

L J PROPERTY

Geological and Geochemical Assessment Report on the L J Property

L J Mineral Claim Record No. 3669 Atlin Mining Division NTS 104K/11 and 104K/14 Latitude 58° 44' North/Longitude 133° 12' West British Columbia

October 31, 1990

LOG NO:	11-14	RD.
ACTION:		

on behalf of

SOLOMON RESOURCES LTD.

by

David M. Strain and Clive Aspinall, M. Sc; P. Eng.

Keewatin Engineering Inc. *800, 900 West Hastings Street Vancouver, B.C. V6C 1E5

▶ 🗘 (1) (5) (2) (******) [**** Ś 0 ୬ ର \leq **M**O Z 🄈 27 57 57 29 7 🄈 ĴZ 27 - 1

Geological and Geochemical Assessment Report on the LJ Property.

LJ Mineral Claim Record No. 3669, Atlin Mining Division, NTS 104K/11 and 104K/14, Latitude 58° 44' North and Longitude 133° 12' West, British Columbia, on behalf of Solomon Resources Ltd. by David M. Strain and Clive Aspinall, M.Sc; P. Eng. Keewatin Engineering Inc., #800, 900 West Hastings Street, Vancouver, B.C., V6C 1E5

ABSTRACT

The 20 unit LJ Mineral Claim 100% owned by Cominco Ltd. is under an option agreement to Solomon Resources Ltd. Previously reported gold values from samples of quartz veins in shears include: 22,400 ppb Au over 1 metre; 40,000 ppb Au over 0.20 metres and 10,400 ppb Au over 0.25 metres.

Recent work by Keewatin Engineering Inc. on behalf of Solomon Resources Ltd. did not find similar high grades in immediately adjacent areas.

Two different zones of mineralization, 750 metres apart, were located. Zone #1 is characterized by pyrite-arsenopyrite in various combinations estimated from 2% to 10% singly or combined with host veins in structures related to a150 metre main fault with an azimuth of 178°. They consist of proximal quartzcarbonate vein breccias 2 - 30 centimetres wide, and not more than 10 metres long, a 46 metre long by 50 centimetre wide resistant dark grey sulphidic silicified gouge section and an 84 metre long by a .30 to 2.0 metres wide quartz flooded breccia section. Both sections are within the main fault. Combined average rock grades (16 samples) from these vein structures in zone #1 are: 139.31 ppb Au, 0.78 ppm Ag, 6296.25 ppm As. Area of zone #1 is 25,000 square metres.

Zone #2 mineralization has a higher visible sulphide content estimated up to 10%, and localized into four quartz-sericite veins hosted in shears. Three of these veins are not more than 5 metres in length. The fourth vein could be up to 30 metres in length. All veins trend between 110° - 140° and widths range between 4 and 25 centimetres. Average rock grades (5 samples) are: 901.20 ppb Au, 1.46 ppm Ag, 3130 ppm As. Area of zone #2 is 6875 square metres. Contour soil sampling suggests the mineralized zones are limited in extent.

These low gold-silver values are not economic. Limited further follow-up work is recommended.

Ìİ.

T.	ABL	e of	CONT	TENTS

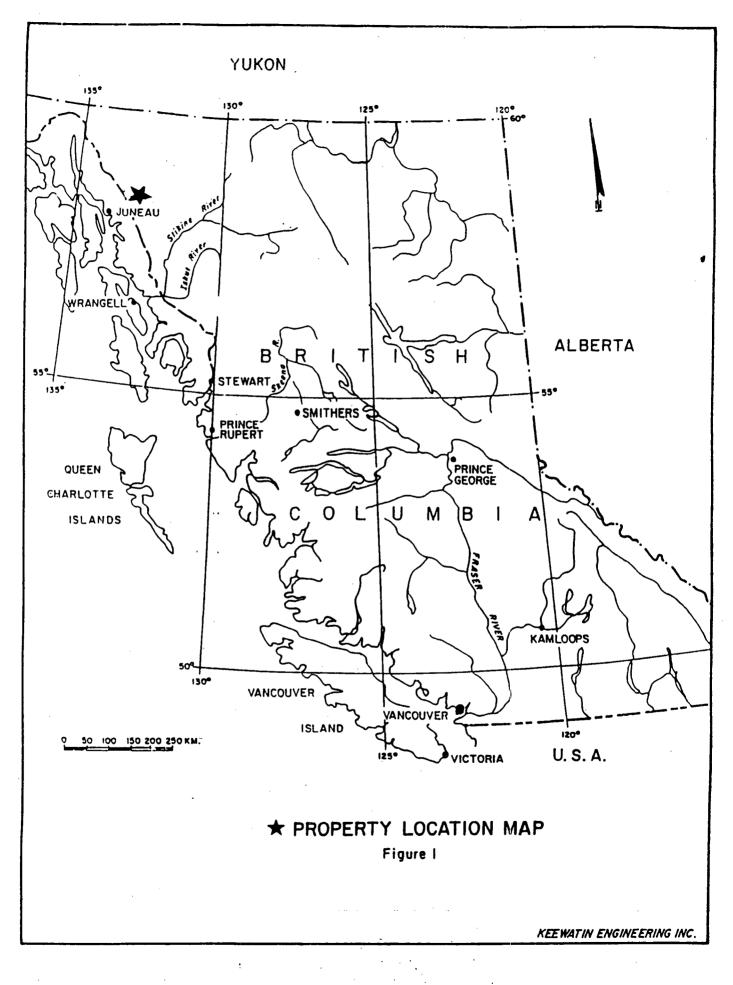
ABSTRACT
INTRODUCTION
Location and Access
Property and Ownership
Physiography, Climate and Vegetation
Previous Exploration
Regional Geology
Economic Geology
1990 EXPLORATION PROGRAMME ON LJ CLAIM
Summary of Work
GEOLOGY
Property Geology
Structure
Veining and Mineralization
Detailed Geological Mapping: Grids #1 and #2
GEOCHEMISTRY
Soil Sampling
Rock Sampling
Stream Sediment Sampling
CONCLUSIONS AND RECOMMENDATIONS
CERTIFICATE OF DAVID M. STRAIN
CERTIFICATE OF CLIVE ASPINALL
BIBLIOGRAPHY
APPENDICES
STATEMENT OF COSTS
SUMMARY OF PERSONNEL
LIST OF STRUCTURAL MEASUREMENTS
ROCK SAMPLE DESCRIPTIONS
GEOCHEMICAL ANALYSES

.

FIGURES

2

	Location Map	Figure 1
	Location of LJ Mineral Claim	
	on Tulsequah Sheet 104K	Figure 2
	Claim Map	Figure 3
	Regional Geology Section of Tulsequah-Juneau Geology 1292A sheet	Figure 4
	LJ Claim: Au - As Statistic Analysis Cumulative Frequency Distribution	Figure 5
MAP	S	
	L] Claim: Geology	
,	Scale 1:10,000	Map No.1
	Grid #1: Geology and Sample Location Map	
	Scale 1:1000	Map No.2
	Grid #2: Geology and Sample Location Map	
	Scale 1:1000	Map No.3
	L] Property Location	
	Grids #1, #2, Rock, Soil and Stream Samples	
	Scale 1:10,000	Map No.4
	L] Property Au ppb - Soils (Contour)	
	Scale 1:10,000	Map . No.5
	L] Property As ppm - Soils (Contour)	
	Scale 1:10.000	Mad No. 6


INTRODUCTION

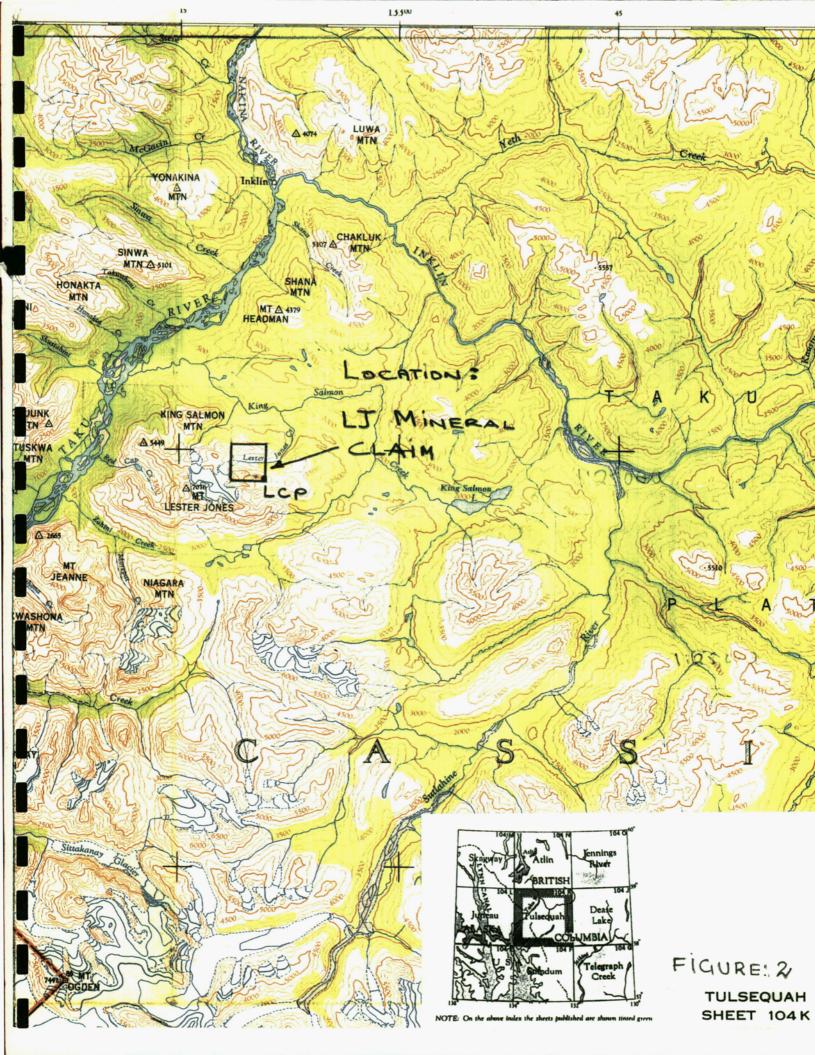
Solomon Resources Ltd. of Vancouver commissioned, in July 1990, Keewatin Engineering Inc. to conduct a field exploration programme on the LJ Mineral Claim (Record No. 3669) located in the Mount Lester Jones area, Tulsequah region, northwest British Columbia (Ref: Figure 1). The programme was to be carried out during the 1990 field season, and the work had to be completed prior to the L. J. Claim anniversary date of August 17, 1990 so that assessment work could be credited towards the property.

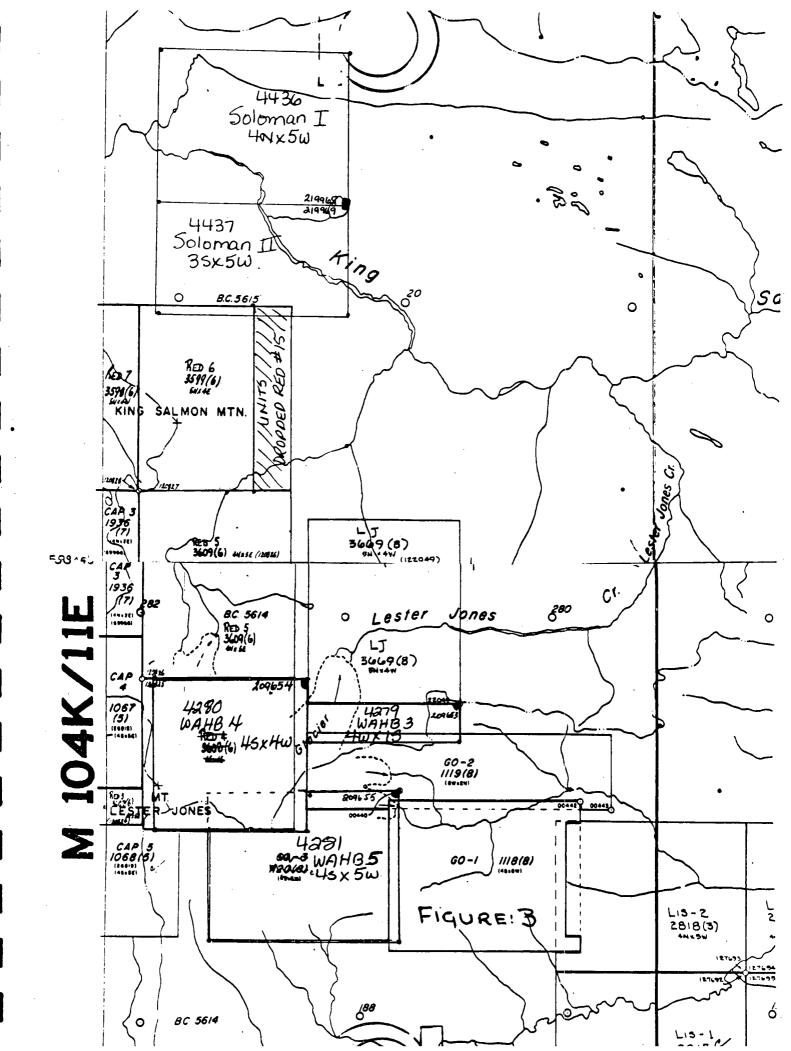
The objective of this programme was to evaluate the property's potential for hosting economic precious metal deposits, and for the purpose of fulfilling the assessment requirements. Exploration consisted of geological mapping and geochemical sampling. Geochemistry included litho-geochemical, stream silt and soil sampling.

Location and Access

The LJ Mineral Claim is located in northwestern B. C. within the Atlin Mining Division, NTS sheets 104K/11 and 104K/14 and is centered on 58° 44 N Latitude and 133° 12' W longitude. The Alaskan capital city, Juneau, lies approximately 70 km to the southwest, and the village of Atlin is 97 km northwest.

ġţ,


Access is best gained via helicopter from Atlin. The nearest useable airfield is at the junction of the Tulsequah and Taku Rivers approximately 25 km southwest of the claim.


Property and Ownership

The LJ Mineral Claim-20 units (Ref: Figures 2,3) was staked on August 17, 1989 and is at present 100% owned by Cominco Ltd. (700 - 409 Granville Street, Vancouver, B.C. V6C 1T2). On June 22, 1990 Solomon Resources Ltd. signed a letter of agreement with Cominco Ltd. to option six mining properties in northwest British Columbia, one of which included the LJ Claim. The terms are summarized below:

<u>On or Before</u> December 31, 1990 December 31, 1991 December 31, 1992 December 31, 1993 <u>Cumulative Expenditures</u> \$150,000 (Firm) \$350,000 (Optional) \$650,000 (Optional) \$1,000,000 (Optional)

Solomon Resources Ltd. can earn a 51% interest by expending \$1,000,000 on all six properties. Upon the earn-in Cominco may earn back to a 51% interest and become the operator of any property by expending two times Solomon's expenditures on that property. On the properties in which Cominco declines to earn back operatorship that interest will convert to a 20% carried interest.

Upon either Solomon delivering production decision notice or with a notice of an underground exploration programme Cominco Ltd. may earn back operatorship and a 51% on any property by funding two times Solomon's expenditures on the property. If Cominco declines to earn back operatorship on any property the carried interest will be converted to a 3% NSR.

Physiography, Climate and Vegetation

The LJ Mineral Claim lies just within the Boundary Ranges physiographic subdivision at its northeastern boundary with the Taku division of the Stikine Plateau. Within the Boundary Ranges, the larger rivers, such as the Taku and their tributaries have dissected the terrain into discrete groups of mountains with steep, rugged peaks. The Stikine Plateau is a deeply incised area of nearly flat summits mainly below 5000 feet in elevation.

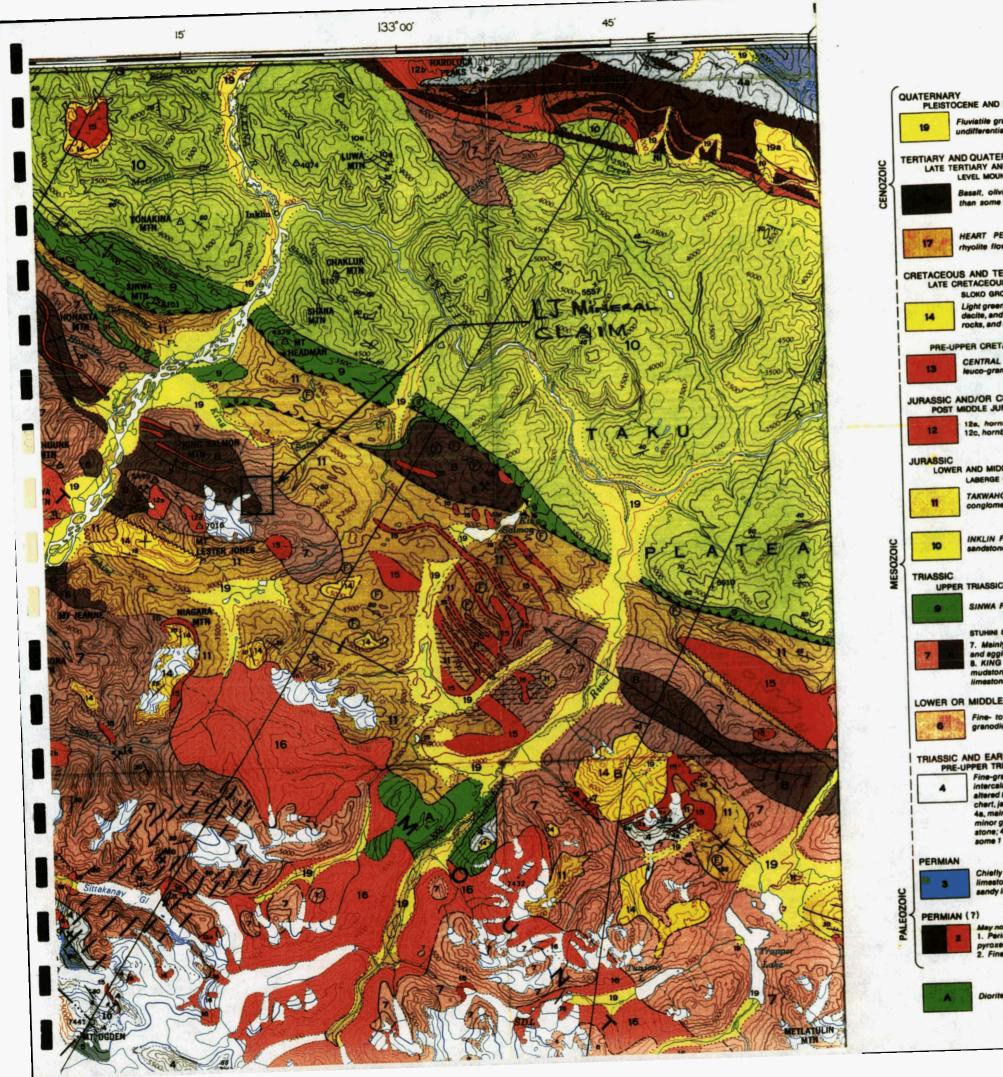
The property is situated on the northeast flank of Mt. Lester Jones. A small valley glacier extends onto the southwest corner of the claim and is the headwaters of Lester Jones Creek, which flows east through the southern part of the claim. Most of the claim is traversable with only a small percentage of the area being occupied by cliffs or extremely rugged topography. Elevations range from 3000 feet in the Lester Jones Creek valley and along the north claim boundary, to 5330 feet in the extreme southeast corner. The area around Mt. Lester Jones receives somewhat less annual precipitation than the Alaskan coast, but considerably more than areas immediately east. The slopes up to timber line do not clear of snow until July. August is the most favourable month to conduct field work.

Timberline is at an elevation of approximately 4500 feet. Very limited vegetation has taken hold in the area around Lester Jones Creek where the valley bottom is covered by fill and moraine. Grasses and stunted balsam dominate on the slopes and ridges.

Previous Exploration

The LJ Mineral Claim was staked by Cominco geologists following the discovery of several parallel shears with associated veining and carbonate alteration hosting reported significant gold mineralization. Limited field work by Cominco geologists discovered exposed shear zones up to 1 metre wide and traceable for ten's of metres before being concealed by overburden. Reported values from samples of mineralized shears include: 22,400 ppb Au (0.65 opt) over 1 metre; 40,000 ppb Au (1.17 opt) over 0.20 metres; and 10,400 ppb Au (0.30 opt) over 0.25 metres.

The general area of the claim had previously been staked by others; one claim post in the area had claim tags dating back to the 1940's.


Regional Geology

The property is located at the boundary between the Coast Plutonic Complex and the Intermaritanne Belt geological provinces of the Canadian Cordillera. The main tectano-stratigraphic pattern conforms to the general cordilleran pattern; suture zones and affiliated faults, fold and batholithic axes having a northwest trend.

In the immediate region, upper Triassic Stuhini Group volcanics and sediments, and lower and middle Jurassic Laberge Group sediments predominate (Ref: Figures 4). Plugs of post middle Jurassic granodiorite intrude Stuhini stratrigraphy on Mt. Lester Jones. Felsic dykes and plugs, genetically related to early Tertiary Sloko Group flows and pyroclastics, abound throughout the region.

Economic Geology

The LJ Mineral Claim is located with the Tulsequah mining camp, and 12 km northeast of the confluence of the Taku and Tulsequah rivers. Previously operating mines in the region were Polaris Taku, Tulsequah Chief and the Big Bull. The Polaris Taku Mine was a precious metals producer from 1938 to 1951; 683,337 tonnes of ore were milled, averaging 10.5 g/t Au; 0.5 g/t Ag; and 0.01% Cu. Recent proven and possible reserves are reported at 131,500 tonnes

		LEG	END
ſ	QUATERNAR	TY DEENE AND RECENT	
	19	Fluviatile gravel, sand, silt; glacial outwas undifferentiated colluvium; 19a, landalides	h, till, alpine moraine and
OC	TERTIARY A	ND QUATERNARY ERTIARY AND PLEISTOCENE LEVEL MOUNTAIN GROUP	
CENOZOIC		Besalt, olivine besalt, related pyroclastic than some of 19	rocks; in part younge
	17/	HEART PEAKS FORMATION: rusty-we rhyolite flows, pyroclastic rocks, and rela	ethering trachyte and ted intrusions
	CRETACEO	US AND TERTIARY CRETACEOUS AND EARLY TERTIARY SLOKO GROUP	
1	14	Light green, purple and white rhyolite, decite, and trachyte flows, pyroclastic rocks, and derived sediments	15 16 Probabl 15. Fels 16. Med biotite-
	PRE-	IPPER CRETACEOUS	
	19	CENTRAL PLUTONIC COMPLEX: gran leuco-granite, migmatite and agmatite;	odiorite, quartz diorite: age and relationship to
	JURASSIC	AND/OR CRETACEOUS	
	12	12a, hornblende-blotte granodiorite; 1 12c, hornblende diorite; 12d, augite dior	2b, blotite-hornblende d ite. Age and relationship l
	JURASSIC	LABERGE GROUP (10, 11)	
		TAKWAHONI FORMATION: granite-boo conglomerate, graywacke, quartzose s	ulder conglomerate, che andstone, siltstone, shak
ZOIC	10	INKLIN FORMATION: well bedded gri sandstone, pebbly mudstone, limy peb	ywacke, graded siltston ble conglomerate; 10a, i
MESOZOIC	TRIASSIC	ER TRIASSIC	
		SINWA FORMATION: limestone; mino	sandstone, argillite, che
	1.1	STUHINI GROUP (7, 8) 7. Mainly volcanic rocks; andesite and	becelt flows pillow lave.
	7	 Mainly volcanic rocks; añossia año and aggiomerate, lapilit tuff; minor volc 8. KING SALMON FORMATION: thicl mudstone, siltstone, and shale; minor limestone, limy shale; locally encloaed 	bedded, dark greywacke andesitic lava, volcan
	LOWER	OR MIDDLE TRIASSIC (?)	
		Fine- to medium-grained, strongly lo granodiorite; age uncertain	liated diorite, quartz die
	TRIASS	C AND EARLIER	
	PR	E-UPPER TRIASSIC	
	4	intercalated volcanic rocks, largely altered to greenstone and phyllite;	Quan
		chert, jasper, greywacks, limestone; 4a, mainly chert, slate, argillite;	schi
		minor greenstone; 4b, mainly green- stone; 4c, limestone, may include some 1	of 3
	PERMIA	N	
	3	Chiefly limestone and dolomitic limestone; minor cheri, argillite, sandy limestone	
	PERMI	AN (7)	
	TV4	Alay not all be of the same age 1. Peridotite, serpentite, small irregul pyroxene diorite 2. Fine- to medium-grained gabbro a	
		Diorite gneiss, amphibolite, migmatit	e; age unknown

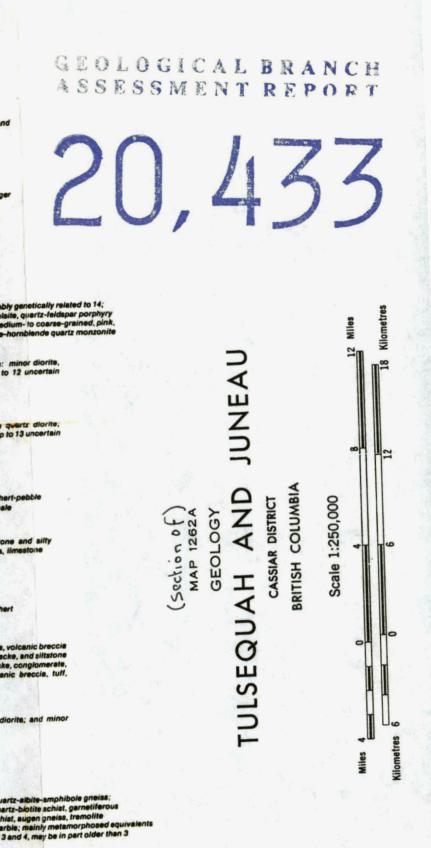


FIGURE: 4

grading 13.7 g/t Au. The Tulsequah Chief is a classic kuroko-type stratiform massive sufphide deposit, and was a producer of base and precious metals from 1951 to 1957; the Big Bull produced similar ores from 1951 to 1956.

Recent drilling by Cominco-Redfern has discovered two new sulphide lenses at Tulsequah Chief; Redfern has calculated a potential geological reserve, including previous reserves, to the 3500 level at 5.8 million tons grading 0.08 oz/ton Au (2.496g/t) and 2.9 oz/ton Ag (90.48 g/t), 1.6% Cu, 1.3% Pb and 7.0% Zn. Further drilling to be completed prior to end November 1990 is expected to provide further information regarding these reserves.

1990 EXPLORATION PROGRAMME ON LJ MINERAL CLAIM Summary of Work

Between July 3, 1990 and July 19, 1990 Keewatin Engineering Inc. spent approximately 56 man days on the LJ Claim. Reconnaissance geological mapping at 1:10,000 scale was initially completed (Ref: Map No.1); more detailed geological mapping was done on two especially established grids covering 25,000 square metres and 6875 square metres. These two grids are referred to as Grid #1 (Ref: Map No.2) and Grid #2 (Ref: Map No.3) and are located 750 metres apart (Ref: Map No.4). A programme of soil sampling was completed (Ref: Maps No.4,5,6). The following samples from the property were collected

and analyzed:

Rock grab & rock chip	25
Soils	167
Silts	_2
	194 samples

GEOLOGY

Property Geology

The LJ Mineral Claim is underlain by epiclastic rocks of the King Salmon Formation (Stuhini Group), and relatively sparse felsic to intermediate dykes. On the property, the King Salmon Formation is comprised of two distinct members: (1) a lower, coarse epiclastic breccia; (2) overlying interbedded silt stones and wackes (Ref: Map No.1)

Well indurated coarse epiclastic breccia occupies the lowest areas surrounding Lester Jones Creek. Outcrops of these rocks are generally massive, lacking primary depositional features; however, higher in the section they become interbedded with finer epiclastic breccias (wackes). Unaltered exposures weather green and locally grey. The recent retreat of ice has left much of the bedrock free of soil and lichen cover, and clearly revealing textural and compositional characteristics. A high degree of textural variation was observed, from matrix supported boulder breccias, to clast supported equigranular breccias. A high degree of angularity is displayed by all size ranges with the exception of some of the largest clasts, where a slight degree of rounding was noted. Most of the clasts are volcanic but in certain localities fragments of dark grey limestone, jasper and fine grained clastics comprise part of the rock. The term epiclastic breccia was used because it is believed that these coarse breccias were deposited by purely sedimentary processes. Locally intercalated with these breccias are non-fragmental, intermediate to mafic porphyritic flows.

Upwards in the section, massive coarse epiclastic breccia gives way to thick bedded lithic wackes and then rather abruptly into medium to thin bedded grey wackes and silt stones. These wackes are brown to grey, weathered medium grained arenites with abundant plagioclase fragments, and locally contain dark, angular lithic fragments. The siltstones display similar weathering and colour characteristics, but individual beds are thinner than the wacke beds.

Three distinctly different types of dykes were observed in the southern part of the claim.

- A 5 to 10 metre wide, tan to grey weathering, light tan felsic dyke of definite Sloko Group affiliation. This dyke was traced for approximately 600 metres along a strike of 090°.
- 2. Two subparallel, resistant, grey weathering, dark grey, magnetic, plagioclase biotite porphyritic intermediate dykes trending at 035°.

9

3. A 10 metre wide, orange weathering, tan, weakly sericitized and carbonatized, plagioclase porphyritic dacite dyke trending approximately 075°

Structure

All measurements taken of bedding gave strikes between 096° and 140°. Dips in the southwest part of the claim are $40^{\circ} - 60^{\circ}$ to the southwest, while in the east-central part of the claim dips range from 22° to 50° towards the northeast. It is clear that the claim is situated on an anticline whose fold axis trends an azimuth of approximately 132°.

A 178^{*} trending fault with steep west dip was identified in the southwestern portion of the claim cutting fine and coarse epiclastic rocks. A grid was established over the structure and geologically mapped at a scale of 1:1000 (Grid #1). A two metre wide recessive zone and anastomosing shears mark the fault which is traceable for 150 metres. The northern and southern extensions of the fault are hidden under till deposits. A dextral displacement of 50 metres is indicated by a 10 metre wide offset dyke. Numerous subordinate faults, marked by quartz-carbonate breccias, recessive zones and gossans, occur adjacent. The most pervassive of these smaller structures have trends from 020^{*} to 050^{*}, with very steep dips. A conjectural fault occurs underlying talus and till on Grid #2 with a trend of approximately 110°. In the immediate vicinity of Grid #2, and perhaps related to the inferred 110° trending fault, are a number of mineralized veins occupying shears trending between 110° and 140°. None of these veins were traceable for more than 30 metres. Their maximum width is 25 centimetres.

Structures similar to the subordinate faults on Grid #1 are common within the coarse eqiclastic breccias, especially in the area where Lester Jones Creek makes a broad bend from a northeast to an easterly direction. No preferred orientation for these structures is evident.

Veining and Mineralization

Veining on the LJ Mineral Claim is not abundant; veins that are present can be subdivided into:

- chalcedonic quartz veins
- barren quartz veins/quartz flooded zones (non-chalcedonic)
- quartz stringers (non-chalcedonic)
- quartz carbonate vein breccias (non-chalcedonic)
- quartz veins in shears (non-chalcedonic)

The chalcedonic quartz veins were observed in the extreme southeast corner of the claim; one vein was observed and sampled (90 MSR-036) in the centre of

the claim. These veins were noted to occur in areas of carbonatized and weakly pyritized rock, but contain no sulphides themselves. Similar chalcedonic veining occurs locally within the main fault on Grid #1; there they are narrower and not as continuous as the above. Chalcedonic veining was observed outside of the LJ Mineral Claim.

Details of the non-chalcedonic quartz veins are given below; three types are mineralized.

Detailed Geological Mapping: Grids #1 and #2

Grid #1 is dominated by a fault trending 178° already discussed above; it is referred to as the main fault (Ref. Map No.2). Mineralized quartz veins associated with this fault are related structural infillings of quartz breccia, silicified gouge and mineralization. Three types are noted:

In the southern part of this grid, the fault is poorly exposed. Where
adjacent outcrops can be seen, orange weathered-carbonate vein breccias
are present. This is the most common type of veining; they range
between 2 - 30 centimetres wide, are light grey, locally banded, and
abundant, completely carbonatized angular rock fragments are hosted
within. Locally these vein breccias contain up to 5% combined pyrite
and arsenopyrite, and in most places have associated reddish

weathering carbonatized envelopes.

- 2) Between base lines stations 10 + 16N to 10 + 62N part of the main fault is comprised of a 50 centimetre wide resistant dark grey to black sulphidic silicified fault gouge. This zone weathers a rusty colour reflecting 5 10% sulphide content. Pyrite occurs throughout the zone as fine grained aggregates, while arsenopyrite mineralization is concentrated close to the footwall and hanging wall contacts. Arsenopyrite constitutes approximately 1/10th of the total sulphides, and occurs as very small acicular grains.
- 3) From baseline stations 10 + 62N to 11 + 46N the main fault manifests itself as 0.3 metres to 2.0 metres wide light coloured quartz-flooded breccia. Sugary, light grey matrix quartz comprises 50 - 60% of the rock, supporting dark and light grey (clay altered) angular fragments. This quartz-flooded breccia contains approximately 2% pyrite as isolated blebs.

Results from rock samples collected along the main fault exhibiting this vein fill give weakly anomalous gold and silver values (94 ppb - 410 ppb and 0.8 -2.9 ppm respectively). The silicified black fault gouge exhibits acicular arsenopyrite plus pyrite gave arsenic values ranging from 993 ppm - 15,801 ppm As. Traces of galena were noted in a silicified pyritic zone subparallel to 12

the main fault; it is the only other sulphide positively identified.

Non-mineralized quartz stringers, quartz veins and chalcedonic quartz veins are also exposed adjacent to the main fault.

The main fault, and associated vein structures within Grid #1, are hosted by rocks of the King Solomon Formation. These are generally well bedded grey to green weathering siltstones and wackes (grit) and thick bedded to massive lithic wackes and course epiclastic breccias. The main fault was not traced beyond the confines of Grid #1.

Grid #2 contains (Ref: Map No.3) more visible pyrite-arsenopyrite, estimated up to 10% combined sulphides in quartz-sericite veins occupying shears trending between azimuth 110° - 140°. Mineralization within the veins consists of fine grained aggregates of pyrite plus arsenopyrite (stubby and acicular varieties), the pyrite to arsenopyrite ratio is estimated to range from 5:1 to 1:1. The quartz is fine grained and grey in colour, with local impregnations and films of greenish sericite(?). These veins pinch and swell within their host shears, ranging in width from 4 centimetres to 25 centimetres. The veins are traceable up to 5 metres along strike, and may be inferred in one case to extend to 30 metres, based on recessive gullies.

Non-mineralized quartz stringers, and quartz veins are also exposed in Grid #2.

13

Cominco sample sites were identified by flagging in Grid #2, but not in Grid #1.

Grid #2 is underlain by a coarse epiclastic unit of the King Salmon Formation; locally these rocks have been moderately to intensively carbonatized, possibly caused by the inferred fault trending 110° azimuth.

GEOCHEMISTRY

Soil Sampling

A total of 167 soil samples (Ref: Map No. 4) were collected from the LJ Mineral Claim; 18 of these samples were collected from Grid #2, the balance were collected following elevation contours at 50 metre intervals on upper valley slopes. Here the sample material either consisted of talus fines or 'B' horizon soils. Where soil had developed, the 'B' horizon profile ranged between 15 cm to 35 cm below surface. Soil development in the southwest quaderant of the claim is very limited due to scouring by glacial action at the headwaters of Lester Jones Creek; in sections of Lester Jones Creek moraine material had been dumped by glacial action and this material was not sampled. No soils have developed on Grid #1.

Analyses of all samples were made by Acme Analytical Laboratories Ltd. in Vancouver following published procedures for 30 element ICP and geochemical gold wet extraction. Results for soil samples, included in the appendices of this report, are disappointing for precious metals. Of the total 167 soil samples collected only one sample is deemed truly highly anomalous in gold and silver; this sample assayed:

90' MCS-116 4,560 Au ppb 3.3 Ag ppm 19,953 As ppm This sample was collected over a quartz vein on the west side of Grid #2. A statistical evaluation was carried out on 166 soil sample values of gold and arsenic; the one sample not included in this evaluation is sample 90' MCS-116. Silver values (soil) gave generally flat values between 0.1 - 0.3 ppm so were not included in this evaluation: parameters for gold and arsenic are listed below:

 $\frac{\text{Gold (ppb)}}{n - 166: \overline{x} - 12.9}$ SD - 15.6 2SD - 31.1 3SD - 46.7 $\frac{\text{Arsenic (ppm)}}{n = 166: \Xi = 101.8}$ SD = 121.8 2SD = 243.6 3SD = 365.47

N.B: SD - Standard Deviation

These parameters were converted to logarithms and plotted on semi logarithmic paper to obtain a cumulative frequency distribution for these elements, and included in the appendices (Figure *5). Although the procedure followed Hawkes and Webb (1962) in categorizing "Possibly" anomalous and "Probably" anomalous sample values - the gold in soil in areas tested on the LJ Mineral Claim are not considered anomalous (sample 90' MCS-116 excepted) from a mineral exploration view point; a group of samples, 5 - 10% of the total collected with a threshold value of 400 ppb Au in this environment, would be considered worthy of further exploration investigations (personal opinion - Aspinall).

Arsenic was analyzed with the hope that it would act as a pathfinder element for gold, but its usefulness in this case remains questionable.

Rock Sampling

Eleven rock grab samples and five rock chip samples were collected from Grid #1. These samples came from selected quartz vein and quartz breccia associated with the main fault. Details of the rock and chip samples from both grids and elsewhere on LJ Mineral Claim are given in the appendices. Locations of Grid #1 samples are provided on Map No.4; Au-Ag-As grades of these samples are as follows:

Rock Grab	<u>Au ppb</u>	<u>Ag ppm</u>	<u>As ppm</u>
90' MSR-030	1	0.2	502
90' MSR-031	1	0.2	54
90' MSR-032	3	0.8	3959
90' MSR-033	410	2.9	9240
90' MSR-034	220	1.7	993
90' MSR-035	94	0.4	9916
90' MSR-038	13	0.2	546
90' MSR-039	126	2.3	10017
90' MSR-040	12	0.1	1378
90' MSR-041	92	0.4	8522
90' MSR-043	470	0.7	18625

Rock Chip			
90' MSC-007	270	1.7	9709
90' MSC-008	108	1.2	3437
90' MSC-009	29	0.8	2309
90' MSC-010	200	0.8	15801
90' MSC-011	180	0.1	5732
Average Grade: 16 samples	139.31	0.78	6296.25
Mean Grade: 5 rock chip samples	149.69	0.95	4454.13

Five rock samples came from grid #2 quartz-sericite veins occupying shears trending between azimuth $110^{\circ} - 140^{\circ}$. These veins pinch and swell within their host shears, and range in width from 4 centimetres to 25 centimetres; details are given in the appendices. Au-Ag-As grades are:

<u>Sample No.</u>	<u>Au ppb</u>	Agppm	<u>As pom</u>
90' MCR-063	840	1.2	2058
90' MCR-064	2100	1.5	9316
90' MCR-065	1150	3.7	2703
90' MCR-066	6	0.3	13
90' MSR-045	410	0.6	1562
Average Grade: 5 samples	901.20	1.46	3130

Three rock grab samples were collected adjacent to the grids; their

locations are illustrated on Map No.4. Their Au-Ag-As grades are:

Sample No.	<u>Au ppb</u>	<u>Ag pom</u>	<u>As ppm</u>
90' MSR-036	47	0.1	33
90' MSR-037	10	0.1	59
90' MSR-042	470	0.7	1084

Stream Sediment Samples

Two stream sediment samples were collected on the LJ Mineral Claim. They

contain background values (Ref: Map No.4). These are:

<u>Sample No.</u>	<u>Au ppb</u>	<u>Ag ppm</u>	<u>As ppm</u>
90' MSL-009	1	0.9	107
90' MSL-010	1	0.1	145

CONCLUSIONS AND RECOMMENDATIONS

į

Previously reported samples from mineralized shears grading 22,400 ppb Au (0.65 opt) over 1 metre; 40,000 ppb Au (1.17 opt) over 0.20 metres; and 10,400 ppb Au (0.30 opt) over 0.25 metres are believed to have originated from Grid #2; previous years flagging found with 1989 sample numbers support this assumption. The 1990 exploration programme did not locate new extensions with equivalent gold values; however it did identify two zones of mineralization on the LJ Mineral Claim; but neither exhibit economic gold or silver values.

Zone *1 mineralization is associated with a 150 metre long fault trending 178°. It includes three distinct types of mineralized vein fill from within the main fault itself, or appendages to it. The most common is orange weathered carbonate vein breccia ranging in width from 2 - 30 centimetres with local concentrations of up to 5% combined pyrite and arsenopyrite. The second type is a 46 metre long and 50 centimetre wide resistant dark grey to black sulphidic 18

silicified fault gouge with an estimated 5 - 10% sulphide content of pyrite and minor arsenopyrite. The third type is an 84 metre long, 0.3 - 2.0 metre wide quartz flooded breccia with an extimated 2% pyrite. Weak gold-silver grades with high arsenic grades characterize zone #1; average grades are 139.31 ppb Au, 0.78 ppm Ag, 6296.25 ppm As. Zone #1 mineralization is confined to Grid #1, an area of 25000 square metres.

Zone #2 mineralization averages 901.20 ppb Au, 1.46 ppm Ag, 3130 ppm As (after 5 rock samples). Mineralization is concentrated in four quartz-sericite veins hosted by shears trending between 110° - 140°. These veins pinch and swell from 4 to 25 centimetres width and three of them are traceable for up to 5 metres in length; the fourth may extend up to 30 metres. All are found within Grid #2, an area of 6875 square metres. Mineralization may be related to an inferred fault trending 110°

Both zones of mineralization are hosted within sedimentary rocks of the King Salmon formation and occur on either side of an anticlinal axis. Consequently both may be stratigraphically related.

The 1990 programme concludes that the LJ Mineral Claim is not a priority target area for precious metals. It is recommended, however, that a three man team spend an additonal 4 days on the claim: trenching of the inferred 30 metre long vein on Grid #2 be carried out, with additonal rock and geochemical soil sampling in the same area. The northern part of the LJ Mineral Claim should be tested by geochemical soil sampling. A VLF-Magnetometer survey across the main structures on Grids 1 and 2 is recommended.

CERTIFICATE OF DAVID M. STRAIN

- I, DAVID M. STRAIN, of P.O. Box 214, Atlin, B.C., state:
 - 1) I am a geologist residing at the above address.
 - 2) I graduated from Cambrian College of Applied Arts and Technology with a diploma in Geological Engineering Technology. I attended the University of British Columbia enrolled in Geological Sciences from 1980 to 1983.
 - 3) This report is based on my personal field examination of the property.

Dated at Atlin, B.C., this 31st day of October, 1990.

David M. Strain, Geologist

CERTIFICATE OF CLIVE ASPINALL

I, Nicholas Clive Aspinall, of 117 - 1230 Haro Street, Vancouver, B.C. V6E 4J9, do hereby certify that:

- I am a Consulting Geologist with the firm of Keewatin Engineering Ltd. with offices at Suite 800, 900 West Hastings Street, Vancouver, B.C., V6C1E5.
- 2) I am a graduate of McGill University with a Bachelor of Science degree in 1964 and a Master of Science degree from Camborne School of Mines in 1987, in Mining Geology, and I have practised my profession for 26 years.
- 3) I am a member in good standing of the Association of Professional Engineers of British Columbia and a Fellow of the Geological Association of Canada.
- 4) I am a co-author of the report entitled "Geological and Geochemical Assessment Report of the LJ Property, LJ Mineral Claim Record No. 3669, Atlin Mining Division, NTS 104K/11 and 104K/14, Latitude 58° 44' North/Longitude 133* 12' West, British Columbia" dated October 31, 1990. I was present on the property while the work was being done.
- 5) I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein, nor in the securities of Solomon Resources Ltd, in respect of services rendered in the preparation of this report.

Dated at Atlin, British Columbia, this 31th day of October 1990 A.D. Respectfully submitted

Clive Aspinall, M.

BIBLIOGRAPHY

- Casselman, M. J. <u>Cominco-Redfern Tulsequah Chief Massive Sulphide Deposit</u> <u>Northwest British Columbia</u>, Cominco Ltd. A paper given at Mineral Exploration Group Luncheon, Vancouver, B.C. Spring of 1990.
- Dandy, Linda. <u>Tulsequah Mining Camp.</u> Unpublished paper. 02/90. Available at BCDM office, Smithers, B.C.

Hawkes, H. E. and Webb, J. S. Geochemistry in Mineral Exploration. 1962

- Kerr, F. A. <u>Taku River Map Area</u>. Geological Survey of Canada Memoir 248. 1948
- Koch Jr., George S, and Link, Richard F. <u>Statistical Analysis of Geological Data</u>. Volume 2, 1971
- ACME Analytical Laboratories Ltd. <u>Assaying and Geochemical Analysis</u>. Effective December 1, 1989

APPENDICES

1

STATEMENT OF COSTS

LJ Claim Group: Assessment Work

Clive Aspinall	5 days e \$450.00 per day	\$2250.00
David Strain	15 days e \$350.00 per day	5250.00
Douglas Jack	5 days e \$300.00 per day	1500.00
Lance Goodwin	3 days e 250.00 per day	750.00
Suzanne Radford	3 days @ 215.00 per day	645.00
Alistair Skey	15 days e 175.00 per day	2625.00
Matthew Aspinall	3 days e 160.00 per day	480.00
Carrol Goodwin	7 days e 225.00 per day	1575.00

\$15075.00

Totai	\$29895.97
Report writing, map reproduction, typing	3000.00
Fixed wing costs plus 10%	768.20
Transportation 6.6 helicopter hours • \$718.70 plus 10%	5217.77
150 samples • \$15.00 plus 10%	2475.00
Analytical	
56 man days 🐢 \$60.00	3360.00
Accommodation	

SUMMARY OF PERSONNEL

- i) Clive Aspinall: Consulting Geologist
 117-1230 Haro Street, Vancouver, B.C. V6E 4T9
- ii) David M. Strain: Exploration Geologist Atlin, B.C. VOW IAO
- iii) Douglas Jack: Prospector/Field Assistant Atlin, B.C. VOW IAO
- iv) Lance Goodwin: Field Assistant Atlin. B.C. VOW IAO
- v) Suzanne Radford: Field Assistant Atlin, B.C. VOW IAO
- vi) Alistair Skey: Field Assistant Adelaide, Australia
- vii) Matthew Aspinall: Field Assistant 117-230 Haro Street, Vancouver, B.C. V6E 4T9
- viii) Carrol Goodwin: Cook Atlin, B.C. VOW IAO

LIST OF STRUCTURAL MEASUREMENTS

Bedding

S₩	Агеа	L
118	•/50•	S₩
121	•/45•	SW
	•/60'	
	°/ 4 0'	
	°/43'	
	°/54'	-
128	°/42'	S₩
135	•/48•	SW
112	•/56•	SW
116	"/48"	SW

NE Area 140°/50° NE 106°/22° N

Joints

069'	/ver	L	
006	/85*	W	
168	/ver	t.	
034'	/75*	NW	
046'	/77*	SE	
069	/40*	NW	
014°	/ver	t.	
116	/80*	N	

100°/52° N 086°/82° S 085°/08° N 048°/85° NW 063°/65° NW 105°/vert

100*/vert.

Barren Qtz. Vns	Qtz-Carb. Vn. Bx's	Mineralized Qtz Breccia & Qtz.Vns.
016		178°/85° W (Main Fault)
020*	137*/60* NE,036*/vert.	008°/vert. 130°/80° S
132°	046'/vert, 052'/vert	030°/vert. 136°/85° S
060°/85° S	100'/52' N, 078'/vert	030°/vert. 127°/60° N
026°/54° W	096 */ 58* N	020°/80° W 140°/vert.
008°/vert.	046'/85' NW	040°/75° SE
	062*/68* NW	045°/vert.
	113 '/55' NE	

ROCK SAMPLE DESCRIPTIONS

90 MSR-030: Poddy bx zone # 40 cm wide, subparallel to main structure; 008°. Qtz-carb flooded w/ abnt. 1 mm wide py stringers. Rock wths. orange brn. fresh surface is dk - light grey. Qtz stringers to 2 cm, greyish transluscent. fine bx cemented by grey carbonate or qtz-carb. mixture. Tr. v.f.g. aspy.

90 MSR-031: Taken from structure with numerous 1 mm white carbonate stringers. Local small aggregates of py; no aspy observed.

90 MSR-032: Taken from 10 cm wide, grey and orange wth. qtz-carb. veinlet striking 037^{*}. Veins have weak banded nature and appear to be more of qtz-carb replacement than infilling of a dilatant area. Veins locally contain 2^{*} aspy occuring mainly as fine needles 0.1 mm x 1 mm. The presence of these needles may indicate Au in the aspy structure.

90 MSR-033: Grab from main fault structure. 0.5 m wide recessive zone w/3 cm wide chalcedonic gtz-vein and pyritic, black fault bx. Abnt. aspy needles 2 - 3%

90 MSR-034: Grab from main fault structure. 40 cm wide resistant zone. Rusty, dark grey silicified bx w/ abnt. diss. py and aspy - 4% combined.

90 MSR-035: Grab from W selvage of a 1.0 m wide qtz-flooded bx zone within main fault structure. Rock is black w/ abnt. 5% med. grained py as diss. and 1.0 stringers. Tr. aspy.

90 MSR-036: Grab of 10 - 20 cm wide milky chalcedonic qtz vein without sx. Strike 060^{*} /85^{*} S. E central area of claim.

90 MSR-037: Same loc. as SR-036. Grab of wall rock on either side of sample SR-036 within 20 cm. Alt^{ed} and microveined fig. wacke.

90 MSC-007: 1.0 m chip across siliceous pyritic zone subparallel to main structure. The mineralized portion of the structure is approx. 25 cm wide (10% py, < 1/2% galena, < 1/2% acic. aspy). Surrounding rock clay alt^{ed} and locally w/ hematit = colouration. Subtle banded nature to grey quartz = carbonate, and pyrite.

90 MSR-038: Qtz-carb vn bx float from same vein system as sample 90MSR-032. Trend = 040° /vert. Pieces sampled avg. 15 cm in width. Mottled grey/orange/white qtz-carb. filled bx w/ 2% coarse py.

90 MSC-008: 1.2 m chip across locally rusty wth., siliceous resisant zone. Py occurs throughout interval (5%) w/ aspy: occuring only in the last 20 cm assoc. w/ discontinuous chalcedonic veining. Rock is generally black in colour and may be result of rehealing, of graphitic gauge. Chalcedonic qtz. is very light grey, translucent and is more of a breccia infilling than vein.

90 MSR-039: Grab representing 20 cm width of structure. Rusty wth, weakly sif., black fault gouge. 10 - 15% py. w/ local concentrations of v.f.g. aspy. Transition btwn. recessive and resistant zones.

90 MSC-009: 1.0 m chip across same resistant zone as samples SC-008 and SR-039. Here not as well mineralized w/py. Most of interval is very dk. grey w/ 1 0 2 mm xtlline qtz. stringers coated w/ unusual orange-brn zeolite(?). Narrow sections of interval are well mineralized with acic. aspy.

90 MSC-010: 0.4 m chip of resistant grey-blk bx. Here w/ chalcedonic quartz, 5 - 8% py and 1% aspy. Rehealed fault gouge w/ 10% fragments varying from 1 to 10 mm in size and white to blk. in colour.

90 MSR-040: Grab from 1.5 m wide qtz-flooded bx zone. Zone difficult to chip sample. Wth's light grey. Fresh surface is grey w/ black fragments. Qtz is sugary; py content in order of 2% isolated blebs. Some white clay alt^{ed} frags.

90 MSR-041: Grab of **a** 20 cm wide qtz + carb. flooded vein bx. trending **a** 041° w/ steep NW dip to vert. Sampled because could see traces of acic. aspy.

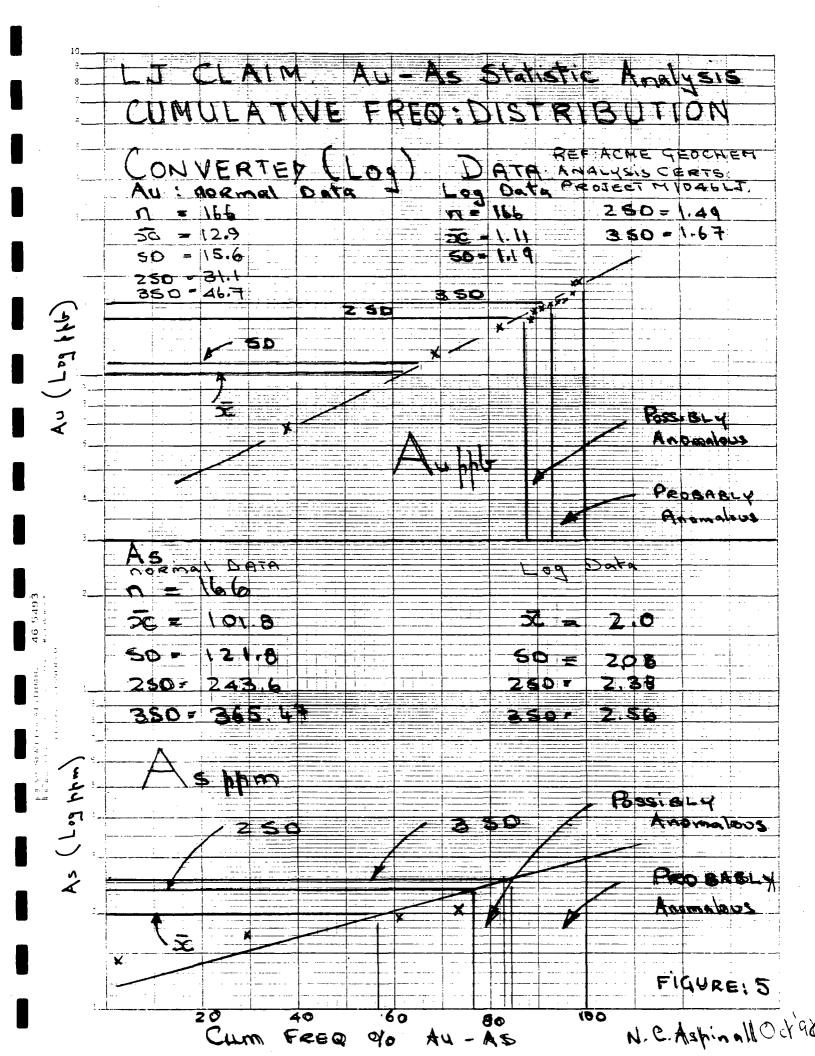
90 MSR-042: (1143 m) W side of LJCk. 082° /vert. - trending 20 cm wide. Orange with qtz-carb. vein bx with v.f.g. py and aspy.(?)

90 MSR-043: (1153 m) = 10 m NE of Bl 10 + 00 E, 14 + 25 N (Grid #1). Qtz-vein in 020° structure.

90 MSR-044: (1360 m). S central part of claim. Float in talus. Just 1 piece of very rusty, "frothy" light grey qtz. w/ fig. aspy or py.

90 MSR-045: Grid #2. - 094° - trending rock face w/ narrow qtz-veinlets. Intensely carbed w/ 10% combined py and aspy.

90 MSC-011: Grid #1. 1.0 m chip of qtz-flooded bx. Here bx is locally very rusty w/ less qtz and more wallrock frags. Sx content variable from place to place across interval (conc. in FW and HW selvages). 4 - 5x py, 1 - 3x aspy.


90' MCR-063: Grid #2. Channel sample collected across 50 cm wide shear. Two quartz veinlets (5 cm wide each) with associated pyrite. These veinlets have been displaced by 15 - 20 cm.

90' MCR-064: Grid #2. Rock grab. Outcrop with quartz veinlet (7 cm wide) and associated pyrite. Vein hosted in shear striking 130°/80° S.

90' MCR-065: Grid #2. Silicified vein 5 cm wide with associated pyrite. Striking 150'/90' dip.

90' MCR-066: Grid #2. Quartz vein 4 cm wide. Strike 95'/90' dip.

GEOCHEMICAL ANALYSES

Keewatin Engineering PROJECT M FILE # 90-2492

SANPLE#	/`U 10		Zn ppm	As ptm	Ni ppm	 Hin pp#	24.1		Au ppm	Th ppm		Sb ppm	Bi ppm	V ppm	Ca P X X	La ppm	Cr ppm	Ng X	Ba ppm	11 2	8 Al	Ha X	K ppm
90 MSL 0	53 59	135 16		.9			3.37 12.23	5 5	ND ND	1	Z.4 3.1		2	65 69	.68 .122 .58 .107	10 8			69 298		11 1.27 2 1.36		

61 4 Ę

]

ŗ

Pâ

J

]

) '

1

)

}

}

)

)

)

)

J

)

1

1

Xeewatin Engineering PROJECT M FILE # 90-2492

	PLE#		Mo	Cu	РЬ	Zrí	Ag						- <u>- 1</u>				rı Sb	F Bi		- 77 Ca	90· P	-24 		Ng	88	71	B	AL	Na	K	-	
	J		ppm	ppm	ppm	ppm	PPN P	om pp	n ppr	n 1	i ppn	ppm	ppm	ppm	p pni	þóm l			ppm	X		ppm	ppm			× 1		X	X		, ADIN	
	90 MGS-X:13	50m/0+50M	1	72	64	125	7	26 1	8 800	> 4.10	79	5	ND	2	107	1.9	5	2	75	2 00	.130	12	2.0	1 11	140	10	10 1	40	4.5			
	90 MGS-X:13	50m/0+00N	1		57				6 80		- 10 A G I		ND			1.0	ź	ž	70	1.50	.133	12	33	1.04	110			.83				2
	90 MGS-X:15				4					7.12				1	49	.9	2	2	85	.36	.076	6				.01		.76			1	
	90 MGS-X:15				11					9.3					19	.8	6		127		.091	6		.42			2 1	.44	.02	. 10	1	3
	70 Hug-A: 15			234	14	142	.2 2	:3 4	2 2 703	10.14	cuc (5	ND	1	40	2.4	2	2	140	.34	127	15	15	.76	212	.01	5 2	2.32	.01	.10		2
	90 MGS-X:15									9.47						1.3	6		129	.39	128	11	12	.42	563	.01	2 1	.83	.01	.10	1999 1997	6
	90 MGS-X:15			244 227	-					10.35						1.2	2		146	.39		10	7		329		- 4- 1	.21	.04	.14 🕴	1	
	90 MGS-X:15			150						10.41 8.53					19 38	1.3	2 3			.35		10 6		.22 .19				.06			1	
	90 MSS 052			82						6.89					56	6	5			.30		7			129			.96 .75			1	
	90 MSS-X:12	70m/5+00E	1	89	7	120		9 1	B 1632	6.39	· 53	5	ND	1	17	.2	4	2	69	.11	342	5	14		153			87		~		
	90 MSS-X:12	70m/5+50E	1	101	18	130		-	1 1723			5	ND		12	÷ 5	6	2	54	.06		2	6		108			.87 .27				
	90 MSS-X:127			111						7.41	73	5			18	ž	5	2	59	.06	183	5	7	.12	154	.01	6 1	.43	.02	.11 🖁	1	
	90 NSS-X:127 90 MSS-X:130			123 150	15	143 138			4 1785 5 1619						17 69	.3	25		60 75	.24	.169 .164	5	5 5	.17	272 168			.40 .20			2	
																						v	-				£ 1		.02	. IV 8		
	90 MSS-X:130	00m/0+50E 00m/1+00s		113 74	13	124 114			3 2020 5 1614	7.51		6 C -			14 19	.2	7		75	.04		4	7		186			.46				
	90 MSS-X:130			77			(7.01					20		28 22		52 49		195	3		.11 .14				.37 .59			1	
	90 MSS-X:130			84	- 14		() (6.20				1	27	2	5	2	84	.20	123		23		100			.48				
•	190 MSS-X:130		1	61	4	110		6 13	5 1032	6.10	36	5	ND	1	11	2	5	2	64	.06	218	4	11	. 16	86	.01	51	.71	.01	.09 👸	1	
		00m/3+00E		88		153	· · · · · ·			7.21			ND				8	2		.06		6	7	- 16	185	.01	4 1	.44	.02	.13	1	
		00m/3+50E 00m/4+05E	-	113 56		140 161	12779			7.45				1 1		.9	2 2	2		.07		4		.23		- X		.98			1	
	ARD C/A	• • • • •	18	58	37	132	7.2 G	7 3	1028	4.03	39	19	6	36	51 1	8.4	14	18	56	.52	094	36	13 58	- 14 - 91	200 : 182 :	.VE .D7	22 371	.00	.UZ .06	. 10 🔅 . 14 🔅	13	
												<u> </u>														<u> 1767 2</u>					<u>.</u>	
		1 1 116	12	97	ر اور او	1 21	1 20	1911	6 DF	219	5	жD	1	32		6	2	11-	.56	2106	10	18	.92	13	7 :04	\$: 10	1.6	2.0	6. 1ž	2 2/1	. 1	13
	•		23							58	5	ND	1	12	.2	5					7		.57		7 .0					5 🤃		5
		1 161	8	70			t 10	1561	7.48	34	5	ND	1	29	.5	5	2	98	.73	.203	- 14	9	.31	30	5.0	12. 4	1.4	4 .Q	1.1	5 5 ()		1
یں ریز SS 01		1 161 2 139	19			16	5 21	1659	7.00	58	5	ND	i	28	2	6	2	98	.55	.158	9	14	.43	23	2 .Q	ij 7	1.6	3.0	1.1	1 🗄 🕯		1
GS 01	9	1 196	2	98		22	2 24	1292	7.92	46	5	AID.	1	31	5	6		27		.182		6								6 1 6 1	-	4
	1106m/6+00E 1106m/6+50E	1 188		106	- 14. 1493		7 22 6 26	1331 1847			5 5	ND ND	1	24 29	.2	5.	-	96 102		.118		6				l: 6 1: 11						1
жа~А;		1 600	7			:					-			2	¥							-										_
	:1106n/7+00E	1 138	12	98		2 11	26	2803	7.59	37 40	5	ND	1 77	24 0	.2	4 15	21	137 55	.79 54	.227	6 37	9 57	.52	21. 18	2 .91 1 .02) 8 7 73	1.6	Z () N (A)	1.]/ 6.1/	6 1 6 11		1 51
	C/AU-S	19 60	27																													

AUT ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE. - SAMPLE TYPE - P1-P6 Soil P5 Silt P6 Back

HATE RECEIVED: BAL 20 1998 DATE REPORT HA MARKE

ASSAY RECOMMENDED

GEOCHEMICA. ANALYSIS CERTIFICATE

Keewatin Engineering PROJECT M File # 90-2492 Page 1 800 - 900 W. Wastings St., Vancouver BC V6C 165

• :	PLE#	(Ag ppen			Mis ppm		- 3172	· -		Th ppm		Cd ppin		Bi ppm		Ca X	P X	La ppm				TI X		Al X	Na X		N A PDB P	
90	NDS-X:1370m/0+00SE	1	141	41	121	1	-19	27	2122	7.86	135	5	ND	1	26		6		110	.26	.150	9	24	.61	161	.02	2	2.67	.02	.10	2	5
90	NDS-X:1370m/0+50SE	1	127	21	115		18	23	2042	7.41	89	5	ND	1	- 11	.2	3	2	115	.10	.205	8	25	.59	- 99	-02	2	2.83	.02	.08	82 1 8	2
90	NDS-X: 1370m/1+09SE	1	73	75	141	3		14	822	5.72	74	5	ND	1	22			2	79	.22	.143	13	30	.57	213	ÛŤ.	2	3.11	.01	.08	88 6 -	1
90	NDS-X:1370m/1+60SE	2	91	58	129	8.5	22	20	1519	5.87	60	5	ND	2	11	1.2	11	3	85	. 10	.115	11	31	.65	117	.01	3	3.40	.02	.09		8
90	NDS-X:1370m/2+00SE	1	111	49	131	.2	26	23	1459	6.48	63	5	ND	1	45	1.2	6	2	96	.52	. 100	8	30	-65	182	:01	2	3.32	.02	.10		7
90	NDS-X:1370m/2+50SE	1	147	26	141	2	13	44	7450	7.79	51	5	ND	· 1	53	2.3	3	2	131	.63	253	8	21	.42	259	101	2	2.89	.01	. 10		3
	HDS-X: 1370m/3+165E	11	130		109		42	25	1424	6.12	52	5	ND	1	19	4	- 4	2	98	.20	.115	11	49	.90	149	. D1	2	3.34	.02	.09	2	5
	NDS-X: 1450m/6+65NW	6	275				20	43	2435	12.05	128	5	ND	1	41	2.4		2	111	.61	,099	10	13	.57	131	01	2	1.72	.02	.10	144C	1
-	MDS-X: 1450m/6+15NW		200						2474				ND	1	49					.51	.138	6				.01		1.65				3
	MDS-X: 1450m/5+46NW	E	222						2647				ND	1		1.9		2	126							.01	6	2.04	.02	. 12		2
90	MDS-X: 1450m/5+00NW	۱.	222	18	129		19	39	2671	9.01	356	5	ND	1	30	2.7	4	3	157	.41	.112	10	26	.89	278	011	2	2.78	.02	.09		6
	MDS-X: 1450m/4+50NW		256		129	12			4770				ND	i	28	3.3			167	-	,149				255			2.79				4
	MDS-X: 1450m/4+00NW	1	227	15	124		14		2587				ND	1	51			2	131	.84	.146				262		2	2.29	.02	.11		4
	MDS-X:1450m/3+67NW	l i	202	10	124				1747				ND	1		7			70				7		244		2	1.26	.02	.13		1
90	MDS-X:1450m/3+00NW	1	352	25	148		19		3517				ND	1		2.6		2	170	.80	. 184	9	17	.86	144	:06	6	2.98	.02	.09		2
20	MDS-X:1450m/2+50NW	1,	166	15	119		11	31	2901	7.57	54	5	ND	1	40	12.000 A 318	2	2	105	.39	.261	7	12	.36	207	.01	2	2.15	.02	.09	2.6	1
20	MDS-X:1450m/2+00NW	1	200	4	120	2	19	35	1810	8.28	263	5	ND	1	46	1.7	3	2	100	.51	.077			.31	330	.01		1.27				3
20	MDS-X: 1450m/1+48NW	1 1	183	7	114	34	12	20	1008	6.67	114	5	ND	1	32	6	2	2	86	.19	147	7	10	.27	209	101	4	1.71	.02	.14	С, Y	2
90	MDS-X:1450m/1+00NW	1	157	15	114		11	23	1780	6.82	310	5	ND	1	32		6	Ž	83	.17	.226	4	11	.15	307	.01	2	1.57	.02	. 10	2	1
	MDS-X: 1450m/0+50NW	2	167	13	122				1752				ND	1		.T.O.					.169			. 19				1.76				1
90	MDS-X:1450m/0+00NW	Z	134	7	84		11	14	692	5.84	28	5	ND	1	23		3	2	105	.13	.141	6	10	. 18	200	01	2	2.27	.03	.07		1
90	NGS 001	1	290	9	107	101	9	24	1132	6.79	14	5	ND	1	22		2	2			.064					.01	Ž	1.28	,03	.14		4
90	NGS 002	1	206	20	108		15	36	2725	7.66	-35	5	ND	1	37	1.6		3	180	.65	.169	7	19	.99	63	12	6	2.88	.03	.05		21
90	NGS 003	1	429	20	160	.8	25	98	4802	9.88	65	5	ND	1		4.2		2	315	.74	. 168	11	27	1.07	93	୍ୟୁତ୍	14	3.29	.02	.04		14
90	MGS 004	2	198	28	127	.3	16	53	5516	9.21	57	5	ND	1	100	3.1	2	2	183	.87	.246	18	20	.83	135	.04	4	3.08	.02	.06		48
70	NGS 005	1	112	4	144		6	26	2015	7.74	29	5	ND	1	160	1.1	2	2	71	.53	.123	8	3	.23	190	01	8	.96	.02	.13		69
90	MGS 006	1	134	15	131	88	6	25	2139	7.87	37	5	ND	1	68	2	- 4	2	86		128	10	8	.31	210	.01	2	1.38	.02	.12		13
90	MGS 007	1	138	26	123	22.	11			7.39	47	5	NÐ	1	36	1.5	5	2	93	.33	181	6	12	.47	161	Of.	3	2.02	.01	.12	- 20 C	11
90	MGS 008	1	170	8		₩₽.				8.43			ND	1	31	2.2	7		103				11			201		1.57				
90	MG\$ 009	1	229						1214				ND	1		2		6	75		231		4		480			1.54				
0	MG\$ 010	1	272	8	167		12	32	1907	10.90	132	5	ND	1	33	17			-161	50-	.097	5	5	.23	182	01	13	1.03	.02	. 16	2	9
	MGS 011		222						1108				ND	i	22	1.8	-		138		.148		6		156			1.02				tÓ
	MGS 012	· ·	166						1326				ND	i	23	8	11			.34			-			.01		1.14				9
	MGS 013	7							558				ND	i	12	<u> </u>	3	6			131					01		1.49				Ś
	MGS 014	1 T	40	6					1222				ND	i	32	4		Ž	44		.073	7				.01		.82			1 11.1.4	5
20	MGS 015	8	50	7	104	At	28	14	560	4_60	101	5	ND	1	125	38 6	11	2	45	₹.00	.080	3	8	. 16	103	.01	4	1.00	.04	.15	8880 . 884	8
	MGS 016		73						1334				NO	i		2.0					114		ทั			.01		1.49			1.10.27	
	NDARD C/AU-S																														11	
	HERICO WING O	L			1.36					-7.003	00					1047		~~	30		.074			• 7 6	100	101		1.7.7	+00		<u> </u>	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR HG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P3 Soil P4 silt P5 Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATP RECEIVED: JUL 13 1990 DATE REPORT MAILED: CA

U

Û.

Keewatin Engineering PROJECT 046 (L.J) FILE # 90-2706

р. С О

, t								Co ppm	Nn pom						Sr ppn						e 1	La ppm			Be ppm		-		Ha X	K H A X ppm p
0 MGS+X;1106m/7+50	E	1	195	7	116	2	15		1291				ND	1	29	.2	8		105	.65	.133		8	.49	235	.01	15	1.15	.02	. 16 1
0 MGS-X:1106m/8+00	E		216	-		.2			1720				ND.	1	32	:15	3	2		1.57		5	2	.21	193	.01	15	.95	.01	.25
MGS-X:1106m/8+50							-		3396				ND.	1		.7				.58		15	12	.88	254	.01	- 4			
NGS-X:11068/9+00									2057				HD.	1			11	2		.76		9	9	.27	508	.01	5	1.10		
MGS-X:1115#/5+50	NG	1	208	7	60		12	19	1075	7.80	49	5	ND	1	42	2	6	3	103	1.14	. 159	12	7	.46	271	.01	8	1,65	.01	.15
MGS-X:1127#/0+00	-								1513				ND.	1						.10		7	21	.47	95	.01	7	2.26	.02	.09 Ì
MGS-X:1127a/0+58									3069				NØ NØ	1	43					.74		9	<u></u>	-51	207	201	12	1.47	.02	.20 1
NGS-X:1127W/5+00 NGS-X:1132m/1+59	-		227 232						2058 2089				和称		36					.56		יין דע	ŗ		245	10.	15	1.03	.02	.19 1 .15 2
HUS-A: 11500/2+08			237						2340				HU ND		22 31		8			.40		í É	ç	-101 -18	144	01	10	1.43	.03	.15 (2) .14 (1
	`	•		4			•					-		1	- 12		U	6	117			0	2	.40	1-4-4		10	1.10	-01	
HGS-X:1160m/2+50			155		84	.2	15	23	1657	7.68	67		ND		53			-		.98		8	8		113			1.47		
#GS-X:1160m/2+77			138						1847							1.0				.60					118					.06 1
KGS-X:1160m/3+25									1942				ND			- 7				.46					261					.14
NGS-X:1160m/3+83 NGS-X:1160m/4+00									1969 1811				ND ND	1	31 42	-6				.54										.15
															2						1 XX							•		.22
WGS-X:1160m/4+50	ε	1	178	11	-99	្ណា.	15	20	1579	7.08	-72	5	ND	1	28	.2	5	2	134	.69	165	11	13	.72	139	50.	5	2.25	-02	.09 1
IS-X:1200m/0+00E [1 1	37	4	104		7	31	2048	7.9		5	Ю	1	14		2	S	128		1088		.4	.35		Q1		2.16	-02	.08	<u>39</u> 1: 4
S-X:1200m/0+50E	2	95	15	87	.1	. 6	16	915	6.2	-56	-5	ND	1		ý. .2					,120			.39							¥ 1 5
5-X:1200m/1+00E	11	28	23	109	18	10	23	1630	7.26	60	5	ND.	1	20	2	4	3	90	.31	117	7	9	.67	136	. D1	÷ 3	2.08	.01	.12	<u> 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11</u>
1.4700m/14505	• •	175	47	96		10	17	1344	5.80	0.00	E	ND	1	17	2	2	7	74	. 28	.160		11	30	127	.01		1 64	.01	12	× * 6
5-X:1200m/1+50E 5-X:1200m/2+0CE						7			5.53		-	10	1		2	Ž		89		165		11						.01		
-X:1200m/2+50E									5.02			Ĩ	i		- 2			101		196			.23					.62		
-X:1200m/3+0GE									6.72			÷	i i			a –		121		200			.25	210	.01	ŝ				31 31
-X:1200m/3+50E									5.63			ND.	1					109		372			.53							2 5
												_		•							{	-								
-X:1200m/4+05E	11			99					7.91			MD	1		Z			72		. 197					.01			.01		3
5-X:1200m/4+50E	2								7.69			XD	1					109		455		-	. 16					10.		
S-X:1200m/5+11E	11								7.76		-	10	1		2			88 74		. 110 2082		-	. 15					.02		1 3
;-X:1200m/5+50€ ;-X:1200m/6+00E	11								8.26			40 40	1		3			65		-111					.01 .91			.02		
-7:150060.0005	,		••	110		. '		116.3	9.44			WC2	ſ	-Or			e.	65			-	,	. 14	140			10,000			
-X:1200m/6+78E	1			93					5.68		-	ND.			6			90		.066		24			.01			.02		
5-X:1200m/7+00E				154					9.21		-	HC)	1					100		219					201			.01		
S-X:1200m/7+50E	11								9.44			10	1	- 44				105		.081					.01	<u> </u>	1,43	.02	.12	
6-X:1200m/8+00E	2								6.43)(D))(D)	1	15	,2 2			120		125		13			201			.02		
-X:1200m/8+50E	11	40	•0	144			(*	1033	7.26	SUC	2	10		40		•	<	71	.34	.206	2	r	. («	111	.81		•14	-01	• 12	
s-X:1200m/9+30E	1 1	96	8	t07	E	12	32	2485	7.79	30	5	ND.	1	18	5	2	2	124	.50	.090	9	12	1.20	214	.PI	2	2.55	.01	.12	21 2
s 053	1 1	72	10	88	1	9	32	2957	6.42	33	5	HD.	1	37	2.42	2	2	106	1.13	202	13	12	.68	213	301	6	2.33	.01	.13	2 2
s 054	12	20	8	154	: 1	19	33	1626	8.34	321	5	ND.	1	176	25	8	- 2		.44	.155	5	5	. 16	152	.01	13	.79	.02	.16	a il
X:1270m/6+50E	1								6.99			· ND			2	- 4	2	78		231	. 4	8	. 13	121	D1	5	1.69	.01	.07	i I
5 X:1270a/7400E	1	ŶĊ.	7.5	(5)		10	50	1762	7.18	68,	5	HD	1	40	22	4	2	69	-26	3223	4	8	.16	179	01	5	1.69	.02	-09	
X:1270m/7+42E	1 1	96	1	<u>5</u> 2	.2	13	24	775	9.60	1	s	ND	1	34	<u></u> 2	9	2	152	_25	.150	2	A	.15	162	ant.	2	1.23	.02	.09	
X:1270a/7+72E		-							9.30			ND.	i.		2					321			.27	-				.02		· · · · · · · · · · · · · · · · · · ·
-X:1270m/8+00E	12								8,82		-	ND.	1							102			.11					.02		2. 2. j
-X:1270a/6+50E									7.85			ND	1	9	5					136			. 19					.02		
-K:1270m/9+07E									9.09		-	ND	1	22	1.3			119		.083	6 T.		.n					.01		
		**	-		22		-											. .				-	. .		33					
RD C/AU-S	19 !	22	38	132	(_Z	67	30	1030	4.06	- 38	72	7	- 57	53	18.0	16	- 21	56	.53	. 491	: 37	57	.94	180	307	34	1.98	.06	. 14	11 4

 \mathbf{D}_{i}

 $\Lambda \Delta$

 (\mathcal{B})

)

])

Keewatin Engineering PROJECT 046 FILE # 90-2849

Page 2

SAMPLE#			Pb ppm								U ppm	Au				Sb ppm			Ca X	2000 Co		Cr ppm	- <i>I</i> .	Ba	TI X	8 008	Al X	Na X		N: Au*
······································		<u> </u>	<u> </u>	<u> </u>	(deced)						Ş										6								Sek	
90 NCS 134	-		30		- 167 T.	• •		1282				ND	1	47	6		2			.132					.01		1.12			1 1
90 NCS 135			39		- COT - C			1863				ND	1		1.0			127		.120				176			1.67			1 5
90 NCS 136			100			-		1652				ND	1		2.6		2			. 156			-	162			1.54			2 1
90 MCS 137	-	.93		129	.4			1031		1. 1. 1.		ND	1	48	.7		2			.126				140		-	1.27			ļ 1
90 NCS 138	1	133	15	120	•6	40	30	1208	1.10	- 114	5	ND	1	46		2	Z	116	.55	.110	5	74	.99	222	.01	7	1.16	.01	.07	1 . 4
			-	-	2		16	773	3.92		i i e	-	•			3	•	-				-	-			· _				8 .
BL 10+00N L10+75E		61	20 27	77	3	_	13		4.87		· ·	ND ND	- -	81				224						114	7.100		1.07		- 200/2	
BL (OFFSET) 10+000 L11+00E		45 45	21	•••			14		3.99			ND ND	3		1.0	. –	-						.63		.07					į 26
DL (OFFSET) 10+00H L11+25E		51		76			15		6.04				2			. —		104		32					.07		1.00			
BL (OFFSET) 10+000 L11+50E		- 21 - 41		81			10		4.23				3	32 47				310					.62			3	.84		20000	§ š
BL (OFFSET) 10+00H L11+75E	T T	• •	20	01		13	10	300	۹.0				3	47		6	2	194	.17	. 149	16	36	.01	20		5	. 73	.v	.07 🛞	2
BL (OFFSET) 10+000 L12+00E		260	2	110		10	28	1431	7 20		5		4	41	.7	2	2	*	1 22	112	3		41	175		1	.55	04		÷.
DL (OFFSET) 10+001 L12+25E		87	_	95				1127					2		4.4		_	134		572	. –			122			1.00			3
BL (OFFSET) 10+00H L12+50E		73	33	85		•••	17			- X 7 7 7 7	e. –	Ĩ	2	45	5			120		122							1.00		2003	2 10 2 24
BL (OFFSET) 10+000 L12+75E		69		104		22	19	837		- CTC		iii	2	48		:		166		131				109			1.02			89
L10+75E L10+25H		215	5					1584						34		-		56		121				158			.47			13
	•	617		01		16		1.200	1.70				•			16	6	30	.07				. 30	130		2	.4/	.01	• 17 🛞	
L11+00E L10+22N	1	163	7	94		15	27	2050	6.22		5	ND	1	21	1.0	2	2	70	56	109	7		43	254		12	1.16	01	- 14 📖	
L11+25E L10+22N		143	Å					2110				HD.	· i				2			119							1.58			22
L11+50E L10+35N	-	161	Ā					1669				ND	1	47		-	2			105				177		ž	.86		20000	7
L11+75E 10+35#	-	149	ō					1309				ID			1.3		2					10			202.1000	10	.86			. 74
L12+00E 10+25N		203	6					1336					1							07				80		ž			.10 🕮	
	•		•	5.			20						•				-					•				-			•••	
L12+25E 10+25N	1	233	2	112		16	32	2035	7.46	163	5	ND	1	23		11	2	100	.76	.12	7	12	.50	127		4	.94	.01	. 10 👹	0
L12+50E 10+25N	1	218	- 5					2363				ND	1	30	5			112									1.17			ŻŻ
L12+75E 10+25N	-	223	-					2814				ND	i	54			-	120		174					92		1.52			45
STANDARD C/AU-S	18	57			7.1	70		1076			· -	7	37		8.6	-	19	55		.095				180					.14 11	S

}

}

Keewatin Engineering PROJECT 046 FILE # 90-2849

V SAMPLE# Cu РЬ Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi Ca P La Сг Mg Ba Ti AL ĸ . Мо B Na Aut X X X ppm ppm **DDR** DOM DOM DOR DOR DOR DOM DOR DOR DOR DOR DOR 000 Pipe pps pps X DDM X com x X DDM X ppm ppb 90 MGR 001 509 14797 72893 286.8 5 15 31996 18.40 50143 5 56 609.0 12488 3 1 1.34 .007 2 16 .52 10 01 2 .15 .01 .03 5 1 3220 1 1 Ŝ 2 90 MGR 002 9889 59993 221.9 17 23 4698 22.42 20972 3 9 575.0 1307 2 7 17 1 1932 1 .07 .019 .08 1 01 2 .25 .01 .05 1 1100 5 2 90 MSR 044 44 14 44 84 ...7 4 - 4 183 2.33 325 1 11 .9 5 4 5 .02 .007 2 1 .02 43 .01 6 .17 .01 .07 1 1290 90 MSR 045 1226 5 2 155 16 112 10 5.90 1562 153 1.0 57 5 15 5.03 .119 4 9 1.61 5 1 . 6 20 1 29 .01 .34 .01 . 16 × 410 5 35 285 2 90 MCR 056 2 248 93 74 2.2 15 9 8.61 92 MD 1 1.5 26 2 36 .45 .085 26 .77 3 .10 3 1.63 .02 .01 1 9 :5 18 538 43 4.52 129 5 90 MCR 057 2 65 23 69 12 2.95 337 5 ND 1 173 1.2 8 2 - 33 .86 13 .11 4 4.50 .59 .04 6 90 MCR 058 5 19 61 32 .6 17 5 230 1.85 3393 6 MD 1 6 .5 26 2 13 .17 .055 5 19 .13 35 .01 2 .40 .01 .10 1 400 90 MCR 060 2 16 2 2 24 5 412 .57 126 5 MD .2 3 4 .05 86 1 90 2 4.67 .012 4 31 .01 2 .08 .01 .03 1 7 32 90 MCR 061 699 59 21 369 9.09 579 5 HD 1 120 10 8 3.09 119 4 25 .74 6 3.8 21 1.3 54 19 .04 2 2.41 .17 .06 1 4 90 MER 063 1 176 72 131 1.2 8 24 1618 6.77 2058 7 1 168 87 2 25 5.26 120 2 10 1.52 20 .01 ND .30 .01 .13 840 6 200 C 9316 90 MCR 064 1 70 7 63 1.5 6 12 2079 5.57 6 2 1 193 1.2 50 2 44 6.41 .071 3 10 2.37 17 .01 6 .25 .01 .11 1 2100 2 1 127 3 90 NCR 065 185 499 107 3.7 8 23 1529 6.43 2703 6 -1**.5** 117 2 16 4.24 .117 10 1.20 28 .01 9 .39 .01 .21 ME 1150 1 90 NCR 066 90 NCR 067 -3 .7 50 7 2.72 5 5.51 .036 2 3 6 37 10 838 13 ND 1 124 1.0 8 3 19 14 1,86 24 .01 10 .15 .01 .07 6 19 25 47 927 3.16 5 1 694 3 4 80 1.1 2 16 24.74 .010 2 7 2.11 76 .01 1 ND 9 2 .42 .01 .04 2 19 90 MCR 068 2 91 4 56 .3 10 13 187 6.77 193 5 1 15 1.2 12 2 38 .24 .038 3 2 30. 12 .01 6 .32 .01 1 ND .09 41 22 127 90 MCR 069 7 73 12 47 14 13 1288 5.09 7216 25 1.1 2 20 1.15 .023 .23 41 .01 6 ND. 1 4 8 5 .20 .01 .08 210 .48 2 3 3 90 MCR 070 2 124 10987 17479 49.3 7 39 7110 19.61 1410 6 4 1 131 116.5 47 3 5.68 .019 20 1 .01 8 .09 .01 .05 1 500 15 90 MCR 071 5 4 2.00 .012 7 .01 1 1664 16399 23411 296.9 5 16 29061 13.88 30047 1 85 178.5 11719 8 4 .10 .01 .06 1 2710 90 MCR 072 5966 308.9 4 39507 12.78 2274 5 3 1 196 48.9 10853 2 1 2.23 .001 2 13 2 1 4196 16104 1 .80 13 .01 .06 .01 .03 1 1600 90 MCR 073 8 63250 15.74 7398 5 1 115 24.8 9681 1.78 .007 2 15 1 723 17557 2670 281.1 5 iiD. 8 1 .66 14 .01 2 .10 .01 .03 500 90 NCR 074 13 5570 38.4 3 97270 23.87 810 2.4 2 18 .56 22 1 5 ND 3 83 250 7 1 1.65 .005 4 .01 2 .10 .01 .03 1 20 90 MCR 075 107 2250 13850 19.0 11 11 5264 13.39 434 5 2 1 12 144.6 51 2 65 .26 .090 4 21 .73 19 .01 5 3.32 .01 .12 2 58 90 MCR 076 7 11449 10.40 6477 5 57 2 5 .59 .022 2 46 21290 957 32.6 11 ND 1 2.3 7151 11 .13 92 .01 2 .14 .01 .08 770 .14 .032 Ž 90 MCR 077 387 23025 52293 263.8 43 57 17368 7.90 15046 6 MD 49 536.7 10291 2 4 12 .04 11 .01 2 .14 .01 .06 3 1 690 23 2 .56 90 MCR 078 240 13052 2449 228.3 29 3383 23.66 33369 5 11D 14 22.6 446 2 99 .13 063 23 5.01 1 1 6 3.44 .01 .03 ×1 1490 90 MCR 079 107 9654 6357 69.1 9 7 20820 9.42 5 61.3 82 2 28 .22 .000 3 12 .26 22 .01 5 1.27 .01 .09 1 71 11D 1 16 26 22 90 NCR 080 2503 1 3.36 .004 .77 11 .01 1 868 16373 419 309.4 1 3 56729 16.15 5 ND 2 261 9.0 9606 2 17 2 .10 .01 .02 260 1.84 .869 2 5 .54 .098 38 59 08-400C 011 95 215 60 2.5 9 4.38 5732 1 57 1.2 13 2 2 13 951 6 HD. 14 .49 32 .01 2 .28 .01 .11 180 128 7.2 72 31 1104 3.68 42 15 7 38 53 18.8 16 17 55 STANDARD C/AU-R 18 57 39 .87 179 .07 36 1.88 .06 .14 11 550

ASSAY RECOMMENDED for Ph. Zn. the 71% Hag 7 30 pp~ Sb 7100 pp~

• ...t

1

1

1

1

1

1

Page 4

					Ke	96W	at:	in 1	Engi	ine	eri	ng	PF	roj	ECT	M	F	ILE	3 #	90	-24	492								F	Pag
SAMPLE#		Cu ppm			Ag		Co ppm	Min ppm		As ppe			Th ppm		Cd ppre		Bi ppm	V ppm	Ce X		La ppm	Cr ppm	Mg 2		71 *		AL X		K X	N N	Au* ppb
90 MGS-X:1350m/19+00W	1	133	23	116	2	3	23	3032	7.45	56	5	ND	1	13	.2	5	8	101	.19	142	2	6	. 14	149	.01	2	1.25	.02	.10		47
90 MGS-X: 1350m/ 18+50H	1 1	110	11	125		6	22	1596	8.05	33	6	ND	1	18	÷.2	- 4	2	70	.14	136	5	8	.28	173	:01	5	1.80	.01	.08	2	33
90 MGS-X:1350m/18+00N	1 1	105	21	121				1749	8.61	35		ND	2	14	.8	2	2	101	.04	153	- <u>4</u>	11	.28	117	.01	3	2.85				
90 NGS-X: 1350m/17+50N		72		131			16	797	6.62			ND	1	35	2		2			121					.01		2.55				27
90 MGS-X: 1350m/17+00N	- I	101			2		-	1444	5.55			ND	1	94	2		-			201					.02		2.68				
90 MGS-X:1350m/16+50N	1	158	22	129		14	26	2336	8.25	70	7	ND	2	53	5		3	78	.20	176	13	12	.31	119	.01	2	1.83	.01	.08	3	29
90 MGS-X:1350m/16+00N	l S	91	25	108	3	15	19	1494	5.55	57	5	ND	1-	30		5	2	81	.40	-187	7	20	.56		.01		1.82	.02	.11		24
90 MGS-X:1350m/15+50N	1 1	128	38	150	2		20	1422	6.27	91	5	ND	1	24	.1.0		2	117	.31	. 156	13	27	.93	71	,04	6	2.78	.02	.08	88 C	10
90 MGS-X:1350m/14+50N	2	300		189					10.57		5	ND	1	75	3.6	2	8			. 163					.02		3.16	.01	.08		29
90 MGS-X: 1350m/14+30N	2	281	50	191			40	2611	8.48	105			1	48	2.1		4	160	.56	. 137			1.17	69	.07		3.32				
90 MGS-X:1350m/14+00N	1	224	32	147	3	22	38	1975	8.27	48	5	ND	2	36	1.1		2	105	.41	.103	8	19	.76	178	.02	5	1.99	.02	.08		13
90 MGS-X:1350m/13+50N	1	102	- 42	108		18	16	772	5.26	75	5	ND	1	19		2	2	90	. 19	. 118	10	29	.66	78	.03	2	3.72	.01	.04	2	20
90 NGS-X:1350m/13+00N	1 1	98	- 29	103	2	14	20	1205	5.74	68	5	ND	1	18	5		5	123	.23	. 164	- 14	33	.78	63	,04	5	3.63	.01	.06		17
90 MGS-X:1350m/12+50N	1	124		116			13	624	4.68	107	5	ND	2	19	2	3	2	89	.27	.112	9	28	.73	82	.04	5	3.50	.02	.05		24.
PO MG8-X:1350m/12+00H	1	116	43	166			22	1312	6.66	257	- 5	ND	2	41	11	5	4	101		.129	11	32	.85	164	. 02	7	3.38	.02	.08		38
90 MGS-X:1350m/11+50N	1	69	31	122	-2	19	21	1546	5.92			ND	1	22	.6	2	2	123	.35	.203	11	29	.89	120	, 04	7	2.67	.02	. 13		85
90 MGS-X:1350m/11+00N	1	91	138	227	3.0	19	17	752	4.68	762	6	ND	3	85	1.0	5	2	74	.97	.139	- 14	25	. 98	88	.07	2	1.93	.06	. 12	84	19
90 NGS-X:1350m/10+50N	2	88		148		21	22	1151	5.85			ND	1	28	1.0		2	95	.28	. 152	12	26	.70	126	.03	2	3.72	.02	.06		12
90 MGS-X:1350m/10+00W	3	65	39	129			13	1416	5.26	85	5	ND	1	23	.2	3	3	85	.21	225	9	28	.50	129	02	2	3.10	.01	.05		17
90 MGS-X:1350m/9+50N	2	66	52	140	.2	24	15	704	4.54	189	5	ND	2	21	.,2	3	2	87	.31	.091	10	28	.79	68	.05		3.07				
90 MGS-X:1350m/9+00N	5	83	37	137	5	16	29	2095	7.34	110	5	ND	1	20	1.5	2	7	134	.11	.189	7	36	.67	108	.02	2	3.23	.02	.06		21
90 NGS-X:1350m/8+50h	4	142	25	165		18	29	2079	7.85	67	8	ND	1	16	3.0	2	4	145	.07	241	15	28	.79	119	.01	2	3.83	.02	.06	31	28
90 NGS-X:1350m/8+00N	7	78	30	142	3	14	20	1859	6.43	100	5	ND	1	14		3	2	123	.06	179	8	34	.44	104	.02	2	2.72	.02	.07		17
90 MGS-X:1350m/7+50N	7	84	31	148			22	1850	6.75	85	5	NÐ	1	30	1.2		4	124	.15	,232	6	27	.54	118	10E	2	2.49	.02	.07		9
20 MGS-X: 1350m/7+00N	2	241	15	129		13	32	1839	7.61			ND	1	15	.5		3	85	.04	.137	7	10		133		2	1.71	.02	.11		31
0 MGS-X:1350m/6+50N	5	136	15	192	3	40	25	957	6.11	62	5	ND	1	56	2.7	6	3	92	.64	.116	9	Z 0	.85	162	.01	2	2.24	.05	.11		9
0 NGS-X:1350m/6+00N	15	146	13	276	3	47	20	1047	6.28	47	5	ND	1	40	3.0	2	3	116	.49	-145	7	19	.54	220	.01	2	2.21	.03	.08		5
20 NGS=X:1350m/5+50N	8	66	27-	157		23	-16-	1156	6.20	89	5	HD.	1	17	1.3	~ 7				212	- 4		.29	131	.01		2.04				11
70 MGS-X:1350m/5+00N	7	66	- 33	135		14	18	1155	5.80	100	5	ND	1	86	1.2	3	2	104	.61	168	6	41	.55	93	QL	2	2.78	.02	.08		11
0 MGS-X: 1350m/4+50N	1	125	45	146		40	24	1202	5.81	114	5	NÐ	2		1.2		-			.131		70		160	22039		2.53				7
70 MGS-X: 1350m/4+00N	1	137		174		39	24	992	6.09	254	5	ND	1	60	.9	3	2	97	.76	. 129	13	52	1.53	129	.03	5	2.25	.04	. 10		42
70 MGS-X: 1350w/3+50k	3	103	46	143	ЗЙ.	40	19	885	5.28	93	5	ND	1	57	.7	- 4	3		-	.125	11		1.52		365	5	2.14	.04	.09		27
20 MGS-X:1350m/3+00N	1	99		126					5.13			ND	1	66	.5		-			131	10			- 94			2.23				50
0 MGS-X:1350m/2+50N	1 1	101		134	- A Z . 7 *	36			5.39			ND	ż	93	12		-	113 1		121	11			115			2.58			•XX.:	
0 MGS-X:1350m/2+00W		93			.6				4.47			NÐ	Ž	82	7		ž	92 1		114					.12	-	2.19				
70 NGS-X:1350m/1+50N	1	80		103		29			4.32			ND	1		2		2			. 119							2.00				
STANDARD C/AU-S	18	58	43	132	7.3	70	32	1021	4.11	39	21	7	36	52	18.3	15	19			.098						34	1.94	.06	.14	13	53

თ. ი

604 684 9877 1 '90 10:53 SOLOMON-RES. LTD 0 4

JJL

ACME AN/ TICAL LABORATORIES LTD.

852 E. HASTINGS ST.

COUVER B.C. V6A 1R6 PHONE(604)253-3158 F

)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

1

Keewatin Engineering PROJECT 046 File # 90-2849 Page 1 3 800 - 900 W. Hastings St., Vancouver BC V6C 1E5

90 NGS 019 90 NGS 020 90 NGS 021	ppm 1	ppm	ppm	ppm			<u>pbu</u>	ppm.	X	- ppm	ppin	pp m	ppm	ppo 🗄	DOD	ppm	Dpin	pp a	X :	. X	ppm	DOM	X	ppm	1	ppm	×	X	- X 🖁	ippen -	Au*
90 MGS 020	1					ppm									<u> </u>	······					<u> </u>		·····								
		74	22	68	ି •2	10	11	628	5.38	68	2	ND	1	19	्.7	2	2		.24		8	17	.44	86	.02		2.18	.02	.05	8 . -	10
00 MCC 024 0	1	97	25	100	્રેન્ટ્રી	14	19	922	5.77	S 53	5	ND		14	. P	2	4	116	.22		7	20	.59	97	.01		2.91	.02	.06 🖉		8
	2	- 48	13	53	ंुउँ	7	7		5.57	48	5	ND	1	10 🛛	⊴_5	2	2	132	.08		7	18	.20	54	.02		2.20	.01	.04 🔅	88 1 0 -	2
90 MGS 022	1	69	14	66	2	7	9	361	6.11		5	ND	1	- 13 g	8	2	2	108	.12		5	- 16	.33	60	.02	2	2.34	.01	.03 🛞		7
90 MGS 023	1	80	18	86	્રે કે ન	15	14	719	4.55	47	5	ND	1	40	.5	2	3	112	.72	.096	12	23	.78	114	,06	Z 2	1.56	.03	.06	88 .	2
90 NGS 024	1	84	18	83	80.30 1	17	16	934	4.34	38	5	ND	1	40		2	2	98	.66	090	12	22	.85	112	.06	4	1.61	. 03	.09		14
90 MGS 025	i	86	31	105	<u></u>	22		• - •	4.69	43	ŝ	ND	ź		1.0	Ž	ŝ	96	.60		13	24	.86	131	.05		1.85	.02	.08	000 100	8
90 NSS 055 -	Ś	285	14	137		26		3282		409	ś	ND		45	ĩž.	45	ź	105		124	12	19	.55	198	.01	102		.01	.08		10
	-				 COMPACT 						á		ż				_												200		
90 MCS 106	3	- 41	71	136	्यः	15		1980	5.51	323	-	ND	~	40	2002 201	2	2	75		139	20		1.08	207	.01		2.98	-01	.06	<u> (</u>	21
90 MCS 107	2	67	102	189	5	25	11	573	4.44	287	5	ND	1	52	.9	2	5	57	.68	. 154	11	34	.89	67	.07	5	3.77	-01	.06		5
90 MCS 108	1	72	79	130	<u></u>	27	17	720	3.70	583	5	KD	2	77	.9	2	2	50	1.00	.133	11	26	.75	72	.05	2	2.94	.02	.07	1	9
90 MCS 109	- 4	142	172	164	.8	41	25	1082	6.60	1122	6	ND	1	82	.9	5	4	71	.49	153	16	38	.95	110	.07	4	3.52	. 02	.07		10
90 MCS 110	2	146	341	166	14	33	22		7.18	718	6	ND	2	36	.8	5	7	94	.58		12	27	1.22	46	.01		2.22	.03	.08	88£ -	4
90 MCS 111	3	242	111	164	2 ()	56			7.59	450	6	ND	- 1	66	6	3	3	78	.59		12	51	.87	94	07		3.11	.02	.06		20
90 MCS 112	2			3304		94			8.17	6280	Ř	ND	2		27.8	131	41	92	.63		12	75	.96	162	.01		1.74	.01	.12		4
YU HUS TIE	~		0001	2304		74	40	2074	0.11	UCOU	•	ND	2	117 4		121		76	.05		12	12	. 70	HOZ		٤	1.74	.01	· 16		
90 MCS 113	1	277	501	650	7.8	58	23 2	2125	5.50	156	5	ND	4	43	3.3	3	16	73	.92	138	18	61	1.05	101	.02	2	2.35	.01	.08	÷	6
90 MCS 114	5	270	108	319	ं हे हो है।	15	21 2	2304	3.53	301	5	ND	3	28	1.7	4	6	69	.88	172	17	10	.28	32	.01	5	1.47	.01	.08 🖗	1	13
90 MCS 115	6	140	40	108		13	20	2168	6.79	140	5	ND	2	39	-7	5	2	75	.74		17	8	.31	67	_01	2	1.55	.01	.10	8 4	1
90 MCS 116	ī	302	17		3.3	11				19953	- Ģ	3	•	52	2	175	2	41	.60		4	10	.16	π	.01		.44	.01	.08	1 A	sco
90 MCS 117	1	162	10		4	-14			5.66	118	5	ND	1	84	7	5	2		3.01		6		1.03	90	.01	7	.66	.01	.11	8 - -	6
					889						_						_									_					
90 MCS 118	- 4	66	24	97	े -2	12			5.52	148	5	ND	1		1.0	- 4	- 3	115	. 11 🧃		- 6	27	.34	100	.01		2.56	.01	.03 🔅	2	1
90 MCS 119	2	82	81	_ 146 ∶	2 ∶	22	- 14	675	4.20	462	8	ND	1	- 18 🖇	1.1	2	- 3	- 79	.26	119	10	56	.61	60	.04	2 :	5.35	,01	.04 🛞	60 1 0	3
90 MCS 120	- 3	74	48	124	8 . 1	17	14 1	1126	4.87	848	5	ND	1	16 🛞	1.0	2	2	92	. 16	109	10	26	.56	64	.03	3 3	2.81	.01	.05 🛞	81	1
90 MCS 121	1	78 -	20	85	. 1	10	14 1	1060	5.14	64	5	ND	1	16	.5	2	2	101	.08	130	. 7	14	.37	103	.01	2 3	2.25	.01	.05 🛞	81	1
90 NCS 122	1	144	- 14	109		12	- 29 2	2002	6.49	55	5	ND	1	45	.9	Z	2	80	.40	471	14	17	.65	92	.Q1		2.41	,01	.06	1	8
90 MCS 123		94	24	-			•••		4 67		F	MID	-	- - 2		-	-	-				74		474			2.52	04	~~ 8		-
			21 20	81		14			6.07	1	5	ND		36	B	2	Ę	79	.44		- 14	21	.41 1.25	131	-01			.01	.06	8 S	÷.
90 MCS 124		131		114		18			7.15	60	-	ND		29	.8	3	3	223	.31		7			79	-12		5.34	.01	.04 🛞		- 21
90 MCS 125	1	82	46	138		23			4.76	76	5	ND	1		1.0	3	2	87	.17		12	56	.74	133	.02		2.74	.01	.07 🛞		- 21
90 MCS 126	5	99	32	116		16			5.73	62	5	ND	1	19 👌		- 4	3	9 1	. 17 🛔		8	20	.46	121	.01		2.26	.01	.06 🛞		- 4 (
90 MCS 127	1	149	20	124		. 18	20 1	1455	7.21	57	5	ND	1	25	-7	5	2	102	.32	135	14	22	.67	137	.01	2 '	1.79	.01	.07 👸		1
90 MCS 128	2	81	52	122	4	21	19	934	4.72	65	5	ND	1	15	÷.	2	3	99	.17	121	12	28	.75	99	.02	2 3	5.00	.01	.05	4	1
90 MCS 129	•	158	10	105		10			5.50	68	ś	10	÷	37	2.2	2	2		1.76		5	Ĩ	.32	59	.01		.46	.01	14		- 11
90 MCS 130		135	6	58	C 100000 (1000)					00000000000000	Ś			- 20		-	-				-	5							- The Second	888	- 11
		-	-			.6	-		4.55	28		ND		35	.6	2	3		2.08		- 4	_	.56	41	.01		.88	.01	. 17	20 C	-11
90 MCS 131	1	201	6	110		15			9.05	5	5	ND	1	14	.2	2	2	72	.33		6	8	.31	147	.01	4	-86	.02	.13		- 1
90 MCS 132	١	101	23	99		20	18 1	1199	5.26	51	5	ND	T	39		2	2	90	.57	. 103	11	20	.72	153	.04	4	1.58	.02	-08 🐰	I.	2
90 MCS 133	1	72	32	102	1	23	17	937	4.28	37	5	ND	2	43	.8	2	2	91	.59	109	13	25	.91	105	.07	3	.65	.03	.09	÷.	3
STANDARD C/AU-S	17	57	40		7.2	69		1051		39	20	7	37	52 1		14	21		.55		36	56			.07					11	52

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LINITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE. SAMPLE TYPE: P1-P2 Soil P3 Silt P4 Rock P5 H.M.

190

SIGNED BY

lu 31

DATE RECEIVED: JUL 25 1990 DATE REPORT MAILED:

Reewatin Engineering PROJECT 046 (L.J) FILE # 90-2706

.6#		ito pilo i	Cu PPM	Pb ppm	Zn ppm	Ag ppm	ili ppin	Co ppiir	Mr. ppn	Fe X	As pow	U ppre	Au ppe	Th ppn	Sr ppm	Cd. ppie	Sb ppm	#i ppm	Ppm V	Ca X	P X	La ppm	Cr ppn	Mg X	Ba ppm	11	8 Rept	AL X	Na X	K X p	• •
- C 00	, -		167	86	324		•	47	4448	0 at	9709		10	•	129		46	2	74	4 22	-015	2		* 47	8		4		01	An	
		•	159			1.2		13			3657		50		45		37	2			036	<u>د</u>		1.17	2		2	.25	.01	.03	
···· 60		•	125	36 12	- 85 85		12					, i	- 2	4		100	21	~ ~			100	2			<u> </u>	2.34.23		.27	.01	.12 5.3年 .11 23年	10
		-				385	10	11			TSOO!						117.				0.0	2		.40	65				.01		
RGC 81	* *	2	96	19	-		10	14				2			80		- 110		13			2		.57	26	- U	3	.25	.01	••••••••••••••••••••••••••••••••••••••	200
PSR v3	•	2	28	24	13		10	•	112	-02		2	10	,	10		ç	۴.	p	-45		2	•	~9C	1444	્યા	9	.14	.01	.05	•
NSR 637	, [2 1	111	2	7L		11	14	714	3.79	50	5	HD.	5	64	8	2	2	30	.76		2	6	.32	435	- A	6	.છ	.01	.10 8	1
NSR 034			62	Ā								ŝ		, i	335	<u> </u>	16	- 2			2. 10. 10.	- 2	11	2.74		201	2	.15	.91		1
ISR 03		-	164	52		23	13	10			10017	ŝ	- 100	1	- 0		69	2	7	. 14	2014	- 2		.02	23		ŝ	.2	.81	.18	12
ISR 044		Ā	ō	12			13				1378			1	86		10	- 2	14	1.77	80	- 5	11	.46			Á	.22	.91		1
ISR 04		5	12	30	46	2.4		ें डे			6522	ź	ND	1	301		111	. 2				3	10	1.84			12	.11	.61		
	`	-	4 -				-					•					•••	-		3470	an d	-				<u> </u>		***	447		
ISR 042	2	2	65	13	17	8. T.	23	45	753	7.47	-1004	5	-	1	73	.2	9	2	26	3.39		2	11	1.13	22		2	.27	.91	.11	- 47
ESR OL		-	125	13		25.0	15	26			10625	Ē		1			53	2			10.0	2	E	.17			- I	.28	.01	.12	

I3:26''SÓLOMON_RES. LTD __ 604 684 9877

}

)

)

)

. .

010 010 010 Pac

]

Page 💈

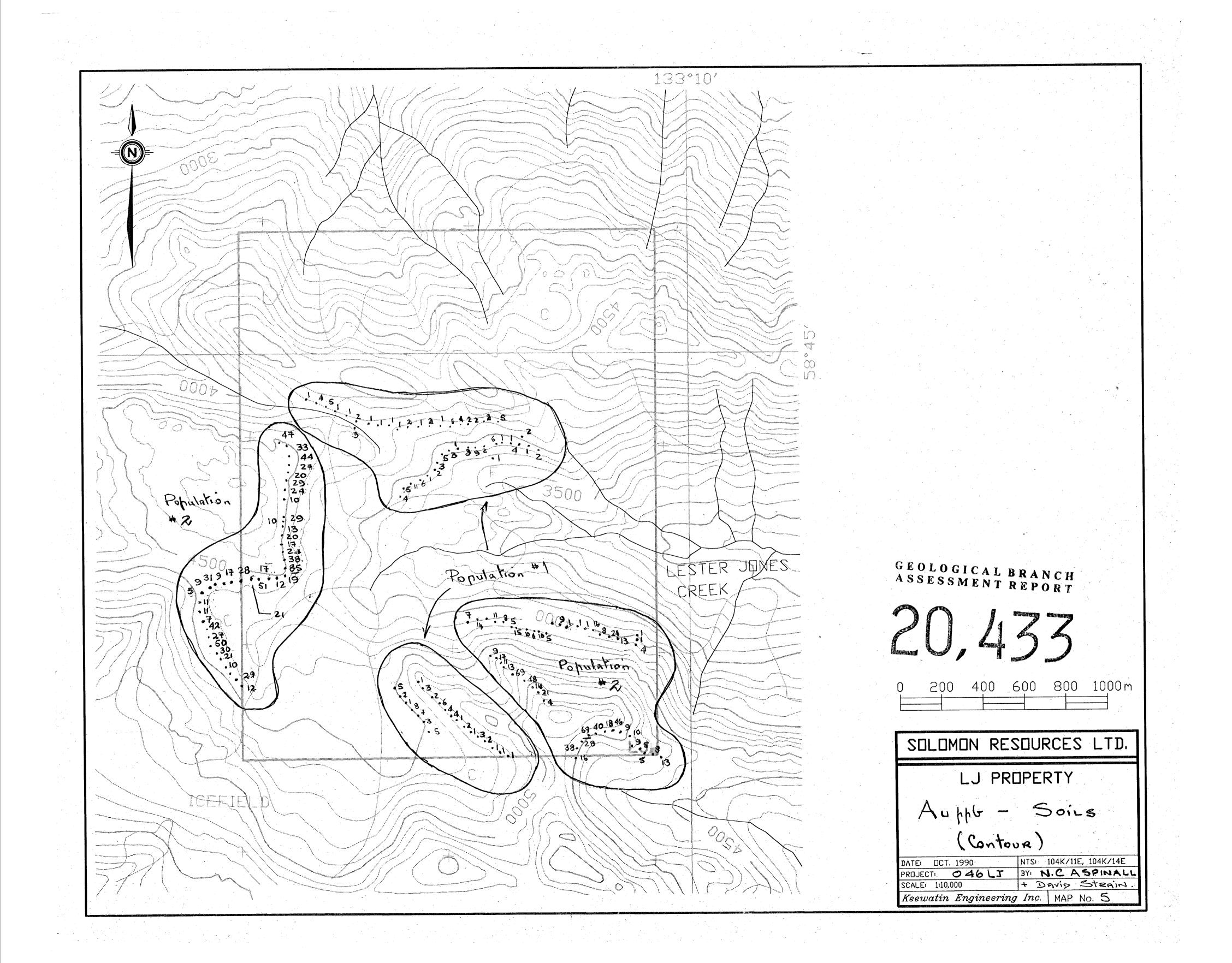
;

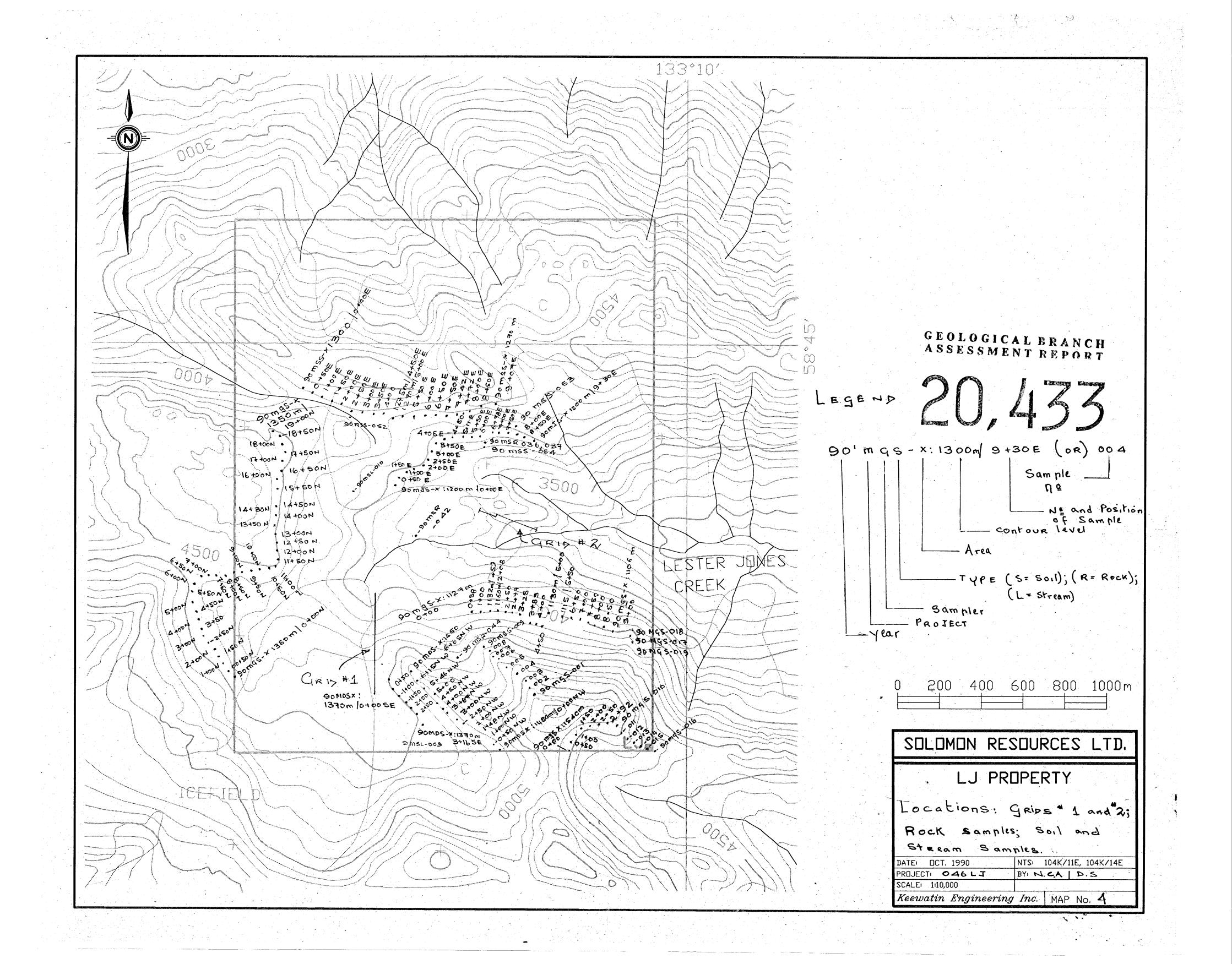
e'

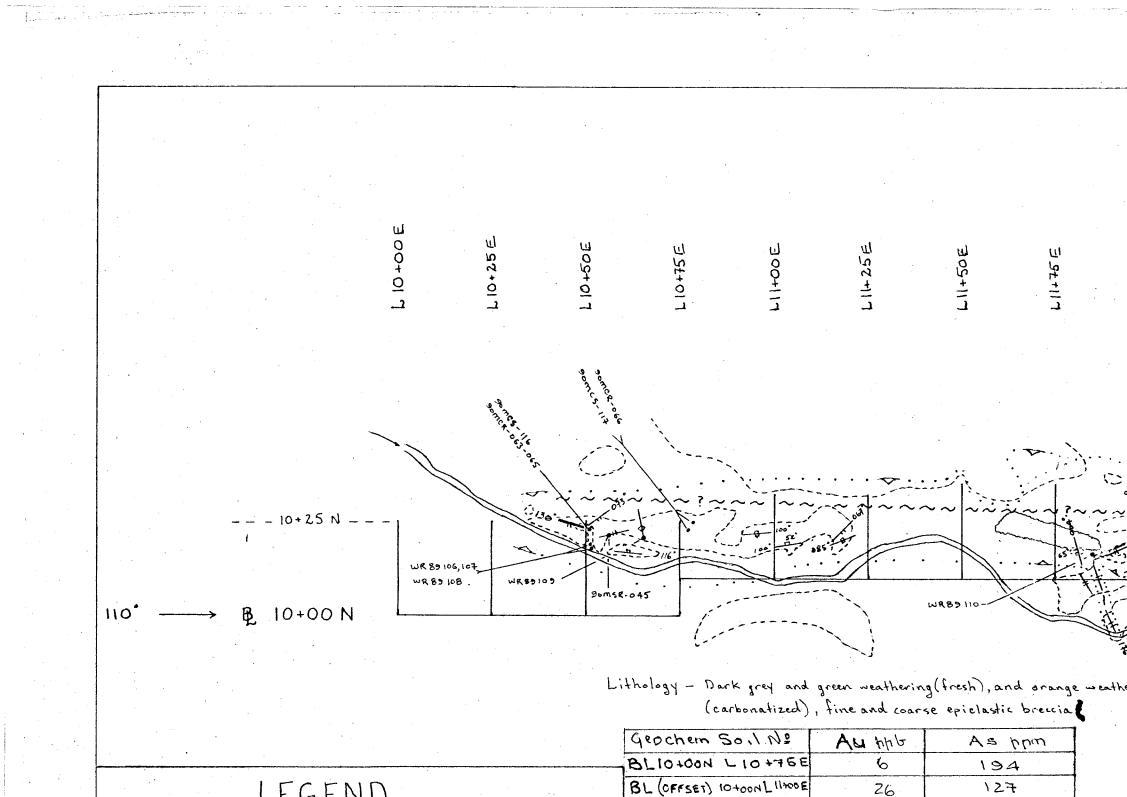
1

Keewatin Engineering PROJECT M FILE # 90-2492

		Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	ย	Au	Th	Sr	Cđ	SP	8i	٧	Ca	R	La	Cr	Mg	Ba	B	8	AL	Na	ĸ	Aut
1	MSR	bbu	bbu	ppm	ppm	ppm	ppm	ppm	ppm	<u>×</u>	plom	ppm	ppm	ppm	ppm	ppin	ppm	ppm	ppm	<u>×</u>		ppm	ppm	*	ppm	X	ppm	X	X	X ppm	ppb
	- NSIK 930	1	67	4	123	.2	7		1577			5	ND	1	299	1.20.04.27	4	4		6.89		3		1.81		.01	2	.35	.01	.06 1	1
	MER 031	2	72 24	9	211 27	.8	4	5		2.66	3959	5	ND ND	1	158	- A.A.A. (A.A.)	25	3		7.29	7.7433	2		2.90	49	5 5 6 5 7	2	.24 .12	.01 .01	.04 1 .06 1	3
-	115 C 34	3	196 117	131 132	340 237	2.9 1.7	7	14 9		6.12 3.99	9240 993	5 5	nd Nd	1	27 22	3.4	34 10	2	9 9	.51 .77	.037 .061	ź	5	.18	13 26		3 3	.20 .24	.01 .01	.08 1 .12 1	410 220
	0 NSR 035 V	4	15	10	12	.4	9	7	33	2.70	9916	5	ND	1	7	.2	26	2	4	.06	.010	2	6	.02	33	.01	_ 4	. 16	.01	.08 1	94

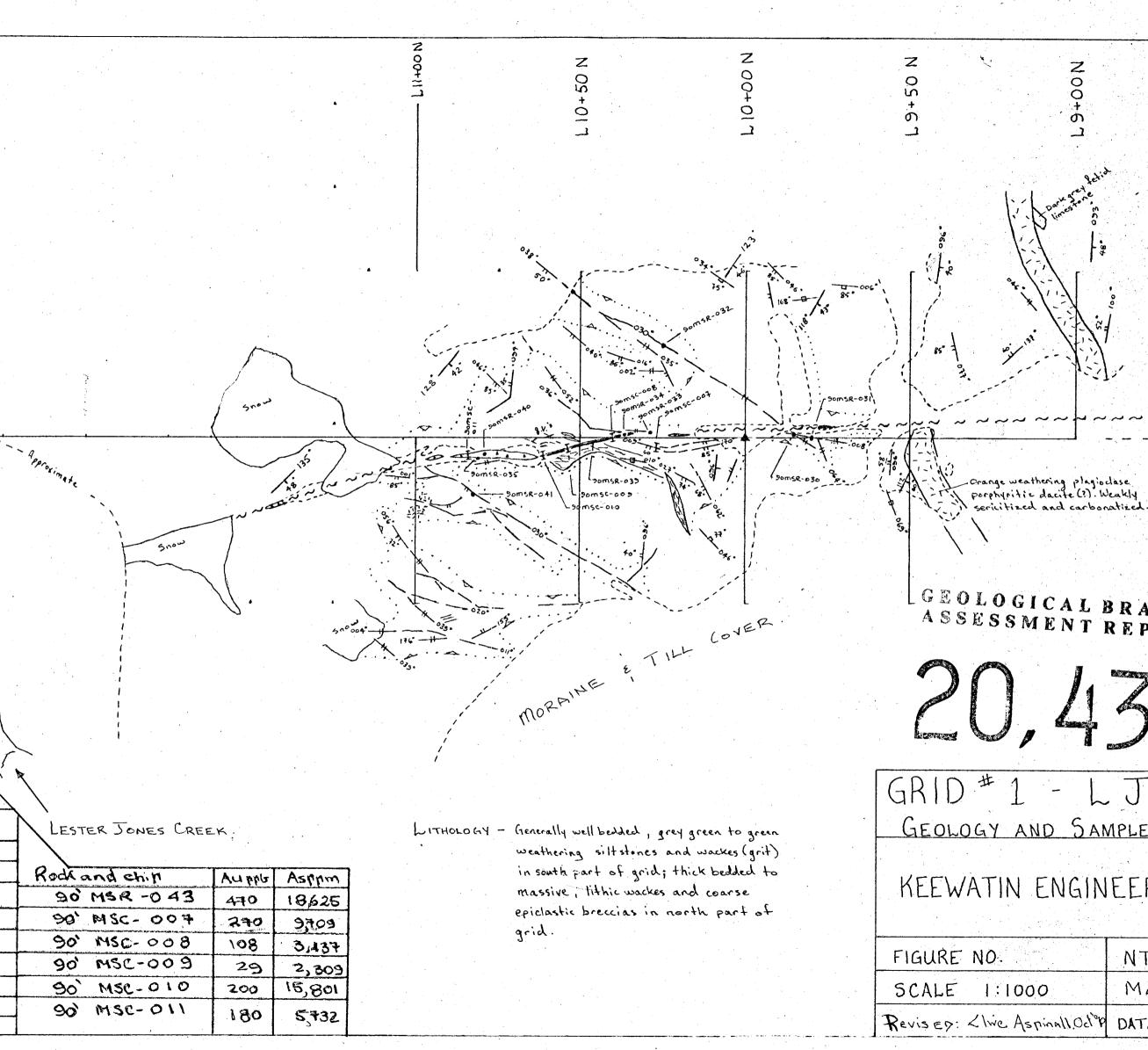

· N

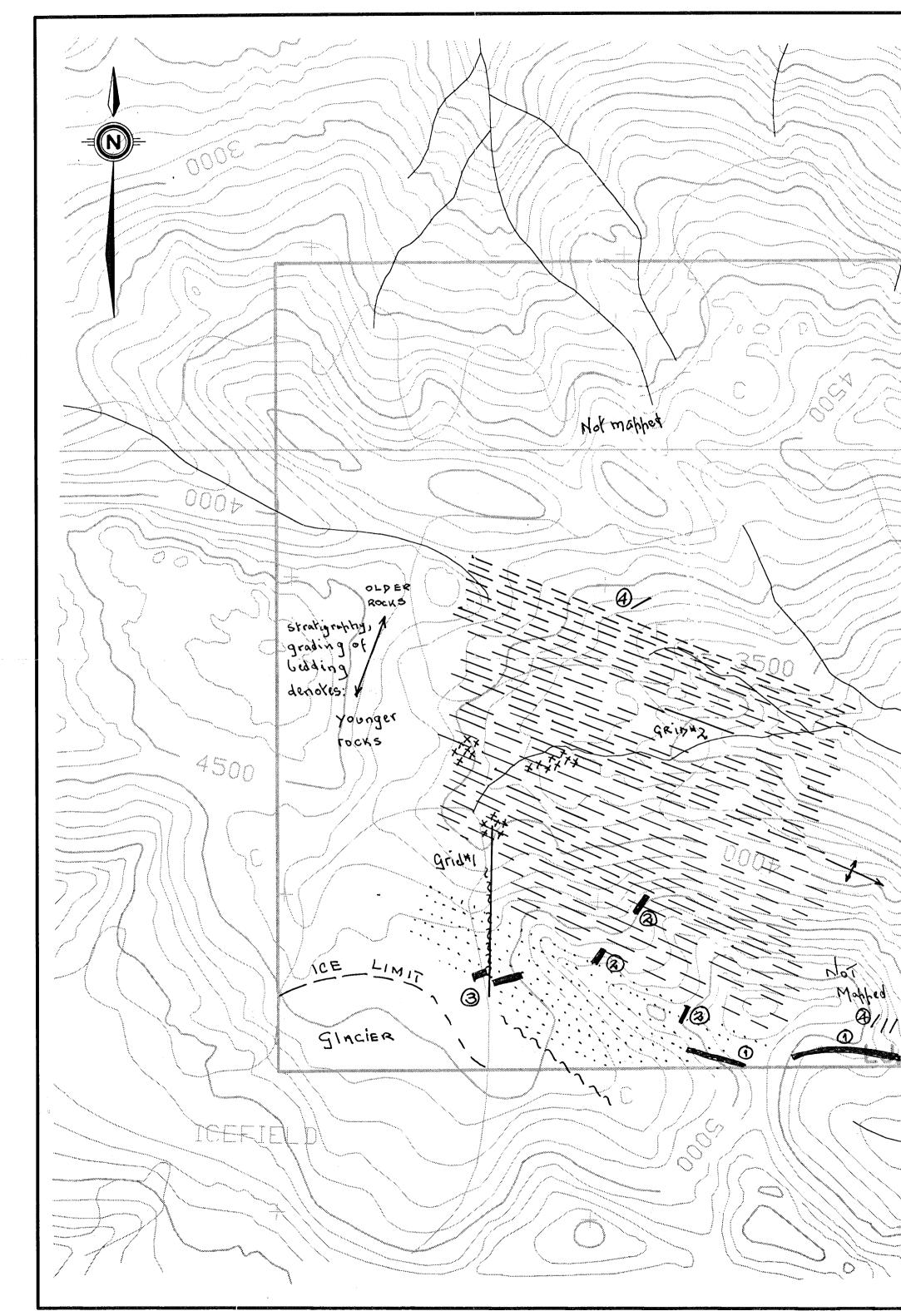

j j j l j l j l


1 I I I

:

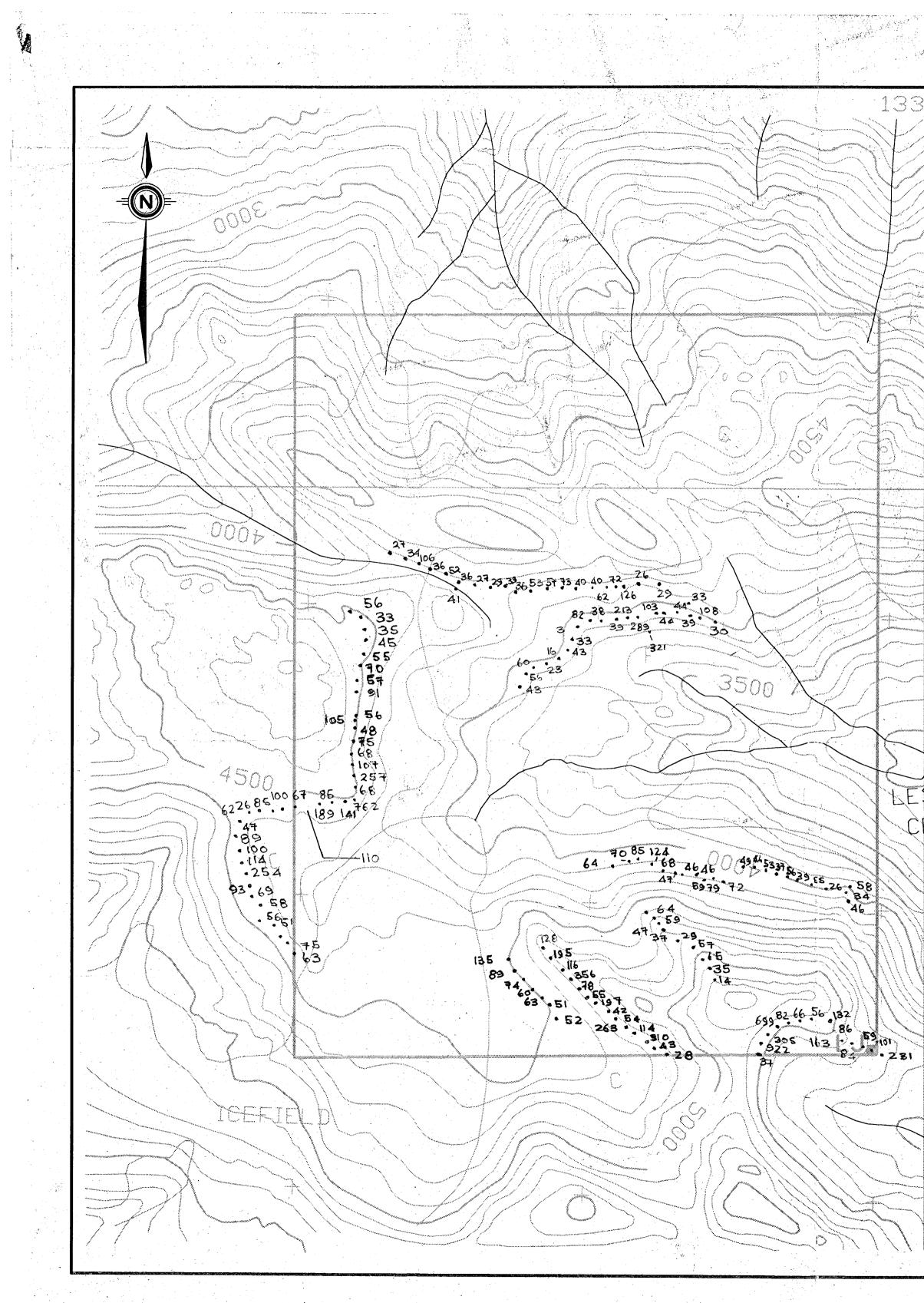
ы 11 11





		. 1		4			1 h	
			i u u	Ш ul		ш <u>ш</u>	IV.	
		0 + C	S St of	120	52 · 52	St+ + 20		
						L12.		
				r			۰. ۴	
						50 A		
		9	a construction					
		so the solution of the solutio			and the second s	d 1° 180.		
		**************************************		•	13C	f &:= :/		
	. •	See (10 8 85 0 85 0 10	7	CLU	F
	· · · ·	1 and a		A ~ ~ ~	09 ³			
						~~~?~)~_^	~ ~ ? / /27 · 00 ~ ?	~
		<b>A</b> .	385 - 20		still and and a start and a		· · · · · · /1	· · · · · · · · · · · · · · · · · · ·
		WR 89 106, 107, WR 89 108, WR 89 109						
110*	→ B 10+00 N		90m58-045	WR89 110-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		A, Cler	
110					11 1) / Co. ** 3x3.		(3) ³	
					۴.		Rock	Samplene Autor Aspan
			Lithology - Dark grey and green	weathering(fresh), and ori	unge weathering		90MC	www.execution.com
				cand coarse epiclastic bree	cia		the second se	R-066 6 13
1	•			u hhb As hpm			Some	08-45 410 156Z
			BL10+00N L10+75E	6 194	CREE		CDID#	
	1		BL (OFFSET) 10+00NL 1100E	26 127	65		GRID	2-LJ CLAIM
	LEGEND			6 74	TONE			
	<u>LEGEND</u>		BL (OFFSET) 10+00N LI1+25E BL (OFFSET) 10+00N LI1+50 E	6 <del>7</del> 4 2 62	TER JON'		GEOLOGY AND S	AMPLE LOCATION MAP
() - Oute	<u> </u>		BL(OFFSET) 10 +00N LII+25E BL(OFFSET) 10 +00N LII+35E BL(OFFSET) 10 +00N LII+35E	6 74 2 62 6 60	-LESTER 30 MSS-055	10 409	GEOLOGY AND S.	AMPLE LOCATION MAP
	crop	) - Talus	BL(OFFSET) 10-400N LI1450 E BL(OFFSET) 10 400N LI1475E BL(OFFSET) 10 400N LI1475E BL(OFFSET) 10 400N LI2440E	2 62 6 60 3 93	L12+00 E 10+25N	40 91		
	<u> </u>	) - Talus - Inferred Fault	BL(OFFSET) 10-100N LILASOE BL(OFFSET) 10 +00N LILASOE BL(OFFSET) 10 +00N LILASE BL(OFFSET) 10 +00N LIZAZSE	2 62 E 60 3 93 10 122	L12+00 E 10+25N L12+25E 10+25N	40 91 9 143 •	GEOLOGY AND S. KEEWATIN ENGI	
Carbo point - Recess	crop onate Alteration - teeth to altered areas. sive Zone	) - Talus - Inferred Fault - Taint	BL(OFFSET) 10-400N LI1450 E BL(OFFSET) 10 +00N LI1+75E BL(OFFSET) 10 +00N LI1+75E BL(OFFSET) 10 +00N LI2+50E BL(OFFSET) 10 +00N LI2+50E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L12+00 E 10+25N L12+75E 10+25N L12+50E 10+25N	40     91       9     1.43       23     229		
.T. Carbo point - Recess	crop onate Alteration - teeth to altered areas. sive Zone	) - Talus - Inferred Fault - Joint - Sample Location (WRE	BL(OFFSET) 10-400N LI1450 E BL(OFFSET) 10 +00N LI1+75E BL(OFFSET) 10 +00N LI1+75E BL(OFFSET) 10 +00N LI2+50E BL(OFFSET) 10 +00N LI2+50E ER-BL(OFFSET) 10 +00N LI2+75E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L12+00 E 10+25N L12+25E 10+25N L12+50E 10+25N L12+75E 10+25N L12+75E 10+25N	40     91       9     \.43       23     229       45     339	KEEWATIN ENGI	NEERING INC.
. T. Carbo point - Recess Bi 100° Minera	crop onate Alteration - teeth to altered areas. sive Zone alized vein / shear.	) - Talus - Inferred Fault - Joint - Sample Location (WRE 1989 Cominco samples Cominco Sample	BL(OFFSET) 10-100N LIIASO E BL(OFFSET) 10 +00N LIIASO E BL(OFFSET) 10 +00N LIIATEE BL(OFFSET) 10 +00N LIZAZSE BL(OFFSET) 10 +00N LIZAZSE BL(OFFSET) 10 +00N LIZAZSE BL(OFFSET) 10 +00N LIZAZSE LIOFTSE LIDADON LIZATEE LIOATSE LIDADON LIZATEE LIOATSE LIDADON LIZATE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L12+00E 10+25N L12+25E 10+25N L12+50E 10+25N L12+75E 10+25N DOMCS-116	40     91       9     1.43       23     229       45     339       4,560     19,953		
En - Recess Boi 100° Minera Sei - Quartz-	crop onate Alteration - teeth to altered areas. sive Zone alized vein / shear. carbonate vein / shear	) - Talus - Inferred Fault - Joint - Sample Location (WRE 1989 Cominico samples Cominico Sample Values not include	BL(OFFSET) 10-100N LIIASO E BL(OFFSET) 10 +00N LIIASO E BL(OFFSET) 10 +00N LIIATEE BL(OFFSET) 10 +00N LIZAZSE BL(OFFSET) 10 +00N LIZAZSE BL(OFFSET) 10 +00N LIZAZSE BL(OFFSET) 10 +00N LIZAZSE LIOFTSE LIDADON LIZATEE LIOATSE LIDADON LIZATEE LIOATSE LIDADON LIZATE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L12+00E 10+25N L12+25E 10+25N L12+50E 10+25N L12+35E 10+25N DOMCS-116 90 MCS-117	40     91       9     \.43       23     229       45     339	KEEWATIN ENGI	NEERING INC.
. T. Carbo point - Recess Bi 100° Minera	crop onate Alteration - teeth to altered areas. sive Zone alized vein / shear. carbonate vein / shear	) - Talus - Inferred Fault - Joint - Sample Location (WRE 1989 Cominco samples Cominco Sample	BL(OFFSET) 10-100N LIIASO E BL(OFFSET) 10 +00N LII+7EE BL(OFFSET) 10 +00N LII+7EE BL(OFFSET) 10 +00N LIZ+00E BL(OFFSET) 10 +00N LIZ+SOE BL(OFFSET) 10 +00N LIZ+SOE ER-BL(OFFSET) 10 +00N LIZ+TSE LIO+7SE L 10+22N LII+00E L 10+22N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} L_{12} + \infty & E & 10 + 25N \\ \hline L_{12} + 25E & 10 + 25N \\ \hline L_{12} + 50E & 10 + 25N \\ \hline L_{12} + 75E & 10 + 25N \\ \hline DO MCS - 116 \\ \hline 90 MCS - 117 \\ \hline R \circ CK & Sample N & K \\ \hline 90 MCR - 063 \\ \hline \end{array}$	40     91       9     1.43       23     229       45     339       4,560     19,953       6     11.8	KEEWATIN ENGI FIGURE NO. SCALE 1:1000	NEERING INC.

L L L L L L L L L L L L L L L L L L L		L 13+00 N	
020. 80. 10000 20.043 1			
	Samples from	( ( (	
LEGEND	Rock :	Aupho	Asphm
- Outcrop - Fault	90'NBR- 030 90'NSR- 031		50% 54
- Carbonate Alteration-teeth point to altered areas. 5 Quartz-carbonate vein 2. breccia.	90' NSR-032 90' MSR-033	3 410	3,959 9,240
- Silicified fault gouge. gvis - Quartz veins	90' MSR-034 90' MSR-035	220	993 9916
- Quartz-flooded breccia , Sample locations (chip, grab)	90' MSR-038 90' MSR-039	13	546 10,017
.7: Kaolinite(?) and quartz stringers.	90' MSR-040 90 MSR-041	12 92	1 378 8 522




N00+6 - 10+50E 1. 6 3 - 10+25E B 10+00 E - 9+75 E GEOLOGICAL BRANCH 9+50E ASSESSMENT REPORT 20,433 GRID#1 - LJ CLAIM GEOLOGY AND SAMPLE LOCATION MAP KEEWATIN ENGINEERING INC. NTS 104K/11 MAPNº 2 REVISED: < live Aspinall. Octop DATA - D.M. STRAIN (July, 1990)



·. .

133°10′ Legend Units of the King Salmon Formation ( Stuhini Group, Upper Triassic) 5 Ô Generally well Redded, Grey-Green  $| \bigcirc$ weathering siltstons and wackes, •••••• striking as depicted Darki grey and green weathering, Orange weathering (Carlonalized) fine eniclastic breccia, grading to thick bedded massive, lithic waeks and coarse epiclastic brecian, striking as LESTER JONES depicted. ÇREEK, O Type *1 dyke 1 (a) Chaleedonic quartz Veins I type * 2 dyke XXXX Carbonatization 3 Sype #3 dyke Anticline Axis. man fault 800 1000 m 200 400 600  $\left( \right)$  $\gg$ SOLOMON RESOURCES LTD. SSM LJ PROPERTY C B ZÞ CIEOLO  $C_1$ En Strange 00 Sy 20 15 王对 ~ > ΟZ NTSI 104K/11E, 104K/14E DATE: DCT. 1990 当 ぼ BY: DAVID STEAIN 046 1 PROJECT Revised: Zlive Aspinal SCALE: 1:10,000 Keewatin Engineering Inc. MAP No. 1



. . . 133°10′ GEOLOGICAL BRANCH ASSESSMENT REPORT LESTER JONES CREEK CU, 200 400 600 800 1000m 0 SOLOMON RESOURCES LTD. LJ PROPERTY As him - Soils OOSX . (contour) NTS: 104K/11E, 104K/14E BY: N. C. ASPINALL DATE: DCT. 1990 PROJECT SCALE: 1:10,000 SCALE: 1:10,000 + David Strain Keewatin Engineering Inc. MAP No. 6