LOB NO:	11-09	RB.
ACTION:		-

DIAMOND DRILL REPORT

ON THE

PURPLE GROUP

Cariboo Mining Division 93 B / 9E & 9W

(Latitude 52° 30', Longitude 122° 16')

OWNER AND OPERATOR
GIBRALTAR MINES LIMITED
McLEESE LAKE, B.C.

ASSESSMENT PEPORI

Author: Madeline R. Thon Submitted: October 24, 1990

Table of Contents

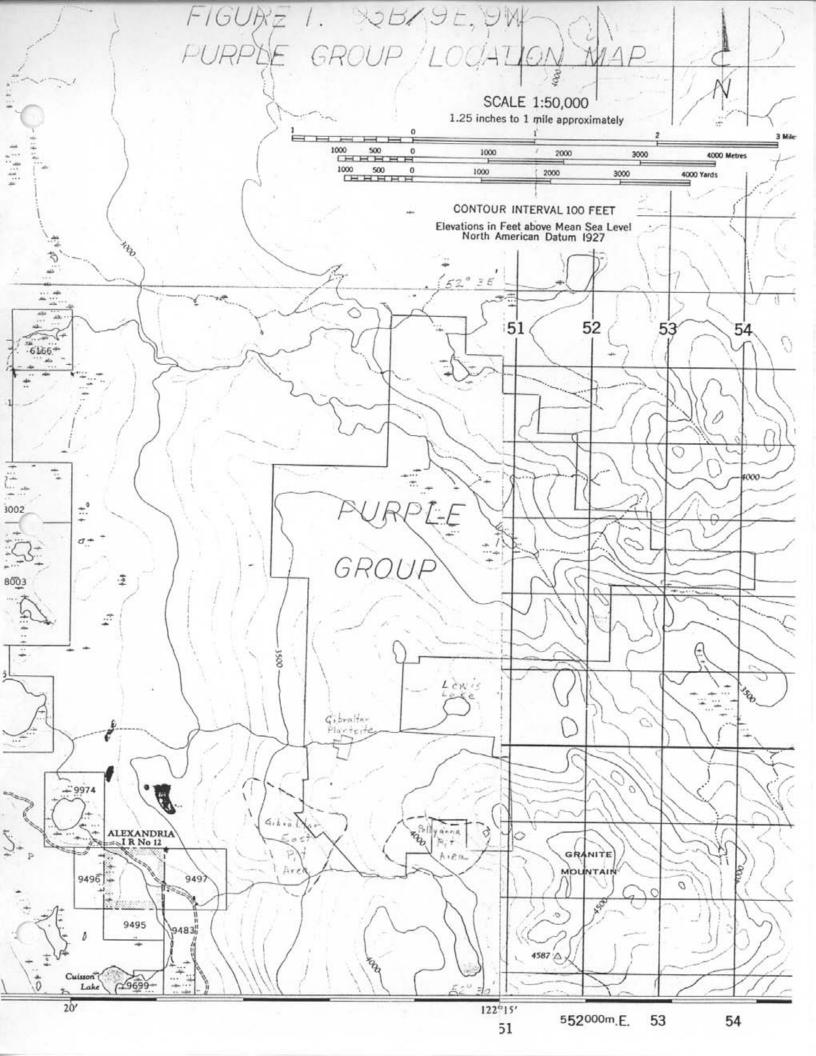
1.	Intro	duction	1
2.	Mine	ral Claims	3
3.	Drill 3.1 3.2 3.3	Program Objectives Results Interpretation	4 4 6
4.	State	ment of Expenditures	6
5.	Concl	lusions	8
APPE	NDIC	ES	9
APPE	NDIX	1. Statement of Qualifications	10
APPE	NDIX	II. List of Abbreviations	12
APPE	NDIX	III. Assay Sheets.	13
APPE	A. B. C. D. E.	IV. Drill Logs (In Pocket 90-04 90-17 90-18 90-19 90-20	rt)
FIGU	RES:		
Figur	e 1.	Area Location Map	ct)
Figure	e 2.	Purple Group Location Map	t)
Figure	e 3.	Drill Hole Location Map - Pollyanna Area (In Pocket	t)
Fionr	a 4	Drill Hole Location Man - Cib-Fast Area (In Poske	۱+۱

1. Introduction

The Purple Group of mineral claims forms part of the Gibraltar Mines permanent property and includes a large portion of the tailings pond. It also includes the northeastern corner of the Gibraltar East Pit and the northwestern and northeastern corners of the Pollyanna Pit. Access to the group is via the main haul road to the Pollyanna pit. The general location of the group is shown in Figure 1.

"The early history of this claim area is somewhat sketchy. It was first described as the Rainbow Group in 1918. A 1925 B.C. Ministry of Mines Report states the "T.H. Jackson holds or held 40 claims in this region, either under option or in virtue of ownership by himself and associates."

In 1925 the area was staked by the Hill brothers as the Pollyanna claims. A 60-foot wide shear system in "granodiorite", showing malachite and azurite mineralization, was exposed by a series of open cuts. An eight foot deep trench exposed a quartz vein 15 feet wide striking N 60° W (magnetic). A grab sample from the dump of this material assayed: gold - trace, silver - trace, copper - 3.5%. Copper mineralization was in the form of azurite, malachite, and chalcopyrite.


The 1928 report indicates five claims being held by F. Conway, Mrs. Conway, T. Thompson, H. B. Hill, and H. F. Hill. The shear system was expanded to a 75-foot width and given a strike and dip of N 55° W (magnetic) / 45°NE. A trench 15 feet deep and 20 feet long was dug to expose a quartz vein 15 feet wide with a flat dip to the northeast. Mineralization consisted of azurite, malachite and chalcopyrite. A vertical shaft was sunk to a depth of 33 feet. Copper stains and chalcopyrite were visible above the level of the water in the shaft and the top three feet showed 2.00% copper, but no gold or silver. Minor cuprite was noted.

In 1949 the claims were relocated by C. E. Johnson and R. R. Moffat as the Copper King claims. Copper mineralization was reported in irregularly placed quartz lenses between shear planes oriented at N 30° W/ 45° E and on noses of folds in a 170-foot wide zone of sheared "granodiorite".

The 1950 report states that three shafts had been sunk previously along a north-south line. These were 25-feet apart. The northern-most one was 10 feet deep and showed no mineralization. The middle shaft showed good mineralization and in 1949 was drained and mined. Half a ton of ore averaging 10.5% copper was shipped to Tacoma, Washington. A grab sample from their dump assayed: gold - nil, silver - 0.1 oz. per ton, copper - 3.3%. The southern-most shaft was filled with water but dump material showed malachite staining.

In 1949 an attempt was made at trenching thirty feet north of the north shaft to cross-cut the shear zone. This, however, was abandoned because the overburden was too deep.

In 1950 they sank a 28-foot deep shaft 120 feet south of the most southerly shaft.

It exposed a light malachite staining on sheared "granodiorite" and a small amount of crushed barren quartz. A grab sample from the dump assayed: gold-trace, silver - nil, copper - 0.3%.

From 1954 to 1956 the claims were staked as the Pollyanna claims by Kimaclo Mines Ltd. They reported the same orientation for the shear system and expanded its width to 230 feet. Mineralization in the form of malachite - azurite - chalcopyrite and traces of cuprite occurred in small and irregular quartz veins which run approximately parallel to the shearing. Another grab sample from the Copper King dump mentioned above assayed 0.6% copper.

Kimaclo Mines Ltd. allowed their claims to lapse and the property was staked by Mr. Robert Glen in early 1963. Keevil Mining Co. held an option on this property in 1963 during which time they performed geochemical and induced polarization surveys and drilled two holes. In 1964, Duval Corporation optioned the property from R. Glen and partially defined 10 to 30 million tons of low grade copper mineralization in the area of the current Pollyanna Pit.

In 1967 the area was restaked as the GG claims by Canex Aerial Exploration Ltd. and Duval Corporation. They describe the mineralized system differently, giving it an orientation of N 35° W/50 to 70° SW. They described the system as a central vein zone, two to five feet thick, flanked by quartz-muscovite schist grading into a foliated quartz-diorite. Streaks and bands of pyrite and chalcopyrite exist in the schist zone.

Stripping of overburden exposed 30 feet of schist and 30 feet of bleached, schistose quartz-diorite. A hand trench 100 feet northeast of the stripping exposed rubble of vein quartz and quartz-muscovite schist. The Copper King shaft was covered by the bulldozing.

The 1969 report give the reserves as 60,000,000 tons at .36% copper. 44,105 feet of N.Q. diamond drilling was done in 81 holes and 200 feet of 5 7/8' diameter rotary drilling was done in two holes.

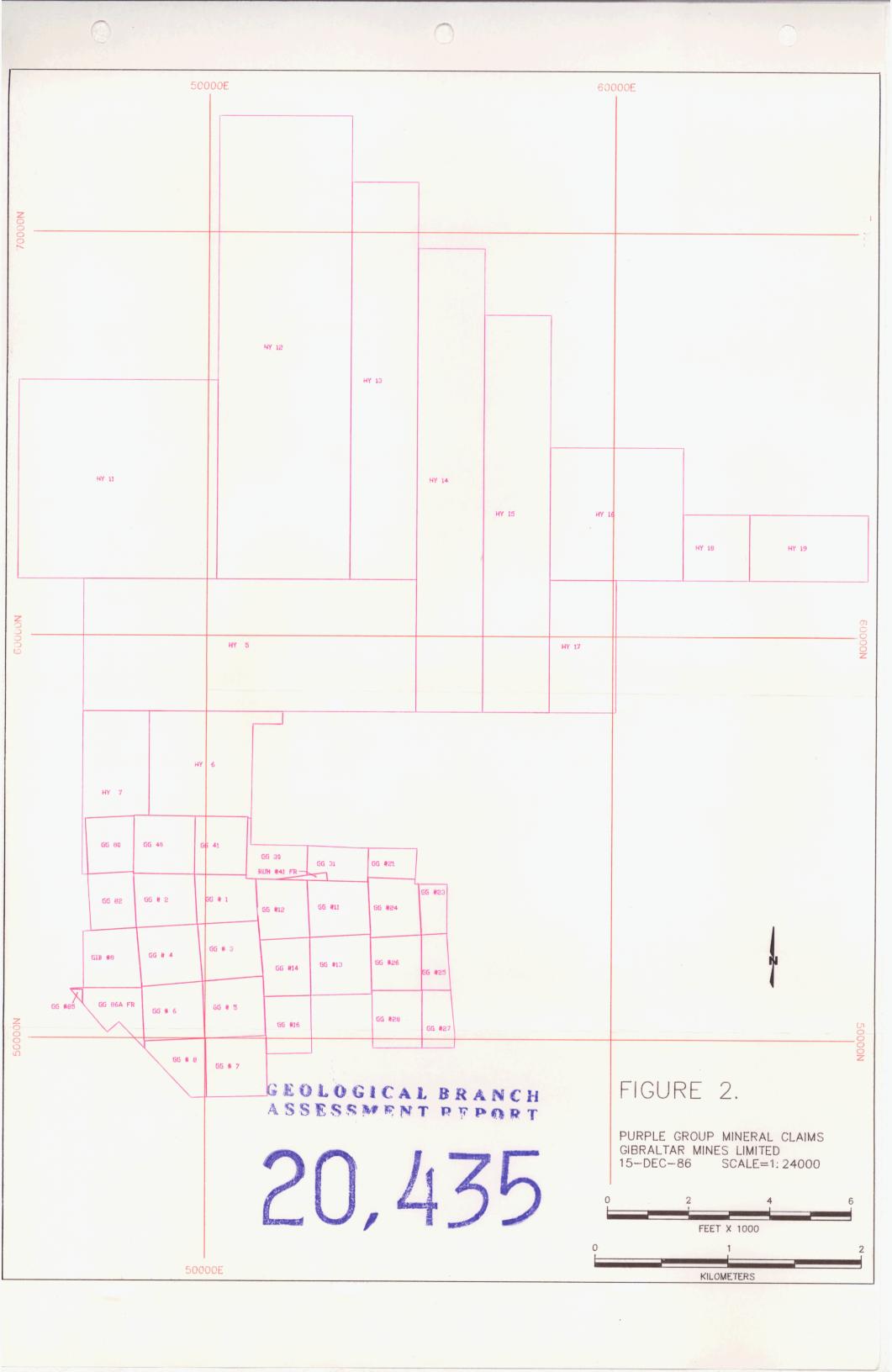
In 1970 a topo-mapping survey was completed. Stripping was done to clear the millsite and 32 diamond drill holes, totalling 1,174', were drilled on the GG claims.

By 1971 the Canex Aerial claims were transferred to Gibraltar Mines Limited." (from "Diamond Drill Report on the Purple Group", 20 April, 1981.

Since the commencement of mining by Gibraltar Mines Limited in 1972, two stage pits have been mined from the Pollyanna area. Another stage is currently being mined farther to the east. One of the drill holes covered by this report was situated in the operating pit to further define ore structures at depth. Four more holes were situated to the west of the Pollyanna Stage 2 Pit and northeast of the Gib-East Pit. These were designed to further define mineralized zones known in the area.

One hole, 264' deep (80.5 m), was drilled within the Stage 3 pit. Four holes were

drilled west of the Stage 2 pit totalling 1,901 feet (579.4 m). Drilling was carried out by L. D. S. Diamond Drilling Ltd. of Site 5, Comp. 13, R.R.#2, Kamloops, British Columbia during the period June 27 to July 19, 1990. All drilling was N.Q. wireline core drilling. All of the core was sent to the assay lab, crushed and assayed, and waste material discarded. Assay pulps are stored at the plant site for a period of one year.


2. Mineral Claims

Claims and leases of the Purple Group are shown in Figure 2. All of the claims belong to Gibraltar Mines Limited. The Group is bounded to the south by Gibraltar's Red Group and to the west by Gibraltar's Grey Group. The group adjoins claims held by Keevil to the east. Pertinent information on the group is listed below.

GIBRALTAR MINES LIMITED
PURPLE GROUP MINERAL CLAIMS

Grouped on 151286

Name		Recorded ddmmyy	Record#	Units	Mineral Lease
ΗY	5	120680	01710	10	
ΗY	6	100578	00675	4	
ΗY	7	100578	00676	3	
ΗY	11	100680	01668	9	
ΗY	12	100680	01669	14	
ΗY	13	100680	01670	6	
ΗY	14	100680	01671	7	
HΥ	15	100680	01672	6	
HΥ	16	100680	01673	4	
ΗY	17	100680	01674	2	
ΗY	18	241180	03025	1	
ΗY	19	240381	03246	2	
GG	85	250865	30669	1	3598 M61
GG	40	280864	28881	1	3598 M61
GG	80	220465	29747	1	3598 M61
GG	82	220465	29749	1	3598 M61
GG	86AFr	091266	39653	1	3598 M61
GIB	#8	200571	62411	1	3598 M61
GG #	2	281064	29234	1	3599 M62
GG #	4	281064	29236	1	3599 M62
GG #	6	281064	29238	1	3599 M62
GG #	5	281064	29237	1	3600 M63
GG #	7	281064	29239	1	3600 M63
GG #	8	281064	29240	1	3600 M63
GG #	16	281064	29248	1	3600 M63
GG #	1	281064	29233	1	4136 M79
GG #	3	281064	29235	1	4136 M79
GG	30	280864	28871	1	4136 M79
GG	41	280864	28882	1	4136 M79
GG #	11	281064	29243	1	4137 M80
GG#	12	281064	29244	1	4137 M80
GG #	13	281064	29245	1	4137 M80
GG #	14	281064	29246	1	4137 M80
GG #	21	281064	28253	1	4137 M80

GG	#	24	281064	29256	1	4137 M 80
GG		31	280864	28872	1	4137 M80
RUM	1 #4	1Fr	200470	57295	1	4137 M80
GG	#	23	281064	29255	1	4138 M81
GG	#	25	281064	29257	1	4138 M81
GG	#	26	281064	29258	1	4138 M81
GG	#	27	281064	29259	1	4138 M81
GG	#	28	281064	29260	1	4138 M81
			To	tal Units	98	

3. Drill Program

3.1 Objectives

The drill hole drilled within the Stage 3 Pit area was designed to add definition to an ore system near the north wall, and to check for the footwall of the system. Holes west of the Pollyanna Stage 2 were designed to test the orientation and continuity of ore systems previously drilled between the Pollyanna and Gib-East Pits.

3.2 Results

The drill hole locations are shown in Figures 3 and 4. Drill sites were established and resurveyed after drilling with a Geodimeter 422 Total Station Survey Instrument.

Drill logs are included in the pocket of this report. Total copper assays are available for all drill core, and oxide copper assays are provided for selected samples only. All molybdenum reported is MoS₂.

Core is sampled in 10-foot (3.048m.) sections, crushed and passed through a Jones Splitter. The product is pulverized to minus 100 mesh and rolled. A 1/2 gram sample is weighed out and digested in a mixture of Potassium Chlorate, Nitric Acid, and Sulphuric Acid for a period of 30 minutes. Following digestion, each sample is bulked to 10% HCl and assayed in a Perkin Elmer 3030 Atomic Absorption Sectrophotometer.

Normal Mine Phase Quartz Diorite is the main host rock in this area, consisting of about 50% pale green saussuritized plagioclase, 20% dark green chloritized mafics, and 30% medium grey quartz. A variety of alteration phases exist displaying various combinations of quartz, sericite, chlorite, epidote, and calcite. Textures are generally medium grained, equi-granular, but rock can be highly altered and sheared in places.

White Quartz Diorite or Leucocratic Phase is a light colored medium grained, equigranular to seriate textured rock with abundant quartz and white plagioclase feldspar, with only about 5 to 10% chloritized mafics. In a few areas, this rock occurs as dykes with chilled margins. In other areas the rock is quite massive and displays gradational contacts with surrounding rocks.

Granite Mountain Phase is considered the inner phase of the segregated Granite Mountain Pluton. It consists of about 40 to 45% quartz, 40% plagioclase, and 15%

chloritized mafics. It is generally coarse grained and barren.

Stage 3 Pit Area.

90-04, in the northwest corner of the Stage 3 pit, was collared at 3960' (1207 m) and drilled to a depth of 264'(80.5 m). The hole was drilled through 50 feet (15 m) of blasted material, with coring starting at 30-feet (9 m). Mine Phase Quartz Diorite was intersected from 50-feet to 106-feet (15 m to 32 m), and from 148-feet to 264-feet (45 m to 80.5 m). A zone of Leucocratic Phase rock was intersected from 106 to 148-feet (32 m to 45 m). This was a fine grained rock composed mostly of quartz and white feldspar, with only 5 to 10% chlorite. The contacts with the Mine Phase rocks were fault contacts. The mineralized zone started at 70-feet (21 m) within the Mine Phase, spanned the Leucocratic Zone, and ended at 200' (61 m) in the lower Mine Phase intersection. The ore zone totalled 130 feet (39.6 m) of .35% copper, .019% MoS₂.

West of Pollyanna Stage 2 Pit.

90-17 was drilled directly to the west of the Stage 2 Pit. It was collared at 3907-feet (1191 m), cased to 33-feet (10 m), and drilled to 487-feet (148.4 m). Mine Phase Quartz Diorite was intersected to 384-feet (117 m), Leucocratic Phase to 483-feet (147.2 m), and Mine Phase to the end of the hole. Leach cap extended to 120-feet (36.6 m) and an oxide zone continued to 253-feet (77 m) characterized by weak to strong limonite staining, and some malachite. No supergene was noted. A weak ore zone was encountered from 150- to 370-feet (45.7 m to 112.8 m), yielding 220-feet (67 m) of .24% copper, .006% MoS₂. The upper portion of this zone was within the oxide zone. Though drill spacing is not adequate here to fully define the zone, intersections indicate a narrow zone striking 315-degrees. The deep leach cap and oxide zones produce a fairly high strip ratio for this ore.

90-18 was drilled along the main haul road to Pollyanna. It was collared at 3841-feet (1170.7 m), cased to 52-feet (15.8 m), and drilled to 507-feet (154.5 m). Narrow zones of White Quartz Diorite are interspersed with Mine Phase Quartz Diorite down to 330-feet (100.5 m). Next, a Leucocratic zone continues to 445-feet (135.6 m) where it is in fault contact with an altered zone of Mine Phase rocks. This rock type then contacts with Granite Mountain Phase and Leucocratic rocks at 479-feet (146 m). Oxidation extends to a depth of 260-feet (79.2 m). Several fault systems were encountered. Two ore zones exist, one beginning at the top of the hole and extending to 200-feet (60.96 m). It is highly oxidized, containing limonite, malachite and a green copper-rich clay. The zone produces 110-feet (33.5 m) of .65% total copper, .47% oxide copper, and .004% MoS₂. The second zone extends from 380 to 500-feet (115.8 to 152.4 m) for 120-feet (36.6 m) of .31% total copper, .033% MoS₂. The upper zone is part of a northerly trending zone following the overburden contact in this area. The lower zone appears to be part of a second zone striking at about 315-degrees. The waste between the two zones will serve to limit ore projections in the Gib-East area.

90-19 was drilled north of the Pollyanna haul road and was designed to test the extent of ore intersected with hole P54. It was collared at 3864-feet (1177.7 m), cased to

32-feet (9.8 m), and drilled to 500-feet (152.4 m). From the top of the hole down to 355-feet (108.2 m) the rock was predominately Mine Phase Quartz Diorite; a leucocratic rock extended down to 418-feet (127.4 m) where it contacted Granite Mountain Phase rocks to the bottom of the hole. Leach cap extended to 85-feet (25.9 m) and the oxide zone to 200-feet (60.96 m). No supergene zone was noted. A narrow, oxidized ore zone was encountered from 190-feet to 240-feet (57.9 to 73.2 m), giving 50-feet (15.2 m) of .62% total copper, .07% oxide copper, and .012% MoS₂. This zone is on strike with mineralization intersected in 90-17, P3, and P54, but the oxidized nature of the ore must be taken into account before the two zones are joined. The ore in this hole may be an isolated pod associated with a northerly trending fault system. A second zone from 440-feet to 460-feet (134.1 to 140.2 m) yielded 20-feet (6 m) of .7% copper, .026% MoS₂. This was centered around a shear zone and contained several significant mineralized quartz veins.

90-20 was drilled north of the haul road near hole P54 in an area of questionable ore projection. It was collared at 3854-feet (1174.7 m), cased to 32-feet (9.8 m), and drilled to 407-feet (124 m). Rock was variably altered Mine Phase Quartz Diorite down to 134-feet (40.8 m), then Leucocratic Phase to 354-feet (107.9 m). A narrow zone of Mine Phase was encountered down to 292-feet (89 m), then Granite Mountain Phase and Leucocratic Phase from there to the bottom of the hole. A major fault system was encountered from the base of the overburden at 32-feet (9.8 m), down to 87-feet (26.5 m). Leach cap extended to 70-feet (21.3 m) and the oxide zone to 77-feet (23.5 m). There was no supergene enrichment. No ore was intersected in the hole and it will serve to limit the optimistic projection from P54.

3.3 Interpretation

There is some potential for a low tonnage ore body in this area. The upper oxidized zone appears to be excellent leaching ore that could be mined and treated in Gibraltar's SX-EW plant. The deeper ore forms two weakly connected ore systems striking at 315-degrees. Little work has been done here on the interpretation of fault patterns and these could alter the ore picture. As well, a complex mixture of rock types exists in this area. More drilling is required to define the systems reliably.

4. Statement of Expenditures

June, July 1990 Diamond Drilling, Purple Group

2. Diamond Drilling Costs

Direct	Footage	Charges	
Hole#	Footage	Charge/ft	Cost
90-04	264	\$11.50	\$3,036.00
90-17	487	11.00	\$5,357.00

			11.00	\$5,577.00 \$5,500.00 \$4,477.00		
	-	2165		\$23,947.00	\$23,947.00	
	Man Hour 14 man h	rs nours @ \$24	.00/hour		336.00	
	Mud Char 12 pails	rges s @ \$203.50	/pail		2,442.00	
	Lost Equation 1-NQ Con	uipment ring Bit			440.00	
	ŗ	Total Drill	ing Charg	es		27,165.00
3.				to July 19		220.00
4.	Assay Co 200 Copp	osts per/Moly As	says @ \$5	.00/assay		1,000.00
5.	Supplies	s eboxes @ \$6	.17			617.00
6.	6.1 Fie C. Tru 34 P C. Ruc	el Costs eld Work and deau, Jun. hrs. x \$20. dy, Sept. 1 hrs. x \$20.	26 to Ju 76 per hr 2 to Oct.	1. 19, 1990 6, 1989	705.84 816.00	
	G. Bys 8 hi M. The	pervision, south, Jul. rs. x \$37.0 on, Jun. 29 rs. x \$26.1	3, 1990 0 per hr. to Oct.	ing, Report 22, 1990	296.00 1,308.00	
					1,817.84	1,817.84
			TOTA	T		31,149.84

5. Conclusions

This drill program has added to the potential of this area, but further drilling is required to substantiate the continuity of the systems outlined. More information of fault displacements and rock type changes could create changes in the geological picture.

Madeline R. Thon Mine Geologist

APPENDICES

APPENDIX 1. Statement of Qualifications

- I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:
 - 1. I am a geologist.
 - 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geology in 1966.
 - 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
 - 4. I personally logged some of the core of this drill program.

Garry D. Bysouth

APPENDIX 1. Statement of Qualifications

- I, Madeline R. Thon, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:
 - 1. I am a geologist.
 - 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geological Science in 1978.
 - 3. From 1978 to the present I have been engaged in mining and exploration geology in British Columbia.
 - 4. I personally logged most of the core and assessed the results of this drill program.

Madeline R. Thon

madeline R. Shon

APPENDIX II. List of Abbreviations

azur azurite
bo bornite
cal calcite
carb carbonate
chl
cp chalcopyrite
dissem disseminated
ep epidote
foln foliation
gg gouge
grn grained
hem hematite
lim limonite
mal malachite
mag magnetite
N.M.P.Q.D
py pyrite
qtz quartz
rx rock
ser sericite
str strong
stkwk stockwork
wk weak
Wt. Q.D

APPENDIX III. Assay Sheets.

EXPLORATION

Date 30 Aug. 19.98

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂	90-17		
60217		.3/	.003 -	360-370		
18		-16	. 006			
A		.14	. 005	_		
30		-21	. 002			
21		./2	, 003 -	+		
22		17	. 003 -	+ 1		
23		.26	. 008	-		
24		-19	. 004	+		
25		./4	.004	-		
26		.17	.008	-		
27		.15	.008			
28		.08	.001	V		
29		-18	. 001 -	480=487		
0254		.26	.001	90-18	290-300	
02.55		.08	-001	-		
<i>56</i>		.22	. 005 -	+		
57		15	.601	-		
58		./6	.005			
59		,22	. 003 -	_		
60		.14	.003-	_		
6i		. 19	. 003	_		
62		.16	. 010 -	-		
63		. 22	. 009	+		
64		.42	.017			
65		.41	06-	+		
66		.41 .22 .27 .29	003-	_	(70)	
67 68 69		.27	.012	_		
68		.29	.012 -	+		
69		. 22	.200	_		
70		-31	-020			
71		.41	.010-			
72		.42	-035			
73		.33	. 004			
ssay Lat74		.22	.003	500-507 Assayer		11.

ASSAY CERTIFICATE

Check Exploration

Date Aug 29 19.90

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂			
60135		,06	.001	.55	1002	150-100
36		.06	.001	.05	,001	
3)		.04	,001	105	. 20 1	
38		, 05	.001	105	yere K	
39		.02	. 001	101	, 002	
40		,04	1002	.05	.003	200-21
60093		, 80	. 019	. ,74	. 01 8	200-21
60093		1,04	, 004	1.02	1008	
95		.40	.001	. 37	202	
96		. 51	.004	-52	1004	
97		. 20	.025	.18	1026	2 w -2
				· -		
60276		,04	1001	02	,007	310-32
27		,02	.001	, 01	.006	1
ッ <u>つ</u> つ名		-02	, 50)	0.2	1003	
79		. 03	,001	.01	.005	340-350
			(A)	12 1		
			*			
%						

cc: Assay Lab.

Assayer

ASSAY CERTIFICATE

EXPLORATION

Date 28 August 19.90

Sample No.	% Ox. Cu.	Total Cu.	% MoS2			
60230	* .57	. 72	.002 -	90-18	52-60	
31	* .29		.003 -			
32	* .34		,002 -			
33	* .47	.64	.002			
34	* -3/	.45	.002	_		
35	+ .43	.60	.002	-		
36	* -17	. 24	203			
37	* .22	,22	.002			
38	* .43	.61	.003 -			
39	+ .28	.37	-004			
40	* .19	.30	-002			
41	* .27	.43	-002			
42	* .27	. 38	.002 -	! -		
43	* .60	-82	.007			
44	* .30	. 40	.001			
45	* .14	./6	.002	_		
46	* .10	14	.002			
47	* .06	.14	.002 —			
48	* .04	.20	.004			
99	* 6.01	.45	.003			
50	* (.01	.13	-022			
51		19	-008	-		
52		. 12	.002		1	
53		.09	.002	90-18	280-290	
60184	* .09	.13	.002	- 90-17	38-40	
85 86 .	* .19	.19	-003		50	
86.	* .14	.15	-003 -	- 60		
87	* .21	.24	.006 -	(96)		
88	* .07	./2	.002 -	4		
89	* .05	.12	.001	•		
90 91	× .01	-10	.002 -			
	* .01	.14	.004+		V	
92	* 4.01	.04	-004 +		110-120	

cc: Assay Lab.

Assayer Comme

ASSAY CERTIFICATE

EXPLORATION

		-			0
Sample No.	% Ox. Cu.	Total Cu.	% MoS₂		
60193	* 6.01	. 08	.004 -	90-17	120-130
94	* . /3	.16	.003	-	
95		.19	.002	T	
96	* .22	.19	.004		
97	r .29	.40	.004-		1
98	* .29 * .02	.07	.003	_	1
99	* .19	. 23	.005	_	
60200	* .02	.j0	.002	_	
01	* .07	.18	.005		
02	* .07	.25	-008 -	_	
03	* 4.01	. 19	.011 -	-	
04	* (.01	./5	.002		
0.5	* <.01	.21	-012	<u>-</u> -	
06	* (.01		.007	_	V
07	,	./6	.020		260-270
7					
				(44)	
			4.4		
Ĭ.					
					31

cc: Assay Lab.

Assayer Comme

EXACRATION

Date 28 Aug. 19.90

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂	90-19		
60100		. 11	017-	270-280		
01		,05	.003-	1		
02		,13	,004-			
03		. 05	,003 -			
04		.06	,003			
05		.07	.003			
06	7	.05	.003 -	-		
07		.08	.002 -	-		
08		.03	.000 -			
09		,26	.006 -	.		
10		. 08	.002	_		
11		,06	.003			
12		.04	.004	I		
/3		,04	1003	-		
14	1	./2	.016	_		
15		. 06	.002 -	-		
16		,04	.002 -	-		
17			,049 -	-		
18		· 90	,003 -	-		
19		, 19	.015	-		
20		. 08	,004 -	-		1
21		.14	.003	- 1		
22		. 05		- 490-500	P	20-10
60151		29	.011	, 28	.013	150-16
52		.25	,006	. 2.5	.006	
43		.17	006	./6	208 (06)	
54 .		. 33	008	. 33	,507	
55		.19	805	119	.009	
56		. 22	026	, 22	.034	
57		* .47	. 008	.45	.073	
58		* .45	. 018	,50	1 =24	
59		+ 34	-019	.50	.029	-
6 0		+ .60	. 0/0	1.55	.015	5 2

cc: Assay Lab.

Assayer Conniè

ASSAY CERTIFICATE

EXPLORATION

Date 28 aug. 19.90

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂	K516	12 Ks	90-10
60161		1.00	.016		,019	250-260
62		1 . 75	.033	1.82	.038	
63		* 35	. 006	, 2 3	427	
64		* .48	.013	.47	.019	
65		* .33	.020	132	.025	
66		+ .39	. 000	.37	1007	
67		* .54	,011	-,5/	1014	
68		+ .60	.004	.7/	.005	
69		,20	, 608	.22	,010	
70	1	,15	.003	.12	.004	
71		,24	.010	24	.074	
72		.29	. 011	,26	. 0/3	
73		. 23	.001	:19	1003	
74		.27	.007	.22	.011	400-41
60208		. 22	/	90-17	270 - 280	
09		. 28	.006 —			
10		,39	.010 -	_		
11		.39	.017			
12		.39	.001-			11
13		24	.001			
14		./6	.011	-)	(1)	
15	n n	,20	- 001 -	¢ .	(4)	
16		.20	.001-		360-300	
		li di				
14						
4						
	-					

cc: Assay Lab.

Assayer Conne

O Exploration Repeats

Date Aug 28 1990

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂			
-93		80 1. 34				
		Auks		was		
60452	90-08 180-190	116	.005	16	005	
53	t	124	1006	25	007	
54	. 643	13	1604	14	004	
55	1 4	13	,008	13	009	
56			,603	09	006	
57		15	1009	14	012	
58		112	,005	: - 12	006	
59	259-261	113	100B	/3	0/2	
60093	17	90-19				
94	13	200-210	,			
	.16	2.2	2			<u> </u>
95 96	,04	2.3				
97	01	24				
			Tight and the second			
8						

cc: Assay Lab.

EXPLORATION

Date 27 Aug. 19.90

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂			
60076	* .01	.02	.001	90-19	22-40	
77	* .01	.01	. 002-		52	
78	* .01	.01	.003 -			
79	* .01	.03	. 005			
80	* .01	-02	. 002 -	-		
81	* .01	.02	.001	_		
82	+ .02	. 05	.006			
83	* .02	.03	.005			
84	* .02	.09	.004 -	-		
85	* .02	.06	. 003	-		
86	* .02	.04	-005 -	-		
87	* .03	.03	.003	-	-	
88	* .05	.07	. 007	· -	\	
89	+ .02	. 65	.002	-		
	* .05	./0	. 002			
90 91	* ,06	,06	.004			
92	* .05	.46	.029		1	
93 94		* .74	.018	-		
94		4 1.02	. 008			
95		.37	,002-		1	
96		. 52	.004 -			
97		. 18	, 026 _		1	
98		.07	,005			
99		07	.00ef	90-19	260-270	
60276		. 02	. 007	90-20	310-320	
77		,01	.006			
78 .		07	003			
79 80		.04	. 005			
80		.04	. 003			
81		. 02	. 002			
82		.06	.003			
83		.10	.012			
84 av Lab. 85		.04	. 008		390-900	

cc: Assay Lab. 85

22

005

Assayer Connie

EXPLORATION

Date 27 Aug 19.90

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂	90-20	
60123	¥ 103	.04	,002 _	32-40	
24	* .03	, 05	002 -	50	
25	* .05	.09	. 007		
26	* .06	./6	.008 -	+ /	
27	* .03	. 20	.005	+ (
		,04	.002 -		
29		.04	.001	-	
28 29 30		,03	.002 -	- /	
31		.06	.002 -		
32		.08	.005 -	-	
33		./3	, 003 -		
34		,07	. 001 -		
35		. 05	. 002	<u>-</u> - \	
36		.05	. 001		
37	1	,05	. 001		
37 38		,05	.001 -		
39	100	.04	. 002	+	
39 40		.05	.003		
41		. 03	.003 -	in the same of the	
42		,06	.003 -		
43		. 02	. 003 -		
44	1	.02	,002 -		
45	*	.05	,003-		
46		.01	.001 -		
46 47 48 49 50		.01	.001-		
42		.04	.002~		
49.		.01	.002 -		
50		.02	.001	300-310	
Ø			-001	000 010	
<i>(</i> 52)					¥
33					
53 5₹					

cc: Assay Lab.

Assayer Connie

ASSAY CERTIFICATE

OPLORATION (Definition delling)

Date 6. J.ULY..., 19.9 a.

Sample No.	% Ox. Cu.	Total Cu.	% MoS ₂			
				90-04		
8c133	La moditi	.43	037-	100-110		
34		. 34	.019 ~			
35		.60	.081			
36		. 36	.009			
37		.35	.012			
38		.29	,022	. \		
39		.70	.010			
40		. 21	.009			
41		. 20	908 -)		
42		. 27	- Pao.			
43		.06	₀₀₂ -			
44		.07	.002	/		
45		.08	,003 -			
46		.07	. 003 -			
47		08	.005	V		
48		.06	.003-	250-264		
				90-03		
46351		. 24	. 800.	90-100		
52		.41	.015	(
53		. 35	ران،	7		
54		.43	.013 —			
55		.38	,022 -	-)		
56		.29	.012	- (
57		. 23	.007			
58		, 23	.007 -	- 1		d.
59		.13	.006	-	5-2-1	
60		.21	.009 -	- /		
61		, 22	.007 -	- (
62		32_	.015	-)		
63		.39	. 013	- 1		
64		. 26	,012	220-230		

cc: Assay Lab.

Assayer

ASSAY CERTIFICATE

XPLGRATION		

Date 5. JULY ... 19.90...

Sample No.	% Gx. Cu.	Total Cu.	% MoS ₂		
				90-02	
46278		.12	006 -	80-90	
79		14	.005		
80		.21	. 003		
81		. 58	.040		
82		.37	.016		
83		.39	.115		
84		.18	.008		
85		.10	.005 -		
86		.17	.025		
87		.21	008		
68		.19	.002 -	and the section of th	
89		.13	.003 —	190-200	
				90-04	
1126		.04	-002	30-90	
27		04	. 003	1	
28	-	, 08	. 001		
29		. 09	.002		
3c		.26	.007		
31		.20	.007)	
32		.37	.016	90-100	
	*				
		-			
3)					

cc: Assay Lab.

Assayer . D. A. W.

HOLE NO. 90-17 SHEET NO. 6 OF 8

						т			г			, <u>-</u>					<u> </u>
		ROCK TYPES	CORE	GRAP	HID Veins	Width		Est	BOTTOM DEPTHS LEACH CAP	}	Est!mated		AS	SAY R	ESULTS	S	
S S			8일	LO(%	LIM. ZONE	Footage	1		SAMPLE	%	%		Estimated
ete	Feet	AND	24	atio atio taa	Core	of	Mineralization	, ,	SUPERGENE	1	Core	R.Q.D.		,,,			
™ X	щ	ALTERATION	< TO FOLIA	Foliation Alteration Footage	Axis	Vein		Ру	Remarks	Elocks	Recovery		NUMBER	Cu	Mo		Grade
0.00		-			150	2 "	atzv who cook - good		(hem) -		92%					_ ,	
		-			V 20+40	1	1 (/ (1	720		ı		. •	.3/	
			» VWK		1/3	1/16 x 2 1/20	1/2-dl-gx2	1	_	1		52%	60212	.21	.001	3590	127
			~ ~		40+60	1/2 × 2	gte.che- 4×2	%	_	317		-		-			.177
3.05	_10			32	0/50		Otz Vn-du-p		_	<u></u>		320				·	
					1 50	410	Gtzvm-de-go			1							
		A few rerrow zones _			/ 30 ×3	(40 ×2)+/8	12		_	1	97%			_			
		of whitening	ND		1/10	1/10	gto-de-carb-op-(py)	<.12		327		57%	60213	.z4	.001		.25%
		, i			1 60120 - 10		gta-che-p.		_			1					
6.10	_20			33	> / 20	1/8	otz-che-epid-cp			}		330			`	· · · · · ·	
					- 50	1/4	gtz-che-go-caro		_	}	92%						
		Ţ. T.	ND					1	2 / m stain.				. 214	16	.011		. 08%
		-	NV		30 44	i	contigg-hom.	0%	} hem stain.	337		42%	60214	120			- 5,
9.14	30	1		340	2 / 30	1/4	otz.chl-carb-cp-him.		Ξ	1		340					
3.14		•					gtz-Vn-(che-q)							-		,	
					1/20	1		0%	<u>-</u>]	96%		i				
			ND		1 30 13	1/20 13	g fr. che- cp x3	0/0		-/-	""	67%	60215	.20	.00/		. 13/
			_		120×4	Y10 x4	gtz-de_carb-cp x #		Circular chloutic-	347		1	602/5				1,0%
12.19	40	_		350		1/20×10	atz-che carb-en-co NIO		fragment			350			<u> </u>		
					1 5 ×3	1/20 × 3 d	gtz-de-cp-carb-rp			1	200						
		=			30	6"	gtz-ser-chl-carb-cp	,	_	1	95%	1			001		
			ND		10	3"	atzVn-chl-carb-cp-(mo)	0%	=	357		59%	60216	.20	.00/	,20	.25%
				ا ا	5×1	r .	glz-chl-carb-cp		_			1				35A5	
15.24	50			36	0 10° 5y3	1/8 1/20 x3	1/2 chl. ep. cp +3	}		 		360				35H5	
					\ / 5. XZ		gtz-chl - carb-vup- gp xz			1	100%						
			NP		/ ^-	1	<i>V</i> .	1.	_	1	1	92%	/	. 34	.003		.14%
٨					150	1/8	gtz-chl-ep-qp stz.chl-ep-qxz	0%	-	367		10%	60217				,,,,
18 29	ഒവ	 		37	0 1 10 x2	1	1912. dr. 60-1016-1042		-	1		370					
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	7		· · · · · · · · · · · · · · · · · · ·								

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-17
SHEET NO. 7 OF 8

f		-	1	T					I	BOTTOM DEPTHS			1			ESULTS		
		ROCK TYPES	CORE	GR/	APHI	Veins	Width		Est	LEACH CAP	-	Estimated		AS	DOAT N	ESOLI) 	
ა			[8일	L	.OG				1 %	LIM. ZONE	Footage	Latingto		SAMPLE	%	%		P-41
Meters	et	AND	0₹	tion the	Ď.	c to Core	of	Minoralization	/°	SUPERGENE	- 10000	Core	R.Q.D.	SAMI LL	70	·°		Estimated
M ⊕	n Q	11 TCD 4 TION	무금	101	o te	ig Core		Mineralization			Blocks			NUMBER	C.,	140		
0.00	0	ALTERATION	< TO C FOLIATION	A Fo	P.	Axis	Vein		Ру	Remarks	<u> </u>	Recovery		. TO M. B.E. T	Cu	Мо		Grade
		-	-	Ш		5 X2	18 XZ	gtz. de ep carb - Gpy XZ		_	-							
		_	1	111		1	1/20 X Z	ete the goxz	}	epidate	7	98%		ı				
		_	1 .	111		1	ľ	1//	1	7.4	1		12%	60218	.16	. 006		. 20%
			WD		1	20+16	1/16/2	cht cart gg-hem XZ	4.1%	177	327		1					. 2-6
		_	-	111		2013	1/8/3	gtz-de-ser-cp x3	ļ	_	_							
3.05 گ	_10]	+++	380	/ 3 5	18	atz-che-carbi-go	 		-	<u> </u>	<i>3</i> &					
		_	NP	111	V	10 x4	1/8 +4	atzent-carb-py-cp X4		-	1	100%						
			1 ~ ~	111	ľ	10	1/8	gtz -sercine) . vugs - cp	1	-	1	100 %						
		384- 483/	+ + •	$\ \ \ $	l,	612		gtz per-cp	13%	-	307		80%	60219	,14	,005		1267
		Leucocratic Phase	uwk.	$\parallel \parallel \parallel$	P	15x2		ytzVm-ser.py-cp XZ		_	387		, ,					7.0
6.10	20	Mainly seriate bestured			390	/30 KZ	1/24 7 2	at ser-che-carb-cpx		-	-		390					
		w/narrow Zones of =		Ш	1	20	1/8	gtamudel.ca. b.cp		-	-							
			1		r	130 130+5	1100	Gonze		-	1	93%						
		Sericitic shearing.	60°		ľ	/ 10×2	120 x Z	gt =- ser-che - cp x =	0%		1		4.0	60220	.21	.002		.247
		_	V.WK.		ľ	/	1//0 *2	gtz.de.cart-gxz	1		397		40%	600	121			
		_	···		, /	1.	48+2 + nre	9/2-carb -cp w/gtz-cho-	ep(cp) e	nvel.	4] ,					
9.14	30ــ		1	+++	400	20×2	V16 XZ	str-ohe-carb-gpx2	 	-	Ī	ļ	400					
		-	1		/	10 x 2	1/20 X2	gtz. purcpx2		-	1	and					.19	
			1		[.	120	hee	te-ser-Mosz	1	-	1	98%					3500	
		(-	- ND		ļ	4	.~	1	0%	-	Ⅎ ,		50%	60221	.12	,003		.15%
		(-	-			15+10	1/20 + 1/16	9 tz-chl-per- (4) XZ	-	<i>.</i> -	407		 "					17-16
12.19	40	\ =	7		1/0	20 XV	1/10 + 1/10	gto cht. pu cptz			7		710					+ M.Sz
. 2.13		5.12	1	$\dagger\dagger\dagger$		30×3		9/2. ser che - carb - cp x3	<u> </u>	•	1							
		Fault Zone	1			150		<i>y</i>	1	-	1	71%	1					
		70% og 9	Gu					Carb-gold.	0%			'' "	1.0	2 2 2 2	,	,003		100
		90% bikn 1000	+0		7	30	2/2"	Bladen - W. carb	1 /2	-	417		10%	60722	. //	1005		130
		1. 6 WHE CON	100K.			10	1/10	gtz.ch.ser.carb-4			-] ,,					
15.24	_50		1	$\parallel \parallel$	120	130×3	1/10 1/8/3	1 to- ser (61. cp, 3	<u> </u>	-	1		420					
		-	1			10	1/10	gtz-de-cub-ip	1		‡	96%]
			₫		1	1 15+ 60		gtz-che-ser-cp x2	1	-	_	70%						
		_	J ND.			/4	2 " 2	gfz- per the cab (cp)	0%	-	1/2-		48%	60223	.26	.008		112%
2		_] "".		k	// ,			1 ("		427		1486	60700				
10.00	60	-	1		4/30	1 20	1	atz. Chi-carb-(1p)	1	-	╡		130			1		
113.23	للعب	!		للله	/- 1	, pro	11/16	1912-111-1111	<u> </u>	<u> </u>		I	1730		L	<u> </u>	L	·

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-17 SHEET NO. 8 OF

		DOCK TYPES	HZ Z	GR/	APHI	dvaina	Width		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	S	
Meters	et	ROCK TYPES AND	< TO CORE FOLIATION	tion tion	OG	veins e < to	of	Mineralization	%	LEACH CAP LIM. ZONE SUPERGENE	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
0.00	₅ Feet	ALTERATION	스틱	Folla	Foot	Core Axis	Vein	Willer dil2d (1011	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Mo		Grade
						20	1/2	gtz-chl-sar-cp-py gtz-chl-carb-cp	4.1%			100%		-				
		- -	70° Wk.			30 x 4	1/4 420×4	gtz-chl-corb. ip	*4	=	1 37		57%	60224	. 19	.004		.142
_3.05	_10	-	1 1 1 1		440	30	74 400	atz-che-cost			107		440					,,
						100	he 14	Dearb gg		-		100%						
		- -	86 86		1	(3. x2)45	1/11 ×3	gtz-chl-ser-gx3	0%.	=	447		62%	60225	.14	,004	. /8	.11%
6.10	20		4.0		450	16x3	1 × 2 X1 + (1/4 × 2)	ate-Chr. carb x 2					150				3455	
-	-	- -	- -			1300	1/2	gts.ds-per-ep		=		100%			-			
			מא			50 ×2	1/242	Otr-the cart X2	8%		457		73%	60226	.17	,008		.09 7
9.14	30ــــــــــــــــــــــــــــــــــــ			Ш	460	100		GhVm. cart. Other cp-se					460					
		-	1			30×4	116 4 4	g to be of 44 contible good	7	- -		907						
		Fault Zone ~20% gg ~80% Bikn cone :-	ND			/20 /30	1/20 1/10	carbyg - hem	c.1%		467		36%	60227	.15	.008		.112
12.19	_40	~ 80% Bikn come :-		Щ	470	139 15x2	1/20×2	ori-chi-cox2	sy_		<u> </u> 		470					
		-	1			60A 145×3	1/8×2)+/16	gtz.che.ep.(cp) x4				98%						
		-	DA		,	195	1/6	gtachl. py	41%	=======================================	477		89%	60228	.08	,001		.00%
15.24	50	-	1	\coprod	480	/95 X4 /3 X 3	48×3	gt. sw-cht. cp. cp.	3		<u> </u>		480					
		483 - 487'	ND		1	P -	11/2	gtz-ch. cart - cp gtz-do-cart-q.	0/			100/	94%		10	,00/		182
j .		Nm PaD				130×10 145+60		gtz.che-ep-autio)xo	,,,		487		487	60229	.18	,00)	.14	100
18.29	60	E.O. H. @ 487'	1					m.R. Jan			<u> </u>							

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-4
SHEET NO. 1 OF 5

LOCAT	TION	POLLYANNA EAST	В	EARI	NG		LATITUDE _	50	115,30 N		SIZE	_N. G	D.W. L	OGGE	D BY	5.D.By	Isouth
DATE	COLL	ARED _30-June - 19	90 L	ENGT	H26	<u>,† '</u>	LONGITUDE _	5 1									
1	DATE COMPLETED 30-June-1990 DIP -90° ELE								3960.12				_		•		
		ROCK TYPES	ORE	GRAPI	HID Veins	Width		Est	BOTTOM DEPTHS		Estimated		AS	SAY F	RESULT:	3	
Meters	Feet	AND	O C(tion tion ga	e < to	of		78	LIM. ZONE _ SUPERGENE _	Fostage	Core	R.Q.D.	SAMPLE	75	%⋅		Estimated
0.00	S Fe	ALTERATION	< TO CORE FOLIATION	Folla Altera Foot	Core Axis	Vein	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
_3.05	10	Cosing To			•												
6.10	10	Blasted Area 30'-250 rock in this zone has been dislocated by blasting - however,	7 0	30	5	1/6 1/10×3	qt3-chl-pyx3	0.5	no limonite	30 37	70	13	80126	.04	.00Z		.os
_9.14	.30	blastino - however, - it will be logged as hormal - vein angles are not reliable.	ро	50	Ħ		9t3-chl-pyx3 9t3-chl-pyx3 9t3-chl-pyx2	1.0		47	81	7	80127	.04	,003		,05
_12.19	_40	MINE PHASE QUARTZ DIORITE (50-166') typical rock type:	ND	60	(a) - } · · ·) (b) d)	3 17	gg-br qt3-carb-py(cp) proken zone with fourts massive py broken zone - minor ac	2,0	}2' silicified sone	_57	62	10	80128	.00	.00/	.09 3905	. ,o8
15.24		9rn size /20-18 - Prob = avg. 1 /10 = texture sl. seriate grns anhedral to subhedral	по	70	5 · × 3 3 · · · 70 25 × 2 45 ? 5 •	1/10 × 3 1/4 + 1/10 1/10 × Z 1/3 3" 6"	9t3-chl-py x3 9t3-chl-py x2 9t3-chl-pyx2 9t3 ep-pied 30re 9t3-ser-ep(py)(c4)	1,5		<u> 57</u>	.97	6 0	80 <u>;</u> 29	.09	,002		.10

20435	HOLE	NO.	90-4		
OUT DU	SHEET	NO.		OF	_5

				_			·		,					HEEI	INO.	<u> </u>	UF .	
		ROCK TYPES	< TO CORE FOLIATION		APH	d Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		C-111		AS	SAY F	ESULT	3	
Meters			8 일 일	c s	LOG	e < to	İ		1 %	LIM. ZONE	Footage	Estimated	l	SAMPLE	%	%		
lete	Feet	AND	57	of the	†	Core	of	Mineralization		SUPERGENE		Core	R.Q.D.		76	<i>"</i>		Estimated
0.00	0	ALTERATION	∧ Ç	Foli Atte	Footage	ਲ੍ਹੇ Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		-		П		65×2 30+20	1/20 XZ 1/3+1/4	9t3-py x 2 9t3-ch1-py-cpx2										
		-				60+40X2	1/2+1/10×2	9ts-chi-cp + 9t3-chi-py				98						
		-	ИР			<i>A</i>	2*	93	1.5	_		10	57	80130	·26	.007		.18
						40-60430	1/20-1/10+3	9tz-chi-pyx3		_	77							
3.05	_10	•		#	80	90+60×3 60 # 50×2+3	13-Y2 ×3	9ts-ep atz-chl-cpx4	<u> </u>									
							Y10-Y8+3	9t3-ch1-py(cp) x2		=								
			ди			10	1" 1/2	qtz-chl-py-cp qtz-chl(py)(cp)	1.0	=		98		0	.			.1-2
						1 20 12	12022	9+3-chl-pyxz	"		87		77	80131	,20	1007		3.2
6.10	20				90	/ 20	<i>y</i> ,,											
D.10		-		H	70	60+50	111 + 110	ehl-py-cp qtz-chl-epxz		· -								
		_			1 1	1/40	1/4	9t3-chl-cp				0-						
			So WK			35+40 45 60 40	1/2+ 1/8 1/10	qrs-cht-epx2 qrs-chl-cp qrs-chl-cp	0.5	. =		97	47	80132	.37	.018		.35
			•••			10	10 /2	dts-chl-cp ats-chl-py(cp)			97		, ,	0-102	127		,2/	
9.14	30ـــ				100	¥	1/2	gg-bx -small fault.									3860	
		<u>-</u>				100	1/8	atz-chl-cp chl-cp		1								
		=			1 1	M	31/2	99-bx 973-chl-cp+973-mag-cp		_		84						
		•	60 WK			50170	1"+2"	off3-chl-cp+ 9t3-mag-cp	0.5	<u> </u>	107		7	80133	.43	.037		.30
10.10	40	LFUCO CRATIC -				50×3	10×3	9/3 (MO)(co) x3		_						·		
12.19	40	a fine grn rx composed -		H		7 30 V 5+60	YA+2	qtz-cpx2										
		of ate and white spar				60 K3	Yox 3	9t3 (Mo)(co) x 3	1			_						
		with 5-100% chl mainly as "a hosts" and ragged .	So			* stkwk	hle Yzo	df-3 (m0)(c0)(61)	0.5			92	20	80134	24	.019		.15
		wisps. Aug grn size ~ 1/20" - - no obviously porph. but - poss scriate.	ωĸ			40-50x3	2-3"×3	913- ser ((py))(cp) x 3		* a Yio-Yi qt3 vein -	117			80127	127	.019		
15.24	50				120	50130	1	9+3- cp - py x2		with a broad grey = envel of qfg.ser =								
		- contacts are faulted cp and py occur throughout				10	16 2"	9t3-cp 9t3-ser(cp)		_								
		the rx as fine dissens _				4		4.2.301 (44)		\exists		96						
		and as hie qts-py-cp —	₩K			40	10	qt3-cp	0.5	=	127		23	80135	.60	.081		.18 -
		- A 611/16/2				50	12*	qts-mag(cp)(py)(mo) qts-ser (cp)			- 6/							
18.29	60		l	Ш	130	40-15×5	1/20-1/6×5	913-py-cp x 5	l	-								

										•						(1)		
					(GIBR	ALT.	AR MINES	LIN	AITED 27	11	25	r	HOLE I	NO	90-	1	
		ROCK TYPES	N S	GR/	APHI(Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		Estimated				ESULT:		5
Meters	Feet	AND	< TO CORE FOLIATION	Foliation Alteration	OG G	< to	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage		R.Q.D.	SAMPLE	%	%		Estimated
0.00 0.00	<u>ı</u> 0	ALTERATION	^ <u>6</u>	Folic	F 000	4	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		- - - - -	20			50+40 45×3 50	1/20+1/10 1/10×2+1/4 6" 3'	qts.cpx2 qts.ch(vug) bx(93)	a5		137	97	<i>39</i>	80 136	.36	.009		.14
_3.05	_10	_	 	\coprod	140	40+45	1/2+1	9tz-mag(cp)xz 9tz((cp))										
			So wk.			30 50 60x2+5x2 60x3 30-40x3	10"	913 ((cp)) 913-Ser (mag) ((cp)) 913 ((cp)) x 4 913-Sh) Knago x 3 93-bx @ contact	1.0		147	98	· 3 3	80137	.35	.012	.42 <u>-</u> 3815	·1 1
6.10	20	MINE PHASE	‡	Ш	150	60 12	niexz	CHI-ch x5		_								
		QUARTZ DIORITE (148'- 264') same as above except For incr. Foly	60 Mod			80 80 80? 45+50	14" 7" 24" 4+Y10	qt3-ser-py (cp) x z qt3-ser-py qt3-ser-py-gg-bx. qt3-ser-py-gg-bx. qt3-chl-cp x z	5.0		157	97	30	80138	,29	.022		.18
9.14	. 30		}	\prod	160	80×4 80×2	10-10×4 12×14	chl-carb-cpx4 qtz-chl-cpx=										
		- - - - - - -	45-60 Mod			5K3 50 45+30 45	10" 8"+ 4" 10" 8"+ 4"	qt3-ch1-cp x3 ch1-carb-qt3(cp) ch1-ser-qt3-cp x2 qt3-ch1-ep qt3-carb(cp)	0.5		167	99	57	80139	.70	.010		,25
12.19	_40	-		Ш	170	30×2 40	hleyz z4	chl-cp×z		<u> </u>								
15.24	50	-	60 WK			80 80 80 80 80 80 80x6	20" 1/2 3 ' 1/20 1/3 2" + \Y 2 1/0-\/8 x 6	chl-carb qt3-chl gg-bx qt3-chl-cp qt3-chl-(cp) qt5(vvg) + qt3-chl-vvg qt3-chl (py)(cp) x 6	0.5		177	97	47	801 1 0	.21	,009		.12
18 20	60				100	50x2 60x2 70 55	1/10 + 1/2 1/10 + 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	913-cn (py)(cp) x z 913-ch (cp)(py) 913-ch (cp) broken 30ne 913-ch (cp) 413-ch (cp)	0.5		187	97	37	80141	. 20	,008	.35, 3770	.15

	ر م س تر د								
ED	2	04	3	5 h	HOLE	NO.	90-	4- UF .	
	DEPTHS						ESULT		
ONE GENE		Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
	arks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		197	96	27	80142	. 27	.009		,12
		207	70	13	80143	.06	.002		-10
		217	96	60	80144	.07	,002		্০৪
	_								
		227	98	63	80 145	108	,003		.05
		237	97	20	80146	.07	,003.	•11 3725	,10
					•				
	1								

							···				67	2		SHEET	NO.	_+	OF.	5
		ROCK TYPES		GR	APHI	dysina	Width		Est Bot				1			ESULT		
ပ်			82		LOG	40013	wiath		%	LEACH CAP LIM. ZONE	7	Estimated	1	24.42.5				
Meters	Feet	AND	Jo₹	100	Ď	e < to	of	Mineralization	/0	SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%		Estimated
0.00	F.	ALTERATION	< TO CORE FOLIATION	Folia	Foot 69	Core Axis	Vein	Militer dil2d (IOI)	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
			4	T		B0 ×2	Yzo x 2	Chl-carb-cpx2										
			7	$\parallel \parallel$	1 1	4 ?	100 2 "	chl-9tz.ep ag- bx 9tz-chl x=		-								l
			- HÞ		l	30+20	1"X2		0.5	_	1	96	27	80142	. 27	.009		.12
			7			? 50?	21/2	gg-bx (small fault)			197	·	21	0-11-	. – /	.007		
3.05	10		\exists		200	70	14	qts(cp) chi-ep-pied zone										
20.00			-	T			-	Consequence Some		-								
			7			Â	יד	broken zone				70						
			- ND	\parallel		4			<0.5			10	13	80143	.06	003		.10
		,	3			50-70×4	1/8-1/4×4	9ts-chl x 4		=	207		•		.00	1002		1
6.10	20		3	Ш	210					7								
	•		=			10	1/4	943		_								
			\pm			15 7	z.* 6"	9t3(vv9) 9t3-chl		=		96	·					İ
			50	.]]		60	12"	9tz-chi-carb & dark	≺ 0.5	3	_	70	60	80144	.07	,002		,08
] WK-MOO			45	1/2	gtz-chi (altin			217				-			
9.14	30گ			Ш	220)		_								
			_			30+45/2	1/2+1/412	9tz-chl.x3										
												98						l
			- 60 WK		ll	40	1/2	qt3	<0.5	_	0 - 7		63	80145	108	,003		.05
			1			1				=	227					,,,,,		İ
12.19	_40		4	\coprod	280]	,,	- // ₋ \										
			7		l t	80	<i>y</i> ₊	qt3 - ((cp)) broken zone										
		1 4	╡			الم	31	Browen Jone				97					011	
			44			15 x2	1/4 + 1/2	qt3-carb-py-cpx2	< 0.5		237	•	20	80146	.07	,003.	3725	.10
			7		[' -		, - ', '			231				•			į
15.24	.50		1	#	240	4												
			7			4	2"+1/2	chl-ep dark		=								
			7			60 × 2	211	chl-ep altin				97	27					
			du L			(s	1"	39	<0.5		247		33	80147	.08	1005		.05
			7			10	1,4	chl \		7	- 1							
18.29	60			Ш	250	II 1D	Y _{2_}	9+3										

GIBRALTAR MINES LIMITED 70 1130 HOLE NO

						• • • • • • • • • • • • • • • • • • • •		/ ((UZ	K	HULE	NO.	90-	4	
		<u> </u>	1			· · · · · · · · · · · · · · · · · · ·		Y***			0	J.	9 S	HOLE	<u>NO</u>	5	<u>OF</u> .	5
		ROCK TYPES	SNE N	GR/	APHI(Veins < to Core Axis	 Width		Est			Estimated	1	AS	SAY R	ESULT	5	
Meters	4	AND	ATIC	noi r	.06	< to	of		1 %	LIM. ZONE	Footage		R.Q.D.	SAMPLE	%	%		Estimated
œ X	Feet	ALTERATION	10 J	terot	oota	Core	Voin	Mineralization	D	SUPERGENE	Blocks		IV.Q.D.	NUMBER	<u> </u>	14-		
0.00	0	ALICIATION	V a.	Ľ₹	<u> </u>	15+10	Veili		Ру	Remarks	<u> </u>	Recovery			Cu	Мо		Grade
		starting at 2240/-]		1/2	7	1/2+1/3 3"	9t3 + 99 9t3)			
		incr. in otz. to 240% - starting at 2240' - prob. approaching the Granite Mtn contact:	1	$\ \ \ $:	broken hem stained	<0.5	-		93	13	80148				. 05
		_			4			core stained			257		, ,		1,06	1003		
_3.05	10	10h		HH	260 5	45	4	ots-ch1 ((cp))		_		85						
		FIQ.H 261'			4	-2	41	broken core - minor	≺o.s		2640	وم	3					, o s
		_								-								
6.10		· -								=								
6.10	_20	-		HH	\dashv]							
										_]							
		_	1														.07	
9.14	30						·										3680	
		-		Ш													3000	
		<u>-</u>			Ì													
		- -								=								
12.19	40	-		Ш						_ , _								
		-		\prod						_								
			-]							
		- -																
15.24	50	<u> </u>]	Ш						:,								
			1							Ξ								
			-		1													
										=								
18.29	60		1	Ш]							

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-18 SHEET NO. 7_ OF 8

		2004 74050	ш <u>_</u> _	GR/	APHI	d			Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
స్		ROCK TYPES	255	Ĺ	APHI .OG	Veins			1 %	LEACH CAP	Footage	Est!mated	l	SAMPLE	%	%		Estimated
Meters	eet	AND	24	ation	tage	Core	of	Mineralization	/°	SUPERGENE	1	Core	R.Q.D.		/*			Estaneted
	r,	ALTERATION	< TO CORE FOLIATION	Folio	F00.	Axis	Vein		Ру	Remarks	B!ocks	Recovery		NUMBER	Cu	Мо		Grade
				Ш		1 5 XZ	hle xz	og. hum 12		_		82%						
			1			13044	ł	gy hom x4	_	bom Stein.	1	0210	33%	60264	. 42	.017		.22%
			N.D	$\ \ \ $		30x Z	1/20 × 2	gtz-cht- on cpx2	0%	=	397		35 %	60264	• • •			_
3.05	10		1		100	50	1/2042	otache-pu-cpx2		=	1		400					+Mos2
3.03	-10			111				1972. 141-Ser- 49-1112		Broken Zone =	1							
		<u>-</u>	-			30×3	1/20 ×3	gtz-che-ep-cp 103	1	[]	‡	87%			41	-		201
			ND		1	⁰	1	gg-hem 16	0/1		407		41%	60265	. 71	.016		. 28
6.10	20		1		410.	130° x4	1/10 x4	gg. hm yz		-	4		910					1 No Se
D.10				Ш	1	5×8	1// "	y/2-che-su-qp × 8		-								
			1		ď	Y	1			Hom. stani.	1	81%		60266	.22	,003		
			ND	$\ \ \ $	ļ	1/5×3	hex3	gg. hun x 3	0%	,	417		46%	60266	.22			· 6/
9.14	.30	<u> </u>	1.		120	10	1/20	oa kem		-	1		120					
		_		Ш		15 x6	1/20×6	of zou-chicp x6		-		2 -1/						
		-	-			/5	48	gtz-ch-su-cp	0%	=	=	95%	0	17/7	,27	. 01 2		
			ND		į	36+10	1/10 x 2	gtz-sircho-cp x2	10%		427		62%	60267	121	, 0, 2	.3Z	. 160
12.19	40	-	1		130	15	2/9 Z	gtz-ep- (hem.		- (1		130				3412	
						1 10	1/8	gtr-chl-pn ep		-		0.01						
			I V D			1 BXZ	1/2022	gtz-del-ep. (4) 12	0%		1	91%		100/8				.107
] '		l'	50 X 10	1/20 410	gfz.cht. ser-cpy10	0%		437	ļ	53%	60268	, 29	1012		103
15.24	50				440	130X3 150	1/20 ×3	19th-che-per-cp x3			1		440					
		-	1			1 50	1/8	gtz.ch.cp			╡ ̄ ̄	0.10						
		-	du			10	11/211	atz Vn- mo-cp	0%]	94%	and	2/0	4.7	250		212
2		445-450' - familed =	1 ~~			H		GtzVm - vup - Cp Fauld Love - gg + bx -		-	447	<u> </u>	24%	60269	. 22			
18.29	60	gtz.che. per plus no bologg, -	1		450	ę.	51	no sulfides noted		-	1		450					+11/25

GIBRALTAR MINES LIMITED JO435 HOLE NO. 90-18
SHEET NO. 8 OF 8

													2		<u>NO</u>			8
			ш,	CR/	\PHI	d			Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	5	
		ROCK TYPES	CORE		.OG	Y Veins	Width			LEACH CAP		Est!mated			i			
5	بد	AND	OF	5 8	ě	ह < to	of	·	%	LIM. ZONE	Footsgo	Core	R.Q.D.	SAMPLE	%	%		Estimated
et	o o	AND	[2]	S	Ġ.	Core	01	Mineralization		SUPERGENE	Blocks		11.0.5.	1				
∑	ᄔ	ALTERATION	< TO FOLIA	Foliation Alteration	Footage	Axis	Vein		Ру	Remarks	D.OCK.	Recovery		NUMBER	Cu	Mo		Grade
0.00	0	450-451 QL. Ser Thraw	<u> </u>	Ħì	<u>"</u>	60	1"	88-DY	<u> </u>	_								
		151 - 479	}	$\ \cdot\ $	- 1					_		676						
		Zones of:	}	$\ \cdot\ $	- /	/ 30	1/20	gtz-chl-ser-(cp)	1				40%	, ,,,,,	_ ,	020		
		- N.M.P.Q.D.	ND.		1	80	1/2"	g/z. pa-che. carb-(cp-mo?)	0%	_	457		'-	60270	.31			.20%
		-DK. Alf ~	1		1	1 20 +10	1/10×2	gtz-chl-carb-ccpx2	 				ا ر					0/,
ا 3.05ـــ	_10	- WK SONS Zone	1	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	960	/30×4	1/4 + 1/2 + (XL)	otz-chl-carb-cp x4					46.					
			1		/	20 x Z	48×2	gtz-del-cab -cp x2				070						
			66-70		- 1	50	1/8	gtz-de- ser-leps			1	97%				. 0/0		
		_	WK.		I,	30	1/4	gtz-che -carlo-(p)	0%	_	4		48%	60271	.41	-,-		
		_	}			60 XZ	1/10 x 2	gtz-che-cart-co gtz-che-cart-co gtz-che-av-carb-cpx	1	_	467		1 ' ''					. 20%
6.10	20	_	-	$\ \cdot\ _{L^{2}}$	470	150	118	aghen-cach					470					
50		470-475 Fault Zone, (-		Ш	1		51	Gouge - 5x- carb hom		_								
		130/egg; 101/0 }	1			5.		1 1/	1	_	}	81%					.32	-
		Brknione - certage -	ND		ľ	15×2	416	gtz.che -cub (cp)	01		,	"	27%	60272	.42	.035	3345	2
			1 ""		I	120 ×3	1/20x3	9+2-de-GP43		_	477	ļ	"	6-2/2		, u		.15/
0.4.4	7.				180	20	1/8	3+2-chl-cp		=	1		480					
9.14		479- 507		++f	100	12012	18 + 1/20	atr-ch1-ep (cp-px) x2	 	•	 		1,00					
		Mixture of:	}	$\ \ \ $	ľ	20 x 3	My	RH - 99. 13		_	1	996						
		1 0/4	1			5+20	٠,	et. cht-cp	0%	_	1	176	10	60273	,33	.004		1
		Gran. Mtn Phase & =	4v			250	110	ftz. chr. and-cub-le			4/87		40%			,		.186
		Siriete text.	1		110-	1 20x3		4+2. cht-60×3			}		1/4					
12.19	40	heuro crutic Rx	 	\coprod	490	/30	1/8	14t-cho-cut-cp	ļ				490	 				
			1			/B 0 × 3	1/8 43 6	gtz.che. carb-cpx 3	¥	_	1	0107						
		Gr Mtn. Phase is	1		-	60	8"	White Dr Ke-fing.		_	1	92%	1					1
		ht. green, coarse grained g.d.	(N)		ŀ	513	1/1. v 3	gte-cht- carb-op x3	0%		497		48%	60274	.22	.003		12%
		140% at ~ 20% mafres	1		İ	6		1		ta fragment	1 7 7/	 	†					1 %
15.24	50	ht guer, coarse graned g.d ~40 % gfr ~ 20% mafres ~ 10 % our alt d	1		500	55	1/2	Chl-gtz-up)		Jeame comp	<u> </u>		500					L
		play - mapie grains - tend to sist together.	1	\prod	Ī					_	1	,	-					
		The state of the	1		1	130 x3	410x3	gtz. su - 6×3	61		1	98%	51%		11	043		.06%
		tend to clot regime	עשן					P /	6%	_			1 -	60275	. 17	.002	1	6
4			1	444	207	15+30	1/10 x2	gts on - cp x2			507	 	507	150010	 		 	
10.00	00	E.O.H.@ 507	1					m.R. Shon		_	1	1					,27	
1.10.29	1 01	J!	i	111			J	1 (11 Chan	4	1		1						

L	OCATI	ON	West wall of Pollyanna- W	Jest E	BEA	RIN	G		LATITUDE _	49,	630.52 N	CORE	SIZE	Ng wi	reline L	OGGED	BY 4	n.R.T.	hon
D	ATE (COLL	ARED13 - July - 19	190 L	ΕN	GTH	187	,	LONGITUDE _	50,4	167.41 =	SCAL	E OF	LOG 1	"=10' D	ATE _	August 2	0-21	1990.
D	ATE (COMF	PLETED 14-July-1	990 D)IP.		-90	·	ELEVATION _	3	207,14	REMA	RKS_		<u></u>				
			ROCK TYPES	CORE		APHI	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP /20		Estimated		AS	SAY R	ESULTS	;	
	ters	et.	AND	ATIO	T Lon	OG	e < to	of		%	LIM. ZONE 253' SUPERGENE —	Footoge	Core	R.Q.D.	SAMPLE	%	<i>∞</i> %·		Estimated
	0.00 Wet	Fe(ALTERATION	< TO C FOLIATI	Foliat	F00t0	Core Axis	Vein	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
	J.00		Cased to 33' =			Ī					-	-							
			Normal Mine Phase Quertz					1.1				=		1					:
			Diorite (N.M.P.QD.)		$\ \ $		·		·			=							
	3.05	_10	~ 20% chloritized mafics _		╫	\dashv	-			_	-	-						-	
			23 - 289		╫	33	160×2	ylo xz	gtz-chl-len- mal x 2		The oxide Ine	‡		33					
			Altered M.P.aD.	60- 100		}	70 12	1/20 X2	gts-che mal x2	0%	here has stronger	37	83%	48 %	60184	,13	,002		.08%
	6.10	20	- A finer grained, foliated		Ш	40	60+45	1 74+1	Gouge - lim . Gtz Vm - lim x 2		sections, ie, not a			10		.090			۰X
			to sheared rock . Fp. is		$\ \ $	1	10	1/20 he + 4	gto de - per mal kin etz - che - lim - mal x4		plantet.	1	100%						
			14. grey, more soricities, subhadral gruins.	70 - 86°	111	1	30 4 9	1/8	Lim gouge . mal.	0%	-	<u> </u>	,,	41%	60185	.19	.003	3860	.08%
			- Few mirow some of	Med to Stri		_ }	-80	3	Brincore . I'm mud.	/		47		† " ·		.19 °×			ox
	9.14	_30	ote. the per shear -	244.	$\dagger \dagger \dagger$	50	80 × 6	hlexs Llex6	gts-oll-mal X5	-				50					
			tyte-per place	70-80		}	6 x2		9/2 Vm - che lens	0%		7	90%			. /5	٤٥٥.	İ	
				Mo dito			60	Yzo	gto-de mal	0%	-	57		28%	60186	1146%	,,,,,		.06%
	12.19	_40		Stv.	Ш	60	60 X3	1/8/32	gtz-lim x3			1		60					•×
				45"-			45-6.	1	/ " " "		-	1	80%						
				60%			45-6.	he y 100	lem x100.		Str. lim.	67		3%	60187		.006		.02%
	15.24	50	,	5tr.		70	30	1/2	atz-lim			1		70		. 210%			7

																		1		
								GIBR	CALT	AR MINES	LIN		142	5	H	HOLE	NO. ₋	90 -	-17	
												. 20	15	9	S	HEET	<u>NO</u>	_2		8
			ROCK TYPES		CORE	GR	APHI	d Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		Estimated	!	AS	SAY R	ESULTS	S	I
ers		اید	AND		ATIC OT A	0 0	OG	ᢓ < to	of		%	LIM. ZONE	Footsqu	Core	R.Q.D.	SAMPLE	%	%		Estimated
Meters		Feet	ALTERATION		< TO FOLIA	terat		Core	Vein	Mineralization	Ру	SUPERGENE	Blocks	Recovery		NUMBER	Cu	Мо		Grade
0.00)	0	ALTERATION	_	<u> </u>	L F ₹	ıκ	Axis	Veili		ı y	Remarks					00			0.00
				\exists	60.81			50K2	herz	gtz.chl - lim (mal) x2		-		46%		t		•		
				\exists	mod			60	he	gtoche. lim V4	1	_	77		21%	60188	, 12	.002		.077
				\equiv	Sh.			20	1/8	gto -che- bom - mal	10						.076x			ox
3.05		10		+		H	80	80 ×10	he X2 he	gts. che lim - mel X2	×/0				80					
				3	80°			15	1/2	atz-Che Cost Otz. Che cont				96%			. 12			
				\exists	Mod.to		ľ	1543	1/2 Lle 13	lini - MAD2 - mal x3	0%		87		20 %	60189	.05 ox	.001	. 16/89	.097
6.10		20		╡	St.		90	45 xz	ble x2	,	1	_	-		90				38/5	4
J0							,	20	M	bin Kr Al - lin - Maoz. met		-		ord						
				Ė	80°			10x3	Mex3	lim -mal x3	0%			85%		1 .00	.10	.002		. 09%
				#	Mod . to			20	Me Lee xz	lim lem- Moz- mal x 2			97		15%	60190	10/0/			01
9.14		30		二	541.	Ш	100	80×5	hlexs	limxs					100					ļ
				\exists				-70×2	1/10 × Z	Gracerb-limx2			1	89%						
				=	70-			130×2	1/10 XZ	gtoche - ain x2	0%	Frong /imonita	1		56%	60191	.14	.004		.03%
				\exists	Str			1450	1/8	gtz-che-lim.	9/0		107		""	60/7/	10104			ox.
12.1	9	_40_				╫	110	70 × 2	1, X s	grz Vn. 1:m-(he)					1/0					
				=======================================				/20°	118	lim gouge. 1im - Maoz X3	1	-	1	80%			04	.004		
				\exists	51. h			7043	M X3	Line Mnoz-mal x 3.	0%	-	117		22%	60192	50101	.007		.03%
45.0				\exists	Med.		ا دور ا	60	1/8 hk	gtz-chl-sor-lim		-			120		77			ox,
. 15.2	4	1.50		\dashv		$\dag \uparrow$	120	1 10	hle	lim-mal.		_								
				\exists	80'		1	140	1/8	9 tz - chl-lim.	1			72%	1 1		. 09	.004		1
,	è			\exists	mod			30	hle 1/8	gtz-chl- Cp. lim-mel.	0%		127		30%	60193	6.01 ox	.004		.11%
18 2	9	60		\exists			/30	45	1/20	Potz chesu mal			-		130		70. 30			by

GIBRALTAR MINES LIMITED THOLE NO. 90-17

											7		S	HEET	NO	3_	OF.	_8_
		ROCK TYPES	R >	GRA	PHIC	Voine	W: d+b		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
ম			CORE	1 i (റ്റ	Veille			%	LEACH CAP	Footage	Estimated	1	SAMPLE	%	%		Estimated
Meters	Feet	AND	24	atlo	tog	< to Core	of	Mineralization		SUPERGENE	Blocks	Core	R.Q.D.					
.≥ 0.00	<u>1</u> L	ALTERATION	< TO C FOLIATION	Foli	Foo	Axis	Vein		Ру	Remarks	Biocks	Recovery		NUMBER	Cu	Мо		Grade
					/	30 × 6	hle 46	lin - MnOz-mal X	6	-		99%					, (%	ď
			1			5.	44	Ostz Vm. che- carb- Vug	0%				59%	60194	. 16	.003	3770	-09%
		house contic.	ND D		1	فعرى	1/20 X 3	lim -mnoz - 99-mala	1 '		137		'.'	Ť	1130×	.00		o√
3.05	_10	-	<u> </u>		140 /	10 + 30	1/20 x 2 V20	otz-che-ser-lim-mel ap					140					
		• -	1		- 1	20		gtz. ap. cho- g-ma	, ,	Ξ		92%						
			ND		- 1.	30 15	1/2 hee x 5	Ato Vn - vugo - dim -	mar		1	1210	770/		.19	.002		.112
			'		- 1,			lim - Mnoz-mal x 5 g/z-cho- sev- cp- /in- ma	0 x 2		147		72%	60195	, 130x			
6.10	20			$\coprod \!$	I P	40	1/2	3+=- che- carb yua lim.	1 1				150					9
		-	1.		7.	5	420	gonge. Im - hem (mae.)				-						
			70 W.		ŀ,		•	lim. Malz- mal x6 gtz-chl- ser-go- lim-mat	n			98%			. 27			.12%
		_	ND	$\ \ $	1	20	1/6	gra- cut sur go	%	Ξ	157		62%	60196		.004		
9.14	30			Щ	160/	30×3	1/20 Y3	of z shl. I'm -mal. ((p)) x	3	_			160		1220%			%
				$\ \ \ $	1	45	3"	atom the and lim-	11/02-	mal.		97%						
			وم		- r	2012	1/20 XZ We	0,1	0%.			. , ,	2/67	60197	.40	.004		.10%
						30× f		lim. gtz-ser-clo-lim.11)na. n	1		167		34%	30111				000
12.19	40			\prod_{i}	170	5 X 2		99- lim Maoz-malx Z					170		,290X			2
		(-			+	70×4	he va	lin - MNO2 - mal xy				96%						
		Leurotra lic	ND			30 x 6	her x60	lim - Matz-mal x 6 Qtz-cach . (chl. mul)	01			" "	32%	60198	.07	,003	21/	129
		Ry. (=			1	30 × 3	hlex3	lim - Mac - mul x ?	%	_	177		0 /0	60/70	.02 ox		1 /16/	a
15.24	50	(-		\prod_{ℓ}	180	70 X6		lin -Mals- mal + 6	ļ				180				3725	%.
]		W.	100		lin gauge - mul uto cht - su - lin - mul -	n 12		1	96%						
			Qu F		\[\int_i	5°	1/20 +2	to do him mal.	1		1		37%	, ,,,,,,	.23	.005		.10
A		-			1	10 72		To the line wat &2	0%	_	187		3'"	60199	1900			0%
18 29	60		-		190 /	3 0 4 /	1/20 x 2	Atropologo mer limb		_	7		190		'	1		′

20435

HOLE NO. 90-17 SHEET NO. 4 OF 8

					_														<u>×</u>
			ROCK TYPES	< TO CORE FOLIATION	GR.	APHI	d Veins	Width		Est	BOTTOM DEPTHS	1			AS	SAY R	ESULT	5	
, ω	1		NOCK TIFES	80	Li	_OG	1 40112	Width		97	LEACH CAP		Estimated		0111015	~-	~		
le fe	 	ا پر	AND	AT	0 0	Č.	ខ្ម < to	of		%	LIM. ZONE	Footage	Core	R.Q.D.	SAMPLE	%	%	,	Estimated
Meter		Feet		\ \	io t	of c	ថ្នា Core		Mineralization		SUPERGENE	Blocks			NUMBER				
0.0			ALTERATION	\ \ F	Foliation Alteration	Footoge	Core Axis	Vein		Ру	Remarks		Recovery		NUMBER	Cu	Мо		Grade
1.00		-0	Leucolistic Zone &_	 			5.	1/10	lini gg-mal.		-	1	2011						
		- 1	-				(60 x 3) + (4512)	hlex 5	lum gg-mal. ytz-cht-mal-lim x5	l	_		98%						
		-	Ξ	66 - 70"			30	1/2	ate Va - mal-chl - mal	0%	_	1			60200	.10	.002		120
		- 1	_	Wr.			1 20	1 *	gtz-chl-lim-mal-cp	"	_	177	1	72%		.0Zox			.127
		İ		1			/ ₃₆	46	ghe che carb vug cp le	n -ma	le =			Ī					of
3.0	5	10		1	Ш	200	146	V 20	gt-lim-sp. mal	<u></u>				200					
		-		1	Ш	<i> </i>	40 X3	1/20 + (1/10 × 1)	ste-ch-lim-mal-cp x3		-	1	001						
			_	15-60			30 ×3	heex3	lin - mul x3	1	· <u>-</u>	1	98%						
		1		WK.		1				0%		1	}	60%	60201	.18	.005		.37
			Ξ] "\.			¹ %	1/20	g tacks op-lin-met		_	207	<u> </u>	"		.070x			()
6.10	о 📙	20	=	1		210	6013	hl. x3	lean - mo 1 × 3		<u>-</u>	1		210					ox-
D. 10		20	-	1	H				<i>-</i>		_								
				1	Ш		60 +30 12	Lex3	lim - mal x3		-	1	85%				Ì		
			<u> </u>	600			150	1/10	grache lim-mal	1	_	1	(6	2.0		.25	.008		181
			_	wk	Ш			1/6	9/2-chl-cp-1im	0%	_	217		51%	60202		,,,,,		. 18/
		1		$\frac{\omega_{r}}{\omega_{r}}$			60 ×3	1/10 ×3	ghe - fl-cp. len mal x 3		-					4.010%			%.
9.14	4	30	-	ļ	Ш	220	60×2	1"X Z	ata. w-chl. cap-lin	12				220					7.
					111	1	160	1/20	pte-de-cp.		-	1	90%					.191	
			<u>-</u>	76-80	Ш		1 6013	Upox3	ghe che lim -cp x3	,	_	1	10%					.19/.070x	
			-	WK.	Ш	Ŀ	50	611	Grage - Lubble - lim grade (cpp) tom) 9th on cho carb vage lim	1.17	_	227		47%	6023	. 1.9	.011	3680	.097
			Ξ	1			45 x 4	(1"12)+(/2")	ghelow cho continuos los	xa		122/		1	10020	K1010x	' ' '		-/
121	19	40	<u> </u>	1	Ш	230	1500	1,0			_	1		230			'		84
1 2. '		. 10			H	1	60	1116	1/2-chl-cp-(")		-			1					
				1 .			450	14	atz-che-cp-(c!) atz-che-apid-cp.	11	_	1	96%						
			-	60.70			5+80+70+30	Me X 10	lim x10	4.1%	_	1	1-11	-1		, 15	.002		.187
			_	U.NK		نا	130	1/8	ptz che ser-lim-py-gr-m	LP.	_	237		52%	60209	1.0CM			1
				}				1/2/	gtz-che. sev. mag. Cf		=	-] ,		J. 10 (9)			9
15.	24	50	·	 		240		1/2/ 1/3	Potz-cho-co Potz-chi Tim-cp-cu	<u> </u>		1	 	240	ļ		<u> </u>		
				1		. 1	120	110				1	/						
						١,	130,32	1/10×3	fte. che-cach- op 73		_	1	92%	/					1000
			_	80			60.42	1/2+4	9 fz -che -(cp) x Z	0%	-	1	1	53%	60205	.3/	.012		112%
7			-	Med.			6043	1/8/2		1"	-	247	 	1 '		4,010X			111
12	20	امء		1		250	/10		Cathon de - cp lin 42		_	1		250		"			6/-
	47	444			ليلت		LL	4	WAR THAT - WA	J	1	<u> </u>	L	1000	1	<u> </u>			

70435 HOLE NO. SHEET NO.

< TO CORE FOLIATION ASSAY RESULTS BOTTOM DEPTHS Est GRAPHIC **ROCK TYPES** Veins Width LEACH CAP Estimated Meters LIM. ZONE < to SAMPLE % Footage Estimated AND R.Q.D. of Core SUPERGENE Core Mineralization **Blocks** NUMBER **ALTERATION** Cu Vein Remarks Mo Axis Recovery Grade 0.00 gtz-de-cart-vugs.
gtz-de-cart-gxz 97% 1/2×2 420 x2 1007 81% 60206 .16 16 -187 257 4.01 ox 12072 3.05ـــ 11/21 260 atz-de-py 89% 60-80 tz-dl-carb-qp x3 . 31 .020 60207 . By Lorot 76% .23/ Mod. ptz.chl- per-qo stz.chl.ser-cp x3 270 111 X2 gtz-che-carb-cp 99% 60-70 33% guge-lim rat 4.1% 004 , 22 60208 . 17/ WK 277 cab gg. hom xe 30×2 1/20 280 280 9.14 80x2 carb gouge-herr 97% gtante-carb-qo 41% 60209 ,006 28 28% .16% 287 INK gte. du carb.cp - tarnish or bornite? 15 +o Mad 289-208 sta che carb DK Alt ~ Zone - increased = Verille 85% chlante (tr.de-card-cep) 9+2-che-cont 29.(4) 48% .39 010 60210 .10% Stv. 297 carbogg- hem. 15.24 ofte- de- rand - Des (ip) XZ 30×2 1001 80 .39 .267 ,017 60211 307

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-19
SHEET NO. 8 OF 9

													חבבו	110.		<u> </u>	/
		ROCK TYPES	CORE	GRAP LO	HID Veins	Width		Est	BOTTOM DEPTHS LEACH CAP	-	Estimated		AS	SAY R	ESULT	S	
ters	پ	AND	O A	ב ה ה ה ה ה ה	<i>)</i> 1	of		%	LIM. ZONE	Footage	i		SAMPLE	%	7%		Estimated
Σ	F ee		< TO FOLIA	Foliation Alteration Footpas	Core		Mineralization	_	SUPERGENE	Blocks	Core	R.Q.D.		ļ			
0.00	_0	ALTERATION	V L	7 ¥ 7	Axis	Vein		Ру	Remarks		Recovery		NUMBER	Cu	Мо		Grade
		Coarse grained			/ 30	1/20	gtz-che. py			1	100%						
		~40 % gtz, 20% -	u,Д.					20		}		90%	1.500				
		che anafics -	٠.۵,٠		1 1	116×10	gt=-dl-py x10	.3%	=	437			60116	.04	.002	•	.072
ا 3.05۔	_10	~40% play. (Saus of		14	1 / 30	V3 4	gtz-chl-sw-py-cpx/		-			140					
]	ND.		30 v 5	1/20 x3	gtz-oN-ep-py-cpx3		-	-	94%						
		A14-450 .(CH)	+0		45	الغ ا 6	Atz Vn-che-coup Cp gtz-sov-checoup)-cp. show		_	1	/ / / *	a	60117	.90	.049		10
		atz- Ser. (comb) Shear Zne	30° Str.		300	("	gtz-sov- (chl-cont)-cp. From	.%		447		50%	60/1/	, ,,,	רדטי		.40%
6.10	20	450 - 477 -	311	45	20°	21"	Gtz Vm - mo - cp.					450	-				+Mo
		Altered Gran. Mtn Ph?			1/20 14	1/6 ×4	Btz-ser-carb-che-cpxf				97%					,30	
		-no saus alt "play is	ND 6		30 × 6		gtz. ser carb-che-cpx6	4.13		}		52%	1	.50	.003	3410	
		- Seared in places -	WK.		60 X2	i.	gtz-per. che. cpxb	·// /3		457			60118		100		.22/
9.14	_30			960	45*	<i>y4</i> 4	gtz. ser-cart hem) =			460					
		~35-40% gtz,			6026		gtz-de-cab-epx6		Hem Stain		73%						
	1 1	1	70-30° May to		/ 75 / 20 ×3		Cotz-che cab - cp-mo.	.37			,,	20%		.19	.015		2 707
		3	Str.		/ 30	1/8	gtz-chl-ow-py-(cp)x		Broken love.	467		2013	60119	•			.23%
12.19	_40	· -	011.	470		1/20 × 20	otz- non- du-py-(cp)	x 20				470					+ Mo
		3			30.	1/3	atz-su-py-(cp)				958						1
		. =	30 5/r.		30× 10		gt=-chl-ser-py-(cp) x1	.3%	=			712	60120	.08	,004		,20
	1	477-497	1.		130×2	1/16 1/20x2	otz-che-su-py 12	-210		477		116		.00	1007		, 13%
15.24	50		wk,	482	1 30	'	Gtz VN-chl-cont-co		_			480					
		Gran. Mtn. Phase. =			30°	1/8	gtz-ser-chl-py-lep)		=		103%						i
		40.50 l stz.	NP		Y30x2	1	gtz-chl-pxz	. 2%	=		1 -/4	-11		ا ر			122
		9 =	į		10	F	Otz - chl - cont-go	. 41,	=	487		826	60/21	,14	,003		.187
18.29	160	, 4		11490			9 tz-48-cp		. =			190					

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-19 SHEET NO. 90-19

				ti t	<u></u>			ī		T	DOTTOL OCUTIO			, 	PHEEL				 ,
1			ROCK TYPES	<u>R</u> Z	GR/	APHI	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		F-414 - 4		AS	SSAY R	RESULT	S	
	S.		4115	8일	c c	.06	• < to			%		Footage	Estimated		CAMBLE	~	~		
.	o te	Feet	AND	o₹	음음	Ö	# Coro	of	Mineralization	/°	SUPERGENE	Loorage	Core	R.Q.D.	SAMPLE	%	%		Estimated
:	ž	ır.	ALTERATION	P T	5 5	ò		\/a:-	Mineralization			Blocks		Í	NUMBER				1 1
0.	Meters O Meters	0	ALTERATION	VШ	₽₹	μ	Veins < to	vein		Ру	Remarks		Recovery		NOWIDER	Cu	Мо		Grade
					$\ \ \ $	- 1	16 12-	1/2+1	atz-carl: x2		-		0.0						
			<u> </u>			1	96 12			1	_		98%						
				NÞ		- 1	1	1/8	Atz-su-mo -gp	Alo				73%	60122	.05	.002		.262
			407-500			ľ	A I	/8	atz_sec-mo -go			49Z						.16	5
7	05	10	997-500 Atraer de Shear -	45 5 + r		500	ري ا	3'	gtz-oer-che-carb-py-	cP			100%	<u> </u>				3365	
		7.01	3100		HH	200	7					500		500				3365	
			E.O. H. @ 500'.		$\ \ \ $	ı					-								
			, 🖠																
		1 1	=			- 1													
			ㅋ		HH				0/			·							
6.	10	_20			Ш				m.R. Show										
18			ゴ		Ш						-								
	1		コ			l					=								l
			·		$\ \cdot\ $						7								
			<u> </u>		Ш	1													
9.	14	_30	-			- 1		ĺ			=								
		1	-		Ш						·								
		1 1	. 7		$\ \ \ $						Ξ							•	
			4			- 1													
			=======================================			- 1					-			·					
110	10		\pm		$\ \ \ $						7								
12	.19	1-4U			H +		 												
			7							ļ									
		-	7								E								
			\exists		$\ \ \ $						_								
]											7								
15	.24	50			Ш					1	F								
					\prod	T			,		-								
			7							.									
			コ			h				İ									
			コ								_	l							
10	20		Ė			- 1		-		İ	7								
— 110	. /	LOUL			Ш				<u>-</u>										

20435 HOLE NO. 90-18 SHEET NO. 1 OF 8

LOCAT	ION	Retw. Gib-East + Poly	B	FARIN	16		LATITUDE _		9-925.47 N	CORE	SIZE						
		•				. 7 '											
Į.		ARED <u>14-July - 19</u>				o 7 '	LONGITUDE _		9,507.09 E			LUG I	<u>"=10"</u> D	AIE _E	lugusT.	<u> 21 - 22,</u>	, 1990
DAIL	COMF	PLETED 15-Tuly -1	, 	IP		90	ELEVATION _	······································	,	REMA	RKS_						
		ROCK TYPES	CORE	GRAPH	ld Veins	Width		Est	BOTTOM DEPTHS LEACH CAP	-	Entimated		AS	SAY R	ESULT:	3	·
ters	پد	AND	ATIC	LOG	e < to	of		%	LIM. ZONE 260	Fortage		R.Q.D.	SAMPLE	%	%.		Estimatea
00.0	- Fee	ALTERATION	< TO FOLIA	Foliation Alteration Footage	Structure Core Axis	Vein	Mineralization	Ру	SUPERGENE Remarks	Blocks	Recovery	١٠.٠٠٠.	NUMBER	Cu	Мо		Grade
		Cased to 52'												•			
		Normal Mine Phase	1														
		Quartz Diorite W.M.P.Q.	(.a.			,				1		٧.					
3.05	_10	H. green; med.gr. g.d.							_								1
		~30% gtz, ~50% saug 2d plag.		52	A				-	52		52					
		N.N.P. Q.D.			(5×Z	hlex Z	goage-mal-limxz		Pour lacovery -	1	14%						
		· —	ND		4 A			0%		57	1,7	10%	60230	.72	.002		.04%
6.10	20	There is a green		60	1 2012	hle XZ he	ch-epil.					60		1570x	-		ox
		clay alteration here	1		30	1/8	atz-de-ep		. -	4	020/						
		- light pea green,	NP		10×2	116+2	gte-de-lin x2	1	-		93%			.40	.003		.02%
		- light pea green, - greasy feel.			/30×≤	1/2 ×5	1/2-ep-(lim) x 5	0%	=	67		64%	60231	. 290X		, 56 , 4364	
9.14	30ـــ	7 .		70	1 20X3	1/10 x3	gtz-d1- bin-green cle	4.3]		70				3770	9
		- a weathering product.			30	116 12	gtz-chl. g1z-opid-green clay			1	18%						
		_ // =	600		1 30	1/2	1, tz de ep	27	<u>-</u>	-		401	60232	.5z	.002		.022
		* plate moial.	WK		/30x2	, ,	gtzepid xz	()		77		. ,	60232	·34g			2
_12.19	_40	•		80	5° ×3	1/x x 3	Gauge Lem gun days3		_			80		مرد، د			
					16 X3	410 X3	lin green clay x3	01	-		97%						
			ND.		15	18	gange - lim - guenclay				-	16%	60233	. (4	.002		.04/
					1/40 x2) +60	ble xz	Gospe - lin - green clay. accer-clay x3	7,7 1.44		87		1011	002	.470			6X
15.24	50		<u>l</u>	90	/ 15 x3	1/10 43	Cin V 3		<u> </u>	1		90		111			٠ <u>٨</u>

20435 HOLE NO. 90-18 SHEET NO. 2 OF 8

	ROCK TYPES	出る	GRA	PHIC	Vaina	W: 4+P		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
S	1	25	L()G	Veins < to	Width		7%	LEACH CAP LIM. ZONE	Footoge	Estimated	0.00	SAMPLE	%	%		Estimated
hete	AND	< TO FOLIA	Foliation Alteration	Footage	Core	of	Mineralization		SUPERGENE	B!ocks	Core	ע.ש.	NUMBER	_			
չ և	ALIERATION	^ F	Fol	For S	Axis	Vein		Ру	Remarks		Recovery		NUMBER	Cu	Мо		Grade
	90- 189 -			/	30 x2 X2	4	gtz. lim - green clay-m	ul 12	_		90%						
	~ 30 % gt = , ~ 60% plag	ND			5+60	hax2	lim green elay	0%				62%	60234	.45	.002		.06%
	(no saussurite alt ")	,,		Y,	20	16.	G/r. him	10		97		, v		3lox			×
3.05			1/	00/	15 x2	V4 + 1/20	green clay -(1im) Atmode-green clay-mal (4	m) YZ				100					
	- Apale green colour =			<i>!</i>	30	48	Ate. (lin - guen clay) atz-che. quen clay mel-	(in)			99%	·					
	is imparted on the	N.D.	-	/	60° YZ	1/16 1/16 × 2	pt. che mal - green clay	12	=	1	·	868	60235	.60	002		.09/
	plag xls by malachite = stain. Rock is finer =	MIO.		/	1 1		gtz-de-lim x2	0%		107		,,,,	80.70	· 430x			of.
6.10	grained than normal.			110/	30	48	fre cht mel - quen clay	gug				110					
-				/	30	2	gtz-cho-epid-lim gtz-cho-ser-lim				1004			_		,52/ ,36	
		N.D.		1,	5°		gis Chl-lim.	0%		117	100%	80%	60236	.24	-003	3725	.02%
		14. 5.			30	1/8	yter lin gongs	"		1/17				17 ox			2
9.14)			20 1	30.	1/8	gte-chl-lim Qto-chl-Am					120					<u> </u>
					60×6		gte-che- per-lim Xb		=		1009			22		:	7401
		PD,			1 1	hiexy	green clay-lin x4	0%	_	127		72%	60237	, 22,	1002		.04%
				150	6. 30xZ		lim green clay			1		/3-		22 070	÷		X.
12.19 4)		 			1/10x2 1/20x4	fle Gol fin not X2 stracks lim green clay	×1	-			130					
					1	Mb x2	guen clay. Moor xx	1	-]	1001	4.70	,	, 61			.06/
	-	NP		1	5	1/20	Øtz-len	0%	_	137	,	47%	60238.	.430x	,003		100%
15.24 5	129-175			1401		IZOXZ	green clay x2					140		,750%			X
15./4	1,07		$\Pi\Pi$		1	hu vz Va	mal-green day - (im) x	l	_	 	. 1						
	An altered Iline Mase			1/	26 X Z	nle x2	mal- guen clay x	F		1	100/	1	60239	27			101
	- Weak sells all epid	NO		/	60 XZ	1/20 82	9 tr. as. lim -green c	by me	14×	/ 1 7		55%	60239	1.3/	.004		106
18 20	- Week sow alt - epide - segngation aschib.		$ _{\prime}$	150	60	1/0	g/z. lim gun cky-m. smal-gun cky x g tr. as lim -grenc Gtz. Chi	10%	-	1		150		128 ox			1.
1 11121	appearance.	<u> </u>			•••••	1.											

GIBRALTAR MINES LIMITED 20135 HOLE NO. 90-18
SHEET NO. 3 OF 1

Γ				Щ	GR	APHI	1			Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
	ည		ROCK TYPES	CORE	li	.OG	veiris	Width		1 %	LEACH CAP LIM. ZONE	Footage	Estimated		SAMPLE	%	%		Estimated
	Meter	Feet	AND	< TO FOLIA	Foliation Alteration	Footage	Core Axis	of	Mineralization		SUPERGENE	Blocks		R.Q.D.	NUMBER				
	_0.00		ALTERATION	ΛŊ	Atte	Ę,	Axis	Vein		Ру	Remarks		Recovery		NUMBER	Cu	Мо		Grade
	4						5 ≠ 30 70	1/20 XZ	gtz-de linxz		_		100%						
			1.1	AD			20	118	gtzihl- lim	0%	<u> </u>			792	60240	.30	.002	2 (,03-
						1	60	410	gtz. him gtz-de him - green clay	'		157				.190x		.36	ox
L	_3.05	_10			\mathbb{H}	160	50	1//0	atsep-all-lim			<u> </u>		160				3680	<u> </u>
							20xz	1/10/2	gtz-chl-lim XZ		-	-	100%						
				ND			30×2	1 18×2	gtz.de-ep. lin xz		=	167		66%	60241	, 43	.002		.05]
							10	-	gtz aprid.	1		10/		_		·270×			01
	6.10	20			H	170	1 10 ×3	hlex3	lin x ?	 	_			170					<i></i>
	-						20	1/20	gts. che (lim)	2	-		90%			. 38			.02%
			175-184' -	ND			60 ×4	410 LB 44 D	lin X4	0%	_	177		40%	6024/2	, 27 ₀ x	.002		
	9.14	30	Limonite staired			180	10	1'1	gtreser lim ehl.		=	1		180		- 701			ox.
	3.14		White QD.		\prod	1	13 20×2	1"	lim gouge.		_		and						
			184 -2051	N D			130	410×2	otz-lim x2	07		1	91%	1	, , 15	,82	.007		.067
			NmPaD.W/ narrow -	60-10° WK,			10 30 xz	1/2 0	glay che - lim		, -	187		82%	60293	.60sx			9
	12.19	_40	zones of DK. Alt ==		Щ	190	400	1812	gtz-lu- chi quenclay	- mal		<u> </u>		190					
			(incr. che - epid, segreg)				10	1/20	gtz limmal -Maoz. g.	en cla	 	1	100%						
			There is a 1t green =	NV			130 40x2	1/20 XZ 4	gh. de, mel.	0%	_	4	10	58/	60244	.40	.001		101
			Stain to 192 guen	PI)			20	110	gtz. chl. mal- Lim kz gtz. chl- Lim - chl - M	1		197		30%	002	,30 ox			10
	15.24	50	clay + mal		#	200	30	1/20	ate din - mal que	clay	-			200				.47	1/2
						1 11	30 30×2		gtz-cht-Maz-bord-lim- gtz-chl-lim. Ma Oz A	1		1	90%					1.340	
			- 205-217 -	NO					gtr. cht. lin - mal	0%	-	207		47%	60245	.16	.002	3635	.10%
						I. I	1 20 × 2	 	Υ.	10		1 4 1		910		.44			ex
	1 18.29	1 60	White QD	L	\perp	210	115"	1/16	G12- 11m	1	L	1	<u> </u>	12/0	1	L	L	L	<u> </u>

20435

HOLE NO. <u>90-18</u> SHEET NO. 4 OF 8

		DACK TYPES	7 7 7	GR.	APHI	d ,, ., .	W: 4+F		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
S		ROCK TYPES	CORE	į g g	-OG	Veins	Width		%	LEACH CAP LIM. ZONE	Footage	Estimated		SAMPLE	%	%		Estimated
Meter	Feet	AND	< TO FOLIA	iatle ratio	Footage	Core Axis	of	Mineralization		SUPERGENE	Blocks		R.Q.D.	NUMBER				
0.00	0	ALTERATION	^ F	Fol	F O	Axis	Vein		Ру	Remarks		Recovery		NONDER	Cu	Мо		Grade
		· _				15x3	1/16 +3	gtz-che, ser. lim x3		-	1	97%						
		3				80	1/16	gonge	0%	[, =			526	60246	. 14	.002		.072
			NO			1 5	hle	lim - mel.]	217			, -	.10 ox			92
3.05	_10	N.M.P.Q.D.		Ш	220	130x3	he .	gtr.chl.am lim x3] ·		220					
						5°	1/4	gouge - clay alt m. hem.		hem, stain	1	79%						. 1
			NP			130 XZ	1/4 XZ	gouge ×2	0%	Υ/ Ξ	-		11%	60247	.14	.002		.03%
			NP			-90 ×5	hlex5	lim x5	0 /8	Fault System =	227		"	60217	.060x			
6.10	20			Ш	230	70+30	1/20 X Z	4/2-chs- lin x2					230					9
						1 5		otz- ser lim		Badly broken -	}	34%						
			ND.			130×2,		<i>V</i> , , , ,	0%	Minor gorge = 95% / 5% =	1		16%	60248	.20	,004		.10%
						/ 30	1/10	lum,-lem Xf 9/2- del- lim			237		'		1040x			
9.14	. 30	-		11.	290	/45°	Vio	ate che co					240		ļ			
		² 4z · 253'				30°	1/6 (gtz-ser-chl-py-cp gtz-ser-chl-lim xz			1	82%						
		White a.D.	аи			///~	1	<i>V</i>	41%		7/7		387	60249	.45	.003	,	.079
		With Carlo.				180	1/8	g tz. chl (4)	11/0		217				4.010X		.22/.06	ox
12.19	_40			+	250		1/20 hex4	etr-lim lem x4		-	 		250	· ·			3590	
	.	_	WD			160×4		g te-che. lim-py x3		-		79%						
		253-330 N.MP.QD. w/ a few =	to 45			145	1	gtz-lim	4.1%	-	257		30%	60230.	1.73	.622		.05%
		Merro w Zones of:	-60' Str.			70	410	oto. chl. lin - (py)	`	-	123/		1		4.010%			
15.24	50	- D* AI+ -	<i>OII</i> .	+	260	/30	311	Atz Vn-lim-(che)	-	-			260		<u> </u>	ļ		
		- White GI> · =			\	100 13	1/10 X3	1/2. dr. Din x3				100%						
		- Frier grained gone =	70°			30	1/10	gtz. dil- qq ytz; per- dil- (cp)	1.1%	-	267		811	60251	. 19	,008		106%
4		- Free grained gone - wy v. weak saus. altr	M.C.			60	1/2	4/2 -ep -cp	"		126/		10	10022.				
18.29	60		1		270	(5°	1/8	19/2-ep-de	l		1	<u> </u>	1270	<u> </u>	<u> </u>	<u>l. </u>	<u> </u>	

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-18
SHEET NO. 5 OF 8

		DOOK TYPE	光~	GRA	NPHI(/A/: J+L		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
e s	ىد	ROCK TYPES	CORE	l i	റ്ട	1 461112	Width of		%	LEACH CAP LIM. ZONE	Footsge	Est!mated Core	R.Q.D.	SAMPLE	%	%		Estimated
Meter	Feet	AND	< TO FOLIA	Foliation Alteration	ootag	Core	Vein	Mineralization	Ру	SUPERGENE	B!ocks	Recovery		NUMBER	Cu	Мо		Grade
0.00	0	ALTERATION	V LL.	F.S	<u> </u>	Axis		/ // 1	ГУ	Remarks	ļ							
		` _				30 30		gtz-chl-qp gtz-epid.				98%		t		. •		
		white 90.{=	30			30	1/8	gtz. chl-ep-g	0/	=			88%	60252	, 12	.002		. 127
		`-	wk			30X3_		gtz- (che) -cp 13		_	277							ذ
3.05	10		+0 Mad	╁╁╄	2 8 0 /	/	1/20 1/20	gtz.chl-(cp) ×6 gtz-che-ep-(cp)		-	-	- 1	280					
						20		VI	. 1	-		97%			. ^			
		<u> </u>	NO			30	811 1/20	fine of the nich port (hem)	0%	_	287		46%	60253	1.09	1002		14/2
6.10	20					20 XZ 20 XZ	18 + 4/6	gtz.chl- cp xz		_			290					
6.10	20			Hf	1	10	1/4	Patzichl- ep.co										
						145	1/8	ofte the surep)	1	_	1	100%					. 15 3545	.187
			ND	$\ \ \ $		15	1/6	gtz-chl-ep-cp	0%		297		83%	60254	. 26	.001		
9.14	30				300	10 × 3	1	gtz-cho-cp x 3			<u> </u>		300					
		_				30	1/16	otz-che-ep-(cp)			1	93%.						
		-				30	hle "	gtz-ep-che hem.	07.				40%	50255	,08	00/		.062
		-	10.			5×6	hlex6	gauge + hom		Fault System	307		1	50250	100	.001		.00%
12.19	40			Ш	3/0	20	hle	cuam colored clay of hem.		Broken Core -			310					
		=				10 XZ	1/16 YZ	g tz. ep-che. (cp) XZ		Droken Core.	1	90%						
		_	ND.			5.	1/20	gtz.chl-cp	0%	_	1_	100	62/	60256.	.22	.005		. 25%
		-				2019	Luxa	hem x4			317		┤ "					
15.2	4 50		<u> </u>		326	120	1/4	ghvm.cp.	<u> </u>	_	<u> </u>		320					
			1			1	he x6	henry 6			-	100/						
		-	NO			5+10 50	1/16 x2	gtz-cho. ep- 9xz	41%		201		50%	60257	. 15	.001		.17%
2			1		, /	15720	1, 16×Z	giz-ap xz		-	327	 	1,,					
18.2	9 60		1	114	50	170	1/8	lotz-che. su-sp	<u> </u>		1	<u> </u>	330	<u> </u>	<u></u>	<u> </u>	L	<u> </u>

								GIBR	ALT	AR MINES	LIN	1ITED -	20.	1 42	• 	IOLE I	NO	90-1	8	
						,		· · · · · · · · · · · · · · · · · · ·		T	T	- d	UY		S	HOLE I				8
,			ROCK TYPES		CORE	GR.	APH .OG	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		Est!mated			SAY R	ESULIS	<u> </u>	
Meters		et	·AND		o ¥	tion	900	e < to	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%		Estimated
0.00		reet	ALTERATION		< TO FOLIA	Folia	Footage	Core Axis	Vein	Militeralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Mo		Grade
		-4	330 - 145 Lin Dh	寸				1 10 X2	Me x z	horn x Z			†	92%						
			Loucocratic Phase	\exists	414			/30 x 2 /30 x 3	1/10	gtz. on- cp yz	0%	-		12/3	612	60258	. 16	.005		,,,
			five gr.	\exists	ND			/30 x3 /30 x2	1/8×3	gtz-ser-(chl) - cp,3 gtz-ser-(pvz	0(1	-	337		6/1				.16	. 16 %
3.05	5	10	ine gr.	4			340	60	1/26	utz-pu-cp		-			340				35,0	
		ļ		\pm				/ 30°		Gruge. gtz-chl-ep-cp		_	1	90%						
		ļ		7	ND			15x2	110 12	gtz-che acc-cgp x2	0%	=	347	J	77%	60259	. 22	,003		. 13%
6.10	,	20		\exists			350	/20×3 1/0	18×3 '	gtz.du.on-cp x3 gtz.ou-(ch)-cp					35 0					
J				7				/30 × 3		gtz. pa.chtp/x3		_		95%						
				=	NP.			150	1/20	gtz-che-ser-py Gtz Vm - lim	2.1%				64%.	60260	, 14	.003		.06%
				=	•			7.	′	Qtr Vm - lim	26	-	357			8020	,	,,,,		(e)
9.14		30		큭		Н	360	1542	1/16+2	gtz-ep-64.(cp) x2		-			360					
		İ						10 x2	1/1642	gtz. ou- cp x2 gtz.chs. lim - (cp)		- 	1	100%			.19			
					ND.			1543	hb 43	hom x3	<.1%	-	367		46%	60261	117	,003		.03%
12.1	9	40		=			370	/ 5							370					
				3				/ 30°	1/8	from-day: gtz-chlep-up)		=		969.						
				=	ND			130 XZ	1.	9/2-90 0/2. chl-su-cpx2	0%		·		179	60262	.16	1010		.05%
				=			.	20 x2		gtz-per-go , z	<u> </u>		377		1	0 - 20				
15.2	4	50		극		H	380	15° 12	1/20 XZ	gg- um x3		-	-		380					
				=			١	1 5. x2	1/20 x2	100 . /	0%			78%		60263	20.	209	1.18	
(%	2			\exists	ND			20		Itz-chl. on op	1%		387		26%	60263		,,,,	242	.23 2
18.2	29	50		크		Ш	390	//0		Gtz Vn - chl- Cp			1		390	<u> </u>	<u> </u>			

HOLE NO. 90-20 SHEET NO. 1 OF 7

LOCA	TION	North-East Corner of 6	ib-East	BEAF	RING	·····	_	LATITUDE _	50	860.41 N	CORE			reline L				
DATE	COLL	ARED	90	.ENG	TH.	40	7	LONGITUDE _	49					<i>1"-10'</i> D		4		
1		PLETED					,	ELEVATION _	3,	•	REMA			•		•		
		ROCK TYPES	N N	GRAI	PHIC	Veins	Width		Est					AS	SAY R	ESULT	S	
Meters	<u>ن</u>	AND	A TO A	C c C)G • • •	< to	of		%	LIM. ZONE 77	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
0.00	5 Feet	ALTERATION	FOLI	Foliat	Foota	Veins < to Core Axis	Vein	Mineralization	Ру	SUPERGENE Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		Cased to 32'	1	M	1				 	, -								
		Normal Mine Phase Quarte- Diorite (N.M.P.Q.D.) -	1							Lim to 77 to base of 1st fault	F.							
		- H. gren, med. gr. g. d. ,	1															
3.05	10	~20% c Woritized mafics -		-	-H				<u> </u>					-				
		32-64' _	-	╫	32		hlecs	lim × 6		Fault System -	32		3z					
		N.M.P. Q.D. wy norrow	ND			,-	211 hte x 6	gouge-lim	0%	32-87	37	24%	2%		, 09	_	.04	
6.10	20			$ _{\mathcal{A}}$	6	45	6"	Wt. at- lim	1		-3/-		11.	60/23	, δ, γ , ο ξο,	.002	3815	.02%
		abundant lim.			1	20	3 ' '	guit-lim		_		/	40				28/3	
			ND		1	5"	4"	jouge-1:m	6 %.			42%			.05			
						10°		gouge-lim	6		47		0%	60124	.030%	.002		.62%
9.14	30		 	5	0 9	5 x6	hle x6	lim					50		_			
						60 +45	hle x10	lin x 10 Mnozlim		Fuult System.		29%						
			ND			80		gouge-lim	0/	~30% gg, 70% =	57		01	60125	.09	.007		.02%
12.19	40			6	. M	90	4	gouge - lim	,"	B. Kn Core.			60		.05 ox			
		-				1	hlex6	lim x6				83%						
	-	64-67' Limonite Stained	46 +6		- 1 1			ginge-limxz	1			10%	10%		.16	. 008		07
		9tz - ser sher -	Woq 80°			30	1	Gtz Vn - lim -(mo)	0%		67		10%	60126	1060%			.02%
15.24	_50	ma in All. no sour all #			21/4	۲۰	<i>J</i> "	Govge-lim .		-			70					

GIBRALTAR MINES LIMITED 100 HOLE NO. 90-20

											715		S	HEET			OF .	7
		ROCK TYPES	A N	GR.	APHI	Veins	Width		Est	BOTTOM DEPTHS						ESULT		
ers			CORE	E E	OG	2 < to			1 %	LEACH CAP	Footage	Estimated		SAMPLE	%	%		
Meters	Fee	AND	< TO FOLIA	Foliation Alteration	٠٠٩٥	Core	of	Mineralization		SUPERGENE	Blocks	Core	R.Q.D.		/°	/*		Estimated
0.00		ALTERATION	\ \ F	Aite		Axis	Vein		Ру	Remarks	BIOCKS	Recovery		NUMBER	Cu	Мо		Grade
						20 YZ	1/8 + 2	gouge - lim · (g+z-py)]		30%						
			ΔM			6	7	Gouge Poor- Miovery	م	Fault System =			4%		.20	سبر ا		
		Ξ	Wμ.	$\ \ \ $		40		otz-ch1-carb	4.1%		77		7 /0	60127		,005		.02%
3.05ــــــــــــــــــــــــــــــــــــ	_10	-		Ш	80	430	Vzo	gtz-chl-coopga					& <i>o</i>		.030¥			
		-				900	1/4	gto-che-arb-(py?				56%					./2	
		. —	700			30×2		gtz-che-py	.1%]/		20%	4				3770	27
		87 - 110	6.0		Ÿ	50 × 2	1/8 × 2 1/3 + 1/8	Qtz-carb.nz	1.0) =	87		26%	60128	.04	,002		1087
6.10	20	-	Woq.	Ш	90	60		ete our the py		-			90					
		to DK Alt , but less			•	80	1/2	Gonge		-		90%						
		chlorite ; plag is sericitie -	80°	$\ \ $	V	10	1/3 1/2	Otz-cact-de Vm. Carb-gtz-do-89	-	-	1 1	90 %			- 1			27
		and Als. are indistinct - narrow zones of gtz-ser-che	51r ro	$\ \ \ $	7	46	1/10	stz-chicasb	.2%		97		41%	60129	.04	,001		.03/
9.14	30ـــ		Mod.		100	120	110 1/8	gtz.carb.py gtz-chl-carb-py					100					
		-				3013	1/8×3	ote-che-carb-py x 3		-		78%					,	
			•			45	1/10	ofs. ch. cab. ou-py		=	1	10%						
			ИD		1	30	1/10	gtz-che-cart-py	.1%	_	107		17%	60130	.03	,002		1637
12.19	40	Fault Contad -		Ш	10	10°	31	Gouge - bx - (py)		. =			110					
		110 - 134		$\ \ \ $	1	30×5	78×5	atz-che- ungo -py x5		-		9/1/						
		N. M. P.Q.D	45°		/	45		ata In - (du-py)				81%	1201					10
		=	w K.			30	1/2	atz-dy-carb,	1%		117		42%	60 /3/	.06	,002	-	.04%
15.24	50			Ш	- 1	15x3	V8 Y4	gtz. an-che-carb-py ar Vn-che py X3					120					
		#			1	5.	1"	gtz-chl-per-vary -(carb)-py				93%						
]		$\ \ $	\/	1 1	1/10 ×4	gtr-che-pyx4	1			1~/0	,					
			MD				1/2 1/8 x3	g/z-che-pyx4 atzh-py-cmo) g/z-che-pu-cub-pux3	'10		127		48 %	60/32	.08	.005	.05	.07
18.29	60				130 1	30 x 3	1/2 1/3	atz del Mar controller Del	b 2				120				77: E	+ Mo-

			ROCK TYPES	R Z	GRA	PHIC	ns Width		Est	BOTTOM DEPTHS				AS		ESULT		
	ers			CORE	Ľ(1		%	LEACH CAP LIM. ZONE	Footage	Estimated	l	SAMPLE	%	%		
	Met	Feet	AND	< TO FOLIA	Follation Alteration	otage CO CO	e of	Mineralization		SUPERGENE	7	Core	R.Q.D.	İ	/°	/%		Estimated
_	0.00	0	ALTERATION	∧ <u>F</u>	Alte	K Axi			Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
			Ξ	JD.	$\ \ $	3086	1/2046	gtz.ch. pu-py-cup- a?)		-		724/						
			134 254	+0		1 30×1	1/20×4	gra- ser-che-py-cp-tan	nishx	4]	72.0%	35%	60'133	.13	,003		
			White a.D. or	130 130		/ 36 X2	- 1/2 +1	gto sericle py -cp - tan	2%	-	137		2016	60130				13%
	3.05	_10	Leuco cratic Zone -		$\prod \iota$	40 / Box9	1"+(1/2×8)	gtz-ow-py-cpx9	·		1		140					+ Mo
			Most fsp's are series tic - only -			110	1/20 1/4	1/2-chl-si-py		Ξ	-	100%						
			isolated gons w/ (saus	40 0 N		130×6	1	gtz. ou-py gtz-ser. py-4p)x6	22			,-	1.0	(0.00)				
			alt.")	800 1.wk.		/ 30×4	Y4 x4	1/2-5et- Py-(cp) X4	~,	_	147		61%	60134	,07	,00/		.12%
H	6.10	_20	their stain in places	• • • • • • • • • • • • • • • • • • • •	/	50/30	1/2	atz. ow- pytop)x2		-			150					
				Alse		130 X	3 1/2 + (4/2					100%						
				30		/ 30 X	1 /	gtz-perpy-(1p)×10	3/	Ξ			54%	60 135	,05	.002	_	16%
				Mo 4		30 x3	1/2 83	gtz-sev-py-ccp) x3			157	,	276					. 186
	9.14	_30			1	71	1	gtz-ser. py-(4)					160					
						30 x /	1	gtz- per-py-(cp) Yr		, =		99%						
			=	ND		/ B°	1/2	gts-pu-cp gts-pu-py-pyz	3%	hem Stain =	, ,		43 %	60/36	.05	,001		227
		10				40 x 2	l , ,	ľ			/67				, ,			
H	12.19	40			11/7	10 / 30 X/		gtz-sm-che-py-ca) x	1				17.0					
			-			/30 x	1/20 ×10	gtz- on-chl-py-cp x10		=		99%					.07	أر
			4	ND		/30x3	1/6x3	gtz-ser-py-cpx.	3 36	Lein stoin	177		84%	60/37	.05	.001	3680	,25%
	15 24	50]			80 / 15 x 3	1/4 + (1/8 X2)	gtz-ser-W-py-cp X3		<u>-</u>				'				
	1.)./ .4	100	-		+	110	Y4 Y3	ota on- py x3			·	1	180					
			=			120 × 4	1/20×4	Ogtz- su-che- py 14				98%						
			\exists	N.D.		15 16		otz-ser-py-(cp) 46	37		187		86%	60138	,05	.00/		257
	18 29	60	=		,	Q. 1/30 × 10	Y20410	9/2-5c,-py-(ip) +10	-		-/"/		10					
						10 1/1 7 ~	1//2	gic-ser-cy		 	Ц		140	1				

GBRALTAR MINES LIMITED 20435 HOLE NO. 90-20 SHEET NO. 4 OF 7 ROCK TYPES AND AND AND AND ALTERATION AND ALTERATION AND ALTERATION AND ALTERATION AND ALTERATION AND AND AND AND AND AND AND A										,	· %•	4			111111111111	3		
ROCK TYPES War SARPHIC Veins Width SHEET NO. 4 OF 7 ROCK TYPES War SARPHIC Veins Width SARPHIC Veins SARPHI						CIDL	ΛΙ Τ	AD MINIC	1 11	ALTED		-						
ROCK TYPES AND AND AND ALTERATION O THE PLANT OF TH						GIDI	ALI	AL MIINES	LIIV	411EU 24	24	25	?	IOLE	NO.	90	- 20	
ROCK TYPES AND AND AND ALTERATION O THE PLANT OF TH					I		T			· · · · · · · · · · · · · · · · · · ·	7	32	S	HEET	NO.	4	OF .	
3.05 10 3.0			ROCK TYPES	N N	GRAPH	ld _{Veins}	Width		Est			Eatles at ad		AS	SAY F	RESULT:	3	
3.05 10 3.0	ters	ايد		OFF	2 6 8	গু < to			%	LIM. ZONE	Footage			SAMPLE	%	1 %		Estimated
3.05 10 3.0	Me	Fee		[24]	ilati erati ota	٦1	1	Mineralization			Blocks	Core	R.Q.D.					
3.05 10 3.0	0.00	0	ALTERATION	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Fo Fig	ង្គ Axis	 		Ру	Remarks		Recovery		NOWBER	Cu	Мо		Grade
3.05 10 10 10 10 10 10 10 10 10				\exists		30¥4	1110 X 1	gtz- perpy-cp x 4			1	100%						
3.05 10 3.0				30-45		10-1			1]	:	100%	13139	.1			
10 16 16 16 16 16 16 16 16 16 16 16 16 16]v.w.k.		1 13 120	1/16 × 20	gtzser-py. cp x20	2/3	-	197		100%	60101	.01	.002		.20%
6.10 20 Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first.	3.05	_10			200	1 40 16	110×6	ghe sor- py-cp Y6		-			200					
6.10 20 Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first.							116	atricarp . cp				. 0						
6.10 20 Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first. ND Senson first.				- ND			1/10 ×5	gtz. ser -cp xs	20	-		100%	4.1	1.	_			
9.14 9.14 30 Server first. IND 100 100 100 100 100 100 100 1				7 '				GtVm-(contrap. cp)	2%		207		86%	60140	,05	,005		.20%
Senate treft. INP 180 17 21 21 200 2	6.10	_20_		3	210	13013	1/813	gto-on. Py-Cop) x3					210					
Servette tight. NP Servette tight. NP 10 1/6 1/8 gtr per - call - py xz - 36 10 1/6 1/8 gtr per - call - py xz - 36 10 1/6 1/8 gtr per - call - py xz - 36 10 1/6 1/8 gtr per - call - py xz - 36 10 1/6 1/8 gtr per - call - py xz - 36 10 1						/30	1/16	gte-cle-sn-py		****		1						
9.14 30 220 30 18 3th Nm (class can be policy) 220 30 18 3th Nm (class can be policy) 220 30 18 3th Nm (class can be policy) 220 30 18 3th Nm (class can be policy) 227 30 12 12 12 12 12 12 12 1			Seriate fext.	JND	$\parallel \parallel \parallel$	80 YZ	3/4 + 1/8	<i>'</i>				100%	- 1	./				
9.14 30 220 30 18 3th Nm (class can be policy) 220 30 18 3th Nm (class can be policy) 220 30 18 3th Nm (class can be policy) 220 30 18 3th Nm (class can be policy) 227 30 12 12 12 12 12 12 12 1				∃"		30	416	of su-chi-py 12	-36		217		70%	60141	-03	.003		.01%
12.19 40 130 17 (16.0)47025) gt = ser - chl - py - (cp) x7 (3) 12.19 40 12.19 40 150 17 (16.0)47025) gt = ser - chl - py - (cp) x7 (16.0) x7 (9.14	_30_			220	1 30	1/2	atz Vn. Iche cal- pu	-hom)	-			226				, ,	
12.19 40 12.19 40 12.19 10 12.19 10 12.19 10 12.19 10 10 10 10 10 10 10 10 10				=		/	1/8	gtz. ou-carbgg-py	7			924					J 00 J	
12.19 40 12.19 40 12.19 40 10 12 12 12 12 12 12 12 12 12 12 12 12 12]		130 XZ	1/20 42 (otz -ser-chl-py x 2	ا			126		1 11/2	_			
12.19 40 12.19 40 140 150 160 160 160 160 160 160 16				= ""			(1622)*(10x5)	gtz-ser-chl-py-Lcp) X7	.3%	\exists	227		58%	60/42	, 06	,003		109%
15.24 50 10 10 10 10 10 10 10	12.19	40		=	230	30 x2 145	1 1/4	atz Vm - carb - (hem) x2		, –			230.					
15.24 50 15.24 50 15.24 50 15.24 50 15.24 50 15.24 50 166 906 60143 .62.003 172 857 187 906 60143 .62.003 172 857 18 1/4-cht-ep-carb-en 187 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp 18 1/4 9/2-cht-ser-cut-py-cp						60		gtz-sv-py					× 20 ·					
15.24 50 15.24 50 15.24 50 15.24 50 160 1 92-cu - pg-(ip) 172 172 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 175				J ,, [30×3	14 1/20 42)	gtz-pu-carb-py-cp x3	211			96%		_				
15.24 50 = 240 30x3 18x3 of 2-50-CM-carb-cp x3 = 240				3"		196	1/20	812- ser - fry-lep)	1-%		237		90%	60143	.62	,003		.142
5. 1/8 1/2-cht-ep-canb-an 85/	15.24	50		1	240	2013		ν, '					244					ψ.
JUD 1 195 114 gtz.che.sev-canb-M-CP 11]				3			1/8	ptr-chl-ep-carb-ga		_			~70					
= ND 5° Le Carb gg. him = 247 60% 60/44 .02 202 .07%				4	$\parallel \parallel \parallel$	1	,	ars Vm. (cut)	ا ر	=		85%	n					
				Qu E		. 1		gtz-che ser-carb pt cp	.17	=	247		60%	60144	.02	,002		.077
18.29 60 - 250 bexx 1+2 Gtz/m-1-66-rate)x - 250	18 29	60		1 1	250					Ē				U			İ	

20435

HOLE NO. 90-20 SHEET NO. 5 OF 7

		DOCK TYPES	光	GR	APHI	d., .	145 111		Est	BOTTOM DEPTHS			Ī	AS		ESULT		
ຽ		ROCK TYPES	CORE	li	OG	Veins			%	LEACH CAP LIM. ZONE	Footage	Estimated		CAMBLE	07	07		
Mete	Feet	AND	< TO FOLIA	atio	to g	Core	of	Mineralization	/º	SUPERGENE	1	Core	R.Q.D.	SAMPLE	%	%		Estimated
∑ 0.00	<u>1</u>	ALTERATION	^ <u>6</u>	Folic After		Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		_	1			130	110	gtzdl-epid-(py-hom)		-		93%						
	-	254 06:	1			<u></u>	1/6	ate- Grache-conb	21	_		٠ (3	85%					
		254 - 292 NMPQD	40	$\ \ $,	Yzokł	gtz-de-py x2	.3%		257		0010	60145	, 05	,003		.22/
3.05	_10	-atew white dyks -	1		260	1613	16 d(1/6 xZ)	gta-che apid-(cp) x3										2.
2.00	T			Ш		146	1/16	gtz-chl. epid. cp		-	-		260					
		_	N.0									10.7					.03	
		_	N.S			30 x 6	1/20 X 6	gto-che- au - py Xb	.12	=	267		86%	60 146	.01	1001	3590	·017
6.10	20				24	45 35×2		gtz-de-carb-Py										~
5.10	120	_	-	Ш	270	133×Z	16×2 4	ctz-chi-carb xz					270					
			1			1	1×2	Otz-carb		, =		100%						
			NP		ľ	1 50		9/2-cart	1.16	hem stain =		1004	93%	60147	.01	,00/		.02]
						30		gtz-carb- hem.		_	277					,,,,		
9.14	_30			Н	280	/ 30	1/2	gtz-che carb - Hem					280					
		_		$\ \ $	/	30 x 2		gts-che.cub-cp				100%						
		_	40	$\ \ \ $	Y	19.	1/8×2	str-chl-cart x2	0%				74%	60148	.04	.002		.042
				$\ \ \ $		1 20	/8 y4	otz-cach otz-carb-cht-hem	0%	\exists	287		110	0 - 1, 7				. 4
12.19	_40	`		Ш	290	/ 30°	/~	otz- chl-epid - hem stain		, -			290					
	٠.	292-297				130×2	1/8+ /2	Btz- de cab hemrz		` =		978						
		Mainly White an.	UP									T. U	55%	/a	21			127
		•			ľ	30+60		gtzche ou py x 2	-12		297		- 7 (3	60149	,01	,002		.62/
15.24	50	² 97- 33/		Ш		30 120 15120	hle 4/2	carb. hm. x 2 gh. cont. hum x 2		Ξ			300		•			
		Granita Mtn. Phane -					•			_		100%						
		10% gtz. coarse =	80.			1		gtz-per. the cast (gg)	,2%			4	.1					1
		~40% gtz. coarse = grained =	1		ľ	6042		gtz-du-su-pyx2 Q+z-chl-ep-py	, 24		307		812	60/50	.02	.00/	,02	.02/
18.29	60	<i>"</i>	4. ND		3101	10X5	/8 hu x5	(aut-hem x5					310				3545	

						GIBR	ALT	AR MINES	LIN	MITED -			, <u>L</u>	101 E	NO	90	-20	
				_		·			•		64	35	, S	HOLE	NO	6	OF .	7
(0		ROCK TYPES	CORE	GR/	APHI .OG	Veins	Width	,	Est	BOTTOM DEPTHS LEACH CAP		Estimated		AS	SAY R	ESULT	S	
Meters	ēt	AND	O M	tion	Ø :		of		%	LIM. ZONE SUPERGENE	Footage		R.Q.D.	SAMPLE	%	%		Estimated
0.00	5 Feet	ALTERATION	C TO FOLIA	Follation Alteration	oot	< to Core Axis	Vein	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
				M	<u>-</u>	40.	1/8	gtr. chl. ep.			-	100%						
		-	NP			33	1/2	atzva su each chi-(p)				1006	89%	, , , , , ,				اسدا
			NP			15	420 1/10	gtz-chl-cp gtesu-chl-q-py	.22	-	317		016	60276	.02	.007		137
3.05	_10				320 /	16.82	1/8 + 1/20	gtz-per-che-py.cpx2		-	ļ		320			-		
						36 15	1/8	gtz. ser-(che)-cp		-		100%			·			
		· •	ND			45	('	gt= on py - (ip)	.18	-	327	-	98%	60277	.01	.006		.226
6.10	20			3	30 1	30x2	2/2	Otrser-chl-py-(cp) V	2				330	-				
		331-338		Ш	/	30×3	1/8/3	Obs. chl-out x3		_		93%	550					
		Hem stained Lucocratic Phase	q _u		V,	10 X Z	1/20 X2	Carptum 95 x2	11				63%	60278		-		
		Sir. tut.			, -	70	1/4 1/2 1/20	at-chl-su-py-qp	2%	-	337			60270	.02	,003		.19%
9.14	_30	Gr. Mtn Phase / Mine Phase			340	15°	1/20	912-W-(Mb-9)					340					
		hum stain+0367'			1.	3013	1/2043	9/2 de - cp 4 x3				100%						
		hem slaw+0367 -	ND			30	1/20	4/2-cho-cabpy	1.4%		347		98%	60279	.04	سی ه ه		.227
12.19	_40	Rock grades from =] 3	50/	30 30	116	gts. en. py ats. che en-cat-py	(می-	, =			350					
		40% gtz to 30%, 1 = back to 40%.				30	18	giziarican ini		_		98%					.02	
		back to 40%.	ND		1/,	5· ×Z	he xz d	carb hem. YZ	1	Hem. Stain.		100	76%	60280		1	3500	09/
15.24	e i	Ė	·		(1 1	•	gte-de-carb-him	.16	=	357			6020	.04	3		6
15.24	-50					15 YZ 40°		9/2-011-54-94. (cp) 42					360					
		=			- 1'	l i	420 × 6	etz-chi-py 16,		=======================================		100%	<i>α Λ</i>					
		-	N.D.			600	1/4	carb- hem	.1%	Ξ	367		91%	60281	,02	.00 2		.03%
18.29	60			3	70/	150		cts. ch. en		=			370					

CIDLALTAD MINEC LIMITED

			ш	hn		1	(ALI	AR MINES		BOTTOM DEPTHS	04	43:	5 S	HOLE		9 RESULTS		7
Meters	Feet	ROCK TYPES AND	< TO CORE FOLIATION	ation S	APHI LOG	Veins < to Core	Width of	Mineralization	Est %	LEACH CAP LIM. ZONE SUPERGENE	Footage	Estimated Core	R.Q.D.	CAMBLE	%	%		Estimated
0.00	0	ALTERATION	^ G	Foli	F 0	Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
			N.D.			50 5 12 30 20 × 3	1/8 1/86 x 3	ptz.chl.ep. carb-hemxz ptz-chl.carb-cp ptz-chl.carb-pyv3	.2%		<i>377</i>	102%	77%	60'282	. 06	.003		.172
3.05	_10	·		\coprod	380	/ 36	1/10	ot. carb - vugs - cp					380					
			ND			30 × 2 30 × 2	420 × 2	gts- per-cho - py.cpx2 atm ser-chl.py-cp x2				99%		60283				0.0
6.10	20				390	30 x 3	1/20 x3	gtz.chl.ou-cp x3	.1%	= = =	387		85%		.10	1012		-207
		DK Alta & Atz-che- and head	.go Mod + Str			60 X5	1	gtz-che-py-cp gtz-chl-carb-(cp) gtz-chl-carb-(cp)	3%	-	397	82%	58%	60284	.04	.008	.05	, Z•
9.14	03ــ	397-402 - GtzVn.		Ш	400	2500	5'	atz Vn. (chl. pa. cub-py-cp)					400				3455	
		902-407 Sheared Gran. Ntn Phase	480° ND		ا ا	45FP 60 30×3	1	g tr-su-chs-cmb-pfxi Gtz-carb gtz-chl:p-y x3	.37,	- - - - -	407	90%	54%	60285	.22	.005		.097
12.19	40	E. O. H. @ 407		Ш			4	, 13		, -						·		
15.24	50							m.p. Shon									22.	
								- in in the second		-								

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-19
SHEET NO. 1 OF 9

LOCA	ATION	Between Pollyanna + Gib-Eas	<u>+</u> E	EA	RIN	G	_	LATITUDE _	50,	473.38 N		SIZE		ireline L				
DATE	COL	ARED	90 L	EN(GTH	50	o'	LONGITUDE _	49,	417. 33 E				1"= 10 D				
DATE	СОМ	PLETED 17 - July - 19	190 D	IP_		-9	0 •	ELEVATION _	3,	863.70	REMA					7		
		ROCK TYPES	CORE	GRA	PHI	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP 85		Estimated		AS	SAY R	ESULT	S	
Meters	et	AND	O M	tion	OG		of		%	LIM. ZONE 200 SUPERGENE	Footoge	1	R.Q.D.	SAMPLE	%	. % .		Estimated
0.00	T	ALTERATION	고집	Folla Altero	Foot	Core Axis	Vein	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		Cased to 32'		П														
		Normal Mine Phase Quartz - Diorite (N.M.P.Q.D.)																
7.05		-4. green, med. gr. g.d.																
3.05	10	Não to etz, N Sob saus plag.			32.					-	32		32	·				
		32- 228			1	20°	16" + 2"	atz. 6p; d. lets. bem) 42		L'im zone is not -		74%	22.					
		N.M.P.a.D. A few narrow zones of	M:D.		,	25	1/8	atz-chl-earb-lim	6%.	fractures down -	37		62%	60076	,02	.001		.02%
6.10	20	DK Alt wineresed		4		45.	1/6	atz-che-vrap-lim		to 200'			40		10104			
		olovite, supego todepidote	·		ľ	20 4642		Gtz. E, id - (bin)				97%						
]	NP		ľ			ate-de-set- (lim)	0%	-			87%	60077	.01	,002		.027
9.14	_30	=				10 20	1/ f 1/16 1/20	gtz-che. sor-epid.		- - -	17		-	68077	,018%		.01	. 6
		Ξ				40	4 10	ytz-che-lim				102%	50				3815	
]	NO		1	60	45 0	gtz-epid-lim atz- (lim)	0%	-		102 %						
				\parallel	1	1• 5	Lle V4	gtz-che-er-lim	0	=	57		91%	60078	101	3، ،		.0Z2
_12.19	40			6	•	60	16	atz-chl-ep-lim					60 '		/			
]			1		1/20	Gtz-lim etz - chl-lim		-]	97%						
		<u> </u>	N.D.		X	20	·	ote du epia (11m)	0%		67		911	60079	,03	.005		.027
15.24	.50] 7	2/	30 45	1/2	atz-lim-che					70		1010			

20435 HOLE NO. 90-19 SHEET NO. 2 OF 9

			<u></u> Ж	GRA	\PHI	d			Est	BOTTOM DEPTHS			ĺ		SAY R	ESULTS	5	
<u>S</u>	.	ROCK TYPES	95	li	OG	Veiris			%	LEACH CAP LIM. ZONE	Footsge	Estimated	1	SAMPLE	%	%		Estimated
Meter	Feet	AND	ნ₹	ation	tage.	Core	of	Mineralization	70	SUPERGENE	1	Core	R.Q.D.		/0			Esumatea
0.00	ι <u>.</u>	ALTERATION	^ <u>G</u>	Foliation Alteration	Foo	Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
		-		П		80 +20	1/8 + 1/10	gtz-che.Lepid)		_		95%						
		_				/45 ¥ 2	3/4 +1/2	pts. All-epid-vays-lim xz	1	-	1		94%	60080	.02	.002		0
		=	ND		1	30	1/20	ste-chi-lim gtz-dl-epid-busp-lim	0/		77		// "			.000		.02/
3.05	_10				&	30	3 1/1	otz-chl-epid-vugo-lim		_			80					
						30×3	120 x3	gtz-chl-limx3		<u> </u>	1	100%						
		· -					h/e	lim	4.1%		1				102	- 1		
		=	40		-	70		gtz-chl-py-lim		lst sulphides -	87		92%	60081	1010%	,001		.02%
6.10	20			Ш	90	7° 145 X2	1/20 h/e x 2 1	ghe-lim lim x2		_	<u> </u>		90					
					4	30 x2	2"+6"	gtz-ser-che-lim x2		_	1	93%					.02	
					1	30Y2	1 1	gtz-limxz	-0		-		70%		.05	1	3770	97
		-	ND			/ 45°		gtz.chl.ep-(lim) x3 gtz-chl-lim	0%		97'		"	60082	l	.006		1027
9.14	_30				100	60	1/10	gtz-che- vugs. Mnoz-lin			<u> </u>		100		10204			
						145*	2" 1/16	otz-ser-chi-lim otz-che-vugo-lim.	-1		1	98 1						
		, -	ND			45.		9/2-che-lim	0%	-	1		821	60083	,03	,005		
		·	,,,,			60		Fine q. atzser whe) hour. Oto Vm. + gtz - sur wh	Zone .		107		102%	600 03	1020%	,,,,,,		.02/
12.19	40			Ш	110	60	14	Ota Clim)	4.		 		110					
					ľ	50	43	Atz-ser-(epid)		-		100%						
			N.O			10 XZ		of=-chl-(py) x2	4.1%	_	1		911	60084	.09	.004		3%
			•		ľ	1 20	1/16	ptz.chl-ep		_	117		1.7	00001	.0204			100
15.24	50				7	145		9/2-ch/-ep-(py-cp)		_			120					
		-			- 11	36 x 2	1/10 x2 hlo x2	ghicke epid lim 12			-	100%						
			NO.		ľ	45 YZ	1		1.1%	-	1 27		18%	60085	.06	.003		. 08%
۵		·	,		1	30.	1/8	Otz. chl. vugo - Cp.			127		1""	00000	·020x			1
18.29	60	•-	L	Ш	130	130	1/1	gts de-py-lin	L		1	<u> </u>	130			1	l	<u> </u>

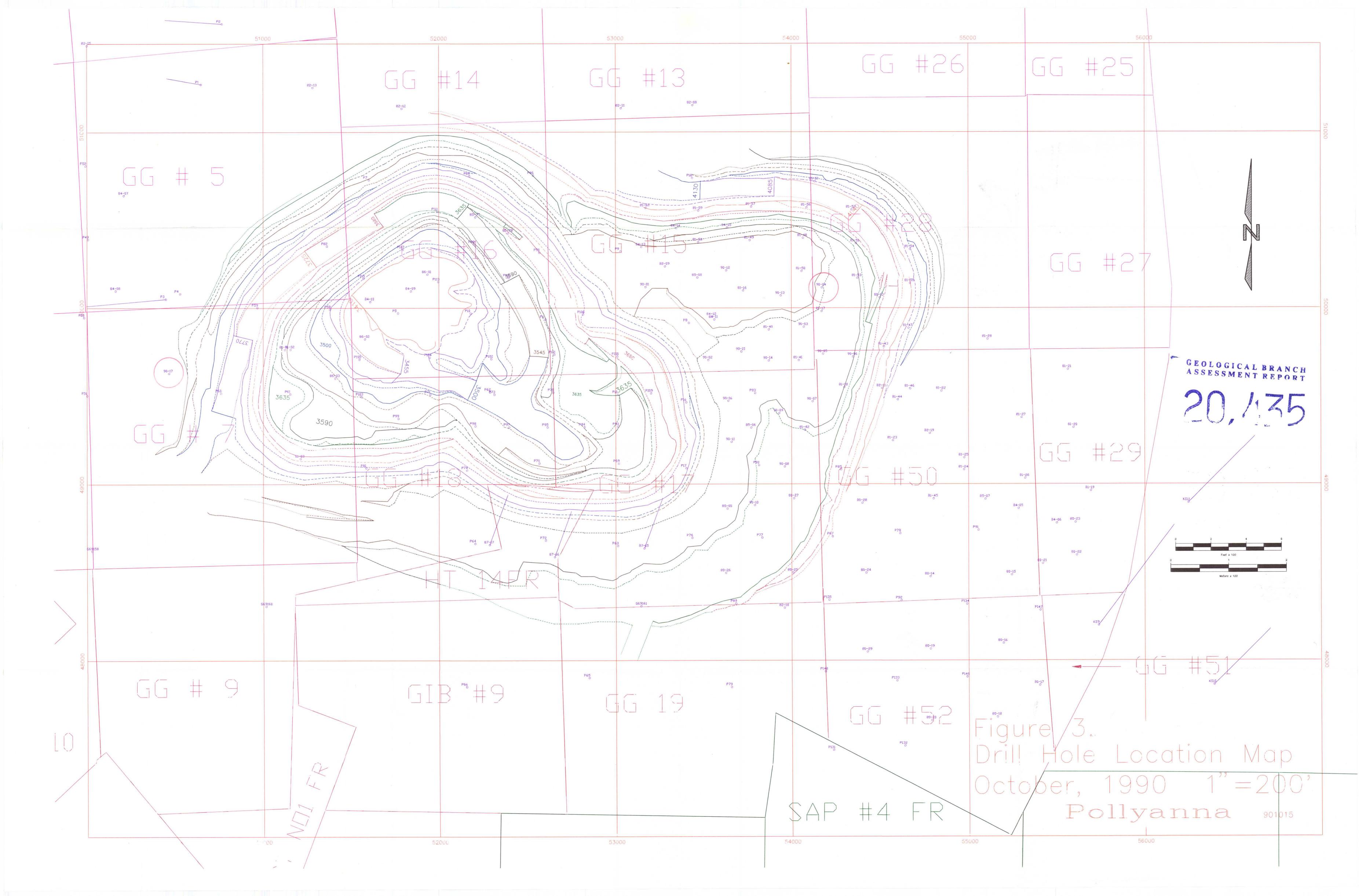
2	04	13	5 h	IOLE I	NO	90-	<i>19</i> OF .	9
DEPTHS				AS	SAY R	ESULTS	3	
	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
narks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
	137	98%	90%	60086	, 04 .62 63	.005	.05 3725	. 027
	147	98%	86% 150	60087	, 03	,003		.029
n		92%		60088	.07	.007	,	•

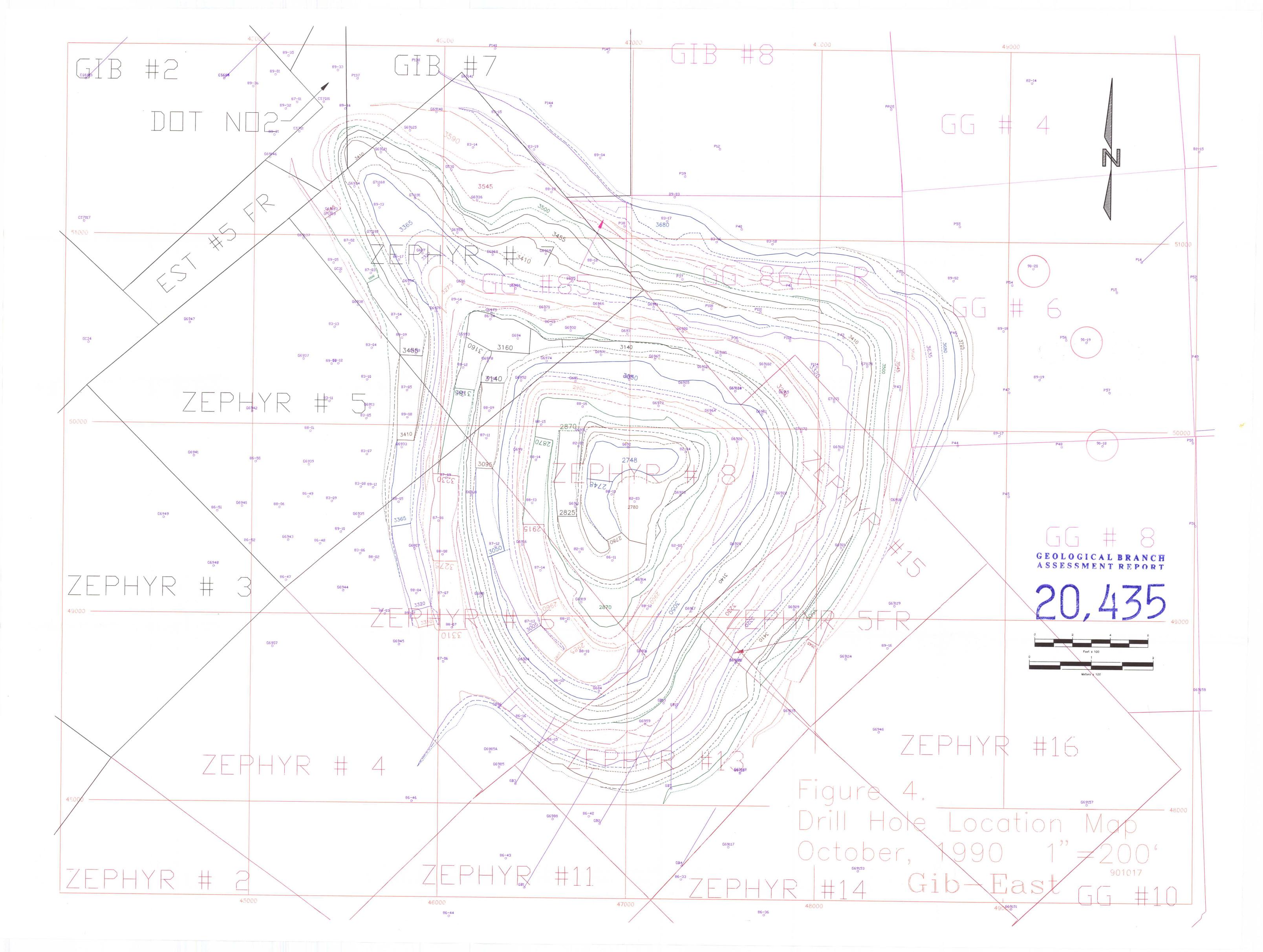
					T		7							i		2011/	<u> </u>		
1			DOCK TYPES	Д >	GRA	APHI(.OG	1/2:20	Width		Est	BOTTOM DEPTHS	ł			AS	SAY R	ESUL IS) 	
	S		ROCK TYPES	2 2	L	.OG	Veins	WIGHT		07	LEACH CAP	1	Estimated		CAMBIE	0, 1	. "		
1	Meters	بد	AND	AAT	0 0	0	< to	of		%	LIM. ZONE SUPERGENE	Footage	Coro	R.Q.D.	SAMPLE	%	%		Estimated
	Je G	eet		\ \ \	ig S) to	Core	•	Mineralization	_		Blocks	Ì		NUMBER				
	.00 .00	Ι <u>Υ</u>	ALTERATION	< TO CORE FOLIATION	A Sol	Footage	< to Core Axis	Vein		Ру	Remarks		Recovery		NOWIDEN	Cu	Мо		Grade
	$\frac{uu}{1}$		-		fπ		30 x2	1/16 x Z	gtz-che- ep- lim x2		_	 	254/						
	1					1/	40 × 2		etz-chl-por.		_	1	98%						
	ł		_				170 / 2	0	7	١,		1		90%	60086	.04	,005		
			, =	ND.	$\ \ \ $	1	40	1/8	gtz chl-Vugo-lim	0%	_	137			60086]	,0	.05	. 027
				70.	$\ \ \ $	K	50 + 30	19116	Gtz Vn-ch. vugs-links		_			1		٠62 ٥٧			
تــــــــــــــــــــــــــــــــــــــ	.05 L	_10	-		Ш	140	/ 30	Y20	gtz-che-lis			1		190				3725	
						[/	5	1/8	9 tz - che. sw			1	000	İ					
					$\ \ \ $		60	<i>y</i> ₄	otzache per	0%	_	1	98%						
				40	$\ \ \ $	1	30	1410	stz. W. epid.	1	_	\dashv		80%	60087		,003		.029
					$\ \ $		15-x2	y3+1/8 6	(ab-chl Uns-(vuss-um)	× Z	_	147		"	,	, 030X			7
	4.0	00		1	$\ \ \ $. [10	1/8	8tz-do-ser-vuep -lim.			1		15-					
1	.10	20			HH	150 1	70 30 ×3	1/2043	gtz-chl- lim x3	 	_	 	<u> </u>	750					į.
						ľ	5 43	Lex3	lin + Maax x 3	1	b < 1	1	92%					,	
			ghiser- [NP	$\ \ $	1/2	3012	he x Z	lim XZ	۱ ۵	Bato, lim.	-				.07			
				14			20	1/20	lenia / D	4.1%	-	157		447	60088	i	,007		.030
			_	30-45 WK		1	30	1/8	gtz-che-epid.		-	1 1 2 1	 	1.16		105 ex			0
9	.14	_30		WIT		160 1	30x2	1/1682	9 tz - ch1 · lim -py + 2		-	1		160					
			_		Ш		150	14	gtz. chl-ep		-	-	1	1					
	i			1		Y	40 x2	410+1/8	gra-av. Vm - cep-lim)		_	7	87%					ŀ	
				ND			3-	1/20	gte-che-ep	1.0	_	1		1	60089	.05	.002		
			·	10.		1	3.	he	lein	1.18		167		72%	0000	.020%			. 03
				V.WK,			30 x2	14+120	gtz-161.epx2		1 - 1								
1	2.19	40		1	Ш	170	180	3"	gtz-chl-cpid-lim-((+y))	<u> </u>		}	<u> </u>	170		 		 	
	1		=	1		1	20	1	gtz-de-lim. ((cp))	l	_	1	1						
			_	406			50	rec	19+zuche.		_	1	100%			1 , ,			ĺ
	1		-	700		ľ	30	116	gtz. che. Lim	Mo	_			37%	60090	.10	,002		.030)
]		_	U.WK.			1 -0	he	an .		-	177	 	1		1.050x]		1 3
	5.24	50	_	1 .		180	50 XZ	l \<	glz-dul-lim X2		-	-		180				1	
	.)/.4	50		1	$\dagger \dagger \dagger$		25	1/20 12	otz. lim-chi	 	_	1	1	1				1	,
				1 ., _			80	1				1	90%					.06	1
			_	N.D.		r	1	18	at Vm- vugs	1	•	-		36%		.06	.004	3680	24
			_	t. 70°			40 XZ	hle xz	chi- hem x2	0%	-	187			60091		'		.62%
				v. WK.		1. P	70	1/4	ats che un - vago			-				.060x	-		
1	8 29	1 60		1		190	130×2	heeyz	lin x 2		-	1	<u></u>	190	<u> </u>	1 '	<u> </u>		<u> </u>

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-19 SHEET NO. 4 OF 9

ſ		Т		ш	hn	ND1 11	7			Est	BOTTOM DEPTHS				AS	SAY R	ESULTS		
		ĺ	ROCK TYPES	07	li	APHI .OG	1 401112	Width			LEACH CAP		Estimated				1		
Meters		ايد	AND	O A	Foliation Alteration	0	c to Core	of	1. 1.	%	LIM. ZONE SUPERGENE	Footsqu	Core	R.Q.D.	SAMPLE	%	%		Estimated
Vet		Fee	i	< TO FOLIA	ilat erot	ota .			Mineralization	П.,		Blocks	Recovery		NUMBER	Cu	Мо		Grade
			ALTERATION	ν ŭ.	교	r ₀	Axis	Vein		Ру	Remarks		Recovery			- Cu			0.000
			=		$\ \ \ $	ļ	120	2"	gtz-che-ep. lin				102%						
			=======================================		$\ \ \ $	ŀ	60		atache Um. co-lin		_			50%	,	.46	,029		100
			=	ND	$\ \ \ $		2514	1 1/20 × 4	GtzVn-vugo-luns gtz chl-pyx4	.40	_	197		20%	60092	050x			.08%
		İ				ľ.	/30×3	118x3	Ostz. Che-cpy) x3							.000			
3.0	5	L 10			HH	200	/ p	3" 3"x2	Otala-Chlippy	CODY	<u>li</u> .		 	200					
				1/ 1	.]]]	ľ	40×2		atz-che-lim mo pý xz				93%						
			1	Variable	111		10		ptz.(hl.ser-ep-(p)	.17.	Budly broken -			200	/ 22	.74	.018		.047
				WKL		Þ	1	11872	gtz-chl-aw. lim-cpy) 12	i .	Budly broken	207	ļ	28%	600 93	11304]	
6.1	_	20	-	Str.		300	6° 12	116 X Z	olin quen gorge-him x2	1	lore. =			210		1,000			
6.1		120			Ш	210	15x2	1/8 × 2	gtz-chl-ser-cp-vuap X2	-	-		96%						
	İ		-			ŀ	65	hle	olive green gauge hem.]	16 60					1	
			-	NP			120 x3	•	ph. chl. ser-cp 3	4.1%	_			42%	60094	1,02	.008		,10%
			Ξ	·			150	1/10	gtz-W-vugo-cp			217			"	.104			
9.1	4	_30	-			720	/30 /30x3	1/2 / 1/20x3	otachl. so-up) x 3		-	<u> </u>		220	ļ				
							30+20	1110×2 6	stack-vugs-py-cpx2		<u> </u>	1	100						
							/ 30	Y2_	of ren ser vigo - py (p)		=		1007			27			,
				Jo.		ł	/ 20x3 / 30xV	11613	gto de on of lim Ke	.1%		227		62%	60095	.37	1002	.58/	10%
				* 0~ <u>*</u>			/ 10	74	gouge - 1 im - hem			1		1		.049		3635	
12.	19	_40	· · · · · · · · · · · · · · · · · · ·		\coprod	230	1 5160	here	lin x2			<u></u>	 	230				2623	
			Leucocratic Phase a =			 	2013	1/8 +0,02	gtz-per-che-yup-py-(40) &	1] _{V5} /		85%						
			white all	ΝD			30 X5	1/2×5	8tz-ser-ch - vugo -py-(a)-	אוו- עק		1		33%	60096	.52	.004		.207
			_	6			1 600	1211	Grage-lim.	.12.		237	 	ر/ تحت /,	60016	1	1.007		0
			137-265	ω×.		240	70	1/20	and the second			1		240		.0504			
15.	24	50	Hem. steen of NMPap:		+	270	11 50	hie	coling gun 59-hom	1	-								
				1		1	3014	1/20 ×4	otz. cw-cp-(44) xt		_	1	427						
			_	ND			130x3	1/20 ×3	4 tz. W. ser. py. (PK3	1.17.	_] ,,,,	"	40%	60097	018	.026		.16%
4			-	1			()6	1"	Gtz rach - vu p - (99) Gtz-va - chl - sex - carb - q	1 %		247		- 1 . (4	0001/	10/0/			
18	29	60	- -			250	1 50	1/20	9tz.chl-501-py		-	<u> </u>		250		1901	<u></u>		

GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-19 SHEET NO. 5 OF 9


·			닖 및 _	GR.	APHI(J	140 171		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	3	
ers	_	ROCK TYPES	CORE	li	.OG	Veins <	Width of		%	LEACH CAP LIM. ZONE	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
Meters	L	AND ALTERATION	< TO FOLIA	Foliation Alteration	ootec	Core	Vein	Mineralization	Ру	SUPERGENE Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
0.00		0 ALTERATION	V LL	€ ₹	ŭ i	Axis	1/4	gte do - carb (py)	' '	Remorks		. 1						
		,]			40×3	11643	4/2.ehl-py-(cp) x3		-	1	93%		ı				
		255- 4/8	NP		1	2012	1/22 1/8	gtz.chl-carb-or-py-cop	**	-	-		41%	60098	.07	.005		.077
		White aD	1 "P			60 50×3	1/2	gtz-chl- our py	. 26		Z 57		1					6
_3.05				Ш	260	450 12	1/2012	gtz.che. ser- py x 3	12		_	ļ	260					
		- hem stand in	1			60 X 5 80 X Z	416 x5 0	ofz. chi- ser py x5			=	924						
		places	10			3.	118	gto chleath - hem	11	Semewhat	} .	126	1200	. 00	47	.004		1087
		Practi	80			60×9	1	Gongo-cont.	. 2%	1 /	267		129,	60099	, ,	,		100 6
6.10		20	Med.		270	70 × 7	1/20× f	Gouge - wet (born)		Theared :	1		270					
6.10		20		Π		70	1/20	gouge (he m)) /		90%					- 20	
			60-70 M.d		,	30	1/2	oline green 3 g - hem		Showing :	#	106					3590	
		=	- //·• °			130	1/8	9/2- Ser- CA	0%		277		32%	60100	- 11	1017		.22/
			1°			1 40 × 3	1 -	atzvn-mo-(cp) atzper-cpx3		ľ	=		700					AM/052
9.14		30	1	++	280	160	 	gtzan-py-mo-1cp	89		_	-1	280					
			1			60×2	1 .	of ser-call-py-up) x2	l		7	92%						
			No			10	1/8	(ab gg- hm	1.12				32%	60/01	,05	1003		.167
] ""		1	1 1542	11.8 x2	gta-Chl-carb-epid x2	1		287		1	60707				
12.19		40	<u> </u>	#	290	1 45	1/2	Ota Var- Carb- Vago- Nom.			1		290	 	<u> </u>			
		-	1			60	1/8	carbag-hom			3	91%						
] .			20 60×2	1/10	gtz-cab-cp	0/2		_	"	38%		1,/3	1004		200
		-	1 n D,		1	7013	1/16x2	gte-che-su-cpx3	Pis		7297	 	1001	60/02	''-			
15.24		50	1		300	2	6	cart gg - hun.					300				ļ	ļ
			3	\prod		15×2	1/8+1/16	gt su- cp x2			_	92%	'					
			1		1	/ 20	1/10	carbogg. him.	0%		7	126	1		0.5	.003		-11
			N.D.			5	her	earl gg	01		307		75%	60/03	1.00			.09%
					}	/ 30	4 10	gtz-cho. su. q.			1		211					
= 1.18.29		6UI	<u>.l.,</u>	$\perp \perp$	1310	1170X 3	1/20x2	19/2. chr. ser-(cp) x2	<u> </u>	l						.+		


GIBRALTAR MINES LIMITED 20435 HOLE NO. 90-19
SHEET NO. 6 OF 9

		DACK TYPES	H -	GR	APHI	d ,,, ;, ,	771: 17		Est	BOTTOM DEPTHS				AS	SAY R	ESULTS	5	
ars		ROCK TYPES	< TO CORE FOLIATION	5 5	i OG	Veins	Width		%	LEACH CAP LIM. ZONE	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
Meters	Feet	AND	157	latic	Footoge	ਹੈ Core	of	Mineralization	_	SUPERGENE	Blocks			NUMBER				
0.00	0	ALTERATION	\ \ F	F 0	Č Ľ	Axis	Vein		Ру	Remarks		Recovery		MOMIBLI	Cu	Мо		Grade
		_	1			120	1/8	Gtz-an-gp carbag. hem				94%						
]			30x6	416×6	g72. Chl - on - Gx6	0%	Not much	1	-	72%	60104	.06	.003		1097
		-	d no			195	Y6 410	atz-op	0%	here.	317						.08	8
3.05	_10	-		Ш	320	30 X 2	1/20 YZ	ptz-on eo (10) x2		727.	<u> </u>		320				3545	
	H	_]			30 x 2	120 +2 6	gtz ser-carb- (4) x2			1	106%						
		-	44			20 ×6		gtz-chi-sur-(cp) x6	, ,	_	1	1	38%	60/05	.07	1003		1,7
		-			1	40	1/8	Otz-Cal - carb. goage -carb-Chom-py)	2.1%	_	327		1 20 %	00703				.112
6.10	20			\coprod	330	1 30	1/8	atern-cab)-cp		-	†		330					
		-	1			20 X 6	1/16×6	ghz. (cub) - 4 16		-	}	100%						
		<u>-</u>	טא	П		60.	1/8	atz. ch/- op	0%	=	1		72%	60106	.05	.003		.127
						/ B•	1/8	gtz-Ser-(chl)-go		-	337		† "	60100				,
9.14	30ــــ	-			340	1 20 42	hlexz '	gtz-ser- like) · py	ļ	-	<u> </u>		340					<u> </u>
		<u>-</u>]			160.	1/6	atz py		_	-	97%						
		-	J N.C	, []		/ 30		9+2 Ser (py-cp) ptz-ch-ser - ep - py-cp &	.3%		347		61%	60107	108	500.	 	.079
						30×3		gtz-ch-ser-ep = py-q &	1 "		37/		1					1
12.19	_40	-	<u> </u>	+	350	/ 45° / 30×6	1/4	8 ts ser- che-py-(cp) x6			<u> </u>		350		 			
		-	-			130×2	1/10 + 1/20	9 tz. sev. chl. (64-4) 12		_	1	100%						
			100			/30	1/20	ptz-ser-chl-py-(cp)	.27		357		89%	60108	.03	,002	-	.107
		-				582	hlexz	gtz-dl-ep.py12	. 7	-	133/	 	1					. "
15.24	50	-]	$+\!\!\!+\!\!\!\!+$	360	/30×3	VIOX3	ph · ser- (che) -py-(cp) ?		_	 	 	360				<u> </u>	-
			1			50 x2	1"	9+2- Sr-che ep-py-ip yz	1	_	1	92%					.08	
		-	ND			/ 36 y4	1813 1/20	atz Vn-conh) - mo-(cp	.3%		367	7	626	(46	.26	.006	3500	20%
4			╡ `゛			/ 10° / 10°	1/10	atzVn - carb) - mo - (cp 9tz - clu - (carb) - cp		-	126/		1	60109				
18.29	60	<u> </u>	1	Ш	370	/30 x10	1/16 × 10	19/2-50 che (p. (py) X/6	21		1	<u> </u>	370	1	1	<u> </u>	1	<u></u>

يسر د									
D . 6	2	04	13	5 h	IOLE I	NO	90	<i>-19</i> OF ₋	9
OM DEPTHS	\Box	-					ESULTS		
NE SALE		Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimated
emarks		Blocks	Recovery		NUMBER	Cu	Мо		Grade
·	=		90%						
	=	377		65%	60110	.08	.002		.097
nem. stain.	#	311		<i>38</i> 6					
	111		928						
		387		75%	60111	.06	.003		.17%
	\mathbb{E}			390					
		i	100%						
	=	391		81%	60112	.04	.004		.08/
				400					
			99%						
		407		90%	60113	.04	.००उ	.08	,07%
				410				3455	
1	111		100 %						

			l w	DD 4	חווום				Est	BOTTOM DEPTHS			İ		SAY R	 	5	
ļ		ROCK TYPES	88	BRA i	PHIC	Veins	Width		ESU	LEACH CAP		Estimated						
Sign		AND	OF	ב ב	0 0	< to	ء د		%	LIM. ZONE	Footage	Core	R.Q.D.	SAMPLE	%	%		Estimated
Meters	eet	AND	2₹	o tro	tog Stu	Core	of	Mineralization		SUPERGENE		Core	R.Q.D.					
	ıř	ALTERATION	< TO CORE FOLIATION	Foliation Alteration	i o i	< to Core Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
0.00	0			T		10 X2	11642	gh-ser-che-pyxz	-			90%	<u> </u>					
		_	}		1/1	30 ×3		gtz.sur.py x3		_	1	90%			,			
			- עע	$\ \ \ $	1/	45°	410	Atz-ser-py	ا م		1		65%	60110	.08	.002		19-
] ""		/	20 x 3	1/10 × 3	ota per-py x3	.4%		377		65 %	60110				.097
			}		1.1	3 70		are- en py-lip)		Pink hem. stain =	1		380					
3.05	_10			115	00	30	1/20	gtz-che-mut-them)				 	₩					
		-	-		1'1	1		cast gg + herr g/z. ser-ep-chipy 12	·	' -	1	921						
		-	7			30 × 2		Otz Vm - carb. (CN) - cp		_	Ⅎ	92.			.06	.003		0
			1 ND			38		gtz. ser-karb) Shr wy (py.4)	.2%		387		75%	60111	1.00	.000		.17%
		-	7	$\ \ _{L}$		60	12"	917.31 400000		_	-							
6.10	20		1	•	390 /	<i>16</i>	1/10	atz-ser-che-cont-py-cp			}		390				 ,	
					17	30×3		gtz-che- ap.		=	7	100%						
		•	4	$\ \ \ $				11-00- St-4 4 3		_	1				۱,			
		-	I N.D.			6012	1/20 x 2	8tz-chl- py- (4) x2	170	_	391		81%	60112	104	.004		.08%
			‡	$\ \ \ $		70	73	gtz-chl		-	-		1					
9.14	_30		1	1 1	100 1	5° X 2_	1/20 XZ	gto-che-ep-cp xz	ļ	-		<u> </u>	400					
			╡	$\ \ \ $	- /	30	1/20	otz-chi-carb.		_	1	99%						
		:	ND	Ш		70	100	Btz Vm - ep - mo. Gtz vm - ep - mo.	Ω	_	1	116			١.			
			+	$\ \cdot\ $		50 20+30	1/1/2	g/2-coub-chl x 2	.1%	_	407		90%	60113	.04	,०७	,08	,07/
		· :	800		ľ	45	yz 4	19tz-carb-chl		-	1-707			į				
12.19	_40		Str.	Ш	40	70°	1/10	gta- che - Sur-cont-py-cp	<u> </u>	, -	1	<u> </u>	910	ļ			3455	
		-	₫			ιο 45° γ3	1/1 1/6 x3	Votzeant-che	×3	, · · · · · · · · · · · · · · · · · · ·	1	100 %						
			d .	$\ \cdot\ $	~ 1/ 1		V 6	19tz-cart-che cart-py-9		_	1		11		ĺ	1		
		-] ND 6				14	1012-CN- Cab Co	.3%	<u> </u>	1 1		90%	60114	1.121	,016		. 142
		_	45jr.	$\ \ $		45	3/2	gtz-che- our - (out) sloan.	. "	_	417	 	1	,				
15.24	50	418 - 499	<u> </u>			45°	V16	gtz-che.ep-carb-py			-		420		<u> </u>	ļ		ļ
		Granite Mtn Phase	-	Ш		90		stach - carb.		-	1	98%						
		GHAITEIIII	7			3 0	3	Chl-gtz-carb		-	Ⅎ	1 6						
			DNF		14 1	60	1/6	1 6	.2%				81%	60/15	.06	.002		1.20%
			7	$\ \ $	r I	30×3	i .'	atz. su. chl. cp. py	10	-	927	-	- · · · · · ·					•
19 20	50	,	7		130	46	2	White aD. Dyke.]	7		430					
1.10.79	1.00			لللل	V V.	7.5	<u> </u>	· ····································		1	-							

