ON THE GOLDEN CROWN GROUP
 $40^{\circ} 5^{\prime}$ NORTH LATITUDE
 $118^{\circ} 35^{\prime}$ WEST LONGITUDE
 ATS 82E/2E
 GREENWOOD MINING DIVISION, B.C.

for

ATTWOOD GOLD CORPORATION
100-450 West Georgia Street Vancouver, BC

V68 123
by Warren Robs Bc. October 29, 1990

GEOLOGICAL BRANCH ASSESSMENTREPORT

0 INTRODUCTION 1
LOCATION \& ACCESS 2
LOCATION MAP 3
PROPERTY 4
CLAIM MAP 6
PREVIOUS WORK 7
REGIONAL GEOLOGY 9
REGIONAL GEOLOGY MAP 10
PROPERTY GEOLOGY 11
1990 DRILL. PROGRAM. 13
CONCLUSION 36
RECOMMENDATIONS 37
STATEMENT OF COSTS. 38
STATEMENT OF QUALIFICATIONS 40
APPENDIX I

- Drill Log Code Descriptions
- Drill Logs
- Assay Logs
- Assay Results
APPENDIX II
- Geology Map
- Drill Hole Plan
- Detail Drill Hole Plan
- Drill Sections

ATTWOOD GOLD REPORT

Golden Crown - 1990 Drill Report

INTRODUCTION

Between July and August 1990, Attwood Gold Corporation undertook a surface diamond drill program on its Golden Crown Property near Greenwood, B.C. A total of 34 holes totalling 2,112 meters were drilled by Lone Ranger Drilling. The purpose of this drill program was two fold. The first phase was to intersect strike and dip extensions of structures defined by previous drilling, and the second was to test various geochemical and geophysical anomalies defined by the 1990 geochemical and geophysical surveys.

LOCATION \& ACCESS

The Golden Crown Property is centered at $49^{\circ} 04^{\prime}$ north latitude and $118^{\circ} 34^{\prime}$ west longitude. The property lies between the city of Greenwood, B.C., 7.5 kilometers to the west, and the city of Grand Forks 13 kilometers to the south east. (Fig. 1)

The property is located in the Midway Range of the Monoshee Mountains and occupies a valley formed by Mt. Attwood to the south and Knob Hill to the north. The area is characterized by rolling hills, bluffs, and valleys with maximum elevations of 1,579 meters. The property is covered by stands of spruce, pine, larch, hemlock and cedar occurring on north facing slopes and in valleys with grassy meadows at higher elevations and south facing slopes. The topography is gentle with moderate relief of up to 300 meters. The region is semi-arid and is characterized by hot summers and cold winters.

Access to the property is excellent via Highway 3, to the Phoenix Ski Hill Road and then west 15 kilometers to the Hartford Junction. The property is crisscrossed by a series of old railway grades, logging and power line roads. A power and telephone line bisect the property from east to west.

PROPERTY

The Golden Crown Property consist of 2 Crown Granted, 12 Reverted Crown granted and 46 located mineral claims totalling 81 units. The claims are 100% owned by Attwood Gold Corporation and are registered in the Greenwood Mining Division, and are located on claim map 82E/2E. The claims encompass an area of 2,025 hectares. (Fig. 2) Related claim information below:

DESCRIPTION OF PROPERTIES

Name
Lot No. \quad Record No
Expiry Date
Crown Granted Mineral Claims

Golden Crown	600	N/A	N/A
Winnipeg	599	N/A	N/A

Reverted Crown Granted Mineral Claims and Fractions

Hecla	859	1772	December 12, 1994
War Cloud Fr.	1316	1773	December 12, 1994
Hard Cash	1062	1774	December 12, 1994
Nabob Fr.	1063	1774	December 12, 1994
Joe Joe	7595	1775	December 12, 1994
Sissy	1068	1776	December 12, 1994
Calumet	1314	1777	December 12, 1994
J \& R	(L.1059)	1865	November 8, 1991
Silver Star	(L. 1550)	1926	December 21, 1991
Hartford	(L.1057)	1927	December 21, 1990
Hartford Fr.	(L.1061)	1928	December 21, 1990
Nellie Cotton	(L.1460)	2173	May 13, 1993

Located Mineral Claims

Win Fr. 1784
Attwood No. 1 Fraction 4243
Add No. 2 4615
Ike 1
1972
Ike $2 \quad 1973$
Ike 3 1974
Ike 4

1975

December 12, 1994
December 21, 1991
December 21, 1990
December 21, 1990
May 13, 1993

September 24, 1994
February 25, 1996 June 23, 1995
January 23, 1994
January 23, 1994
January 23, 1994
January 23, 1994

Ike 5	1976
Ike 6	1977
Ike 7	1978
Ike 8	1979
Ike 9	2023
Ike 10	2024
Ike 11	2025
Ike 12	2026

II Mineral Claims

Crown $1 \quad 1986$
Crown 21987
Crown $3 \quad 1988$
Crown 41989
Crown 5 1990
Crown 6 1991
Crown 71992
Crown $8 \quad 1993$
Crown $9 \quad 2015$
Crown 102016
Crown 112017
Crown 122018
Crown 132019
Crown 142020
Crown 152021
Crown 162022
Crown 172202
Crown 18 2203
Crown 192204
Hip Fr. 2199
Golden Crown Fr. 2200
Star Fr. 2201
Crown Fr. 2027
Mikro 4426
Knob 1 4435
Knob 2 4436
Knob 3 4437
Knob 4 4438
Knob 5 4439
Knob 6 4440
Knob 7 4441
Knob 8 4442
Mikro 2 4536
Mikro 3 4537

January 23, 1994
January 23, 1994
January 23, 1994
January 23, 1994
February 6, 1994
February 6, 1994
February 6, 1994
February 6, 1994

January 28, 1993
February 6, 1993
May 28, 1993
February 6, 1993
November 1, 1990
November 14, 1990
March 12, 1993
March 12, 1993

LEGEND

CROWN GRANTS
Surface \& mineral rights

REVERTED CROWN GRANTS
Surface by othters
REVERTED CROWN GRANTS
Surfoce use

2 POST \& 4 POST
Mineral cloims
100
Reported overstaking of clairns owned by others

PREVIOUS WORK

Work on the property dates back to 1891 when the Winnipeg and Golden Crown Claims were first staked. Between then and 1905, 2,438 meters of shafts, raises and drifts had taken place. Ore shipments from the Winnipeg and Golden Crown, from 1901 to 1902 and 1910 to 1912, were reported at:

	Tonnes	Gold (oz)	Silver (oz)	Copper (lbs)
Golden Crown	2,742	1,234	2,248	83,890
Winnipeg	58,772	11,675	36,550	190,617

The property was dormant until 1965 when Sabina Mines and Scurry Rainbow conducted geophysics and a 1,695 foot drill program.

In 1976, 317 meters of diamond drilling in 5 holes was conducted by the Golden Crown Syndicate.

In 1979 Boundary Exploration drilled 4 holes totalling 329 meters.

In 1980 the property was optioned to Mundee Mines Limited. Dolmage Campbell, as contractor for Mundee, carried out geological surface mapping, sampling of old workings, dewatering, and mapping of the Golden Crown 30 meter level drift. In addition, 16 surface diamond drill holes were drilled.

In 1983 Grand Forks Mines Ltd. optioned the property to earn a 50% interest. Since then, the property has been under continuous exploration. From 1983 to 1987, 2,234 meters of drilling in 49 holes, took place.

In 1986 Noranda Ltd. carried out an exploration and drill program on the Crown Group of claims.

In 1987, 2,456 feet of drifting and 936 feet of diamond drilling was carried out.

From 1988 to 1989, an additional 1,050 feet of tunnelling, 8,489 feet of underground drilling, and 4,262 feet of surface drilling took place.

REGIONAL GEOLOGY
The Phoenix Map Area consists of metamorphic, sedimentary, intrusive, and extrusive igneous rocks that range in age from late Proterzoic to Eocene. (Fig. 3)

The rocks have been divided into seven assemblages (Little GCS paper 79-29). The assemblages are separated by intervals of deformation and/or regional metamorphism. Three assemblages dominate the Phoenix Area. The cherts and Limestones of the Attwood Formation, greenstones of the Knob Hill formation, and sharpstone conglomerates of the Brook7yn Formation. These formations have been intruded by cultramafics and diorites of Triossic age.

Structually, the Eagle Mountain and Twin Creek faults trend northwesterly and are crosscut by the Gold drop fault trending northeasterly.

Regionally, the rocks have been metamorphased to greenschist facies. Locally, some rocks have been metamorphased to amphibolite grade due to contact metamorphism.

LEGEND FGR FIGURE 3

```
ouaternary
an
``` \(\qquad\)
```

teRTIARY
cocene
woour toceme
Ekm aponoikf woun
upeciasice brectia
Ee COAVEL inTRUSIONS: menile quartr mocromite: miner granire and oulasuite
Maraon Formation ontausive rocks.

```



``` equivalent to inas of division Emry
Enve
CATEAED ROCKS fargely crituane
```



``` Divaion Emil: Emvia, rodic trachyte in pert undersiturated and mond intarcalitese procianice: Emitc, reiated (I) Hrachyte
```



``` and sututione: thais and congiomerate: minor aciefic and intermaciais eqrociasic and liow foctis
CRETACEOUS OA TERTLARY
\(\square\)
```



```
cretaceous (1)
```



```
JURASSIC ANO/OR CRETACEOUS
iKga
NELSON INTRUSIONS : qranodionte: minor quart Giorice and diorte
JURASSIC (7)
```



```
Js
Sirtione, mener pmprive, asanaztore and congomerare
mesozoic
```



```
wan himestane ciasta: M2, how breccis, tocelly with some interbedoe unestone
TRIASSIC
TRUSSIC
-TSy Whi Simestone, osack imasione, grey, Nacc. and Duff sheia
```



``` Twal areen chery acginte
MIDDLE ND © LOWER TRINSSC
```



``` sanostone with heds ol thappsome conglowerali and evert prit ntel
congiomerare
CARBONIFEROUS OA PERMEA
CPII KNOS OR PERMIAN
```


$49^{\circ} 06^{\prime} \mathrm{N}$

PROPERTY GEOLOGY
The Golden Crown Property is covered by Permo-Carbonferous Knob Hill greenstone. The greenstone is intruded by the Triassic Oid diorite which outcrops from the east of the Winnipeg shaft to adit. The diorite in turn is intruded by a sill like serpentinite body, (Fig. 4 in Appendix II)

The greenstone on the property ranges from andesite to basalt in composition, and occurs as flows and tuffs. The rocks are locally metamorphased to greenshist facies with only a weak fabric being developed. All the rocks have been weakly propylitically altered with chlorite being the predominate alteration product.

Mineralization occurs in veins. Three types of veins have been identified:

1. Quartz veins with disseminated pyrrhotite, pyrite, and chalcopyrite.
2. Massive sulfide veins of pyrrhotite with lesser amounts of pyrite, chalcopyrite, and quartz.
3. Quartz calcite veins containing massive pyrite and chalcopyrite.

The first type of veins occurs throughout the property but contains no significant gold values. The second type of vein generally occurs east of the Golden Crown shaft. This type of vein carries the best gold, silver, and copper values. No correlation was found to exist between the copper and gold values.

The third type of vein occurs west of the Golden Crown shaft. These veins have returned high copper values but generally low gold values. All the veins trend northwesterly and deep steeply north and south.

No visible strutural features occur on surface, although geophysical interpretation suggests two parallel faults trending north bounding the area between the Winnipeg and Golden Crown Shaft. It should be noted that the best continuous gold values occur between these two interpreted faults and that the west of the faults, the veins, are of the quartz-calcite variety. No marker horizons have been identified so no offset could be measured.

1990 DRILL PROGRAM

The 1990 drill program was developed to meet two criteria. The first was to test strike and dip extentions of structures defined by previous diamond drill programs, and the second was to test exploration targets defined by the 1990 geochemical and geophysical surveys.

The program consisted of 2,112 meters of drilling in 34 NQ sized holes. Drill holes GCS 90-1 to GCS 90-15, GCS 90-18, GCS 90-19, GCS 90-28, GCS 90-30 were drilled to test previous data. Drill holes GCS 90-16, GCS 90-17, GCS 90-20 to GCS 90-28, GCS 90-31 to GCS 90-34 were drilled to test exploration targets (Fig. 5). A description of the target and drill hole follows, detailed logs and cross sections appear in the Appendix's I and II.

DDH GCS 90-1
Drill hole GCS 90-1 was collared at 4993.79N, 5379.45 E and was drilled on a bearing of 082° at a dip of -58°. The hole was drilled to investigate the vein which outcrops near the portal and was intersected by drill holes GCS 88-3, GCS 88-4, and GCS 88-5.

The geology of the hole consists of greenstone underlain by serpentinite. The contact between these units is faulted. Three veins were intersected by this hole. The first, a quartz vein encountered from 9.35 to 9.45 meters carried no visible mineralization and returned assays of . $002 \mathrm{oz} \mathrm{Au} /$ ton, $0.02 \mathrm{oz} \mathrm{Ag} /$ ton, $0.01 \% \mathrm{Cu}$. The second vein was a massive pyrrhotite vein that contained patches of pyrite. This vein was encountered from 38.42 to 38.52 meters.

The vein returned assays of $1.143 \mathrm{oz} \mathrm{Au} /$ ton, $0.24 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.71 \% \mathrm{Cu}$. The third vein was a massive pyrrhotite vein with patches of pyrite. This vein was encoutered from 45.73 to 46.95 meters and returned assays of $.166 \mathrm{oz} \mathrm{Au} / t o n$, $0.42 \mathrm{oz} \mathrm{Ag} /$ ton, $0.22 \% \mathrm{Cu}$.

DOH GCS 90-2
Drill hole GCS $90-2$ was collored at $5047.71 \mathrm{~N}, 5342.45 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test the extent of veins intersected in drill holes GCS 89-11, GCS 89-12, and GCS 89-13.

The hole was collared in greenstone and continued through greenstone for 31.27 meters, at this point dacite was intersected and cored up to 35.06 meters where the hole was stopped. Four veins were intersected in this hole.

The first vein was encountered from 29.67 to 29.97 meters and was composed of quartz (40%), massive pyrrhotite (50%), and pyrite (10%). The vein returned assays of .010 oz $\mathrm{Au} /$ ton, $0.02 \mathrm{oz} \mathrm{Ag} /$ ton, $0.14 \% \mathrm{Cu}$. The second vein was intersected from 31.17 to 31.27 meters and was composed of quartz (60%), banded pyrrhotite (30%), and pyrite (5\%). The vein returned assays of 0.005 oz $\mathrm{Au} /$ ton, $0.01 \mathrm{oz} \mathrm{Ag} /$ ton, $0.03 \% \mathrm{Cu}$. The third vein encountered from 32.22 to 32.24 meters and was composed of massive pyrrhotite (80%), pyrite (10\%), and returned assays of $2.441 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.31 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.05 \% \mathrm{Cu}$. The fourth vein was encountered between 32.78 to 33.18 meters and was composed of massive pyrrhotite (80%), pyrite (10\%), chalcopyrite (less than 1%). The vein returned assays of $0.030 \mathrm{oz} \mathrm{Au} /$ ton, $0.06 \mathrm{oz} \mathrm{Ag} /$ ton, $0.14 \% \mathrm{Cu}$. The zone between 32.24 to 32.78 meters was sampled to see if any gold had leaked into the host rock. This zone returned assays of $0.0060 z \mathrm{Au} / \mathrm{ton}, 0.03 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.07 \% \mathrm{Cu}$.

DDH GCS 90-3

Drill hole GCS 90-3 was collared at $5129.42 \mathrm{~N}, 498 \mathrm{~T} .03 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test extensions of the King and George Veins.

The hole was collared in diorite and continued through a succession of serpentenites and diorite. The drill did not intersect either the King or the George Vein. Several faults were encoutered. The fault from 44.55 to 44.72 meters appears to be an extension of the King Vein. No visible mineralization was noted and no samples were taken from the drill core.

DDH GCS 90-4

Drill hote GCS $90-4$ was collared at $5146.67 \mathrm{~N}, 4943.75 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test the George and King Veins.

The hole was collared in greenstone and continued for 45.72 meters where it was stopped. Three veins were encountered. The first vein was intersected from 12.81 to 12.83 meters and was composed of primarily calcite. No visible mineralization was noted. The second vein was encountered from 26.31 to 27.61 meters. This vein contained massive pyrrhotite (60%), pyrite (5\%), and chalcopyrite (10%). The vein returned assays of 1.604 oz Au/ton, 1.66 oz $\mathrm{Ag} / \mathrm{ton}, 2.13 \% \mathrm{Cu}$. The third vein was encoutered from 30.28 to 30.58 meters and contained pervasive pyrrhotite (60%), pyrite (5\%), and chalcopyrite (10\%). The vein returned assays of $0.141 \mathrm{oz} \mathrm{Au/ton}$,$0.64 \mathrm{oz} \mathrm{Ag} / ton, 1.12 \% \mathrm{Cu}$.

DDH GCS 90-5

Drill hole GCS $90-5$ was collared at $5126.84 \mathrm{~N}, 4944.75 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test down dip extensions of the King and George Veins.

The hole was collared in greenstone and encountered serpentinite at 64.02 meters and was stopped in serpentinite at 70 meters. One vein was intersected from 53.77 to 54.33 meters. The vein was composed of massive pyrrhotite (60%), pyrite (15\%), and chalcopyrite (5\%). The vein returned assays of 1.037 oz Au/ton, $1.26 \mathrm{oz} \mathrm{Ag/ton} 2.12 \%$,Cu . This vein, when plotted in sections, correlates with the vein encoutered in diamond drill hole GCS 90-4 at an intercept of 26.31 to 27.61 meters.

DDH GCS 90-6

Drill hole GCS $90-6$ was collared at $5144.13 \mathrm{~N}, 4911.75 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -80°. This hole was drilled to test the down dip extension of the King Vein.

The hole was collared in greenstone and intersected serpentinite at 65.77 meters. The hole was stopped at 70.12 meters in serpentinite. One vein was intersected from 68.69 to 68.96 meters. The vein contained banded pyrhotite (40%), pyrite (10%) and returned assays of . $101 \mathrm{oz} \mathrm{Au/ton}$,$0.06 \mathrm{oz} \mathrm{Ag} / ton,$ $0.12 \% \mathrm{Cu}$. The sample was taken in hanging wall from 66.79 to 68.29 meters, and consisted of highly sheared serpentinite that contained fault gouge with 10% disseminated pyrite. The sample returned assays of $.122 \mathrm{oz} \mathrm{Au} /$ ton, 0.10 oz Ag/ton, 0.15\% Cu.

DDH GCS 90-7
Drill hole GCS $90-7$ was collared at $5145.40 \mathrm{~N}, 4911.82 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test the up dip extension of the King Vein.

The hole was collared in greenstone and intersected diorite at 38.11 meters. It continued through the diorite and intersected greenstone at 53.6 meters. The hole was stopped at 60.0 meters in greenstone. Three veins were encoutered in this hole. The first vein was intersected from 28.96 to 29.36 meters and was composed of massive pyrrhotite (35%), pyrite (10%), and chalcopyrite (less than 1\%). The vein returned assays of . $042 \mathrm{oz} \mathrm{Au/ton}$,$0.19 \mathrm{oz} \mathrm{Ag} / ton, 0.32 \%$ Cu. The second vein was encountered from 50.60 to 50.80 meters. This vein was composed of massive banded pyrrhotite (45%) and pyrite (10\%). The vein returned assays of .084 oz Au/ton, $0.23 \mathrm{oz} \mathrm{Ag} /$ ton, $0.64 \% \mathrm{Cu}$. The third vein was encountered from 55.80 to 56.00 meters. This vein was composed of banded pyrrhotite (40%), pyrite (10%), and chalcopyrite (less than 1%). The vein returned assays of . $059 \mathrm{oz} \mathrm{Au} /$ ton, $0.37 \mathrm{oz} \mathrm{Ag} /$ ton, $.76 \% \mathrm{Cu}$.

DDH GCS 90-8
Drill hole GCS $90-8$ was collared at $5124.89 \mathrm{~N}, 4859.05 \mathrm{E}$ and drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test the MacArthur vein.

The hole was collared in greenstone and continued for 54.86 meters in greenstone. Two veins were intersected.

The first vein was encountered from 14.02 to 14.28 meters and was composed of 50% calcite. It also contained disseminated pyrrhotite (5\%) and pyrite (5\%). Limonite and ankerite were present in trace amounts. The vein returned assays of $.002 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.01 \mathrm{oz} \mathrm{Ag} /$ ton, $.04 \% \mathrm{Cu}$. The second vein was encountered from 27.48 to 27.90 meters and was composed of massive pyrrhotite (60%), pyrite (10\%), chalcopyrite (less than 1%), and quartz (29%). The vein returned assays of $.121 \mathrm{oz} \mathrm{Au} /$ ton, $0.20 \mathrm{oz} \mathrm{Ag} /$ ton, 0.47 Cu . The second vein encountered is the MacArthur Vein.

DDH GCS 90-9

Drill hole GCS $90-9$ was collared at $5118.21 \mathrm{~N}, 4814.80 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -87°. The hole was drilled to test the down dip extension of the MacArthur Vein.

The hole was collared in greenstone. It encountered diorite at 37.19 meters. Continued in diorite until 64.63 meters where greenstone was cored up to 84.15 meters where the hole was stopped. One vein was encountered from 58.23 to 58.50 meters. The vein was composed of massive pyrrhotite (85%), pyrite (10%), and chalcopyrite (5%). The vein returned assays of $2.495 \mathrm{oz} \mathrm{Au} /$ ton, 0.19 oz $\mathrm{Ag} /$ ton, $0.29 \% \mathrm{Cu}$. An extensive shear zone had developed from 55.33 to 64.63 meters in the diorite. Talc alteration was extensive, no visible mineralization was noted and no samples were taken for assay.

DDH GCS 90-10
Drill hole GCS $90-10$ was collared at $5118.78 \mathrm{~N}, 4814.72 \mathrm{E}$ and drilled on a bearing of 023° at a dip of -45 . The hole was drilled to test the up dip extension of the MacArthur Vein.

The hole was collared in greestone and intersected diorite from 73.47 to 79.55 meters at which point the hole was stopped. Three veins were encoutered in the hole. The first vein occurs between 8.08 and 8.84 meters. This vein is composed of quartz (95\%) and with pyrite (less that 1\%). It was also stained with limonite and malachite. The vein returned assays of $0.13 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.01$ $02 \mathrm{Ag} /$ ton, $0.08 \% \mathrm{Cu}$. The second vein was encountered between 11.98 to 12.26 meters and was composed of tightly spaced stringers of pyrrhotite and pyrite.

This vein returned assays of $.001 \mathrm{oz} \mathrm{Au} /$ ton, $0.01 \mathrm{oz} \mathrm{Ag} /$ ton, $0.04 \% \mathrm{Cu}$. The third vein was encountered from 17.48 to 17.52 meters. This vein was a banded massive sulfide vein containing pyrrhotite (20%) and pyrite (5\%). The vein returned assays of . $004 \mathrm{oz} \mathrm{Au} /$ ton, $0.01 \mathrm{Ag} /$ ton, $0.07 \% \mathrm{Cu}$.

DDH GCS 90-11

Drill hole GCS $90-11$ was collared at $5139.18 \mathrm{~N}, 4775.19 E$ and was drilled on a bearing of 023° at a dip of -45°. The hole was drilled to test the up dip extension of the MacArthur Vein.

The hole was collared in greenstone and continued for 66.77 meters in greenstone where the hole broke into the old Golden Crown workings. The hole was stopped at this point. No veins were encountered in this hole and no samples were taken or assayed.

DDH GCS 90-12
Drill hote GCS 90-12 was collared 5128.82N, $4760.71 E$ and was drilled on a bearing of 027° at a dip of -45°. The hole was drilled to test the MacArthur Vein.

The hole was collared in greenstone and continued for 71.03 meters in greenstone. The greenstone was generally weakly fractured up to 63.4 meters. From this point to the end of the hole, the rock was moderately sheared. Two zones were sampled. The first zone from 27.7 to 28.0 meters contained quartz stringers with limonite, and exhibited chlorite alteration. The zone returned assays of $.003 \mathrm{oz} \mathrm{Au} /$ ton, $0.02 \mathrm{oz} \mathrm{Ag} /$ ton, 0.03 Cu . The second zone encountered was a bleached zone containing disseminated pyrite (2\%) and pyrrhotite (2\%). This zone returned assays of $.002 \mathrm{oz} \mathrm{Au} / t o n, 0.01 \mathrm{oz} \mathrm{Ag} /$ ton, 0.02 Cu .

DDH GCS 90-13

Drill hole GCS $90-13$ was collared at $5727.41 \mathrm{~N}, 4760.66 \mathrm{E}$ and drilled on a bearing of 023° at a dip of -90°. The hole was drilled to test the down dip extension of the MacArthur Vein.

The hole was collared in greenstone and continued through greenstone up to 79.66 meters where the hole was stopped. A quartz breccia was intersected from 9.60 to 10.07 meters. It contained blebs of pyrite (3%), pyrhotite (1%), and limonite stain. It returned assays of . 001 oz $\mathrm{Au} /$ ton, $0.01 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.03 \%$ Cu. A quartz vein was encountered from 18.42 to 18.78 meters. It contained pyrite (30%) and returned assays of . 051 oz $\mathrm{Au} /$ ton, $0.13 \mathrm{oz} \mathrm{Ag} /$ ton, $0.01 \% \mathrm{Cu}$. From 51.4 to 79.66 meters, several bleached zones containing blebs of pyrite and pyrrhotite were encountered. No significant gold, silver or copper assays were returned from these zones.

DDH GCS 90-14

Drill hole GCS $90-14$ was collared at $5118.04 \mathrm{~N}, 4776.09 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -78°. The hole was drilled to test the down dip extension of the MacArthur Vein.

The hole was collared in greenstone and continued through greenstone to 84.60 meters where it was stopped. The hole intersected one quartz vein from 18.75 to 19.00 meters. No visible mineralization was noted and no sample was taken. A total of 15 other zones were sampled and assayed. No signifact gold, silver or copper values were returned.

DDH GCS 90-15
Drill hole GCS $90-15$ was collared at $5120.40 \mathrm{~N}, 4796.14 \mathrm{E}$ and drilled on a bearing of 023° at a dip of -50°. The hole was drilled to test the up dip extension of the MacArthur Vein.

The hole was collared in greenstone and continued through greenstone up to 72.86 meters at which point the hole was stopped. No veins were encountered in this hole. A brecciated zone was encountered from 56.49 to 57.90 meters but returned insignicant assays of gold, silver and copper. Malachite was noted in an oxidized zone from 11.57 to 12.75 meters but, returned insignificant assays of gold, silver and copper.

DOH GCS 90-16
Drill hole GCS $90-16$ was collared at $5407.64 \mathrm{~N}, 4591.58 \mathrm{E}$ and drilled on a bearing of 045° at a dip of -45 . The hole was drilled to test coincidental gold and copper soil anomalies.

The hole was collared in greenstone and was drilled 65.53 meters where it was stopped in greenstone. Four veins were intersect by the drill hole. The first vein was encountered from 9.45 to 9.85 meters. The vein was composed of quartz (90\%) and wall rock (10\%). No mineralization was noted. Assays returned values of . 001 oz Au/ton, $0.06 \mathrm{oz} \mathrm{Ag} /$ ton, $0.01 \% \mathrm{Cu}$. The second vein encoutered was also a quartz vein. It was intersected from 11.40 to 11.88 meters and contained massive pyrite (5\%) with blebs of pyrrhotite (1%). The vein returned assays of . $001 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.04 \mathrm{oz} \mathrm{Ag} /$ ton, 0.03 Cu . The third vein encountered was a massive sulfide vein and was intersected from 17.80 to 18.34 meters. It was composed of pyrite (20%), pyrrhotite (60%), and chalcopyrite (20\%). The vein returned assays of $0.084 \mathrm{oz} \mathrm{Au} /$ ton, $2.50 \mathrm{oz} \mathrm{Ag} /$ ton $6.23 \% \mathrm{Cu}$. The fourth vein encountered was a quartz vein intersected from 21.74 to 21.84 meters. No mineralization was noted and no samples or assays were taken. A zone of argillic alteration was sampled from 9.85 to 10.67 meters but returned insignificant assays in gold, silver, and copper. A bleached zone was noted from 33.88 to 36.75 meters. The zone contained disseminated pyrite (5\%), pyrrhotite (5\%), and chalcopyrite (less than 1\%). No significant assays were returned.

DDH GCS 90-17
Drill hole GCS 90-17 was collared at 4982.74N, 5175.54E and was drilled on a bearing of 045° at a dip of -45°. The hole was drilled to investigate coincidental gold and copper soil anomalies, and a magnetic spike.

The hole was collared in serpentinite and continued through serpentinite up to 62.50 meters where it intersected diorite. The hole continued in diorite up to 67.19 meters where it re-entered serpentinite. The hole was stopped at 68.29 meters in serpentinite. The serpentinite was generally sheared with abundant epidote. No significant mineralization was noted or sampled.

DDH GCS 90-18
Drill hole GCS $90-18$ was collared at $5092.01 \mathrm{~N}, 5131.33 \mathrm{E}$ and was on a bearing of 023° at a dip of -50 . The hole was drilled to investigate the up dip extension of mineralization occuring in drill holes GCS 87-21, GCS 87-22, and to investigate the unknown section of drill hole GCS 68-7.

The hole was collared in diorite and continued through diorite until it was stopped at 47.25 meters. The hole intersected three veins. The first vein encountered was a quartz vein intersected from 10.80 to 11.00 meters. This vein was composed of quartz (80%) and wall rock (20\%). No visible mineralization was noted. Assays returned values of . $001 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.03 \mathrm{oz}$ $\mathrm{Ag} / \mathrm{ton}, 0.01 \% \mathrm{Cu}$. The second vein encountered was a quartz vein intersected from 30.42 to 30.73 meters. This vein contained quartz (30%), wall rock (20%), and 1 imonite. The vein returned assays of . $001 \mathrm{oz} \mathrm{Au} /$ ton, $0.01 \mathrm{oz} \mathrm{Ag} /$ ton, $0.01 \% \mathrm{Cu}$. The third vein was a sulfide vein intersected from 35.06 to 35.83 meters. The vein contained pervasive pyrite (10\%), pyrrhotite (3\%), chalcopyrite (less than 1\%), quartz (10%), and wall rock and limonite (60%). The vein returned assays of $.002 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.03 \mathrm{oz} \mathrm{Ag} / t o n, 0.03 \mathrm{Cu}$. The last vein intersected is the up dip extension of the mineralized zones in GCS 87-21.

ODH GCS 90-19
Drill hole GCS 90-19 was collared at 5037.71N, 5313.11 E and was drilled on a bearing of 023° at a dip of -50°. The hole was drilled to test the strike extension of mineralization occurring in drill holes GCS 90-2, GCS 89-11, GCS 89-12 and GCS 89-13.

The hole was collared in greenstone and continued through greenstone up to 56.08 meters where it was stopped. A quartz vein was encountered from 15.45 to 15.72 meters. No visible mineralization was present. The vein returned assays of $0.010 \mathrm{oz} \mathrm{Au} / t o n, 0.09 \mathrm{oz} \mathrm{Ag} /$ ton, $0.07 \% \mathrm{Cu}$. A sulfide vein was intercepted from 18.46 to 18.53 meters. The vein contained massive pyrite (15\%) and pyrrhotite (3\%). The vein returned assays of . $002 \mathrm{oz} \mathrm{Au} /$ ton, $0.03 \mathrm{oz} \mathrm{Ag} /$ ton, $0.15 \% \mathrm{Cu}$. The vein was enveloped between sulfide rich zones. The hanging wall from 17.76 to 18.16 meters, and the footwall from 18.85 to 18.92 meters. Both zones were sampled but returned insignificant assay values. A final sulfide zone was intersected from 24.10 to 24.20 meters. This zone was sampled and returned insignificant assay values.

DDH GCS 90-20
Drill hole GCS $90-20$ was collared at $5547.98 \mathrm{~N}, 4003.03 \mathrm{E}$ and was drilied on a bearing of 045° at a dip of -45°. The hole was drilled to test a coincidental Mag Spike and VLF Conductor.

The hole was collared in greenstone and continued through greenstone up to 62.80 meters where it was stopped. The hole intersected three mineralized zones. The first was a calcite vein which extended from 15.87 to 16.33 meters. The vein was composed of calcite (40%), massive pyrite (55\%), and pyrrhotite (5\%). The vein returned assays of . $007 \mathrm{oz} \mathrm{Au} / t o n, 0.04 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}$, $0.02 \% \mathrm{Cu}$. The second zone encountered was a sulfide rich zone extending from 51.68 to 51.93 meters. It contained pervassive pyrite (30%) and pyrrhotite (3x). The zone returned assays of . $026 \mathrm{oz} \mathrm{Au} /$ ton, $.26 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.23 \% \mathrm{Cu}$. The third zone encountered was similar to the second zone except it contained pervasive pyrite (60%), pyrrhotite (3%), and returned assays of $.210 \mathrm{oz} \mathrm{Au} /$ ton, $0.07 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.05 \mathrm{Cu}$.

ODH GCS 90-21

Drill hole GCS $90-21$ was collared at $5252.98 \mathrm{~N}, 3844.52 \mathrm{E}$ and was drilled on a bearing of 215° at a dip of -45°. The hole was drilled to test the strike and down dip extension of the Hartford Vein.

The hole was collared in greenstone and continued through greenstone up to 64.02 meters where it was stopped. The hole intersected two mineralized veins. The first was encountered from 13.45 to 13.75 meters. The vein consisted of quartz (40\%), banded pyrite (15\%), and brecciated wall rock (40%). The vein returned assays of . $00102 \mathrm{Au} /$ ton, $0.04 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.26 \% \mathrm{Cu}$. The second vein occurred between 28.90 to 29.15 meters and consisted of massive pyrite (95\%) and quartz (5\%). This vein is the extension of the Hartford Vein and returned assays of $.030 \mathrm{oz} \mathrm{Au} /$ ton, $.35 \mathrm{oz} \mathrm{Ag} /$ ton, $.92 \% \mathrm{Cu}$. Two siliceously a) tered zones were intersected, one from 35.64 to 36.53 meters and the other from 36.98 to 37.39 meters.

These zones contained tightly spaced stringers of pyrite and quartz with traces of chalcopyrite. The zones returned assays of . $001 \mathrm{oz} \mathrm{Au} / t o n, 0.04 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}$, $0.04 \% \mathrm{Cu}$ for the first and $.004 \mathrm{oz} \mathrm{Au} /$ ton, $0.27 \mathrm{oz} \mathrm{Ag} /$ ton, $0.76 \% \mathrm{Cu}$ for the second.

DDH GCS 90-22
Drill hole GCS $90-22$ was collared at $4937.64 \mathrm{~N}, 3703.65 \mathrm{E}$ and was drilled on a bearing of 045° at a dip of -45°. The hole was drilled to investigate the coincidental May Spike, VLF Conductor and copper soil anomaly at $458+50 \mathrm{~N}$ $459+00 E$ of the exploration grid.

The hole first encountered diorite then continued through a succession of greenstones, and diorite up to 64.02 meters where the hole was stopped in greenstone. The hole encountered several quartz veins in the interval from 51.10 to 64.02 meters. One vein returned significant assays. A quartz vein encountered 54.30 to 54.54 meters returned assays of $.002 \mathrm{oz} \mathrm{Au} /$ ton, 0.08 oz $\mathrm{Ag} /$ ton, $0.25 \% \mathrm{Cu}$. All veins encountered from 54.30 to 64.02 meters contained chalcopyrite in concentrations of up to 3%. This would explain the high copper soil anomally. The section from 51.80 to 64.02 meters exhibits serpentinization which explains the magnetic spike. The zone contains up to 10% pyrite which would explain the VLF Condutor.

DDH GCS 90-23
Drill hole GCS $90-23$ was collared at $4932.51 \mathrm{~N}, 4288.34 \mathrm{E}$ and drilled on a bearing of 045° at a dip of -45°. The hole was drilled to investigate coincidental VLF Conductor, soil anomaly.

The first encountered greenstone until 6.55 meters where it intersected diorite. It continued in diorite until 39.63 meters where the hole was stopped. Two shears were intersected. The first from 25.10 to 25.30 meters showed intense argillic alteration. No visible mineralization was noted. The zone returned assays of $.0010 z \mathrm{Au} /$ ton, $0.02 \mathrm{oz} \mathrm{Ag} /$ ton, $0.01 \% \mathrm{Cu}$. The second shear occured from 34.30 to 35.20 meters and again showed intense argillic alteration with mineralization consisting of sheared quartz (60\%) and disseminated pyrite (10\%). This zone returned assays of . 001 oz $\mathrm{Au} / \mathrm{ton}, 0.05$ oz Ag/ton, $0.01 \% \mathrm{Cu}$.

DDH GCS 90-24
Drill hole GCS 90-24 was collared at $5261.43 \mathrm{~N}, 3789.91 E$ and was drilled on a bearing of 210° at a dip of -47°. The hole was drilled to test the western strike extension of the Hartford Vein.

The hole was collared in greenstone and continued through greenstone until 60.65 meters where it was stopped. Mineralization occurred thoughout this hole, generally as sulfide stringers and as fracture filling. Pyrite and pyrrhotite predominated with traces of chalcopyrite. Eight samples were taken from 1.22 to 21.95 meters only one sample returned significant assay values. The sample from 5.79 to 6.23 meters returned assays of . $004 \mathrm{oz} \mathrm{Au} /$ ton, 0.04 oz $\mathrm{Ag} / \mathrm{ton}, 0.23 \% \mathrm{Cu}$. Three veins were encountered after 21.95 meters. The first was a quartz vein intersected from 29.27 to 29.60 meters composed of quartz (90%), chalcopyrite (8%), and pyrite (1%), returned assays of . $001 \mathrm{oz} \mathrm{Au} /$ ton, $2.05 \mathrm{oz} \mathrm{Ag} /$ ton, $.14 \% \mathrm{Cu}$.

The second vein was intersected from 44.21 to 44.45 meters and was composed of quartz (40%) and pyrite (15\%). This vein returned assays of . $004 \mathrm{oz} \mathrm{Au} /$ ton, $0.02 \mathrm{oz} \mathrm{Ag} /$ ton, $.19 \% \mathrm{Cu}$. The third vein was intersected from 48.18 to 48.28 meters and was composed of massive pyrite (10\%), pyrrhotite (7\%), and chalcopyrite (less than 1%). The vein returned assays of . $005 \mathrm{oz} \mathrm{Au} / \mathrm{t}$, $\mathrm{n}, 0.05$ oz Ag/ton, 0.28\% Cu.

DDH GCS 90-25
Drill hole GCS $90-25$ was collared at $5303.30 \mathrm{~N}, 4350.08 \mathrm{E}$ and was drilled on a bearing of 045° at a dip of -50°. The hole was drilled to investigate a coincidental VLF Conductor and copper soil anomally.

The hole began in diorite and continued in diorite until 23.53 meters where it intersected greenstone. It then continued in greenstone until 50.0 meters where the hole was stopped. Two veins were encountered in the drill hole. Both were massive sulfide veins. The first vein was intersected from 29.03 to 29.41 meters and was composed of massive pyrite (80%). The vein returned assays of .026 oz Au/ton, 0.35 oz $\mathrm{Ag} /$ ton, $0.33 \% \mathrm{Cu}$. The second vein was encountered from 39.36 to 41.86 meters and was composed of Massive pyrite (60\%), pyrrhotite (20\%), chalcopyrite (10\%), and quartz (10\%). The second vein was split into two samples. The first from 39.36 to 40.86 meters returned values of $.353 \mathrm{oz} \mathrm{Au} /$ ton, $1.43 \mathrm{oz} \mathrm{Ag} /$ ton, $3.64 \% \mathrm{Cu}$. The second sample from 40.86 to 41.86 meters returned assays of $.630 \mathrm{oz} \mathrm{Au} /$ ton, $1.64 \mathrm{oz} \mathrm{Ag} /$ ton, 7.54% Cu.

DDH GCS 90-26
Drill hole GCS 90-26 was collared at 5337.71N, 4349.77 E and was drilled on a bearing of 045° at a dip of -50°. The hole was drilled to investigate a second VLF Conductor north of the conductor tested in GCS 90-25.

The hole was collared in greenstone and continued in greenstone until 49.60 meters where it was stopped. Only one vein was encountered. It was intersected from 31.10 to 31.55 meters and was composed of massive pyrite (60\%), quartz, and wall rock (40%). The vein returned assays of .003 oz Au/ton, . 62 oz Ag/ton, 0.09% Cu. Chalcopyrite occurred in several sections of this hole. Usually it was disseminated or in stringers. A sample from 19.10 to 20.37 meters returned assays of . $008 \mathrm{oz} \mathrm{Au} /$ ton, $0.12 \mathrm{oz} \mathrm{Ag} /$ ton, $0.33 \% \mathrm{Cu}$.

DDH GCS 90-27
Drill hole GCS $90-27$ was collared at $5287.23 \mathrm{~N}, 4210.69 \mathrm{E}$ and was drilled on a bearing of 045° at a dip of -50°. The hole was drilled to investigate the extension of the VLF Conductor tested in GCS 90-25.

The hole was collared in greenstone and continued through greenstone up to 50.3 meters where it intersected diorite. It continued in diorite until 60.0 meters at which point the hole was stopped. Two quartz veins were encountered. The first vein was intersected from 5.56 to 5.84 meters and was composed of massive pyrite (60%) and quartz (30%). The vein returned assays of . $009 \mathrm{oz} \mathrm{Au} / \mathrm{ton}$, $0.03 \mathrm{oz} \mathrm{Ag} /$ ton, $0.08 \% \mathrm{Cu}$. The second vein was intersected from 25.12 to 25.43 meters. The vein was composed of quartz (90%) with disseminated pyrite (3\%), disseminated chalcopyrite (8%) . The vein returned assays of . $003 \mathrm{oz} \mathrm{Au} /$ ton, $0.06 \mathrm{oz} \mathrm{Ag} /$ ton, $0.30 \% \mathrm{Cu}$.

A bleached zone was encountered from 32.92 to 33.92 meters and contained patches of pyrite (10\%), pyrrhotite (3\%), and chalcopyrite (15\%). The zone returned assays of . $012 \mathrm{oz} \mathrm{Au} /$ ton, $0.29 \mathrm{oz} \mathrm{Ag} /$ ton, $1.20 \% \mathrm{Cu}$.

DDH GCS 90-28
Drill hole GCS $90-28$ was collared at $5152.55 \mathrm{~N}, 4865.50 \mathrm{E}$ and was drilled on a bearing of 023° at a dip of -50°. The hole was drilled to test the up dip extension of the George Vein.

The hole was collared in greenstone and continued through greenstone until it intersected diorite from 16.77 to 20.13 meters. It then re-entered greenstone from 20.13 to 23.50 meters where it re-entered diorite and continued in diorite until 48.47 meters at which point the hole was stopped. One vein was encountered from 20.13 to 21.60 meters. The vein was composed of calcite (10\%), quartz (5\%), blebs of pyrite (10\%), pyrrhotite (8\%), and chalcopyrite (3\%). The vein returned assays of . $022 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.14 \mathrm{oz} \mathrm{Ag} /$ ton, $0.39 \% \mathrm{Cu}$.

DOH GCS 90-29
Drill hole GCS $90-29$ was collared at $5414.83 \mathrm{~N}, 4540.68 \mathrm{E}$ and drilled on a bearing of 045° at a dip of -50°. The hole was drilled to test the western strike extension of the sulfide vein intersected in GCS 90-16.

The hole was collared in greenstone and continued through greenstone until 60.97 meters at which point it was stopped. Three veins were encountered. The first vein was intersected from 20.88 to 21.49 meters and was composed of massive chalcopyrite (40%), pyrite (20%), and quartz (40%). The vein returned assays of . 038 oz Au/ton, $1.01 \mathrm{oz} \mathrm{Ag} /$ ton, $2.80 \% \mathrm{Cu}$. The second vein was intersected from 27.20 to 28.08 meters and was composed of quartz (100\%). No visible mineralization was noted. The vein returned assays of . $003 \mathrm{oz} \mathrm{Au/ton}$, $0.07 \mathrm{oz} \mathrm{Ag} /$ ton, $0.10 \% \mathrm{Cu}$. The third vein was intersected from 31.71 to 32.92 meters and was composed of massive chalcopyrite (50%), pyrrhotite (10%), pyrite (5\%), and quartz (35\%). This vein returned assays of $0.050 \mathrm{oz} \mathrm{Au}, 3.34 \mathrm{oz}$ $\mathrm{Ag} / \mathrm{ton}, 8.13 \% \mathrm{Cu}$.

The first vein encountered corresponds to the vein intersected in GCS 90-16. The third vein is a new structure that should be investigated further.

DDH GCS 90-30
Drill hole GCS $90-30$ was collared at $5146.27 \mathrm{~N}, 4845.73 \mathrm{E}$ and drilled on a bearing of 023° at a dip of -50°. The hole was drilled to test the extension of the MacArthur Vein.

The hole had to be cased 9.15 meters through the MacArthur stope. The hole continued through interfingering greenstone and diorite and was stopped at 50.3 meters in greenstone. Two veins were encountered in this hole. The first was intersected from 13.40 to 13.72 meters and was composed of massive pyrrhotite (70\%), pyrite (5\%), chalcopyrite (3\%), and quartz (10\%). The vein returned assays of $.047 \mathrm{oz} \mathrm{Au} /$ ton, $0.20 \mathrm{oz} \mathrm{Ag} /$ ton, $0.41 \% \mathrm{Cu}$.

The second vein was intersected from 21.0 to 21.50 meters and was composed of quartz (95\%) with finely disseminated pyrite (less than 1\%). This vein returned assays of . $003 \mathrm{oz} \mathrm{Au} /$ ton, $0.05 \mathrm{Ag} /$ ton, $0.03 \% \mathrm{Cu}$. A mineralized shear zone was intersected from 36.39 to 37.34 meters. This zone contained blebs of pyrrhotite (8%), chalcopyrite (9%), and pyrite (7%). The zone returned assays of . $096 \mathrm{oz} \mathrm{Au} /$ ton, $.73 \mathrm{oz} \mathrm{Ag} /$ ton, $.64 \% \mathrm{Cu}$.

DDH GCS 90-31
Drill hole GCS 90-31 was collared at 5302N, 4349.99E and was drilled at a bearing of 045° at a dip of -70°. The hole was drilled to test the down dip extension of massive sulfide vein intersected in GCS 90-25.

The hole was collared in greenstone and continued through greenstone until it was stopped at 89.94 meters. Three veins were encountered in this hole. The first was a quartz vein and was intersected from 42.8 to 43.06 meters. No visible mineralization was noted and no assays were taken from this vein. The second vein and was intersected from 44.88 to 45.00 meters, a calcite vein with blebs of pyrite (less than 1%). The vein returned assays of $.001 \mathrm{oz} \mathrm{Au} / \mathrm{ton}$, $0.03 \mathrm{oz} \mathrm{Ag} /$ ton, $0.08 \% \mathrm{Cu}$. The third vein was encountered from 50.30 to 51.54 meters. The vein was composed of massive pyrite (60%) and quartz (30\%). The vein returned assays of . $004 \mathrm{oz} \mathrm{Au} /$ ton, $0.07 \mathrm{oz} \mathrm{Ag} /$ ton, $0.22 \% \mathrm{Cu}$.

It was concluded that the vein intersected from 50.30 to 51.54 meters was not the same structure as the vein in GCS 90-25, and that the structure was not dipping to the south, but to the north.

DDH GCS 90-32
Orill hole GCS $90-32$ was collared at $5358.41 \mathrm{~N}, 4366.13 \mathrm{E}$ and was drilled on a bearing of 275° at a dip of -50°. The hole was drilled to test the down dip extension of massive sulfide intersection from GCS 90-25.

The hole was collared in greenstone and continued through greenstone until 47.88 meters where it intersected a diorite dyke up to 56.00 meters where it returned to greenstone until 59.75 meters at which point the hole was stopped. Six veins were encountered in this hole. The first vein was intersected from 4.05 to 4.56 meters and was composed of blebs of pyrite (60%), chalcopyrite (5\%), in a quartz matrix (30\%). The vein returned assays of $0.066 \mathrm{oz} \mathrm{Au} / \mathrm{ton}$, 0.71 oz $\mathrm{Ag} /$ ton, $2.01 \% \mathrm{Cu}$. The second vein encountered was a quartz vein intersected from 4.76 to 5.4 meters and contained pyrite (30%) and chalcopyrite (3%). The vein returned assays of . $00802 \mathrm{Au} /$ ton, $.2202 \mathrm{Ag} /$ ton, $0.77 \% \mathrm{Cu}$. The third vein was also a quartz vein and was intersected from 6.06 to 6.64 meters and contained pyrite (30%) and chalcopyrite (3%). This vein returned assays of 0.014 oz $\mathrm{Au} /$ ton, $0.20 \mathrm{oz} \mathrm{Ag} /$ ton, $0.69 \% \mathrm{Cu}$. The fourth vein encountered was a quartz vein. It was intersected from 14.57 to 16.06 meters and contained massive pyrite (60%) and chalcopyrite (3%). The vein returned assays of $.006 \mathrm{oz} \mathrm{Au} / t o n, 0.37 \mathrm{oz} \mathrm{Ag} /$ ton, $1.13 \% \mathrm{Cu}$. The fifth vein encountered was a massive sulfide vein intersected from 19.54 to 19.95 and was composed of massive pyrite (60%) and chalcopyrite (20%). The vein returned assays of .063 oz $\mathrm{Au} /$ ton, 3.30 oz $\mathrm{Ag} /$ ton, $11.26 \% \mathrm{Cu}$. The sixth vein encountered was a quartz vein and was intersected from 44.90 to 45.50 meters. It contained massive pyrite (45\%) and chaicopyrite (7%), and returned assays of . 144 oz $\mathrm{Au} / \mathrm{ton}, 0.81$ oz Ag/ton, 1.37\% Cu.

DDH GCS 90-33

Drill hole GCS $90-33$ was collared at $5351.85 \mathrm{~N}, 4390.35 \mathrm{E}$ and was drilled on a bearing of 225° at a dip of -50°. The hole was drilled to test the eastern strike extension of the sulfide vein encountered in GCS 90-25 to GCS $90-32$.

The hole was collared in greenstone, continued through two diorite intersections and was stopped at 60.00 meters in greenstone. Two veins were encountered in this hole. The first vein was a massive sulfide vein and was intersected from 19.60 to 20.15 meters and was composed of massive pyrite (85%) chalcopyrite (less than 1%), and quartz (10%). The vein return assays of .073 oz $\mathrm{Au} /$ ton, $.33 \mathrm{oz} \mathrm{Ag} /$ ton, $0.82 \% \mathrm{Cu}$. The second vein was encounterd from 24.40 to 24.69 meters. It was a quartz vein and contained massive pyrite (80%). The vein returned assays of . $059 \mathrm{oz} \mathrm{Au} /$ ton, $.21 \mathrm{oz} \mathrm{Ag} /$ ton, $1.03 \% \mathrm{Cu}$.

DDH GCS 90-34

Drill hole GCS $90-34$ was collared at $5364.37 \mathrm{~N}, 4341.74 \mathrm{E}$ and was drilled on a bearing of 225° at a dip of -50°. The hole was drilled to test the eastern extension of the mineralized vein encountered in GCS 90-25 and GCS 90-32.

The hole was collared in greenstone and continued through interfingered greenstone and diorite until it was stopped at 59.75 meters in diorite. Four veins were encountered in this hole. The first vein encountered was a quartz vein and intersected from 7.42 to 7.48 meters. The vein contained blebs of pyrite (5\%) and chalcopyrite (2\%). The vein returned assays of . 002 oz $\mathrm{Au} / \mathrm{ton}$, $0.05 \mathrm{oz} \mathrm{Ag} /$ ton, $0.20 \% \mathrm{Cu}$. The second vein encountered was a quartz vein and was intersected from 22.00 to 23.06 meters.

The vein contained blebs of pyrite (50\%) and chalcopyrite (10\%). The vein returned assays of .136 oz $\mathrm{Au} /$ ton, $0.47 \mathrm{oz} \mathrm{Ag} /$ ton, $1.10 \% \mathrm{Cu}$. The third vein encountered was a quartz vein and was intersected from 29.17 to 29.48 meters. The vein contained blebs of pyrite ($10_{\%}^{\alpha}$). The vein returned assays of . 003 oz $\mathrm{Au} /$ ton, $0.15 \mathrm{oz} \mathrm{Ag} / \mathrm{ton}, 0.49 \% \mathrm{Cu}$. The fourth vein encountered was a quartz vein and was intersected from 44.1 to 44.12 meters. The vein contained blebs of pyrite (8%), and chalcopyrite (4%). A sample was taken from 44.00 to 44.20 meters and returned assays of $.009 \mathrm{oz} \mathrm{Au/ton} ,0.11 \mathrm{oz} \mathrm{Ag/ton} 0.27 \%$,Cu . In addition, two sulfide rich zones were encountered. The first zone was intersected from 48.4 to 48.92 meters and contained blebs of pyrite (50%), and chalcopyrite (10\%). This zone returned assays of . $002 \mathrm{oz} \mathrm{Au} / \mathrm{ton}, 0.17 \mathrm{oz}$ $\mathrm{Ag} /$ ton, $0.50 \% \mathrm{Cu}$. The second zone was intersected from 51.74 to 52.34 meters and contained blebs of pyrite (30%), and chalcopyrite (less than 1\%). This zone returned assays of $.014 \mathrm{oz} \mathrm{Au} /$ ton, $0.04 \mathrm{oz} \mathrm{Ag} /$ ton, $0.26 \% \mathrm{Cu}$.

```
GORE STORED ON SITE
```

The first phase of the drilling added valuable information to the strike length of the King Vein (intersected by GCS 90-3 to GCS 90-7), the holes drilled to interect the MacArthur Vein were disappointing as the veins intercepted returned low assay values or no structure was identified at all. Intersection from GCS 90-1 gave strike extension to the listwanite vein but returned poor assays. The Calumet Veins were intercepted by GCS 90-2 but no strike extension was gained by drilling GCS 90-19.

The second phase of drilling to test the exploration targets met with moderate success. The Hartford Vein system was defined but returned low assays values from drill holes GCS $90-21$ and GCS 90-24. The high copper soil values tested by GCS 90-22 were a result of the abundant chalcopyrite occurring from 54.30 to 64.02 meters. The conductor tested by GCS $90-25$ offered a large intercept with encouraging assays but drill holes GCS 90-26, GCS 90-7, and 90-31-34 show the mineralization to be a localized lense that appears to be pinching to the east and west and at depth. The vein defined by drillholes GCS 90-16 and GCS 90-29 are very encouraging as the structure is open to the west and may possibly be related to the veins intercepted in GCS 90-20.

RECOMMENDATIONS

Further exploration of the Golden Crown Property should consist of extending geochemical and geophysical surveys between drill holes GCS 90-29 and GCS 90-20 if a conductor and soil anomalies are defined. Then, the zone should be drilled to try to extend the strike length and depth of the structure. No Further work is recommended.

STATEMENT OF COST

Geochemical Survey \$ 10,096.14Geophysical Survey$11,850.00$
Drilling
Mob/demo 2,000.00Casing68.89 meters at $\$ 46.00 /$ meter

$$
3,168.94
$$

$$
49.99 \text { meters at } \$ 66.00 / \text { meter } \quad 3,299.34
$$

Coring
1,356.67 meters at $\$ 41.80 /$ meter 637.34 meters at $\$ 47.80 /$ meter
56,708.81
30,464.85
Acid Tests 30 at $\$ 60.00 /$ test $1,800.00$
Standby 8.5 hours at $\$ 80.00 /$ hour 680.00
Cat Time 22 hours at $\$ 75.00 /$ hour $1,650.00$

Personnel

Project Supervisor
260.5 hours at $\$ 37.50 /$ hour $9,768.75$
Geologist
72 days at $\$ 150.00 /$ day $\quad 10,800.00$
Accomodations
Lodging and Meals
72 days at $\$ 65.00 /$ day $4,680.00$
Assays

Equipment Rentals

Theodolite Rental

2 weeks at $\$ 371.00 /$ week
742.00

Truck
2 months at $\$ 1,000.00 /$ month 2,000.00

Gas \& 0 il
1,000.00
Computer Rental 6.5 weeks at $\$ 50.00 /$ week 325.00

Report Preparations
Report Writing 2,255.43
Drafting

STATEMENT OF QUALIFICATIONS

I Warren Robb of the city of Vancouver in the Province of British Columbia, hereby certify that:

1. I am à geologist residing at 101-1221 Burnaby Street, Vancouver, British Columbia.
2. I worked as a Survey Technician with Hargraves and Associates of Vancouver from August 1980 - March 1981 and British Columbia Railways from March 1981 to June 1982.
3. I have graduated from the University of British Columbia in 1987 with a B.Sc. in geology.
4. I have worked in mineral exploration continously since 1987.

5 I was on the Golden Crown Property for the duration of the 1990 field and drill program.

warren Robb

COLUMNS

FROM TO	$=$ Distance down hole
LENGTH	$=$ Length of down hole Interval
REC	$=$ Core Recovery in Percent
ROCK	$=$ Rock Type
COLOR	$=$ Color of Rock
IC	$=$ Initial Contact measure of angle to Core
STRT	$=$ Structure, Grainsize
AD	$=$ Apparent Dip, measure angle to core
IN	$=$ Intensity of Alteration (0=very little IO=completly altered)
	$=$ Intensity of Structure
ALT	$=$ Alteration
MINH	$=$ Mineralization Habit
PY	$=$ amount pyrite in percent
PQ	$=$ amount pyrhotite in percent
CP	$=$ amount chalcopyrite in percent
QZ	$=$ amount quartz in percent
CC	$=$ amount calcite in percent
TR	$=$ less than one percent

Other (other minerals present)

LIM	$=$ Limonite
EP	$=$ Epidote
Mn Stain	$=$ Manganeese stain
Mal	$=$ Malachite
TC or TA	$=$ Talc
ANK	$=$ Ankerite
CH	$=$ Chlorite
BN	$=$ Bornite
HB	$=$ Hornblende

EXPLANATION OF SPECIFIC CODES

Rock	SHZN	= Shear zone
Codes	QZXX	= Quartz zone
	HYPH	= Hybrid rock
	GSTN	= Greenstone
	ANDS	= Andesite
	DIOR	= Diorite
	SERP	= Serpentine
	FAUL	= Fault
	SL. XX	$=$ Sulfide zone
	QZUN	= Quartz vein
	SLVN	= Sulfide vein
	CAVN	= Calcite vein
	BRXX	= Breccia zone
	TAS\$	= Talc Schist

DRILL LOG

ASSAY RECDRD

ASSAY RECORD

IPROPERTY			SHDLE MO. ;6CS 90-2		TDATE 1JUL/90	ISAMPLER		; PAGE		
IGOLDEN	CROWN					IH. ROBB		; 0 F		
!	1 IFROH	9TO	ISAMP. NO	lozabl	102A6/	12 CU : 2 LN	120M	120M	16月. AU/:	1.A6/
!	;	I	I	- TON	: TOM	i i	1			
1 A	A : 25.91	126.31	\| 89098				,			
1 :	A A A 2 2	126.31 $: 28.96$	89098 89096	10.026	: 0.10	10.25 10.15	!	!	!	
;	A : 29.67	:29.97	- 89054	10.010	- 0.02	10.14:	!	!	1	
1	A : 31.17	- 31.27	- 89055	10.005	- 0.01	10.03 ;	;	1	1	
;	A : 32.22	(32.24	- 89056	: 2.441	10.31	10.05:	;	;	1	
'	A : 32.24	: 32.78	- 89095	: 0.006	I 0.03	10.07	1	1	1	
1 A	A : 32.78	: 33.18	- 89057	10.030	10.06	10.141	;	,	1	
1 A	A 1	1	!	1	1	1 1	;	i	;	
i A	A 1	;	;	,	1	1 i	1	;	1	
i A	A1	1	I	1	;	i i	1	;	-	
: A	A 1	;	;	1	1	1 1	1	1	1	
i A	A!	;	;	,	1	; i	1	1	;	
: A	A:	1	;	,	;	; i	1	;	1	
1 A	A	I	1	;	1	; i	;	;	;	
: A	A:	1	!	!	1	i i	;	;	;	
$1 \quad A$	A:	I	!	!	1	1 ;	1	;	1	
1 A	A :	1	;	1	1	11	1	;	1	
1 A	A :	1	1	1	1	$i \quad i$	1	1	1	
1 A	A	1	;	1	1	1 i	1	;	1	
1 A	A	1	1	,	1	1 i	1	;	!	
1 A	A	I	I	1	!	i i	1	;	1	
1 A	A:	;	!	1	;	1 i	1	1	1	
1 A	A:	1	1	1	I	1 i	!	;	1	
1 A	A :	;	1	1	1	$1 \quad 1$	1	1	1 1	
1 A	A :	;	1	;	,	i i	!	1	1	
1 A	A ;	;	1	;	1	1 i	;	1	1	
1 A	A :	i	1	1	I	11	;	1	1	
1 A	A :	1	;	;	1	11	!	1	;	
1 A	A:	;	1	;	I	1 i	;	;	,	
1 A	A :	1	I	i	!	$1 \quad 1$	I	!	1	
1 A	A:	1	1	!	1	11	;	1	1	
1 A	A :	!	1	,	1	$1 \quad 1$	i	;	;	
1 A	A :	1	i	I	1	1 i	;	;	-	
1 A	A:	1	1	!	I	$1 \quad 1$;	!	1	
: A	A:	!	1	,	1	1 i	1	1	1	
1 A	A :	1	1	,	;	$1 \quad 1$;	;	$1 \quad 1$	
1 A	A:	I	;	;	!	$1 \quad 1$;	!	$1 \quad 1$	
1 A	A :	;	!	;	1	1 ;	;	1	11	
1 A A	A:	I	!	;	1	$1 \quad 1$;	1	$i \quad 1$	
$1 \quad A$	A :	!	I	;	1	1 ;	;	1	11	
$i \quad A$	A :	1		;	!	1 i	;	;	1 i	
A	A1	!	$1 \quad 1$;	1	1 i	;	1	1 i	
A	A:	1	$1 \quad 1$;	1	11	;	1	1 i	
A	A :	1	$1 \quad 1$;	!	; 1	!	:	$1 \quad 1$	
A	A:	!	$1 \quad 1$!	1	1 1	;	;	$i \quad 1$	
A	A 1	;	1 i	;	1	11	1	1	1	
A	A :	1	1	;	1	11	;	1	i i	

DRILL LDG

IP!	0.00 i	4.26 :	4.26 1	IOVER: 1	1 1	1	$1 \quad 1$	1 1	11	1 i	!
PPi	4.26 :	15.55	11.29 :	IDIORI5AG :	156)	!	'SILI: 8	8 IPERVITR	ITR	140:	IEP
PPI	15.55 :	16.77 :	1.22 : 63	IHYPH!36	\| SH:	1 2	ISERPI 5	511	i 1	1 i	!
PP;	16.77 :	21.50 :	$4.73: 90$	ISERPIN	:16JT:	: 5	IEPID: 1	$1: 1$	11	1 i	;
${ }^{19} \mathbf{P l}$	21.50 ;	28.18 :	6.68 1	IHYPH:26N:	i26SH:	15	ISERP: 5	5:	1 1	1 i	1
iNi	22.67 :	24.25:	1.58 1	1FAUL:	1 i	!	! i	$16046{ }^{1}$	11	; 1	1
in:	25.91 :	26.11 :	0.20 i	;FAUL;	1 i	1	1 !	:60u6:	11	1 1	1
IN:	26.11 i	28.181	2.07 ;	1 I	; ;	1	ISERP:	1:	! 1	1 1	1
IP:	28.18 :	57.01:	28.83 :	IDIORIGAG:	[46SH;	;	italci 5	5 IPERU:	11	$110: 20$	ITA
iNi	30.46 :	30.66 :	0.20 i	1FAUL:	; 1	1	1 I	160U6:	$i \quad 1$	1 ;	1
INi	44.55 :	44.72 :	0.17 i	1FAULI:	1 i	1	; 1	11	1 i	1 ;	1
\|Pi	57.01 i	58.99 :	1.98 i	:HYPH:2G	1261	!	ISERP: 3	31	1 ;	1 1	!
IPi	58.99 :	63.56 :	4.57 !	©SERP ! ${ }^{\text {k }}$	1 1	1	'TALC: 3	311	11	11	1
${ }^{1} \mathrm{PI}$	63.56 :	65,55 ;	1.99 ;	IDIDRIGAG :	1 1	;	IPRBF: 3	31	1 1	$110: 20$	ITA
1:	1	:	0.00 :	$1 \quad 1$	1 1	1	1 1	1 1	1 i	1 I	!
;	1	!	0.001	1 1 1	;	!	1 1	1 !	;	1 ;	;
1	1	;	0.00 i	$1 \quad 1$	1 !	1	1 ;	;	1 ;	; ;	!
11	!	!	0.001	11 i	1 !	1	1 i	1 i	$1 \quad 1$	1 1	1
1:	!	'	0.001	111	1 ;	1	;	1 i	$1 \quad 1$	1 1	1
;	;	!	0.00 :	1 i i	; i	;	i 1	1 ;	1 ;	1 i	1
;	1	;	0.00 ;	$1 \quad 1$; ;	1	1 i	;	11	1 i	;
;	1	1	0.001	$i \quad i \quad i$	1 i	1	$1 \quad 1$	1 ;	; ;	1 1	!
;	1	!	0.00 !	$i \quad i \quad i$	1 I	1	1 I	1 i	1 ;	1 1	!
1 1	1	1	0.00 :	i i i	1 1	1	; 1	1 1	!	1 1	1
i:	1	!	0.00 ;	$i \quad i \quad i$	1 I	1	1 1	$1 \quad 1$;	1 1	I
i 1	1	1	0.001	1 i 1	1 1	1	1 i	1	;	1 I	I
$1:$	1	!	0.00 :	$1 \quad 1$	1 1	1	1 i	1 $\quad 1$	i 1	1 i	1
i 1	1	!	0.00 :	i i i	$i \quad 1$	1	; i	$1 \quad 1$	i 1	1 i	;
1:	1	!	0.001	111	1 1	1	1 i	1 i	1 1	1 1	;
i 1	1	1	0.00 i	1 i i	1 i	1	; 1	1 i	; 1	; 1	i
1:	1	1	0.00 i	$1 \quad 1$	1 i	1	1 i	1 i	$1 \quad 1$	11	1
:	1	1	0.00 :	1 i i	; 1	1	1 1	1 1	1 I	1 1	1

DRILL L0G

ASSAY RECDRD

DRILL LOG

: ILAT.	IDEP.	IELEV.	itrue al	grit al	DIP END	MORTHING	EASTIMG	PAGE	
CC) 5126.84			1023	:	:-45 770.1	; 5130	\| 4930	;	1
[1/DEPTH	tTRUE AI	idIP							

'S!	70.10 :	023	(-50.00
;	'		+
:	!		,
;	1		;
;	;		;
!	'		;
$1!$	'		;
\|	;		!

ASSAY RECORD

DRILL LOG

I ILAT.	IDEP.	IELEV,	itrue az	GRID AL	DIP END	NJRTHING	EASTING	PAGE
IC: 5144.13	: 4911.75	11354.39	1023	!	:-80 :70.0	; 5145	: 4910	PRE

IIIFROK ITO ILENGIH IREC IROCKICOLR: IC ISTGS: AD IIN IALT IIN IMINHIPY IPO ICP IQI ICC IGTHER

DRILL LOG

ASSAY RECORD
(1)

DRILL LOG

DRILL LDG

\PRDPERTY			HOLE ND.	SI2E	gtart	FINISH	6EDLOEIST Clamog	
IGOLDEN CROUM			iscs 90-9	ing	i JULY 24/90	1JuLY 25/90	14. R088	7
- ilat.	IDEP.	IELEV.	:TRUE AZ	GRID A2	dip End	marthing	EASTIMG	PAGE
CC1 5118.21	- 4814.80	¢1359.35	1023)	1-87 : '87.05	: 5115	-4820	!
[1/DEPIH	!TRUE Al	i01p	1					10 F
!-----	--------	------	;					
151 87.05	1 023	1-86.00	!					
!	1	!	!					
! 1	,	!	;					
;	1	;	!					
!	;	;	;					
!	;	;	;					
:	1	;	;					
1;	,	1	;					

DRILL LOG

ASSAY RECORD

: PROPERTY :60LDEK	CRONN		IHOLE NO. :6CS 90-1		IDATE 1 JJL/90	ISAMPLER IN. ROBB		IPAGE ;OF	
11	1 IFROM	170	ISAMP. NO	102AU/:	102AG/	1\% CJ 182N	120M	9KOM	16H.AU/IER.AG/
!	;	;	i	- TON:	: TON	1	!	1	1 i
;	1					1-..-~1		-----	-4***-m-
1 A	A 18.08	1 8. 64	- 89068	1.0131	10.01	10.08:	;	;	1
1 A	A : 11.98	: 12.26	; 89069	1.001	: 0.01	10.04 :	I	;	$1 \quad 1$
\cdots A	A 117.48	1 17.52	1 89070	1.0041	1 0.01	10.07 !	;	;	1 i
1 A	A:	1	1	11	1	1 !	1	!	i 1
: A	A:	I	;	;	;	$1 \quad 1$;	i	i $\quad 1$
: A	A:	i	;	;	1	1 ;	!	1	1
; A	A:	1	;	;	1	$1 \quad 1$:	1	i 1
1 A	A:	;	I	;	1	; 1	;	;	1
1 A	A :	!	1	1	1	; i	;	:	;
1 A	A	;	i	1	,	1 i	I	1	i i
; A	A:	i	i	;	1	i i	1	1	i i
$1 \quad A$	A :	1	;	!	1	; i	;	1	!
I A	A:	1	;	;	,	i i	!	1	; $\quad 1$
1 A	A:	I	;	;	1	1 i	;	1	1 1
$1 \quad 1$	A:	;	!	;	1	1 i	1	1	1 i
1	A;	1	I	;	1	i i	;	1	1 i
I	A :	!	;	;	!	i i	1	1	11
1	A	;	;	;	,	11	I	1	11
;	A:	;	I	;	;	i i	;	1	1 i
1	A :	;	!	;	1	i i	1	1	$1 \quad 1$
1	A 1	1	1	:	i	11	1	1	1 1
1	A:	1	1	;	'	$1 \quad 1$;	;	$1 \quad 1$
1	A	;	I	;	i	1 i	i	1	1 i
!	A :	!	;	I	;	$i \quad 1$;	!	1 i
1	A:	;	!	!	1	$1 \quad 1$	1	1	11
;	A:	;	;	;	I	$1 \quad 1$	1	1	$1 \quad 1$
1	A :	i	1	!	I	11	i	;	11
i	A:	;	;	!	;	1 i	;	!	$1 \quad 1$
1	A:	1	!	I	1	1 i	;	;	1 1
;	A:	1	1	I	;	11	;	1	1 1
;	A	;	1	;	;	1	!	1	1 i
;	A	;	I	1	;	1 i	;	1	$1 \quad 1$
1	A 1	1	!	1	;	1 1	1	1	$1 \quad 1$
;	A	1	1	!	;	; 1	1	1	11
;	A	1	1	1	I	1 i	;	1	1 1
i	A;	;	;	1	i	i i	;	I	$1 \quad 1$
:	A:	!	1	;	;	$1 \quad 1$;	1	1 i
;	A:	;	1	;	;	1 i	1	1	1 ;
:	A :	1	1	!	I	1 i	1	1	1 i
;	A:	1	1	;	;	i i	:	1	1 i
;	A	!	1	1	;	1 :	1	I	1 i
;	A :	;	;	1	;	1 1	;	1	1 !
;	A:	1	i	1	i	11	;	1	$1 \quad 1$
;	A:	!	I	;	$!$	$1 \quad 1$,	i	$i \quad 1$
1	A:	!	1	;	I	11	1	1	1 1
;	$A:$!	;	!	;	$1 \quad 1$	1	I	1 1
;	A :	!	1	;	;	1 i	1	1	i i

DRILL LOG

ASSAY RECORD

DRILL LOG

(1)

IPRDPERTY ©60LDEN	CROWH		:HDLE ND. IGCS 90-1		!DATE 1JUL/90	©SAMPLE IN. ROM			$\begin{aligned} & \text { :PAGE } \\ & 10 \mathrm{f} \end{aligned}$;
1	1 : FROH	150	ISAMP.NO	;02AU/	10za6/	1\% CU	:32\%	:20\%	[20H		SK.AU/:6M.A6/	
1	;	,	;	TON:	TON		1	!	;	;	;	
A	A: 15.55	: 16.66	\| 89099	1.016	1 0.10	10.06		\|	1	!	!	
A	A: 16.90	: 17.68	: 89100	1.001	- 0.10	10.03		1	;	:	,	
A	A : 29.07	: 29.27	: 89101	1.001	: 0.08	10.02		!	1	!	!	
A	A: 30.18	: 30.47	: 89012	1.001	: 0.04	10.03		;	1	!	:	
A	A: 35.17	: 36.44	: 89103	1.003	- 0.08	10.02		:	!	;	;	
A	A) 41.46	: 41.77	- 89104	1.001	- 0.12	10.08		!	I	!	:	
A	A : 49.04	: 49.37	; 89105	1.001	10.05	10.02		!	;	;	;	
A	A : 56.91	; 57.4	; 89106	1.001	- 0.09	10.10		!	1	;	!	
A	A: 59.00	: 59.39	\| 89107	1.001	: 0.07	10.02		!	!	;	!	
A	A: 60.63	: 62.13	: 89108	:, 001	: 0.06	10.02		;	!	!	!	
A	A: 62.13	: 63.11	: 89109	1.001	: 0.07	10.03		!	!	'	I	
- \quad A	A: 65.45	: 65.80	: 89110	1.002	: 0.11	10.11		;	!	!	i	
1 A	A: 65.80	: 66.16	: 89111	1.001	10.05	10.02		;	1	!	;	
1 A	A 181.17	181.60	: 88112	1.001	- 0.06	10.02		!	1	!	!	
1 A	A : 81.60	: 83.10	: 89113	1.001	- 0.08	10.02		,	1	;	!	
1 A	A 183.10	: 84,60	\| 89114	:.001	- 0.04	10.02		1	;	!	!	
1 A	A :	!	!	,	1	;	;	1	1	!	1	
,	A	!	;	1	!	1	;	;	1	;	i	
1 A	A:	1	;	!	!	1	;	,		;	i	
1 A	A:	;	:	1	!	;	:		!	;	!	
1 A	A	1	;	1	!	;	;	:		;	,	
$\dot{1}$	A:	,	;	1	!	+	,	!	I	!	;	
1 A	A	;	,	1	1	,	;	1	1	;	$!$	
;	A:	;	;	1	;	,	;	!	!	!	,	
1 A	A	;	,	;	;	,	:	1	;	1	I	
;	A:	;	;	;	;	1	!	,	;	1	,	
;	A	,	;	,	1	1	;		,	;	;	
;	A	;	:	;	!	!	,	;	!	'	-	
;	A :	1	;	;	;	;	!	;	(!		
;	A	,	;	1	!	!	!	;	,	!	,	
;	A	;	!	;	!	;	;	1	;	;	;	
;	A:	;	;	1	1	;	;	;	!	'		
!	A:	;	;	;	I	!	1	;	;	!		
!	A:	;	;	,	!	,	!	,	!	;	,	
;	A :	;	;	;	!		;		!	'		
;	A	!	,	,	;	!	1	;	!	!		
;	A:	;	;	;	;	!	;	;		;	,	
;	A:	!	1	:	1	,	,	1	;	!	;	
1	A	;	!	;	,	;	1	;	1	!	,	
1	A	,	,	;	;	,	1	;	;	,	1	
;	A:	!	+	,	1	!	1	;	!		1	
!	A:	;	1	;	1	;	,	,	1		,	
!	A:	+	1	;	;	;	,	,		,	1	
;	A	,	,	;	1	!	;	,	,		!	
;	A	!	1	!	1	1	,	;	,		1 :	
!	$A 1$;	,	!	1	!	,	1	1		1 1	
;	A:	:	!	;	;	1	1	;	1		;	

DRILL LDG

ASSAY RECDRD

IPROPERTY IGOLDEN	CROUN		:HOLE NO, $16 C S 90-1$: DATE 1AUG/90	1SAMPLER IH. ROB		$\begin{aligned} & \text { \{PAGE } \\ & \text { :OF } \end{aligned}$	
$1 \quad 1$	1 IFROH	ITO	SSAMP.NO	:02an/:	102AG/	1\% CU 122N	120n	120h	(GM.Al/i6n.AG/
!	1	;	1	- TON:	: TON	: 1	!	;	1 1
; A	A : 11.57	: 12.75	(89115	1.002	10.02	10.03 ;	!	;	1
1 A	A : 26.89	127.16	189116	1.001	$: 0.06$	10.05 1	I	;	1 ;
; A	A : 56.49	: 57.02	1 89120	1.001	10.07	10.02	;	;	1 ;
: A	A : 57.60	- 57.90	- 89117	1.001	: 0.07	10.06	;	;	$1 \quad 1$
1 A	A : 61.37	: 62.80	1 89119	1.001	10.04	10.02 :	;	!	$1 \quad 1$
; A	A : 59.00	- 59.45	1 89118	1.0011	10.04	10.03 !	;	;	$i \quad 1$
1 A	A 1	i	;	$1 \quad 1$	1	$1 \quad 1$.	!	;	$1 \quad 1$
; A	A :	i	1	;	1	; i	;	1	i i
: A	A:	!	;	1	1	i i	;	1	i 1
1 A	A 1	1	;	1	;	i i	;	!	$1 \quad 1$
1 A	A :	!	;	1	1	1 $\quad 1$!	i	;
	A 1	1	1	1	1	; i	I	;	$1 \quad 1$
I A	A :	1	!	;	1	1 1	I	i	$1 \quad 1$
1 A	A :	!	;	1	1	i i	;	;	! $\quad 1$
1 A	A :	;	I	;	'	1 i	:	;	1 1
1 A	A	1	;	1	!	; i	;	;	i i
: A	A:	;	!	1	1	1 i	!	;	$1 \quad 1$
i A	A:	1	1	;	1	i i	!	;	i i
1 A	A:	I	1	!	1	i i	;	;	i 1
: A	A ;	1	1	1	,	1 i	;	;	1 1
i A	A :	1	i	;	I	i i	:	;	i i
; A	A:	1	i	1	1	; 1	;	i	; i
1 A	A :	!	1	1	1	1 i	!	;	i i
1 A	A 1	I	I	;	1	; i	;	;	; ;
1 A	A 1	;	1	1	!	1 i	;	'	i i
; A	A:	1	!	;	1	i i	;	1	i 1
1 A	A :	1	'	1	1	1 i	;	i	i ${ }^{1}$
1 A	A:	;	1	;	1	$1 \quad 1$;	;	i $\quad 1$
1 A	A 1	;	1	;	1	i i	;	i	i i
; A	A 1	;	!	1	i	1 i	i	i	i i
1 A	A :	!	1	!	1	$1 \quad 1$;	!	i i
1 A	A 1	I	;	!	1	1 i	I	;	i i
1 A	A	;	'	1	1	1 i	;	;	; i
1 A	A :	!	1	I	1	11	;	;	; 1
1 A	A :	;	!	1	1	1 i	;	;	1 i
1 A	A :	;	1	'	1	i i	!	i	; i.
; A	A1	1	'	1	1	; i	;	'	i i
1 A	A 1	I	i	;	!	$i \quad i$	1	;	i i
1 A	A 1	;	!	I	'	1 1	1	;	1 i
I A	A :	!	1	1	1	; 1	i	;	; 1
1 A	A 1	1	1	1	1	i i	!	!	i 1
1 A	A	;	I	1	1	; $\quad 1$;	:	i i
\boldsymbol{i} A	A ;	;	;	1	;	; i	'	!	$1 \quad 1$
1 A	A:	1	1	;	i	1 i	;	;	11
1 A	A:	!	i	1	1	1 i	;	;	1 i
$\cdots \quad A$	A 1	1	1	;	!	$i \quad i$;	i	1 i
- 1	A 1	I	;	1	;	i i	;	;	1 i

DRILL L06

IPROPERTY ;60LDEN	Y Croun		IHOLE ND. $16 C 590-16$		IDATE :AU6/90	ISAMPL. ill. RQ			IPAGE 10F		1
I	I : FROM	1 TO	ISAMP. HO	:02AU/:	102A6/	i\% CU	IL2N	170M	120 M	[GX, AU/:GA, A6/	!
1	1	!	1	- TDN:	1 TON	!	,	1	I	1 1	I
										------\|*-	
A	A : 9.45	1 9.85	1 89121	1.001	10.05	10.01		I	;	!	;
A	A: 9.85	: 10.67	189122	1.0011	1 0.03	10.03		;	;	;	!
A	A : 11.40	: 11.88	: 89123	1.001 :	I 0.04	10.03		+	;	i 1	!
A	A : 17.80	: 18.34	- 89124	1.084	: 2.50	16.23		;	!	; \quad l	;
A	A : 33.83	: 35.27	- 89125	$1.001:$: 0.06	10.02		;	;	1 i	;
1 A	A: 35.27	: 36.75	1 89126	1.0011	1 0.07	10.08		I	;	i 1	!
1 A	A 1	I	!	11	1	I	1	i	1	1 i	1
1 A	A 1	;	1	;	1	1	1	;	1	i 1	1
1 A	A1	!	!	;	1	i	1	;	!	$1 \quad 1$	1
: A	A:	;	;	;	I	;	!	!	!	$1 \quad 1$	1
$1 \quad A$	A:	i	;	1	1	;	1	;	!	1 i	,
$1 \quad A$	A :	I	i	!	!	;	1	1	1	$1 \quad 1$	1
1 A	A 1	I	I	1	1	;	I	!	;	$1 \quad 1$!
1 A	A :	;	;	1	1	;	;	1	1	i i	!
1 A	A 1	;	;	i	1	I	I	!	1	$i \quad 1$	1
1 A	A	;	!	I	1	!	!	;	1	1 i	1
1 A	A :	!	;	;	1	;	!	1	!	$1 \quad 1$	1
I A	A	;	'	;	1	I	1	!	!	1 1	!
I A	A:	i	i	i	1	;	1	!	:	1 1	,
$1 \quad A$	A:	I	;	i	1	1	;	1	!	$1 \quad 1$!
\cdots A	A 1	1	!	;	i	i	i	!	1	11	!
1 A	A 1	1	I	;	1	!	,	1	I	1 1	1
1 A	A :	,	I	i	!	;	:	,	1	1 i	:
; A	A	1	!	;	I	;	'	1	I	11	'
1 A	A:	!	1	;	;	'	i	1	!	$1 \quad 1$;
: A	A:	!	1	;	!	I	i	1	;	$1 \quad 1$	1
: A	A:	!	!	!	1	1	1	1	1	$1 \quad 1$	1
1 A	A:	1	1	1	1	;	!	!	!	11	1
1 A	A :	1	1	;	;	;	i	!	1	$1 \quad 1$	
; A	A:	1	1	;	i	;	;	i	I	1 i	
$1 \quad A$	A 1	1	1	;	1	;	!	1	1	1 i	
$1 \quad A$	A 1	1	1	;	;	1	!	i	1	1 1	
1 A	A:	1	1	1	;	1	!	i	1	1 !	
1 A	A :	!	1	1	1	!	;	;	1	1 i	
1 A	A 1	1	!	;	1	!	I	I	1	; 1	
! A	A :	1	1	1	I	1	;	1	1	$1 \quad 1$	
$\cdots \quad A$	A:	1	;	1	;	;	;	1	!	1 i	
1 A	A:	1	1	!	;	I	1	!	!	$1 \quad 1$	
1 A	A 1	1	1	1	'	1	!	I	!	$1 \quad 1$	
1 A	A:	1	1	I	I	1	;	1	1	$1 \quad 1$	
1 A	A 1	1	1	1	I	1	1	!	!	$1 \quad 1$	
1 A	A 1	;	1	1	i	!	;	1	!	1 i	
1 A	A :	1	;	1	;	1	1	1	!	11	
1 A	A	;	1	1	;	:	!	I	!	1 i	
1	A:	!	1	1	'	1	1	1	1	1 1	
1	A:	1	!	!	;	1	I	;	;	11	
1	A1	!	;	1	!	;	I	I	!	1 !	

DRILL L.06

illat. ©C1 4982.74	1DEP. : 5175.54	$\begin{aligned} & \text { :ELEV. } \\ & 11333.80 \end{aligned}$	itrue al 1045	$i^{\text {GRID AL }}$	$\begin{aligned} & \text { DIP END } \\ & :-45: 68.29 \end{aligned}$	$\begin{gathered} \text { MORTHING } \\ 146425 \end{gathered}$	$\begin{aligned} & \text { EASTING } \\ & : 47400 \end{aligned}$	PAGE
IIIDEPTH	itrue al	!DIP	!					lof
:-		---------	-					;
15168.28	! 045	: -51.00	:					
1:	1	;	;					
:	1	;	1					
!	1	,	I					
11	1	,	!					
:	1	;	1					
!	!	;	;					
: :	1	,	;					

Il:SROK		$1 \mathrm{I}_{0}$		LENGTH IREC	:ROCK:COLR	R:	C 15765	AD	ITN	:ALT : 1 N								10THER
					-----:-		-			- --->-								
!P!	0.00		$6.10:$	6.10;	lover:	1	!		'	: ;	;	1		,	!	!	+	,
iPi	6.10		60.97 :	54.87: 97	(SERP! ${ }^{\text {d }}$	1	1365H:		17	EEPID: 7	7 in	HIVN:			;	1	1	:EP, TC
inf	18.00	!	38.24 :	20.24 :	,	!	(BK:			EEPIDi 8		1			1	!	1	-
[${ }^{\text {i }}$	46.95		49.10 :	2.15 ;	;	;	: BKSH:		110	:EPID;	1	1		,	!	1	1	160U6E
AN:	54.60		60.97 :	6.37 ;	1	,	: BKSH:		110	:EPID;	1	,			;	1	;	:60U6E
PP:	60.97		62.50 :	1.53 ;	[HYPH:2NG	!	+36		!	:SERP:	,	,			;	:	1	,
ipi	62.50		67.19:	4.69 ;	[DIORI3A	;	:56			[SIL1: 3		Mive		,	!	130		-
If:	67.19		68.29 :	1.10:	[SERPIM	;	136		13	IEPID: 3		1		,	!	-	!	1
:		,	1	0.00 :	!	,	'		;	\|	1	,		,	+	1	1	1
1:		1	+	0.00 :	!	,	$1 \quad 1$		¢	- 1	'	,		,	!	1	1	1
;		;	1	0.00;	;	,	;		1	- 1	-	,		+	;	1	1	1
;		;	!	0.00 :	-	,	1 1		!	11	1	,		,	!	1	1	1
:		1	\|	0.00 :	;	;	1 ;		;	1 1	!	,		;	,	1	;	!
:		!	'	0.00 ;	'	!	1 1	,	!	1 1	!	,		,	!		1	1
:		;	1	0.00 :	1	;	1 ;	!	!	1 i	1				+	1	;	1
:		!	'	0.00 :	1 1	!	1 !		!	1 1	;				,	+	;	!
!		;	'	0.00 :	1	:	1 1		!	;	!				!	1	1	,
;		!	1	0.00 :	;	!	$\dot{1}$!	1 !	1	,		;	!	1	;	!
!		;	'	0.00 :	;	;	;	;	') 1	;	,			;		-	1
: 1		;	'	0.00 :	-	:	$1 \quad 1$		1	;	1			;	1	1	,	;
: 1		!	;	0.00 :	+	;	$1 \quad 1$		\|	,	1			+	;	;	1	1
!		;	'	0.00 i	;	;	;	;	;	,	!	,		'	,	,	,	;
\|		;	!	0.00 :	1 1	;	1		!	: 1	;	-		,	;	!	1	:
!		1	1	0.00 :	- 1	;	1		;	: \quad	;	-		;	!	1	+	1
1:		;	'	0.00	1 1	!	$1 \quad 1$		1	1 !	1			'	!	1	:	1
! :		;	:	0.00 :	;	;	1 !	,	1	,	1			!	,	$!$,	1
i		;	,	0.001	$1 \quad 1$!	!	!	!	,	1			'		1	,	1
1:		!	!	0.00;	1 1	;	$1 \quad 1$		1	$1 \quad 1$				'	!	1	,	1
!		;	1	0.00 :	1	!	,		:	; 1	1			'	!	1	1	,
! :		!	!	0.001	1 ;	;	1		!) 1	!			'	1	I	!	;
: 1		;	,	0.00 :	,	;	!		1	1 ;	;			;	!	;	1	,
;		!	;	0.00 ;	; 1	,	;	!	;	1 1	1			;	1	!	-	!

ASSAY RECORD

DRILL LOG

ASSAY RECORD

:PROPERTY			IHOLE NO. 16C5 90-19		IDATE 1AUG/90	ISAMPLER iH. ROBB		IPAGE :OF	
1GOLDEN	CROWN								
'	1 IFROK	1 TO	ISAMP, NO :	102AU/	102AE/	1\% Cu 122N	1\%0M	120M	
;	;	1	1	- IUN:	TOH	1 1	!	1	I
-	--!-w	1	--------1			1-----1-	-	--	---
1	A: 15.45	; 15.72	189130	1.0101	10.09	10.07	;	1	$1 \quad 1$
1	A : 17.76	: 18.16	- 89131	1.005	: 0.03	10.041	;	1	11
1	A : 18.46	1 18.53	- 89132	1.002	: 0.03	10.15	;	1	i i
!	A : 18.85	(18.92	- 89133	1.002	: 0.04	10,04 :	i	1	$1 \quad 1$
i	A : 20.61	121.87	1 89134	1.002	: 0.05	10.20 i	1	;	1 1
1	A: 24.10	(24.20	i 89135	1.004	: 0.08	10.071	!	;	i i
1	A:	1	!	!	1	11	i	1	1 i
i	A:	1	1	!	!	i i	;	;	i i
i	A:	1	I	1	I	1 i	;	!	1 i
1	A	1	1	;	I	; 1	1	;	; ;
;	A	;	;	;	1	; i	1	I	i i
1	A 1	!	;	;	,	i i	1	i	i i
;	A	1	;	1	i	$i \quad 1$!	;	i i
;	A	;	;	I	1	; ;	1	;	1 i
;	A	;	;	I	!	i i	;	;	$1 \quad 1$
!	A 1	;	!	;	1	i i	I	!	$i \quad i$
I	A	1	1	!	,	1 i	!	i	1 i
!	A	;	1	I	1	1 i	1	;	$1 \quad 1$
;	A :	;	;	I	1	1 i	1	;	$1 \quad 1$
;	A	;	i	1	1	$i \quad 1$	1	;	1 1
!	A:	1	i	1	,	$1 \quad 1$	I	;	1 i
1	A :	1	;	;	1	$1 \quad 1$;	;	$1 \quad 1$
1	A 1	;	;	1	!	1 i	;	;	1 1
!	A 1	1	I	;	1	1 i	1	;	; $\quad 1$
;	A 1	;	I	;	i	1 i	1	;	$1 \quad 1$
1	A	;	;	1	!	1 i	1	i	11
1	A:	1	;	;	1	$1 \quad 1$	1	1	$1 \quad 1$
1	A	1	I	I	1	$i \quad 1$	1	!	$1 \quad 1$
1	A:	1	i	;	1	11	;	1	1 i
1	A 1	1	i	;	1	i i	;	1	1 i
1	A	1	!	:	1	1 i	1	1	1 i
!	A:	1	I	;	!	1 i	1	1	$1 \quad 1$
1	A ;	1	I	;	!	1 1	1	1	$1 \quad 1$
;	A	1	;	;	!	1 1	1	1	1 i
1	A:	1	!	i	1	1 i	;	1	$1 \quad 1$
I	A 1	1	!	'	1	1 ;	1	!	1 i
I	A	1	1	;	1	1 i	;	!	1 i
!	A 1	;	!	;	1	1 I	!	I	1 1
!	A	;	1	!	1	1 i	1	1	11
;	A:	;	I	;	;	1 i	;	!	1 i
;	A	1	;	;	1	1 1	1	!	; $\quad 1$
1	A1	1	1	1	;	1 i	!	1	1 i
!	A 1	1	1	!	1	1 i	!	I	1 i
1	A1	;	I	;	1	1 1	1	;	1 1
1	A	1	1	I	'	1 i	I	1	$1 \quad 1$
1	A	!	I	;	i	1 i	;	1	1 i
1	A :	1	1	;	;	1 I	!	1	1 i

DRILL LOG

IPROPERTY IHOLE NQ, IDATE !SAMPLER IPAEE										
:GOLDEN	CROLM		16Cs 90-20		1AUG/90	IV. ROBB		10F		;
;	1 IFROH	170	SSAMP. NO	102AU/	02ab/	12 Cu	: 20 H	:201	IGM. AU/:6m.A6/	1
1	!	1	:	(TON:	TON	1 !	1	.		
$1 \quad A$	A: 15.87	: 16.33	- 89136	1.007	- 0.04	10.021		,	-	1
$: \quad A$	A: 51.68	- 51.93	; 89137	1.026	- 0.26	10.23 !	1	!	1 !	;
!	A: 53.35	\| 53.66	- 89138	:. 210	- 0.07	10.05	1	;	,	!
1 A	A	1	!	1	-	;	1	;	1 i	!
A	A:	!	;	$!$	$!$;	;	1	1	!
;	$A:$	I	;	1 !	1	+	;	;	,	;
!	A:	!	;	1	1	,	1	;	1	!
!	A:	1	;	1 !	1	1	;	,	1 1	;
1 A	A	1	;	,	,	;	;	,	;	;
;	A	;	;	;	-	1	1	,	;	!
;	A :	;	;	;	1	1	1	,	;	!
;	A:	!	;	1 '	i	+	;	;	;	!
!	A :	;	;	!	1	;	1	;	11	;
;	A:	1	:	1	1	1	!	!	11	;
;	A:	;	:	1 ;	;	1	,	,	, 1	;
!	A	;	;	,	,	,	;	;	1 !	!
;	A	;	:	;	,	1	;	;	1 1	
,	A :	;	;	'	!	11	I	;	!	;
;	A	!	;	$1 \quad 1$	1	1	,	,	-	1
!	A:	!	;	1 \|	1	,	;	'	1 !	;
A	A	;	;	;	1	!	;	!	1 i	
1 A	A :	;	!	1	!	1	;	,	i i	!
!	A	;	;	,		1 i	;	,	1	!
;	A :	;	;	,	,	1	,	,	-	
A	A:	;	:			1	'	!	1 i	
$\dot{+}$	A:	;	:	!	1	1	;	;	$1 \quad 1$	
1 A	A :	;	;	1	1	11	;	;	1 i	
;	A :	;	;	1 1	1	1	;	;	1 ;	
$1 \quad A$	A	;	;		,	,	;	;	1 i	
- A	A:	;	;	;	;	1	;	!	11	
- A	A	!	;	'	1	;	;	,	1 i	
,	A:	;	:	1	,	;	;	;	;	
,	A :	;	'	!	1	!	;	;	1 1	
- A	A	;	;	!	1	1 :	!	!	i 1	
1 A	A :	;	;	1	1	1 1	!	!	1 ;	
;	A:	!	;	1	;	;	i	;	$1 \quad 1$	
!	A	;	:	!	!	;	1	;	1 \quad	
	A:	;	!	1	1	1 1	!	;	11	
	A:	;	;	1	,	1 ;	;	!	1 1	
!	A:	;	;	!	!	1 ;	;	;	11	
;	A:	!	;	;	1	;	!	;	1 ;	
!	A	!	:	;	;	1 ;	;	;	1 1	
$\dot{1}$	A	,	'	-	,	1 1	;	;	;	
;	$A 1$;	!	!	,	11	;	;	$1 \quad 1$	
!	A :	;	!	1	,	1 i	;	:	11	
;	A	1	!	1 1	1	11	!	!	i 1	
	A:	1	;			1	+			

DRILL LOG

ASSAY RECDRD

DRILL LDG

; iLAT.	: DEP.	IELEV.	ITRUE AL	GRID AZ	DIP END	NORTHING	EASTING	PAGE
C: 4937.64	3703.65	1321.02	1045	;	1-45 :64.02	45825	45000	

ASSAY RECORD

DRILL LOG

ASSAY RECORD

IPROPERTY iGOLDEN	CROWN		1HOLE NOCS $90-23$		IDATE \&AUE/90	ISAMPLER iN. ROBE		IPAGE 10F	
1 I	1 IFROK	ITO I	[SAMP. ND	10zau/!	102A6/	1\% CO ILIN	120M	180\%	167.AU/IEn. AG/ $^{\text {a }}$
!	!	1	1	1 TON:	T TN	1 1	;	I	1 1
						1-0..--1			--
$1 \quad A$	A 125.10	: 25.30	: 89163	$1.001:$	1 0.02	$10.01:$!	i	$1 \quad 1$
1 A	A 34.30	: 35.20	: 89164	1.001	; 0.05	10.011	;	;	1 i
1 a	A 1	:	:	$i \quad 1$	1	11	I	I	;
1 A	A ;	;	1	!	1	1 i	i	1	;
1 A	A:	;	;	1	1	1 i	i	1	$1 \quad 1$
1 A	A:	;	I	I	1	$1 \quad 1$;	1	$1 \quad 1$
1 A	A:	;	!	!	1	1 i	1	1	i 1
1 A	A:	;	I	1	1	i i	!	1	i 1
1 A	A :	;	1	!	1	1 i	1	;	$1 \quad 1$
- A	A:	;	1	1	1	i i	;	1	$1 \quad 1$
I A	A:	;	i	;	1	1 i	;	1	1 i
1 A	A:	I	I	!	1	1	,	!	$1 \quad 1$
1 A	A:	1	;	i	,	1 i	1	1	$1 \quad 1$
1 A	A:	;	;	!	1	i i	1	'	$1 \quad 1$
1 A	A :	1	'	;	!	1 i	1	;	1 i
1 A	A:	1	i	;	1	$i \quad i$!	1	1 !
1 A	A :	1	;	!	1	i 1	1	!	$1 \quad 1$
1 A	A 1	t	!	1	1	1 !	1	!	$1 \quad 1$
1	A 1	1	;	;	i	1 i	1	1	1 1
!	A 1	1	1	;	I	1	!	1	$1 \quad 1$
i	A :	;	!	;	!	1 1	1	1	1
1	A 1	1	;	1	!	1 i	1	1	$1 \quad 1$
1	A :	;	I	1	I	1 1	$!$	1	1
!	A 1	I	;	;	1	1 I	!	1	$1 \quad 1$
1	A 1	!	!	;	i	11	!	!	$1 \quad 1$
!	A:	;	!	;	1	1 i	1	!	$1 \quad 1$
1	A :	;	1	;	!	1 1	1	1	11
!	A	;	1	i	;	1 I	;	1	1 i
1	A:	1	1	1	i	1 1	1	1	11
1	A:	1	1	I	;	1 1	I	!	1 1
1	A:	;	1	;	i	1 i	!	!	$1 \quad 1$
;	A1	1	1	1	I	11	!	1	$1 \quad 1$
;	A:	1	1	1	i	1 1	1	1	1 1
i	A 1	!	1	1	;	1 i	!	;	1 !
,	A	1	i	I	!	1 i	!	1	1 i
1	A :	1	1	I	;	11	I	1	1 i
1	A :	!	!	I	;	i i	1	1	1 i
1	A 1	1	1	1	;	$i \quad 1$	1	1	1 I
1	A :	1	1	1	;	; 1	!	1	11
!	A 1	1	1	1	I	$1 \quad 1$;	1	i i
1	A :	1	1	1	;	; 1	!	I	1 1
1	A:	1	1	;	;	1 i	1	!	11
1	A:	1	1	1	i	11	;	1	1 1
1	A:	1	1	1	i	1 i	1	!	$1 \quad 1$
1	A1	1	I	i	;	; 1	;	1	1 i
1	11	I	1	1	;	11	1	I	11
1	A :	1	I	1	!	i i	1	1	11

DRILL L06

1	1 !LAT. 1C: 5261.43	$\begin{aligned} & \text { fDEP. } \\ & ; 3789.91 \end{aligned}$	$\begin{aligned} & \text { \{ELEV. } \\ & 11311.02 \end{aligned}$	$\begin{aligned} & \text { :TRUE AZ } \\ & : 210 \end{aligned}$	6RLO AL	$\begin{array}{c\|c} \text { DIF END } \\ : \times 47 & 60.65 \end{array}$	$\begin{gathered} \text { NORTHING } \\ : 46075 \end{gathered}$	$\begin{aligned} & \text { EASIING } \\ & =46100 \end{aligned}$	PAGE	1
5	111DEPTH	\|GRIDA2	PDIP	!					10f	1
	:3: 60.65	- 187	1-47.00							
T	:	+	,	!						
16	1	;	;	;						
	!	;	;	;						
0	:	;	!	1						
0	1:	!	;	!						
\%	!	;	;	!						
	i	'	;	;						

DRILL LOG

ASSAY RECORD

DRILL LOG

[^0]ASSAY RECDRD

DRILL L06

ASSAY RECDRD

iPRPPERTY :G0LDEH	Croun		IHOLE ND. 16CS 90-27		date alla/90	:SAMPLER in. ROBB		IPAEE 105	
: 1	1 HROM	170	:SAMP. NO :	[0ZAy/10	07A6/	1\% Cbish	:20M	120M	
1	;	!	;	: Ton:	T01	1 1	1	;	1 !
A	A: 5.56	\| 5.84	; 89029	1.009:	0.03	10.08	1	1	;
; A	A : 15.00	: 16.20	; 89030	:.001:	0.01	10.03 :	!	!	:
; A	A: 16.77	: 17.67	: 89031	$1.001 ;$	0.02	10.031	!	;	; ;
: \quad A	A: 18.00	: 19.12	- 89032	:.001:	0.01	10.02 :	!	!	$1 \quad 1$
: A	A: 20.90	\| 21.74	- 89033	1.001) 0.04	10.02 :	;	1	$1 \quad 1$
: \quad A	A: 23.57	: 24.90) 89034	1.001	0.01	10.02	;	;	;
;	A : 25.12	: 25.43	: 89035	1.003:	: 0.05	10.30 :	:	-	;
;	A: 32.01	: 32.92	: 89036	1.003:	0.09	10.39)	;	;	-
;	A: 32.92	: 33.92	: 89037	1.012:	: 0.29	:1.20:	;	1	;
;	A: 33.92	: 35.92	: 89038	1.001:	0.02	10.05	!	1	;
;	A: 35.92	: 37.25	: 89040	$1.001 ;$	0.01	10.07	;	!	$1 \quad 1$
;	A: 37.25	+ 37.96	- 89041	1.001;) 0.01	10.04	:	,	1 :
;	A: 39.30	; 42.17	: 89042	:.001:	- 0.01	10.06	1	;	$1 \quad 1$
; A	A: 42.17	: 43.62	: 89043	1.001	0.02	10.05	!	1	1 :
;	A : 43.62	: 45.07	: 89044	:.001:	: 0.02	10.05	;	1	1 ;
!	A: 46.24	: 47.71	: 89045	1.001:	: 0.01	10.04	!	;	;
;	A:	\|	;	; ;		;	1	;	;
:	A :	i	;	;	,	1 :	;	;	1 !
;	A :	;	;	;	,	1 1	:	1	; ;
;	A:	;	;	1 1	,	1 ;	;	;	: 1
;	A:	;	;		:	1 ;	;	1	$1 \quad 1$
;	A	;	!	1 !		;	i	I	1 ;
;	A	;	;	1 :	,	1 !	1	:	1 i
:	A:	;	;	;		1 :	!	;	1 1
;	A:	;	;	1 i	,	; 1	;	:	1 ;
;	A:	:	;	1 1	,	1 ;	1	;	!
;	A:	;	:	;	!	1 1	;	;	1 i
;	A:	;	;	I	,	;	1	;	1 ;
;	A	;	;	1 !	,	1 i	;	!	1 :
;	A :	;	;	:	:	1 ;	;	;	$i \quad 1$
;	A :	;	;	;	!)	;	1	1 !
;	A:	;	!	;	,	;	1	1	!
;	A:	;	'	- 1	,	; 1	,	,	1
;	$A:$:	;	1 !	,	;	!	;	1 i
;	A:	;	:	;	:	;	!		1 ;
!	A:	;	;	;	:	;	!	1	,
!	A:	:	!	-	;	;	1	;	
1	A:	;	:	1	,	; ${ }^{\text {d }}$	1	!	,
;	A	;	;	: 1	,	;	:	,	-
!	A:	:	;	\|	;	!	,	,	1 ;
1	A:	:	;	;	;	1 ;	;	i	,
;	A:	!	1	;	:	; 1	;	!	-
;	A:	;	;		;	; 1	;	,	1 ;
;	A:	;	1		-	;	;	;	1 ;
!	A	;	!	1		;	;	,	1 i
:	A:	;	!	1	,	;	;	1	;
1	A:	;	;	1 1	!	;	1	1	,

DRILL L06

! ilat. (C) 5152.66	$\begin{aligned} & \text { :DEP. } \\ & : 4 B 65.49 \end{aligned}$	$\begin{aligned} & \text { EELEV. } \\ & 11353.03 \end{aligned}$	itrue al :023	${ }^{\text {GRID AL }}$	$\begin{aligned} & \text { DIP END } \\ & : \sim 50 \\ & : 48.97 \end{aligned}$	$\begin{aligned} & \text { Northing } \\ & : 5150 \end{aligned}$	$\begin{aligned} & \text { EASIING } \\ & 5070 \end{aligned}$	PAGE
11:dEPTH	¢TRUE AL	[D] 1	1					104
S5 48,46	; 023	--------						1
! :	,	1						
:	;	!	;					
:	;	!	;					
' 1	;	1	;					
;	;	;	!					
i	!	!	1					
;	;	;	1					

ASSAY RECORD ${ }^{\text {a }}$												
: PRDPERTY			WH: IHOLE MO.	HMH:H\%H:		(1)						
				'DATE	SSAMPL			IPAGE		;		
;60.0EN	crown			16CS 90-28		:AUS/90	:4. 80			lof		;
11	1 IFROM	150	SSAIP.Mo	103Aus	/02ab/	12 Cu	(12\%	120 M	:20n	:6n.Au/	614.AG/	
1	!	;	1	TON	N ${ }^{\text {dan }}$		1	!	;	,	!	
	--											
1 A	A : 7.62	: 9.15	: 89046	1.001	10.01	10.01		!	!	1	;	
- A	A: 9.15	; 10.67	: 89047	1.001	10.02	10,02		!	!	1	;	
- A	A : 20.13	: 21.60	: 89048	1.022	- 0.14	10.39	+	!	!	1	1	
I A	A :	;	1	1	;	1	!	;	;	1	1 !	
;	A:	;	;	;	;	!	;	;	!	1	1 1	
;	A:	;	!	1	!	1	,	1	!	1	$1 \quad 1$	
;	A:	1	1	1	:	;	1	!	!	1	1	
;	A	1	;	1	;	;	;	!	!	1	1 !	
;	A:	;	!	1	;	;	!	;	!	!	$1 \quad 1$	
;	A:	!	!	!	;	;	;	1	;	1	$1 \quad 1$	
;	A:	1	,	!	1	!	;	1	I	1	1 !	
1 A	A:	1	,	1	;	,	!	;	!	1	1 i	
1 A	A!	;	,	1	i	;	;	1	1	1	$1 \quad 1$	
;	A :	;	;	;	;	1	!	!	1	1	$1 \quad 1$	
:	A	;	!	1	1	1	;	1	;	!	i	
:	A	!	!	,	,	1	;	1	I	,	1	
1 A	A :	!	;	;	;	;	:	1	;	;	1	
;	A	;	;	;	;	;	;	;	;	;	1	
1 A	A	;	;	;	;	;	;	;	;	;	!	
;	A :	;	;	:	:	,	1	,	;	;	1	
;	A :	;	;	:	;	;	;	1	!	;	;	
;	A	;	;	;	;	;	;	I	;	;	!	
;	A:	;	;	,	;	;	1	,	;	;	1	
;	A :	:	;	;	;	;	;	!	,	;	1	
;	A	;	;	;	;	;	1		;	i	1	
;	A :	;	;	;	;	;	;	1	;	;	,	
;	A :	;	,	;	;	;	!	,	;	;	!	
!	A	;	!	;	;	;	!	!	;	;	1	
;	A :	!	,	,	;	;	;	;	;	;	;	
!	A:	;	:	,	;	;	;	!	;	!	,	
!	A	;	!	;	;	;	1	;	!	,	;	
!	A:	;	;	:	;	;	1	1	,	!	;	
:	A :	i	;	,	,	;	;	;	;	;	1	
!	A	;	!	;	;	!	!	;	;	;	;	
;	A :	;	;	;	!	;	1	!	,	;	;	
!	A	;	;	,	!	,	;	;	;	,	:	
!	A :	;	;	!	!	,	;	1	,	;	;	
:	A	;	,	,	,	;	;	;	,	,	,	
!	A	;	;	;	;	!	1	;	!	;	,	
;	A	,	;	+	;	;	!	!	!	,	!	
!	A	;	;	;	1	1	!	,	,	;	1	
;	A:	'	;	;	!	;	;	,	I	;	1	
;	A :	i	;		;		1	;	;	;	1	
;	A :	+	!	!	!		;	,	;	1	1	
;	A:	I	!	;	!	1	1	!	!	1	,	
!	A:	1	1	;	,	!	;	,	,	1	,	
;	A:	1	!	!	1	;	;	,	;	1	,	
(HHAH:	HHL\#	\#hatil	H\%и!		H\%HH\%					(\%й	Hittint	

ASSAY RECORD

DRILL L6g

1 Ilat.	1 DEP.	ELEV.	i TRUE Al	GRID AL	DIP END	MORTHING	EASTING	PAGE	
(C) 5146.27	- 4845.73	11355.56	:023	;	:-50 150.3	- 5145	-5050	!	1

ASSAY RECDRD

ASSAY RECORD

DRILL LOG

:Lat.	[DEP.	IELEV.	ifRUE Al	6810 AL	DIP END	MORTHING	EASTIMG	PAGE
IC1 5351.85	: 4390.35	11320.49	!225	!	1-50 :60.0	- 16475	; 46525	1

11/DE	H tiRue al idip		
151	60.05 :	225	; -54.00
i	'		:
1 !	!		!
1:	;		;
;	1		;
:	;		1
$1:$!		,
: 1	;		;

13/FROM		iT0		NGTH IR	IRackicolr		IC ISTGS	AD $: 10$	N:ALT :IN		Hinhty	:CP 101		
							:-							
PPi	0.00		3.05 :	3.05 ;	¢OVER:	1	,		,		1 !	1		1
PF:	3.05		11.20 :	8.15:	[6STNI3G	!	[365T]		2 PPRDP: 3		nivn) 21	ITR :		;
ini	3.96		4.72;	0.76 :	; 1	!	;	:	1 1		aavni20:	: 2;	,	1
PP:	11.22		19.60 :	8.38 :	[DIOR14AG	$6:$	156.57]	13	3 SSILI!		diss! 5 :	(TR :10:		1
PP:	18.40		19.60 :	1.20 :	1 i	!	1 ;	1	1 !		MAVN140:	; 5 !		1
AN:	19.60		20.15 :	0.55 ;	\|SLWN:	1	1 i	:	1		MASS 85	TR :		1
PPi	20.25		24.40 :	4.25 :	16STN:36	!	136.JT	12	2 PPROP: 3	3	MIVNI $5:$	ITR 110:		I
PP:	20.15		21.88 :	1.73 ;	-	!	-	-	1 !		MAUN:40:	ITR :		;
AN:	24.40		24.69 :	0.29 :	-82wn:	;	1	1	1 1		MASS180:	1		!
in!	24.69		33.50 :	8.al ;	[65TN136	:	136JT]		2 1SILI: 3	3	IMUN: 5 :	110:		!
PP:	28.68		29.44 :	0.76	,	;	SH:	: 3	3 ICarat		frRELI60	,	;	;
[N	29.44		33.50 :	4.06 :	!	;	,		IBLCH: 5	$5:$!	1	1	!
ipi	33.50		41.90 :	8.40 :	:DIORI4AG		[56JT)	: 1	1 SSLI:		Oissi 5	178:10:		!
iN:	33.59		34.04	0.45 :	!SLXX:	+	!	-	$1 \quad 1$		BLEB110	1 i	:	1
ipi	41.90		43.92 :	2.02	[6STN:36	;	136JTi		2 'PROP:	3	!Rive: 5	- 110:		;
(N:	42.07		43.00 :	0.93	1 1	;	,	1	$1 \quad 1$		[bandi 30 :	ITR :	1	!
\|pi	43.92		52.27 :	8.35 :	\|6SBR1	!	BR:	18	8 !argl:		[FRFL: 3 !	; 1	'	,
:Ni	49.00		49,66 :	0.66	(65TN:	,	1 !	1	1	!	; !	,	!	1
inis	50.05		50.61 :	0.56	(6Sin)	!	1 1	I	1 !	;	; ;	1 ;	1	;
PP:	52.27		60.00 ;	7.73	\|G5TN136	;	1365H;		2 TALC:		[DISS: 5 ;	,	1	:
11		1	1	0.001	: 1	!	1	,	1	1	1 1	11	!	
:		;	!	0.00	-	;	,	;	-	1	; \quad !	;	,	!
!		;	,	0.00	1 !	;	- i	!	1	1	; i	! 1	;	,
1		!	'	0.00	!	;	1 !	;	;	'	1 i ;	: 1	;	1
: 1		!	'	0.00 :	;	;	;	,	1	1	$1 \quad 1$; 1	,	1
:		;	'	0.00 :	;	:	:		1	!	; 1		,	1
$1:$!	'	0.00 :	1 !	!	,	;	1	1	1 !	; 1	!	,
:		;	'	0.00 I	1	;	1 ;	I	,	;	- 1	; $\quad 1$	-	1
! 1		;	,	0.00 :	1	;	;	:	1	1	1 i	; 1	1	,
$1:$		+	'	0.00 :	;	'	1 1	,	;		$1 \quad 1$;	
1 i		,		0.00 :	1 :	;	!	,	!	;	; 1	1		1
$1!$;	!	0.00 :	1 !	!	1 1	,	,	:	: 1	; 1	;	1

ASSAY RECORD
(HAH:

IPROPERT 160LDEM	Croun		:HOLE NO. :6CS 90-33		idate 1Allf/90	ISAMPLER II. RDBB		$\begin{aligned} & 1 P A G E \\ & 10 F \end{aligned}$		
11	1 : frOH	1T0	tSAAP. NO	iolaulioz	02ab/	[2 Cu :22m	: ZOM	120H	(GM. AU/IEn. A6/	
1	1	;	;	(TOM	TOM	;	;	,	;	
1	A 3 I 96	14.72 !								
			- 89223	1.007		10.63	,	,	1 ;	
A	A : 18.40	; 19.60 ;	; 89224	1.096	0.28	10.62 :	;	1	1 ;	
A	A: 19.60	: 20.15 ;	(89225	1.073	0.33	10.82 :	!	1	;	
;	A : 20.15	: 21.02 :	(89226	1.012	0.09	10.16 :	;	1	1 ;	
;	A: 21.02	: 21.88 ;	- 89227	1.017	0,08	10.20:	;	!	$1 \quad 1$	
i A	A: 24.40	; 24.69 \|	- 89228	1.059	0.21	:1.03	;	!	1 ;	
$1 \quad A$	A : 28.68	: 29.44 \|	\| 89229	1.050:	0.04	10.04 :	;	:	$1 \quad 1$	
!	A : 33.59	\| 34.04		- 89230	1.058	0.12	:0.23 ;	,	;	1 1
- A	A : 42.07	: 43.00 !	- 89231	1.016	10.08	10.18:	1	!	;	
!	A: 43.92	; 45.22;	; 89232	1.003 :	0.10	10.10 :	!	;	1 1	
	A : 45.22	: 46.72 !	- 89233	:.001:	: 0.03	;0.03	;	;	,	
	A : 46.72	\| 48.07		\| 89234	1.001 ;	: 0.06	10.02	!	!	,
1 A	A : 48.07	: 49.00 !	- 89235	1.001:) 0.05	10.02	!	;	1 ;	
;	A: 50.95	; 52.27 ;) 89236	1.001 !	0.04	10.02	1	!	; ${ }^{\text {l }}$	
1 A	A :	1 !	!	$1 \quad 1$,	1 !	1	;	;	
- 1	A:	;	!	;	,	1 1	!	!	;	
1 A	A	1	;	!		!	1	!	,	
1 A	A :	$1 \quad 1$!	!	,	!	!	1	;	
1 A	A	;	!	!	,	;	;	!	1 ;	
1 A	A	;	;	;		1 1	;	1	1 ;	
$1 \quad A$	A:	;	!	;	,	1 \|	;	;	;	
I A	A :	$1 \quad 1$!	;	,	;	;	1	1 ${ }^{\text {a }}$	
; A	A :	;	!	1	,	;	,	1	i 1	
$\dot{1}$	A	!	1	;	,	1 ;	;	!	$1 \quad 1$	
1 A	A:	;	;	;		$1 \quad 1$	1	;	1 1	
;	A	:	;	1	,	;	!	;	1 1	
1 A	A	!	1	;	,	; 1	;	1	,	
; A	A	;	;	!	,	;	;	;	1 i	
1 A	A	!	1	;		,	!	,	1 !	
1 A	A:	!	1	;	,	;	;	!	$1 \quad 1$	
1 A	A :	1	,	!		1 ;	;	+	$1 \quad 1$	
1 A	A:	;	!	1		1	,	1	; ;	
1 A	A:	1	!	!	!	;	;	;	; ;	
1 A	A :	!	1	!	,	;	,	;	;	
1 A	A :	!	,	!	,	;	;	!	;	
$: \quad A$	A:	1	!	;		1	;	!	!	
1 A	A :	;	1	!	!	,	,	1	!	
;	A:	$1 \quad 1$	1	!	,		1	;	;	
;	A:	+	!	!	,	;	,	!	;	
$1 \quad A$	A :	;	1	;		;	1	;	; \quad	
;	A :	;	!	;	,	!	1	;	!	
;	A:	1	;	1	,	;	;	;	1	
,	A;	!	,	;	,	1	;	!	1 1	
;	A:	,	1	;		;	;	1	1 i	
	A :	$1 \quad 1$	1			;	;	1	1 I	
;	A:	,	;	;		;	;	1	1 !	
1 A	A	,	!	1	I	,	,	1	,	
\#n!	(\%\#n!	Hth!	H!n\#\#!	H\%\%		HHH:				

DRILL LOG

\| 'llat. 1C1 5364.37	:DEP. ; 4341.74	IELEV. $\{1324.01$!TRUE AL -225	GRID AZ	$\begin{array}{c:c} \text { DIP END } \\ :-50 & 59.75 \end{array}$	$\begin{aligned} & \text { HORTHING } \\ & \hline 45475 \end{aligned}$	$\begin{gathered} \text { EASIING } \\ : 46475 \end{gathered}$	PAGE
IIIDEPTH	itrue al	10IP	\|					10F
(S) 59.74	\| 225	: -53.00	,					
;	;	!	;					
1 1	;	1	!					
1 i	!	!	!					
11	1	!	;					
1 !	1	!	!					
1 !	;	;	1					
;	1	1	;					

ASSAY RECORD											
iPROPERTY											
				[DATE	\{SAMPLER		PPAGE				
:GOLDEX	CROHN			16C5 90-3		:AUE/90	IN, ROBB		fof		,
,	1 : FrOM	¢0	ISAFP. MO	[0zAU/	20246/	i\% Cu 5 LzW	: 20 M	:20M	(6M.AU/ ${ }^{\text {a }}$		
1	;	;		- TON:	1 TOM	1 !					
,	A : 20.58	: 21.25	- 89237	1.005	; 0.07	10.17;	!	1	,		
1	A: 22.00	: 23.06 :	- 89238	1.136	: 0.47	11.10	;	!		$1 \quad 1$	
!	A: 29.17	: 29.48 :	- 89239	¢.003	: 0.15	:0.49	!	1	,	1 !	
;	A: 7.30	: 7.65 (- 89240	1.002	: 0.05	10.20	;	,	,	,	
;	A: 44.00	: 44.20 !	- 89241	:.009	; 0.11	10.27!	;	1	;	;	
;	A : 48.40	; 48.92 ;	- 89242	1.007	: 0.17	10.50:	;	!	,	1	
;	A: 51.74	; 52.34	- 89243	1.014	: 0.04	10.26	!	;	;	;	
1	$A:$!	,	;		; 1	!	1	;	;	
;	A	;	1	1 1	1	;	;	1	i i	;	
;	A:	;	1	1	1	1 1	,	,	;	;	
;	A:	I	1	,	!	I	!	1	;	;	
:	A	;	1	!	1	1 1	;	1	;	;	
,	A :	'	1	,	1	1 1	!	+		1 i	
;	A;	;	;	;	;	1	!	1	1	!	
;	A:	;	1	!	1	,	;	1	,	,	
!	A :	;	!	!	1	,	1	!	,	,	
'	A:	;	:	;	1	; 1	I	!	,	1 i	
;	A :	,	;	;	1	; 1	!	;	,	,	
!	A	!	1	1 1	1	1	,	1		1 ;	
;	A:	;	;	1 1	1	,	,	;	,	,	
;	A	,	1	1 1	1	$1 \quad 1$	1	+	1 !	1	
;	A:	;	;	1	!	1 1	;	;	1 \|	,	
;	A	1	!	1 !	1	1 1	;	!	;	,	
;	A	!	1	1		$1 \quad 1$;	;	1 i	,	
;	A:	;	1	;	;	1 1	,	;	,	,	
;	A:	;		;	,	1 ;	;	\|	,	,	
;	A:	:		1 !	;	1 !	;	;	1 1	,	
!	A:	;	1 ;	1 1	1	1 1	,	,	1 1	;	
:	A:	;	1	1 ;	;	; ;	;	1	;	;	
;	A :	1	,	!	,	1 ;	;	1	!	,	
,	A :	1 i	1 i	1 ;	!	1 i	;	,	!	!	
:	A:	!	,	,	1	;	;	;	$1 \quad 1$,	
,	A:	;	!		,	1 !	,	;	; i	,	
;	A :	,	1 \|	,	!	1 ;	;	;	;		
,	A:	;	;	,	,	1 !	,	!	;	;	
+	A :	;	;	,	1	;	,		;	;	
;	A:	11	1	1	1	11	1	,	; i	,	
;	A :	$1 \quad 1$,	!	!	-	!	1	;	;	
i	A:	;	;	!	,	$1 \quad 1$;	;	1 i	;	
,	A	1 !	,	,	,	1 ;	!	!	i	,	
!	$A:$	11	!	!	;	11	1	1	1 1		
1	A	11	,	;	1	1	1	,	;	,	
;	A:	1 1	!	'	!	11	,	,	$1 \quad 1$		
1	$A 1$	1	1 ;	;	,	I	;	,	; i	1	
!	A:	1	1 i	1 !	,	$1 \quad 1$	1	1	1 1		
!	$A 1$	$1 \quad 1$,	;	;	1 i	;	,	;		
: 1	A:	11	,) 1	1	1	!	1	;	1	
(talinil	(1mathat	บ\%ни!	GH:3bit	Humb	*\%\%	H1日月!	!n!	H\%H!	4HHM!	(\%hati	

ACME RNALYTICAL LABORATORIEB LTD. 652 k. HAETINOS ET. VANCO TR B.C. V6A 1R6 PHONE (604)253-3158 FAX(6, 253-1716

ASSAY CERTIFICATE

Attyood Gold corp. PROTECT ATTWOOD GOLD CORP, FILE * 90-2738 100-450 H. Georgia St., vancouver BC V6B 123 Attn: 4. ROBB

AG** and aj** by fire assay from 1 A.t.
SAYPLE TYPE: Core
SIGNED BY. SAYPLE TYPE
D.tore, c.leong, J. wang; certified b.c. assayers

ASSAY CERTIFICATE
Attyood Gold CoIp. FILE \# 90-3081 100-450 W, Georgia st., Vancouver ic V6B 123 Attn: V. ROB8

ACME ANALYYYCNS LABORATORTEB IYD.
DATE RECEIVED: AOO E 1990 852 E. Enstimas st. VANCOUVER E.C. V6A in6 PHONE (604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

Attrood Gold Corpe FILE \# 90-3196
100-450 W. Georgia St., Vancouver it v68 123

SAMPLE\#	$\begin{array}{r} \text { Cu } \\ \% \end{array}$	$\begin{aligned} & \text { Ag** } \\ & o z / t \end{aligned}$	$\begin{aligned} & A \cup U^{*} \\ & O Z / t \end{aligned}$
A 89099	. 06	. 10	.016
A 89100	. 03	. 10	. 001
A 89101	. 02	.08	. 001
A 89102	.03	. 04	. 001
A 89103	.02	. 08	.003
A 89104	. 08	. 12	. 001
A 89105	. 02	. 05	.001
A 89106	.10	. 09	.001
A 89107	. 02	. 07	.001
A 89108	. 02	. 06	. 001
A 89109	. 03	. 07	.001
A 89110	. 11	. 11	. 002
A 89111	. 02	. 05	. 001
A 89112	. 02	. 06	. 001
A 89113	. 02	.08	.001
A 89114	. 02	. 04	.001
A 89115	.03	. 02	.002
A 89116	.05	. 06	.001
A 89117	. 06	. 07	.001
A 89118	. 03	. 04	.001
A 89119	. 02	. 04	. 001
A 89120	. 02	. 07	.001
A 89121	.01	. 06	.001
A 89122	. 03	.03	.001
A 89123	.03	.04	. 001
A 89124	6.23	2.50	. 084
A 89125	. 02	. 06	. 001
A 89126	. 08	. 07	. 001
STANDARD R-1/AG-1/AU-1	. 85	1.01	.097

AG** AND AU* BY FIRE ASSAY FROM I A.T. - SAMPLE TYPE: Core

SIGNED BY. . C. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME RNALYTYCAL LABORATORYEB EXD. DATE RECEIVED:

Attwood Gold corp. FILE 90-3367 400-450 W. Georgiest., Vancouver ac v6s 123 Attn: Y. posB

SAMPLE\#	$\overline{\mathrm{Cu}}$	$\begin{aligned} & A g * * \\ & o z / t \end{aligned}$	$\begin{aligned} & \text { Au** } \\ & O Z / t \end{aligned}$
A 89127	. 01	. 03	. 001
A 89128	. 01	. 01	. 001
A 89129	. 03	. 03	. 002
A 89130	. 07	. 09	. 010
A 89131	. 04	. 03	. 005
A 89132	. 15	. 03	. 002
A 89133	. 04	. 04	. 002
A 89134	. 20	. 05	. 002
A 89135	. 07	. 08	. 004
A 89136	. 02	. 04	. 007
A 89137	. 23	. 26	. 026
A 89138	. 05	. 07	. 201
A 89139	. 02	. 13	. 001
A 89140	. 06	. 03	. 002
A 89141	. 10	. 04	. 001
A 89142	. 26	. 04	. 001
A 89143	. 03	. 25	. 001
A 89144	. 01	. 01	. 001
A 89145	. 92	. 35	. 030
A 89146	. 12	. 06	. 002
A 89147	. 04	. 04	. 001
A 89148	. 76	. 27	. 004
A 89149	. 01	. 02	. 001
A 89150	. 04	. 03	. 002
A 89151	. 07	. 01	. 001
A 89152	. 01	. 02	. 001
A 89153	. 03	. 01	. 001
A 89154	. 02	. 01	. 001
A 89155	. 01	. 01	. 001
A 89157	. 25	. 08	. 002
A 89158	. 05	. 02	. 001
A 89159	. 05	. 02	. 001
A 89160	. 04	. 03	. 001
A 89161	. 05	. 02	. 001
A 89162	. 21	. 08	. 002
STANDARD R-1/AG-1/AU-1	. 81	1.01	. 095

SIGNED by. arof, d.toye, c.leowg, jumang; certified b.c. assayers

ASSAY CERTIFICATE
Attwood gold corp. FILE $90-3492$ Page 1 100 - 450 W . Georgia st., Vancouver ac v6B 123

AG** AND AJ** By fire assay from 1 A.t. - SNMPLE TYPE: Core

SAMPLE\#	Cu $*$	Ag** OZ/t	Au** OZ/t
A 89194	.01	.01	.002
A 89195	.03	.01	.001
A 89196	.01	.01	.001
A 89197	.01	.01	.001

ASSAY CERTIFICATE

Attwood Gold corp. FILE \# 90-3811 $100-450 \mathrm{~W}$. Georgia st., Vancouver BC VGB 123 Attn: W. ROBS

SAMPLE\#	$\overline{\mathrm{Cu}}$	$\begin{aligned} & \mathrm{Ag} * * \\ & O Z / t \end{aligned}$	$\begin{aligned} & A u * * \\ & O z / t \end{aligned}$
A 89034	. 02	. 01	. 001
A 89035	. 30	. 06	. 003
A 89036	. 39	. 09	. 003
A 89037	1.20	. 29	. 012
A 89038	. 06	. 02	. 001
A 89039	. 22	. 05	. 002
A 89040	. 07	. 01	. 001
A 89041	. 04	. 01	. 001
A 89042	. 06	. 01	. 001
A 89043	. 05	. 02	. 001
A 89044	. 06	. 02	. 001
A 89045	. 04	. 01	. 001
A 89046	. 01	. 01	. 001
A 89047	. 02	. 02	. 001
A 89048	. 39	. 14	. 022
A 89198	. 30	. 10	. 004
A 89199	2.80	1.01	. 038
A 89200	. 10	. 07	. 003
A 89201	8.13	3.34	. 050
A 89202	. 41	. 20	. 047
A 89204	. 03	. 05	. 003
A 89205	. 64	. 73	. 096
A 89206	. 11	. 06	. 013
A 89207	. 08	. 03	. 001
A 89208	. 02	. 01	. 004
A 89209	. 22	. 07	. 004
A 89210	. 08	. 05	. 002

SIGNED BY....A. D. TOYE, C.LEOWG, J.hANG; CERTIFIED b.c. ASSAYERS
AG** \& AU** BY FIRE ASSAY FROM I A.T.
(${ }^{-}$汭MPLE TYPE: CORE

Attwood Gold Corp. File \# 90-4041 Page 1
100 - 450 w . Georgia St., Vancouver BC V68 123

SAMPLE*	$\begin{gathered} \text { Mo } \\ \text { promem } \end{gathered}$	$\begin{array}{cc} \mathrm{Cu} \\ \mathrm{pqum} \end{array}$	$\begin{aligned} & \mathrm{pb} \\ & \mathrm{ppm} \end{aligned}$	$\begin{gathered} 2 n \\ \rho p \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Ag } \\ & \mathbf{p p} \mathrm{m} \end{aligned}$	$\begin{gathered} \mathrm{Hi} \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Co} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppin } \end{array}$	$\begin{gathered} \text { fe } \\ \mathbf{x} \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { ppo } \end{aligned}$	$\begin{array}{r} \text { U } \\ p p o n \end{array}$	$\begin{array}{r} A u \\ p p a \end{array}$	$\begin{gathered} \text { \%h } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	ppm	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} 8 i \\ p p m \end{array}$	$\begin{array}{r} \text { V } \\ \text { ppm } \end{array}$	x	$\%$	$\begin{array}{r} \mathrm{La} \\ \mathrm{p} \mu \mathrm{~m} \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppp} \end{gathered}$	$\begin{gathered} \text { Mg } \\ \mathbf{X} \end{gathered}$	ррр	$\begin{aligned} & 11 \\ & \hline \end{aligned}$	$\begin{array}{r} 8 \\ \text { ppm } \end{array}$	$\stackrel{A l}{x}$	$\begin{gathered} \text { Ka } \\ \mathbf{x} \end{gathered}$	x	pp:	$\begin{aligned} & \text { Aut } \\ & \mathrm{ppp} \end{aligned}$
4665E 467+00N	1	94	15	60	4	42	12	165	2.42	. 14	5	ND	3	15	2	2	3	36	. 19	. 061	0	23	. 29	65	. 12		2.40	. 02	. 04	2	6
L465E 466+75	1	49	14	45	. 4	38	13		2.34	14	5	ND	2	18	2	2	2	35	. 20	058	6	21	. 22	75	. 13	3	3.02	. 02	. 04	4	13
$1.465 E$ 466+50N	2	266	13	51	2	86	14	264	2.97	+15	5	No	3	22	2	2	2	40	. 39	. 025	12	38	. 49	84	.12	2	2.73	. 03	. 06	2	40
1465E 466+25m	1	195	16	63	. 5	71	14	201	2.63	16	5	HD	3	29	2	2		37	. 23	. 068	8	28	. 36	152	12		3.36	. 03	. 36	4	49
L466E 467+00M	1	31	8	45	2	19	7	198	1.76	12	5	NO	2	12	?	2	5	29	. 13	, 115	4	14	.15	81	.10	6	2.09	. 02	. 04	3	15
L460E 466		125	9	37	3	42	15	190	2.69	314	8	ND	2	12	2	2	4	37	. 18	. 064	6	32	. 52	79	.06		1.53	. 01	. 03	5	81
L466E 666+25M	1	161	16	43	4	59	14	210	2.46	\% 15	5	N0	3	24	3	2	2	31	. 27	035	11	22	. 27	79	. 14	2	3.37	. 04	. 04	6	8
L466E 464+50m	1	233	17	33	. 9	73	12	224	2.51	21	5	ND	2	22	, 3	2	2	32	. 39	. 026	12	23	. 30	67	.14	2	2.97	. 04	. 04	3	36
STAHDARD C	19	60	42	133	7.2	72	31	1053	3.98	41	16	7	39	52	18.9	15	21	56	. 51	. 094	39	60	. 91	182	. 07	34	1.88	. 06	. 14	11	

ICP - . 500 GRAN SAHPLE IS DIGESTEB WITH 3ML 3-1-2 HCL-HNOS-H2O AT 95 beg. C FOR OAE HOUR ANO IS DILUIED TO 10 ML MITH WATER. THIS LEACH IS PARTIAL GOR MA FE SR CA P LA CR MG BA II B W AND LIMITED FOR NAK AND AL. AU DETECTION LIMIY BY ICP IS 3 PPA. - SAYPLE TYPE: P1 SOIL GEO P2 CORE ASSAY aU* ainalysis by aCID LEACH/aA from 10 GM SAMPLE.

DATE RECEIVED: NUG 311990 DATE REYORT MAILED: Sept $10 / 90$.
SIGNED BY.d.tove, c.leong, J. hang; CERTIFIED b.c. assayers

SAMPLE\#	Cu	Ag**	Au**
	\&	oz/t	O2/t
A 89033	.02	.04	.001
A 89049	.19	.09	.002
A 89203	.01	.04	.001
A 89211	2.01	.71	.066
A 89212	.77	.22	.008
A 89213	.69	.20	.014
A 89214	.08	.08	.002
A 89215	2.14	.69	.019
A 89216	1.13	.37	.006
A 89217	11.16	3.30	.063
A 89218	1.39	.39	.021
A 89219	1.37	.81	.144
A 89220	.52	.26	.065
A 89221	.11	.07	.005
A 89222	.11	.08	.008
A 89223	.63	.21	.007
A 89224	.62	.28	.096
A 89225	.82	.33	.073
A 89226	.16	.09	.012
A 89227	.20	.08	.017
A 89228	1.03	.21	.059
A 89229	.04	.04	.050
A 89230	.23	.12	.058
A 89231	.18	.08	.016
A 89232	.10	.10	.003
A 89233	.03	.03	.001
A 89934	.02	.06	.001
A 89235	.02	.05	.001
A 89236	.02	.04	.001
A 89237	.17	.07	.005
A 89238	1.10	.47	.1366
A 89239	.49	.15	.003
A 89240	.20	.05	.002
A 89241	.27	.11	.009
A 89242	.50	.17	.007
A 89243	.26	.04	.014
	89243		

0

$$
0
$$

$$
0
$$

$$
0
$$

$$
0
$$

$$
0
$$

APPENDIXII

Geology Map Drill Hole Plan Detail Drill Hole Plan Drill Sections

PART 3 of 3

$5,000 \mathrm{~N}$

> Section Along DDH $90-17$ 5175.54 E 4982 N Elev: 1333.80 m
> Azimuth: 22°
> Dip: -45°
> Length: 68.29 m

Elev 1,300

Ge OLOGTCALERANCH - 8 sesminNTRTMOT

Elev 1,250

ATTWOOD GOLD CORP. GOLDEN CROWN PROJECT

PART 3 OF 3

[^0]:

