			•
LOG NO: 10 -2	24	RD.	
ACTION:			
FILE NO:	······	 ······································	1

SAMPLING REPORT

PINE CLAIMS

Liard Mining Division

93 0 10E

Lat. 55 30' N. Long. 122 37' W.

Owner D.C.Rotherham

Author D.C.Rotherham P.Eng.

September 28 1990

GEOLOGICAL BRANCH ASSESSMENT REPORT

U, 372

TABLE of CONTENTS

	Page	Number
INTRODUCTION		1
Location		
Ownership and History		
GENERAL GEOLOGY		4
LOCAL GEOLOGY		4
SAMPLING		5
CONCLUSIONS		9
RECOMMENDATIONS		9
STATEMENT OF COSTS		10
STATEMENT OF QUALIFICATIONS		11
APPENDICES		
APPENDIX 1 : Assay Certificates		12
APPENDIX 2 : Description of Analytical Procedures LIST OF FIGURES		17
Figure 1. Pine Claims Index Map		2
Figure 2. Pine Claims Location Map		3

Figure 3. Pine Claims Sample Plan8Table IList of Samples and Assays6Table IIComparison of Assays vs I.C.P.7

INTRODUCTION

Location

The PINE 1 to 4 mineral claims, record numbers 4239 to 4242 inclusive are located in Pine Pass on the southern border of topographic map 93 0 10 east. They are at a latitude of 55 30' north and a longitude of 122 37'west on the northern flanks of Solitary Mountain. Highway 97 passes through the claims and mileage post 75 km. is within the claim group. The highway is along the edge of the Pine River with the B.C. Railway on the opposite side of the valley as is the Peace River Power transmission line. Natural gas and oil pipelines follow the highway through the valley. The topography is relatively steep away from the river with the higher portions of the claims being at 3700 feet relative to a valley bottom elevation of 2320.

Ownership and History

The Pine 1 to 4 mineral claims are owned by Mr. D. C. Rotherham of 931 Esquimalt Ave in the city of West Vancouver. B.C. The location has not been staked before to the best knowledge of the author. The area was investigated earlier by personal of Canex Placer Limited as part of a large scale reconnaissance exploration program aimed at the discovery of sedex type lead zinc deposits. It was found that an area within the Pine Pass contained high geochemical values in vanadium. Work at this time, 1976, was confined to sampling sections of two creeks and a limited amount along the highway as well as an extensive regional survey. At that time it was felt that the values were interesting but subeconomic. The Pine mineral claims were staked in July of 1987 to cover the zone of vanadium mineralization. At this time a limited amount of sampling was carried out along the highway to accurately determine the target area and to relate the values to the stratigraphy. A second series of samples was taken in 1989 to further define and expand the zone. This was further expanded in sampling carried out in July 1990 and described in this report.

Mineral claim map 93 0 10E is an old map and has a great deal of distortion. The location shown on the map is not accurate and the correct location is shown on Figure #2.

SCALE-1:50,000

2,0

1.0

Ο

3.0 KM.

930/10E Sept 28 1990 FIGURE 2

General Geology

A description of the geology of the area is given by Dr. J.E. Muller of the Geological Survey of Canada who mapped the area in 1961. This is shown as Map 11-1961 Pine Pass This map shows the geology to be fairly British Columbia. typical of the Rocky Mountains with a series of thrust sheets being the dominant geological feature. The map shows the area of the Pine claims to be underlain by unit #15. Lower (?), Middle, and Upper Triassic which is described as calcareous siltstone and sandstone, black shale". The descriptive notes state " In the Front Range and below the Murray Range thrust, about 500 feet of black, recessive shales is the basal part of unit 15, with a Middle Triassic (Anisian) fauna from Northeast of Mount Hunter. Above these shales is 2,000 feet of silty carbonates with Middle Triassic (Landinian) fossils in the lower half and abundant terebratulid and rhynchonellid brachiopods in the upper part." The Pine claims would appear to be in the black shale part of the section although in detail the majority of the rock is not shale but would more accurately be described as a calcareous mudstone.

Local Geology

The local geology has not been mapped in detail. Exposure in the black shales is poor with outcrops occurring only along the edge of the road or in steep stream beds. The series where exposed has a strike averaging 125° and a moderate dip averaging 35° to the west. It shows gentle folding with a shallow plunge to the north. There is the suggestion that much of the folding may be related to the various thrust faults. The regional geochemistry suggests that the area within the Pine Claims and the Pine River valley has a unique signature and may represent an isolated fault slice that only daylights in this area.

SAMPLING

The first sampling in this locality was by personal of Canex Placer in 1976. They had confined the better mineralized stratigraphic section to two creak beds and a section along the highway. Unfortunately the location of the highway samples was not accurately recorded and could not be determined by field examination. The first sampling by D. C. Rotherham in 1987 was a series of widely spaced stratigraphic samples to locate the vanadium bearing horizons. These samples results, A to L, are included in Appendix 1. The sampling carried out in 1989 (Appendix 1) was a follow up of the anomalous samples from 1987. This was a series of chip samples that were taken stratagraphly and covered the outcrop exposed. There appear to be no exposure of the section except in road cuts or steep streem cuts. When the results were obtained it was realized that one could not visually separate the mineralized from the unmineralized samples and the most westerly sample (409120H) of 1989 was well mineralized. The sampling program of 1990 therefore extended the detailed coverage until a change to a more calcareous rock type.

The initial samples were analyzed by multielement ICP in part to determine what other elements were concentrated in the black shale. The results showed very little in anomalous metal content except for low values in zinc.

It was realized that the ICP analysis used a partial digestion and therefore would probably recover only part of the vanadium present. A series of samples was sent for vanadium assays using a total digestion. The results are shown on Table 2. This shows that the majority of the vanadium , averaging 89.5%, reported in the ICP analysis. It was therefore concluded that the ICP analysis were fairly close to the total amount present, gave conservative numbers and also information on other components of the rock. I.C.P. analysis was therefore used for the later sampling.

The price of vanadium is normally reported as so much per pound of V_2O_5 . The conversion factor for V to V_2O_5 is V x 1.78. The content of vanadium pentoxide is shown on Table 1.

Tab	le	I

List of	Samples	and Assays	ž
---------	---------	------------	---

<u>Sample No</u>	•	V ppm	•	V 2 O 5	ppm.	lbs.	V 2 O 5		
	1987								
D1451		36						Samp le	έA
D1452		40						Sample	Β
D1453		94						Sample	∍C
D1454		145						Sample	e D
D1455		134						Sample	϶E
D1456		75						Sample	϶F
D1457		1960						Sample	ə G
D1458		1455						Samp le	э Н
D1459		1680						Sample	ə J
D1460		750						Sample	э К
D1461		265	,	•				Sample	϶L
	1989						• •		
409105H		2172		3866		7.7	·	. D-1.	
409106H		1577	•	2807		5.6		D-2	
409107H		1390		2474		4.9		D-3	
409108H		508		904		1.8		D-4	
409109H		4486		7985		15.9		D-5	
409110H		298		530		1.0		D-6	
409111H		698		1240		2.5		D-7	
409112H		2461		4380		8.7		D-8	
409113H		1052		1872		3.7		D-9	
409114H		1952		3474		6.9		D-10	
409115H		2110		3757		7.5		D-11	
409116H		1404		2499		5.0		D-12	
409117H		2174		3870		7.7		D-13	
409118H		2399		4270	•	8.5		D-14	
409119H		2129	e.	3790		7.5		D-15	
409120H		1420		2527		5.0		D-16	
409121H		2554		4546		9.1		D-17	
	1990	•							
2308		4626		8234		16.4		E-1	
2309		470		836		1.6		E-2	
2310		2255		4014		8.0		D-18	
2311		1879	•	3344		6.6		D-19	
-2312		3315		5900		11.8		D-20	
2313		1444		2570		5.1		D-21	
2314		1239		2205		4.4		D-22	
2315	÷	1076		1915		3.8		D-23	
2316		1118		1990		3.9		U-24	
2317		1333		2372		4.7		D-25	
2318		1402		2495		5.0		U-26	
2319		1434		2552		5.1		U-21	

Note: Samples E-1 and E-2 are resamples of D-5 and D-6

÷

TABLE II

Com	parison Betv	veen Assay Va	alues and I	.C.P.
Sample No.	% V	I.C.P.	<u>Diff</u>	_I.C.P. %
409105H	0.271	0.217	+0.054	80
409109H	0.470	0.449	+0.021	95
409112H	0.282	0.246	+0.036	87
409117H	0.243	0.217	+0.026	89
409118H	0.270	0.240	+0.030	89
409119H	0.219	0.213	+0.006	97

72

.

.

CONCLUSIONS

The assay results show an intermittent outcrops over an exposure length of 200 meters with values in vanadium averaging 6.25 lbs. V_2O_5 . The dip of this section is in the range of 35 degrees which indicates a true thickness in the range of 100 meters. One cannot see stratagraphic repetition of the section so this is considered a true width.

These results are comparable to those reported by Canex Placer on the two adjacent creek exposures to the east but the road exposure shows greater width. This may be due to only part of the section being exposed in the creaks due to the resessive nature of the shale. The results indicate that there is a potential for several millions of tons of low grade vanadium bearing rock on the Pine claims. The location is excellent with respect to transportation and energy.

RECOMMENDATIONS

1/ Due to the unknown mineralogy and fine grained nature of the mineralization preliminary metallurgical work should be carried out with tests for recovery of vanadium before an extensive program of sampling and drilling to accurately determine grade and tonnage the mineralized rock is warranted.

2/ Fu+ther detailed sampling should be carried out in the area between samples "H" and "G" extending as far as "F" to determine the lower extent of the mineralized zone.

Athenhan P. Eng.

D. C. Rotherham P.Eng.

STATEMENT OF COSTS

<u>Labor</u>	D. C. Rotherham JUly 3 1990	, 4, 5, 26,	
	4 days @ \$200.00		800.00
<u>Travel</u>	2115 km. @ 0.25		528.75
Room & Mea	<u>uls</u>		155.38
<u>Assaying</u>	7 assays @ \$9.00	61.00	
	12 31 element ICP @ \$9.75	117.00	
	-	\$178.00	178.00

TOTAL

\$1662.13

•• •

12

STATEMENT OF QUALIFICATIONS

I, Donald C. Rotherham, residing at 931 Esquimalt Avenue, West Vancouver British Columbia, declare that:

1/ I am a geologist and have worked in mineral exploration and mining since 1951.

2/ I am a graduate of the University of Saskatchewan where I obtained a bachelors and a masters degree in geology.

3/ I am a registered Professional Engineer with the Association of Professional Engineers of British Columbia.

4/ I have carried out the work described within this report.

Donald C. Rotherham P.Eng

10

11

APPENDIX 1

;

Assay Certificates

To : ROTHERHAM, D.C. EXPLORATION & MINING GEOLOGY *Page No. :1-A Tot. Pages:1

Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 931 ESQUIMALT AVE. WEST VANCOUVER, BC V7T 1J9 Project : Comments: Tot. Pages: 1 Date : 17-AUG-87 Invoice #: 1-8719502 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8719502

CERTIFICATION : _

	SAMPLE DESCRIPTION	PRE COL	EP DE	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppn	Hg ppm	K %	La ppm	Mg %	Ma ppm	Mo ppm
	D 1451 D 1452 D 1453 D 1453 D 1454 D 1455	205 205 205 205 205 205	238 238 238 238 238 238	0.66 0.58 1.41 1.22 0.53	0.4 0.2 0.8 0.8 0.4	< 5 5 < 5 5 15	7 50 270 280 5 50 920	0.5 0.5 1.0 1.0 0.5	< 2 2 2 2 2 2 2 2 2 2 2 2	8.41 8.96 11.65 9.52 11.45	< 0.5 < 0.5 1.0 2.5 0.5	12 12 11 11 13	49 49 101 94 48	38 41 42 40 32	1.34 1.17 1.08 1.18 1.38	< 10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.27 0.26 0.52 0.44 0.21	< 10 < 10 < 10 < 10 < 10 < 10	2.02 2.31 1.47 1.34 3.50	235 214 149 153 355	1 4 2 9 17
	D 1456 D 1457 - G D 1458 - H D 1459 - J D 1460	205 205 205 205 205 205	238 238 238 238 238 238	1.24 1.33 0.70 0.47 0.45	0.2 2.0 2.0 0.8 0.2	< 5 20 10 25 20	7 50 2 70 4 50 3 30 3 30	1.0 1.0 0.5 0.5 < 0.5	< 2 14 8 6 2	9.76 11.95 >15.00 >15.00 14.30	1.0 53.0 29.5 20.0 7.0	13 9 7 12 6	76 144 132 72 43	36 50 38 31 32	1.45 1.18 0.98 0.87 1.13	10 20 30 30 < 10	< 1 9 6 8 < 1	0.44 0.45 0.24 0.18 0.19	< 10 < 10 < 10 < 10 < 10 < 10	2.22 1.41 1.04 3.37 1.67	233 146 143 457 165	2 67 47 \$1 103
- 13	D 1461	205	238	0.44	0.2	10	6 50	< 0.5	4	7.67	3.5	6	68	28	1.33	< 10	< 1	0.22	< 10	0.77	162	94
							·															
							,															

To : ROTHERHAM, D.C. EXPLORATION & MINING GEOLOGY

....

.

Chemex Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

931 ESQUIMALT AVE. WEST VANCOUVER, BC V7T 1J9 Project : Comme n t s :

*Page No. :1-B Tot. Pages:1 Date : 17-AUG-87 Invoice # : I-8719502 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8719502

•	SAMPLE DESCRIPTION	PRE: COD	P E	Na %	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm				
	D 1451 D 1452 D 1453 D 1454 D 1455	205 205 205 205 205 205	238 238 238 238 238 238 238	0.02 0.02 0.03 0.03 0.02	41 44 65 > 64 > 39	1730 910 >10000 >10000 2630	6 8 4 4 < 2	< 5 5 5 5 5	< 10 < 10 10 < 10 < 10	168 176 310 269 244	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 40 94 143 134	< s < s < s < s < s	62 43 188 276 32				
	D 1456 D 1457 - G D 1458 - H D 1459 - J D 1460	205 205 205 205 205 205	238 238 238 238 238 238	0.03 0.03 0.03 0.04 0.02	42 132 > 97 121 91	8020 >10000 8910 880 1140	4 8 6 < 2 10	< 5 15 10 15 10	< 10 30 20 20 20	232 507 1350 727 527	< 0.01 0.01 0.01 < 0.01 < 0.01	< 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	75 1960 1455 1680 750	< 5 5 < 5 < 5 < 5	85 1205 558 706 388			·····	
- + -	D 1461	205	238	0.01	106	960	8	\$	10	292	< 0.01	< 10	< 10	265	< 5	271				
I .																				
														;		Ś				
											- 			• • •	аралан Состана С	!				
									·	•										
		L							· · · · · · · · · · · · · · · · · · ·						CER	TIFICATIO	ы : _В	\mathcal{C}	×.	

TN: D.C.ROTH	HERHAM	···						· · · · · · · · · · · · · · · · · · ·	JJ WE3	(6)	04)980-5814	OR (60	4)988	-4524	- v/M							* 14	PE ROCK	GEOC	HEM *	(ACT	[:F
SAMPLE	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA CD PPM PPM	CO PPM	CU PPM	FE K PPM PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	N I. PPM	P PPM	PB PPM	SB S PPM PP	R TH M PPM	I U IPPM	V PPM	ZN PPM 1	GA SI PPM PPI	I W I PPM	CI PPi
409105H 409106H 409107H 409108H 409108H	1.8 1.5 1.4 1.5 .2	8820 7780 8990 5560 17770	21 29 23 26 1	12 12 16 8 28	270 353 269 227 354	1.1 1.1 1.3 1.2 1.8	46565	147010 53.6 174870 35.9 127240 36.0 138520 18.4 102340 68.0	6 9 6 10	53 34 46 32 70	7400 2920 7960 2560 11600 2890 9730 1800 11410 5440	11 1 8 1 9 2 6 3 17 1	1710 7040 3170 4250 4180	101 124 155 301 108	91 57 100 32 163	200 230 180 230 190	117 77 121 59 227	10510 6660 2860 5140 13890	49 49 50 58 38	14 27 8 23 7 9 1 7 22 12	9 1 8 1 4 1 4 1 6 1	1 1 1 1 1 1	2172.5 1577.0 1389.7 508.4 4486.0	937 516 595 240 1188	1 2 1 1	2 3 2 2 5 2 5 1 5	141 9 8 7 16
409110H 409111H 409112H 409113H 409113H	1.0 1.3 1.1 1.3 1.3	6440 7770 14930 10680 9230	25 17 1 23 13	34 15 24 20 18	337 189 256 262 238	1.0 1.2 1.3 1.2 1.0	4 5 6 5 5	126390 10.3 122950 16.7 125180 37.9 152390 25.4 184010 46.1	8 10 8 7 7	31 52 51 40 48	12000 1900 12630 2350 11900 4630 12150 3440 8660 3110	5 2 6 3 13 2 11 2 10 1	3920 4390 6580 1300 3520	159 181 212 186 182	51 74 89 71 153	240 220 280 260 250	54 97 126 71 99	1610 2660 11840 8760 5510	51 62 54 48 39	1 5 4 5 16 10 5 9 12 23	7 1 5 1 4 1 8 1 9 1	1 1 1 1 1	298.1 697.3 2460.9 1052.4 1951.7	128 213 770 405 571	2 1 2 2 2	1 1 3 2 3	42 60 101 101 101
409115H 409116H 409117H 409118H 409118H 409119H	.6 1.2 1.0 .9 1.2	9280 5910 6710 7350 7100	17 28 21 1 11	18 12 12 14 12	282 333 310 264 394	.9 1.0 .8 1.0 .9	5 6 4 4 6	153060 42.5 184390 40.2 179000 37.3 164660 37.3 185010 38.1	6 65 6 6	37 33 38 40 40	9180 3080 7940 1940 7300 2320 7450 2580 7400 2490	9 1 4 1 6 1 7 1 6 1	6600 9120 2670 5340 5550	146 186 112 133 126	145 125 118 110 112	210 230 220 220 1130	91 80 73 79 85	4430 4250 2950 2700 2690	49 44 35 43 45	12 34 13 44 18 69 20 62 20 47	2 1 0 1 7 1 4 1 1 1	1 2 1 2 1 2 1 2	2110.0 1403.7 2173.6 2398.7 2129.4	563 604 468 438 602	1 2 1 1 2	3 2 3 3 3	90 77 10 8
409120H 409121H	1.0 1.1	6110 8370	27 2	12 16	194 395	.9 .9	5 5	167370 28.1 154560 42.0	6 6	29 43	9580 2130 8850 3000	5 2 8 1	0100 5820	169 126	106 102	220 210	79 93	1480 2170	45 46	15 24 21 56	9 1 0 1	1 2	1419.7 2554.5	486 498	2 1	2 2 3	69 107
																		<u></u>									<u> </u>
<u> </u>											<u></u>																<u> </u>
																	·										
																				,				-			
									<u>-</u>		<u></u>											<u> </u>					
			•	,																							
												<u> </u>	····														<u></u>
																			•	.							
-																											
	-															<u> </u>									-		
											· · · ·												·.			 - -	i -

and a second second

an and a second and a second and a second a s

م بد الدكر مر

COMP: D.C.ROTH PROJ:	ERHAM								7	MI 05 WE	N-E ST 15	IN I STH ST	ABS	TH VANCOUV	RE RE	POR C. V7	Т М 1т2									FIL * G	E NO D	: OV- ATE: *	-0857 90/((ACT	'-RJ1)7/12 . = 71 '
SAMPLE		Δ1	AS	R	RA	RE	RI	۲۵		0.		504)98	SU-5814	+ UR (604)5	00-454 MN	.4 MO	NA	NI	P	PB	SB	SR	тн	U	v	ZN	GA	SN	W	CR
NUMBER 2308 2309 2310 2311 2312	.5 1.4 2.1 1.9 1.5	PPM 17410 6650 8070 6480 9380	PPM 17 55 46 63 67	PPM 29 14 20 16 19	295 287 230 253 225	PPM 1.6 .8 .6 .6 .7	PPM 6 4 6 7 7	PPM 62460 62510 92420 106740 94470	PPM 59.3 6.3 40.4 35.7 58.0	PPM 7 8 5 5 5	PPM 73 41 46 36 54	PPN 12000 15580 10890 10770 10320	PPM 5710 2180 3050 2380 3210	PPM PPH 18 11490 7 22020 9 19610 6 19060 9 13060	97 97 131 146 162 126	PPM 125 85 136 145 163	PPM 230 180 240 230 210	PPM 246 70 112 110 153	PPM 19920 2220 1690 1720 1580	PPM 42 33 36 40 43	PPM 38 7 32 29 48	PPM 180 63 634 552 550	2 1 1 1 1	<u>РРМ</u> 14 12 11 13	PPM 626.1 470.5 254.7 879.2 314.8	PPM 1214 197 572 601 1074	PPM 1 1 2 1	<u>PPM P</u> 1 1 1 1	<u>рм</u> 13 2 7 6 10	93 67 139 93 131
2313 2314 2315 2316 2317 2318	1.7 1.4 1.7 1.6 1.5	6870 6860 6030 6370 7230	46 49 56 61 70	15 16 13 14 17	284 600 269 265 253	.6 .7 .6 .6 .6	7 6 5 6	96310 78650 83950 82220 85390 83880	19.3 16.1 26.2 25.0 11.5	6 6 5 5 6	34 32 34 34 39	12080 12130 11840 11610 12060	2390 2510 2210 2310 2640	6 28740 6 21100 5 18100 5 17770 6 22510 7 25150	389 194 178 174 222 197	85 95 106 105 136	320 220 200 200 230 230	95 93 99 97 118 129	1090 1040 960 920 1160	35 35 36 35 37 35	24 25 25 24 25 24	185 153 168 165 166 179	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	444.0 238.7 076.5 118.1 332.9	568 505 1201 1145 536 487	1 2 2 2	1 1 1 1 	4444	76 80 85 83 95 80
2319	1.9	9310	137	21	261	.8	6	90930	12.1	7	48	15440	3250	7 14950	177	124	210	152	1640	40	25	311	i 	i i 	434.6	390	2 	i 	4	91
							<u> </u>																	⁻						
								<u> </u>																						
					<u></u>																					<u></u>	· · · · ·			
													·																	

- 16 -

.

APPENDIX 2

Description of Analytical Procedures

17

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR 31 ELEMENT TRACE ICP:

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HC10_{4}$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621