LOG NO:	11-14	RD.
ACTION:		
FILE NO:		

A GEOCHEMICAL REPORT ON THE

WILL CLAIM

Dease Lake, British Columbia

Liard Mining Division

NTS 104I/5W

Latitude 58° 15' N Longitude 129° 49' W

Owner:	S.J. Stupples B. McClay Box 48444 Bentall Postal Station Vancouver, British Columbia V7X 1A2	
Operator:	Placer Dome Inc. Box 49330 Bentall Postal Station 1600-1055 Dunsmuir Street Vancouver, British Columbia V7X 1P1	
Authors:	Stephen M. Price Geologist, Placer Dome Inc.	
	Gerald E. Linden Geologist, Placer Dome Inc.	GEOLOGICAL BRANCH ASSESSMENT REPORT
Date:	25 October 1990	ROOLSSMENT REPORT
		20,425

TABLE OF CONTENTS

1.0	SUM	IMARY		1
2.0	INT		1	
	2.3 2.4	Location and Access Topography and Vegetation Work History Summary of Work Done Claim Status		1 1 3 3
3.0	GEO	DLOGY	:	3
4.0	GEO	CHEMISTRY		3
	4.14.24.3	Soil Samples4.1.1Results4.1.2DiscussionBulk Sediment Samples4.2.1Results4.2.2DiscussionSilt Samples4.3.1Results4.3.2Discussion		6667778888888
	4.4	4.3.2DiscussionRock Sample4.4.14.4.2Discussion		8 8 8
5.0	CO	NCLUSIONS		8
6.0	RE	COMMENDATIONS		9

Page

÷

7

APPENDICES

I.	Analytical Techniques and Detection Limits
II.	Soil Sample Results
III.	Bulk Stream Sample Results
IV.	Silt Sample Results
V.	Rock Sample Results
VI.	Statement of Costs
VII.	Statements of Qualifications
VIII.	References

·

FIGURES

	MOUNES	Page
Location Map		2
Claim Map		4
Regional Geology		5
Sample and Claim Location Map		In pocket
Au and Ag Geochemistry		In pocket
Cu and Zn Geochemistry		In pocket
Pb and Mo Geochemistry		In pocket
As Geochemistry		In pocket
	Claim Map Regional Geology Sample and Claim Location Map Au and Ag Geochemistry Cu and Zn Geochemistry Pb and Mo Geochemistry	Claim Map Regional Geology Sample and Claim Location Map Au and Ag Geochemistry Cu and Zn Geochemistry Pb and Mo Geochemistry

1.0 <u>SUMMARY</u>

A geochemical program was conducted by Placer Dome Inc. on the Will Claim on 10 to 14 August 1990. The program included the collection of soil, bulk sediment, silt and rock samples. All samples, except for one bulk sediment, showed low concentrations for precious metals, base metals and pathfinder elements. Bulk sample A4629 was anomalous in gold, silver and mercury. Soil geochemistry failed to identify any north or south extensions of the Gnat Lake Deposit Cu-Au mineralization onto the Will Claim.

Bulk sediment sample site A4629 should be re-sampled. Detailed bulk sediment sampling should be performed upstream from this site and the creek should be prospected in an attempt to find a source for the anomalous metal values. If the anomalous values cannot be duplicated, or there is no further evidence for mineralization, then no further work is warranted on the Will Claim.

2.0 INTRODUCTION

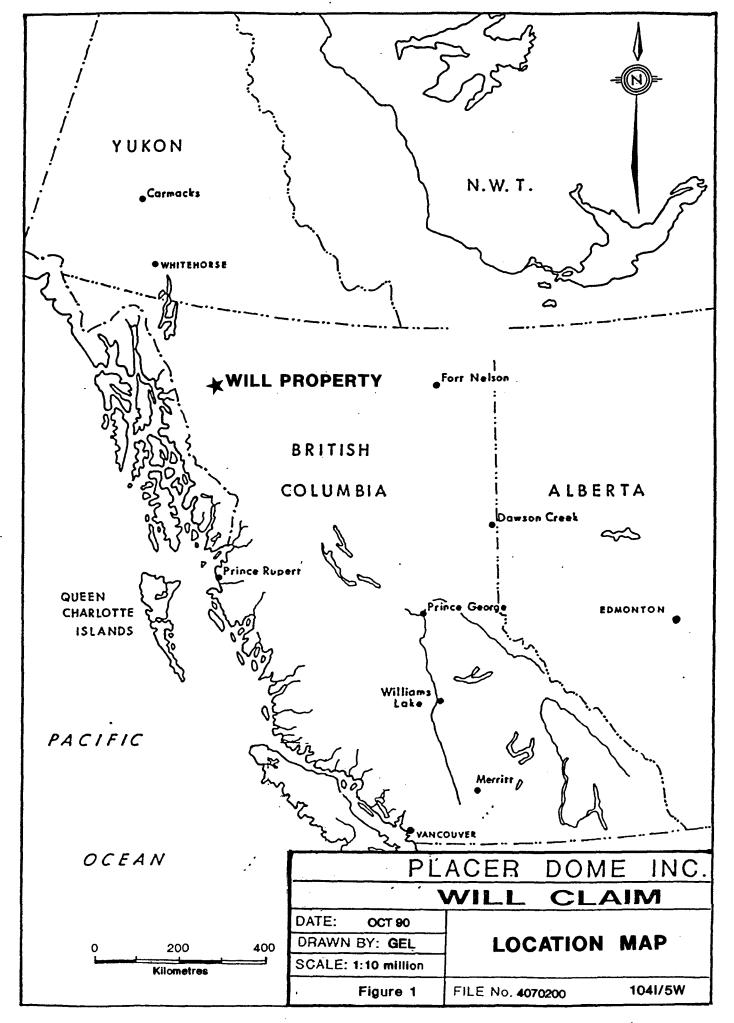
The Will Claim was staked to surround a group of eight two-post claims (Troy 1-8) which contain the Gnat Lake deposit. The claim was staked to cover any possible extensions of that mineralization.

2.1 Location and Access

The Will Claim is 22 km south of Dease Lake, British Columbia, adjacent to the Cassiar-Stewart highway (Fig. 1). The majority of the claims occur within topographic map sheet 104I/5W.

Access to the property is via the Cassiar-Stewart highway to a point approximately 22 km south of Dease Lake and then by a short four-wheel drive road extending east from the highway.

2.2 Topography and Vegetation


The Will Claim is on the eastern side of the Gnat Creek Valley. Lower Gnat Lake cuts the southwestern corner of the claim. The valley wall rises to the northeast to an elevation of 1560 m at the northeastern corner. Gnat Creek is the lowest point on the property at an elevation of 1180 m.

Vegetation consists of grasses and alder on the valley floor, a mixture of poplar, pine and spruce on the eastern slopes, and alder on areas of talus.

The Will Claim is covered with overburden in the valley. Outcrops occur only in Gnat Creek and on the northeastern slopes above 1400 m elevation.

2.3 <u>Work History</u>

The area covered by the Will and Troy claims, was first staked in 1960 by Cassiar Asbestos Corp. The claims were allowed to lapse. The area was again staked in 1963 by E. Krysko, W. Kennedy and W. Gross as the June 1-12 claims. Geological mapping, trenching, and ground magnetometer surveying was performed on the claims between 1963 and 1964. Further ground (Stikine 1-20

claims, September 1-35, and July 1-5) was staked around the June claims in 1964 by Krysko, Kennedy and Gross.

Newconex Canadian Exploration Ltd. optioned the June, Stikine and September claims in 1964. Newconex performed geological mapping, geochemical and induced polarization surveys, trenching, and a 1402 m diamond drill program in 1965, defining two copper mineralized zones: the Creek and Hill zones. Dease Lake Mining Limited entered into a joint-venture partnership with Newconex in 1965. A further 16,061 m was drilled between 1966 and 1969 on the mineralized zones to define reserves. Quoted reserves for the Hill Zone are 18.144 million tonnes containing 0.44% Cu (Minfile; 1983).

2.4 Summary of Work Done

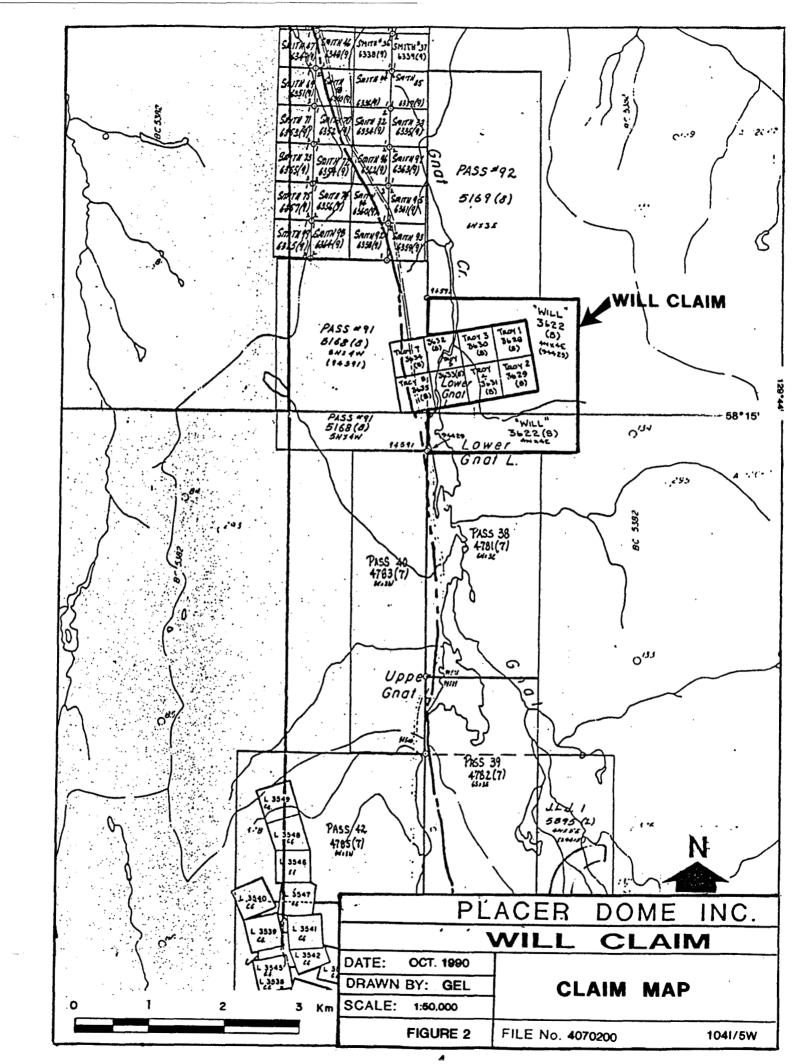
The two-day program took place on 11 and 12 August 1990. It included the construction of 5.5 km of grid, the collection of 82 soil samples, two bulk sediment samples, two silt samples, and one rock sample. One man-day was spent prospecting.

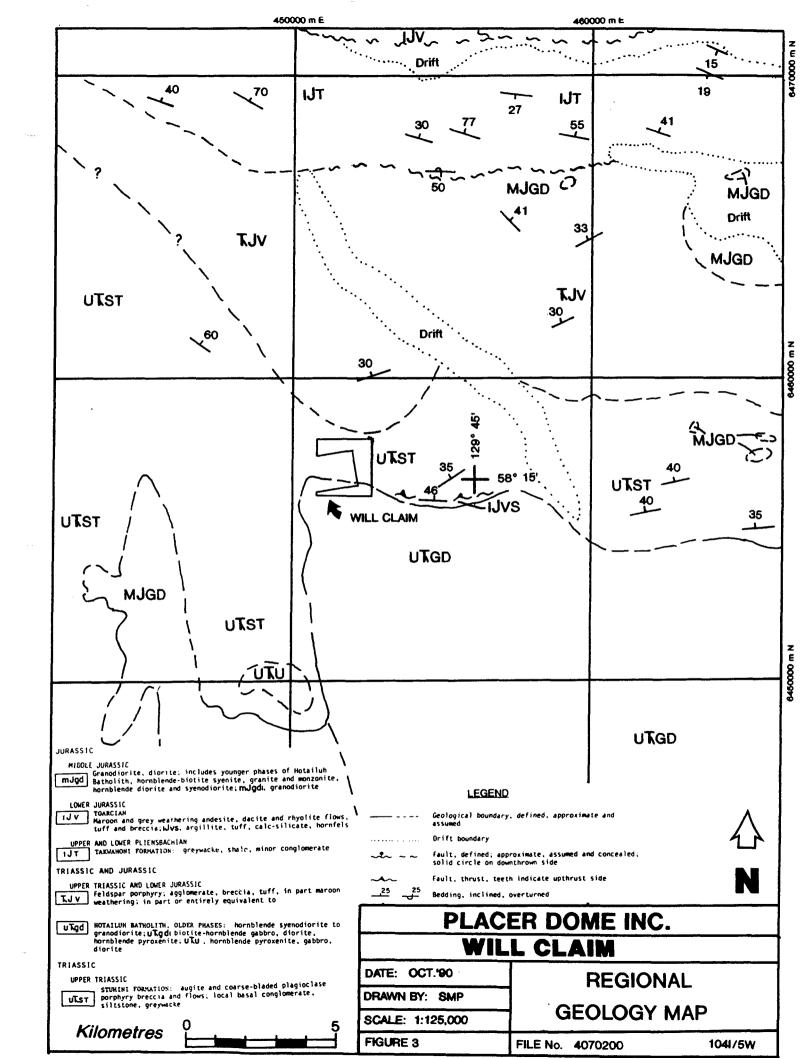
2.5 <u>Claim Status</u>

The Will Claim (Fig. 2) is owned by J. McDonald of Vancouver, British Columbia. Claim information is as follows:

<u>Claim Name</u>	<u>Units</u>	Record No.	Anniversary Date
Will	16	3622	13 August 1990

3.0 <u>GEOLOGY</u> (Fig. 3)


The Will Claim is within Stikinia, an accreted tectonic terrane consisting largely of Triassic and Early Jurassic arc volcanics, volcaniclastics, chert and arcderived clastics which are intruded by comagmatic plutonic rocks.


The claim is underlain predominantly by Upper Triassic Stuhini Group rocks consisting of plagioclase porphyry breccia and flows, and a sedimentary package of conglomerate, siltstone and greywacke. Upper Triassic to Middle Jurassic granodiorite of the Hotailuh Batholith lies along the south edge of the property. The contact between Stuhini Group rocks and the Hotailuh Batholith strikes approximately east-west.

Outcrop of both Stuhini volcanic rocks and Hotailuh granodiorite were found on the claim. Tuffaceous dacite is exposed in the northeast. It is fine grained, weakly to moderately carbonatized and weakly chloritized. Granodiorite outcrops were observed in the southeast corner of the claim.

4.0 <u>GEOCHEMISTRY</u>

All samples were forwarded to Placer Dome Inc.'s analytical lab in Vancouver, British Columbia. Appendix I summarizes extraction techniques and detection limits.

4.1 <u>Soil Samples</u>

Soil sampling was done to cover potential north or south extensions of the Hill Zone onto the Will Claim. Three 1.0 km and one 0.9 km east-west gridlines were sampled at 50 m stations. Sample lines were established using a compass and hipchain.

Soil sample pits were excavated using a mattock and samples were placed in marked Kraft paper bags. Samples were collected from the "B" soil horizon wherever possible. Notes on the nature of the soil material collected and onsite conditions were recorded to aid interpretation of the geochemical results. A total of 82 soil samples were taken. All samples were geochemically analyzed for Au, Ag, As, Cu, Pb, Mo, and Zn.

Soils on the Will Claim are generally well drained. They are well developed with a distinct B-horizon. The B-horizon is typically medium tanbrown to orange-brown in colour. Parent material for the soils include till, talus, colluvium and bedrock. Soils developed from bedrock represent residual material that is "in place." Colluvium is derived by down-slope movement of materials of various origins; within the claim, these materials are dominantly till, with minor bedrock material.

4.1.1 <u>Results</u>

The results for the soil geochemistry are listed in Appendix II, and displayed in Figures 5-8.

4.1.2 <u>Discussion</u>

Soil sample geochemistry was generally not anomalous for any of the analyzed metals. Concentration ranges for the different metals are as follows:

<u>Element</u>	<u>Mean</u>	Range
Au Ag As Cu Mo Pb Zn	<5 ppb 0.2 ppm 8 ppm 52 ppm 1 ppm 8 ppm 172 ppm	<pre><5 - 5 ppb <0.2 - 0.5 ppm <2 - 54 ppm 10 - 560 ppm <1 - 16 ppm 2 - 21 ppm 35 - 1040 ppm</pre>

Only one soil sample contained gold above the detection limit, with a value of 5 ppb. Three samples contained copper greater than or equal to 150 ppm, with values of 150 ppm, 210 ppm and 560 ppm. Zinc shows a narrow, tenuous anomaly in the northeast. This three sample anomaly occurs in samples at 5550 E and 5600 E on line 6400 N and at 5700 E on line 6600N. Values in the anomaly range from 680 to 1040 ppm.

4.2 Bulk Sediment Samples

The bulk stream sediment sampling technique was developed "in house" by Placer Dome Inc.'s exploration personnel. It is specifically designed for use in detailed and semi-detailed stream sediment geochemical surveys where gold mineralization is the target. Two bulk sediment samples (A4627 and A4629) were collected from the claim.

Bulk sediment samples were collected from natural drop-out sites for heavy minerals in the stream channels. Examples of these sites include plunge pools, riffles, and the upstream end of channel bars. Clastic stream sediments from the selected sites were wet sieved through a -20 mesh stainless steel screen and caught in an aluminum basin. A steel shovel was used to dig up the sediment. Approximately three to five kilograms of sieved fraction were collected per sample and put into numbered, doubled polyethylene bags. Reference notes were taken of sample and site characteristics.

Samples were oven-dried and sieved to produce a -150 mesh size-fraction for analysis. Three separate aliquots were prepared from each sample for gold analysis in an attempt to address the problem of erratic gold distribution in natural materials, i.e. the "nugget effect." All samples were geochemically analyzed for Au, Ag, As, Cu, Pb, Mo, Zn, Mn, Hg, and Fe. Later, duplicate splits from the -150 mesh fraction of each sample were re-analyzed for the above elements as a check.

4.2.1 <u>Results</u>

The geochemical results for the bulk sediment samples are listed in Appendix III, and displayed on Figures 5-8.

4.2.2 <u>Discussion</u>

Results for sample A4627 are relatively low. Four of the six gold analyses are below detection limit; the two remaining analyses returned 15 ppb and 355 ppb. Results for the other elements analyzed show only low concentrations.

Results for sample A4629 are elevated in gold, silver and mercury. Gold values for the six analyses range from 855 ppb to 2410 ppb, with a mean of 1502 ppb. Silver values are 188 ppm and 190 ppm, and mercury exceeds the upper detection limit at > 2000 ppb for both the original and duplicate analyses. Copper, molybdenum, lead and zinc values for sample A4629 are not anomalous.

The anomalous gold, silver and mercury values in sample A4629 may be due to an unknown mineralized source further upstream. This source is probably within or just outside the eastern claim boundary as dictated by the small size and catchment area of the creek.

4.3 <u>Silt Samples</u>

Conventional silt samples are primarily designed to identify hydromorphic dispersion trains developed in clays, iron and manganese precipitates, and organic materials. Material was collected from accumulations of fine sediment in back eddies and quiet pools, usually located along the edges of the stream. A plastic scoop and a Kraft paper bag were used to obtain the sample. Two silt samples (A4626 and A4628) were collected from creeks that drain the Will Claim.

Both samples were oven-dried and sieved to produce a -80 mesh sizefraction for analysis. Both samples were analyzed for Au, Ag, As, Cu, Mo, Pb, Zn, Hg, and Mn.

4.3.1 <u>Results</u>

The geochemical results for the silt samples are listed in Appendix IV, and displayed in Figures 5-8.

4.3.2 Discussion

Both silt samples have low metal values; neither sample is anomalous.

4.4 Rock Samples

One rock grab sample (A4630) was taken on the Will Claim. This sample consisted of fine grained dacite with carbonate amygdales and minor limonite staining. The sample was analyzed for Au, Ag, As, Cu, Mo, Pb, Sb, and Zn.

4.4.1 <u>Results</u>

The geochemical results for the rock sample, along with a description are listed in Appendix V.

4.4.2 <u>Discussion</u>

The rock sample contains only background metal values.

5.0 <u>CONCLUSIONS</u>

- 1. Soil geochemistry failed to identify any north or south extensions of the Hill Zone copper mineralization onto the Will Claim.
- 2. Bulk sediment sample A4629 is anomalous in gold, silver and mercury and indicates a possible mineralized source upstream.

6.0 **RECOMMENDATIONS**

- 1. Sample site A4629 should be re-sampled to try to duplicate results. Detailed bulk samples should be taken upstream from site A4629 and the creek should be prospected in an attempt to find a source for the anomalous metal values.
- 2. If the anomalous values cannot be duplicated, or there is no further evidence for mineralization upstream from A4629, then no further work is warranted on the Will Claim.

Submitted by,

Stephen M. Price

Geologist Placer Dome Inc.

Gerald E. Linden Geologist Placer Dome Inc.

APPENDIX I

Analytical Techniques and Detection Limits

ANALYTICAL TECHNIQUES AND DETECTION LIMITS

Placer Dome Inc's Vancouver Analytical Laboratory

Element	<u>Units</u>	<u>Wt(g)</u>	<u>Attack</u>	<u>Time</u>	<u>Range</u>	Method
Ag	ppm	0.5	HCLO4/HNO3	4 hrs	0.2-20	A.A. Background Correction
As	ppm	0.5	Aqua Regia	3 hrs	2-2000	DC Plasma
Au	ppb	10.0	Aqua Regia	3 hrs	5-4000	A.A. Solvent Extraction
Cu	ррт	0.5	HCLO4/HNO	4 hrs	2-4000	Atomic Absorption
Fe	%	0.5 ł	IF/HCLO4/HNO3/HCL	6 hrs	0.02-20	DC Plasma
Hg	ppb	0.25	DIL HNO3/HCL	2 hrs	5-2000	A.A. Cold Vapor Gen.
Mn	ppm	0.5	HCL04/HN03	4 hrs	2-2000	Atomic Absorption
Мо	ppm	0.5	HCLO4/HNO3	4 hrs	1-1000	Atomic Absorption
РЬ	ppm	0.5	HCLO4/HNO3	4 hrs	2-3000	A.A. Background Correction
Sb	ppm	0.5	HCL/HNO3	3 hrs	2-2000	DC Plasma
Zn	ppm	0.5	HCLO4/HNO3	4 hrs	2-3000	Atomic Absorption

.

APPENDIX II

Soil Sample Results

PDI GEOCHEM	SYSTEM:	Data Fro	om: Wil	ll Cla	ims - S	Soil Sa	ample A	Analyses
North	East	Ag PPM	As PPM	Au1 PPB	Cu PPM	Mo PPM	Pb PPM	Zn PPM
5000N	5000E	0.2	6	<5	19	<1	7	170
5000N	5050E	<0.2	5	<5	28	<1	7	358
5000N 5000N	5100E 5150E	0.2 0.3	5 <2	<5 <5	36 18	<1 <1	5 4	100 158
5000N	5200E	<0.2	8	5	15	1	4	130
5000N	5250E	0.2	4	<5	10	1	5	86
5000N	5300E	<0.2		<5	15	2	6	81
5000N	5350E	<0.2	2 9 3 5	<5	29	<1	4	50
5000N	5400E	0.3	3	<5	72	<1	3	66
5000N	5400E*	0.2		<5	74	<1	3	65
5000N	5450E	<0.2	8	<5	40	<1	5	78
5000N	5500E	<0.2	4	<5	38	<1	4	73
5000N	5550E	<0.2	3	<5	15	<1	2	36
5000N	5600E	<0.2	4	<5	13	<1	7	223
5000N 5000N	5650E 5700E	<0.2 <0.2	5 3	<5 <5	24 25	<1 <1	6 7	110 117
5000N	5750E	0.3	<2	<5	116	<1	, 7	216
5000N	5800E	0.5	<2	<5	45	1	13	68
5000N	5850E	0.2	<2	<5	10	<1	7	57
5000N	5850E*	0.2	3	<5	9	<1	7	57
5000N	5900E	<0.2	7	<5	150	<1	8	96
5000N	5950E	0.2	5 5	<5	187	3	10	223
5000N	6000E	<0.2	5	<5	81	1	6	113
5200N	5100E	<0.2	5	<5	36	<1	5	143
5200N	5150E	0.3	4	<5	35	2	8	184
5200N 5200N	5200E	<0.2 0.2	<2	NSS	42	<1	4	150 35
5200N	5250E 5300E	<0.2	3 3	<5 <5	11 19	<1 <1	3 3	35 46
5200N	5350E	<0.2	12	<5	29	2	3 7	80
5200N	5350E*	<0.2	13	<5	29	2	6	80
5200N	5400E	0.2	<2	<5	11	1	7	140
5200N	5450E	<0.2	4	<5	39	<1	7	62
5200N	5500E	<0.2	2	<5	14	<1	8	92
5200N	5550E	<0.2	5	<5	12	<1	5	65
5200N	5600E	0.2	6	<5	20	2	8	80
5200N	5650E	0.2	12	<5	14	<1	7	111
5200N	5700E	0.2	5	<5	20	<1	4	44
5200N	5750E	<0.2	4	<5 <5	30	<1	4	63 25
5200N STD P1	5800E	<0.2 0.4	3 22	< 5	22 24	<1 50	3 50	35 130
5200N	5850E	<0.2	6	<5	11	<1	50	51
5200N	5900E	0.2	7	<5	14	<1	7	117
5200N	5950E	0.2	5	<5	14	<1	8	100
5200N	6000E	<0.2	4	<5	14	<1	7	57
6400N	5000E	0.4	7	<5	30	<1	8	132
6400N	5050E	0.4	15	<5	29	<1	9	116
6400N	5100E	0.2	22	<5	34	<1	11	151
6400N	5150E	0.2	2	<5	560	2	5	40
6400N	5200E	0.2	7	<5	51	2	9	102
6400N	5200E*	0.2	5 15	<5 <5	51 82	1 <1	9 11	104 94
6400N	5250E	<0.2	TO	N 0	02	~1	T T	37

.

PDI GEOCHEM SYSTEM: Data From: Will Claims - Soil Sample Analyses

							-	-
North	East	Ag PPM	As PPM	Aul PPB	Cu PPM	Mo PPM	Pb PPM	Zn PPM
6400N	5300E	0.3	9	<5	43	<1	12	221
6400N	5350E	<0.2	3	<5	24	<1	10	230
6400N	5400E	0.2	16	<5	32	1	- 8	120
6400N	5450E	<0.2	15	<5	41	ī	7	195
6400N	5500E	<0.2	54	<5	47	ĩ	10	156
6400N	5550E	<0.2	21	<5	40	10	- 9	680
6400N	5600E	<0.2	33	<5	52	16	12	1040
6400N	5650E	<0.2	4	<5	35	<1	7	470
6400N	5650E*	NSS		<5	NSS	NSS	NSS	NSS
6400N	5700E	<0.2	6 3	<5	70	<1	9	172
6400N	5750E	<0.2	3	<5	44	<1	17	163
6400N	5800E	<0.2	<2	<5	33	<1	- 8	200
6400N	5850E	<0.2	10	<5	28	<1	10	143
6400N	5900E	<0.2	13	<5	50	10	8	371
6400N	5950E	0.2	5	<5	44	1	9	281
6400N	6000E	0.3	<2	<5	20	1	8	120
6600N	5000E	0.3	10	<5	24	<1	ĝ	160
6600N	5050E	<0.2	27	<5	144	<1	8	72
STD P1		0.2	21	•	24	50	52	132
6600N	5100E	<0.2	<2	<5	210	1	6	61
6600N	5150E	<0.2	17	<5	110	1	6	69
6600N	5200E	<0.2	3	<5	67	<1	3	105
6600N	5250E	<0.2	23	<5	107	1	8	121
6600N	5300E	<0.2	29	<5	106	<1	8	128
6600N	5350E	<0.2	7	<5	32	1	9	137
6600N	5400E	<0.2	9	<5	38	<1	10	153
6600N	5450E	<0.2	9 2	<5	21	<1	11	420
6600N	5500E	<0.2	9	<5	40	<1	15	490
6600N	5500E*	<0.2	7	<5	39	<1	17	490
6600N	5550E	0.2	2	<5	59	<1	20	202
6600N	5600E	0.2	9	<5	71	4	8	205
6600N	5650E	0.2	<2	<5	148	4	6	141
6600N	5700E	0.2	16	<5	96	6	11	820
6600N	5750E	0.2	17	<5	86	2	21	275
6600N	5800E	0.2	22	<5	27	2 2	10	120
6600N	5850E	<0.2	10	<5	27	4	13	460
6600N	5900E	0.2	12	<5	47	4	8	140
6600N	5950E	0.4	5	<5	25	2	8	228
6600N	5950E*	0.4	5	<5	23	2	9	227
6600N	6000E	0.2	5	<5	28	<1	8	216
6600N	6000E*	0.2	7	<5	28	<1	8	210
STD AU7				365				

Note : Sample number followed by an * indicates a duplicate analysis. NSS = Not Sufficient Sample

~

APPENDIX III

· . . .

·----

Bulk Sediment Sample Results

PDI GEOCI	HEM SY	STEM:	Data	From:	Will	Claim -	Bull	c Sedime	ent Sar	mple Ar	nalyses	3
SAMPLE	Ag PPM	As PPM	Au1 PPB	Au-A PPB	Au-B PPB	Cu PPM	Fe %	Hg PPB	Mn PPM	Mo PPM	Pb PPM	Zn PPM
A4629D 11 A4627 A4627D STD AU7 STD P1 STD HG STD P1 STD AU8	90 88 0.6 0.4 0.5 0.4	5 8 4 6 20	2050 1110 <5 <5 315 250	1635 950 <5 <5 355	2410 855 365 15 585 315	42 52 43 51 22 26		>2000 >2000 120 65 290	850 437 580 400 650 420	2 1 1 <1 54 43	11 6 9 5 51 47	165 172 127 142 133 135
· · · · ·	48							350				

Note: sample numbers followed by a 'D' are duplicate split analyses.

APPENDIX IV

.

• • • • • •

Silt Sample Results

•

	PDI GEOCH	IEM SYSTEM:	Dat	a From	: Will	Claim	- Sil	t Samp	le Ana	lyses
	SAMPLE	Ag PPM	As PPM	Aul PPB	Cu PPM	Hg PPB	Mn PPM	Mo PPM	Pb PPM	Zn PPM
• .	A4628 A4626 STD AU7 STD P1 STD HG	<0.2 <0.2 0.2	3 7 19	<5 <5 305	33 31 22	58 46 270	770 410 640	1 1 55	6 10 51	122 115 130

APPENDIX V

Rock Sample Results

PDI GEOCHEM	SYSTEM:	Data	From:	Will	Claims	- Rock	Sample	e Geod	chemistry
SAMPLE	Ag	As	Aul	Cu	Hg	Mo	Pb	Sb	Zn
	PPM	PPM	PPB	PPM	PPB	PPM	PPM	PPM	PPM
A4630	<0.2	<2	<5	123	62	<1	3	<2	100
A4630*	<0.2	<2	5	122	58	<1	4	<2	100

Note : sample number followed by a * indicates a duplicate analysis

APPENDIX VI

.

Statement of Costs

STATEMENT OF COSTS

Labour (Salary and Benefits) for the period 10-14 Augu	ust 1990.
S. Price, Project Geologist, 4 days @ \$300/day G. Linden, Geologist, 4 days @ \$270/day C. Woolverton, Assistant, 4 days @ \$175/day J. Gordon, Assistant, 4 days @ \$160/day	1200.00 1080.00 700.00 640.00
Site Costs	
Food and Lodging Equipment Purchases Gasoline	1017.19 115.00 500.00
Analyses	
82 Soils @ \$ 12.84 /sample (Au,Ag,As,Cu,Mo,Pb,Zn)	1052.88
2 Silt @ \$ 17.40 /sample (Au,Ag,As,Cu,Hg,Mn,Mo,Pb,Zn)	34.80
2 Bulk @ \$ 27.00 /sample (Au,Ag,As,Cu,Fe,Hg,Mn,Mo,Pb,Zn)	54.00
1 Rock @ \$ 19.75 /sample (Au,Ag,As,Cu,Hg,Mo,Pb,Sb,Zn)	19.75
Report Preparation	
Drafting 1 days 0 \$250/day S. Price 2 days 0 \$300/day G. Linden 2 days 0 \$270/day	250.00 600.00 540.00
TOTAL \$	7803.62

APPENDIX VII

Statement of Qualifications

•

STATEMENT OF QUALIFICATIONS: S. PRICE

I, Stephen Price, of the City of Vancouver, British Columbia, do hereby certify that:

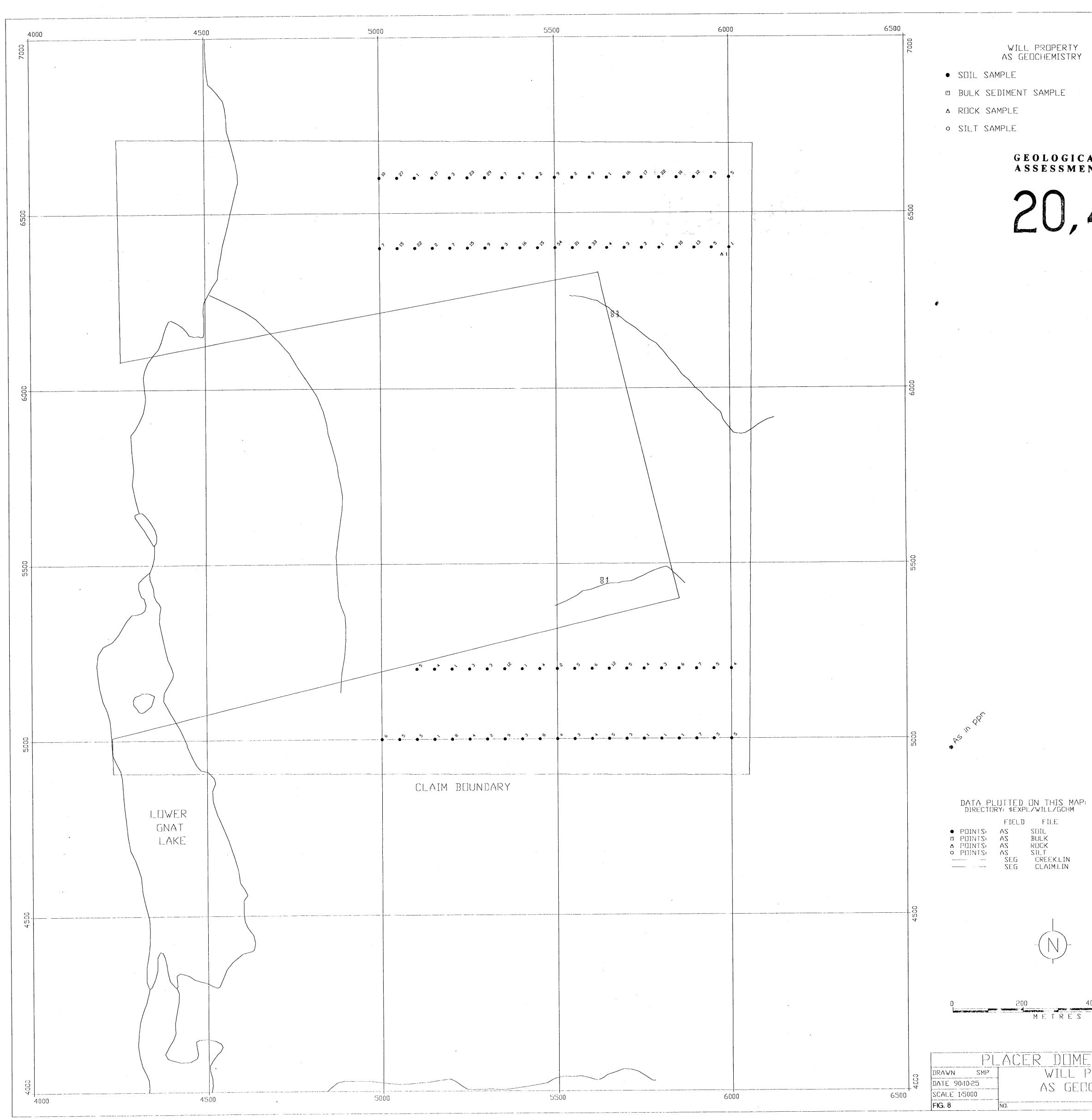
- 1. I am a graduate of the University of British Columbia where I received a B.Sc. in Geology in May, 1987.
- 2. I have practised my profession since graduation, primarily in a variety of exploration projects in British Columbia and Saskatchewan.
- 3. I am an Associate of the Geological Association of Canada.
- 4. I am currently employed by Placer Dome Inc.
- 5. I supervised all work done on the Will Claim, reviewed the data, and coauthored this report.

Stephen M. Price

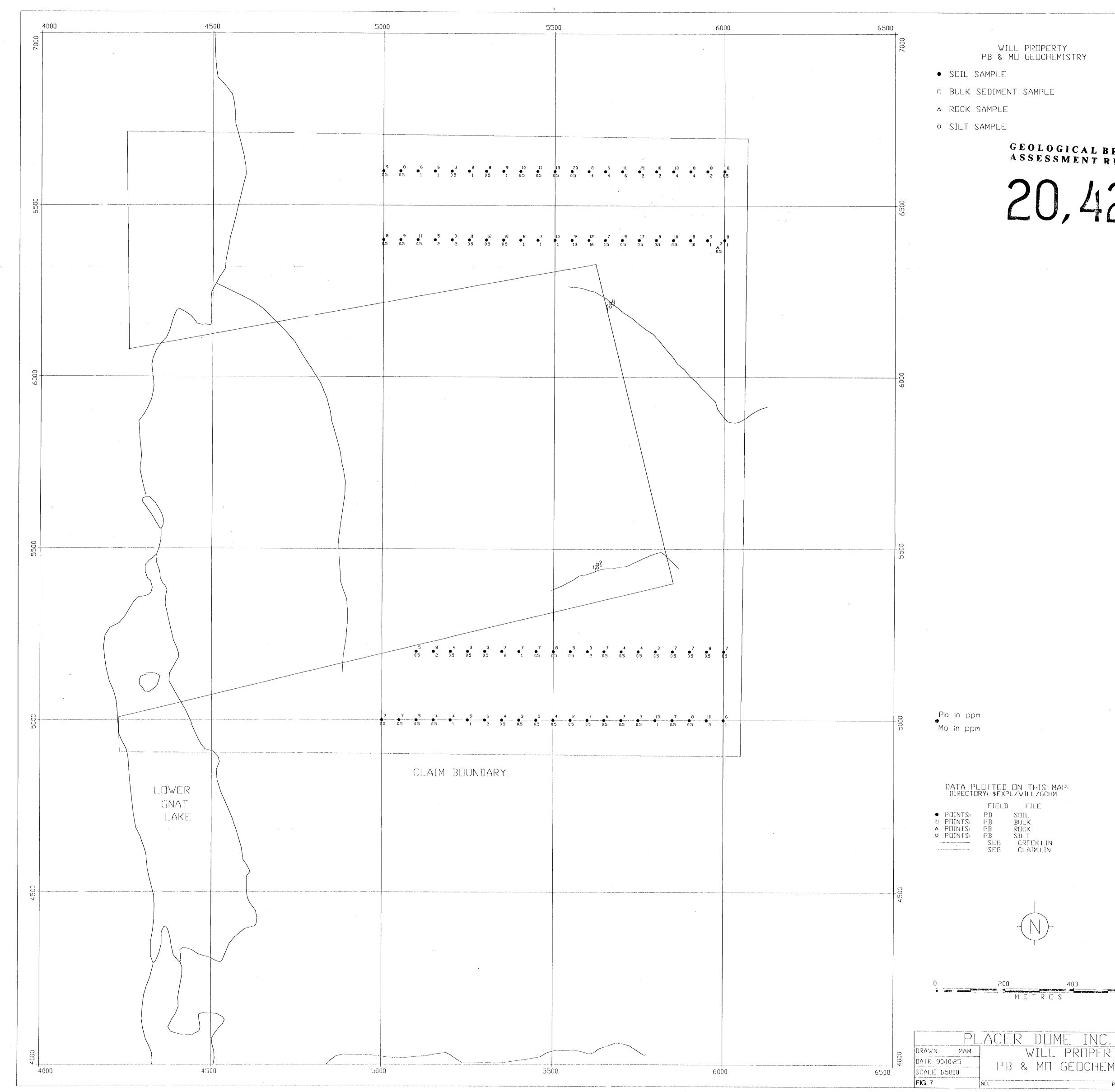
STATEMENT OF QUALIFICATIONS: G. LINDEN

I, Gerald E. Linden, of the municipality of Surrey, British Columbia do hereby certify that:

- 1. I am a graduate of the University of British Columbia where I received a B.Sc. in Geology in 1989.
- 2. I have practised my profession full-time since 1989.
- 3. I am currently employed by Placer Dome Inc.
- 4. I was involved in the exploration work on the Will claim in 1990 and coauthored this report.

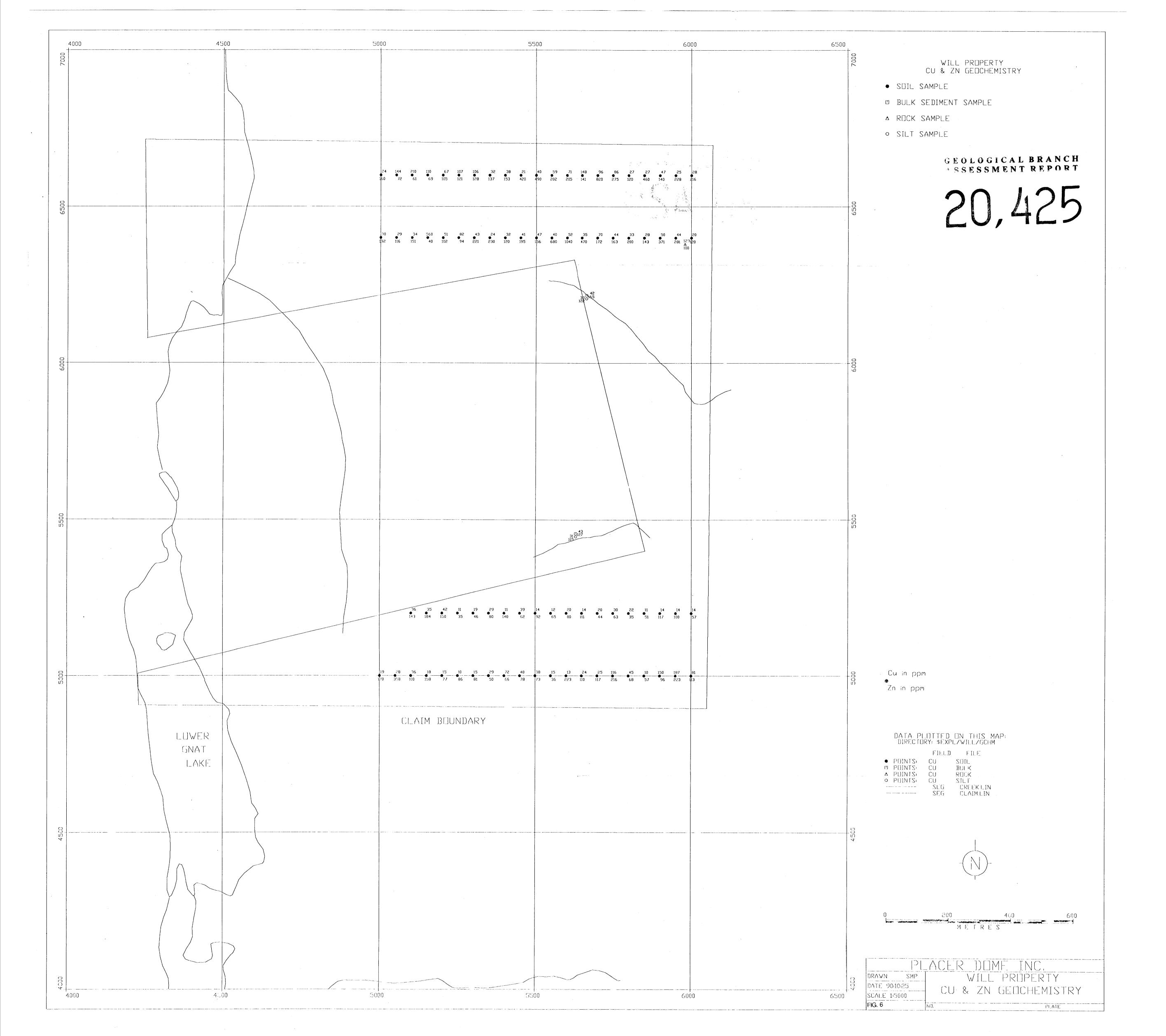

Gerald E. Linden

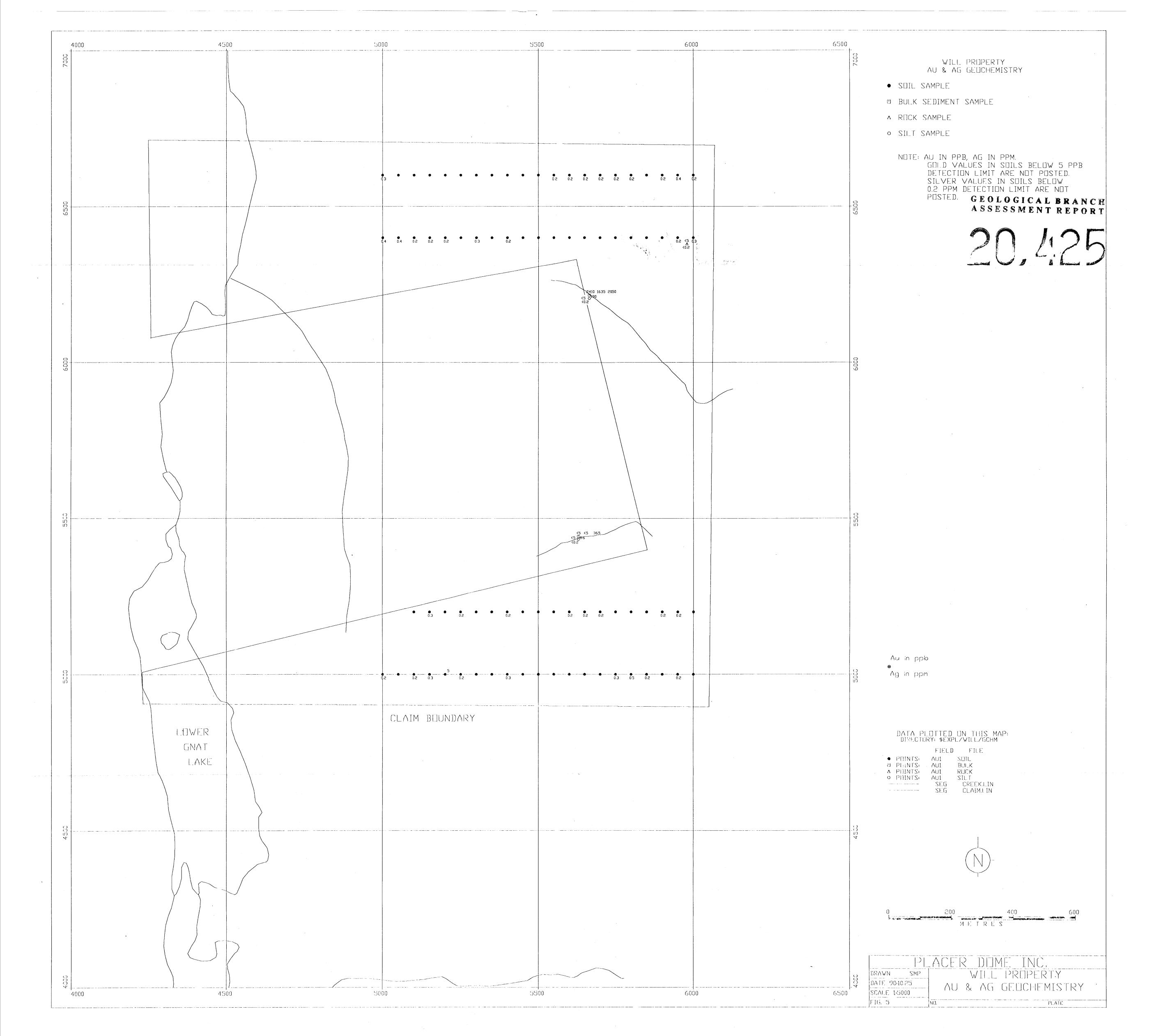
APPENDIX VIII

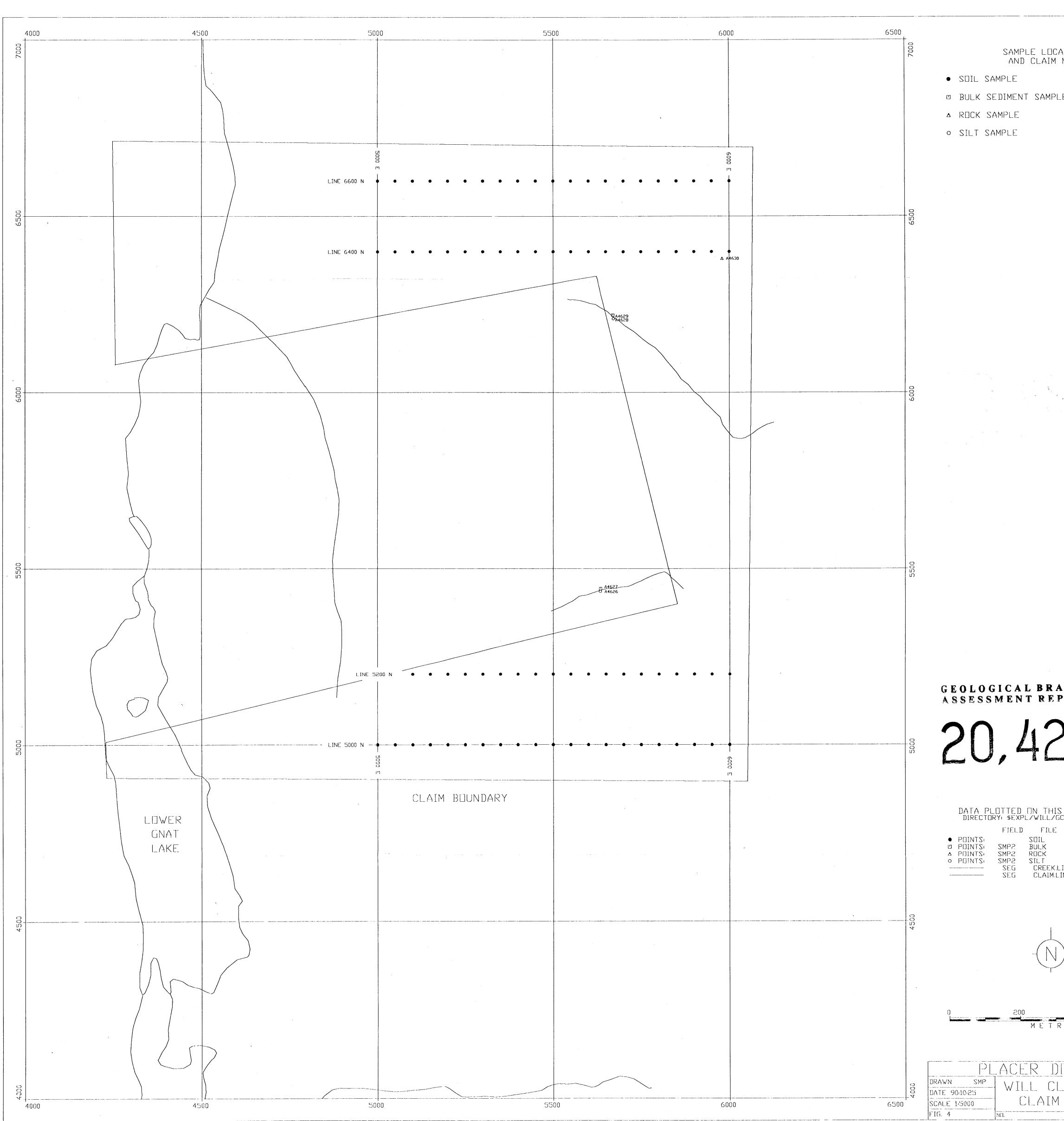

References

REFERENCES

- 1. Gabrielse, H., et al., 1977: Geology of Cry Lake (104I) Map-Area; Open File 610, Geological Survey of Canada.
- 2. Jeffery, W.G., 1966: June, Stikine, September, Etc.; in Lode Metals in British Columbia 1966, Annual Report, British Columbia Department of Mines and Petroleum Resources, pp. 19-20.
- 3. Westervelt, R.D., 1964: Geological and Geophysical Report on the Krysko Copper Prospect (June claims 1-12, Stikine claims 1-20) Gnat Lake, B.C.; Newconex Canadian Exploration Ltd., Assessment Report.




GEOLOGICAL BRANCH ASSESSMENT REPORT 20,425 PLACER DOME INC. WILL PROPERTY AS GEECHEMISTRY PLATE



GEOLOGICAL BRANCH ASSESSMENT REPORT 20,425

600 WILL PROPERTY PB & MD GEDCHEMISTRY PLATE

CATION I MAP	
PLE	
·	
ANCH PORT	
IS MAP: GCHM	
LIN LIN	
LIN	
400 600	
RES	
DE INC. LAIM SAMPLE AND 4 LUCATION MAP	-
PLATE .]