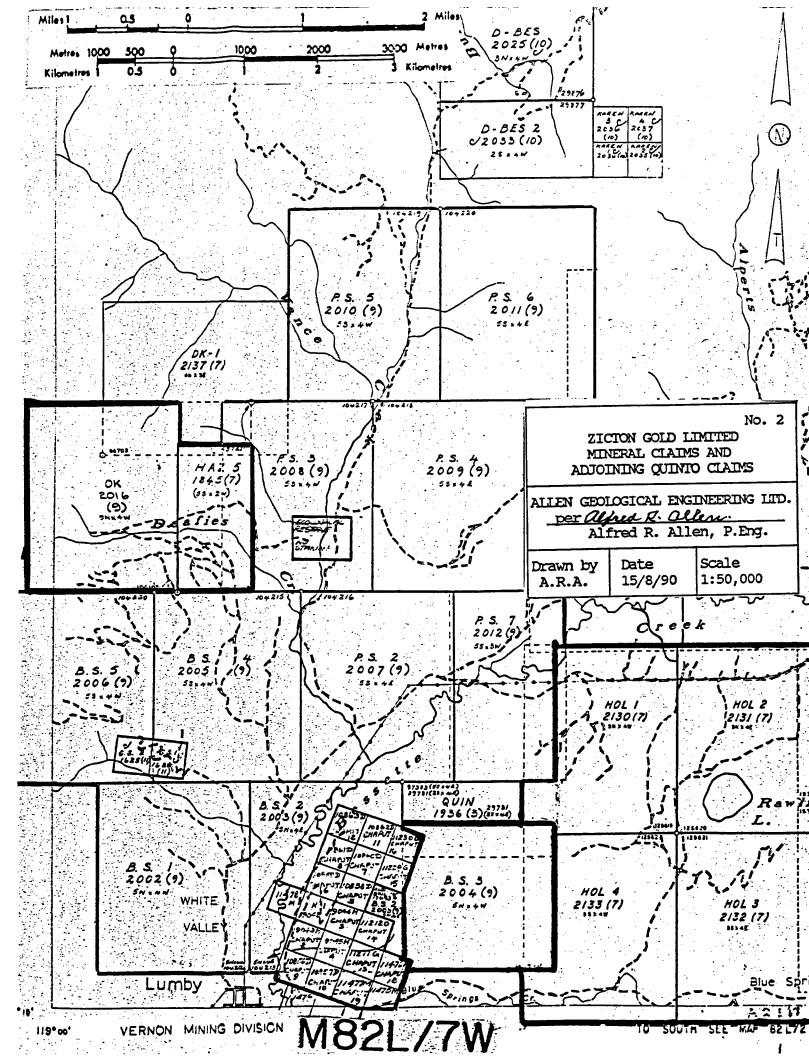
Five located mineral claims are on the east side of Lumby, and two are located 8.5 kilometres north of Lumby, in the headwaters area of Deafies Creek.

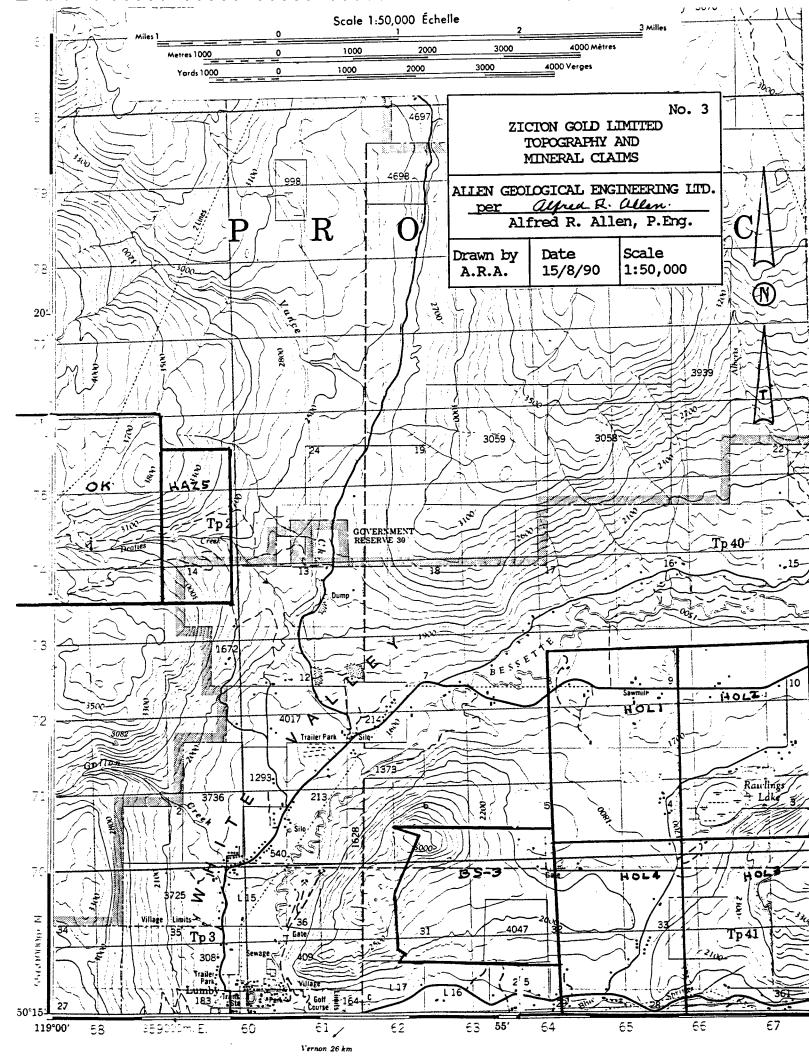
C. PROPERTY

Zicton Gold Limited holds the following adjoining located mineral claims in good standing:

Claims	Record Nos.	Expiry Date
OK	2016 20 units	September 20, 1991
HAZ #5	1845 10 units	July 11, 1991

D. PHYSIOGRAPHY


The OK and HAZ #5 claims area is drained by the east to southeast flowing Deafies Creek. The topography includes a rounded 363 m. summit located in the central eastern area of the OK claim and a 398 m. ridge on the west corner of the claim. Deafies Creek flows east across the southern area of the OK and HAZ #5 claims at the 213 m. elevation, east to southeast slopes on the HAZ #5 claim range from 274 m. elevation on the northeast corner to 213 m. on the southeast corner.


E. HISTORY

The OK claim was staked by Mr. John Hilton, September 14-16, 1985, and recorded in Vernon September 20, 1985. On September 21, 1987 it was conveyed to Zedco Petroleums Ltd.

The HAZ #5 was staked by Mr. Sid Johnson June 28-July 2, 1984, recorded in Vernon July 11, 1984, and conveyed to Zedco Petroleum July 11, 1984.

The OK and HAZ #5 claims have since been conveyed to Zicton Gold Limited.

F. THEORY

Previous claim owners had conducted exploratory work adjacent to the east boundary of the OK claim. A shear zone was investigated and an outcrop of vein quartz 3m. by 1m. sampled. The shear exposed iron oxidized gouge. In addition the electromagnetic anomalous Vance zone, mapped by Quinto mining, was terminated at the east boundary of the HAZ #5 claim where it is one kilometre wide. These are typical indications of mineralized zones on both the Zicton Gold and Quinto properties and warrant detailed investigation..

G. GEOLOGY

To date, because of limited outcrops, the regional geology of the area as mapped by the Geological Survey of Canada provides a valuable source of information, summarized as follows from the reports of Jones A.G., Memoir 296, and Okulitch Paper 637.

The stratigraphy and structure are summarized as follows:

Archean or Later

Monashee Group

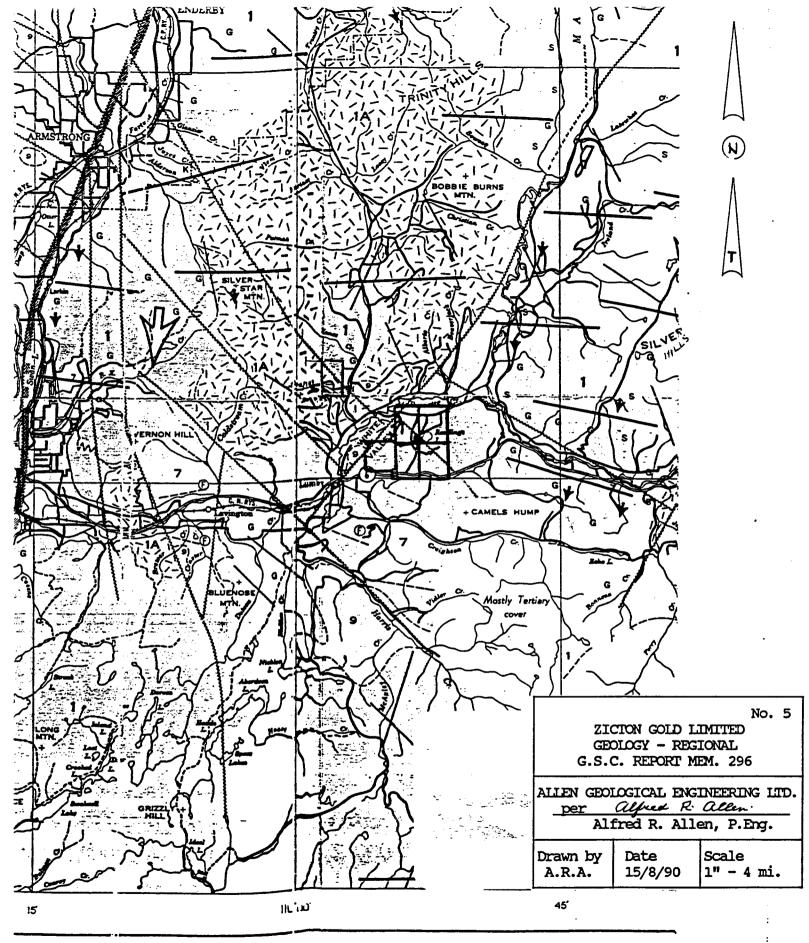
Granitoid and augen gneiss, mica-sillimanite-garnet schist, quartzite, marble, slate, phyllite, limestone and quartzite.the electromagnetic anomalous Vance zone, mapped by Quinto mining, was terminated at the east

Sicamous Formation

Limestone, sericite and graphite schists.

Eagle Bay Formation

Chlorite and sericite schist, slate, limestone, quartzite and minor conglomerate.


Cache Creek Group - Carboniferous (?) and Permian

Argillite, lava, andesite, tuff, quartzite, limestone and breccia.

Nicola Group-Upper Triassic

Andesite, limestone, conglomerate, and minor basalt.

Vernon map-area, British Columbia, showing also distribution of Shuswap

Scale: One Inch to Four Miles = $\frac{1}{253,440}$

	QUATERN/ PLEIS	TOCENE AND RECENT LEGEND
OIC	21	Glacial, lacustrine, and fluviatile gravel, sand, silt, and clay
CENOZOIC	TERTIARY OUG	DCENE OR MIOCENE KAMLOOPS GROUP
	20	Basaltic lava and flow breccia; minor rhyolitic lava and breccia; local sandatone, shale, conglomerate; coal
	CRETACEC	DUS OR TERTIARY
	19	Pink to red syenite and quartz syenite; pink and white mottled granite
	JURASSIC	AND/OR CRETACEOUS COAST INTRUSIONS
	18	Granite, granodiorite and allied rocks
OIC	TRIASSIC	R TRIASSIC NICOLA GROUP
MESĄZOIC	17	Andesite; minor basalt; some limestone and conglomerate
. Σ	(7) LOWER	AND/OR UPPER TRIASSIC SLOCAN GROUP
	16	Slate, quartzite, limestone; phyllite, mica schiat; may be in part equivalent to 17
:		
İ	CARBONIE	
1		FEROUS (7) AND PERMIAN CACHE CREEK GROUP (13-15)
OIC	15	
. —	[CACHE CREEK GROUP (13-15) DIVISION C: mainly limestone; minor argillite, quartzite,
PALÆOZOIC	15	CACHE CREEK GROUP (13-15) DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite.
. —	15	CACHE CREEK GROUP (13-15) DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone
. —	14	CACHE CREEK GROUP (13-15) DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite
PALÆOZOI	14 13 WINDERME	DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite ERE (7) OR EARLY PALÆOZOIC
PALÆOZOI	14	CACHE CREEK GROUP (13-15) DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite
PALÆOZOI	14 13 WINDERME	DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite ERE (7) OR EARLY PALÆOZOIC Laborate and and and and argillite, phyllite, schiat, quartzite.
PALÆOZOP PALÆOZOI	14 13 WINDERME	DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite ERE (7) OR EARLY PALÆOZOIC Laborate and phyllite, schist, quartzite, limestone, conglomerate
AND/OR PALÆOZOF PALÆOZOI	14 13 WINDERME	DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite ERE (7) OR EARLY PALÆOZOIC Argillite, phyllite, schist, quartzite, limestone, conglomerate ERE (7) OR CAMBRIAN
AND/OR PALÆOZOF PALÆOZOI	14 13 WINDERME	DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite ERE (7) OR EARLY PALÆOZOIC Argillite, phyllite, schist, quartzite- limestone, conglomerate ERE (7) OR CAMBRIAN BADSHOT FORMATION limestone and marble; minor argillite ERE OR (7) CAMBRIAN
PALÆOZOP PALÆOZOI	13 WINDERME 12 WINDERMI 11 WINDERMI 10	CACHE CREEK GROUP (13-15) DIVISION C: mainly limestone; minor argillite, quartzite, and andesite lava, breccia, and tuff DIVISION B: mainly andesite lava and tuff; minor argillite, quartzite and limestone DIVISION A: mainly argillite ERE (7) OR EARLY PALÆOZOIC Laptin argillite, phyllite, schiat, quartzite, limestone, conglomerate ERE (7) OR CAMBRIAN BADSHOT FORMATION limestone and marble; minor argillite ERE OR (7) CAMBRIAN HAMILL SERIES Quartzite, staurolite schiat, argillite, phyllite;

18. Quartzite

1C. Hornbiende gneiss

BEDDING AND FOLIATION WITH LINEATION Bedding Foliation Inclined (with plunging lineation) Inclined (with two plunging lineations) Inclined (with horizontal lineation) Vertical (with horizontal lineation) Inclined (with horizontal and plunging lineations) Horizontal (with one horizontal lineation) Horizontal (with two horizontal lineations) Inclined (lineation directly down dip) Fault (approximate, assumed) Anticline (upright, overturned) Syncline (upright, overturned) Fossil locality

Geology by H.M.A.Rice,1945, 1946, and by A.G. Jones, 1947-1951

To accompany G.S.C. Memoir 296 by A.G. Jones

Granitic Intrusives

Jurassic

Kamloops Group-Tertiary

Lava, breccia, sandstone, shale, coal.

Faults

Four major faults strike north, 3 northwest and one southeast across the Lumby area.

Folds

One anticline and one syncline strike northwest across the Lumby area.

Intrusives

A diorite stock is partially exposed 1.6 km. north from Lumby. A granitic intrusive is located adjacent to the southwest corner of the BS-3 claim, and granodiorite outcrops 10 kilometres to the southwest in the Brewer Creek drainage area. Twelve kilometres south of Lumby there is a similar granitic exposure in the Harris Creek drainage area. Each of the intrusives is adjacent to or penetrated by fault zones.

Mineralized shear zones

A mineralized shear zone in the northeast area of the OK claim strikes at 255° and is close to vertical. A large exposure of quartz is located at the east end of the shear zone. From this outcrop the shear has been exposed by stripping and trenching for 26 metres westerly. From 23 to 24 metres of this shear quartz and massive sulphides have been exposed and sampled. This showing is composed of fine to coarser cubic pyrite, chalcopyrite, limonite, arsenopyrite and sphalerite. There is also a one-foot zone of fragmented white quartz and pyrite, remarkedly similar to those located in the Quinto mine workings.

H. PREVIOUS WORK

A mineralized quartz vein was hand worked by a Lumby school teacher, about 1900, but to date no serious exploration program has been conducted over the showings.

In the early 1960's the Chaput logging family of Lumby prospected the Saddle Mountain area and staked the Chaput claims.

The mine vein system was discovered to contain excellent silver, lead, zinc and copper mineralization, and 2000 tons was mined from surface showings and shipped to the Trail smelter from 1969-1970.

F.K. Explorations Ltd. built a 50 ton per day mill. Alberta Gypsum acquired the property and mill in 1971 and conducted an exploration project designed to outline ore reserves.

Coast Interior Ventures (NPL) acquired control and operated from 1974 to 1979.

In 1980 the mill was increased to a capacity of 150 tons per day, but production was terminated for lack of ore.

An exploration program was instigated but the operation was terminated.

In 1983 the property and mill were acquired by the Quinto Mining Corporation. An aggressive exploration and development program is being conducted over the enlarged property.

I. OBJECT OF THE DRILLING

The Z90-2 was drilled to provide sub-surface data from the recently exposed well mineralized fissure vein.

J. DIAMOND DRILLING

The collar of Z90-2 is located in the northeast area of the OK claim, 49 metres N 75° E from the collar of the OK 89-1 hole. It is directed N 5° E Azimuth at an angle of -65° to penetrate the mineralized zone. The NQ core recovery was 90% for the full 61.6 metres of hole. The core was logged and sampled by the writer, June 13 and 14, 1990.

The site preparation and drilling of the Z90-2 hole was contracted to Newmac Industries of Kamloops, B.C.

K. DRILLING RESULTS

Beneath 4.9 metres of overburden is 11.9 m. of black fine-grained argillite and graphitic argillite contain narrow and irregular quartz veins and pyrite in fractures and disseminations. This is underlain by 2.1 m. of grey argillite with pyrite and pyrrhotite, 12.1 m. of dark grey argillite with pyrite in irregular zones and fractures, a 6.1 m. zone of black argillite and 18.3 m. of black graphitic argillite with pyrite blebs and disseminations as well as in fractures, and chalcopyrite with blue and green oxides.

L. DISCUSSION

The Z90-2 hole was drilled to acquire detailed mineralogical and structural data from the shear zone and wall rocks hosting quartz, sulphides, precious metals and associated minerals.

The importance of the shear zone is enhanced by the airborne electromagnetic anomaly, detected by the Quinto Mining Corporation. The anomalous zone extends from the northeast area of the Quinto property westerly for 8 kilometers to the east boundary of the HAZ 5 claim..

M. RECOMMENDATIONS

It is herewith recommended that additional diamond drilling be considered, easterly and deeper on the OK mineralized zone.

Submitted by:

ALLEN GEOLOGICAL ENGINEERING LTD.

Per Alfred R. Allen, P.Eng.

September 15, 1990

REFERENCES

Jones, A.G., G.S.C. Mem. 296, Vernon Map Area

Landsberg, N.R., Geology, Geophysics, Geochemistry,

Trenching, Nov 24, 1983

White, Glen E. Vector Plus Electromagnetic Survey, Chap 8

(BS3 Claim) '84

Kuran, D.L. Assessment Report BS & PS Claims Groups,

Vernon M.D., '86

Kuran, D.L. Lumby Project, Lumby, B.C., Vernon M.D., NTS

82L/7W Phase III Exploration May 1, 1987.

Quinto Mining Corporation.

Okulitch, A.V., et al G.Sc. Paper 637 5 sheets May, 1987

Smith, P.A. et al., Airborne Survey Mag. and E.M. Quinto Mining Corp.,

Lumby Project, Dighem Surveys & Processing Inc. of

Mississauga, Ont., October '86

Allen, A.R. The Lumby Property, Vernon M.D., Zedco Petroleums

Ltd., July 1984

Allen, A.R., Magnetometer and Electromagnetic Surveys, Zicton Gold

Ltd., July 1987

Allen, A.R. Magnetometer and Electromagnetic Surveys, #2 Zicton

Gold Ltd., June 1988

Allen, A.R. The Lumby Property, Vernon M.D., B.C., Zicton Gold

Ltd., May 1987 (revised)

Allen, A.R. The Lumby Property-Diamond Drilling Report

Zicton Gold Ltd., August 1990 OK & HAZ 5 Claims

Allen, A.R. The Lumby Property-Diamond Drilling Report

Zicton Gold Ltd., August 1990, BS-3 Claim

COST STATEMENT

ZICTON GOLD LIMITED DIAMOND DRILLING CONTRACT

DATES HOLE	Start June 11/90 Finish June 15/90 Z90-2	
LOCATION	OK Mineral Claim	
DIRECTION	Azimuth N 50 E at -650	
LENGTH	61 Meters Core NQ	
EQUIPMENT	Bulldozer: Case #11	
	Drill: Long Year Super 38	
	Truck: Ford 3/4 Ton, flatbed and trailer	
<u>CREW</u>	James MacNiell, Driller	
	Aaron MacNeill, Helper	
	John Hilton, Coordinator	
<u>COSTS</u>	Diamond Drilling 61 Meters	
	@ \$59 per meter	\$3,600.00
	Road and site preparation	150.00
	Mob and demob	250.00
	Travel	200.00
	Truck rental	105.00
	Accommodation and meals	475.00
	Core Boxes	70.00
	Consulting: Alfred R. Allen	<u>\$1,500.00</u>
		<u>6,350.00</u>

CERTIFICATE

5383 Nancy Green Way, North Vancouver, B.C., V7R 4N2

August 15, 1990

I, Alfred R. Allen, certify that:

I am a graduate of the University of British Columbia and hold the following degrees therefrom:

B.A.Sc., Geological Engineering, 1939 M.A.Sc., Geological Engineering, 1941

I am a Life Member of the Association of Professional Engineers of the Province of British Columbia.

I have practiced my profession since graduation.

I hold no interest in the property or securities of Zicton Gold Limited or affiliates thereof, nor do I expect to receive any, directly or indirectly.

The report on the Lumby Property, Vernon Mining Division, B.C., is based on examination of the property by the writer on June 7-14, 1990.

> Alfred R. Allen Alfred R. Allen, P.Eng.

September 1990

The British Columbia Securities Commission Vancouver, B.C.

Dear Sirs:

Re: Zicton Gold Limited

I hereby consent to the use of my report of July, 1989 on the Lumby Property, Vernon Mining Divison, B.C. in any prospectus or statement of material facts or other material to be filed with the British Columbia Securities Commission, or the Vancouver Stock Exchange by Zicton Gold Limited.

Yours truly,

ALLEN GEOLOGICAL ENGINEERING LTD.

Per:

Alfred R. Allen P.Eng.

Zictonrfr\Allen

APPENDIX

Diamond Drill Record

Laboratory Assay Certificate

DIAMOND DRILL RECORD

COLLAB	COMPANY Zicton Gold Limited
NORTH	OK and HAZ 5 Claims
BLEVATION	Lumby Vernon M.D., B.C.
AZIMUTH5 DIPS65	LOCATION

HOLE	Z90-2
STARTED	June 7/90
FINISHED	June 14/90
DEPTH	61.6 m-65
	Check
TOGGET I	exposed zone
DOGGED I	Allan

From	To	Description		Samples m					ays P.1			
_			Sample No.	Sample No. From		Width	EA	Ag	Pt.	Te.		
0	4.9	Overburden (cased)										
4.9	10.4	Black argillite										
10.4	11.3	White quartz veinlets with pyrite	•									
11.3	16.8	Black argillite										
16.8	18.9	Grey argillite - pyrite, pyrrhatite										
18.9	21.9	Dark grey argillite pyrite in fractures and dissemina	ted									
21.9	24.9	Pyrite - very fine coating										
24.9	28.0	Dark grey argillite pyrite banded and disseminated				·····						
28.0	31.0	Same										
31.0	34.1	Grey banded argillite, finely diss. pyrite										
34.1	37.2	Same quartz stringers and pyrite										
37.2	40.2	Black argillite, quartz veins & pyrite										
40.2	43.3	Black argillite - pyrite white quartz veins	-									
43.3	49.4	Pyrite & chalcopyrite	#1140	50.6	55.5	4.9	0.001	0.02	0.001	0.05		
	10.4' 111.3 16.8 18.9 221.9 224.9 224.9 331.0 40.2	10.4 10.4 11.3 16.8 16.8 18.9 21.9 24.9 28.0 28.0 31.0 34.1 37.2 40.2 40.2 43.3 43.3 49.4	White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and dissemina 12.9 24.9 Pyrite - very fine coating 12.9 28.0 Dark grey argillite pyrite banded and disseminated 12.0 31.0 Same 13.0 34.1 Grey banded argillite, finely diss. pyrite 13.1 37.2 Same quartz stringers and pyrite 13.2 40.2 Black argillite, quartz veins & pyrite 13.3 Black argillite - pyrite white quartz veins	Mhite quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 24.9 28.0 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 34.1 37.2 Same quartz stringers and pyrite 37.2 40.2 Black argillite, quartz veins & pyrite 37.2 40.2 Black argillite - pyrite white quartz veins	White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 24.9 28.0 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 34.1 37.2 Same quartz stringers and pyrite 37.2 40.2 Black argillite, quartz veins & pyrite 37.2 40.2 Black argillite - pyrite white quartz veins	White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 24.9 28.0 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 34.1 37.2 Same quartz stringers and pyrite 37.2 40.2 Black argillite, quartz veins & pyrite	11.3 White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 24.9 28.0 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 34.1 37.2 Same quartz stringers and pyrite 37.2 40.2 Black argillite, quartz veins & pyrite	10.4 11.3 White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 22.9 28.0 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 33.1 37.2 Same quartz stringers and pyrite 33.2 40.2 Black argillite, quartz veins & pyrite 33.3 Black argillite - pyrite white quartz veins	10.4 11.3 White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 24.9 28.0 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 34.1 37.2 Same quartz stringers and pyrite 37.2 40.2 Black argillite, quartz veins & pyrite 38.0 31.0 Black argillite - pyrite white quartz veins	10.4 11.3 White quartz veinlets with pyrite 11.3 16.8 Black argillite 12.9 Grey argillite - pyrite, pyrrhatite 12.9 Pyrite - very fine coating 12.9 Pyrite - very fine coating 12.9 28.0 Dark grey argillite pyrite banded and disseminated 12.9 28.0 31.0 Same 13.0 34.1 Grey banded argillite, finely diss. pyrite 134.1 37.2 Same quartz stringers and pyrite 137.2 40.2 Black argillite, quartz veins & pyrite 138.0 31.0 Black argillite - pyrite white quartz veins	11.3 White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 22.9 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 34.1 Grey banded argillite, finely diss. pyrite 33.1 37.2 Same quartz stringers and pyrite 33.2 40.2 Black argillite, quartz veins & pyrite	10.4 11.3 White quartz veinlets with pyrite 11.3 16.8 Black argillite 16.8 18.9 Grey argillite - pyrite, pyrrhatite 18.9 21.9 Dark grey argillite pyrite in fractures and disseminated 21.9 24.9 Pyrite - very fine coating 22.9 Dark grey argillite pyrite banded and disseminated 28.0 31.0 Same 31.0 Same 31.1 Grey banded argillite, finely diss. pyrite 33.1 Grey banded argillite, quartz veins & pyrite 33.2 Same quartz stringers and pyrite 33.3 Black argillite - pyrite white quartz veins

DIAMOND DRILL RECORD

COLLAR	COMPANY Zicton Gold Limited	HOLE 290-2 contd
NORTH		STARTED
RAST	OK and HAZ5 Claims	FINISHED
ELEVATION	Lumby Vernon M.D., B.C.	DEPTH
AZIMUTH N 5° E	LOCATION	PURPOSE
DIP865°		LOGGED BY Olfred A. allen.

% Core Fro	From	70	To	Description	Samples					Ass	шув	Averages		
Recovery				Sample No.	From	To	Width	яA	Ag	Cu				
90%	49.4	5.5	Black argillite, pyrite, blebs, disseminated and in fractures: blue and green copper staining											
	55.5	1.6	Same											·
												İ		
·														
												ļ	1	1
				<u> </u>										
													1	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ALLEN GEOLOGICAL ENGINEERING LIMITED

5383 NANCY GREENE WAY NORTH VANCOUVER, BC V7R 4N2

Page Number : 1 Total Pages : 1 Invoice Date: 24-JUN-90 Invoice No. : I-9016978 P.O. Number : NONE

Project:

Comments: ATTN: ALF ALLEN CC: ZICTON GOLD LTD.

CERTIFICATE OF ANALYSIS A9016978

							71 2 0 1 7	IVALIOIO	7100	10370	
SAMPLE DESCRIPTION	PRE COI	EP A	lu FA oz/T	Ag oz/T RUSH	Pt oz/T	Te ppm					•
1138 1140 1149 1150 35331	236 2 236 2 236 2 236 2 236 2	295 < 295 < 295 < 295 < 295 < 295 <	0.001 0.001 0.001 0.001	0.02 0.02 0.01 0.01 < 0.01	< 0.001 < 0.001 	0.05 < 0.05					
			- "	•							
							-				
				n.				·			
					,						
								·			
									,		