

ATTNOOD GOLD CORPORATION

REPORT ON A SOIL GEOCHEMICAL
SURVEY ON THE WINNIPEG-GOLDEN CROWN-HARTFORD AREA OF THE
GOLDEN CROWN PROJECT
Greenwood Mining Division
B.C.

NTS:
LATITUDE:
82E/2E
LONGITUDE:
AUTHOR:
DATE OF WORK:
DATE OF REPORT: October 1990

TABLE OF CONTENTS

Page
INTRODUCTION 1
PROPERTY 1
Table I (Description of Properties) 2
PREVIOUS WORK 4
LOCATION \& ACCESS 6
GEOLOGY \& MINERALIZATION 6
SOIL GEOCHEMICAL SURVEY
Sample Collection. 7
Analysis. 7
Plotting. 7
DISCUSSION OF RESULTS
Geology \& Soil Contamination. 8
Gold Geochemistry. 8
Copper Geochemistry. 10
Arsenic Geochemistry 11
CONCLUSIONS \& RECOMMENDATIONS 12
CERTIFICATE 13
APPENDIX A (Geochemical Analysis Certificates)
APPENDIX B (Cost Statement)
IN POCKET (Figures 3 to 9 inc\}.)

INTRODUCTION

The Golden Crown Project, located 5 km East of Greenwood B.C., incorporates the historic Winnipeg and Golden Crown gold-copper mines. The Winnipeg is reported to have been the largest gold mine in the Phoenix-Greenwood Camp.

Following the closure of the smelters at Greenwood and Grand Forks in 1919, other than limited production in the early 1930's and late 1940's, little recorded work was done on the Winnipeg-Golden Crown area until the mid 1970's.

Since that time, various geochemical and geophysical surveys have been conducted over portions of the 4.3 km long zone of gold bearing sulphide veins, a 782 meter adit was driven to provide underground access to the Winnipeg-Golden Crown area, extensive trenching and some 220 surface and underground diamond drill holes have been completed.

In the North Western portion of the gold vein zone, the Crown II area, Noranda Exploration Company Limited carried out a comprehensive exploration program in 1986 and 1987. This work consisted of line cutting, soil geochemistry, geologic mapping, magnetic, VLF-EM and IP geophysical surveys, trenching and Diamond and Reverse Circulation drilling. A number of attractive gold sulphide veins were discovered but Noranda returned the property without pattern drilling to define reserves.

In the South Eastern portion of the property, the Winnipeg-Golden Crown-Hartford area, similar work was intermittently carried out on small flagged chain and compass grids which have since been obliterated by time and logging activity.

In May 1990, White Geophysical Inc. extended the Noranda grid to the SE over the Winnipeg-Golden Crown-Hartford area and carried out magnetic and VLF-EM geophysical surveys. A geochemical survey, the subject of this report, was carried out under the direction of the Author as part of the program to develop a consistant, comprehensive geologic data base for the known area of gold-sulphide veins.

PROPERTY

The property consists of two Crown Grants, twelve Reverted Crown Grants, of which two have private surface ownership, forty four two-post claims and fractions, and two four-post mineral claims totalling 18 units.

These claims are listed on table I and their relative positions are shown on figure 1.

The Crown No. 3 claims appear to have overstaked the Wendy No. 3 claim.

TABLE I

0

DESCRIPTION OF PROPERTIES

Name Lot No. Record No. Expiry Date

Crown Granted Mineral Claims

Golden Crown	600	N/A	N/A
Winnipeg	599	N/A	N/A

Reverted Crown Granted Mineral Claims and Fractions

Hecla	859	1772	December 12, 1994
War Cloud Fr.	1316	1773	December 12, 1994
Hard Cash	1062	1774	December 12, 1994
Nabob Fr.	1063	1774	December 12, 1994
Joe Joe	7595	1775	December 12, 1994
Sissy	1068	1776	December 12, 1994
Calumet	1314	1777	December 12, 1994
J \& R	(L.1059)	1865	November 8, 1991
Silver Star	(L. 1550)	1926	December 21, 1991
Hartford	(L. 1057)	1927	December 21, 1990
Hartford Fr.	(L. 1061)	1928	December 21, 1990
Nellie Cotton	(L.7460)	2173	May 13, 1993

Mineral Claims

Win Fr.		
Attwood No. 1 Fraction	1784	September 24, 1994
Add No. 2 (12 units)	4243	February 25, 1996
Ike 1	4615	June 23, 1995
Ike 2	1972	January 23, 1994
Ike 3	1973	January 23, 1994
Ike 4	1974	January 23, 1994
Ike 5	1975	January 23, 1994
Ike 6	1976	January 23, 1994
Ike 7	1977	January 23, 1994
Ike 8	1978	January 23, 1994
Ike 9	1979	January 23, 1994
Ike 10	2023	February 6, 1994
Ike 11	2024	February 6, 1994
Ike 12	2025	February 6, 1994
		2026

Crown 1	1986
Crown 2	1987
Crown 3	1988
Crown 4	1989
Crown 5	1990
Crown 6	1991
Crown 7	1992
Crown 8	1993
Crown 9	2015
Crown 10	2016
Crown 17	2017
Crown 13	2018
Crown 14	2019
Crown 14	2020
Crown 15	2021
Crown 16	2022
Crown 17	2202
Crown 18	2203
Crown 19	2204
Hip Fr.	2199
Go1den Crown Fr.	2200
Star Fr.	2201
Crown Fr.	2027
Mikro (6 units)	4426
Knob 1	4435
Knob 2	4436
Knob 3	4437
Knob 4	4438
Knob 5	4439
Knob 6	4440
Knob 7	4441
Knob 8	4536
Mikro 2	4537
Mikro 3	

Being seventy-one mineral claims, in the Greenwood Mining Division, Province of British Columia.

PREVIOUS WORK

The history of the Golden Crown Project area dates back to 1891 when the low grade copper deposits at Phoenix, immediately north of the Golden Crown project property, were discovered and the Winnipeg and Golden Crown claims were staked.

Details on the original work in the project area are sketchy.
Considerable development work had been completed on the Winnipeg and Golden Crown properties by 1896 and three years later it is reported that the Winnipeg shaft had been sunk to 300 ft with 275 ft of development completed on the 100 ft level as well as the cutting of a station on the 200 ft level. On the adjacent Golden Crown claim, the shaft had also reached 300 ft and levels developed at $100 \mathrm{ft}, 150 \mathrm{ft}$ and 300 ft . By 1901, a 250 ft shaft had been sunk on the Hartford vein and 150 ft of cross cutting and drifting completed.

Work on the $J \& R$ claim between the Hartford claim and the Golden Crown claim consisting of " 75 ft of shafting and Cross Cutting" had been completed.

On the Winnipeg and Golden Crown, production was reported in the 1901-1903 period and again in 1910-1912.

In 1919 a strike by coal miners resulted in the closure of the smelters in Greenwood and Grand Forks and the large copper mines at Phoenix.

No activity is reported on the Golden Crown property between 1912 and 1938. During 1938 and the following three years, small tonnages of ore were shipped, probably from near surface stopes, on the McArthur Vein.

The property then lay idle until 1965 when Sabina Mines and Scurry Rainbow carried out geophysical surveys and diamond drilling over a four year period, mainly looking for nickel in serpentinites.

In 1970 Granby, which had reactivated the Phoenix mines as an open pit operation, carried out IP surveys and possibly some drilling on the Wendy Group which included much of the present property northwest of the Golden Crown claim.

Since 1976 activity on the project area has been more or less continuous, as tabulated below:

1976: Golden Crown Syndicate drilled four holes.
1977-1978: Con Am Resources optioned the property and drilied four holes.
1979: Consolidated Boundary Exploration drilled four holes.
1980: The Winnipeg Golden Crown area was optioned by Mundee Mines, which among other things dewatered the Golden Crown shaft to the 100 ft level and drilled 16 holes. Two holes were drilled on the J \& R claim by others.

1981: A further nine holes were drilled by Mundee Mines on the Winnipeg Golden Crown area, while Argenta Resources carried out geophysical surveys and drilled four holes on the J \& R fraction.

1982: No activity.
1983: Geophysical and geochemical surveys were completed on the Winnipeg Golden Crown area along with backhoe trenching and 18 diamond drill holes.

1984: Consolidated Boundary drilled four or more holes on the Winnipeg Golden Crown claims and 12 holes on the $J \& R$ fraction.

1985: Four holes were drifled on the Golden Crown and five on the Crown No. 6 claim in an area of old workings labled the northwest zone. These workings may be the Bald Eagle workings shown on the geological map accompanying G.S.C. paper $45-20$ by D.A. McNaughton.

1986: On the Winnipeg Golden Crown area, Consolidated Boundary/Grand Forks Mines drilled 17 holes, mainly on the south zone. The area west of Golden Crown claims was optioned to Noranda Exploration Ltd. Noranda established a large grid on the south flank of Knob Hill, carried out geological, geochemical and geophysical surveys, excavated 26 trenches and drilled five diamond drill holes. This work may have rediscovered the Red Rock showings that are located on McNaughton's map.

1987: Noranda completed three diamond drill holes and ten Reverse Circulation drill holes on their portion of the property while Consolidated Boundary/Grand Forks drilled a reported ten holes. In September 1987, a trackless adit was collared on the eastern boundary of the calumet CTaim. At year end the adit had advanced about 444 meters and one underground drillhole completed to locate the flooded Winnipeg workings.

1988: The trackless adit was completed at 782 meters from the portal. In early 1988 crosscuts were driven to the Golden Crown shaft, the King Vein, to drill stations and to the expected location of the Winnipeg shaft. A raise was also completed to the Golden Crown 100 ft level. During the year, 48 diamond drill holes were completed underground and 12 were completed from the surface. Attwood Gold Corp. became the sole owner of the project.

1989: The development program was completed early in the year with the drilling of an additional 14 holes from surface and five from underground.

In May, R.H. Seraphim, Ph.D., P.Eng. estimated the reserves in the Winnipeg Golden Crown area at 62,670 tons grading $0.445 \mathrm{oz} \mathrm{Au/ton}$, oz Ag/ton and $0.7 \% \mathrm{Cu}$.

LOCATION \& ACCESS

The Goiden Crown Project area is located 5 km West of Greenwood, B.C. or 13 km North West of Grand Forks, B.C. Access to the property from Highway No. 3, the Southern Trans Provincial or Crowsnest Highway, is via the Phoenix Mine road to the site of the old town of Phoenix and thence South from the Phoenix Cenotaph along the Lone Star Haul road for 3 km to the property. (figures 2 and 9).

Access on the property is primarily via a network of old railroad grades, now used as roads, which radiate out from Hartford Junction, a major railroad junction complex from the 1900 's.

Secondary 4 wheel drive access is provided by more recent logging roads that branch off the old railroad grades.

GEOLOGY \& MINERALIZATION

The property is dominantly underiain by Paleozoic sediments and volcanics of the Attwood and Knob Hill groups. However, there appears to be no concurrence between regional mappers on the division between the Attwood and Knob Hill. For the purpose of this discussion, the Knob Hill group consists of the predominantly sedimentary package (siltstones, charts, conglomerates and minor intercalated intermediate volcanics that outcrop on the SW flank of Knob Hill in the NW corner of the property. A thin strip of Brooklyn sharpstone conglomerate, which unconformably overlies the Knob Hill, occurs along the North East edge of the Crown claims.

The balance of the property is predominately underlain by the metavolcanics of the Attwood group. This unit appears to consist of a thick succession of intermediate to basic volcanics variously regionally altered to the green schist or amphibolite facies. Both flow and pyroclastic textures are observed in drill core and outcrop. No marker horizons have been identified.

Dioritic, gabbroic and ultramafic rocks intrude both the knob Hill and Attwood groups. Locally, the dioritic intrusives may be coeval with the Attwood volcanics.

Serpentinized ultramafics outcrop in the central and southestern portion of the property with drill hole intercepts and exposures in underground workings show these serpentinites to be present at shallow depths under the Winnipeg/Gold Crown portion of the property.

Mineralization on the property consists of a North West - South East swarm or network of steep dipping quartz sulphide or massive sulphide veins which range in thickness from centimeters to several meters. Pyrrhotite and pyrite are the dominate sulphides with chalcopyrite and arsenopyrite being subordinate. Gold and silver are present in significant quantities. While some assay data suggests there may be a direct relationship between gold and arsenopyrite, metallurgical test work has shown that this relationship is not intimate.

Sample Collection:
Soil samples were collected with a mattock at 25 meter intervals along the grid lines spaced at 100 meters intervals. The samples were typically collected from the B soil layer at a depth of 10 to 17 cm and placed in a kraft soil envelope marked with the sample location's grid co-ordinates.

The sample co-ordinates, color, sampling depth, soil layer sampled, moisture and composition were recorded in a field book along with explanatory notes for locations where samples were not collected and notes on cultural features.

The sampling was carried out by Sonny Yip, B.A. supervised by Warren Robb, B.Sc., the project geologist.

The samples were then packed in cardboard boxes and taken to Acme Analytical Laboratories Ltd. for analysis.

Analysis:
The samples were dried at Acme Analytical Laboratories Ltd. and sieved at 80 mesh.

From the minus 80 mesh material, a 0.5 gram sub-sample was taken. This sample was digested with $3 \mathrm{ml} 3-1-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 20$ at $85^{\circ} \mathrm{C}$ for 1 hour, diluted with 10 ml of water and the disolved elements $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, $\mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{U}, \mathrm{Au}, \mathrm{Th}, \mathrm{Sr}, \mathrm{Cd}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{V}, \mathrm{Ca}, \mathrm{P}, \mathrm{La}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}$, $T i, B, A 1, N a, K$ and W determined by ICP-atomic emission spectroscopy. Results, see Appendix I, were reported in parts per million except for Fe, $\mathrm{Ca}, \mathrm{P}, \mathrm{Mg}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Na}$ and K which were reported in percent.

Also from the minus 80 mesh fraction a 10 grams sub-sample was taken, ignited at $600^{\circ} \mathrm{C}$ for four hours, digisted with aqua rega at $95^{\circ} \mathrm{C}$ for one hour. A 50 ml aliquot was then extracted into 10 ml of MIBK. The MIBK solution was then analyzed for gold by graphite furnace Atomic Absorption at a lower detection limit of 1 ppb Au.

Plotting:

The geochemical results on disk, together with a plan of the grid supplied by White Geophysical Inc., were taken to Geo-Comp Systems at 603-510 West Hastings Street, Vancouver, BC, where the data was entered into a computer aided drafting system and plots of the Cu, Au and As values produced at a scale of $1: 2500$ (figures 3,4 \& 5). The location of this grid, with respect to surface features, is shown on figure 9.

DISCUSSION OF RESULTS

Geology \& Soil Contamination:
The area of the geochemical survey is predominantly underlain by "Greenstones" of the Paleozoic Attwood group which has, in the Eastern portion of the grid, been intruded by "01d" Diorite. On the property the "Greenstones" exhibit flow, pillow breccia and pyroclastic textures. Both the "Greenstones" and the "old" Diorite have been regionally altered to the green schist facies.

Serpentinized ultrabasic rocks of Jurassic or Cretaceous age outcrop South East of the grid area. Within this grid area, Serpentinites are exposed in the adit that was driven NW from near the Eastern limit of this grid, in deeper drill holes and in a trench at $4474+00 \mathrm{E}, 464+50 \mathrm{~N}$.

Numerous structurally controlled gold bearing sulphide veins or quartz-sulphide veins trend NW across this grid area.

The veins range in composition from near massive pyrrhotite with minor chalcopyrite and arsenopyrite to quartz-pyrite-chalcopyrite veins.

Overburden in this grid area consists of gray glacial till and varies in thickness from nil in outcrop areas to several meters. Local swamps have resulted in overlays of black organic muck in depressions.

Abandoned railway grades, now maily used as roads, cross the property in several directions. Waste rock from the copper mines at Phoenix, to the North of this grid, was used as fill and ballast. Copper responses on or adjacent to the old rail lines are thus suspect.

Mine dumps surrounding the collars of the Winnipeg, McArthur, Golden Crown and Hartford shafts are other sources of soil contamination.

Gold Geochemistry:
Aqua Riga-MIBK extractible gold in the minus 80 mesh fraction of the soil samples range from 1 ppb (the detection limit) to $18,400 \mathrm{ppD} \mathrm{Au}$, the latter taken from mine waste. Contoured Au values as shown on Plan yield a pronounced NW (grid E-W) trend, which as the Western margin of the grid is approached swings to the WNW.

Specific Au responses marked on the contoured plan (figure 6) as A-1 to A-12 are discussed below.

Au-1, Au-2:
These single sample responses (with copper correlation) are open to the NW Au-2 and are believed to be due to a gold-copper quartz vein intersected in drill holes GC 83-4 and GS 83-5.

Au-3:
This response which peaks at $L 460+00 E, 465+50 \mathrm{~N}$ can be interpreted to extend from $L 456+00 \mathrm{E} 464+00 \mathrm{~N}$ to $\mathrm{L} 462+00 \mathrm{E}, 466+00 \mathrm{~N}$. The possibility that this response is a continuation of $\mathrm{Au}-2$ should be investigated.

Au-4:

This response correlates with the $J \& R$ Zone, previously tested by drilling with favourable results.

Au-5:
This gold response correlates with a massive sulphide vein exposed in a trench near $1474+00 \mathrm{E}, 464+25 \mathrm{~N}$. The vein was apparently tested by a number of short drill holes between line $1474+00$ and $475+00$ with mediocre results.

Au-6:
Geologic mapping indicates the Eastern extension of this Au geochemistry response was trenched in the vicinity of Line L474+00E. Fill-in geochemistry on lines $L 474+50, L 472+50, L 473+50$ is recommended to confirm the continuity of this response which has no apparent correlating geochemical or geophysical response.

Au-7:
This response was tested by drill holes $\mathrm{JR}-80-1$ and $\mathrm{JR}-80-2$, both holes intersected narrow zones of low grade gold-copper mineralization.

Au-8:
The Western continuation of this response on the Noranda grid was tested by trench CR-87-26 and drill hole RC-CR-87-10 with mediocre results.

Au-9:
This spotty response is South of the "South Zone" that was drill tested in 1976 and returned values to 1.260 oz Au/ton over a 4.0 foot core length. Follow up soil sampling and prospecting is warranted.

Au-10:
An old drill collar just East of L466+00E suggests this response was previously known but the results of the drilling have not been found. This geochemical response correlated with a sharp, near surface magnetic response and is crossed at a shallow angle by a VLF-EM conductor. Drill testing is warranted.
$\mathrm{Au}-11:$
This response consists of two strongly anomolous gold in soil responses $1,290 \mathrm{ppb} \mathrm{Au}$ at $\mathrm{L470+00E}, 460+00 \mathrm{~N}$ and $1,020 \mathrm{ppb}$ Au L473+00E, $460+25 \mathrm{~N}$. In the absence of fill in sampling the correlation of these responses is speculative.

Prospecting in the area of the highs is warranted.

Au-12:

This response appears to be a continuation of a trend of scattered responses that were identified on the Noranda survey to the NW. Geologic mapping indicates shallow overburden thus prospecting for the source of the gold in the soil is indicated.

Copper Geochemi stry:
Copper values in soil vary from a low of 11 ppm to a high of $1,587 \mathrm{ppm}$ although the latter is contaminated with mine waste. Contoured copper values indicate a general NW -SE trend, similar to the gold trend. The copper responses marked on figure 7 are discussed below.

Cu-1:
This Copper in soil response correlates with the Calumet vein system that has been explored with trenches and drill holes.

Cu-2:
This response, which is open to the NW, correlates with Au-1.
Cu-3:
This strong, but somewhat vague, NNW trend that extends from L467+00, $466+25 \mathrm{~N}$ to $2470,464+75 \mathrm{~N}$ is likely a combination of contamination from mine waste and local bedrock sources. At the NNW end of the response, the high copper values correlate with $\mathrm{Au}-2$ and the intercepts in drill holes 83-4 and 83-5.

Cu-4:
This response is possibly due to the concentration of Cu in organic soils as it correlates with a small swamp.

Cu-5 A \& B:
These responses are possibly largely due to contamination from copper bearing railroad balast. Drill holes $3 R-80-1$ and $J R-80-2$ in response Cu-5A did intersect low copper values.

Cu-6 A, B \& C:
Responses 6 A and 6 C appear to be continuations of 6 B , the spotty response from the J \& R Zone. Care must be taken in further action on this response due to the proximity of old railroad grades to samples having high copper.
$\mathrm{Cu}-7,7 \mathrm{~B}:$
This branching response appears related to the Hartford $\mathrm{Au}-\mathrm{Cu}$ mineralized structure. The correlation of high copper values with magnetic spikes suggests pyrrhotite is associated with the copper. The Hartford vein was explored in the early 1900's by a shaft and underground levels. The proximity to old rail lines suggest the deposit may have shipped ore.

Cu-8:
The SW segment of this copper response correlates with a weak VLF-EM conductor.

Cu-9:
The correlation of this copper response with a VLF-EM conductor gives it added weight as a drill target.

Magnetic responses on lines $459+00 E$ and $461+00 E$ suggests pyrrhotite may be present locally.

Arsenic Geochemi stry:

Arsenic Values range from a low of 2 ppm to a high of $52,128 \mathrm{ppm}$ in a sample contaminated by mine waste. Contoured Arsenic (figure 8) values show an overall WNW trend with the higher values concentrated in the NE quarter of the grid. Mapping and drill results show this area is underlain at a shallow depth by serpentinite and thus the higher arsenic values may be a function of proximity to this rock type.

Three arsenic responses, as discussed below, are interpreted from the contoured data.

AS-1:
This response correlates with the Northwesten continuation of the Calumet zone.

AS-2:
This low order response correlates with a gold bearing vein discovered in drilling in 1986.

AS-3:
This arsenic response correlates with the gold response Au-5 on line $474+00 E$. Copper values are also elevated. A massive sulphide vein (pyrrhotite \& pyrite) is exposed in a nearby trench. The vein has also been tested by diamond drilling with mediocre assay results.

While the soil results serve to highlight the potential of previously known and possibly inadequately tested veins, the soil survey did identify new targets.

These targets include gold responses $A u-9, A u-11$ and copper response Cu-9.

CONCLUSION \& RECOMMENDATIONS

The 1990 soil geochemical survey has provided a consistant soil geochemical data base over the Winnipeg-Golden Crown-Hartford portion of the Golden Crown Project area. The contoured values for Copper, Gold and Arsenic show trends consistant with the known sulphide and quartz sulphide veins on the property. In many cases, the stronger soil geochemical responses correlate in part with known mineralization and the extent of the geochemical response is usefull in directing exploration along strike.

Three responses $\mathrm{Au}-9, \mathrm{Au}-11$ and $\mathrm{Cu}-9$ can be considered new discoveries in that no evidence of historic physical work directed at the sources of the responses has been found.

Follow up on these responses is warranted.

CERTIFICATE

I. Gordon Melville Ford, of the City of Port Moody, Province of British Columbia, do hereby certify as follows:

1. I am a consulting Geological Engineer and President of Fordex Management Inc. with an office at 575 Garrow Drive, Port Moody, British Columbia.
2. I am a registered Professional Engineer in the Province of British Columbia.
3. I graduated with a degree of Bachelor of Science, Geology and Geophysics from the University of British Columbia in 1964.
4. I have practiced my profession for twenty six years.
5. I have no direct or contingent interest in Attwood Gold Corporation or any of the properties which comprise the Golden Crown Project.
6. This report is based on numerous field trips to the property, thorough review of the historical data, and observation of the field work being carried out. I have also observed a number of claim posts in the field, sufficient to conclude the property boundaries shown on the maps are reasonably accurate.
7. Written permission is required from Fordex Management Inc. to publish this report in any prospectus or statement of mateteqticacts.

Fordex Management Inc.
October 11, 1990

0

APPENDIX A
 (GEOCHEMICAL ANALYSIS CERTIFICATES)

CONTRACT SERVICES：

Soil Sampling：Sonny Yip（12 days）\＄1，094．02
Field Supervision：WR Geological Ltd．（3 days at $\$ 150.00 / \mathrm{day})$
450.00

Geochemical Analysis：Acme Analytical Lab．Ltd．
（ 689 Samples－30 element ICP Analysis
689 Geochem Au Analysis by Acid／each 10 grams） $5,936.15$

Field Expense：
1，235，97
Drafting
（Geo－Comp Systems）
480.00

Report Preparation：Fordex Management Inc．
（ 3 days at $\$ 300.00 /$ day $)$
900.00
$\$ 10,096.14$
ニッニニニュッニニー

0

$$
\frac{\text { APPEND I X B }}{\text { (COST STATEMENT) }}
$$

Attwood Gold Corp．PROJECT GOLDEN CROWN
File \＃90－1366
sutmit ted by： W ．ROQB

SAMPLE空	$\begin{aligned} & 10 \\ & \text { ppon } \end{aligned}$	$\underset{\mathrm{Cum}}{\mathrm{Cu}}$	pon	$\begin{aligned} & \mathrm{Zn} \\ & \mathrm{ppm} \end{aligned}$	Ag	$\underset{\text { ppon }}{n}$	Co	$\begin{gathered} \mathrm{Mn} \\ \mathrm{pqm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathbf{x} \end{gathered}$	Me	$\begin{array}{r} \mathrm{U} \\ \text { ppon } \end{array}$	$\underset{\text { ppom }}{\substack{\text { un }}}$	Th ppon	$\underset{\mathrm{ppm}}{\mathrm{Sr}}$	cd pon	$\begin{array}{r} \text { Sb } \\ \text { ppin } \end{array}$	$\begin{aligned} & \text { Bi } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} V \\ \text { porn } \end{array}$	$\begin{gathered} \mathrm{CB} \\ \mathrm{y} \end{gathered}$	$\begin{array}{r} \mathbf{p} \\ \mathbf{x} \end{array}$	$\begin{array}{r} \mathrm{LB} \\ \hline \mathrm{pqm} \end{array}$	$\begin{gathered} \mathrm{Er} \\ \text { ppm } \end{gathered}$	$\mathbf{M g}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppom} \end{gathered}$	$\mathrm{T} 5$	8	$\begin{aligned} & \text { Al } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathbf{z} \\ & \hline \end{aligned}$	\mathbf{x}	鼻娚	$\begin{aligned} & \text { pat } \\ & \text { pph } \end{aligned}$
L456E 468000m	1	82	14	56	2	25	14	964	2.28	20	5	M 0	3	36	2	2	2	32	． 44	$\times 061$	8	18	.31	193	4		2.54	． 03	． 09	1	
L456E 465475\％	1	74	19	58	3	22	15	1283	2.20	25	5	10	2	34	4	2	2	31	． 38	． 055	7	17	． 29	187	． 11		\＄．61	． 02	． 08	1	5
1456E 465450\％	1	86	13	48	． 1	25	15	814	2.45	22	5	Mo	3	25	.2	2	2	33	． 28	． 049	8	49	． 31	134	， 14		2.64	． 03	． 06	1	67
L456E 465＋25H	1	42	10	97	1	36	14	1429	2.33	25	5	N0	2	22	．2	2	2	33	． 20	108	5	18	． 27	254	． 14		2.12	． 03	．06	1	B
L456E 465＋00\％	1	72	10	45	1	27	14	1356	2.17	15	5	ND	2	29	.2	2	2	31	＋34	． 647	6	49	.30	209	10	18	1.68	． 03	． 07	I	15
1456 464＋751	1	61	10	42	2	27	13	861	2.24	23.	5	NO	3	18	2	2	2	32	． 22	．043	B	22	． 36	161	42		1.09	． 03	． 07	1	49
L456E 406450N	1	$\dagger 45$	17	54	． 5	43	17	545	2.87	39	5	W0	5	25	\％ 2	2	2	40	． 24	． 056	12	29	． 40	125	A7	5	3.28	． 05	． 09	I	30
L456E 465＋251	1	76	22	46	2	34	13	683	2.68	19	5	ND	3	76	． 2	2	2	39	． 21	．050	昌	33	． 56	97	－11	2	1.73	． 03	． 06	1	32
L456E 464＋00m	1	46	19	66	3	26	15	1130	2.80	27	5	W0	2	17	2	2	2	40	． 20	\％7t	7	26	． 37	179	11	4	1.42	． 03	． 07	－	4
L456E 463－7TM	1	52	10	41	＋	16	9	912	1.93	12	5	ND	1	14	2	2	2	33	． 15	$\mathrm{CH7}$	5	16	． 25	115	09	4	1.05	． 03	． 05	1	19
L456E 463－50m	2	77	11	5%	4	32	45	621	2.65	13	5	WD	3	16	－2	2	2	37	.17	063	7	25	． 47	195	14：	2	2.40	． 02	． 04	1	15
L456E 463＋25M	1	110	14	4 B	． 4	37	17	684	3.23	14	5	H0	4	14	2	2	2	4	． 15	－052	9	30	． 46	173	． 16		3.01	． 22	． 06	1	31
6456E 463＋00\％	2	60	12	57	4	38	16	679	2.23	15	5	ND	3	16	＋2	2	2	31	＋15	．057	6	17	． 26	179	15		3.00	． 02	． 06	1	4
6456E 462＋75H	1	24	3	27	． 2	5	5	1259	1.01	4	5	ND	1	15	－ 2	2	2	23	． 19	028	2	4	． 08	900	．07：	3	． 63	． 153	．65	I	
1456E 462＋50N	2	88	43	53	． 7	41	14	697	2.55	4	5	ND	3	24	$+2$	2	2	32	． 20	．844	7	15	． 28	187	18		3.21	． 03	． 07	，	11
2456E 462＋25N	11	760	13	54	4	40	40	675	B． 70	15	5	Mo	3	20	35	2	2	54	． 21	645	5	28	． 47	127	－14		3.46	． 02	． 06	1	29
（456E 462＋00m	3	109	13	53	． 3	58	17	919	3.04	17	5	H0	4	17	． 2	2	2	39	． 18	． 053	8	28	． 45	229	． 45	2	2.77	． 02	． 07	1	19
L656E 461＋TSN	4	68	14	72	－ 2	51	14	673	2.63	14	5	N0	2	45	． 3	2	2	35	． 16	113	5	21	． 26	179	． 15	4	1.98	． 03	． 07	1	5
L456E 461＋50m	4	94	13	84	． 3	81	17	267	2.94	21	5	Mo	3	20	2	2	2	42	． 28	068	7	32	． 69	122	15		2.65	． 03	． 06	1	210
t658E 464＋25M	＊	60	13	52	2	56	13	655	2.50	18	5	ND	3	18	－2	2	2	36	． 21	．066	8	29	． 41	980	16	2	3.02	． 13	． 05	1	18
L456E 461＋00m	1	13	4	25	4	6	4	755	． 95	2	5	N0		7	2	2	2	22	． 09	8037	2	6	． 08	37	07	4	． 47	． 03	． 03	1	9
L456E 460＋75M	2	51	10	48	2	42	11	939	2.19	15	5	ND	3	13	2	2	2	33	． 15	060	7	25	． 34	154	14	2	2.53	． 02	． 65	1	13
L456E 460 5 50N	1	32	10	57	2	23	9	738	1.90	10	5	ND	2	10	2	2	2	31	． 13	¢056	5	19	． 25	112	12		1.41	． 03	． 04	t	1
L456E 460＋25M	1	67	11	44	． 3	49	12	218	2.21	19	5	Ni	3	12	2	2	2	34	． 15	94\％	7	25	． 34	93	． 14	2	2.42	． 03	． 05	\％	30
L456E 460＋60N	1	15	4	20	2	5	2	205	.77	3	5	NJ	1	7	2	2	2	19	． 09	D23	2	6	． 08	28	06	，	． 47	． 04	． 04		1
L456E 659+75M	2	47	10	46	3	34	11	1359	2.37	24	5	ND	2	13	2	2	2	35	.17	＋64	6	27	． 40	134	13		2.25	． 02	． 05		4
L456E 459＋50H	3	41	13	58	2	41	12	1090	2.34	20	5	W0	2	15	－2	2	3	34	． 23	045	6	27	． 36	172	16		2.38	． 02	． 06	1	24
L656E 459＋25\％	1	48	11	60	4	41	10	452	2.08	15	5	ND	3	17	2		2	31	． 19	\％ 075	8	27	． 33	153	.13	2	2.20	． 03	． 05	1	4
L656E 659＋00M	1	25	12	41	2	23	8	305	1.76	15	5	NO	2	15	2	2	2	27	． 20	＋066	6	21	． 24	90	D80	2	1．12	． 02	． 04	I：	6
1456E 458475N	1	48	12	74	． 3	36	16	481	2.73	24	5	NO	3	12	－2	2	2	36	． 20	130	7	35	． 66	100	＋69	2	1.65	． 02	． 06	1	75
L4560 450＋50m	1	54	14	80	4	42	13	405	2.49	20	5	10	3	17	2	2	2	36	． 22	139	－	30	． 39	120	17		2.30	． 02	． 06	t	47
L456E 453＋25M	1	108	9	94	． 3	165	49	501	2.56	24	5	No	2	21	2	2	2	31	． 34	．059	9	30	． 31	92	12	3	2.05	． 03	． 05	1	76
L456E 458400N	1	196	13	30	2	167	5	233	1.41	14	5	ND	1	30	${ }^{+3}$	2	2	21	． 80	d09	0	18	＋20	50	， 6	4	1.15	． 03	． 03	t	36
L657E 465＋75M	1	43	9	67	.1	23	13	788	1.59	20	5	N0	1	25	－ 2	3	2	29	． 27	－104\％	5	18	－28	\＄73	09	3	1.18	． 83	． 04	t	5
L457E 465450m	1	77	g	36	.4	28	7	680	4.51	15	5	N0	2	18	2	2	2	24	． 42	8029	14	13	． 98	55	12	4	2.06	． 65	． 05	t	1
L457E 465＊25M	1	49	9	52	－2	22	10	822	2.06	19	5	ND	2	14	． 2	2	2	31	． 15	0097	6	18	． 27	132	14	2	2.37	． 03	． 04	］－	10
STMNDAR C／Alu－s	19	57	39	132	6.7	73	29	1049	4.11	43	22	7	39	50	19.3	16	22	58	． 52	， 0.57	39	59	． 93	1.83	09	39	1．98	． 06	． 14	11	54

 THIS LEACH IS PARTLAL FDN MH FE SR CA P LA CR MG 日A TI B W MMO LIMITED FOR MAK AND AL．MU OETECTIOH LIMIT GY ICP IS 3 PPA． SHMPLE TYPE：PI－PT SOII PS ROCK NU ANMLYSIS EY ACID LEACH／AA FROM 10 GM SANPLE．

SAMPLE*	$\begin{array}{r} \mathrm{Mo} \\ \mathrm{ppm} \end{array}$	Cu	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { hg } \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Hi} \\ \mathrm{prom} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { Ppom } \end{array}$	$\underset{\mathrm{pom}}{\mathrm{Mn}}$	$\begin{gathered} \mathrm{Fe} \\ \pi \end{gathered}$	$\begin{aligned} & \mathrm{As} \\ & \mathrm{ppm} \end{aligned}$	$\underset{\text { ppm }}{\text { U }}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { ppom } \end{aligned}$	$\mathrm{Sr}_{\mathrm{prom}}^{\mathrm{pom}}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{p} \mathrm{PO}^{\prime} \end{array}$	$\begin{array}{r} V \\ \text { PPR } \end{array}$	$\mathrm{C}_{\mathbf{x}}^{\mathrm{x}}$		$\begin{gathered} \mathrm{La} \\ \text { ppon } \end{gathered}$	$\underset{\mathrm{pr}}{\mathrm{Cr}}$	Mg	$\begin{aligned} & \text { ge } \\ & \text { pporn } \end{aligned}$	${ }_{x}^{1}$	$\begin{array}{r} \text { B } \\ \text { ppen } \end{array}$	$\underset{y}{A!}$	$\begin{gathered} \text { We } \\ \mathbf{x} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{X} \end{aligned}$	M	$\begin{aligned} & \text { Aup } \\ & \text { ppot } \end{aligned}$
1457E 485400\%	1	30	11	84	.1	19	9	796	2.18	19	5	M0	2	$16: 82$	2	2	32	. 16	0075	5	49	. 26	151	. 12		1.56	.63	. 04	1	43
L457E 466+75M	1	33	5	43	11	21	12	880	1.85	8	5	NO	1	15.2	2	2	29	. 17	059.	4	45	. 24	121	10	2	1.36	. 03	. 03	2	8
[457E 464+50W	1	78	5	42	. 2	26	14	447	2.12	40	5	N0	3	16 . 2	2	2	34	. 18	. 1046	5	22	.35	77	810		1.39	. 63	. 05		36
L457E 464+25M	i	53	12	54	\pm	35	13	673	2.91	25	5	NO	2	$22 \because 2$	2	2	26	. 27	$\bigcirc 082$	5	15	. 23	116	. 15	5	3.07	. 63	. 04	1	26
L657E 464+00N	7	43	6	40	\pm	14	B	413	1.34	10	5	ND	1	12.2	2	2	22	. 11	2067	3	10	. 16	75	108	2	1.14	.03	. 03	2	8
[4575 633-75\%	1	52	10	58	1	25	14	919	2.35	6	5	N0'	2	20.2	2	2	33	. 19	061	5	17	. 29	167	. 83		1.86	. 03	. 06	1	11
1457E 463+50\%	2	184	11	61	. 3	34	49	548	3.01	19	5	N0.	3	$21 \therefore 2$	2	2	39	. 21	-088	10	27	. 46	146	, 15	3	3.38	. 03	. 05	¢	65
L457E 463+25M	2	119	12	60	5	46	17	246	3.04	24	5	ND	4	$17 \cdots \cdot 2$	2	2	40	. 27	.099	15	28	.43	151	17		4.12	. 05	. 06	d	21
6457E 462+50m	3	323	40	62	5	37	19	625	4.12	23	5	NO	4	$34 \cdots 3$	2	2	47	. 42	D78	16	30	. 52	452	16		2.61	. 03	. 12	1	46
6657E 462+25N	3	462	55	67	4	36	18	570	4.20	22	5	NO	4	33 - 3	2	2	44	. 39	088	14	29	. 45	167	12	2	2.53	. 02	. 09	1	37
L457E 462+00\%	10	511	15	55	. 3	56	37	784	5.69	= 44	5	ND	3	19.4	2	2	55	. 18	.060	8	36	. 72	114	. 10	2	2.55	. 02	. 05	1	53
1657E 469+75M	2	106	11	44	12	35	14	279	2.51	13	5	WD	4	$22 \therefore 2$	2	2	35	. 20	. 059	9	22	. 35	101	4.15		3.44	. 03	. 06	3	16
L457E 461+50m	1	63	14	55	. 3	36	13	478	2.39	+ +5	5	H0	3	19 Q 2	2	2	36	. 18	.046	0	25	. 33	151	16		3.14	. 02	. 15	1	23
1457E 461+25N	2	001	204	107	6	40	18	348	6.70	60	5	WD	4	76 - 0	7	2	52	. 63	111:	20	35	. 55	287	809		1.40	. 02	. 12	1	9
L457E 461+00w	2	75	13	53	.2	3*	11	571	2.40	14	5	ND	3	15×2	2	2	34	. 14	3090	5	20	. 28	126	+ 86		3.27	. 02	. 05	1	17
L657E 4604751		50	14	56	2	26	11	802	2.16	17	5	MD	3	15 -2	2	2	34	. 14	-807	6	21	. 26	160	45	3	2.70	. 02	. 05	2	24
L657E 460+50M	1	15	4	26	1	4	6	610	. 92	7	5	NO	1	8 - 2	2	2	21	. 10	064	2	5	.08	35	07	2	. 54	. 03	. 03	1	3
L657E 460-23\%	1	51	8	48	. 1	31	9	569	t+73	7	5	M0	2	49 2	2	2	28	. 18	646	6	18	. 26	103	80	2	1.58	. 03	. 04	2	171
1457E 460+00\%	3	92	13	69	3	63	15	296	2.66	16	5	ND	6	20.2	2	2	37	. 22	-654	13	31	. 43	116	. 16		3.13	. 03	. 04	1	15
L657E 459*75N	4	77	10	47	*	37	12	915	2.46	13	5	H0	3	19 :-2	2	2	35	. 21	1050	9	30	. 39	155	13	2	2.50	. 02	. 04	2	79
L457E 459+50m	2	66	11	50	5	34	12	35:	2.54	47	5	W0	3	15.2	2	2	38	. 18	0084	14	31	. 45	127	84		2.85	. 02	. 05	t	45
1457E 459+25	3	74	10	53	12	40	13	346	2.52	20	5	ND	4	15 \%	2	2	37	. 24 :	S059	11	30	. 41	126	15		2.57	. 02	. 05	1	50
L457E 459+00m	1	55	12	56	-2	27	13	549	2.26	11	5	W0	4	14 <2	2	2	33	. 15	\%147	11	24	. 31	154	4t4	4	2.94	.02	. 05	1	167
L457E 459+75\%	1	36	11	72	.2	27	12	662	2.24	18	5	10	2	14 -2	2	2	32	. 16	\$36	6	26	. 32	104	$\ldots 1$		2.13	. 02	. 04	1	97
L457E 450+50\%	9	22	6	46	.	29	10	154	2.02	14	5	N0	2	11 \%2	2	2	34	. 16	\$04	5	22	. 27	53	09	I	1.42	. 02	. 05	2	14
1457E 458+25m	1	96	12.	31	3	73	7	224	1.38	9	5	\%	,	37 , 4	2	2	22	. 91	4028	6	17	. 23	49	¢07	4	.99	. 05	. 05	1	-
L657E 459+00N	1	124	9	33	4	132	5	273	. 81	9	5	M	1	731.0	2	2	11	2.08	056	6	9	. 13	56	05		1.95	. 03	. 04	1	6
L458E 465-75M	1	192	10	75	2	55	14	1049	1.93	35	5	HD	2	311.	2	2	27	. 89	8049	12	24	. 32	63	11		2.06	. 04	. 05	$\stackrel{1}{1}$	11
L459E 665+50m	1	90	d	50	2	33	16	737	2.47	25	5	MD	3	20.2	2	2	35	. 26	+083	8	25	. 36	143	12		2.25	. 02	.06	,	34
L658E 465+25\%	1	74	10	6.	2	29	15	640	2.45	110	5	N0	3	16.2	2	2	35	. $\dagger 5$. 080	7	19	.33	158	14	3	2.92	.103	. 05		19
44508 465+100	1	47	10	73	2	25	14	478	2.20	37	5	N0	3	43 L 2	2	2	34	. 13	.127	5	19	. 26	07	175		2.43	. 02	. 15	1	14
(458e 484+75\%	1	37	10	61	2	25	14	284	2.28	38	5	W	3	13×2	2	2	34	. 15	102	5	19	. 27	02	+14		2.39	. 02	. 05	1	8
L650E 464+50n	1	29	12	71	2	22	10	310	2.18	24	5	WD	3	14 -2	2	2	33	. 14	ctes	5	18	. 22	12	. 17		3.10	. 03	. 06	1	19
LG5EE 464+25M	2	164	13	46	2	58	16	304	2.03	25	5	NO	3	28 - 2	2	2	23	. 30	6020	12	15	. 23	69	16		3.00	. 09	. 04	z	6
L450E 664-00.	1	156	12	57	.6	58	15	$10^{4} 2$	2.52	15	5	NO	4	21×2	2	2	37	. 27	0.053	16	31	. 40	95	20	2	4.37	. 03	. 04	1	14
L438E 463475	1	119	16	77	, 4	104	23	402	2.36	20	5	M	5	16 \% 2	2	2	34	. 24	Y 046	0	20	. 23	55	17		3.24	. 12	. 04	1	4
STMENOM C/AU-S	48	57	39	132	7.1	72	31	1036	4.04	43	21	6	39	5519.3	44	16	56.	. 51	8096	39	59	.92	182	09	39	1.95	. 06	. 4	11	54

e_{∞}^{∞}	Attwood Gold									corp.		PROJE			GOLDEN CROWN				FILE		\# 90-1366								Page 3		
SMMPLE\#	$\begin{array}{r} \text { mo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{prom} \end{gathered}$	$\begin{gathered} \text { Pb } \\ \text { ppon } \\ \hline \end{gathered}$	$\begin{array}{r} \text { 2n } \\ \hline \text { pant } \end{array}$	$\mathbf{M g}$	$\begin{gathered} \mathrm{wi} \\ \text { pprn } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Co} \\ \mathrm{ppom} \\ \hline \end{gathered}$	$\begin{array}{r} \text { Mn } \\ \text { prom } \\ \hline \end{array}$	$\begin{aligned} & \text { Fe } \\ & \mathbf{x} \end{aligned}$	Aspm	$\begin{array}{r} \mathrm{D} \\ \mathrm{ppm} \\ \hline \end{array}$	$\underset{\text { ppon }}{\mathrm{Al}}$	$\begin{array}{r} \text { Th } \\ \text { pprin } \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	Ce	$\begin{array}{r} \text { Sb } \\ \text { ppon } \end{array}$	$\begin{gathered} \text { Bi } \\ \text { ppm } \end{gathered}$	$\underset{\text { pom }}{\mathrm{V}}$	$\begin{gathered} \mathrm{CB} \\ \mathbf{x} \end{gathered}$	8	Lit	Cr	$\begin{aligned} & \mathrm{mg} \\ & \mathbf{x} \end{aligned}$	Be	$\frac{\mathbf{T}}{\mathbf{K}}$	$\underset{~ B q}{8}$	$\begin{aligned} & \text { Al } \\ & \mathbf{x} \end{aligned}$	Me	$\underset{y}{x}$	w	$\begin{aligned} & \text { Ms } \\ & \text { Mph } \end{aligned}$
L450E 463+30N	2	74	14	43	. 4	133	21	134	2.28	15.	5	WD	3	16	2	2	2	30	.16	0044	4	13	. 15	59	+18	3	3.73	. 03	. 06	1	5
64585 463+251	1	56	10	67	2	42	95	761	2.33	20	5	HD	3	14	2	2	2	33	.19	[065	6	26	. 26	112	8		3.24	. 02	. 05	1	19
L458E 463+00m	1	146	10	64	2	37	20	511	2.74	17	5	ND	3	14	2	2	2	39	. 15	055	5	23	. 24	113	14		2.44	. 02	. 04	1	8
L458E 462+73M	1	42	13	59	1	55	13	745	2.20	20	5	ND	3	14	2	2	2	35	. 15	$0{ }^{65}$	5	20	. 26	133	$+35$		2.48	. 02	. 04	t	10
L458E 462+50m	4	74	10	72	4	64	27	362	2.55	21	5	HD	3	16	2	2	2	40	.17	ctis	6	29	. 35	114	13	3	2.54	. 02	. 04	t	25
4458x 4-6235	1	87	15	48	2	147	22	\% 68	2.33	8	5	ND	3	15	82	2	2	37	. 19	047	8	25	. 33	907	16	2	3.44	. 02	. 15	1	3
6458E 462+00m	1	42	13	65	1	37	12	469	2.36	23	5	ND	3	11	2	2	2	36	. 10	082	5	18	. 21	111	.17	2	3.82	. 02	. 04	1	9
L658E 461+75N	1	199	31	87	. 3	30	12	459	2.33	18	5	MD	3	33	4	2	2	33	. 51	110	9	20	. 33	151	$\cdots 4$		3.23	. 05	. 67		8
4454E 461+50m	1	63	17	53	2	32	11	436	2.25	18	5	ND	3	19	2	2	2	35	. 22	088	11	24	+34	134	16		2.70	. 03	. 65		6
645.6E 461+25N	1	102	14	47	2	35	14	247	2.74	17	5	MD	4	15	2	2	2	41	. 15	.0770	11	29	. 43	125	\$6		3.70	. 02	.65		7
L695E 461400m	\%	56	12	49	1	37	13	537	2.52	15	5	M	4	14	2	2	2	38	. 14	0107	B	30	. 41	149	14		2.90	. 02	. 05		23
L45BE 460+75M	1	59	11	58	. 2	36	13	574	2.19	20	5	MO	5	19	2	2	2	32	$+17$	078	7	23	. 32	132	. 14	3	2.59	. 02	. 05	1	3
L4S*E 460 450 m	1	86	11	57	1	44	15	504.	2.42	29	5	No	3	16	2	2	2	38	+18	058	7	33	. 46	100	12		2.00	. 02	. 05	+	28
L458E 460-25m	2	288	11	52	. 2	110	21	371	2.70	-15	5	W0		16	$\square 2$	2	2	40	. 31	.032	10	36	. 47	71	${ }_{44}$		2.58	. 02	.05		62
L458E $460+00 \mathrm{~N}$	\dagger	114	14	58	1	54	14	545	2.49	16	5	HD	3	17	$\therefore 2$	2	2	36	. 22	.069	8	30	. 38	122	.43	5	2.61	. 02	. 05		0
L6SEE 459475M	1	165	14	73	2	44	32	323	2.02	6	5	MO	3	46	2	2	2	29	. 30	LS6	7	18	. 22	65	35		3.26	. 03	. 05		13
1450x 459450m	1	216	\$2	73	34	56	44	374	2.00	12	5	ND	3	20	. 2	2	2	27	. 44	coeo	11	18	. 22	48	16		3.50	. 03	-06	1	7
1456e 459400N	2	85	10	31	3	50	11	337	1.44	10	5	W0	2	20	$+2$,	2	21	. 54	. 024	8	15	. 16	37	111		1.87	. 06	.03		7
4458x 458+75m	1	24	4	38	2	21	8	101	1.64	12	5	ND	2	11	$\bigcirc 2$	2	2	26	. 17	002	5	$1{ }^{1}$.17	46	10		1.70	. 02	. 03		8
4458x 458+50N	2	121	12	42	3	88	42	241	2.05	9	5	NO	2	18	$\times 2$	3	2	27	. 4	025	8	26	. 28	55	11.			. 03	. 15		38
L439E 466+00m	4	40	14	42	1	25	12	480	2.07	29	5	W0	3	18	2		2	26	. 25	036	-	15	. 20	57	16	4	3.37	. 03	.03	1	2
1459E 465+754	1	171	13	28	3	37	13	559	2.07	44	5	W0	3	30	3	2	2	25	. 69	D21	14	+ ${ }^{\text {P }}$.21	51	+16	5	3.43	. 04	. 03		3
L459\% 465450m	2	356	10	28	2	120	90	404	1.41	48	5	H0	2	27	3	2	2	19	. 63	020	9	12	. 15	28	812	5	2.26	. 04	. 03		1
L459E 465+25M	2	75	14	57	. 1	41	20	461	2.16	22	5	H0	3	13	2	2	2	31	. 15	+17\%	4	20	. 25	84	18	3	2.96	+ 02	. 04	2	8
[459E 465400M	1	33	12	59	1	22	8	777	1.80	17	5	H0	2	15	2	2	2	29	. 16	106	4	16	. 17	103	.12	3	2.40	. 02	. 04		5
1459E 460+75N	1	66	14	63	1	36	19	251	2.38	12	5	H0	4	16	2	2	2	32	. 13	104	7	20	. 25	432	16		4.14	. 13	. 04		27
1459E 44405	2	60	15	39	5	63	49	230	2.26	15	5	40	3	16	2	2	2	33	. 19	035	6	19	. 21	113	16	4	3.56	. 63	. 04		19
1459\% 464+25m	1	51	12	45	3	32	44	213	2.22	15	5	H0	3	15	2	2	2	32	.17	-652	4	20	. 23	117	+13		2.65	. 02	. 05	1	1
L459E 444+00w	1	66	19	45	3	38	${ }_{48}$	291	2.26	7	5	H0	3	15	2	2	2	32	. 14	. 65.1	10	22	. 25	120	13	5	2.94	. 02	. 04		9
L459E 465-75N	1	187	14	54	茥	61	25	175	2.87	19	5	N0	4	17	2	2	2	41	. 22	,635	10	36	.47	19	14		00	. 02	. 0		15
L4596 463+50m	1	62	13	40	3	30	12	321	2.09	12	5	N0	4	15	2	2	2	30	. 13	005	-	19	. 22	107	15		3.44	02	+ 05		24
6459E 463+2511	3	196	13	41	1	44	22	363	3.04	25	5	ND	4	15	-2	2	2	41	.12	0104	9	36	. 49	840	12	2	2.38	. 02	. 04		32
14595 463+00m	4	460	50	70	4	48	25	694	4.43	52	5	NF	5	29	2	3	2	50	. 35	50,0	\$8	47	. 76	130	80)	1. 69	. 02	. 09	2	5
L459E 462+75N	1	93	15	$\sqrt{3}$	1	36	14	600	2.32	9	5	WD	3	16	2	2	2	34	. 15	-059	5	20	19	99	84	6	3.11	02	. 15		13
L459E 462450m	1	76	12	48	2	29	11	254	2.09	9	5	WD	3	14	. 2	2	2	34	. 11	. 057	5	16	. 19	119	. 24	4	\%	2	.15		7
16592 462+25\%	1	48	6	39	1.	20	10	189	1.05	10	5	ND	2	11	2	2	2	20	. 10	0	2	7	. 09	59	. 10	3	.97	. 05	. 04		5
STAMOARD C/AN-S	18	57	40	132	7.1	73	31	1048	4.08	44	23	7	39	55	19.7	45	48	57	. 51		39	60	. 93	183		39	1.98	. 06	. 1	14	54

SAMPLE！	Attwood Gold									Corp．							CROWN		FILE		\＃	90－1366			∞				Page 4		
	$\begin{aligned} & \text { Mo } \\ & \text { ppon } \end{aligned}$	$\underset{\mathrm{cu}}{\mathrm{Cu}}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{poom} \end{array}$	2n	$\begin{array}{r} \mathrm{Ag} \\ \hline \mathrm{plon} \end{array}$	$\underset{\mathrm{pq} \boldsymbol{\mathrm { M }}}{\mathrm{Mi}}$	$\begin{array}{r} \text { co } \\ \text { potin } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{X} \end{gathered}$	As	$\begin{array}{r} \text { U } \\ \text { pon } \end{array}$	$\underset{\text { ppon }}{\text { AU }}$	$\begin{array}{r} \text { Th } \\ \text { ppp } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p} \boldsymbol{m} \end{array}$	Cd	$\begin{array}{r} \text { sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} 8 i \\ \text { ppm } \end{array}$	$\begin{array}{r} v \\ \text { popn } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{z} \end{gathered}$	$\begin{array}{r} \boldsymbol{p} \\ \boldsymbol{x} \end{array}$	Lz	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pom} \end{gathered}$	$\begin{gathered} \text { Wg } \\ X \end{gathered}$	$\begin{gathered} \text { Be } \\ \text { ppon } \end{gathered}$	\mathbf{T}	B	$\mathbf{A !}$	解	\％	\boldsymbol{w}	$\begin{aligned} & \text { Av* } \\ & \text { pot } \end{aligned}$
1459E 462＋90\％	1	70	10	45	2	25	11	603	1.99	3	5	NH	3	18	2	2	2	29	． 75	077	7	15	． 20	100	． 16		3.35	． 02	． 05	2	9
L459E 461＋75N	1	18	3	33	． 1	11	4	457	1.15	T 7	5	NO	1	14	2	2	2	22	． 15	039	3	9	． 12	61	09		1.17	． 03	． 04	1	3
659E 461＋50m	！	135	34	58	4	26	11		2.34	15	5	ND	3	23	2	2	2	33	． 28	\％082	10	23	． 33	127	4		2.98	． 03	． 05	1	12
1459F 461425M	1	78	11	56	－ 1	34	12	324	2.61	20	5	ND	3	16	3	2	2	42	． 19	071	11	34	． 51	107	$4{ }^{4}$		2.84	． 32	5		16
L459E 461400\％	1	139	87	86	4	33	12	574	2.50	18	6	W0	3	35	2	2	2	38	.37	． 070	10	32	43	184	13			． 82	． 15		24
1459E 660＋50	1	37	12	69	． 1	28	12	718	2.64	$\therefore 16$	5	W	2	45	． 2	2	2	44	.15	\％93	5	28	． 34	107	14		2.37	． 02	． 04		13
L459E 460＋25M	1	13	4	33	2	10	5	567	1.20	4	5	NO	1	13	－2	2	2	23	.12	676\％	3	13	． 13	64	\％戈	6	． 89	． 03	． 04	1	1
L659E 460＋00m	1	41	9	45	12	31	11	767	2.49	24	5	ND	3	45	$\stackrel{2}{2}$	2	2	39	． 19	． 063	7	28	． 37	116	13		2.82	． 02	． 65		41
L459E 659＋75\％	1	35	7	44	－3	27	9	325	2.13	18 ：	5	ND	2	19	$\bigcirc 2$	2	2	34	． 20	＋192	5	26	． 32	81	10		2.36	． 02	， 0		10
6659E 459＋50\％	1	22	8	59	3	19	7	530	1.82	14	5	ND	2	19	． 2	2	2	28	． 19	180	5	16	． 21	112	$\bigcirc 2$		2.76	． 02	． 06		23
L459E 4504250	，	287	11	85	13	82	39	213	2.55	14	5	ND	4	21	2	2	2	34	． 27	0443	15	28	． 37	79	$\checkmark 7$		3.49	． 03	． 06	？	71
L459E 459＋00m	1	97	12	60	4	117	157	402	2.31	13	5	ND	2	15	2	2	2	29	． 26	－060	7	22	． 23	75	． 45		2.54	． 02	．06	\％	7
L459E 658＋73\％	1	81	12	65	． 3	89	93	304	2.12	\bigcirc	5	ND	2	17	${ }^{2}$	2	2	25	． 27	\％096	5	18	． 18	79	15		3.18	． 03	． 05		4
4459E 458＋50m	3	580	12	45	$\cdots 8$	222	61	497	2.96	14	5	ND	3	22	3	2	2	35	． 48	－2088	19	39	． 39	76	． 16		3.42	． 03	． 04		1
L459E 458＋25M	1	79	9	43	． 5	208	15	391	2.04	14	5	HO	2	15	2	2	2	31	． 26	． 039	7	27	． 32	67	\＄2		2.00	． 03	． 05		6
1459E 458000w	2	238	15	57	\％ 6	595	26	456	3.30	26	5	NO	3	22	$\stackrel{3}{4}$	2	2	45	． 38	\％42	11	53	． 57	112	13		3.60	． 05	．6		1
$14606466+000$	1	593	61	71	． 6	53	22	709	5.66	45	5	NO	5	40	5	4	2	56	． 52	0025	20	47	． 81	169	41		1.67	． 02	． 12		5
1460E 465＋75）	1	76	9	117	． 1	26	20	340	2.68	16	5	NO	1	16	4	2	2	31	1t	． 028	3	19	．17	67	.09		1.15	． 03	．09		12
1460F $465+50 \mathrm{~m}$	1	45	10	122	． 1	42	21	322	2.64	23	5	ND	2	15	$\because 2$	2	2	40	． 14	，068	4	28	． 32	93	16		2.93	． 02	． 04	1	720
L460E 465＋25\％	1	67	95	59	.2	35	12	458	2.32	12	5	ND	4	18	82	2	2	32	． 16	［130	11	21	． 29	107	． 18		4.84	． 03	O5		15
L460E 465＋001	1	57	16	46	． 2	27	9	268	2.15	9	5	ND	4	17	3	2	2	29	． 14	118	12	16	． 23	90	，19		5.14	． 03	． 03		1.
L460E 463＋50E	1	253	16	56	－6	62	17		2.56	174	5	NO	3	16	2	2	2	35	． 29		8	23	． 25	63	118		3.00	． 02	． 04		7 9
L460E 463＋2SE	1	54	13	54	2	30	14	393	2.22	18	5	ND	3	13	2	2	2	33	． 12	． 067	5	18	． 20	98	.16		3.76	． 02	． 04		9
L460E 463＋00E	1	91	43	57	． 3	29	15	568	2.20	18	5	N0	3	12	2	2	2	32	． 11	．074	5	17	． 20	110	17			． 02	．04		82
1460E 462＋75E	1	19	9	37	¢ 1	17	7	301	1.69	13	5	W0	2	11	2	2	2	28	． 12	D8\％	4	17	.15	96	± 12	2	1.99	． 02	． 04		74
1460t 462＋50E	1	46	11	47	． 3	26	9	358	2.13	14	5	ND	4	13	$\stackrel{2}{ }$	2	2	32	.15	． 051	7	18	． 23	106	\％17		3.97	.02	． 65		2
1460E 462＋25E	1	33	14	42	2	22	9		2.14	14	5	ND	3	13	2	2	2	32	． 12	007	8	19	． 22	100	＊6		3.60	． 02	04		45
1460E 46240CE	1	67	13	52	－ 2	21	9	462	2.13	45	5	ND	3	12	2	2	2	31	． 12	649	5	17	． 21	81	車			2	． 15		6
1460E 461450E	1	154	12	50	\％ 4	25	13	593	2.61	14	5	NO	4	12	$\square 2$	2	2	34	． 10	\％ 73	\％	86	． 23	160	18		4.12	． 02	．04		${ }^{6}$
L460E 461＋25E	1	39	10	53	＋2	26	10	536	2.26	16	5	ND	3	12	． 2	2	2	36	． 13	075	6	21	． 28	141	4 \％		2.65	． 02	． 0	$\%$	10
L460E 46！＋00t	1	53	15	69	3	38	12	598	2.39	21	5	WD	3	16	－2	2	2	37	． 96	8033	7	32	． 35	197	\％3		2.24	． 02	． 65	＋	29
1460E 460＋75E	1	37	11	56	3	30	10	569	2.09	19	5	ND	3	14	＋2	2		30	． 13	－091	6	20	． 24	122	13		3.36	． 02	． 04	＋ 9	7
L．460E 460＋505	1	54	11	43	． 3	49	13		2.56	18	5	ND	3	18	2	2		39	． 20	\％357	8	35	． 44	146	${ }^{13}$		2.70	． 02	． 05		18
1460E 460＋25E		24	12	76	2	22	10	664	2.34	17	5	N0	2	15	2	2	2	33	． 16	＋150	5	22	． 20	117	45		2.77 2.80	． 02	． 05	\％	12
L460E 460＋00E	1	80	14	50	1	64	15	251	2.47	25	5	N0	2	17	． 2	3	2	38	． 39	．05s	6	34	.44	75	． 14		2.80	． 02	． 06		12
1460E 459＋73E	1	67	13	44	，3	40	13	248	2.38	19	5	10	3	14	＋2\％	${ }_{15}^{2}$	2	36	． 18	$\mathrm{cos7}^{2}$	39	28	.37 .93	84	＋69	23	$\begin{aligned} & 3.54 \\ & 1.99 \end{aligned}$	． 02	． 05	11	4
STAMDANO C／AU－S	18	62	61	131	7.1	72	31	1036	4.08	39	23	7	39	53	39.7	15	19	56	． 52	， 892	39	59	． 93	102	－69．	39	1.99	．	． 13		

Attwood Gold corp. PROJE GOLDEN CROWN FILE \# 90-1366

SAMPLE無	$\begin{gathered} \text { Mo } \\ \text { ppon } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{pH} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{Pq} \end{gathered}$	$\underset{p p n}{2 n}$	Ag	$\begin{gathered} \mathrm{Ni} \\ \mathrm{pq} \% \end{gathered}$	Co	$\begin{gathered} M n \\ p o r n \end{gathered}$	fe	$\begin{array}{r} A s \\ p \neq m \end{array}$	$\begin{array}{r} u \\ p p n \end{array}$	$\begin{array}{r} \text { Au } \\ \text { pxan } \end{array}$	fh ppm	$\begin{array}{r} \text { Sr } \\ \text { pom } \end{array}$	pon:	$\begin{array}{r} \text { Sb } \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Bi} \\ \mathrm{pq} \end{gathered}$	$\begin{array}{r} v \\ \mathrm{ppm} \end{array}$	$\underset{X}{C}$	$\mathbf{\%}$	L8	$\begin{array}{r} \mathrm{Cr} \\ \text { pom } \end{array}$	$\begin{aligned} & \mathrm{Hg} \\ & \mathrm{X} \end{aligned}$	$\begin{array}{r} 88 \\ \text { ppon } \end{array}$	$\begin{array}{r} 77 \\ \mathbf{x} \end{array}$	$\begin{array}{r} 8 \\ \hline \text { pppn } \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~K} \end{aligned}$	$\begin{gathered} \text { Na } \\ X \end{gathered}$			$\begin{aligned} & \mathrm{Al} \\ & \mathrm{p} \boldsymbol{+}+\mathrm{b} \end{aligned}$
1460E 459450m	1	74	10	48	3	40	19	959	2.52	17	5	ND	3	16	. 2	2	2	36	. 15	460	6	23	. 29	155	15		3.74	. 02	. 05	2	
(460E 459425\%	1	38	10	51	:1	39	16	443	2.39	18	5	ND	3	13	\% 2	2	2	35	. 14	+13	4	24	. 28	105	. 35		3.79	. 02	. 04		
[1660E 459+00m	,	37	11	46	3	37	16	270	2.27	15	5	ND	3	16	+2	2	2	33	. 25	883	6	24	. 26	117	- 45		3.68	. 02	. 05	3	
1460E 458+73M	1	37	10	46	3	43	13	331	2.09	14	5	ND	3	22	\%	2	2	31	. 25	\% 65	7	25	. 29	100	44		3.07	. 02	. 05	1	
1460E 458+50m	2	379	13	54	1.0	112	13	629	3.17	26	5	NO	2	26	-2	2	2	42	. 80	. 035	30	52	. 49	118	109		3.53	. 63	. 07		14
14608 458+250	1	24	10	45	2	49	19	319	2.03	15	5	MD	2	14	2	2	2	31	. 16	W102	4	20	. 23	84	. 15		2.81	. 02	. 35	1	15
L660E 458000N	1	278	15	63	1.2	119	17	532	3.54	23	5	N0	3	30	2	2	2	50	. 62	. 036	18	67	. 82	140	. 10°		4.13	. 03	. 10	E	16
1461E 466+00m	1	225	12	50	4	54	28	211	2.18	11	5	WD	2	18	2	2	3	29	. 28	.027	13	17	. 20	58	18		2.70	. 03	. 04	1	10
1669E 465+75\%		47	12	57	4	19	11	127	2.13	21	5	ND	2	15	12	2	2	33	. 13	*38	4	13	. 12	70	. 17		2.8	. 02	. 04	1	20
2461E 465+50m	1	133	11	59	.3	54	24	334	3.57	25	5	NO	5	19	2	2	2	53	. 24	.066	16	47	. 70	133	33	2	2.82	. 01	. 07	1	29
L661E 465+25M	9	82	12	61	1.1	42	17	336	2.63	20	5	ND	4	16	2	2	2	38	. 17	085	13	29	. 36	106	16		3.54	. 03	. 05	1	7
L46IE 465000M	1	21	9	44	. 2	11	5	182	1.59	14	5	ND	2	8	2	2	2	30	. 09	-039	5	11	. 13	57	+17	2	1.12	. 02	. 04	1	8
L467E 464-75\%	1	31	8	67	1.	23	13	493	2.22	17	5	ND	2	11	4	2		37	. 11	8047	5	21	. 20	97	cts		1.86	. 02	. 03	t	9
L464E 464450w	1	41	11	84	. 1	19	11	398	2.74	17	5	ND	3	9	-2	2	2	40	. 08	1344:	5	21	. 18	87	16		3.34	. 02	. 04	1	18
L46tE 464+25M	1	72	14	53	2	35	13	399	2.57	16	5	ND	4	12	, 2	2	3	37	. 11	. 695	7	26	. 35	107	.97	2	4.59	. 02	. 04	1	66
L689E 46400m	1	64	19	41	L	30	16	190	2.06	10	5	N0	3	14	\%2	2	2	31	. 14	\%67	\%	20	. 23	92	/ 1	3	3.20	. 02	. 04	4	
L467E 463-25m	1	32	9	43	- 2	24	10	878	1.77	16	5	ND	2	15	2	2	2	28	. 13	8073	5	18	. 16	105	. 3		2.35	. 02	. 04	2	5
L661E 463-00w	,	64	12	53	. 2	27	14	782	2.34	13	5	N0	3	16	2	2	2	35	. 16	.103	6	24	. 29	105	114		2.69	. 02	. 04	1	14
1461E 462+75\%	,	70	10	43	4	24	12	330	2.17	15	5	NO	3	17	-2	2	2	32	. 16	.078	11	21	. 31	99	15	2	3.31	. 02	. 04	-	1
L661E 462+50w	9	284	15	40	2	39	19	349	3.48	25	5	ND	3	16	$\square 2$	3	2	47	. 20	.060	12	63	. 76	76	. 10	2	1.76	. 01	. 65	\%	20
L461E 462+25\%	1	48	11	41	. 2	32	12	597	2.16	18	5	ND	3	17	. 2	2	2	33	. 16	O50	6	24	. 29	125	.15		3.23	. 02	. 03	2	48
L461E 462+00N	1	121	13	51	. 3	38	29	361	2.26	9	5	HD	4	15	2	2	2	34	. 15	.071	8	25	. 32	99	13		2.87	. 02	. 05	1	32
L469E 461+75N	*	96	11	40	4	58	33	228	2.44	35	5	NO	2	13	. 2	2	2	41	. 18	6022	8	34	. 41	71	14		1.94	. 02	. 05	4	11
L461E 469+50N	1	35	10	42	3	26	9	415	1.98	6	5	N	3	19	$\checkmark 2$	2	2	31	. 16	8083	8	18	. 25	136	$\bigcirc 15$		3.21	. 02	. 04	1	9
L681E 46\% $+25 \%$	1	39	10	54	2	21	9	57	2.01		5	ND	3	10	S2	2	2	32	. 11	,108	5	17	. 23	96	14	5	3.21	. 02	. 06		7
L469E 469400\%	1	152	17	58	4	47	25	455	2.08	12	5	ND	.	19	82	2	2	32	. 49	805	8	27	.37	93	\%	2	1.84	. 02	. 03		2
L461E 460+75\%	1	59	11	47	.5	32	13	203	2.29	13	5	ND	3	17	+2	2		35	. 18	-089	7	24	. 31	130	14		3.01	. 02	. 66	1	1
L461E 460+50m	1	46	11	52	4	33	14	663	2.29	13	5	ND	3	15	2	3	2	34	. 16	-084	6	23	. 29	131	44	2	3.95	. 02	. 05	T	4
L461E 460425\%	1	35	13	45	3	24	12	529	2.05	10	5	ND	3	16	2	2	2	30	. 14	¢ 078	5	15	. 18	102	816		3.76	. 02	. 05	1	4
L461E 460400M	1	66	13	51	-3	44	16	244	2.53	16	5	ND	2	18	2	2	2	37	. 26	O588	7	29	. 33	102	¢5	3	2.93	. 02	. 65		1
14695 459+75M	1	65	12	4	5	42	12	633	2.28	14	5	ND	3	45	-	3	2	31	. 21	. 055	8	24	. 29	126	814		3.36	. 02	. 0.6		2
L461E 459+50W	1	37	12	48	.2	34	13	299	2.14	12	5	NO	2	45	2	2	2	33	. 22	. 074	4	26	. 29	108	動3	2	2.75	. 02	. 11	-	
$14615459+25 \%$	1	118	16	91	180	85	18	460	3.70	11	5	NO	4	28	2	2	2	44	. 64	8032	12	48	. 56	138	15	4	4.42	. 03	.to	-	7
(467E 459400\%	1	63	12	54	4	36	12	298	2.64	8	5	ND	3	17	2	3	2	35	. 25	$\underset{\sim}{126}$	9	28	. 36	136	- 14		3.56	. 02	. 06	$\underline{3}$	49
L4615 458475w	1	61	13	73	3	44	14	388	2.58	16	5	ND	3	18	2	2	2	35	. 26	${ }_{6} 43$	8	34	. 42	144	- 4	4	3.42	. 02	. 65		19
26615 430+50m	1	201	12	67	1.0	67	17	576	3.12	21 :	5	ND	3	24		2	3	48	. 44	81852	31	57	. 77	129	. 4	2	3.17	. 03	. 6	1	2
STAMDARD C/My-S	18	58	39	132	7.1	72	319	1038	4.00	39	21	7	38	53	9,4	14	23	56	. 51	\% 042	39	59	. 91	182	69	59	1.93	. 06	16	14	49

SAMPLEF	$\begin{gathered} \text { Mo } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{PDPm} \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \mathrm{ppmm} \end{aligned}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	Ag	$\begin{gathered} \mathrm{Ni} \\ \text { pom } \end{gathered}$	$\begin{array}{r} \text { co } \\ \text { pom } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{array}{lr} \text { n } & \text { Fe } \\ m & \mathbf{x} \end{array}$	$\begin{aligned} & \text { As } \\ & \text { pon } \end{aligned}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{pram} \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Th } \\ \text { ppom } \end{gathered}$	$\begin{array}{r} \mathbf{S T} \\ \mathbf{p q} \boldsymbol{m} \end{array}$	$\begin{gathered} \mathrm{cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathbf{S b} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Bi } \\ \text { Ppm } \end{array}$	$\begin{array}{r} v \\ \text { pon } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ x \end{gathered}$	$\%$	Lem	$\underset{\mathrm{pram}}{\mathrm{Cr}}$	$\begin{array}{\|c} \mathrm{Mg} \\ \mathrm{x} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	TI	$\begin{array}{r} \text { B } \\ \hline \text { m } \end{array}$	$\begin{gathered} \mathrm{Al} \\ \mathrm{X} \end{gathered}$	Wa	$\begin{aligned} & x \\ & \mathbf{x} \end{aligned}$	M	Avid
2469E 458+25\%	1	38	10	4	2	24	12	588	1.98	18	5	ND	2	21	2	2	2	32	. 33	\% 049	6	23	. 33	124	. 11		2.13	. 02	. 06	2	10
L461E 450+00m	1	30	9	55	2	19	9	579	1.62	15	5	ND	2	27	,2	2	2	24	. 31	. 167	5	20	. 28	168	\% 0		1.53	. 02	. 07	1	22
$126628466+00 \mathrm{M}$	1	78	46	52	3	32	14	424	2.28	19.	5	ND	2	21	. 2	2	2	35	. 21	.052	7	28	. 37	109	to	8	1.82	. 02	. 05	1	6
(LUCZE 465+73M	1	251	11	49	4	52	19	27	3.22	24	5	ND	4	15	:2	2	2	45	. 17	8055	13	45	. 65	69	.11		2.26	. 02	. 05	1	74
1462E 465+50m	1	85	12	52	2	35	13	568	2.22	21	5	N0	2	21	4	2	2	33	. 29	\%089	7	27	. 38	105	11		2.32	. 02	. 07	1	6
L462E 465+251	\dagger	132	11	44	4	41	17	197	2.57	19	5	no	2	15	2	2	2	38	. 28	. 035	7	30	. 38	72	13		2.66	. 02	. 05	1	7
L46ZE 465+00M	1	28	d	25	2	16	8	211	1.39	2	6	ND	3	6	2	2	2	21	. 08	.046	4	11	. 13	51	. 09		1.58	. 02	. 05	2	105
C462E 464+751	1	23	6	42	1.	12	7	192	1.64	22	5	ND	1	6	2	3	2	25	. 06	\$22	3	13	. 12	50	do9		1.71	. 01	. 02	1	18
1462E 464+50M	1	33	7	49	2	17	8	347	2.33	13	6	ND	3	11	42	2	2	39	. 12	\%06\%	6	21	. 22	83	$\underline{.13}$		1.64	. 02	. 05	1	19
1462E 464+25*	1	38	11	57	4	30	13	576	2.23	16	5	No	3	16	.2	2	2	32	. 14	4093	5	18	. 21	95	15		3.46	. 02	. 03		9
L462E 464+00M	1	41	19	61	33	23	10	790	1.99	22	5	NO	3	13	L	2	2	29	. 14	144.	5	18	. 18	115	14		3.54	. 02	,04	1	7
L462E $663+75 \mathrm{H}$	1	11	5	15	1	7	2	41	. 64	2	5	ND	1	8	2	2	2	17	. 13	0014	2	9	. 05	16	. 0		. 36	. 02	. 01	1	3
L462E 463+00N	1	42	9	85	2	33	20	502	2.11	15	5	ND	3	9	, 2	2	2	32	. 09	.06t	4	18	. 21	66	13		2.61	. 02	.04	1	6
1462E 462+75M	1	42	9	61	3	32	14	508	2.11	32	5	ND	3	15	, 2	2	2	31	. 14	. 078	5	18	. 20	116	14		3.39	. 02	. 06	1	90
L462E 462+50N	1	36	6	38	4	19	11	514	1.54	10	5	HD	2	8	. 2	2	2	27	. 09	\$068	4	13	. 15	89	. 11		1.87	. 03	. 03	1	5
L462E 462+25M	1	37	9	48	2	19	10	314	1.80	16	5	ND	3	9	2	2	2	28	. 09	. 091	5	13	. 16	61	$\bigcirc 4$		2.99	. 02	.03	1	5
L462E 462+000	1	36	11	54	. 2	27	11	762	2.10	22	5	wD	2	13	. 2	2	2	32	. 14	\%087	5	20	. 24	137	. 14		3.16	. 02	. 03	*	1
14625 461+75*	1	67	8	54	2	37	16	176	2.37	13	5	ND	3	21	${ }^{2}$	2	2	35	. 23	. 063	7	26	. 32	130	113		3.11	. 02	. 06	1	29
L46ZE 461+501	1	462	16	70	7	128	17	302	2.50	23	5	ND	4	23	2	2	2	30	. 42	$\bigcirc 052$	12	21	. 26	76	.18		6.32	. 06	. 03	1	10
1462E 461425N	1	79	5	52	3	34	14	213	2.50	25	5	N0	3	16	. 2	2	2	35	. 18	119	-	27	. 33	95	. 12		2.92	. 02	. 04		16
1462E 461+00M	1	42	90	61	-2	25	13	436	2.35	19	5	No	3	11	2	2	2	34	. 12	.159	5	20	. 22	92	14		3.67	. 02	. 05	1	6
L462E 460+75M	1	243	14	79	1.1	84	14	469	3.05	28	5	ND	4	26	14	2	2	42	. 33	. 059	15	39	. 48	199	14		3.86	. 02	. 08	1	8
1462E 460+50W		132	16	91	. 8	72	13	447	2.78	23	5	NO	4	25	4	2	2	39	. 23	069	11	31	. 37	227	45		3.83	. 03	. 07	9	14
14625 460+25\%	,	36		70	. 4	40	10		2.28	21	5	WD	3	20	2		2	32	. 22	\%084	6	22	. 28	153	$\times 14$		3.12	. 02	. 06	1	5
LU6ZE 660+00M	1	40	5	69	4	31	8	307	1.87	18.	5	ND	3	14	2	2	2	29	. 14	144	5	21	. 24	130	\%11		2.07	. 02	. 05		it
L462E 459+751	1	27	9	72	3	38	9	482	2.10	18	5	ND	3	17	. 2	2	2	31	. 16	. 233	5	21	. 26	179	, 12		2.83	. 02	. 06	1	9
LL6CE 459+50M	1	49	11	59	. 3	32	8	367	1.77	16	5	No	2	22	. 2	2	2	28	. 29	082	7	23	. 30	130	\%09		1.61	. 02	. 05	1	5
1462E 459+25\%	1	129	9	39	. 8	50	7	285	1.94	18	5	ND	2	16	${ }^{2}$	2	2	30	. 46	, 020	12	34	. 34	74	. 08		1.85	. 04	. 06	1	1
t462E 459+00M	1	39	8	66	3	25	8	607	1.65	16	5	ND	2	18	2	2	2	28	. 30	. 052	6	22	. 27	86	\% O		. 32	. 02	. 06	1	2
1462E 450+75M	1	33	10	83	5	62	11	508	2.28	18	5	WD	3	19	. 2	2	2	30	. 18	190.	6	27	. 36	169	± 12		2.87	. 02	. 06		1
1462E 450+50m	1	29	10	87	. 4	40	12	672	2.34	19	5	NO	3	25	.2	2	2	32	. 23	190	8	31	. 37	224	10		. 30	. 02	. 07		1
1462E 450+25M	1	59	11	59	${ }^{4}$	41	9	496	1.71	16	5	ND	1	21	4	2	2	27	. 21	. 08	12	26	. 35	103	07		. 27	. 02	. 06	1	40
14622 650+00	1	46	9	81	. 7	64	12	397	2.38	16	5	ND	3	23	$\underline{2}$	2	2	33	. 24	128	10	31	. 43	178	41		. 67	. 02	. 07	1	1
(463E 462+50w	1	197	4	27	4	46	5	166	1.11	6	5	ND	2	15	$\stackrel{2}{2}$	2	2	19	. 27	8020	9	18	. 13	43	$\stackrel{0}{0}$. 32	. 04	. 06	1	1
L463E 462+25M	1	58	6	52	6	30	12	331	2.28	24	5	ND	3	17	2	2	2	34	. 22	0093	7	22	. 28	117	4		3.4	. 02	. 06	1	20
1463E 462400m	1	35	8	3	3	27	13		2.20	21	5	ND	3	13	, 2	2	2	32	. 14	038	4	16	. 20	76	16		. 88	. 02	. 03	1	i.
Stampard c/au-s	18	58	38	132	7.0	71	31	1032	3.94	43	21	6	38	53	19.1	15	19	55	. 50	.098	38	57	. 90	180	$\mathrm{COB}^{\text {c }}$. 89	. 06	. 13	11	34

SHPPLE:	$\begin{aligned} & n_{0} \\ & \hline p o r \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{prm} \end{array}$	$\begin{aligned} & \text { pb } \\ & p o p m \end{aligned}$	$\begin{array}{r} 2 n \\ \text { PPN } \end{array}$	Ag	$\begin{gathered} \mathrm{Mi} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { pom } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { pam } \end{array}$	Fe	$\begin{aligned} & \text { AB } \\ & \text { pent } \end{aligned}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppom} \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppn} \end{gathered}$	$\begin{array}{r} \text { Th } \\ \text { ppom } \end{array}$	${ }_{\text {ppr }}$	$\begin{aligned} & \mathrm{cd} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \text { sb } \\ \text { pom } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{pem} \end{array}$	$\begin{array}{r} \mathbf{y} \\ \text { pront } \end{array}$	Ca	\dot{P}	La	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pon} \end{gathered}$	$\begin{aligned} & \mathrm{Mg} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \\ \hline \end{array}$	$\underset{1}{71}$	$\begin{gathered} \mathrm{B} \\ \mathrm{pron} \end{gathered}$	41	Mg	$\begin{aligned} & x \\ & x \end{aligned}$	Hive	$\begin{aligned} & \text { mp } \\ & \text { ppo } \end{aligned}$
Gck 90-?	,	32	4	21	11	1351	25	35	3.23	26	5	no	1	74	.5	2	2	13	1.6	S005	2	334	11.55	57	01	2	. 32	. 01	. 02	1	3
$15 C R 190-2$	1	16	4	7	${ }^{2}$	1058	31	376	3.37	19	5	No	1	91	5	2	2	17	. 81	, 704	2	621	12.85	26	01	8	. 51	. 01	. 02	1	4
CCH 90-3	1	13	143	829	1	359	13	460	1.79	38	5	ND	1	590	31	2	2	13	5.64	.003	2	\$04	9.49	12	$\cdots 01$	2	. 42	. 01	. 09	1	1
ach m-4	2	176	3	\bigcirc	1	16	3		2.68	5	5	no	1	9	2	2	2	69	. 33	. 615	2	14	. 61	22	14	2	. 99	. 13	. 65	1.	
OCI $90-5$	4	326	5	30	2	17	12	209	2.77	10	5	no	1	3	$\checkmark 2$	2	3	76	. 17	¢14	2	45	1.24	20	$+\infty$	8	4.17	. 05	. 09	17	105
5tampare C/MU-a	17	61	39	130	7.0	68	30	1022	3.93	39	22	7	38	53	18.4	15	19	55	. 50	69\%	37	56	. 90	481	09	39	1.8	. 06	. 13	43	490

SAMPLET	$\begin{gathered} \text { Ho } \\ \text { ppren } \end{gathered}$	cu	$\begin{gathered} \text { Pb } \\ \text { ppm } \end{gathered}$	2n	hg	$\underset{\text { pprin }}{\text { Mi }}$	$\begin{gathered} \mathrm{Co} \\ \mathrm{popm} \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \text { ppin } \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{x} \end{gathered}$	H8	$\begin{array}{r} U \\ p p m i \end{array}$	$\begin{array}{r} \text { Au } \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathbf{5 r} \\ \text { pron } \end{array}$	$\begin{aligned} & c d \\ & \text { ppman } \end{aligned}$	$\begin{gathered} \text { sb } \\ \text { ppin } \end{gathered}$	$\begin{gathered} \text { 日 } \\ \text { ppon } \end{gathered}$	$\begin{array}{r} \mathrm{V} \\ \hline \end{array}$	$\underset{\mathbf{X}}{\mathbf{C x}}$		$\underset{\text { ppm }}{\text { L! }}$	$\begin{gathered} \mathrm{Er} \\ \mathrm{ppm} \end{gathered}$	Mg	Ben	T	（8）	$\begin{gathered} \text { n! } \\ \mathbf{E} \end{gathered}$	$\underset{~}{\text { We }}$	7	$\underset{y}{M}$	$\begin{aligned} & \text { Aut } \\ & \text { RPb } \end{aligned}$
	1	51	6	35	4	23	8	306	$1 . \%$	10	5	N0	2	45	4	2	2	29	.17	$\bigcirc 671$	5	12	． 15	09	24		4.42	． 02	． 63	t：	19
14635 460＋	1	57	9	42	3	29	12	399	2.25	16	5	ND	2	＊ 8	4	2	2	37	． 22	064	6	21	． 27	95	19		2.02	． 02	． 04	1	4
L685E 465－50m	1	129	12	46	3	31	14	464	2.56	17	5	N0	3	15	6	3	2	39	． 45	8123	11	25	． 30	98	21		4.30	． 02	． 05	1	36
L435E $465+25 \mathrm{M}$	1	73	12	50	－	31	13	610	2.28	18	5	ND	3	18	6	2	2	36	． 49	＋091	8	20	． 30	117	21		9	． 02	． 05	1	2
L463E 465＋00N	1	114	5	48	3	27	12	43．	2.22	12	5	ND	2	14	＋7．	2	3	37	17	\％06：	8	22	． 3	110	19		2.99	． 02	． 6		16
LCGE 4	1	66	18	47	2	27	11	394	2.29	\％ 4	5	HD	3	12	10	2	2	35	． 15	D69．	7	20	． 30	24	22		． 29	． 02	． 0		38
L463E 46	1	222	10	56	． 5	37	14	17\％	2.57	1	5	MD	3	12	7	2	2	51	． 15	053	9	26	． 36	69	． 24		4.55	． 02	． 05		850
L463E 46－25M	1	116	5	56	1	26	12	319	2.48	12	5	MD	2	12	4	2	3	43	． 15	\％070	7	24	． 31	6	19		2.61	． 02	．05	4	60
1463E 464001	9	80	12	49	1	20	7	210	2.54	14	5	Mo	2	8	2	2	2	43		0068	6	18	－25	63	21.		2.68	． 01	． 04		5
L663E 463－75\％	＊	144	12	55	2	27	10	395	2.16	14	5	N0	3	12	4	2	2	35	． 14	077．	B	19	． 27	90	co		3.22	． 02	． 04		
1648 433＋50m	1	57	11	65	1	32	15	274	1.59	12	5	W00	2	10	8 \％	2	2	27	． 10	\％036	4	13	． 14	80	17		2.70	． 02	－ 010		1
1463E 463＋25	1	105	13	50	3	40	12	136	2.01	12	5	MO	2	21	－ 2	2	2	34	． 21	\＄030	6	19	． 24	156	t		2.83	12	㐋	2	35
L463E 463＋60\％	1	279	16	57	6	105	81	222	2．86	18	5	MD	3	23	2	3	2	35	． 56	4023	11	31	． 34	80	23			． 03	． 04	1	4
L463E 462＋73N	1	223	38	78	3	62	23	681	3.47	49	5	10	－	53	0	2	3	5	． 36	083．	24	1	7	117	4．			0	－19	，	2
L464E 466＋00m	1	45	9	56	11	22	9	247	2.09	14	5	MD	1	13	3	2	3	36	． 20	8455：	5	18	． 24	7	＋6		9	． 02	． 04		2
E	1	168	11	78	． 5	33	11	220	2.31	13	5	m	2	12	3	2	2	35	． 13	＊erz	6	19	． 25	101	21		3.76	． 02	． 08		1
L44E 465＋50m	1	87	10	85	3	34	15	463	2.55	13	5	ND	2	24	4	2	2	39	． 29	O6\％	9	26	． 35	253	d8		． 28	． 02	－60		0
L64E 465＋25in	1	68	10	69	2	40	15	910	2.46	21	5	MD	2	22	．6	2	2	39	． 33	C085：	8	27	． 36	219	817		3.60	． 02	． 64	\％	12
L464E 465000	1	43	10	44	2	26	11	564	1.91	17	5	ND	2	15	\％	2	3	30	． 15	－063	5	14	． 22	153	21		3.39	.02	． 05		10
L464E 464＊751）	1	69	14	64	2	36	12	436	2.59	12	5	ND	2	12	2	2	2	43	． 17	10.7	7	26	． 35	153	． 2.		3.3	＋ 02	． 05		
F 4		58	10	49	3	27	9	359	2.02	11	5	HD	3	11	， 2	2	2	34	． 12	006	7	18	． 28	129	20：		．45	． 02	． 04		22
L464E 464	1	75	40	56	3	29	11	491	2.21	\％t1	5	ND	3	16	－ 3	2	2	36	． 16	－064	9	22	． 30	127	2.		3.59	02	． 04		1
L484E 466000m	1	156	7	70	4	36	13	308	3.18	20	5	W0	2	13	． 2	2	2	51	＋16	07：	7	27	． 38	9	21			． 01	0		4
L664E 463 7 7 ${ }^{\text {\％}}$	1	172	10	43	3	24	12	346	5.84	15	5	vo	3	15	${ }_{5}$	3	3	26	.15	074	5	13		61				． 02	.05		4
L64E 463＋50m	1	165	44	72	1	27	25	164	1.74		5	N0	2	11	4	2	2	26			5							．			
			23	50		66	11	292	1.68	15	5	MD	1	34	， 5	2	2	24		065	7	49	． 20	137	$8{ }_{4}^{20}$		2.85	． 13	.10	± 1	6
	1	125	15	57	4	48	＊1	375	1.98	18：	5	ND	1	26	\％	2	2	33	． 48	068	10	24	． 33	123	17		2.64	． 02	－ 0		46
1464E 462＋751	1	280	8	53	2． 5	30	45	307	2．56	21	5	NS	2	20	4	2	3	38	． 24	．092	9	27	． 37	106	17		1	． 02	． 65		5
LC64E 462＋50N	1	＊	4	62	5	28	12	459	2.33	19.	5	ND	2	16	2	2	2	55	． 20	8014	6	23	．32	115	4		3.21 3.76	.02	． 05	＋1	2
L464E 462＋25M	1	167	16	81	2	76	16	611	2.50	20：	5	WD	2	17	2	2	2	35	． 39		6	22	． 26	9			3.76	． 42	－		2
		185	13	53	2	48	15	298	2.60	$26:$	5	ND	2	16	42	4	2	4	． 37	01\％	\％	50	． 55	101	13		2.13	.02	． 04	＂	3
LGGEE 6S1*TSM	1	76	13	71	2	34	12	284	2.07	19	5	ND	2	10	\％ 5	2	2	33	．13	0 Ot	5	19	＋24	8t	19		2.	． 01	． 04	1	
LESGE 66t＋50m	2	284	20	92	\pm	59	19	302	3.60	35	5	ND	3	17	， 3	3	4	49	． 23	D61	13	39	＋56	120	f6			． 01	06		4
L64E 46t＋25M		102	7	95	3	52	16	482	2.55	23	5	ND	2	23	± 2	2	3	39	． 61	087	9	29	． 40	132				2	． 05		15
1664E 467＋06m	1	43	11	72	5	40	11	468	2.15	19.	5	ND	2	18.	． 8	2	3	31	． 19	\％094	8	20	． 24	152	－2：			2	．お		
									1.95	17	5	\％	2	24	S	2	2	30	． 25	097\％	0	20	． 27	168	\％16		2.46	． 02	． 05	1	17
	18	50	39	129	4．31	67	31	1047	3.98	42	18	7	36	47	$3 \mathrm{~B}, 5$	16	21	57	． 51	． 092	37	55	．89	174	8	36	1.98	． 06	． 13	11.	52

 SAMPLE TYPE：Soil－BO Mesh RU＊AMALYSIS By AC1D LEACH／AM FROM 10 Gm sample．

Attwood Gold corp．PROJEb GOLDEN CROWN

SAMPLE	$\begin{gathered} \text { Mo } \\ \text { ppp } \end{gathered}$	Cu	$\begin{gathered} \text { Pb } \\ \hline \end{gathered}$	$\begin{array}{r} \mathbf{2 n} \\ \hline \boldsymbol{p} \boldsymbol{n} \end{array}$	$\begin{aligned} & \text { prn } \\ & \text { pron } \end{aligned}$	$\underset{\text { Mi }}{\mathrm{Mi}}$	Co	$\begin{array}{r} \text { Mn } \\ \text { ppon } \end{array}$		$\begin{array}{r} \text { AO } \\ \mathbf{p p} \\ \hline \end{array}$	epm	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Th } \\ \text { ppon } \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \text { ppen } \end{gathered}$	pod	$\begin{gathered} \mathrm{sb} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{r} 8 i \\ \text { ppon } \end{array}$	y	$\begin{gathered} \mathrm{Cs} \\ \mathrm{X} \end{gathered}$	$\frac{8}{2}$	$\begin{array}{r} \text { Ls } \\ \text { ppre } \end{array}$	cr	$\begin{array}{r} \mathrm{Hg} \\ \mathbf{I} \end{array}$	Bran	1	Bron	$\begin{array}{r} \text { Xl } \\ \mathbf{X} \end{array}$	$\begin{aligned} & n_{\mathbf{n}} \\ & X \end{aligned}$	\dot{z}	gon	$\begin{aligned} & \text { Af } \\ & \text { ppob } \end{aligned}$
1464E 460＋50\％	1	56	7	52	， 3	33	10	519	2.04	13	5	WD	2	23	． 3	2	2	29	． 18	\％ 633	9	19	． 26	193	＋88		3.49	． 02	． 85	＋	36
	1	56	11	60	$\xrightarrow{+1}$	28	10	581	2.01	188	5	ND	2	13	4	2	2	31	.12	T88	6	23	． 31	155	45：		2.86	． 81	． 04	1	28
LG6ME $460+00 \mathrm{M}$	1	46	13	48	\checkmark	21	8	539	1．56	111	5	ND	1	11	$\bigcirc 4$	2	2	27	． 92	． 077	6	16	． 23	94			2.16	． 22	． 05		15
LS64E 450＊75\％	9	26	8	64	\％ 2	21	10	540	1.82	12	5	ND	1	17	\＆	2	2	29	.17	－0\％	5	18	． 23	140	44		2.20	． 01	． 05		4
L464E 459＋50\％	1	60	13	68	－2	29	11	453	2.21	21：	5	W0	2	14	\％ 2	2	2	35	． 13	， 16	7	24	.36	144	－15：		2.89	.01	． 0		8
1409545923	1	65	12	63	． 3	29	12	373	2.17	20	5	W	2	15	\％	2	2	35	． 15	108	7	26	． 38	203	－ 14		2.45	． 01	． 05	＋	63
L464E 45	1	65	4	6	3	39	13	446	2.47	2f	5	N0	2	22	2	2	2	40	． 23	\％ 0	8	30	． 49	497	．14		2.34	． 01	． 06		69
L464E 459＋75	4	65	20	64	$\stackrel{3}{3}$	22	10	1142	1．78	18	5	NO	2	21	＋	2	2	29	． 22	$\cdots 8$	8	17	． 26	188	16		2.56	． 01	． 06		43
CH6tE 458＋50m	1	34	10	52	$\stackrel{1}{1}$	22	7	651	1.94	14	5	ND	1	11	\％	2	3	34	． 14	313	6	21	． 32	117	15		1.95	． 02	65	2	21
1469E 458＋25\％	1	58	16	54	－ 2	26	10	789	2.06	16	5	ND	2	12	． 3	3	2	34	． 15	8692．	7	24	． 37	129	5		2.35	． 01	4		2
LCAE 4	1	50	10	68	$\checkmark 1$	29	11	1092	2.27	． 18	5	W0	2	14	\cdots	2	2	34	． 15	＋23	6	21	． 31	235	． 36		2.64	． 01	． 05		25
L665E 466400N	1	47	10	102	3	26	8	709	1.87	184	5	N8	2	20	＋5	2	2	28	． 17	，004	5	14	． 19	166	.20		4.12	． 02	． 04		3
L465E 465－75M	1	26	8	52	N	12	7	324	1.43	13	5	ND	1	12	$\stackrel{3}{3}$	2	2	23	． 12	cos	3	11	． 10	66	＋17		2.82	．01	3		14
1465E 465＊50m	1	65	21	55	\％t	17	8	529	1.40	15.	5	W0	1	15	T	2	2	25	． 15	0］\％	3	11	－ 38	119	${ }_{4}^{4}$		2.07	． 08	． 35		49
1465E 465＋25M	1	276	12	52	． 3	27	14	458	2.44	21	5	MD	2	17	＊ 6	2	2	36	． 23	\％0\％	9	25	－38	11	．\％		2.07	． 01	． 05		
E	1	88	9	56	\％ 5	25	12	381	2.21	19	5	WD	2	13	$\stackrel{8}{6}$	2	2	36	． 14	31303	7	19	． 27	127	17		3.24	． 01	． 65		9
L465E 4	1	182	14	55	－ 4	39	13	252	2.90	29	5	ND	4	16	2	2	2	50	． 26	008	16	42	． 67	81	4		9	． 09	． 05		45
L465E 464＋50	3	498	11	54	10	48	17	285	4.84	44	5	ND	3	19	2	3	2	62	． 47	\％ 850	17	61	． 98	8	， 3		1.93	－08	．06		290
1465E 466＋25w	1	36	8	69	＋2	20	8	246	1.70	42	5	WD	1	14	\pm	2	2	28	． 11	＊／3	5	11	． 15	110	${ }_{6} 8$		2.19	－02	． 05		7
1465E 464000M	1	18	7	72	， 2	16	7	383	1.51		5	ND	2	16	． 5	2	2	25	． 16	＊ 1×9	4	10	． 15	14	． 7 \％		2.35	． 01	． 5		
1465843	1	129	19	53	\％ 5	51	11	361	2.33	17	5	WD	3	20	，2	2	4	16	． 24	0 O3	13	28	． 37	169	$\stackrel{17}{17}$		3.11	． 02	． 86		9
L465E 463＋50w	1	66	12	55	2 2	34	10	457	i．93	建	5	W	2	15	， 4	2	2	32	． 17	660	6	19	． 27	164	${ }_{6} 17$		2.68	． 02	． 05		4
L465E 463＋25x	1	59	14	54	－2	52	10	360	2.09	19	5	WD	2	12	． 3	2	2	32	．15	3349	12	21	． 27	206	． 19		2.02	． 02	． 06		4
L485E 463＋00N	1	80	22	71	8	31	11	592	1.95	37.	5	W0	2	24	3	2	2	43	． 29	\％ 048	12	30	． 36	118	， 22		4.86	． 02	．86		5
1465E 462＋750	1	272	20	66	9	81	13	572	3.01	35.	5	W ${ }^{\text {d }}$	3	18		2	2	4	． 26	\％	18	30	． 36	118	＋22		4.0	． 02	0		
1465E 462＋56m	1	98	6	38	\％ 3	42	12	355	2.14	53	5	W0	2	13	\％ 5	2	2	32	． 16	35	6	17	． 21	96	－27		3.7	． 02	．04		1
L465E 462＋25M	1	64	8	38	$\rightarrow 2$	25	10	252	2.02	24.	5	No	3	16	\％ 3	2	2	30	． 17	267	8	18	． 27	104	9			2	． 15		5
$1465{ }^{\text {c }} 482+00 \mathrm{~cm}$	1	50	14	45	\％ 6	23	11	326	1.89	－ 15	5	ND	2	12	$\stackrel{5}{5}$	2	2	30	． 12		8		． 24	111				1	0		340
1465t 463＋75M	1	35	6	64	2	23	9	477	1.95	14	5	ND	，	0	± 2	，		33	＋	193	5	19	27	145			2.24	． 81	． 03		56
L665E 461＋50m	1	28	4	68	－	20	9	1043	1.89	22	5	w	1	10	－s	2	2	32	．${ }^{3}$	495	5	19	＋27	14							
			21	52	\％	33	12	600	1.85	17	5	no	1	19	， 2	2	3	31	． 24	＜ 0		20	． 26	199	＋14：		2.02	． 02	5		4
	1	36	8	60	¢ 6	24	8	889	1.75	16	5	WD	，	19	， 2	2	3	30	． 19	TEA	6	20	． 27	198	＋6：		2.24	． 01	． 65		17
（465E 460＋75\％	1	28	11	76	区	23	10	9484	1.83	\％ 8	5	ND	1	14	，${ }^{3}$	2	2	28	． 15		6	19	． 28	277	． 4		2.19	－01	）		370
1465E 460450m	1	52	2	23	84	11	27	511	． 69	\％	5	M0	1	11	＋2	2	2	21	． 14	＊	14	4	0	56				02	\％		40
1465E 460－25M	1	55	8	50	\pm	31	10	424	1.97		5	Hid	2	10	＋	2	2	33	． 14	\％	8	24	． 35	9	\％			． 01	．		
L45E 460400\％		28	18	68	，	32	10	49	1.84	15	5		1	22		2	2	30	． 22	¢07．	5	16	． 24	137	418		2.57	． 02	． 05	2	1
Stampano C／Mj－S	18	57	38	131	\％ 0	67	30	1049	3.93	， 4 4	17	6	37	47	相， 6	15	22	58	． 51	860\％	37	55	． 89	174	T0	36	1．90	． 0	． 13	${ }_{2}$	0

SAMPIE	$\begin{gathered} \text { mo } \\ \text { ppm } \end{gathered}$	Cu	$\begin{array}{r} \text { pb } \\ \text { ppon } \end{array}$	In	ppon	$\begin{aligned} & \text { Non } \\ & \text { pron } \end{aligned}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppon } \end{array}$	Fe	pppm	$\begin{array}{r} \mathrm{U} \\ \text { pprin } \\ \hline \end{array}$	$\begin{array}{r} \text { hu } \\ \text { ppom } \end{array}$	$\begin{gathered} \text { Th } \\ \text { pprf } \end{gathered}$	$\begin{gathered} \mathbf{S r} \\ \text { prom } \end{gathered}$	$\begin{gathered} \text { td } \\ \text { pomim } \end{gathered}$	sb	$\begin{gathered} \quad \mathbf{B} \\ \text { Ppm } \end{gathered}$	$\begin{array}{r} \mathrm{V} \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{8} \end{gathered}$	$+\mathbf{P}$	Lat	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppr} \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \mathrm{x} \end{gathered}$	Be	1 1	P4\％		$\underset{\mathbf{x}}{\mathrm{K}}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{Z} \end{aligned}$	$\underset{\mathbf{p o n}}{\mathbf{N}}$	Apt
	2	301	2	66	2	65	49	238	3.13	22	5	ND	4	20	＊3	2	2	4	.21	¢034	12	34	． 48	294	17		3.05	． 02	． 05	2	34
L466E 465＋75M $14665465+504$	2	391 35	14	66	1	20	9	301	1．86	10	5	W3	1	12	＋ 3	2	3	31	.15	809		16	． 24	104	17		2.03	． 02	． 04	＋	18
L466E 465＋50M cti6e $465+25 \%$		35	14	71	$\xrightarrow{1}$	28	12	619	2.27	13	5	W\％	1	15	－2	2	2	36	． 18	Stex	6	22	． 27	184	－ 6		2.71	． 02	． 05	＋	19
L6E0k 465		33	8	63	3	24	11	554	2.00	15	5	10	2	46	${ }^{2}$	2	2	31	． 27	458	6	16	． 24	115	4		3.00	． 02	． 05		13
	4	43	5	57	4	32	11	271	2.25	19	5	ND	2	75	$\checkmark 2$	2	2	36	． 2	\％61：	7	22	． 30	120	新：		2.64	2	． 05	－	14
		49	5	63		33	10	208	2.20	15	5	N0	2	15	3	2	2	4	． 22	3060：	7	48	． 27	111	$\otimes 19$		3.27	． 02	． 65		34
L46E 464＋50M	1	6	7	51	3	47	12	231	2.71	22	5	ND	2	20	± 2	2	2	39	． 35	5034	11	26	． 39	138	－10		3.25	． 02	． 05	t	42
LCESE 464 LSAE 461		148	12	71	7	78	13	448	3.06	32	5	N0	3	23	－2	2	2	40	． 36	0065	12	29	． 39	180	－22		4.47	． 03	． 06		35
L46EE 463＋75N	，	65	6	61	5	45	11	183	2.46	17	5	ND	2	19	$\stackrel{8}{6}$	2	3	36	． 36	\％06	7	25	． 32	113	19		3.69	.02	． 05		12
L460E 463＋50N	1	${ }_{*} 68$	15	65	5	76	12	374	2.97	29	5	MD	2	18	． 2	2	2	37	． 30	8046：	12	30	． 33	149	． 41		7	2	．06		13
Lest 4	1	3	16	75	6	42	10	513	2.02	16	5	10	2	18	$\stackrel{2}{2}$	2	2	30	． 22	tte	13	17	． 22	152	边		3.67	． 03	． 06		11
1460t 463	1	59	12	74	4	41	12	909	2.22	17	5	N0	2	19	． 4	2	3	37	． 31	859	8	27	． 40	180	．66		2.33	． 02	． 06		14
L466E $462+75 M$	1	44	3	103	12	28	12	636	2.12	15	5	H0	1	26	5	2	2	35	． 26	¢133	8	20	． 27	209	17		5	.02	06		53
L46SE 462＋50\％	1	44	B	62	3	43	11	439	2.99	17	5	W0	2	24	3	2	2	35	． 27	D71	8	4	3	1	－		8	2	0		22
LG66E 462＋254	1	28	8	63	2	26	9	720	\＄．81	21	5	N0	2	27	3 ：	2	2	29	＋ 18	， 23	6	4	． 20								
			0	57	2	25	9	732	1.84	12	5	mo	2	20	＋4	2	3	30	． 99	． 491	5	43	． 19	110	＋20		． 34	． 02	． 03	\％	5
SE 461		41	5	75	2	29	11	045	2.17	13	5	N0	2	21	¢ 4	2	2	37	． 27	118	7	23	． 31	189	17		3.05	． 02	． 15		12
L466E 481＋50m		165	15	62	$\cdots 7$	27	11	566	2.55	19	5	mo	3	14	－5	2	2	30	.16	\％104	7	20	． 27	159	23		4.43	．02	＋65		20
L466E 461＋25＊	1	96	4	55	2	35	15	492	2.35	19	5	10	3	21	＋2	2	2	37	－21	4609	11	27	． 36	152	4		3.38	． 02	.05		30
LCB6E 461＋60\％	1	29	10	77	3	22	11	1526	1.70	12	5	10	1	24	2	2	2	28	.22	\％181	6	17	4	18	． 4						
		50		52	2	22	10	552	1.81	19	5	W0	1	15	t	2	5	30	． 16	120	7	16	． 23	441	＋16		2.99	． 02	． 04		30
LSE6E 460＋50m		64	17	56	3	33	13	737	2.14	14	5	N0	2	17	2	2	2	36	． 16	WF2	8	24	－33	445	17		2．88	02	15		40
Letice 460＋25	1	31	0	56	¢	31	12	626	2.16	14	5	MD	2	24	4	2	3	35	． 23	105.	6	22	2	25				2	． 15		73
LIE6E 460＋60\％	1	28	10	61	2	20	9	808	1.77	15	5	Mip	1	34	－ 3	2	3	27	7	219	3	16		88			2.0%	． 02	． 04		3
L467E 46\％＋50M	1	15	15	71		12	8	1236	1.68	14	5	MD	2	14	3	2	2	20	－ 16												
			7	109	＊2	29	12	1032	2.40	26	5	WD	1	19	\％	2	2	38	． 28	434	5	19	． 27	170	＊		． 30	． 82	0		2
L6TR		438	2	59	1．1	57	11	873	2.04	50）	5	ND	2	23	＋	2	2	31	． 67	＋461	45	22	． 25	60	椪		3.00	． 13	． 015		6
L467E 487475＊	1	42	12	69	－2	18	8	385	1.71	12	5	D	2	13	＋ 4	2	2	25	． 25	\％ 81	7	14	． 17	2	7.			－02	． 64		2
L467E 6674S0m	1	75	12	58	$\stackrel{+}{3}$	25	12	411	2.33	22	5	WD	2	16	3		2	37	． 29	8077：	8	22	－ 3	61				． 01	． 4		350
L467E 467＋254	1	369	2	47	＋4	61	28	309	4．7！	52	5	m	3	16	${ }_{4}^{4}$	2	2	57	． 43	185	16	52									
		51	2	93	2	33	12	232	2.62	25	5	mb	2	15	， 4.4	2	4	4	． 18	\％000	5	19	． 27	4			． 04	． 02	． 05		50
		29	11	77	5	21	8	584	1．88	23	5	mo		21	， 2	2	2	50	． 18	00.	5	10	． 15	127 57	02		4．00	． 02	－04	\bigcirc	60
L467E 466＋50M		149		44	S	40	11	201	2.14	19	5	N0	2	24	， 8		4	27	． 55	\％02\％	43	18	． 25	157			3.14	． 105	． 08		1010
L46TE 466＋259		378	17	74	8	83	45	423	3.42	42	5	虽	3	26		2	4	43	． 8.8	＋184	1	9	． 15	99	4		4.75	． 03	．04	\％．	18
L467E 465＋50m		37	15	80	.5	18	18	674	2.00	23	5	10	3	16		2	2	3	－ 17		5	7	－	9						\％，	
		43		74	－ 1	25	13	314	2.37	16	5	数	2	16	\％ 6	2	2	57	． 15	10	6	19	． 24	¢	24			．02	5		10
sTminep t	17	53	36	129	8.6	60	30	1041	3.92	6	19	6	37	47	783	16	27	57	． 51	S	30	53	． 90	17	－10）	3	1．＊	． 6	－ 13		52

Attwood Gold corp．PROJEET GOLDEN CROWN FILE \＃90－1341

SAMPLES	No	tu	$\underset{p}{\text { Pb }}$	$\begin{array}{r} \mathbf{Z n} \\ \text { ppm } \end{array}$		$\underset{\mathrm{mi}}{\mathrm{Mi}}$	Co	$\underset{p m n}{p m}$	$\begin{gathered} \text { Fe } \\ X \end{gathered}$	R	$\underset{\text { ppm }}{\mathrm{U}}$	$\underset{\text { Mpm }}{\mathbf{H U N}}$	$\begin{array}{r} \text { Ith } \\ \text { pppan } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \text { ppm } \end{array}$	Cd	$\begin{array}{r} \mathbf{S b} \\ \text { ppm } \end{array}$	$\underset{\mathrm{Bi}}{\mathrm{Bi}}$	$\begin{array}{r} \mathbf{Y} \\ \text { pram } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	$\frac{8}{2}$	18	$\begin{gathered} \mathrm{Cr} \\ \mathrm{prpm} \end{gathered}$	$\frac{\operatorname{mg}}{x}$	$\begin{array}{r} 88 \\ \text { ppow } \end{array}$	K1	B	$\mathbf{A l}$	$\begin{gathered} \text { Ms } \\ \mathbf{y} \end{gathered}$	2		$\begin{aligned} & \mathrm{Aln} \\ & \mathrm{pob} \end{aligned}$
L4808 465－23\％	1	35	12	82	\％	21	9	527	1．9＊	13	5	mo	2	15	8	2	2	29	． 18	－0\％3	4	14	． 19	93	$\bigcirc 19$		3.2	． 02	． 0		5
L468E 465＋00m	1	43	13	58	3	29	12	400	1.96	46	5	N0	7	26	2	2	2	30	． 31	¢ 152	5	18	25	170	16		2.49	． 02	．06	9	
L468E 464＊75	1	148	10	60	44	39	15	301	2.70	30	5	M0	2	22	2	3	2	44	． 37	－1040	10	38	． 62	96	， 13	2	1.88	． 01	．06	1	
L460e 464＋50	1	39	12	84	3	26	12	622	2.09	19	5	N0	＊	13	$\boldsymbol{\theta}$	2	2	33	． 17	122	5	21	27	113	16		2.50	． 01	． 05	$\stackrel{1}{8}$	
L460E 464 +25 m	1	28	11	55	\％	27	10	590	2.08	16	5	10	\＄	14	3	2	2	34	． 68	460	4	19	． 24	112	t1：		2.90	． 01	． 15		
L4605 44400．1	1	82	5	46	3	25	4	336	1.11	5	5	㠶	＋	10	2	2	3	23	． 45	\％36	10	14	． 19	46	819		1.19	． 02	． 05	1	1
L46tE 463＋75M	1	434	8	53	－2	79	30	551	4.76	32	5	M0	＊	16	2	2	3	63	． 36	\％036：	12	111	1.61	79	$\underline{2}$	2	2.38	． 01	． 13	1	2
L460E 463－501	1	78	11	47	1	40	44	195	2.60	19	5	ND	2	15	＋2	2	2	46	． 27	－ 211	10	41	． 64	77	\＄2		1．60	.01	． 16	\％ 1	t
（4602 463＋254	1	24	12	56	$\times 3$	20	8	712	1.74	11	5	W0	1	13	2	2	2	28	． 14	\％hts	4	16	． 18	119	17		3.23	． 01	13	1	1
L468E 463＋00M	1	42	9	58	－1	20	11	616	2.06	20	5	10	1	17	2\％	2	2	34	． 21	179	5	25	33	139	${ }^{35}$.01	． 04		5
L460x 463＋73N	1	25	5	56	$\checkmark 1$	16	9	275	1.74	8	5	W0	1	7	．3	3	2	$2{ }^{6}$	． 08	167	5	17	． 19	122	ts		2.24	． 01	． 13	T	13
L460x 462＋50	1	32	9	39	2	22	9	475	1.67	11	5	N0	1	10	－2	2	3	29	． 11	-10	4	20	． 26	107	14	2	1.95	． 01	． 05	1	21
1460E 462＋25M	1	35	9	46	2	31	11	501	1.99	14	5	N0	2	14	3	2	5	33	． 15	fags	5	21	． 27	164	17	2	2.75	.01	． 04		37
L460E 462＋00m	1	4	5	30	2	26	10	575	1.86	15		40	2	17	2	2		31	． 15	00	7	19	． 23	190			3.07	．02	． 5		7
L468E 461＋75M	1	55	8	60	－3	29	10	550	1.91	$\mathbf{2 t}$	5	H	1	17	2	2	2	32	． 20	\％990	8	24	． 35	145	3		2.15	． 01	． 65		1
Li60E 461＋50m	1	61	14	62	＋4．	35	10	401	1.99	11	5	H0	2	15	2	2	2	32	． 14	5068	8	25	． 33	163	15		2.37	． 01	． 65		22
L46er 461＋25M	1	41	9	50	1	29	10	465	1.86	17	5	H0	2	13	\triangle			31	． 14	\％18	6	23	． 30	$10 \dagger$	35		2.41	． 01	． 14		15
14608 461＋00N	1	46	＊	58	－3	31	10	576	2.15	17	5	wo	2	17	\checkmark	2	2	34	． 18	099	8	26	． 35	475	16	2	2.55	． 01	． 05		6
L468E 460＋751	1	50	18	52	2	31	17	617	1.94	18：	5	W0	1	18	2	2	2	53	． 20	60	7	27	.35	147	3			01	0.		
L468E 460－50m	1	33	12	65	.2	25	10	777	1.61	13	5	N0	2	25	－ 4	2	2	26	． 24	2 OH	6	16	． 19	967				2			
L46EE 460＋23M	1	52	13	44	2	29	14	603	2.02	18	5	N0	2	25	2	2	2	31	． 22	104	10	21	． 31	187	T1		3.15	． 62	．06	2	9
L460E 460＋00m	1	71	12	50	4	28	12	307	2.08	13	5	mp	3	15	$\bigcirc 3$	2	2	33	． 16	077	8	22	． 33	158	67		2.99	＋01	05		2
14654 459＋75M	1	36	7	54	＋1	15	11	943	1.63	\％ 6	5	ND	1	13	－2	2	2	30	． 16	056	5	14	． 22	172	3			． 02	4		19
L4ESE 499＋50m	1	66	9	47	1 1．	25	12	544	2.01	¢5	5	m	1	20	＋2	2	2	34	． 24	8107	6	23	． 35	435	＋14		2.31	． 01	． 04		11
4689 468＋50\％	1	48	11	47	1	18	9	507	1.75	14	5	ND	1	17	i	2	2	32	． 21	104＊	6	20	． 26	121	2		f．47	． 01	． 04		
Sit 46e－2in	1	43	8	48	1	18	9	757	1.76	11.	5	N0	1	20	， 2	2	2	31	． 22	＜05	6	18	30	132	－t5		2.44	． 02	． 06		12
	1	30	11	64	3	22	E	492	1.81	16	5	mo	1	18	$\bigcirc 3$	2		30	． 21	150	5	48	． 26	129	ct			． 01	． 15		15
Li69E 467＋754	1	44	10	66	2	19	8	322	1.92	14	5	10	1	11	－2	2	3	32	.97	101	4	17	． 24	95	\％6		2.42	． 01	． 04		16
L469E 467＋25M	1	72	13	72	$\underline{2}$	27	10	350	2.15	15	5	0	2	16	\％2	2	3	35	． 19	0／5	6	18	． 29	＋17	－ 18		3.42	－02	． 04		5
L460E 467＋05m	1	111	B	71	6	30	14	522	2.23	22	5	0	1	21	2	2	2	36	． 23	8070	6	20	． 33	130	＋17		2.94	． 02	.05	业	
＋e 4ictisim	1	189	11	48	4	27	11	304	2.38	19	5	0	2	33	． 2	2	4	36	． 14	\％060	5	19	.28	104	\％t\％		． 75	． 01	． 04	2	25
9e 466＋5911	4	133	8	49	1	39	14	413	2.02	16	5	W0	2	12	－2	2	2	46	． 18	069	7	29	． 47	134	86		2.60	01	． 05	＋	32
L469E 466－25m	1	106	B	65	1	28	14	767	2.30	16	5	no	1	$\$ 2$	． 2	2	2	38	． 15	109	6	26	． 41	157	楼		2.12	0	． 04		33
LISAE Lection	－	0	17	53	2	24	12	613	2.11	19	5	W	2	45	2	2	2	32	． 15	101	－	18	． 26	115	17			02	． 04		1
L469E 465＋75M	1	109	14	7	4	32	14	240	2.58	19	5	WD	2	46	－2	2	3	40	． 26	\％031	0	25	． 37	115				1	－		
14492 485＋50m	1	276	47	72	4	40	17	436	2.79	49	5	m	1	49	2	2	3	39	． 32	8070	0	20	． 45	5	$\stackrel{1}{4}$		2.20	． 01	． 05		30
STAMPA的 C／mu－s	18	57	40	120	7，2	70	30	1051	3.74	38	17	7	37	48	䨐1	15	22	56	． 50	\％ 09	37	55	． 89	174	帾	32	1.05	． 0	． 13	＋1	51

54mple	Mo	Cu	$\begin{gathered} \mathrm{Pb} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} 2 n \\ p p m \end{array}$	$\begin{aligned} & \text { Ag } \\ & \text { pqun } \end{aligned}$	$\begin{array}{r} \mathrm{Mi} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { pppm } \end{array}$	Mn Fe Ppm	pm	J	Au	$\begin{array}{r} \text { Th } \\ \text { perm } \end{array}$	$\begin{gathered} \text { Sp } \\ \text { ppon } \end{gathered}$	cred	$\begin{array}{r} \mathbf{5 b} \\ \mathbf{p p o n} \end{array}$	$\begin{gathered} \text { 日í } \\ \text { Pom } \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ca } \\ \mathbf{x} \end{gathered}$	$\begin{array}{r} 8 \\ \$ 4 \end{array}$	$\begin{gathered} \mathrm{Li} \\ \mathrm{pmom} \end{gathered}$	Cr		$\begin{array}{r} \text { 8i } \\ \text { ppm } \end{array}$	$\frac{11}{1}$	B A！ 7	$\mathbf{X a}$		y	
14698 465＋25	1	676	17	53	＊ 6	49	23	4023.57	33	5	10	2	22	2	2	7	50	． 52	如 4	14	44	． 77	7	94	21.55	． 02	． 06	2	66
L469\％464＋75	1	484	30	60	8	70	18	3733.10	33	5	W	2	15	2	2	2	46	． 23	6074	9	43	． 69	9	tt	32.05	． 02	． 05	1	2
L469E 464＋50m	t	74	14	66	4	29	11	4142.16	19	5	10	2	95	＋4	2	3	35	． 17	4074	0	23	． 30	132	18	33.33	． 02	． 05		10
1469t 444－25N	1	139	24	80	E	50	13	5772.51	50	5	N0	2	21	－ 8	2	3	41	． 30	101	10	36	53	183	5	2.74	d2	08		3
L469E 404400m	1	105	＋5	96	\％	42	14	5982.34	18	5	N0	2	21	c	2	2	38	． 24	＋145	0	20	38	178	16	3.10	2	． 07		20
L465：463＋734	1	15	12	100	3	35	10	5032.02	16.	5	ND	1	11	2	2	2	34	． 12	1\％\％	6	25	． 29	117	． 6	32.62	． 02	． 05	1	5
（460E 463＋50m	1	67	45	106	3	44	12	4902.30	16.	5	ND	1	20	＜2	2	2	37	． 23	\％013	6	27	． 35	154	17	23.17	0.0	． 06		26
L460E 463＋25N	1	51	4	72	4	30	10	2972.00	26	5	ND	1	11	32	2	2	40	＋ 15	063	6	30	． 40	84	12	21.59	． 12	． 05		9
L669E 463＋00m	1	17	${ }^{\text {B }}$	75	1	13	7	6821.20	4	5	ND	7	22	5	2	2	20	． 15	194	6	41	． 11	230	48	41.43	－ 02	．03		5
L469E 462＋751	1	29	9	74	6	29	9	5301.70	16	5	ND	2	17	4	2	2	29	． 13	33	6	16	． 19	155	96：	42.62	． 62	．04		
1640 462＋50m	1	22	19	75	84	22	9	6911.60	12	5	ND	2	25	2	2	2	26	． 29	2210	5	13	． 16	158	＊ 7	52.73	． 02	． 15		2
T469E 462＋25	1	19	9	78	1	16	9	007 1.55	10	5	ND	1	24	2	2	2	23	． 29	203	4	15	.17	210	83	41.81	12	． 08		7
1469E 462＋00m	1	2	2	92	2	28	12	7331.85	12	5	ND	1	18	3	2	2	30	．部	4159	6	21	． 25	158．	14		． 02	． 05		
［669E 461＋75	1	30	6	79	2	27	17	6479.93	9	5	N0	2	19	2	2	2	32	． 20	8100	8	26	． 33	165	13	51.54	． 02	． 05		1
L669E 461425＊	1	43	11	74		39	14	3381.91	15	5	M	2	14		2	2	30	． 13	156	6	17	． 22	130	¢18：	3.30	2	15		
L685 460＋75	1	32	11	69	3	38	9	6151.8	13	5	mo	2	19	$\underline{1}$	2	2	29	． 20	$\stackrel{1}{4} 57$	6	20	． 27	168	15	22.69	． 0	． 05	1	47
L649E 460＋50m	1	34	9	66	1	25	9	7521.85	16	5	ND	2	24	6	2	2	29	． 18	5t29	7	18.	． 26	192	16	33.04	． 02	． 05	1	70
L669E 460＋25：	1	46	9	68	.2	32	11	11032.13	14	5	W0	2	22	2	2	2	34	． 26	3122	10	26	． 37	254	15	52.80	．02	． 0.		
L669E 460＋601	1	51	12	72	2	39	13	6162.20	75	5	40	3	16	3		2	35	． 17	117	10	24	． 35	19	17	3．17	2	．06		2
L469E 459＋75M	1	41	10	53	2	32	13	5722.12	15	5	ND	2	19	－4	2	2	34	＋19	－135	8	21	． 28	120	8：	23.17	． 02	．06		
L469E 499040m	1	62	9	62		38	15	6842.42	20	5	ND	2	20	． 2	2	2	39	． 23	006\％	10	32	． 46	257	15	42.00	－02	．06		1
L670E 460－50m	1	50	14	59	． 5	22	9	4362.12	18	5	WD	3	25	12	2	2	34	． 23	140	12	21	． 53	152	18	23.5	． 02	．06		1
L470E 460425M	，	43	11	59	4	21	10	6292.01	16	5	ND	2	24	86	2	3	31	． 25	．114	6	15	． 23	144	14	3.84	． 02	．064		7
1470E 460000	1	152	95	69	1.0	28	13	5782.40	29	5	ND	3	23	3	2	2	35	． 54	006	21	22	． 32	1	21		3	． 04		15
6470E 467＊75	I	71	9	65	5	17	10	3552.01	20	5	ND	3	14	3	2	2	32	． 13	15	8	13	． 1	1	－21．		． 62		:	
L470E 467＋501	1	58	9	68	6	23	14	10532.08	20	5	NO	2	14	4	2	2	34	． 16	\％42	6	16	． 22	171	地	23.29	． 0^{2}	． 04		16
L4TOE 467420	4	104	11	48	． 3	23	13	4162.46	23	5	ND	3	18	4	3	2	38	． 20	．072		20	． 33	156	18	43.86	． 02	04		11
L4TUE 467400w	－	167	7	57	1	23	14	5022.61	21	5	ND	3	17	3	2	2	39	． 20	8078	12	21	． 35	140	16		12	04		，
L470e 466＋75H	\＄	319	11	47	2	29	16	3314.12	33	5	10	3	10	6	2	2	64	． 15	\％065	9	35	． 66	403	44	5.3	－01	＊		29
44TEE 460450m	\dagger	140	10	50		30	76	$4 \% 32.71$	77	5	N0	3	13	4	2	2	43	． 17	8045	11	31	． 42	103	／9	53.20	－ 82	． 0		2
160＋20	1	456	6	51	－	32	16	2963.14	19	5	0	4	14	2	2	2	48	． 19	\％ 61	12	31	． 34	76	20：	23.58	0	05	\％	4
C4TOE 46SNOM	1	403	8	59	2	26	13	3803.43	79	5	no	2	12	3	2	2	55	． 15	－0＊＊	B	30	． 50	78	16.	22.17	． 017	． 05		14
4470e 465＋75M	1	482	9	75	4	31	16	4872.63	34	5	W0	2	17	4	2	2	43	． 21	108	8	27	． 42	111	\％6	32.66	． 02	． 05		54
L47ve 465＋50N	1	104	13	74	2	40	18	4242.50	37	5	WD	2	16	3	2	2	39	． 23	\％ 88	8	25	． 34	108	18	3.15	． 02	5		5
L470E 465－28M	1	53	b	60	5	17	10	5311.85	19	5	N0	2	14	＊	2	2	$2{ }^{\text {c }}$	． 14	\％	D	13	\％${ }^{\text {F }}$	114		33.09	12	． 04	\cdots	
1470 4694003	1	142	13	57	3	40	13	3992.35	29	5	Mo	2	47	3	2	2	37	． 20	\％054	0	30	．38	100	14	22.32	．02	.05		0
	17	58	44	129	6S	60	30	10453.77	40	18	7	37	45	18， 1	15	19	57	． 50	\％99	37	57	． 87	174	80	331.73	． 06	.13	冓	50

Attwood Gold corp．PROJEtri GOLDEN CROWN FILE \＃90－1341

SAMPLE＊	$\begin{gathered} \text { Mo } \\ \text { per } \end{gathered}$	Cu	Pb PPRT	$\begin{array}{r} 2 n \\ p r m \end{array}$	Ag	$\underset{\mathrm{ppm}}{\mathrm{Ni}}$	co	$\begin{array}{r} \text { Mn } \\ \text { pem } \end{array}$		A8 pan	$\begin{array}{r} \mathrm{V} \\ \text { ppm } \end{array}$	su	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Sr } \\ \text { ppm } \end{gathered}$	Id	$\begin{array}{r} \text { Sb } \\ \text { ppRn } \end{array}$	$\begin{array}{r} 8 i \\ p p i n \end{array}$	$\begin{array}{r} V \\ \text { ppm } \end{array}$	\mathbf{x}		Le	$\underset{\text { prom }}{\mathrm{Cr}}$	48	$\begin{gathered} \mathbf{8 n} \\ \hline 10 n \end{gathered}$		8	$\mathrm{A!}$	Ne		$\begin{aligned} & \text { Atiot } \\ & \text { ppob } \end{aligned}$
1674E 464060	1	46	47	68	． 3	28	9	637	1.94	35	5	ND	2	17	\％ 6	2	2	30	． 22	143	4	17	． 25	106	ST		3.25	． 01	． 04	7
2471E 463＋75\％	－	32	8	78	2	24	11	1091	1.87	100	5	ND	1	23	$\stackrel{2}{2}$	2	2	28	． 16	327	4	16	． 22	215	45		2.68	． 01	． 84% \％	5
L471E 463＋50\％	1	18	12	51	1	16	7	457	1.40	30	5	No	1	24	8	2	2	22	． 23	203	3	11	.17	149	\％ 5		1.65	． 02	． 05 \％	15
L47TE 463－25＊	1	37	8	53	\leqslant	24	9	812	1.57	313	5	HD	1	23	3	2	3	28	． 19	\％103	6	17	． 26	174	． 3		1.74	． 01	． 65	33
L6T9E 463＋00w	1	52	12	50	， 2	33	11	699	1.98	18	5	ND	1	19	3	2	2	33	． 19	120：	8	22	． 36	148	14		2.37	.01	． 04%	16
1479E 462＋751	1	36	5	54	2	27	9	705	1.76	18：	5	10	2	17	． 5	2	2	30	． 19	1t8：	6	21	． 32	154	12		1．0\％	． 01	． 05	11
1471E 462＋50\％	1	37	99	58	3	27	9	858	1.64	15	5	ND	1	23	\％2	2	2	28	． 26	18	6	20	． 31	185	． 42		1.89	． 01	． 04	10
L471E 462＋25in	1	35	9	66	6	36	9	520	1.92	18	5	ND	1	23	4	2	2	30	． 25	－127	6	21	． 34	184	＋ 14		2.37	． 21	． 65	3
LG77E 462＋00m	1	38	10	64	1	22	8	757	1.73	75	5	N0	2	13	2	2	2	26	． 12	\％ 14	7	18	． 23	164	.9		3.08	． 01	． 05	14
467E 461＋730	1	30	6	61	$\stackrel{5}{8}$	26	8	698	1.67		5	ND	1	22	$\bigcirc 2$	2	3	26	． 21	\＄176	6	17	． 25	165	.13		2.39	.01	． 55 \％ 1	35
46	1	4	9	63	－3	22	9	189	90	45	5	N0	2	27	2	2	2	32	． 27	4ts	8	18	． 30	203	$\stackrel{15}{ }$		． 35	． 91	． 06	47
LCTIE 461＊25M	1	53	7	65	3	32	10	599	1.99	1 A	5	N0		23	2		2	32	． 24	003	8	25	． 38	162	－ 13		． 12	． 01	． 67	41
L4T7E 461000m	9	64	9	45	\checkmark	35	12	444	2.29	＋17	5	ND	2	14	－2		2	36	． 17	065	9	31	． 47	127	－${ }^{+1}$	2	2.25	． 01	． 05	42
L671E 660－75M	1	62	28	63	2	35	12	1048	2.29	$\bigcirc 18$	5	ND	，	25	\％ 4	2	2	36	． 30	． 159	8	30	． 46	170	＋14		． 85	． 09	． 65	143
L479E 460－50m	\％	85	12	47	$\stackrel{2}{2}$	46	17	603	2.63	¢ 23	5	ND	1	21	． 2	2	2	40	． 28	063	11	37	． 61	143	． 89	3	1.76	． 01	． 06	32
L479 460－\％	！	54	12	45	$\stackrel{1}{1}$	32	19	498	1.84	\％ 8	5	W	1	24		2	2	29	． 29	63	8	23	． 36	152	$\times 10$		． 61	． 01	． 68	59
1471E 460＋00m	1	71	13	39	2	35	13	49	2.21	20	5	NO	1	24	， 2	2	2	34	． 31	18039	8	27	． 45	123	10		． 61	． 01	． 06	37
L671E 459＋75\％	1	56	16	52	1	30	14	802	2.03	\％25	5	ND	1	30	－4	2	2	33	． 35	8050	7	25	． 40	136	． 89	3	1.32	－ 51	． 55	49
L471E 459＋56m	1	66	5	53	d	32	13	759	2.10	46	5	ND	1	23	． 2	2	2	34	． 30	076	8	25	． 38	450	＋11		1.72	． 01	． 06 \％	40
C672E 468000\％	1	51	10	49	1	19	9	726	1.74	12	5	ND	2	25	， 2	2	2	30	． 28	N09\％	8	18	． 29	151	\＄4		2.24	． 01	． $06 \leqslant$ \％	50
1672E 467475\％		64	10	50	－1	20	11	862	1.82	11	5	HD	1	24	2	2	2	33	． 25	＋078	7	20	． 36	150	40		53	.01	．04	31
L47EE 467450m	，	53	9	48	1	20	10	677	1.76	13	5	N0	1	21	，2	2	2	31	． 21	078	6	17	． 29	131	． 63		01	． 02	． 55 \％ 2	18
L472E 467＋25\％	1	46	7	50	4	20	10	556	2.05	13	5	No	1	12	＋2	2		38	． 17	8072	5	23	． 38	79	11		，4t	． 01	． $04 \geqslant \%$	9
L4TZE 467400，		64	7	37	\％	19	9	538	1.75	\bigcirc	5	${ }^{10}$	1	26	， 2	2	2	30	． 22	－062	6	16	． 30	130	43		1.95	． 08	． $05 \% 1$	37
L472E 466＋75	－	52	7	70		18	10	11751	1.69		5	ND	，	22	\％	2	3	28	． 20	166	7	45	． 23	206	． 45		2.25	． 02	． 66 \％ 1	
1672E 46	1		10				13	5	35	2	5	W0	4	93	－ 2	2	4	3	． 19	139\％	7	25	． 42	105	＋3		2.30	． 01	．04	29
L472E 464－75\％	1	21	2	41	1	15	6	2031	1.08	\％ 1	5	ND	1	8	$\stackrel{2}{2}$	2	2	23	． 12	\％653	2	18	． 23	58	\％19		． 75	． 02	． 63	4
1472E 464450m	，	55	7	52	， 1	35	11	593	4.79	26	5	ND	，	19	$\overbrace{3}^{3}$	2	2	29	． 25	924	6	21	.31	136	613		2.13	． 02	． 04	25
4672x 464－25M		65	8	46	1	25	11	689	1.97	16	5	ND	，	14	$\bigcirc 2$	2	2	35	． 16	8099		24	． 40	93	\cdots	5	． 89	． 01	． 06	45
L472E 463＋75M	1	32	7	63		24	10	8881	1.81		5	ND	1	29	－ 2	2	2	29	． 28	， 412	5	18	． 30	197	$\times 17$	3	1.69	． 61	． 06	17
L472e 46	1	22	8				－	817	1.34		5	WD	1		$\stackrel{+}{2}$	2	2	23	． 23	89\％	4	12	． 20	161	＋13		51	． 01	－65 \％\％	4
	1	36	10	70	5	42	11	7491	1.83	14	5	ND	1	26	－2	2	3	28	． 27	30\％	7	15	． 25	198	\％ 4		2.27	． 02	． 06 \％苑	16
16724 43300m	1	48	7	73	4	36	12	7901	1.87	\％ 16	5	ND	1	33	\％ 2	2	2	28	． 34	號	7	22	． 33	229	¢0		1.69	． 08	． 07	15
L47CE 462＋73M	1	68	10	49	－2 2	40	12	4532	2.04	$\bigcirc 17$	5	ND	1	22	＋ 2	2	3	33	． 27	矢类	9	26	． 44	137	＋12		1.86	． 01		68
1477E 462＋30w	9	37	2	42		26	11	11592	2.05		5	ND	1	24	\％2	2	2	37	． 27		8	27	． 44	154	819．	4	1.28	． 01	． 07 \％納 ${ }^{\text {a }}$	29
1472E 462＋259	1	62	9	54	\％2	37	12	5222	2.02 ：		5	N0	1	29	$\checkmark 2$	2	2	33	． 23	48	9	25	． 40	176	． 13		2.26	． 01	． 05 \％	90
STAngund C／me	18	57	38	129	1．1	69	30	10373	3.73	38	17	7	37	48	16.3	15	24	56	． 69		36	53	． 87	174	彻	36	1.85	．06	$.14 \%$	30

SAMDEE	$\begin{array}{r} \text { Mo } \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{prm}}{\mathrm{Cu}}$	$\begin{array}{r} \text { Pb } \\ \text { ppm } \end{array}$	$\begin{array}{r} 2 n \\ p r m \end{array}$	ng	$\underset{\text { pom }}{\mathrm{Mi}}$	$\begin{aligned} & \text { Co } \\ & \text { pppin } \end{aligned}$		$\begin{gathered} \mathrm{Fe} \\ \mathbf{y} \end{gathered}$	虭 ppon	$\frac{\mathrm{u}}{\mathrm{pan}}$	Mu	Th ppm		Cd	$\begin{array}{r} \text { Sb } \\ \text { prom } \end{array}$	$\begin{gathered} 8 i \\ \text { pern } \end{gathered}$	$\begin{array}{r} \mathrm{V} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{C} \\ \mathbf{2} \end{array}$	$\underset{X}{P}$	$\begin{array}{r} \text { Le } \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{pem} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Hg} \\ \mathbf{x} \end{gathered}$	$\begin{array}{r} \mathrm{Ee} \\ \mathrm{pprin} \\ \hline \end{array}$	$\begin{aligned} \mathrm{F} \\ \hline \end{aligned}$	$\begin{array}{r} \text { B } \\ \text { ppin } \\ \hline \end{array}$	$\underset{\mathbf{X}}{\mathbf{A}}$	$\begin{gathered} \text { Me } \\ \mathbf{y} \end{gathered}$	\mathbf{x}	pp	$\begin{aligned} & \text { ALP } \\ & \text { ppob } \end{aligned}$
1472E 462＋00m	1	62	13	48	2	23	10	660	1．81	40	5	ND	2	20	5	2	2	31	． 24	． 070	11	19	＋31	137	16	2	2.65	． 02	． 05	1	16
1472E 461＋75N	1	50	1	65	2	22	9	624	2.01	18	5	$N 0$	2	16	5	2	2	35	.17	162	8	21	． 33	167	16	3	2.50	． 02	． 06	1	15
$14728461+50 \mathrm{~m}$	1	27	3	60	1	6	7	1467	1.02	7	5	ND	1	19	． 6	2	2	23	.19	－ 048	3	7	.11	194	． 98	2	． 67	． 02	． 04	1	5
L472E 661＋25M	1	49	10	67	2	29	11	1017	1.83	12	5	W0	1	36	3	2	2	30	． 32	3骊	9	23	． 34	237	t2	2	1.90	． 02	． 06	1	30
L472E 461＋00m	1	51	6	61	3	43	12	566	2.05	20	5	＊ 0	1	28	6	2	2	33	． 33	69	7	27	． 43	178	． 11		1.55	． 02	． 07		H
1472E $460+754$	1	7	9	50	3	47	16	391	2.57	29.	5	N0	2	22	5	2	2	40	． 32	3047	11	33	． 54	\＄56	13	2	2.05	． 01	． 05	1	60
L472E 460＋50m	1	55	10	54	${ }^{2}$	49	15	593	2.39	18	5	W0	2	22	4	2	2	37	． 30	644	11	28	． 44	175	t3	4	2.00	． 02	． 06	2	71
4472E 460－25M	1	64	12	51	2	47	16	743	2.30	16	5	ND	2	32	8	2	4	36	． 44	－046	10	25	． 40	169	$1{ }^{1} 4$	4	2.07	． 12	． 07	1	21
$1472 E 460400 \mathrm{H}$	1	88	15	57	2	45	18	691	2.74	21	5	H0	2	27	－ 6	2	3	44	． 39	$\bigcirc 050$	12	34	． 54	145	16	3	2.17	． 01	． 06	1	59
L472E 459475	1	105	12	54	1	55	16	464	2.64	16	5	WD	2	20	7	2	2	43	． 27	\％601	13	28	． 48	85	．t7		3.04	1	． 06	1	4
14728459450	1	72	8	52	2	30	14	602	2.25	14	5	W0	2	22	5	2	2	38	． 28	D62	9	25	． 42	123	． 14	3	2.11	． 01	． 05		25
L473E 468＋25M	1	38	6	54	2	17	11	1043	1.73	13	5	MD	1	24	5	2	2	33	． 34	415	6	19	． 34	242	11	2	1.45	． 02	． 07	1	24
L473E 488＋00w	1	41	12	53	1	18	10	976	5．08	12	5	ND	2	24	7.	2	3	33	． 37	Y00	8	17	． 29	205	TS	4	2.25	． 02	． 07	2	8
L473E 467＋75M	1	90	11	65	2	25	14	556	2.48	17	5	ND	4	21	5	2	3	42	． 29	¢083	12	22	． 43	150	t7	3	2.90	2	0	1	23
L473E 467＋50N	1	64	6	5	－1	19	10	664	7.88	$11:$	5	HD	1	17	5	2	3	36	． 25	046	7	18	． 33	148	＋4		1.85	2	6		6
1473E 667＋25M	1	105	9	53	1	25	14	712	2.54	15	5	MD	1	17	5	2	2	44	． 23	1004	11	24	．48	107	15	2	2.66	． 01	． 05		24
1473E 467＋001	1	101	13	54	1	25	16	0.14	2.44	14	5	WD	1	27	5	2	2	42	． 40	\＄045	10	26	． 46	130	15	2	2.48	． 01	． 07		1
1473E 466－25N	1	128	9	67	3	31	20	581	3.06	26	5	ND	1	13	［5	2	2	48	． 22	177	12	33	． 5	58	． 10		3．6	.01	． 05		5
1473E 460＋00m	1	84	15	60	1	26	18	850	2.71	17	5	ND	1	22	5	2	5	46	． 32	015	10	25	． 46	0	7		2.61	01	．08		57
L473E 465＋251	1	69	0	62	． 1	45	15	640	2.50	32	5	N0	1	18	3	2	2	36	． 23	－118	7	32	． 42	199	14．		2.35	． 02	． 6		4
L473E 464＊75：	1	60	17	64	2	35	15	786	2.31	24	5	10	2	22	3	2	2	36	． 27	188	7	27	． 37	208	14	2	2.50	． 02	． 06		68
L675E 464．50w	1	64	1	57	1	25	13	650	2.04	17	5	NO	1	21	5	2	2	33	． 26	\＄116	7	21	． 34	173	13	2	2.06	． 02	． 05	1	30
1473E 464＋2\％	1	98	8	54	2	34	17	734	2.60	23.	5	No	2	28	2	2	3	40	． 33	＋695	1	28	． 46	187	17	3	2.85	． 02	． 07		300
L473E 466＋00\％	1	76	8	62	1	26	14	828	2.11	24	5	N0	2	26	7	2	2	53	． 31	125	10	23	． 39	201	13		2.37	2	． 07		30
1473E 464－73M	1	55	10	78	－1	27	12	776	1.91	19	5	NO	1	44	3	2	2	34	． 46	144	9	23	． 37	238			1.95	． 02	． 0		47
L673E 4634．50m	I	68	10	53	.1	25	15	817	2.14	27	5	No	1	31	6．7	2	2	4%	． 36	＋085	8	23	． 39	160	12	2	1.65	02	．06		22
1673E 463－75	1	67	27	75	－1	26	15	1970	2.00	24	5	ND	1	24	1.0	2	3	40	． 28	111		25	． 41	148	， 10	3	1.55	． 02	． 05	3	22
L473E 463＋00m	1	52	14	69	2	31	14	976	1.99	17.	5	10	1	32	6	2	2	34	． 41	15	6	27	． 40	15	10	2	1.53	2	．06		22
1673E 462＋751	1	58	9	53	1	38	12	801	1.86	22	5	10	，	23	\％ 6	2	2	33	． 29	\％007	6	24	． 31	156	10		1.29	2	． 07	1	77
L473E 462450m	1	46	8	58	2	32	11	55	1.92	14.	5	10	1	35		2	2	32	． 33	\％DP2	9	21	． 31	185	． 14		2.14	． 42	． 07		20
1473 462＋23M	1	58	9	56	2	32	11	776	1.95	20	5	10	1	26	\％	3	3	32	． 30	＋130	10	21	． 34	169	14		2.45	． 02	． 07		16
447E 462＋00\％	，	105	15	57	${ }_{-3}$	92	18	603	2.72	33	5	Wo	2	20	6	2	2	4	． 2 t	8092	11	46	． 65	173	15	2	2.59	． 01	． 06		6
4473E 469＋75	1	57	31	83	2	35	12	831	2.02	22	5	ND	1	32	1.4	3	2	33	． 37	8109	8	26	． 40	202	＋11	3	1.82	． 02	． 0		5
L673E 461＋50m	1	54	B	65	2	30	12	757	1.92	15	5	ND	1	28	8	2	2	52	． 26	135	9	26	． 36	173	＋12	2	$\%$	2	6		3
1473E 461＋00m	1	55	12	49	1	33	12	688	2.14	23	5	W	1	16	6	2	2	36	． 25	\％069	0	28	． 4	13	1			01	． 6		19
L473E 460－754		64	7	63	2	33	14	631	2.26	22	5	N0	1	20	0	2	2	39	． 30	\％ 077	0	29	． 45	116	13	2	2.05	． 01	． 05	1	6
STAmpate craj－s	10	58	37	129	6.7	67	30	1046	3.81	31.	17	7	37	48	18.3	16	23	57	． 51	， 0 戈	37	55	． 88	174	$\bigcirc \mathrm{OC}$	34	1.91	． 06	． 13	2	50

SAMPLE*	$\begin{gathered} \text { Ho } \\ \text { pron } \end{gathered}$	cu	$\underset{\mathrm{pb}}{\mathrm{~Pb}}$	$\begin{array}{r} \text { In } \\ 90 \cdot n \end{array}$	pomg	$\underset{\text { pomi }}{\mathrm{Ni}}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{PRP} \end{array}$	$\underset{p p m}{\mathrm{mpm}}$	$\begin{array}{r} \mathrm{Fe} \\ \mathbf{y} \end{array}$	$\begin{gathered} \text { AB } \\ \text { ppon } \end{gathered}$	$\begin{array}{r} \mathrm{U} \\ \text { pom } \end{array}$	$\begin{array}{r} \mathbf{A d} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { porin } \end{array}$	$\begin{gathered} \mathbf{5 r} \\ \mathbf{p p r i n} \end{gathered}$	C pp	$\begin{array}{r} \mathbf{S b} \\ \mathbf{p p r} \end{array}$	$\begin{array}{r} \text { Bi } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{V} \\ \text { pan } \end{array}$	Cz	$\frac{1}{2}$	$\begin{gathered} \text { Ln } \\ \text { Pprin } \end{gathered}$	$\underset{\mathrm{pr}}{\mathrm{Cr}}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{x} \end{gathered}$	Bep	$\frac{T}{1 / 4}$	$\stackrel{8}{\mathrm{pg}}$	$\stackrel{A!}{\mathbf{X}}$	$\begin{gathered} \mathrm{Ma} \\ \mathrm{Z} \end{gathered}$	\mathbf{z}		$\begin{aligned} & \text { Al } \\ & \text { peb } \end{aligned}$
1475 460450/	1	56	10	56	1	29	13	1052	2.18	1	5	ND	1	25	+2	2	2	40	. 32	\%063	7	23	. 40	132	4t	3	1.90	. 02	. 07	1	410
1473E $460+59 \mathrm{~m}$	1	77	13	49	1	35	15	827	2.42	18	5	ND	2	18	+2	2	5	42	.25	$\bigcirc 052$	8	31	. 49	102	. 14	2	1.98	. 92	. 05	2	020
1475 +66+50N	9	99	14	67	2	31	16	1088	2.62	26	5	MD	1	28	5	2	5	44	. 67	077	13	34	. 57	139	12		2.26	1	. 08	d	56
1474E 468+25N	1	39	12	43	-1.	17	9	981	1.61	15	5	WD	1	21	2	2	2	29	. 19	\%082	8	17	. 25	189	4	2		.03	- 01		6
L474E 460+00M	1	102	10	50	1	30	14	451	2.71	18	5	N0	3	12	3	2	3	45	.17	\% 839	11	32	. 50	9	-17			. 01			
1474E 467*754	\$	101	B	57	1	26	14	578	2.50	18	5	M1	1	11	2:	2	5	43	. 18	c74:	12	27	. 48	80	17	13	2.59	. 01	. 05	1	72
L474E 46745 DM	\%	105	7	53	1	25	14	702	2.30	25	5	嗗	1	23	5	2	4	40	. 40	053	10	28	. 51	102	. 42	3	1.95	. 02	. 05	1	0
L674E 467400\%	9	76	11	70	1	22	16	1251	1.73	18:	5	*D	1	23	¢	2	2	34	. 43	,06	7	24	.37	149	dis.		1.34	. 02	06	1	3
L474E 486+75M	1	96	2	68	1	27	14	780	2.36	21	5	N0	1	31	4	2	2	42	-41	H80	12	30	. 50	165	-15		2.11	.02	. 07		4
4474E 466+00M	1	92	10	52	4	28	17	621	2.53	534	5	WD	2	22	3	2	4	40	. 26	CO42	9	28	. 43	141	-16.		2.46	. 02	. 06		124
1474 40	1	38	11	63		14	9	952	1.58	25	5	的	1	25	4	2	2	31	. 26	O56	5	14	. 23	175	12	2	1.48	. 02	. 04		5
L47E 463+79 474E 46-50H	\%	92	5	57	$\times 2$	29	14	518	2.28	63	5	MD	2	45	-2	2	3	36	. 26	\%63	14	25	. 39	64	18		2.86	. 02	. 05	1	1
L474E 465+25m	9	97	12	54	1	51	14	427	2.64	41	5	WD	3	16	\%.2	2	3	39	. 17	070	9	32	. 44	137	>19		3.18	. 02	. 06	2	58
L474E 465*00m	1	48	5	51	2	26	11	806	1.78	13	5	*D	1	15	+2	2	2	32	. 19	60,	5	26	. 35	116 413	+62		1.57	. 08	. 04	1.	53 36
L476E 464*75M	1	105	11	50	2	36	16	466	2.73	21	5	MD	2	20	2	2	2	42	. 26	068	10	35	. 55	113	- 86		2.6	. 12	. 05		6
(*	87	18	72	1	45	15	600	2.56	88	5	N0	1	14	3 :	2	3	37	. 23	tos	6	36	. 44	121	45	4	2.19	. 02	. 05	1	469
4E 484+25	*	221	5	46	$\square 2$	70	24	383	3.96	102	5	W0	2	18	2	2	3	57	. 38	463	13	59	. 97	79	12	2	1.8	. 02	. 06	2	122
1474E 466-09N	4	53	7	68	2	23	12	740	1.98	22	5	ND	3	22	+3	2	2	34	. 30	124	7	21	. 35	0	+16		2.29	2	. 10		6
L474E 463+75M	\$	75	10	43	2	28	12	654	2.15	17	5	W0	1	19	2	2	3	36	- 25	C5	9	26	. 40	151	$\stackrel{16}{*}$			02	+06		3
1474E 463+25M	1	65	9	75	-2	28	9	700	1.70	15-	5	10	1	22	2	2	4	28	. 23	168		20					1.7	. 0	. 6		
-		52	9	7	3	39	11	527	1.92	23	5	N0	1	19	\% 2	2	3	31	. 23	\%ov:	9	24	. 33	162	\%14:	2	1.97	. 02	. 06		19
	1	44	6	45	1	36	10	565	1.89	16	5	410	2	22	,	3		31	. 23	$\mathrm{OH}^{\text {O }}$	8	25	. 32	164	. 44	2	2.03	. 05	. 07		43
1474E 462+50w	1	38	8	56	2	24	10	935	1.60	15	5	40	1	21	\%	2	T	28.	. 25	C58	5	21	. 29	143	80		1.16	.02	.06		6
1474E 462+251	1	54	8	67	-2	30	11	698	1.78	13	5	N0	1	22	3	2	2	27	. 20	+115	7	19	. 31	192	+22		1.74	. 05	.06		14
L474E 462+00w	1	38	6	51	2	25	11	811	1.71	21:	5	NO	1	24	3 5:	2	3	27	. 30	-1	7	19	. 26	192	. 2			.	.		
1476E 461+7	1	43	8	55	\cdots	28	13	593	2.10	21	5	NO	2	27	,3	2	4	31	. 26	140	9	23	. 33	468	-14		2.28	. 02	. 05	1	6
L474 $461+50 \mathrm{~m}$	1	74	8	58	2	37	13	611	2.24	24.	5	H0	2	29	\%	2	2	35	.30	114	11	27	. 40	171	4		2.10	. 02	. 06		15
L474E 461+25N	1	37	6	62	- 6	32	12	799	1.93	17	5	mo	1	32	${ }^{3}$	2	3	31	. 31	6s5	8	22	. 30	200	13			. 12	. 07		17
L474E 461000	1	44	10	56	\% 2	36	14	653	2.25	14	5	mo	1	26	2	3	3	37	.30	072		7	. 4	152	2			2	0		10
L474E 460475M	1	73	2	50	+2	42	17	907	2.59	16	5	W	1	24	+3	2	2	41	. 30	3	9	32	. 32	149				2	. 07		
				8		91	14	795	2.15	13	5		2	20	\% 8	2	3	39	. 29	36	8	41	. 35	134	+15		1.00	. 12			14
	1	52	26	176	$\stackrel{1}{2}$	59	12	607	1.91	14	5	MD	1	20	- 8	2	3	40	. 31	1054	4	36	. 49	${ }^{6}$	+2	3	1.57	. 02	. 07		
L474 460400m	1	90	5	74	\pm	40	13	874	2.41	9	5	ND	,	30	-4	2	2	50	. 36	-659:	7	27	. 49	130	+15		2.49	. 02	.97		6
L474E 459075N	1	24	7	52	4	107	11	657	1.88	27	5	WD	2	21	2	I	2	26	. 16		4	25	. 27	202	, 17		3.10	. 02	${ }^{-07}$		
L474E 459+50M	4	28	7	67	2	82	12	274	2.22	24	5	ND	2	19	8	2	2	33	. 19	+153.	6	30	. 37	174				. 02	. 05		
	9	58	35.	129	67	67	30	1059	3.01	35 :	17	7	37	48	17\%	16	23	50	. 49	4994	39	55	+ 80	175	0	33	1.80	. 06	. 13	11	53

Attwood Gold corp. PROJECT GOLDEN CROWN FILE \# 90-1341

SAMPLE:	No	$\underset{\mathrm{pram}}{\mathrm{Cu}}$	$\begin{gathered} \text { 䧁 } \\ \text { pom } \end{gathered}$	$\begin{array}{r} \mathbf{2 n} \\ p r o m \end{array}$	Ag	Mi	$\begin{gathered} \mathrm{CO} \\ \text { pon } \end{gathered}$	$\begin{array}{r} \text { Mn } \\ \text { ppin } \end{array}$	$\begin{gathered} \text { Fe } \\ \mathbf{y} \end{gathered}$	$\begin{gathered} \text { As } \\ \hline \text { pran } \end{gathered}$	$\begin{array}{r} \text { U } \\ \text { pom } \end{array}$	$\begin{array}{r} \text { AU } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { ith } \\ \text { ppom } \end{array}$	$\underset{\text { prom }}{\mathbf{S r}}$	cd Ppor	$\begin{array}{r} \text { Sb } \\ \text { pprm } \end{array}$	$\begin{array}{r} 9 i \\ \text { ppm } \end{array}$	$\begin{array}{r} v \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{\%} \end{gathered}$	$\begin{array}{r} \mathrm{P} \\ \mathrm{I} \end{array}$	$\begin{aligned} & \text { Lb } \\ & \text { ppon } \end{aligned}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \\ \hline \end{gathered}$	$\underset{\mathbf{x}}{\mathrm{Xg}}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \\ \hline \end{array}$	\boldsymbol{T}	$\begin{array}{r} \text { B } \end{array}$	$\begin{gathered} \mathbf{A !} \\ \mathbf{X} \end{gathered}$	$\begin{array}{r} \mathrm{Ma} \\ \mathbf{x} \end{array}$	\hbar		
1475E 460450m	1	49	10	65	2	20	8		1.68	20	5	ND	2	27	. 2	2	2	28	. 32	147	6	99	. 29	217	14		2.08	. 02	. 05	2	51
L475E 468+25	1	47	10	49	2	20	\bigcirc	750	2.04	15	5	ND	4	27	-2	2	2	33	. 30	-019	10	21	. 34	182	78		0	2	. 05	1	45
L475E 48-00w	1	46	10	48	. 2	22	11	983	2.19	14	5	HD	2	17	3	4	2	58	. 25	O6t	8	27	. 40	169	7.			04		1	4
L6TSE 467+754	1	66	7	40	2	19	10		2.04	13	5	HD	2	16	-2	4	2	39	. 23	\% 850	8	23	-35	124	17			01			17
L6TSE 4674004	1	60	11	43	2	21	12	708	1.86	20	5	ND	1	20	2	2	2	33	31	.068		20	. 34								
L67E 466-75\%	1	60	0	65	2	29	14	852	2.21	27	5	N0	2	25	+	2	2	35	. 44	. 069	\%	29	.43	205	13	3	1.85	. 01	. 09	1	21
L6FE 460-750	1	119	5	66	1.	29	12		2.18	22	5	ND	3	32	2	2	3	35	. 41	1099	11	26	. 43	165	. 15	3	2.26	. 02	. 10	1	20
L675E $466+25 \%$,	8	45	51	2	21	12	649	2.14	4	5	No	2	21	2	2	5	34	. 40	.050:	12	23	. 34	123	19	5	2.93	. 02	. 05	3	14
L6TSE 46\% 6001	8	74	43	37	2	19	19	520	1.85	49	5	ND	1	22	3	2	2	32	. 45	0034	7	21	. 32	119	13		1.89	. 02	. 05	2	24
L4TSE 465*75\%	9	08	\$4	63	3	83	15	361	2.15	49	5	NO	\dagger	28	4	2	2	33	. 51	.092	7	40	. 57	96	. 12		1.69	2	. 05		175
L675 465+50\%	*	107	10	59	2	38	15	681	2.38	38	5	ND	2	18	+3	2	2	36	. 36	065	9	26	. 40	95	.14	4	2.17	. 02	. 04	2	54
L6TSE 465-25\%	1	86	11	49	2	40	15	539	2.48	21	5	ND	2	16	+2	2	2	40	. 23	. 055	8	39	. 55	123	17	2	2.71	. 01	. 05		8
t 675 E 465-00M	1	94	16	66	2	24	14	979	1.99	64	5	ND	1	24	. 2	2	2	32	. 37	.083	8	22	. 36	153	45		4	. 01	. 06		5
1675E 464+531	1	146	B	7	3	61	14	634	2.17	72	5	WD	2	22	2	3	2	32	. 43	.055	13	28	. 40	90	- 75		8	2	06	1	14
L4TSE 464+50N	*	188	10	41	. 2	50	22	326	3.45	53	5	N(3	14		2	2	53	. 22	-058	11	53	6	72	4		6	1	. 04		
35 464+25	4	50	19	54	2	20	11	924	2.03	18	5	Mo	*	17	4	2	2	37	. 22	Ors:	5	24	. 37	132	. 13	2	7.61	. 01	. 04	4	167
L4Tse 464*00m	*	36	13	34	. 1	11	B	740	1.30	12	5	NT	\%	18	2	2	2	27	. 19	030	4	14	. 20	82	.10	2	. 91	. 02	. 03	1	8
6675E 463-751	9	94	8	53	4	30	17	1039	2.43	22	5	WO	*	31	2	2	2	41	. 3	. 052	9	32	. 48	177	6		2.37	. 02	. 0	3	63
1495E 463+50n	1	107	11	57	. 3	37	17	586	2.52	26	5	MD	2	23	2	2	3	40	. 33		19	32	.31	146	13		2.05	0	. 06	1	14
L675E 463-25M	1	27	13	79	. 2	47	13	834	2.17	20	5	NO	\ddagger	23	2	2	2	32	. 33	$\cdots 379$	6	30	. 34	262	+ 3		2.05	. 02	. 06		14
L4TSE 463+00M	1	33	10	89	3	37	12	676	2.11	19	5	ND	*	24	. 2	2	2	31	. 32	232	6	25	. 34	191	+15	3	1.90	. 01	. 05		45
L4TSE 462-75M	9	120	23	33	5	56	10	512	1.83	54	5	No	4	22	$\cdots 2$	2	2	32	. 70	. 035	15	31	. 34	78	14		2.01	. 92	. 05		22
L675E 462+50m	1	56	15	90	.2	50	13	783	2.22	24	5	No	2	23	-6	2	2	33	. 33	65	10	31	. 39	258	-15			. 02	.06		41
L675E 462+25M	*	35	15	97	2	59	12	719	1.99	25	5	NO	t	34	2	2	2	31	. 28		6	24	. 36	235	7	5	2.62	. 02	. 06	1	45
L675E 462+001	9	33	T3	72	2	41	12	731	1.95	24	5	M ${ }^{\text {P }}$	2	20	2	2	3	30	. 21			20	. 26	160	7	5	2.8	. 02	. 06	.	
	1	73	12	61	3	37	12	734	1.96	22	5	No	1	28	,2	2	2	31	. 31	+122		25	. 35	191	13	4	. 80	. 02	. 05		45
L675E 461+50	1	35	8	71	2	46	41	900	1.56	13	5	NO	1	31	$\square 2$	2	3	25	. 30	. 144	7	21	. 29	237	11	5	1.4*	. 02	+07		10
6475E 461+25M	1	45	9	61	2	72	15	397	2.23	20	5	ND	1	19	-2	2	2	35	. 28	666	9	37	. 54	148	13	2	1.89	. 01	. 06		4
LGTSE 461*00m	1	35	12	61	2	成	16	423	2.43	15	5	HD	1	20	+3	2	2	35	. 28	007.	6	48	.63 71	164	-12	2	1.75	. 01	. 06		78
1475E 460+754	1	48	11	69	2	97	17	634	2.42	14	5	ND	1	29	4	4	2	36	. 38	.062	9	56	. 7	16	. 11	2	1.62	. 0	. 06		
4-3F $480+2$ W		40	7	56		76	14	546	2.07	16	5	ND		21	. 2	2	2	31	. 27	068	7	37	. 51	141	11	2	1.54	. 02	. 55		27
L475 460+00m	1	35	12	65	. 2	76	13	788	2.00	23	5	ND	2	26	4	2	2	32	. 34	065	7	38	. 45	158	, 4	2	1.81	. 02	.06	1	19
L475E 459+75M	1	37	16	66	3	122	15	670	1.90	33	5	ND	1	17	7	2	2	29	. 25	813	6	49	. 45	149	. 13		7	. 02	. 07		29
L475E 459\%50m	1	20	20	100	2	256	21	628	2.41	47	5	MD	1	17	4	$?$	3	36	. 22	-066	,	81	. 61	178	42		. 64	. 02	. 15		2
6476E 468+254	1	20	7	37		11	5	1427	. 87	5	5	MD	1	18	4	2	2	20	. 27	\%061	3	9	. 12		. 07.	3	. 61	. 02	. 0		
						27	14		2.31	23	5	ND	1	26	2	2	2	45	. 42	\%00)	11	31	. 52	122	¢2		1.00	. 01	. 06	1	30
6476E 460+401	1		30	67		10	14	1255	1.45	19	5	ND	1	19	8	2	2	33	. 28	+12t	7	13	. 24	176	\cdots	2	1.35	. 01	. 04	1	23
4676E 667+ 75 N	17	5981	30 39	67 129	6.7	66	30	1053	3.85	36.	16	7	37	48	\%8.0	15	24	57	. 49	\%089	38	57	. 88	175	\% 3	32	1.81	. 06	.13	12	52

SAmples:	$\begin{gathered} \text { Wo } \\ \text { ppon } \end{gathered}$	$\underset{\mathrm{parm}}{\mathrm{Cu}}$	$\begin{gathered} \text { Pb } \\ \text { ppom } \end{gathered}$	in	Ag	$\underset{\text { pron }}{\text { N }}$	$\begin{gathered} \text { Co } \\ \text { pprm } \end{gathered}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppom} \end{array}$	$\begin{gathered} \text { Fe } \\ \boldsymbol{Z} \end{gathered}$	ps:	$\begin{array}{r} \text { Uf } \\ \text { mpon } \end{array}$	$\underset{\text { ppor }}{\text { Au }}$	$\begin{aligned} & \text { Th } \\ & \text { ppom } \end{aligned}$	$\begin{array}{r} \mathbf{S r} \\ \text { ppm } \end{array}$	cd	$\begin{array}{r} \mathbf{S b} \\ \text { porin } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} V \\ \text { ppoin } \\ \hline \end{array}$	$\underset{y}{C a}$	$\begin{gathered} 6 \\ \mathbf{x} \end{gathered}$	$\begin{array}{r} \text { La } \\ \text { pprim } \\ \hline \end{array}$	$\underset{\text { pron }}{\text { Cr }}$	$\underset{X}{\operatorname{Xin}}$	Pat	$\frac{11}{2}$	Ppp	$\begin{aligned} & \mathrm{Al} \\ & X \end{aligned}$	$\begin{gathered} \mathrm{N}: \\ \mathbf{t} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{Z} \end{aligned}$	苗	$\begin{aligned} & \text { Am } \\ & \text { phom } \end{aligned}$
14765 467+25M	1	102	9	49	1.	27	45	818	2.48	25	5	NO	9	18	.5	2	2	45	. 31	0050	10	29	. 55	113	. 6		2.16	. 01	. 06	1	4
L476E $467+00 \mathrm{~N}$	1	95	14	57	1	22	44		2.17	32	5	HD	1	27	.7	2	2	38	. 38	\%009	12	23	. 39	144	. 84		2.26	.01	. 05	1	62
L476E 466+751	1	108	11	55	2	24	14	760	2.25	23	5	N0	1	21	84	2	2	40	. 34	.054	9	27	.48	127	-t		1.80	. 01	. 05	-1	39
L476E 466+30m	1	82	8	60	2	19	40	659	1.56	30	5	H0	1	15	5	2	2	25		8067	0	16	. 27	72	97		1.50	. 02	. 15	1	9
L476E 466+25m	1	86	6	47	1	10	10	975	1.33	17	5	N0	1	20	5	2	2	27	. 28	8053	4	11	19	120	:			2	. 04		11
1476\% 468000 m	1	50	22	92	2	11	17	1903	1.50	27	5	WD	1	41	:4	2	2	29		sh7t	4	13	. ${ }^{6} 8$	260	149	3	1.04	. 02	. 07	1	12
L476E 465+75\%	1	169	7	44	. 3	32	18	531	2.76	65	5	N0	2	23	4	2	2	41	. 37	-058	13	32	+52	106	14	2	2.46	. 02	. 05		27
L476E 465+50	1	37	10	62	$\cdot 4$	18	7	800	1.45	21 :	5	N0	1	42	$\stackrel{8}{6}$	2	2	21		462	6	13	. 17	179	15		2.32	.02	.06		27
1476E 465+251	1	69	6	59	1	26	12	900	1.92	35	5	Wid	1	24	17	2	2	34	. 32	+114	5	25	. 39	117	1.		1.42	. 02	. 05		6
L476E 465+00m	1	128	15	51	-2	45	18	418	3.07	26	5	ND	3	16	5	2	2	47	. 22	8467	11	4	4	7	O.		-	. 01	. 05		2
L476E	1	87	11	53	2	34	17	770	2.26	17.	5	ND	1	19	3	2	2	39	. 28	2056	6	30	. 49	95	10	5	1.65	. 02	. 05		41
L476E 464450m	1	67	10	48	-2	35	13	531	2.04	32	5	ND	1	27	2	2	2	30	. 29	0	6	30	. 40	141	10:	2	1.68	. 02	.06	2	2
6476E 464+25M	1	50	4	35	1	23	10	482	1.64	31.	5	ND	1	15	3	2	3	29	. 15	-148	5	21	34	100	11.			02	. 03	1	12
L476E 464+00m	1	65	11	46	. 1	21	16	1006	1.92	22	5	ND	1	23	-2	2	2	37	28	9	8	37	. 50	109	413		2.04	. 01	. 05	1	$\stackrel{\square}{4}$
L676E 463+75	1	71	16	48	.1	34	14	764	2.34	24	5	ND	1	23		2	2	40	. 30	- 342	8	32	. 50	109	- 13			. 01	- 6		,
		92	2	59		43	16	528	2.72	25	5	ND	2	23	2	2	2	53	. 30	\%27	8	42	. 75	107	± 4		2.48	. 02	. 03	1	3
		+07	7	42	$\checkmark 2$	51	17	303	2.93	34	5	ND	2	15	2	2	2	46	. 41	OSE	12	46	. 73	73	. 12	3	1.39	. 02	. 08		8
L476E 463-00N	1	30	8	64	. 1	36	11	385	2.03	25	5	ND	2	14	-	2	2	31	. 25	+183	5	25	. 32	100	13	2	1.83	. 02	.05		29
L676E 462+75N	1	26	10	53	\% 1	112	12	799	1.77	15	5	ND	,	21	-2	2	2	28	28	8	6	20	38	161	-13	2	1.91	. 02	. 04	\%	1
L476E 462+50m	1	36	6	41	1	39	9	406	1.63	17.	5	ND	*	16	3	2	2	28	. 22	+70\%	6	20	.29	161	. 13			-02	. 04		
14785 462+23n			7			50	12	504	2.09	16	5	N0	2	20	6	2	2	33	. 22	.084	9	28	. 41	159	ts		2.24	. 01	. 05	2	22
$1476 E$ 462+8N $1476 E$ 46200N		47	6	41	-1	73	13	609	2.01	20	5	HD	2	22	4	2	3	3	. 25	1776	8	37	. 46	153	.14		2.17	. 02	. 05	2	1
1476E 46E 461+75M	1	50	4	45	\%1.	87	14	659	2.05	19	5	W0	1	21	\% 5	2	2	32	. 27	8044	8	43	. 56	144	13	2	1.95	. 02	.06	1	12
L676E 461+50N	1	40	16	57	, 1	97	15	609	2.09	24:	5	N0	1	15	4	2	3	32	. 22	8085	6	48	. 61	141	10	4	1.63	. 01	. 05		82
1676E 461425M	1	33	15	63	1	70	13	439	1.88	27:	5	MD	1	15	\%	2	2	29	. 20	168	5	37	.46	116	. 10 :		7. 32	. 02	. 0		2
			19	85	2	13	13	560	2.10	22	5	ND	2	25	\bigcirc	2	2	31	. 33	10%	7	47	. 52	163	13	13	2.90	. 02	. 08	I	11
L676e $461+00 \mathrm{~m}$		56	109	192	8	255	21	420	2.98	34	5	10	2	21	$1+1$	2	2	40	. 21	ypa	11	79	. 71	104	17		2.87	. 02	. 04	1	1
$1476 E$ 460+75 $16762 \times 80+50$		42	14	192	-2	344	28	800	2.93	39	5	ND	1	13	-7	2	2	37	. 13	-1005	7	94	. 64	167	13		2.10	. 01	. 04		10
L676E 460 + 25N	1	35	19	68	1	159	19	553	2.41	26	5	10	1	13	5	2	2	57	. 14	0055	6	58	. 62	153	13	2	2.02	. 01	. 04		2
1476E 450+75N	1	56	8	77	1	386	20	273	2.73	79	5	WD	2	15	2	2	2	39	. 18	8040	8	65	. 81	100	\$6		2.69	. 01	. 04		35
										16	5	10	1	15	2	2	2	46	. 21	1276	6	15	. 28	59	13		1.74	. 02	. 05	1	1
1677t $480+50 \mathrm{~m}$	1	49	11	89		19	14	178	2.78	16	5	ND	1	19	+2	2	2	56	. 27	. 690	10	19	. 45	190	4 H	2	3.00	. 01	. 07	1	4
L47PE 468+254	1	74	14	89		19	14	868	2.78 1.15	\%	5	W0	1	27	+ 4	2	2	30	. 46	+083	6	7	. 9	109	. 08	3	. 90	. 02	. 05	$\stackrel{1}{1}$	3
L477E 468+00N				42		24	10	938	1.72	25	5	No	1	31	$\stackrel{+}{9}$	3	3	32	. 46	$\mathrm{Cl}^{2} 2$	9	22	. 32	136	12		1.50	. 02	. 05	1	5
L47TE 467473N		70	43	8	1	24	14	974	2.59	26	5	ND	1	24	5	2	2	47	. 42	06\%	12	31	. 54	128	12		2.86	. 01	. 07	1	2
L47TE 467450m	1	7	12	$\boldsymbol{\pi}$	-1	29	14			27																					
				6		47	17	716	2.90	31	5	ND	3	28		2	2	48	. 32	\%057	15	40	. 57	171	. 16		2.54	. 01	. 0_{0}	1	2
57 Modat craly-s	18	57	39	129	+1	68	29	1027	3.78	37	19	6	36	47	17.3	16	20	56	. 49	687.	37	56	. 88	174	,080	34	1.87	. 06	. 14	3	51

Attwood Gold Corp. PROJECH GOLDEN CROWN FILE \# 90-1341
Page 13

SAMDLE*	$\begin{array}{r} \text { mo } \\ \text { pon } \end{array}$	Cu	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{p} \times \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{pom} \end{array}$	$\begin{aligned} & \text { Ag } \\ & \text { pomin } \end{aligned}$	$\begin{gathered} \mathrm{Mi} \\ \mathrm{pOR} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { porn } \end{array}$	$\begin{gathered} \text { Mn } \\ \hline p p s: 1 \end{gathered}$	$\begin{gathered} F e \\ y \end{gathered}$	$\begin{aligned} & A s \\ & p p \pi \end{aligned}$	$\underset{\mathrm{p} p}{\mathrm{U}}$	$\underset{\text { PPDB }}{A U}$	$\begin{array}{r} \text { Th } \\ \text { pporf } \end{array}$	$\underset{p p \times n}{S r}$	Cd	$\underset{\text { pob }}{\text { Sb }}$	$\begin{array}{r} 8 i \\ \text { ppon } \end{array}$	$\frac{v}{p p m}$	$\begin{gathered} C \\ X \end{gathered}$	$\begin{array}{r} \boldsymbol{P} \\ \boldsymbol{\%} \end{array}$	Le	$\begin{gathered} \mathrm{Cr} \\ \text { prom } \end{gathered}$	$\begin{array}{r} \text { Mg } \\ \mathbf{X} \end{array}$	$8 \mathrm{Ba}$	T	$\begin{array}{r} 8 \\ \text { ppon } \end{array}$	$\mathbf{A l}$	$\begin{gathered} \text { W8 } \\ \mathbf{X} \end{gathered}$	\boldsymbol{x}	$\begin{array}{r} \text { pam } \end{array}$	$\begin{aligned} & \text { an } \\ & \text { pob } \end{aligned}$
1477E 467+00\%	1	37	5	50	1	26	B	416	1.65	20	5	ND	2	24	2	2	2	26	. 32	.057	8	17	. 27	132	009	3	1.49	. 02	. 6	1	22
L4T7E 466+75M	9	30	3	55	i	21	8	680	1.77	33	5	ND	1	22	2	2	2	27	. 27	135	7	16	. 24	126	(1)	2	1.99	. 03	. 05	1	29
L477E 466-50M	1	71	8	83	. 2	30	14	828	2.66	62	5	\$0	3	27	. 2	2	2	36	. 41	. 174	11	27	. 40	207	, 13	5	2.64	. 02	. 07	1	92
167TE 460+25M	1	109	9	70	3	25	13	603	2.35	56	5	ND	3	23	2	2	2	32	. 51	\%033	12	22	. 34	106	.13	5	2.75	. 03	. 07	3	36
1677E 466006m	4	215	8	54	- 5	333	53	614	3.94	182	5	ND	3	28	2	2	2	42	. 74	. 047	16	240	. 83	59	.11	5	2.34	.03	. 05	1	459
L677E 465400\%	1	8	16	65	-2	48	19	717	3.01	34	5	N0	3	20	2	2	2	45	. 33	1303	7	47	. 66	116	(12	5	2.22	. 02	. 0	1	38
6477E 466475N	1	148	7	48	- 1	194	27	355	4.24	84	5	ND	4	19	. 2	2	2	53	. 36	8041	14	133	2.00	60	10	8	1.65	. 01	. 06	2	380
[477E 464+50N	9	81	7	69	3	55	19	447	2.93	61	5	ND	3	32	2	2	2	39	. 37	141.	12	35	. 51	139	. 12	4	2.40	. 02	. 06	1	57
1677E 464+25N	9	65	7	63	+1	43	15	602	2.43	34	5	ND	2	49	22	2	2	33	. 43	107	9	30	. 46	176	± 10	4	1.73	. 02	. 07	2	82
1477E 484+00W	1	47	6	44	!	46	13	452	2.22	29	5	ND	2	24	2	2	2	31	. 25	140:	8	26	. 39	128	415	3	2.15	. 03	. 6	-	123
4477E 463-75N	1	57	7	58	3	127	16	401	2.31	17	5	ND	2	19	-2	2	2	31	. 30	.038:	8	60	. 73	89	T1	5	1.96	. 02	.06	1	78
2677E 463+50N	1	22	7	69	. 1	230	26	757	3.13	93.	5	No	2	22	. 2	2	2	39	. 38	+120.	5	102	. 53	142	\% 1	4	1.86	. 03	.06	1	50
1677E 463+25M	1	32	7	48	, 1	130	17	486	2.19	23	5	ND	2	17	2	2	2	30	. 24	. 072	5	46	. 55	139	*09	6	1.46	. 02	. 05	1	67
L4TTE 463+00N	1	53	13	55	.2	114	19		2.86	26	5	ND	4	20	2	3	2	42	. 27	083	12	43	. 60	102	+18	5	3.45	. 03	. 06	-	41.
6479E 467450N	1	65	10	74	-1	29	13	613	2.72	24	5	ND	3	22	2	2	2	40	. 24	\$19\%	6	22	. 38	130	¢5	4	3.52	. 03	. 05	1	21
449E 469+50m	1	19	7	73	3	23	10	496	1.74	15	5	ND	2	24	2	2	2	24	- 20	216	5	13	. 15	172	44	4	2.88	. 03	. 05	\cdots	9
1479E 469+00W	1	33	10	70	. 4	40	10	360	2.02	8	5	NO	3	23	2	2	2	30	. 22	. 747	7	18	. 24	205	. 5	2	3.27	. 03	. 05	1	12
STAMDARO C/Au-S	19	61	39	132	7,1	72	31	1048	4.13	43	20	7	39	53	18.0	15	19	57	. 53	. 094	39	60	.95	182	0	38	2.03	. 06	. 14	13	54

CONTRACT SERVICES：

Soil Sampling：Sonny Yip（12 days）May 7－May 18 \＄1，094．02
Field Supervision：WR Geological Ltd．（3 days at $\$ 150.00 /$ day $) 450.00$

Geochemical Analysis：Acme Analytical Lab．Ltd．
（698 Samples－30 element ICP Analysis
698 Geochem Au Analysis by Acid／each 10 grams） $6,004.95$

Field Expense：Room \＆Board
Room 11 days at $\$ 22.68 /$ day 249.48
Meals May 7 －May $18 \quad 286.51$
Supplies：soil bags，mattocks， and other stationaries 699.98

1，235．97
Drafting：Geo－Comp Systems
（12 hours at $\$ 40.00 /$ hour） 480.00
Report Preparation：Fordex Management Inc．
（ 3 days at $\$ 300.00 /$ day）
900.00
$\$ 70,164.94$
＝ニニニ＝＝＝＝＝

