ARIS SUMMARY SHEET

District Geologist, Nelson

Off Confidential: 91.10.12

ASSESSMENT REPORT 20376

MINING DIVISION: Nelson

PROPERTY:

Libby 1

LOCATION:

49 00 30 LAT

LONG 117 11 00

11 5428179 486592 UTM

082F03E NTS

CLAIM(S):

Libby 1

OPERATOR(S): Worthington Res.

AUTHOR(S):

Yorston, R.

REPORT YEAR:

1990, 28 Pages

COMMODITIES

SEARCHED FOR: Zinc, Lead

KEYWORDS:

Cambrian, Nelway Formation, Dolomites, Galena, Sphalerite, Shear zones

WORK

Geochemical DONE:

SOIL 196 sample(s);ME

MINFILE:

082FSW003

LOG NO: 10-24	RD.
ACTION:	
	· · · · · · · · · · · · · · · · · · ·
FILE NO:	

GEOLOGICAL AND GEOCHEMICAL REPORT

on the

LIBBY 1 CLAIM

NELSON MINING DIVISION BRITISH COLUMBIA

SUB-RECORDER

OCT 1 2 1990

001 12 3270

VANCOUNER, B.C.

NTS 82F/3E

49°N 117° 10'W

for

WORTHINGTON RESOURCES #368 - 1199 W. Pender St. Vancouver, B.C. V6E 2R1

рy

Guinet Management

R. Yorston Geologist

September, 1990

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,376

TABLE OF CONTENTS

Summary			page
-			1
Introduction			1
Location and Access			7
Popography			2
Claims			2
History			2
Regional Geology			3
Claim Geology and Mineralization			3
Geochemical Survey			6
Recommendations			7
Certificate	Follows	page	8
Statement of Costs			
Bibliography			
Certificates of Analysis			
List of Figures			
Figure 1 Location Map	Follows	page	1
Figure 2 Property Access Map	11	11	1
Figure 3 Adit and Shaft Plan	**	111	4
Figure 4 Trench Showing	#1	Ħ	5
Figure 5 North Ridge Showing	11	11	5
Figure 6 South Grid Geochemistry	11	ti	6
Figure 7 North Grid Geochemistry	R	្ម	6
Figure 8 Base Man	Ħ	11	8

SUMMARY

Sphalerite and galena mineralization occurs on ridges above the Lead creek drainage and within one kilometre south of the South Salmo river.

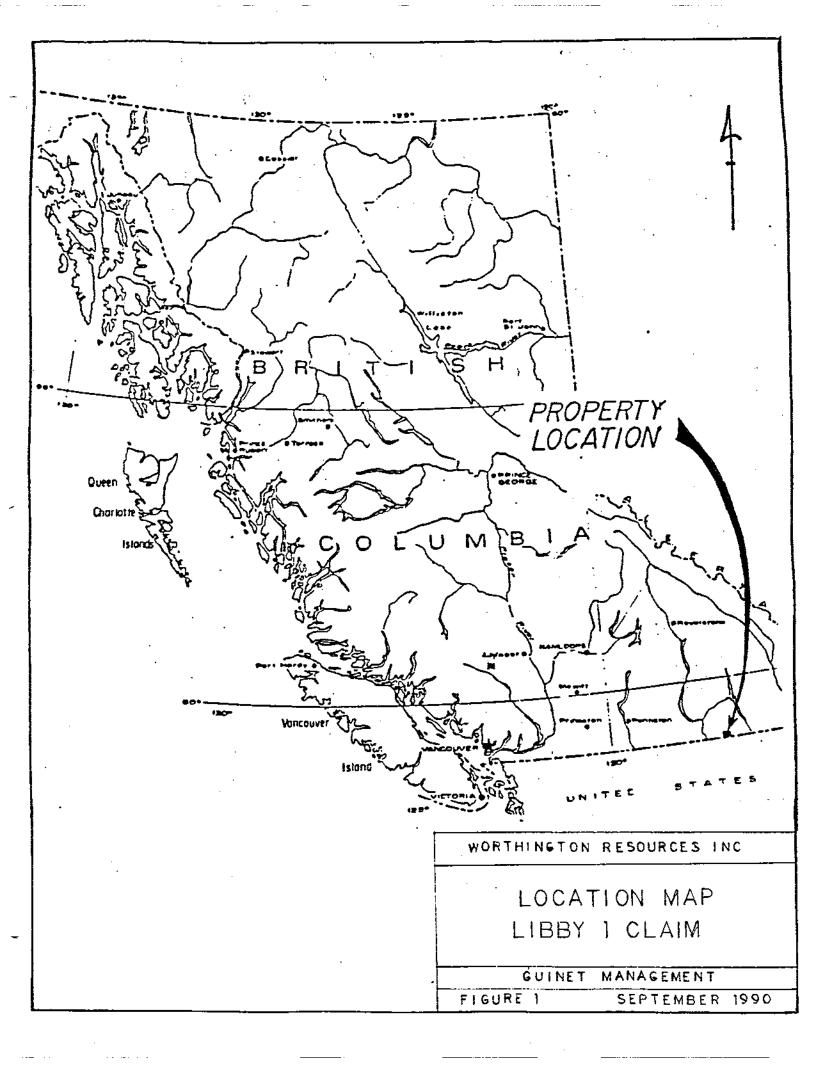
Mineralization varies from thin layered replacements and disseminations conformable to dolomitized zones; mineralization in breccia zones; and mineralization occupying weak northwest trending shears.

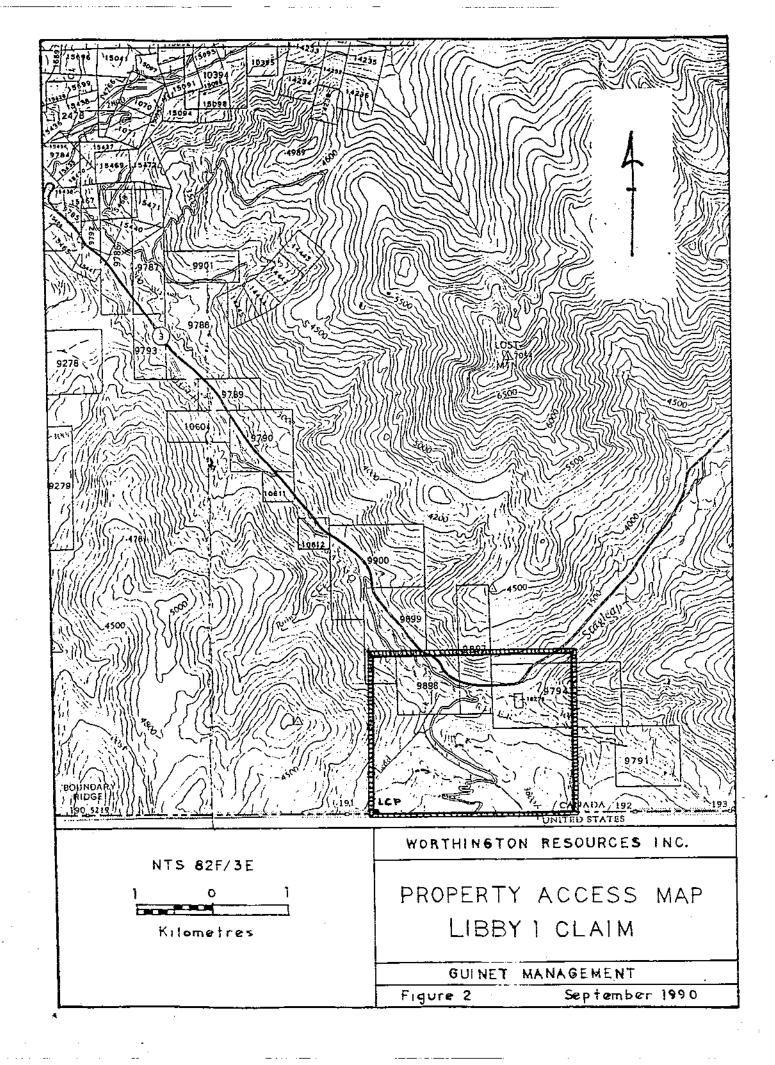
Samples analysed by rock geochemistry returned values equivalent to 9.9% zinc and 2.7% lead across 50 cm. and 9.2% zinc across 1.2 metres.

INTRODUCTION

Guinet management of Vancouver, B.C. was retained by Worthington Resources to do a preliminary sampling and geological evaluation on the Libby 1 claim.

The current work program involved locating and sampling old workings consisting of a shallow shaft, an adit, and some trenches and blast pits. Several other unworked showings also occur on the property.


Soil samples were collected from grid areas and from some road cuts.


The work was done between August 20 to August 26, 1990.

LOCATION AND ACCESS

The property is located 20 km south of Salmo which is in turn about 40 km south of Nelson, B.C. The southern claim boundary is on the international border with the state of Washington, U.S.A.

The property can be accessed by following the Salmo-Creston highway for about 20 km along the north side of the South Salmo river to where the highway swings northward up Stagleap creek.

From here truck access along a jeep trail ends at the South Salmo river. Access to the showings is by hiking or by ATV across the river and up the jeep trail to the south.

TOPOGRAPHY

The topography is moderately steep in most areas and elevations range between 3 and 4000 feet.

Outcrop is mainly confined to the steep areas along the upper ridges. Jeep roads in lower areas cut thick glacial overburden and the rest of the claim area is mostly covered in a dense second growth of cedar, fir, spruce, and hemlock.

CLAIMS

Claim	Units	Record No.	Expiry Date
Libby 1	20	5981	Oct. 24, 1990

HISTORY

The first recorded work on the property is from the report of the Minister of Mines 1952. In 1952 a jeep road was built to the showings and bulldozer stripping was done around the old prospects south of Lead creek.

In 1953 hand cobbed high grade galena was mined from surface at one of the showings and 1.5 tons of ore was shipped with a gross content of 5 ounces of silver, 2357 pounds of lead, and 44 pounds of zinc.

Also in 1953 an adit was driven in an attempt to intersect the mined area subsurface.

REGIONAL GEOLOGY

The Libby 1 claim is within part of the Kootenay Arc, a north-trending belt of lime-bearing sedimentary rocks of Lower to Middle Cambrian age.

The Kootenay Arc is favourable to lead-zinc mineralization and within the Salmo area most production has been from the Reeves MacDonald, Jersey and H.B mines. The deposits are replacements of sphalerite, galena, and pyrite in dolomitized zones in the Reeves limestone, a member of the Laib Formation.

Combined total production from the three mines to the end of 1957 was about 600,000 ounces of silver, 171 million pounds of lead, 471 million pounds of zinc, and 8.25 million pounds of cadmium (Fyles 1959).

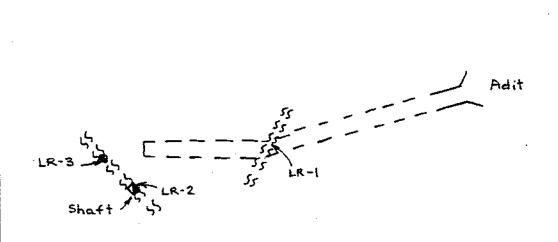
The lead-zinc mines of northeastern Washington also fall within the domain of the Kootenay Arc. The Metaline district is about 15 kilometres south of the international boundary and lead-zinc production has been almost entirely from the Pend Oreille, Grandview and Metaline mines.

From 1906 through 1969 the district has produced 657,109 ounces of silver, 394 million pounds of lead, and 837 million pounds of zinc (Addie 1970).

The mines are in dolomitized zones of the Metaline Limestone Formation. The Nelway Formation in the Salmo area is equivalent to the Metaline Formation in north-eastern Washington state.

CLAIM GEOLOGY AND MINERALIZATION

The Libby 1 claim is underlain by dolomite of the Nelway Formation and the conformably overlying Active Formation consisting of argillite and subordinate limy members.


The Nelway Formation is subdivided into a lower member limestone, a middle member dolomite, and an upper member limestone, and it is the upper member that correlates with the productive part of the Metaline Formation of Washington state.

The Libby 1 claim area has been mapped as the middle member dolomite but because of the conformable presence of the overlying Active Formation it is concluded that the upper Nelway limestone in this area has been dolomitized and is indistinguishable from the middle dolomite (Fyles 1959). Geological and structural information has largely been erased in the claim area by recrystallization and dolomitization. Bedding attitudes are occasionally displayed by thin siliceous resistant weathering layers. Most measurements indicate a strike of about 030° with steep dips to the southeast.

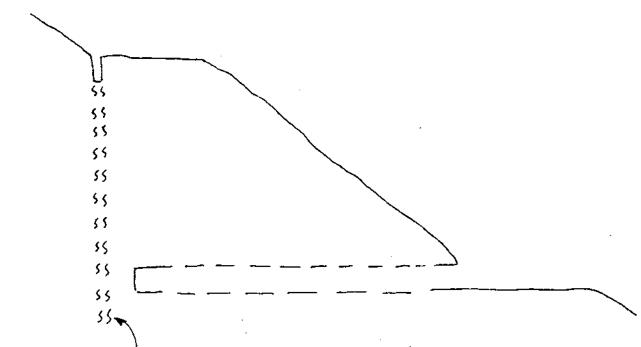
Previous development on the property is from two showings south of Lead creek and one on the north ridge (Base map).

One of the south showings consists of sphalerite and galena mineralization within a northwest trending shear. A 2-3 metre deep shaft was sunk on the shear and a lower adit was driven to intersect the shear subsurface (Figure 3). The shear is up to 70 cm wide and strikes at 315° with a vertical to steep southwest dip.

Galena in the shear is coarse grained and usually irregularily distributed in wavy veinlets and fist sized masses. Sphalerite is more evenly distributed as blebs, disseminations, replacement veinlets and narrow rims on dolomite fragments. The total combined galena and sphalerite at the shaft appears to be about 10-15%. Three metres to the northwest a blast pit exposes similar mineralization but no further development was done along the strike of the shear.

Sample Width Pb ppm Zn ppm

LR-1 65cm 8 40


LR-2 70cm 25177 88453

LR-3 50cm 27106 99999

ADIT AND SHAFT PLAN

Scale 1:300

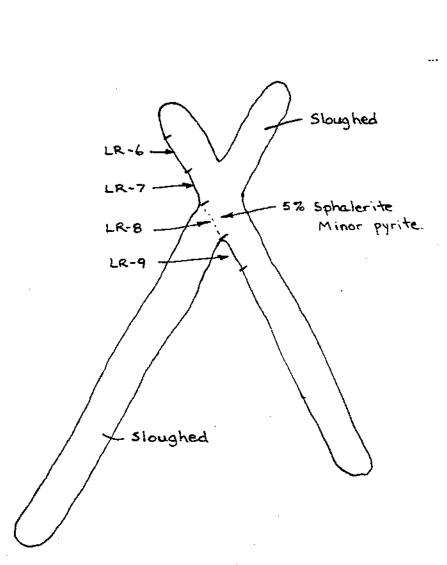
5 0 5 10 Metres

Mineralized Shear

ADIT AND SHAFT CROSS SECTION

Scale 1: 300

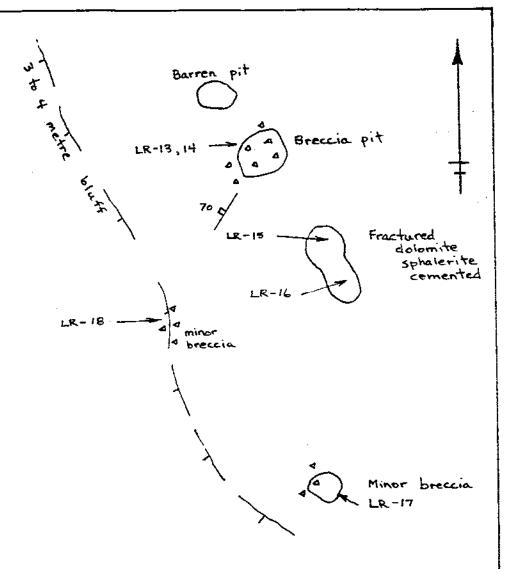
Measurements taken from the surface and from within the adit indicate that the underground work had not been advanced far enough to intersect the mineralized shear. (Figure 3). The adit intersects a barren northeast trending shear but is otherwise of no consequence.


A second southern showing consists of two old criss-crossing trenches exposing thin, layered sphalerite replacements and minor disseminations of sphalerite and lesser pyrite (Figure 4).

The mineralized zone is variable, up to three metres wide, and appears to be conformable to the dolomitized stratigraphy. A one metre section contains about 5% sphalerite.

Bulldozer stripping around the trenched outcrop has had little effect in developing the mineralized zone.

The showing north of Lead creek has been developed by blast pits and some side caving along a 4 metre high bluff at the west edge of the showing (Figure 5). The mineralization in this area is unique in that it is associated with a breccia zone.


Breccia clasts average 2-3 cm and are usually cemented by semi-transparent, fine grained, blue-grey calcite or quartz-calcite. The breccia, with apophyses, imparts a local diatreme type occurence. The sulphides are contained within and outside the blue-grey quartz-calcite cemented breccia. Sphalerite especially has penetrated and often cemented the surrounding heavily fractured host rock. Galena is usually erratic, coarse grained, globular and often rims or occasionally completely encloses sphalerite. The showing appears restricted but further trenching is required for a complete evaluation of stratigraphic potential.

Sample	Width	Pb ppm	Znppm
LR - 6	1 metre	172	861
LR - 7	. 15	206	7507
LR - B	**	47	18465
LR-9	**	ь	232

TRENCH SHOWING Scale 1:100

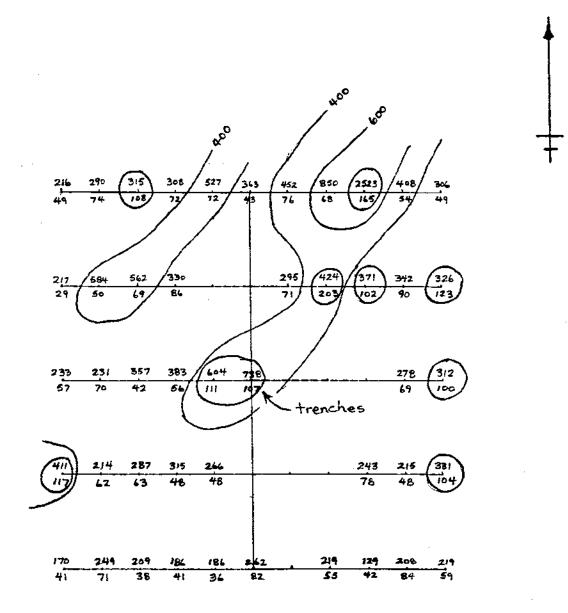
O 4 Metres

Sample	Width F	bppm Z	n ppm
LR-13	grab	123	54620
LR-14	Imetre	27284	39922
LR - 15	11	100	39312
LR-16	1.2 metre	228	92771
LR - 17	70 cm	20	15342
LR-18	Imetre	423	1311

NORTH RIDGE SHOWING
Scale 1:100
4 metres

A new galena showing was discovered during the current property examination (Base map). The showing is on the south side of Lead creek near the criss-crossing trenches and consists of a 30 cm by 5 cm lens of galena in a small northwest trending shear. Blue-grey quartz-calcite stringers to 3 cm widths also occupy the shear. Analysis of a select sample of massive galena returned 1 ounce per ton silver.

A significant zinc showing that has not been developed occurs west of the breccia showing on the ridge north of Lead creek. About 5% stratiform type sphalerite occurs over a width of at least 1 metre and is traceable for several metres along strike. (Sample LK-19).

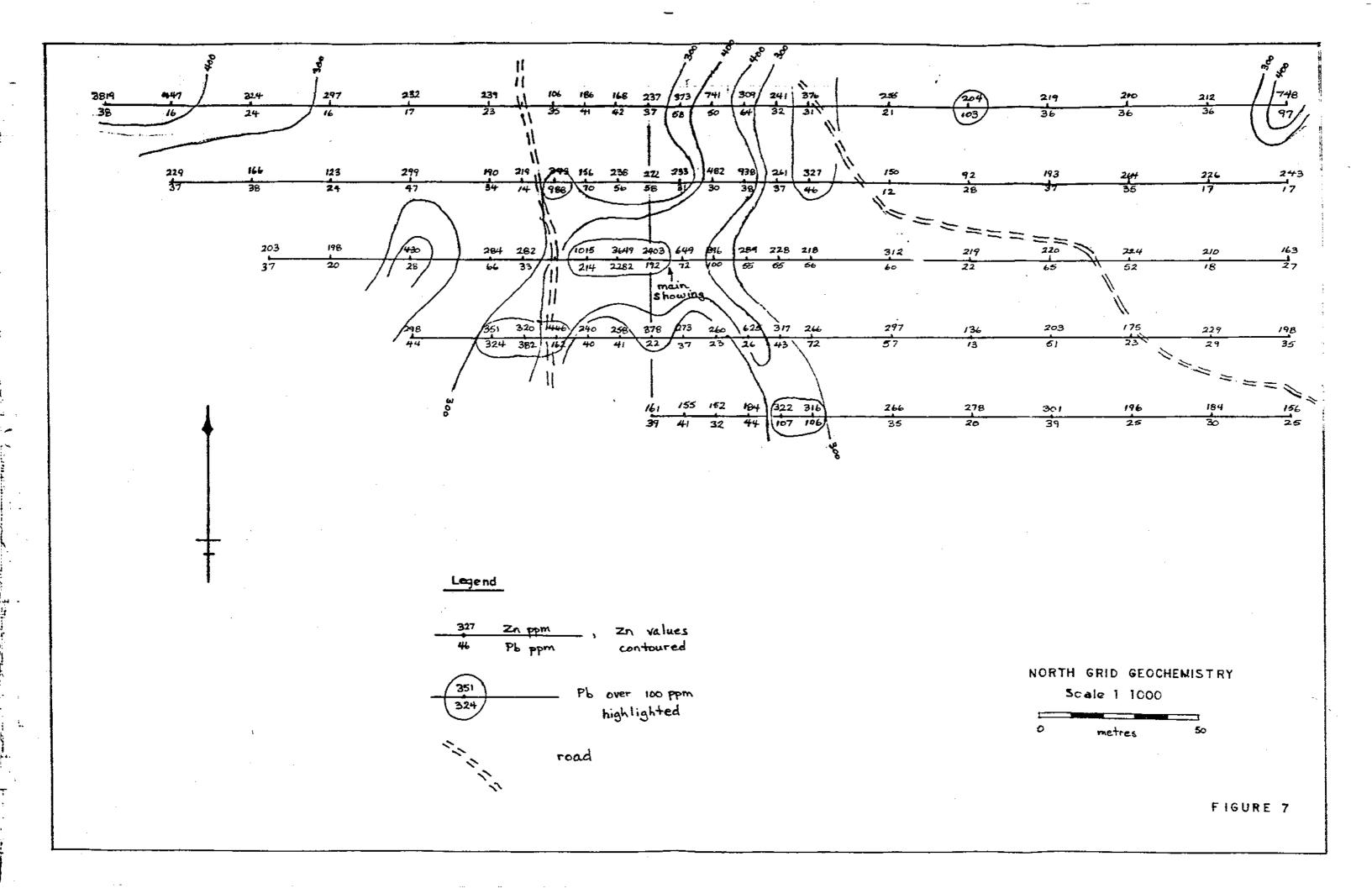

In another area on the north ridge a sample taken of hackly, siliceous, iron stained material from an east-west trending small shear contained anomalous zinc and gold. (Sample LR-12).

Numerous other minor occurrences of sphalerite are within fractures on the north ridge.

Select grab samples and continuous rock chip samples were taken from the significant showings. The total number of rock samples taken was 19 and all samples were analysed by the 30 element ICP rock geochemical method by Acme Labs of Vancouver, B.C.

GEOCHEMICAL SURVEY

Small soil sample grids were placed over the breccia showing on the north ridge and the criss-cross trenches south of Lead creek. Soil samples at 25 metre spacing were also taken along some road cuts south of Lead creek. (Base map).


68 Pb ppm , Zn values

Pb over 100 ppm highlighted

SOUTH GRLD GEOCHEMISTRY

Scale 1:1000

The soil samples were taken with a mattock from an average depth of 25 cm. A well developed orangy-brown B horizon is usually present and was taken for analysis. A total of 196 soil samples were taken and were analysed by the 30 element ICP method by Acme Labs.

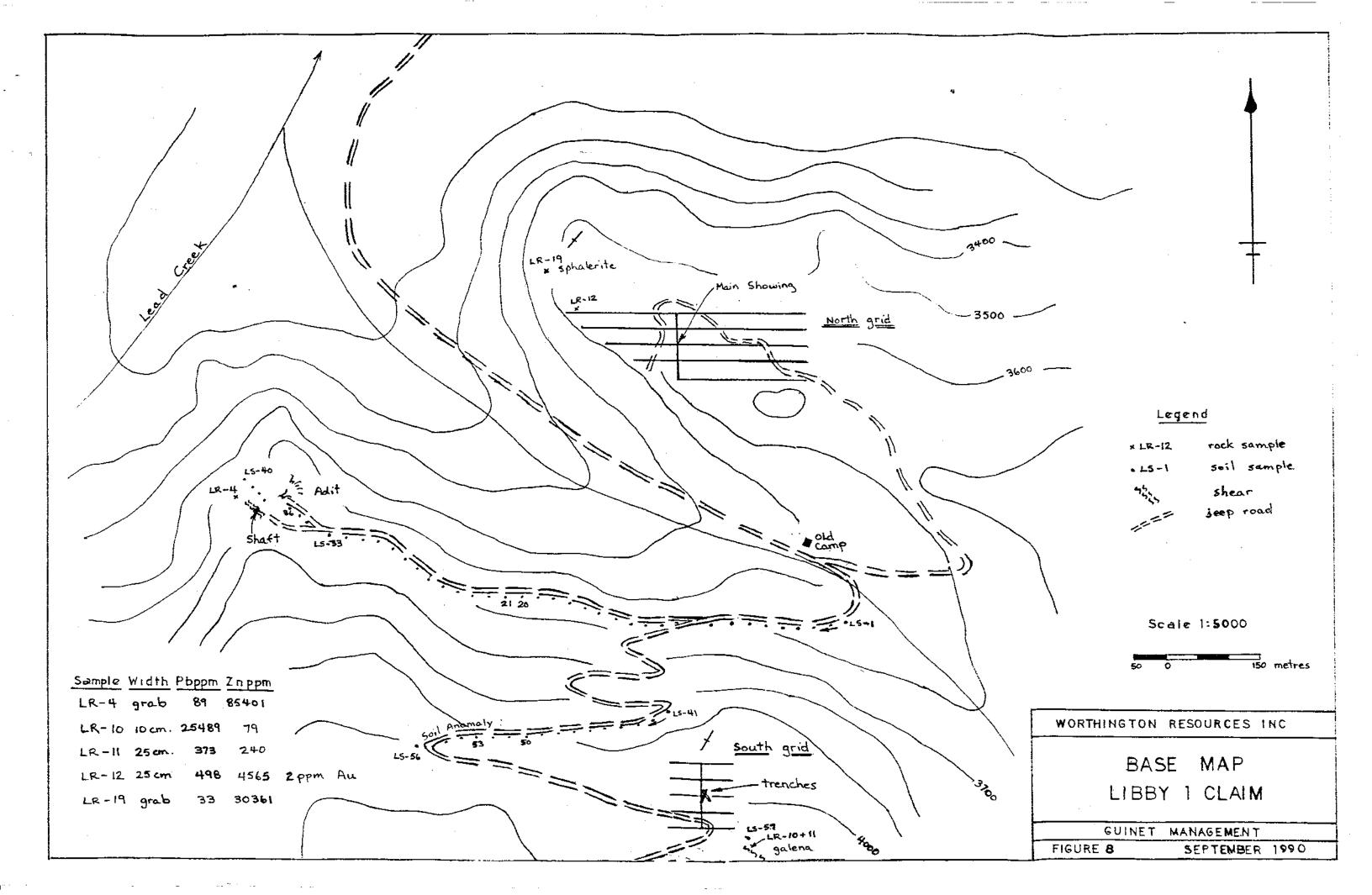
The results from the soil sampling appear to indicate that exploration geochemistry is effective for this property. Grid orientation samples correlate well with the known mineralization and the soil anomalies trend approximately parallel to the regional stratigraphy indicating potential for roughly stratigraphic mineralization.

Insolated soil anomalies on the grids and from road cut samples should be reliable indicators in the search for new showings.

RECOMMENDATIONS

Prospecting and more detailed sampling should be done in areas of current soil anomalies. On the north grid these areas include L50N-2+00E, L50N-1+72W, L25N-0+30E, and L25S-0+30W to 0+50W. On the south grid L50N-10E to 40E is very anomalous.

The road cut samples LS-51 to 55 and samples LS-20 and 21 on the road below probably reflect an undiscovered mineralized zone.


In conjunction with current follow-up work a large grid should cover the entire north ridge top with some crosslines extending to the Active Formation to the east.

A contour soil sample line should also cover the north base of the ridge in the South Salmo river drainage.

Another large grid should cover the road area south of Lead creek with some crosslines extending from the shaft showing to the Active argillite. All future soil anomalies should be followed up with detailed sampling and prospecting.

After the geochemistry, excavator trenching should be done at all present and future showings and drilling and blasting done as required.

All showings and significant geology should be mapped at grid detail.

CERTIFICATE

I, R. YORSTON OF DUNCAN, B.C. CERTIFY THAT:

- 1) I am a graduate of the University of British Columbia; BSc in 1972.
- 2) I have practiced my profession since 1972.
 - 3) I have no interest, direct or indirect in Worthington Resources
 - 4) I have personally conducted the work program discussed in this report.

R. Joseph

R. Yorston 5970 Stoltz Road RR 2

Duncan, B.C.

V9L 1N9

September 1990

STATEMENT OF COSTS - LIBBY CLAIM

Wages and Benefits		
R. Yorston - Geologist	9.5 days @ \$300./day	\$ 2,850.00
Transportation		
Trail Bike Rental 4 x 4 Truck Rental Fuel	9 days @ \$20./day 9 days @ \$75./day	180.00 675.00 237.09
Accomodation		
Hotel Meals Miscellaneous		154.00 168.32 99.39
Analytical		
Acme Analytical		914.15
Report Preparation & Draftir Word Processing & Reproducti		600.00 250.00
	TOTAL	\$ 6,127.95

BIBLIOGRAPHY

- Fyles, J.T. and Hewlett, C.G. 1959. Stratigraphy and Structure of the Salmo Lead-Zinc Area Bulletin No. 41. B.C. Department of Mines.
- Society of Economic Geologists 1970. Lead-Zinc

 Deposits in the Kootenay Arc. Bulletin No. 61.

 State of Washington Department of Natural Resources.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

Guinet Management File # 90-3938 Page 1
305 - 850 W. Hastings St., Vancouver BC V6C 1E1

SAMPLE#	Mo maga	Cu ppm	Pb ppm	Zn ppm	Ag ppn	Ni ppm	Со ррт	Mn ppm	Fe %		U maga	Au ppm	Th ppm	Sr Cd ppm ppm	dis ppm	g i ppm	V ppm	Ça %	P %	La ppm	Cr ppm	Mg %	ppm 8a	Ti %	B Al	Na X	K ¥ % ppm
s 50N-50W	1	12	49	216	.2	17	7	340	2.96	4	5	ND	4	18 .8	2	5	35	. 37	.153	14	14	.22	131	.19	5 5.92	.03	.03 1
S 50N-40W	i		74	298	.4	15	,	1847		3	7	ND	ž	24 4.2	4	ź			156	13		1.98	199	11	7 2.87	.03	.07 1
S 50N-30W	i	ý	108	315	.2	18			3.36	5	5	ND	2	21 3.2	2	2			.156	18	17	.93	154	.13	9 3.72	.03	.06 1
S 50N-20W	1	ģ	72	308		17			3.34	8	5	ND	4	20 1.7	2	ž	42		.155	15	15	.34	125	.17	9 5.01	.04	.04 1
S 50N-10W	i	12	72	527		22			2.81	9	5	ND	2	23 1.6	2	2	31	2.76	.197	14	13	1.27	210	.13	7 3.35	.04	.07 1
s 50N-00W	1	9	43	363	.2	23			3.13	6	5	ND	5	20 1.8	2	2	39		.169	16	14	.35	161	.18	6 5.28	.03	.05 1
S 50N-10E	1	7	76	452	.2	24	9		3.10	4	5	ND	4	13 100	2	2	40		.088	10	19	.39	179	.14	5 3.84	.02	.05
S 50N-20E	1	8	68	850	.2	22	10		3.01	5	5	ND	4	17 3.1	2	2	44		.146	7	16	.26	172	.17	5 4.60	.03	.04 2
S 50N-30E	4	11		2523	-5	35			4.35	1000 To 1000	6	ND	3	24 9.9	2	2			.122	18	17	.87	202	.15	9 4.04	.04	.08 1
S 50N-40E	1	12	54	408	.2	26	9	651	3.17	7	5	ND	5	25 1.9	2	3	42	.79	.096	20	17	.46	174	.17	4 4.78	.04	.05 1
S 50N-50E	1	9	49	306	.2	20	9	1019	3.35	6	5	ND	4	21 1.4	4	2	45	1.58	.143	15	20	.79	163	.17	5 4.89	.03	.05 2
\$ 25N-50₩	1	13	29	217	.3	16	7	473	3.01	7	5	ND	4	21 2.9	4	2	35		.147	16	13	.26	135	. 19	4 5.84	.04	.04 1
S 25N-40W	7	13	50	584		22	9	2142	3.74	7	7	ND	3	23 6.6	2	2	39	-87	. 195	16	17	.46	306	.17	6 4.14	.04	.07 1
S 25N-30W	1	9	69	562	.4	22	8	2317	4.69	13	5	ND	2	22 4.6	2	2	52	3.90	.205	17	16	1.86	250	41 1	8 3.21	.03	.06 1
S 25N-20W	1	20	86	330	21	32	11	530	3.50	8	5	ND	6	17 1.6	2	2	42	-65	.094	20	21	.65	195	.13	5 4.50	.02	.07 3
\$ 25N-16E	1	10	71	295	.2	27	10		3.28	2	5	ND	4	13 1.1	2	2	40		.106	9	19	.42	169	.14	7 4.35	.02	.06 1
S 25N-20E	1	10	203	424	.2	16	8		2.59	4	5	ND	3	21 2.1	2	4	34		.159	8	14	.25	153	.17	5 4.13	.04	.05 2
S 25N-30E	1	8	102	371		14			2.33	3	. 5	ND	2	15 1.4	2	3	29		.169	8	15	.21	207	.14	3 3.38	.03	.04 1
S 25N-40E	1	15	90	342		27			3.83	3	5	ND	6	17 .8	2	2	41		.133	23	21	.49	182	14	5 4.97	.03	.06
\$ 25N-50E	1	13	123	326	.3	28	10	1004	4.13	5	5	ND	6	21 1.8	2	2	46	1.00	.105	18	21	.77	241	- 15	10 3.76	.03	.06 1
S LO-50W	1	10	57	233	.4	20	10	541	3.09	· 2	5	ND	4	12 1.1	2	2	42	.21	.096	12	20	.28	186	.13	5 3.47	.02	.05 1
S LO-40W	1	22	70	231	1	32	11	1045	3.28	2	5	ND	5	21 .4	2	2	36	2.19	.091	22	22	1.57	197	.08	5 2.66	.02	.10 1
S LO-30W	7	10	42	357	.1	26	9	1194	2.99	4	5	ND	4	22 1.2	2	6	36		.289	14	15	.32	220	.17	7 4.89	.04	.06 1
S LO-20W	1	13	56	383	.4	20	7	2690	2.73	7	9	ND	2	24 2.2	3	2			.230	16		2.89	198	.07	9 2.47	.03	.06 1
S L0-10W	1	14	111	604	.3	38	12	2868	4.26	11	13	ND	4	19 3.1	3	2	46	2.15	.161	24	19	1.18	238	.12	9 3.74	.03	.06 1
S LO-00W	1	14	107	738	.2	24	8	2300	3.37	13	5	ND	1	18 5.6	2	3	35	3.78	.148	12	16	2.37	212	.09	8 2.79	.02	.07 1
S LO-40E	1	12	69	278	.1	21	8	354	2.73	2	5	ND	3	13 1.3	2	2	34	.49	.110	10	15	.49	151	. 13	7 3.79	.62	.06 1
S LO-50E	1	14	100	312	.2	28	10	500	3.09	3	5	ND	6	17 1.8	2	2	35	.86	.341	20	18	.68	162	.10	5 2.92	.02	.08 1
S 25S-50W	1	21	117	411	1	33	14	1099	3.82	8	5	ND	6	16 1.0	2	3	41	.43	.118	22	26	.66	263	.08	2 2.89	.02	.89 1
s 25s-40w	1	10	62	214	.3	22	10	612	2.99	8	5	ND	5	13 .8	3	2	39	.18	.119	10	18	.28	157	.14	6 4.21	.02	.05 1
s 25s-30w	1	9	63	287	.1	20	9		3.05	4	5	ND	4	13 .8	2	2	39		. 188	12	19	.32	175	.14	5 4.26	.02	.05 %
s 25s-20W	1	9	48	315		24	10	_	3.41	3	6	ND	4	14 .8	2	2	43		.231	8	20	.29	190	.14	6 4.79	.02	.86 1
s 25s-10w	1	9	48	266			10		2.93		5	ND	4	15 _8	2	2	39		.117	10	19	.31	186	.13	5 3.65	.03	.08 1
S 25S-30E	1	18	78	243	.2	25	11	_	3.08	3	5	ND	4	14 1.0	2	2	39	.38	. 102	14	21	.47	183	.12	7 3.40	.03	.07 1
S 25S-40E	1	13	48	215	.1	23	9	471	2.76	3	5	ND	5	13 .9	2	6	37	.16	.109	6	16	.29	139	.16	4 4.73	.02	.05 1
S 258-50E	1	13	104	331	.1	25	10		3.03	600000000000000000000000000000000000000	5	ND	4	13 .4	2	2	34		.096	14	21	.47	245	.09	4 2.98	.02	.06 1
STANDARD C	18	59	35	129	6.7	73	37	1049	3.95	40	21	. 7	36	52 18.9	19	22	55	.51	.095	36	57	-90	180	_07	38 1.91	.06	.14

1CP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: P1-6 SDIL P7 ROCK

SAMPLE#	Мо ррп	Cu ppn	Pb ppm	Zn ppm		i M ppm	Co ppm	Mn ppm	Fe A	220	Au ppm	Th	Sr Cd ppm ppm	\$b ppm	8i ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba Ti pom X	B Al	Na %	K M X ppm
s 50s-50W	1	9	41	170	.3	14	7	345	2.18	5	ND.	4	14 1,3	2	6	33	.42	.113	11	12	.24	143 .14	7 5.09	.04	.04 5
S 50S-40W	1	16	71	249	4	20	ġ			8	ND	7	14 1.4	2	2	41	.30	.124	33	16	.32	168 .12	12 4.58	.02	.07 2
S 50S-30W	1	8	38	209	4.	14	7			5	ND	4	11 121	2	2	35		.211	8	11	.18	164 ,13	5 5.44	.03	.05 2
s 50s-20W	1	11	41	186	.2	17	8	511	2.65	2 5	ND	4	13 1.3	2	2	39	. 19	.125	11	14	.24	18215	2 6.84	.03	.06 4
s 50s-10W	ĺ	8	36	186	2	12	6			5	ND	3	8 1.2	2	2	34	.11	.117	6	11	.12	139 .12	7 2. 9 1	.01	.05 2
s 50s-00w	١,	15	82	262	.5	24	10	1298	30 c	§ 5 5	ND	3	15 1.4	2	2	33	64	.114	17	22	.57	222 .07	9 3.14	.02	.11 1
	;	12	55	219	4	16		1056		5	ND	4	15 1.6	2	2	35	-	126	14	17	.36	18611	4 3.77	.03	.08
S 50S-20E	!						_		: :::::::::::::::::::::::::::::::::	6	ND	- 4	12 .9	2	3	37		.092	7	13	.20	131 14	2 5.68	.03	.04 4
S 50S-30E	l !	10	42	129	.2	16	7					5		_	2	34	-	073			.38	251 .10	2 3.77	.03	.07 3
S 50S-40E	1	14	84	208	2	23	10			5	HD	-	139	2	_			50.000-5	14	19			11 4.79		.05 4
\$ 50S-50E	2	8	59	219	.6	17	8	574	2.38	2 6	ND	5	14 2.1	2	4	33	.21	.146	9	13	.23	150 .13	11 4.79	.03	נשי כט.
N 50N-1+72W	1	6	38	3819	3	12	5	567		5 5	ND	3	27 7.4	5	2	_	3.15	**********	14		1.16	140 .12	4 3.61	.05	.07 1
N 50N-1+50W	1	11	16	447	4	15	6	150	1.99	8	ND	4	23 2.4	2	5	34		.140	11	7	.14	129 .18	7 6.23	.05	.04 1
N 50N-1+25W	1	6	24	324		12	7	308	2.16	9 5	ND	3	12 1,6	2	2	31	. 12	.296	5	12	. 13	130 .14	3 4.41	.03	.06 2
N 50N-1+00M	1	8	16	297	7	27	9	694	2.13	5	ND	3	18 1.1	2	2	31	.28	.126	10	18	.28	203 .11	2 3.33	.03	.09 2
N 50N-75W	1	10	17	232		24	8	398	2.15	5 6	ND	5	17 .9	2	2	31	.24	,169	12	17	.28	194 .10	11 3.30	. 03	.08 1
N 50N-50W	١,	26	23	239	.8	42	12	300	2.97	2 6	ND	7	23 1.3	2	3	43	.24	.113	17	30	.54	351 .11	4 5,00	.04	.15 4
N 50N-30W	Ιi	10	35	106	.2	13	. –	417	******	3 5	ND	Ż	27 1.0	2	2	30		.133	21	11	.29	193 .15	3 5.48	.06	.06
N 50N-20W	Ιi	5	41	186		14	-	1268		5	ND	3	16 1.4	2	3			107	13	17	.68	259 11	13 3.14	.04	.07 1
N 50N-10W	1	ó	42	168	2	17		410		ž 11	ND	6	16 1.4	2	2	45	.26	.072	14	15	.32	206 .16	7 5.83	.04	.07 1
N 50N-00W	1	8	37	237		16	8			6	ND	3	17 2.6	2	5	42	.23	117	9	14	.25	181 .17	2 6,28	.05	.04 3
N JON CON		·	•				_	,,,,			""	•		_		•-			-	. ,	,				2000 TO
N 50N-10E	1	9	58	373	2	14	7	499	2.38	2 5	ND	5	20 7.1	2	3	38	.50	.136	14	12	.32	172 337	4 5.94	.05	.04 3
N 50N-20E	1	8	50	741	2	15	7	615	2.31	\$ 8	ND	5	20 10.8	2	6	35	.63	.084	20	15	.43	205 .14	8 4.97	.05	.06 1
N 50N-30E	1	11	64	309		16	8	308	2.50	55 8	NĐ	4	15 2.8	2	2	40	.17	.153	9	13	.23	159 .16	2 6.16	.05	.05 3
N 50N-40E	1	9	32	241		16	8	520	2.30	7 6	ND	4	13 1.8	2	3	33	. 19	.151	11	18	. 28	181 .12	2 3.27	.03	.06 1
N 50N-50E	1	9	31	376	3	15	7	1156		5 5	ND	4	15 4.4	2	2	33	.23	.227	9	13	.18	203 .14	11 3.80	.04	.08 1
N 50N-75E	1	8	21	255	.5	14	8	448	2.24	5 10	ND	L	10 .9	2	4	33	.10	. 191	9	13	.19	138 .12	11 4.02	.04	.05 1
N 50N-1+00E	;	6	103	204	1	13	5			5 5	ND	2	19 1.4	_	2	28	.92	.078	10	13	.50	141 12		.04	.06 4
N 50N-1+25E	;	8	36	219		16	8		2.49	5 9	ND	4	16 1.1	_	4	40	.25	129	10	16	.28	17514	2 4.89	.04	.07 2
N 50N-1+50E	l i	8	36	210		15	8			3 8	ND	4	17 1.2	-	Ž	34	.34	203	11	16	.21	168 14	7 5.17	.04	.06
N 50N-1+75E	Ιi	11	36	212		17	8		2.50	2 10	ND	6	13 1.2	2	6	38		.137	17	14	.25	210 .13	11 4.94	.04	.06
H JOH! ITTIE	'	• 1	30	- 12		**	ū	770	2.70	, IV	MD	J	14 (1986)	-		20	7	******	•••	17	.2.	210 00013 0000000 0000000	11 7.74	•••	
N 50N-2+00E	1	8	97	748	2	21	8		2.90	9	ND	5	16 1.6	2	6	36		. 155	11	14	.26	192 .12	4 3.77	.04	.06 1
N 25N-1+50W	1	12	37	229	1111	16	8			4 11	ND	5	21 1.8	2	2	46		.132	19	15	.33	129 .21	2 7.50	.06	.05
N 25H-1+25W	1	8	38	166	2	17	8			3 7	ND	4	18 ,6	2		35			19	19	.67	148 .12	4 4.29	.04	.07
N 25N-1+00W	1	12	24	123	.5	17	7			2 15	ND	5	18 1.6	2	4	36		*****	8	8	.15	131 .18	8 6.67	.06	.04 1
N 25H-75W	1	11	47	299	3	18	9	658	2.36	2 8	ND	5	15 2.2	2	4	32	.20	.166	13	17	.29	245 .11	8 3.05	.03	.08 1
N 25H-50W	1	16	34	190		28	10	283	2.92	3 10	ND	7	12 .4	2	2	39	.12	.038	27	27	.61	194 .08	2 2.02	.02	.10 1
STANDARD C	19	58	40			73	32	1055		0 21	7	40	52 18.5		20	58		.099	40	60	.89	187 .08	38 1.89	.08	.13 11

SAMPLE#	Mo ppn	Cu ppm	Pb ppm	Zn ppm	200000000000000000000000000000000000000	Ni ppm	e3 maga	MD:	Fe As % pppm	ppm	Au ppm	Th ppm	Sr ppm	bJ mag	d2 mqq	Bî ppm	ppm V	Ce %	P %	La ppm	Cr ppm	Mg %	Ва ррп	20400099099	BAL ppm %	Na %	K W % ppm
N 25N-40W	1	 5	14	219	.2	19	6	526	1.91 9	5	₩D	2	17	1.Z	3	9	24	.25	.183	6	12	.18	139	.12	3 2.87	.03	.06 3
N 25K-30W	1	12	988	343	4	18	7	629	2.26 9	5	ND	4	19	2.5	3	2	28	.43	.168	13	15	.32	168	_13	2 3.38	.03	.07 2
N 25N-20W	1	14	70	156	331	16	8	672	2.27 8	5	ND	3	25	1.8	2	3	24	.60	.093	17	14	.47	191	, 13	5 3.76	.04	.08 1
N 25%-10W	1	17	56	238		24	10	284	2.93 4	5	ND	6	14	1.7	2	2	37	, 18	.082	13	20	.47	225	. 14	4 4.24	.02	.07 1
N 25N-00W	1	16	58	272	.1	21	8		2.44 2	5	ND	5	14	2.4	2	2	39	.18	.118	11	16	.34	145	. 15	4 4.09	.03	.06 1
									7.000000																		888888
N 25N-10E	1	9	31	233		16	7	323	2.42 2	5	ND	4	15	3.0	2	2	29	.21	.156	6	12	.24	142		5 5.85	.03	.04 1
N 25%-20E	1	10	39	482	.2	17	8	830	2.43 5	5	ND	3	14	5.6	2	2	39	. 19	132	10	15	-25	195	.16	2 4.41	.03	.05 1
N 25N-30E	1	16	38	938	.2	18	7	499	2.60 2	5	ND	5	16	5.0	2	4	29	. 25	.129	15	16	.34	246	. 13	8 3.88	.03	.06 1
N 25N-40E	1	10	37	261	33.4 1	18	7	491	2.37 T	5	ND	4	16	1.9	2	2	28	.50	.240	10	15	.37	226	.12	4 3.49	.03	.06 2
N 25N-50E	1	7	46	327	1	21	7	370	2.50 3	5	ND	4	16	1.6	2	2	27	.32	.223	10	16	.30	184	.12	4 3.12	.03	.07
					20000000				38.000															880000			
N 25N-75E	1	7	12	150	.2	17	6	333	2.09 9	5	ND	4	13	.7	3	2	26	.21	.192	6	12	. 15	122	.14	4 3.64	.03	.05 1
N 25N-1+00E	1	9	28	92	.2	13	5		1.86 3	5	ND	3	24	1.2	2	3	19	.40	.142	16	9	.20	147	. 15	10 4.27	.05	.05
N 25N-1+25E	1	11	37	193		19	7	432	2.45 2	5	ND	4	18	1.2	2	2	28	.30	.090	13	14	.29	178	.16	5 4.55	.03	.05 \$
N 25N-1+50E	i	10	35	264	.3	22	10		2.52 5	6	ND	6	8	8	2	2	32	.15	.109	15	21	.40	179	.07	5 1.87	.01	.06 1
N 25N-1+75E	i	7	17	226		19	7		2.28 4	5	ND	4	18	1.3	Ž	2	27		103	14	15	.38	180		8 3.96	.03	.05 1
. 230 11132	•	•	•••			٠,	•			-		•			_	_						•					
N 25N-2+00E	1	10	17	243	.2	15	7	657	2.42 3	5	ND	4	16	1.4	2	2	32	.31	.225	6	15	.24	158	.14	5 3.84	.03	.06 \$
N LO-1+20W	1	12	33	203	1	30	11		3.54 10	5	ND	6	16	7	2	Ž	36	.24	.037	16	25	.69	182		3 4.41	.02	.08 1
N LO-1+00W	i	11	20	198	_3	14	6		2.27 2	5	ND	5		1.1	5	8	23	.43	.077	14	10	.29	137		9 5.06	.05	.04 1
N LO-75W	i i	9	28	430		20	7		2.66 2	5	ND	4	16	3.7	2	Ž	31	.45	.105	12	16	.38	228	9900000000	7 4.04	.03	.06 1
N LC-50W	1	12	66	284		25	ġ		2.86 3	ś	ND	6	10	1.4	2	5	35		.028	18	23	.58	175		2 1.89	.01	.07 1
" LO 30"	'		~	204			•	541	~	_	110	•			-	_		• • •							- 1107		
N LO-40W	1	8	33	282	. 1	16	7	922	2.29 3	5	NĐ	2	15	1.7	2	2	29	.26	.251	7	13	.21	204	.14	3 3.57	.03	.05 2
N LO-29W	1	8		1015		14			1.52 5	5	ND	1	22	4.3	2	2			183	15	9	.44	174		8 2.27	.03	.06 1
N LO-10W	1	_	2282		.2	18	7		2.46 5	5	ND	4		10.3	Ž	2	32		155	24	15	.41	158	200000000000000000000000000000000000000	5 4.60	.04	.06 2
N LO-0+00	;	11		2403	30.1	16	6		2.59 2	_	NO	4	15	6.1	Ž	9	34		.229	12	17	.32	199	200000.00000	7 3.47		.06 2
N LO-10E	1	ġ	72	649	**** 1	14	6		2.30 3	_	ND	7	14	4.7	5	ź	29		275	7	12	.20	190		2 4.18	.03	.04 2
N EU-IOE	['	•	""	047	\$0000 *		٠	•	L.JV		RV	7	144		-	_	_,			•	"-		.,,		2 4.10		100000
N LO-20E	1	6	100	396	9	15	6	1067	2.11 4	5	ND	2	16	4.6	2	2	25	.38	. 155	9	12	.25	247	. 15.	7 3.43	.03	.06 1
N LO-30E	Ιí	12	55	289	33.1	18	7		2.25 5		ND	3	19	2.3	2	2	27		.260	11	13	.22	209		8 4.46		.06 1
N LO-40E	1 1	14	55	228	1	22	11		2.85 2	5	ND	6	13	1.3	2	2	38		129	14	23	.46	200		5 3.12		.07 2
N LO-50E	i	14	56	218		20			2.61 2	5	ND	5	17	9	2	2	32		228	10	17	.33	217	50.050.050.550	7 4.76		.06
N LO-75E	1	17	60	312	1	19			2.24 8	5	ND	ž	19	1.4	3	2	28		.262	10	17	.25	210		5 2.42	.02	.10
1 20 /32	'	• • •	-	٠		• • •	٠				~~	7	• • •		•	-	20				•••		_,,,		3 2.42		• • •
N LO-1+00E	1	12	22	219	2	24	9	546	2.67 2	5	ND	5	14	.5	2	2	32	.20	.161	16	20	.37	216	.12	4 3.63	.03	.07 1
N LO-1+25E	Ιi	16	65	220	1	22	9		2.68 8	5	ND	5	17	.6	Ž	2	32		.115	16	18	.48	237	1485 A 44	7 3.81	.03	.08 2
N LO-1+5GE	1	10	52	224	1	20	ė.		2.63 5		ND	4	14	1.0	Ž	2	33			9	16	.27	220		4 4.12		.06 1
N LO-1+75E	i	9	18	210		19	_	1044		5	ND	4	18	1.2	2	2	29		.206	12	14	.22	225		5 4.92		.05
N LO-2+00E	i	13	27	163		16	7		2.39 4		ND	5	19	7	2	2	29		214	12	14	.28	156	500000000000000000000000000000000000000	10 4.38		.05 2
20 2:002	'			.03			•		/	•	"	_	• • • • • • • • • • • • • • • • • • • •		-	-					••				4.30		•••
N 258-75W	1	8	44	298	1	18	7	828	2.37 2	7	ND	4	20	1.2	3	2	27	.49	.037	12	15	.45	218	.14	5 3.55	.03	.09 2
STANDARD C	19	59	37			72	-		3.98 40		7	38		19.0	15	20	56		.097	38	61	.90	181		37 1.89		.14 11

SAMPLE#	Mo ppm	Çu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co	Mn ppm	Fe %	As ppn	D D	Au	Th ppm	Sr	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %		Cr ppm	Mg %	Ba Ti ppm %	B Al	Na %	K ¥ X ppm
N 258-50W	1	10	324	351	.z	19	8	642	2.27	2	5	NĐ		18	2.1	2	2	29	.57	.144	11	15	.34	189 ,13	7 3.14	.03	.06 1
N 258-40W	1	19	382	320	. 1	24	9	525	2.70	8	5	ND	5	16	1.9	3	2	34	.77	.150	17	21	.65	163 .11	7 2.94	.02	.08 1
N 258-30W	1	9	162	446	.1	18	7	871	2.51	7	5	ND	3	21	2.2	2	2	29	.75	.247	11	15	.35	203 ,14	9 3.57	.03	.07 1
N 25S-20₩	1	5	40	240	.1	11	5	458		3	5	ND	2	24	6	4	2		1.01	.151	12	9	-40	14014	11 3.26	.64	.05 1
N 255-10W	1	4	41	258	-1	16	6	676	2.09	2	5	ND	2	20	1.7	2	2	28	.59	.109	10	14	-31	224 .14	8 2.97	.03	.06 1
N 25S-00W	1	7	22	378	.1	12	6	676		3	5	ND	2	20	2.2	3	2	25	-74	.292	10	13	.26	212 .14	5 3.35	.03	.05 . 1
N 258-10E	1	6	37	273		20	7	558		2	5	ND	- 4	17	1.5	2	2	33		.158	11	18	.38	204 .13	6 3.46	.03	.07 ****
N 255-20E	1	9	23	260	1	14	7	484		*	5	ND	4	16	1.2	5	2	31	.30	.185	7	12	.22	164 .17	6 4.86	.03	.04
N 258-30E	1	5	26	625	.1	12	6	722		2	5	ND	3	22 17	1.5	3	2	27 26	.50 .65	.142	10	11	.23	18316	11 3.61	.04	.05 1
N 258-40E	1	,	43	317	33416	13	,	1303	Z. 10	6	6	ND	2	17	1.2	2	2	20	.00	.192	11	12	.33	273 .13	8 2.66	.03	.05 .1
N 25S-50E	1	11	72	266	3	21	9	650	2.61		5	ND	4	17	1.0	6	2	32	.37	_139	12	17	.32	193 .14	10 3.64	.03	.07 2
N 25S-75E	. 1	8	57	297	.1	17	7	411		3	5	ND	3	16	1.0	3	2	31	.40	.179	8	14	.23	146 .14	5 3.16	.03	.05 1
N 258-1+00E	1	10	13	136	.2	13	6	383		3	5	ND	3	19	-7	3	2	28	.27	.273	9	10	.13	123 .18	7 5.10	.04	.04 1
N 25\$-1+25E	1	17	51	203	_3	24		1342		7	5	ND	4	19	1_4	4	2		3.19	.267	17		1.64	246 .11	9 3.51	.03	.10 1
N 258-1+55E	1	13	23	175	.2	14	7	950	2.04	3	5	ND	2	16	.6	2	3	29	.38	.234	7	12	. 19	155 .14	8 3.36	.03	.04 1
N 258-1+75E	1	6	29	229	.1	16	8	1398		8	5	ND	2	12	,3	2	3	31		.209	8	15	.23	199 .13	4 2.87	.02	.06 1
N 258-2+00E	1	13	35	198	.2	17	8	733		6	5	ND	4	20	1.0	- 6	4	33	.46	.159	15	13	.28	173 .17	5 4.33	.03	.06 2
N 50S-00	. 1	11	39	161	-3	17	8	333		2	5	ND	4	19	.9	6	2	32	.36	. 296	10	14	.27	213 .20	8 5.40	.03	.04 2
N 50S-10E	1	11	41	155		15	7	669		2	6	ND	3	19	1.0	3	5	29	.34	.160	10	12	.22	18117	7 4.21	.03	.05
N 50S-20E	1	13	32	152	.1	14	7	527	2.50	4	5	ND	4	17	1.0	7	5	33	-24	.202	9	13	.22	148 .17	7 5.03	.03	.04 1
N 508-30E	1	11	44	184	.3	16	7	486	2.40	2	5	ND	4	20	1.2	3	8	30	.37	.167	11	13	.25	196 .18	6 4.45	.03	.05 1
N 508-40E	1	12	107	322		19	8	414	2.54	5	5	ND	3	20	1.4	4	2	32	.35	.100	12	16	.33	230 .14	9 3.67	.03	.06 1
N 50S-50E	1	12	106	316	.2	18	7	315		5	5	ND	4	16	.7	5	2	30	.24	.171	10	14	.28	152 .13	7 3.58	.03	.06 1
N 50S-75E	1	11	35	266	2	18	7	599		3	5	ND	4	15	2.2	4	2	27	-	.196	10	13	.24	11514	4 3.69	.03	.05 2
N 50S-1+00E	1	10	20	278		14	6	931	2.11	. 2	5	ND	2	19	1.2	2	2	27	.40	.150	12	13	.23	214 .15	4 3.67	.04	.05 1
N 50S-1+25E	1	9	39	301		23	8	1028	2.51	4	5	ND	3	20	.2	2	2	32	.49	.156	13	16	.32	219 .13	4 3.18	.04	.06 4
N 50S-1+50E	1	12	25	196	.1	16	8	835		7	5	ND	4	19	.2	ž	2	32	.59	.218	13	14	.32	224 .16	8 3.97	.04	.05 1
N 50S-1+75E	1	17	30	184	.2	23	9	441	2.65	2	5	ND	4	15	.3	2	2	36	.25	, 207	9	16	-29	157 .15	5 4.62	.03	.05 1
N 50S-2+00E	1	14	25	156	.2	15	7	363		7	5	ND	3	12	.6	5	2	28	.14	.205	8	13	-18	118 _13	2 3.79	.02	.04 2
LS-1	7	23	22	137	.5	28	10	276	2.60	···5	5	ND	7	18	.3	3	3	31	-70	.078	21	18	.66	129 .05	4 2.23	.02	.06 1
LS-2	. 1	22	17	139	.2	27	10	213		6	5	ND	6	15	.2	3	2	33	.28	.079	19	18	.53	140 .05	4 2.14	.02	.05 1
LS-3	1	22	13	127	.Z	32	10	215		2	5	ND	6	19	.2	2	2	33	.41	.061	21	18	.61	135 .03	4 1.60	.01	.05 2
LS-4	1	14	26	158	. 1	26	9	595		*** 8	5	ND	4	15	.6	2	6	34		150	10	15	.36	140 .09	6 2.46	.02	.05 2
LS-5	1	16	10	117	.8	18	7	263		6	5	ND	3	13	.4	3	2	33	. 13	.174	7	12	.22	144 .13	2 3.62	.02	.04 2
LS-6	1	5	14	85	.2	9	4	209	1.59	5	5	ND	1	8	2	2	2	34	.15	.098	10	12	-18	84 .06	3 1.69	.01	.04 1
LS-7	1	17	13	114	.3	21	8	201		6	5	ND	5	14	.4	5	2	32		.104	13	13	-32	144 .11	4 3.33	.03	.04 2
STANDARD C	19	59	43	130	6.9	72	31	1053	3. 9 7	40	21	7	36	53	18.5	15	_ 21	56	53	.097	37	59	.90	17907	37 1.89	.06	.14 11

SAMPLE#	Mo ppm	Cu	Pb ppm	2n ppm	Ag ppn	Ni ppm	Co pp∈	Mn. ppm	Fe %		U ppm	Au ppn	Th ppm	nqq ppm	Cd ppni	Sb mqq	B1 ppn	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm		B Al	Na %	K W % ppm
LS-8	1	14	26	155	.5	19	7	629	2.14	-6	5	ND	4	16	1.4	2	2	33	-28	,153	11	15	.39	138	.12	4 3.12	.02	.05 1
LS-9	1	21	21	117	.3	29	9	198	2.57	5	5	ND	9	9	.4	2	2	34	.14	.067	21	18	.63	171	.06	4 2.20	.01	.06 1
LS-10	1	17	23	151	.4	22	8	304	2.56	2	5	ND	7	16	.6	2	2	34	-21	.123	17	17	.50	176	.14	2 3.45	.02	.07 1
LS-11	1	18	20	140	.5	20	8	267	2.60	2	5	ND	9	18	.9	2	2	35	.23	.112	17	16	.47	176	.17	3 4.08	-03	.05
LS-12	1	13	30	178	.5	22	9	214	2.76	2	5	ND	8	13	.7	2	2	38	.21	.066	17	18	.51	131	.14	2 3.47	.02	.05 \$
LS-13	1	13	34	274	.5	15	6		2.27	4	5	ND	5	20	1.6	2	2		4.00		14		1.98	132	30,000	3 2.73	.03	.05 1
LS-14	1	13	18	271	.4	9	4		1.91	2	5	ND	4	25	1.8	2	2			114	12		1.47	125		2 3.79	.04	.04 1
LS-15	1 1	16	63	295	.3	23	9		3.04	2	5	ND	8	18	1.7	2	2			.096	24		1.20	172		3 2.50	.02	.07 *** 1
LS-16	1	12	61	208	.4	20	9		2.93	5	5	ND	8	15	-8	2	2	39		.108	16	18	.48	159		2 3.54	.02	.06 1
LS-17	1	16	76	206	.3	24	9	213	2.98	3	5	ND	8	13	.8	2	2	33	.39	.124	15	17	.61	184	_10	3 2.98	.02	.06 1
LS-18	1 1	18	43	190	.2	26	11	445	3_05	4	5	NĐ	8	18	7	2	2	35	.41	103	20	22	.65	217	-14	3 3.60	.03	.11
LS-19	l i	17	62	275	.3	23	9		3.18	2	5	ND	8	21	1.3	2	2	39		109	23	21	.63	201		4 3.66	.03	.09 1
LS-20	Ιí	17	152	621	.4	25	ġ		4.54	7	5	ND	9	19	1.9	2	2	46	.39	.108	22	21	.59	195		6 4.00	.03	.08 1
LS-21	;	14	120	402	.3	29	10		3.92	6	5	ND	8	15	1.1	2	3	42		.067	19	22	.68	197		6 3.24	.02	.09 1
LS-22	i	12	76	219	.3	26	10		3.14	6	5	ND	8	13	8.	2	2	37		.101	16	20	.51	183		2 3.01	.02	.07 1
LS-23	1	10	47	270	2	23	9	375	3.03	3.	5	ND	7	12	1.5	2	2	42	-24	.144	12	22	.47	189	.14	2 3.19	.02	.08 \$
LS-24	1	8	49	294	2	18	7	612	3.02	2	5	ND	6	14	2.1	2	2	39	-46	.197	15	18	.42	163	.15	3 3.77	.02	.05 💮 🟗
LS-25	1	11	54	247	3	22	8	272	3.09 🖇	4	5	ND	7	19	1.9	2	2	40	.62	.120	24	20	.60	133	.16	3 3.88	.03	.06
LS-26	1	14	59	211	.4	17	7	496	2.62	2	5	ND	6	16	2.1	2	2	35	2.55	.093	16	17	1.32	140	.12	3 2.98	.02	.06 1
LS-27	1	14	56	163	.4	16	7	682	2.39	2	5	GM	4	17	2.4	2	2	30	2.72	.097	19	16	1.39	146	.10	2 2.49	.02	.07 1
LS-28	1	9	62	205	.Z	15	7		2.73	2 2 3	5	ND	7	16	2.2	2	2	35	.37	.127	13	15	.44	164		3 4.13	.03	.05 1
LS-29	1 1	8	93	256	.3	18	7		2.76	2	5	ND	7	14	2.2	2	2	35	.34	.087	12	18	.51	179		2 3.73	.02	.06
LS-30	1	10	24	119	2	12	5	154	2.15	,3	5	CM	6	24	1.8	3	2	25	.41	. 107	14	10	.28	114	.22	2 5.81	.05	.04
LS-31	1	11	34	128	.3	12	5	346	2.02	3	5	ND	5	27	1.8	2	2	23	1,22	.118	13	12	.71	108	. 16	2 3.49	.05	.05
LS-32	1	7	31	215	.1	13	5	355	2.20	2	5	ND	5	19	1.3	2	2	26	.59	.156	9	12	.46	176	.18	3 3.49	.03	.65
LS-33	1	7	39	141	.2	15	6		2.51	2.	5	ND	6	14	1.4	2	2			.141	12	16	.46	123		2 3.34	.03	.05 1
LS-34	1	9	46	201	.2	12	5		1.98	. 5	5	GM	3	13	1.6	2	2			.094	10		1.38	133		2 2.10	.02	.04 1
LS-35	1	10	72	237	2	17	7		2.57	4	5	ND	5	17	2.0	2	3			.201	12	21	.75	198		2 3.29	.92	.05 1
LS-36	1 1	6	38	550	.3	24	8		2.63	2	5	ND	7	18	2.0	2	2	30	.52	. 187	13	20	.60	193		2 3.38	.03	.08 1
LS-37	1	14	202	551	.2	34	12	351	3.46	6	5	ND	8	12	3.4	2	2	29	.98	.080	21	26	.97	158	.07	5 2.96	.02	.07 1
LS-38	1	6	65	885	.2	14	6	946	2.68	3	5	NĐ	4	19	4.1	2	2	34	.35	.132	7	13	.32	206	.21	3 3.50	.03	.05 1
LS-39	1	5	20	663	3	17	7	273	2.77	2	5	ND	7	15	2.9	2	2	36	.30	.170	5	15	.34	188	.22	3 5.28	.02	.05 1
LS-40	1	6	32	456	.3	14	6	718	2.54	2	5	ND	5	19	2.2	2	2	34	.47	.133	12	14	.41	269		4 4.30	.03	.05 1
LS-41	1	12	95	446	.2	19	8	498	3.12	. 6	5	ND	7	16	3.5	2	2	40		129	17	18	.65	159		3 3.78	.03	.06 1
LS-42	1	12	40	237	.4	14	6	711	2.11	4	5	ND	2	18	2.6	2	2	27		.116	12		2.27		.07	2 1.87	.01	.04 1
LS-43	1	11	60	210	-3,	17			2.67	4	5	ND	5	15	1.7	2	2			.157	15		1.05	149		3 2.99	.02	.06 1
STANDARD C	19	59	39	131	6.9	73	51	1048	3.97	37	18	7	40	52	18.5	15	21	60	.49	.094	39	56	.89	182	-09	38 1.89	.06	.14 12

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Ş۲	Cd	Sb	Βî	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	ΑĹ	Na	K W
	ррп	bbw	ppm	bbu	ppm	ppm	ppm	ppm	<u> </u>	роп	ppm	ррm	ppm	ppm	bbur	ppm	ррп	ррп	<u> </u>		bbw	ppm	*	ppm	*	ppm	<u> </u>	*	X ppm
LS-44	1	6	63	205	•	18	8	623	3 01		5	ND	5	14	1.3	,	,	41	.56	.158	23	19	.38	167	.13	2 4	11	.04	.05 2
LS-45	2	Ģ	45	206		16	8		2.45	5	5	ND	Ž.		1.3	ž	Ž	37	.62	111	11	18	.47	155	10	23		.03	.05
LS-46	2	9	110	218	1	21	9		3.09	5	5	ND	7		1.8	Ž	2	36		.151	22	22	.46	213	.10	23		.04	.05 2
LS-47	1	12	60	186	.2	15	8	494	2.57	2	5	ND	5	14	1.8	2	2	37	1.31	.098	16	19	.79	123	.11	2 3	.12	.04	.06 1
LS-48	1	9	55	243	.1	15	8	411	3.00	4	5	ND	5	11	1.7	2	3	44	.82	.067	12	21	.59	174	.12	2 3	.40	.04	.05 1
		4-		27/			-		7 00		-		-	40		_	_	70										•	
LS-49	1 !	13	62	234		14			3.02	3	2	ND	2	19	2.5		- 2		2.50	104	20	21		145	.09	3 2		.04	.05 💮 2
LS-50	1	11	64	362		17	8		3.47	3	5	ND	5	15	3.3	2	2	46		,099	18	19	.50	132	.13		.46	.04	.05 2
LS-51	2	11	71	392	***	24	9	837	3.87	4	5	ND	6	18	6.0	2	2	51	.72	.086	26	23	.57	159	13	23	.49	.04	.06 1
LS-52	1	16	48	625		14	7	695	3.44	3	5	NĎ	5	21	9.5	2	2	37	3.86	.087	22	20	2.32	128	12	3 3	.08	.05	.06 1
LS-53	1	11	76	617	1	18	8	1011	4.21	8	5	ND	5	18	7.0	2	3	49	1.34	.174	17	25	.93	229	.13	23	.41	.04	.07 2
	_		100	770		20		/07			_		,	40		•													
LS-54	2	13	10 9	739		20	8		4.21		•	ND	0		8.8	2	2	52		.098	21	22	.58	180	.15			.05	.06 1
LS-55	1 1	14	- 77	508		19	9	632	3.70	333	5	ND	6	22	5.6	2	2	48	.49	.076	30	20	.48	198	15	24	.07	.06	.06 2
LS-56	1	12	807	184	** 1	11	7	768	2.32	2	5	ND	3	17	1.2	2	2	37	.29	.180	9	12	.19	157	.16	24	.00	.05	.06 2
LS-57	1 1	13	75	568		18	8	637	3.71	3	5	ND	6	17	5.4	2	2	48	.78	.133	22	22	.51	179	.16	3 4	.43	.05	.07 1
STANDARD C	20	61	39	131	7.0	72	31	1055	3.98	40	21	7	39	52	18.5	15	21	58	.51	.100	40	60	.89	187	.08	35 1	-	.08	.13 12

SAMPLE#	Mo pom	Cu ppm	Pb ppm		Ag ppili	Ni ppm	Co ppm	Mn pom	fe As % ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd: ppm	Sb PPM	Bi ppm	Ppm V	Ca %	P %	ррп La	Cr ppm	Mg %	Ba ppm	Ti %	В ррп	Al %	Na %	К %	ppm ⊌
LR-1	1	1	8	40	.2	1	1	126	.13 2	5	ND	1	19	.7	2	2	1	17.80	.016	2	1	8.57	2	.01	2	.01	.05	.01	3
LR-2	1 1	56	25177	88453	2.6	1	1	75	.20 28	6	NĐ	1	13 44	9.9	6	3	1	8.88	2016	2	2 .	4.77	9	.01	2	.01	.03	.01	1
LR-3	1	79	27106	99999	5.6	1	1	96	.20 29	6	ND	1	10 107	5.4	10	2	1	7.64	,028	2	2 .	4.19	7	.01	2	.01	.03	.01	1
LR-4	1	34	89	85401	1.7	1	1	76	.18 2	5	ND	1	11 39	7.6	2	2	1	8.67	.017	2	3 -	4.78	19	.,01.	2	.01	.03	.01	1
LR-5	4	1	614	627	.1	10	3	166	4.80 12	5	ND	1	93	2.7	4	2	4	1.82	.028	4	10	.38	17	.01	2	.21	.01	.01	1
LR-6	1	1	172	861	.2	1	1	292	.80 2	5	ND	1	22	4.0	2	5	3	17,52	.011	3	2	8.23	4	201	2	.01	.05	.01	1
LR-7	1	1	206	7507	.3	2	1	313	1.04 2	5	ND	1	19 2	3.3	2	2	2	16.89	.012	2	1	7.88	3	.01	2	.01	.05	.01	17
LR-8	1	1	47	18465	.5	2	1	287	1.10 2	5	ND	1	18 4	9.7	2	4	1	16.16	.010	2	1	7.64	2	.01	2	.01	.04	.01	
LR-9	1	1	6	232	.2	1	1	324	.63 2	5	NĎ	1	23	1,0	2	2	1	17.35	.003	2	1 :	8.18	4	.01	2	.01	.05	.01	1
LR-10	1	1	25489	79	34.9	1	1	32	.05 12	5	ND	1	4 0 1	4.8	111	2	8	.62	.151	2	4	.26	4	.01	4	.02	.01	.01	2
LR-11	1	1	373	240	.2	1	1	221	.25 2	6	ND	1	16	1,4	2	2	2	10.30	.025	3	1 !	5.46	5	.01	3	.03	.03	.02	1
LR-12	5	2	498	4565	1.5	12	5	198	16.35 99	8	2	1	12	8.2	9	2	5	6.83	.074	2	18	3.95	9	.01	2	.05	.02	.01	
LR-13	1	8	123	54620	.2	1	1	123	.18 2	5	ND	1	14 39	8.4	2	2	1	8.67	.014	2	1 .	4.71	3	.01	2	.01	.03	.01	1
LR-14	1	5	27284	39922	1.9	2	1	98	.15 30	7	ND	1	16 27	7.9	4	2	1	9.71	,016	2	3 :	5.08	3	.01	2	.01	.03	.01	
LR-15	1	1	100	39312	.1	1	1	122	.14 3	6	ND	1	34 14	5.4	2	2	1	11.47	.018	2	2	5.55	5	.01	2	.01	.03	.01	1
LR-16	1	9		92771	.4	1	1	105	.25 2	6	ND	1	9999999	2.7	2	3		10.94	2.6600.0000	2		5.28	5	.01	2	.01	.03	.01	1
LR-17	1	1	20		.2	1	1	115	.18 3	5	ND	1		7.5	2	2		15.91	.017	2		5.86	4	.01	2	.01	.03	.01	1
LR-18	2	1	423	1311	.2	1	1	97	.26 2	6	MD	1	9999999	6.9	2	2	2	12,40	2000000000000	2		5.05	4	.01	2	.01	.03	.01	
LR-19	1	1	33	30361	7	1	1	110	.18 2	6	ND	1	14 6	3.4	2	4	2	9.25	.026	2	2 .	4.98	6	.01	2	.03	.04	.01	1