

KASHUTL PROPERTY

GEOLOGY AND GEOCHEMISTRY

ALBERNI M.D., BRITISH COLUMBIA

N.T.S. 92L/3

Latitude $50^{\circ} 09^{\prime} 30^{\prime \prime}$
Longitude $127^{\circ}{ }^{\circ} 0^{\prime} 30^{\prime \prime}$

Owner: Taywin Resources Ltd.
Operator: Placer Dome Inc.
Author: Dale A. Sketchley

GEOLOGICALBRANCH ASSESSMENTREPORT

LIST OF TABLES

I. Kashutl Property Claim Status after page 2

LIST OF FIGURES

1. Location Map after page 2
2. Claim Location after page 2
3. Regional Geology after page 5
4. Geology - Kashutl Property in pocket
5. Geology - C Extension Zone in pocket
6. Rock and Soil Sample Locations - Au-Ag-Hg-As-Cu-Pb-Zn Geochemistry - Kashutl Property in pocket
7. Rock and Soil Sample Locations - C Extension Zone in pocket
8. Au-Ag Rock and Soil Geochemistry - C Extension Zone in pocket
9. Hg-As Rock and Soil Geochemistry - C Extension Zone in pocket
10. $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}$ Rock and Soil Geochemistry - C Extension Zone in pocket

LIST OF APPENDICES

Page
I. Rock Sample Descriptions 13
II. Analytical Results 18
III. Sampling, Sample Preparation and Analytical Procedures 22
IV. Histograms and Probability Graphs 25
V. Statement of Qualifications 56
VI. Statement of Expenditures 68
VII. Statement of Work - Cash Payment 60

SUMMARY

The Kashutl property is 40 km west-northwest of Zeballos, B.C. An exploration program was conducted from July 22 to July 31, 1990. The purpose of the program was to evaluate the $\operatorname{Sin} \# 7$ claim, which covers an area where the C Extension zone from the adjacent Electrum property was projected to intersect calcareous rocks of the Quatsino and Parson Bay Formations. This zone contains gold-silver-bearing mineralization in mafic volcanic rocks of Karmutsen Formation. A potential exists at the intersection point for a low-grade high tonnage or high-grade low tonnage epithermal gold deposit. The work consisted of prospecting, geological mapping, and rock and soil sampling. A total of 65 rock and 37 soil samples was taken.

The Kashutl property and surrounding area is underlain by mafic volcanic rocks of Triassic Karmutsen Formation, calcareous sedimentary rocks of Upper Triassic Quatsino and Parson Bay Formations, and mafic to felsic volcanic rocks of Jurassic Bonanza Group. Felsic subvolcanic intrusions related to Bonanza Group are common within Karmutsen, Quatsino and Parson Bay Formations.

Mineralization and alteration within the C Extension zone in the western portion of the property consists of pyritization and clay-alteration with locally common narrow quartz veins. Some of the clay-alteration occurs in narrow intenselyaltered zones. Minor zones of silicification are present also. Disseminated and blebby pyrite with traces of galena and sphalerite are present in the quartz veins and silicified zones. No mineralization was observed in calcareous rocks within the C Extension zone. Rock and soil sampling within the C Extension zone did not outline any zones indicative of significant gold-silver mineralization.

In the southeastern portion of the Kashutl property rock and soil sampling did not outline any significant gold-silver mineralization within pyritic clay-altered felsic volcanic rocks.

The option agreement on the Sin \#7 claim of Taywin Resources Ltd. should be terminated as the potential for finding significant gold-silver deposit is low.

2.1 Purpose

The purpose of the field work was to evaluate the Sin \#7 claim, which was optioned from Taywin Resources Ltd. This claim covers an area where the C Extension zone (Sketchley, 1989) from the adjacent Electrum property was projected to intersect calcareous rocks of the Quatsino and Parson Bay Formations. The C Extension zone contains gold-silver-bearing disseminated and fracture-controlled pyrite associated with clay-altered and locally silicified mafic volcanic rocks of karmutsen Formation. A potential exists at the intersection point for low-grade high tonnage or high-grade low tonnage epithermal gold deposits. In the southeastern portion of the claim, a large rusty-weathering area has a similar potential.

2.2 Property Location, Access and Topography

The Kashutl property is 40 km west-northwest of Zeballos, B.C. within the Alberni Mining Division, N.T.S. map sheet $92 \mathrm{~L} / 3$ (Figure 1). Access is by logging road from Zeballos to Fair Harbour, then by barge to Chamiss Bay, from where logging roads lead to the property (Figure 2).

The property straddles a north-trending ridge which is drained east to Kashutl Inlet and west to Easy Creek and Malksope River (Figure 2). Local relief is up to 900 m . Upland areas are precipituous, whereas valley bottoms are less rugged, although some are locally incised.

2.3 Claim Status

The Kashutl property comprises the Sin \#7 claim, which totals 20 units (Figure 2). The claim is owned by Taywin Resources Ltd. Its status is summarized in Table I.

TABLE I

Kashutl Property Claim Status

Claim Name	Record Number	Number of Units	Anniversary Date*
Sin \#7	3915	20	Aug. 14, 1994

*After filing work detailed in this report.

GEOLOGY

The Kashutl property and surrounding area is underlain by volcanic and sedimentary rocks of Karmutsen, Quatsino and Parson Bay Formations, and Bonanza Group that were intruded by felsic plutons of the Island Intrusions (Muller et al., 1974). The geological setting of northern Vancouver Island is presented in Figure 3.

Mafic volcanic rocks of the Triassic Karmutsen Formation (Unit 1) crop out in the C Extension zone in the western portion of the property (Figure 5). These rocks were previously included in the Jurassic Bonanza Group by Muller et al. (1974); however, their characteristics and stratigraphic position indicate that they belong to the Karmutsen Formation. They comprise massive brown-weathering green basalt to andesite flows with minor tuffs and breccias.

The Karmutsen Formation is conformably overlain by the Upper Triassic Quatsino and Parson Bay Formations (Units $2-5$). Rocks of these formations occur as lenses in the C Extension zone in the western portion of the property (Figure 5). They comprise argillite (Unit 2), conglomerate with green to maroon volcanic and grey limestone cobbles (Unit 3), grey limestone (Unit 4) and black limestone (Unit 5).

Jurassic Bonanza Group (Unit 6) conformably overlies the Quatsino and Parson Bay Formations and is exposed throughout most of the property (Figures 4 and 5). It is characterized by green to maroon basaltic andesite to rhyodacite flows, breccias and tuffs (Muller et al., 1974). Maroon rocks are more predominant in the upper part of the volcanic pile.

Rhyodacitic subvolcanic intrusions (Unit 7) of the Bonanza Group crop out in the C Extension zone in the western portion of the property (Figure 5). These intrusions are pale green to white, siliceous, and locally have poorly discernable flow-banding. They comprise one large east-southeasterly-trending body and numerous smaller dykes.

The Kashutl Pluton, which is one of the Jurassic Island Intrusions, is exposed in

the northern portion of the property (Muller et al., 1974). It is composed mostly of a quartz feldspar porphyry.

Rocks of the Quatsino and Parson Bay Formations, and Bonanza Group generally strike easterly and dip moderately to the south. On the western margin of the property south of the C Extension zone (Figure 5), a prominent creek valley coincides with an inferred east-southeasterly-trending left-lateral fault, which offsets the lower contact of the Bonanza Group approximately 800 metres. Prominent gullies in the C Extension zone with a similar trend are related to fractures or faults. Northeast and east-northeasterly-trending faults unknown also are present in the C Extension zone.

Three types of mineralization and alteration are present on the Kashutl property:

1. Narrow zones of silicification;
2. Narrow zones of intense clay-alteration; and
3. Widespread areas of pyritization and clay-alteration with locally common narrow quartz veins.
These types of mineralization and alteration occur in mafic volcanic and rhyodacitic intrusive rocks within the C Extension zone in the western portion of the property. They are generally zoned with a core of silicification that is surrounded by intense clay-alteration within pyritic weakly clay-altered rocks. In the southeastern portion of the property, widespread areas of pyritization and weak clay-alteration are present in felsic volcanic rocks.

Zones of silicification are uncommon and generally less than 50 cm wide. They are pale grey and contain up to 5% disseminated to blebby pyrite with traces of galena and sphalerite.

Zones of intense clay-alteration are more common than the silicified zones. They are composed of a soft pale-grey rock that contains up to 5% disseminated pyrite in zones at least up to two metres in width.

In the C Extension zone, pyritic clay-altered rocks are common. These rock are medium green to pale grey. Pyrite mostly occurs as disseminations and blebs up to 5%, and less commonly as fracture fillings. Quartz veins are generally less than five centimetres wide, although some range up to 20 cm . Some veins are locally vuggy. They are composed mostly of quartz with minor carbonate and up to 5% pyrite with occasional traces of galena and sphalerite.

7.1 Introduction

A total of 65 rock and 37 soil samples was collected during the work program and submitted to Placer Dome Inc. Research Centre for preparation and analysis. Locations and identification of these samples are plotted on Figures 6 and 7. Descriptions of the rock samples are given in Appendix I.

All samples were analyzed for gold, silver, mercury, arsenic, antimony, copper, lead and zinc. Analytical results are given in Appendix II; sampling, sample preparation and analytical procedures in Appendix III. Analytical results, excluding antimony, are plotted on Figure 6 for portions of the property away from the C Extension zone. For the C Extension zone gold and silver are plotted on Figure 8; mercury and arsenic on Figure 9; and copper, lead and zinc on Figure 10. Based on visual inspection of histograms and probability graphs of the analytical results a threshold was selected in order to separate elevated values from background values that occur near detection limit. Only above background values are plotted on the geochemical maps. The histograms and probability graphs are given in Appendix IV.

7.2 Kashutl Property

Rock samples from portions of Kashutl property away from C Extension zone returned only two weakly anomalous mercury values, up to $1,030 \mathrm{ppb}$, from pyritic clay-altered rhyolite. The soil samples did not return any anomalous values.

7.3 C Extension Zone

Rock samples collected from mineralized exposures in the C Extension zone returned only a few anomalous values. Pyritic quartz veins hosted by clayaltered mafic volcanic rocks and fault zones in rhyodacitic dykes and conglomerate returned values of up to 80 ppb gold, 5.4 ppm silver, $1,200 \mathrm{ppb}$ mercury, 260 ppm arsenic, 6 ppm antimony, 770 copper, 362 ppm lead and 0.62%
zinc.

Soil samples taken along two contour lines through the C Extension zone also returned only a few anomalous values. These values are up to 170 ppb gold, 7.0 ppm silver, 840 ppb mercury, $1,100 \mathrm{ppm}$ arsenic, 6 ppm antimony, 460 ppm copper, 156 ppm lead and $1,150 \mathrm{ppm}$ zinc. The anomalous values occur singly or as a cluster of two or three samples.

CONCLUSIONS

In the western portion of the Kashutl property within the C Extension zone calcareous rocks of Quatsino and Parson Bay Formations occur as lenses that overlie gold-silver-bearing pyritic clay-altered mafic volcanic rocks of Karmutsen Formation and a rhyodacitic subvolcanic intrusion of Jurassic Bonanza Group.

Geological observations and geochemical results do not show any evidence that significant gold-silver deposit is present.

RECOMMENDATIONS

The option agreement on the Sin \#7 claim of Taywin Resources Ltd. should be terminated as the potential for finding a significant gold-silver deposit is low.

REFERENCES

Muller, J.E., Northcote, K.E. and Carlisle, D., 1974. Geology and Mineral Deposits of Alert Bay-Cape Scott Map-Area, Vancouver Island, British Columbia. Geological Survey of Canada, Paper 74-8.

Sketchley, D.A., 1989. Electrum Property - Geology and Geochemistry. British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment Report.

APPENDIX I

ROCK SAMPLE DESCRIPTIONS

SAMPLE NUMBER

A5326 Fault zone within argillite; pieces of calcite veins; lightly pyritic
A5234 Zone of fault gouge
A5235 Chocolate-brown to white-weathering quartz-eye feldspar porphyritic rhyolite

A5236 Rusty-weathering blue-green clay-rich fault zone
A5337 Rusty-weathering pale grey clay-altered mafic volcanic
A5338 Black argillite with $<1 \%$ disseminated fine-grained pyrite
A5339 Brown-weathering pale green carbonate and clay-altered mafic volcanic with $<1 \%$ fine-grained disseminated pyrite

A5240
A5241

A5242
Green-grey siliceous rock - rhyodacite dyke
Rusty-weathering grey rhyodacite with 2% fine-grained disseminated pyrite

Float of rusty-weathering pale grey rhyodacite with 1% pyrite
A5243 White quartz vein with traces of pyrite
A5244 Rusty-weathering pale grey rhyodacite with 1% pyrite in fractures and less so as disseminations

A5245 Rusty-weathering pale grey rhyodacite with 1% pyrite in fractures and less so as disseminations

A5246 White quartz vein with localized patches of fine-grained disseminated pyrite and traces of galena

A5247 Brown-weathering medium green-grey chloritic clay-altered mafic volcanic with up to 4% disseminated and blebby pyrite

A5248 Rusty weathering pale to medium green mafic volcanic with 3% disseminated and blebby pyrite; cut by pyrite and quartz veins

A5249 Float of dark-brown weathering chloritized mafic volcanic with blebby disseminated and fracture-controlled pyrite; veins of quartz/calcite surrounded by bleached rock with selvage of coarse-grained pyrite; traces of sphalerite in bleached rock

A5250 Rusty-weathering pale grey-green altered mafic volcanic with 1% blebby disseminated pyrite and locally much irregular white quartz masses with localized blebs of pyrite

A5251 Medium grey siliceous volcanic with minor finely-disseminated pyrite

Float of siliceous volcanic with pyrite in fractures
A5253 Float of rhyolitic tuff
A5270 Green-black weathering medium green mafic volcanic with up to 4% disseminated and blebby pyrite; cut by stockwork of white quartz and pyrite veinlets

A5271 Rusty-weathering pale grey intensely clay-altered rock with 3% fine-grained to blebby pyrite

A5272 Rusty-weathering breccia composed of dark blue-grey fine-grained quartz with fragments of white ankerite

A5273 Float of white to rusty-weathering pale green quartz eye porphyry with irregular white vuggy quartz veinlets; $<1 \%$ finegrained pyrite disseminated in host around veins

A5274 Float of rusty-weathering medium grey clay-altered rock with 5% fine grained disseminated pyrite and occasional blebs of galena and sphalerite

A5275 Rusty-weathering pale grey clay-altered rock with $1-3 \%$ disseminated and fracture-controlled pyrite

Silicified and bleached rhyodacite dyke with fine-grained disseminated pyrite

Black sandstone with carbonate mainly concentrated along fractures; 1% fine-grained disseminated pyrite

Mafic tuff(?) with locally intense pervasive silicification; sheeted quartz stringers up to $3 / 4 \mathrm{~cm}$ in a 15 cm wide zone; comb texture and vugs common in quartz; fine-grained disseminated pyrite is present in the host rock

Clay-altered conglomerate with $2-3 \%$ disseminated and blebby pyrite

Clay-altered rhyodacite with 8% disseminated, blebby and fracture-controlled pyrite

A5281 Intensely silicified intermediate feldspar porphyry with < 1% finegrained disseminated pyrite; some pyrite and calcite in fractures

A5282 Fault gouge within conlomerate; 1\% disseminated pyrite
A5283 Mottled purple and green mafic volcanic with a stockwork of quartz stringers up to 1 mm wide; 5% disseminated and fracture-
controlled pyrite
A5284 Clay-altered mafic volcanic with 5-10\% pyrite
A5285 Medium green mafic volcanic with stockwork of quartz/carbonate stringers up to 1.5 cm wide; up to 5% disseminated, blebby and stringer pyrite

A5286
A5287

A5288

A5289

A5290

A5291
A5292

A5293

A5294

A5295
A5296
A5297
A5298

A5299

A5300
A5301 Rusty-weathering medium to pale grey clay-altered rock with 1$5 \%$ disseminated and fracture-controlled pyrite

A5302 Rusty-weathering pale grey rhyolite with $<1 \%$ fine-grained disseminated and fracture-controlled pyrite

A5303

A5304

A5305

A5306

A5307

A5308

A5309

A5310

A5311

A5312

A5313

Rusty-weathering pale grey weakly clay-altered rhyolite with $1-2 \%$ very fine-grained disseminated pyrite

Rusty-weathering pale grey weakly clay-altered rhyolite breccia with $1-4 \%$ very fine-grained disseminated pyrite

Rusty-weathering medium grey feldspar porphyritic rhyolite with $<1 \%$ very fine grained disseminated pyrite

Rusty-weathering pale grey with greenish tinge weakly clayaltered intermediate (?) volcanic; $<1 \%$ disseminated fine-grained to blebby pyrite

Rusty-weathering pale grey maroon mottled rhyolite with $1-2 \%$ disseminated fine-grained to blebby pyrite

Rusty to white-weathering pale grey flow-banded rhyolite with $<1 \%$ fine-grained disseminated pyrite

Rusty to white weathering dark grey flow-banded rhyolite with $<1 \%$ fine-grained disseminated pyrite

Rusty-weathering pale green to white silicified mafic volcanic with up to 5% fine-grained to blebby pyrite and traces of galena

Rusty-weathering clay-altered mafic volcanic with $1-2 \%$ finegrained to blebby pyrite

Rusty-brown weathering black argillite with $<1 \%$ very fine grained disseminated pyrite

Float of mottled grey and emerald-green quartz/carbonate rock with 1% blebby pyrite; emerald green is chromium or barium mica

APPENDIX II

ANALYTICAL RESULTS

LIBT DATA fIIE:

GRID	SAMP	SMP2	PROS	TYRE
9253	A	5234	0489	R
9253	A	5235	0489	R
9253	A	5236	0489	R
9213	λ	5237	0489	R
9213	A	5238	0489	R
92.13	A	5239	0489	R
9213	λ	5240	0489	R
$92 \mathrm{L3}$	λ	5241	0489	R
9213	λ	5242	0489	R
92 L 3	A	5243	0489	R
92L3	λ	5244	0489	R
92 L 3	A	5245	0489	R
$92 \mathrm{L3}$	A	5246	0489	R
92 L 3	λ	5247	0489	R
$92 \mathrm{L3}$	A	5248	0489	R
92 L 3	A	5249	0489	R
92 L 3	λ	5250	0489	R
9223	λ	5270	0489	R
92.3	λ	5271	0489	R
92 L 3	λ	5272	0489	R
92 LL 3	λ	5273	0489	R
92.3	λ	5274	0489	R
925.3	λ	5275	0489	R
92 L 3	λ	5276	0489	R
$92 \mathrm{L3}$	λ	5277	0489	R
92 LT	λ	5278	0489	R
92.3	λ	5279	0489	8
92 L 3	A	5280	0489	R
$92 \mathrm{L3}$	λ	5281	0489	R
92 L 3	A	5282	0489	R
92 L 3	A	5283	0489	2
92 L 3	λ	5284	0489	8
$92 \mathrm{L3}$	$\boldsymbol{\lambda}$	5285	0489	R
$92 \mathrm{LC3}$	λ	5286	0489	R
$92 \mathrm{L3}$	λ	5287	0489	R
$92 \mathrm{L3}$	$\boldsymbol{\lambda}$	5288	0489	R
9223	λ	5289	0489	Ω
92.3	λ	5290	0489	R
92 L 3	λ	5291	0489	R
$92 \mathrm{L3}$	λ	5292	0489	R
$92 \mathrm{L3}$	A	5293	0489	R
$92 \mathrm{L3}$	λ	5294	0489	2
9243	λ	5295	0489	R
$92 \mathrm{L3}$	λ	5296	0489	R
92 L 3	λ	5297	0489	R
$92 \mathrm{L3}$	λ	5298	0489	8
9253	A	5299	0489	8
$92 \mathrm{L3}$	A	5300	0489	R
$92 \mathrm{L3}$	λ	5301	0489	8
92 L 3	A	5302	0489	R
92 LT	A	5303	0489	R
9223	$\boldsymbol{\lambda}$	5304	0489	8
92 L 3	A	5305	0489	R
92 L 3	λ	5306	0489	R
$92 \mathrm{L3}$	$\boldsymbol{\lambda}$	5307	0489	R
92 L 3	λ	5308	0489	R
92.3	λ	5309	0489	8
9213	λ	5310	0489	R
$92 \mathrm{L3}$	λ	5311	0489	R
$92 \mathrm{L3}$	λ	5312	0489	R

kashstat2
DATE: 90:11:06

A01	CO	H6	PB
2.50	7.00	154.00	2.00
2.50	5.00	150.00	3.00
2.50	30.00	61.00	4.00
10.00	288.00	870.00	20.00
10.00	60.00	440.00	48.00
2.50	21.00	20.00	6.00
2.50	3.00	8.00	3.00
2.50	10.00	53.00	3.00
30.00	7.00	187.00	4.00
80.00	14.00	24.00	2.00
2.50	5.00	20.00	2.00
15.00	127.00	53.00	15.00
35.00	50.00	81.00	162.00
40.00	156.00	32.00	5.00
2.50	52.00	16.00	8.00
15.00	770.00	45.00	44.00
2.50	146.00	41.00	15.00
2.50	181.00	12.00	10.00
2.50	45.00	28.00	80.00
2.50	7.00	48.00	13.00
2.50	140.00	28.00	3.00
40.00	357.00	940.00	362.00
5.00	318.00	120.00	20.00
2.50	12.00	37.00	7.00
2.50	54.00	45.00	18.00
2.50	9.00	70.00	73.00
2.50	46.00	214.00	51.00
10.00	95.00	16.00	14.00
2.50	53.00	183.00	3.00
2.50	115.00	1180.00	7.00
2.50	22.00	24.00	4.00
5.00	61.00	20.00	3.00
2.50	89.00	53.00	18.00
2.50	100.00	57.00	34.00
2.50	80.00	1200.00	9.00
2.50	114.00	24.00	8.00
2.50	282.00	8.00	1.00
5.00	42.00	37.00	39.00
2.50	64.00	166.00	6.00
15.00	193.00	41.00	142.00
2.50	26.00	187.00	6.00
2.50	7.00	48.00	5.00
2.50	29.00	100.00	6.00
2.50	45.00	32.00	50.00
2.50	4.00	8.00	5.00
10.00	50.00	16.00	8.00
5.00	30.00	97.00	19.00
2.50	11.00	70.00	10.00
2.50	9.00	24.00	7.00
2.50	5.00	16.00	5.00
2.50	5.00	93.00	6.00
2.50	30.00	40.00	3.00
2.50	28.00	1030.00	8.00
2.50	7.00	24.00	5.00
2.50	4.00	65.00	2.00
2.50	3.00	36.00	2.00
2.50	3.00	240.00	5.00
30.00	28.00	93.00	136.00
15.00	380.00	380.00	62.00
2.5	47	210.00	75.00

1.00	76.00
1.00	21.00
1.00	113.00
1.00	56.00
1.00	1630.00
1.00	87.00
1.00	37.00
1.00	17.00
1.00	18.00
1.00	26.00
1.00	3.00
1.00	66.00
1.00	288.00
1.00	56.00
1.00	58.00
1.00	88.00
1.00	78.00
1.00	113.00
1.00	180.00
1.00	41.00
1.00	41.00
1.00	6200.00
1.00	146.00
1.00	34.00
1.00	91.00
1.00	316.00
1.00	390.00
1.00	114.00
1.00	15.00
1.00	72.00
1.00	102.00
1.00	55.00
1.00	123.00
1.00	148.00
1.00	22.00
1.00	70.00
1.00	68.00
2.00	74.00
2.00	2230.00
1.00	215.00
1.00	28.00
1.00	11.00
1.00	70.00
1.00	62.00
1.00	14.00
1.00	143.00
1.00	70.00
1.00	57.00
1.00	21.00
1.00	18.00
1.00	40.00
1.00	61.00
1.00	71.00
1.00	70.00
1.00	10.00
1.00	1.00
2.00	8.00
1.00	110.00
1.00	195.00
1.00	142.00

LIST DATA FILE:					KAshstat2						DATE: 90:11:06	
GRID	SAMP	SNP2	PROS	TYPE	AG	As	201	CO	HG	PB	SB	8
9213	A	5313	0489	R	0.30	1.00	2.50	9.00	36.00	55.00	1.00	166.00
9213	λ	5326	0489	8	0.40	240.00	15.00	22.00	200.00	15.00	1.00	350.00
9213	λ	5351	0489	R	0.10	4.00	2.50	5.00	24.00	6.00	1.00	12.00
921.3	A	5352	0489	R	0.20	10.00	2.50	3.00	45.00	9.00	1.00	3.00
9213	A	5353	0489	R	0.10	1.00	2.50	12.00	500.00	4.00	1.00	14.00

END OF LISTING - 65 RECORDS PRINTED

DATE: 90:11:06
1

GRID	SAMP	SMP 2	PRos	type
9213	49+00	49+60E	0490	L
92.13	49+00	50+00E	0490	1
9213	$49+00$	$50+40 \mathrm{E}$	0490	L
9213	49+00	$50+80 \mathrm{E}$	0490	\underline{L}
9213	49+00	$51+20 \mathrm{E}$	0490	\underline{L}
921.3	$49+00$	$51+60 \mathrm{E}$	0490	L
9213	49+00	$52+00 \mathrm{z}$	0490	L
9213	49+00	$52+40 \mathrm{E}$	0490	L
921.3	49+00	$52+80 \mathrm{E}$	0490	I.
92 L 3	$49+00$	$53+20 \mathrm{E}$	0490	L
$92 \mathrm{L3}$	49+00	$53+60$ E	0490	I
9213	49+00	$54+00 \mathrm{E}$	0490	I
92L, 3	49+00	$54+40 \mathrm{E}$	0490	\pm
9213	49+00	$54+80 \mathrm{E}$	0490	\underline{L}
9213	$49+00$	$55+20 \mathrm{E}$	0490	\pm
92L3	49+00	$55+60 \mathrm{E}$	0490	1
92L3	49+00	$56+00 \mathrm{E}$	0490	L
9213	$50+00 \mathrm{~N}$	$49+20 \mathrm{E}$	0490	\pm
92L3	$50+00 \mathrm{~N}$	$49+60 \mathrm{z}$	0490	I
9213	$50+00 \mathrm{~N}$	$50+00 \mathrm{E}$	0490	\pm
92L3	$50+00 \mathrm{~N}$	50+40E	0490	$\underline{1}$
$92 \mathrm{L3}$	$50+00 \mathrm{~N}$	$50+80 \mathrm{E}$	0490	\underline{L}
9213	$50+00 \mathrm{~N}$	$51+20 \mathrm{E}$	0490	L
9213	$50+00 \mathrm{~N}$	$51+60 \mathrm{E}$	0490	\underline{L}
92 L 3	$50+00 \mathrm{~N}$	$52+00 \mathrm{E}$	0490	L
92 L 3	$50+00 \mathrm{~N}$	$52+40 \mathrm{E}$	0490	Σ
92 L 3	$50+00 \mathrm{~N}$	$52+80 \mathrm{E}$	0490	L
92L3	$50+00 \mathrm{~N}$	$53+20 \mathrm{E}$	0490	\pm
92 L 3	$50+00 \mathrm{~N}$	$53+60 \mathrm{E}$	0490	2
92L3	$50+00 \mathrm{~N}$	$54+00 \mathrm{E}$	0490	\pm
92L3	$50+00 \mathrm{~N}$	$54+30 \mathrm{E}$	0490	L
92L3	$50+00 \mathrm{~N}$	$54+80 \mathrm{E}$	0490	L
92L3	$50+00 \mathrm{~N}$	$55+20 \mathrm{E}$	0490	\pm
92 L 3	$50+00 \mathrm{~N}$	$55+60 \mathrm{E}$	0490	1
9213	$50+00 \mathrm{~N}$	55+80 ${ }^{\text {e }}$	0490	1
$92 \mathrm{L3}$	A	5354	0490	L
92 L 3	A	5355	0490	\pm

AG	A.	AUl	CU	HG	PB
0.10	1.00	2.50	7.00	150.00	7.00
0.10	2.00	7.00	11.00	97.00	5.00
0.10	1.00	2.50	12.00	85.00	7.00
0.20	6.00	2.50	55.00	48.00	24.00
0.20	14.00	35.00	92.00	138.00	57.00
0.20	4.00	2.50	68.00	134.00	18.00
0.10	1.00	2.50	30.00	146.00	15.00
0.60	1.00	2.50	90.00	183.00	14.00
0.20	2.00	5.00	211.00	187.00	30.00
0.20	20.00	40.00	460.00	215.00	56.00
0.30	2.00	2.50	67.00	150.00	7.00
0.40	8.00	2.50	35.00	610.00	12.00
0.20	1.00	2.50	25.00	560.00	15.00
0.50	1.00	2.50	20.00	410.00	4.00
0.40	10.00	2.50	55.00	146.00	17.00
2.80	8.00	2.50	31.00	166.00	11.00
7.00	1100.00	170.00	230.00	790.00	62.00
0.70	6.00	2.50	60.00	175.00	52.00
0.40	1.00	2.50	24.00	146.00	7.00
0.10	1.00	2.50	38.00	65.00	6.00
0.30	1.00	2.50	27.00	77.00	16.00
0.30	1.00	2.50	35.00	106.00	17.00
0.20	1.00	2.50	285.00	203.00	156.00
0.60	1.00	2.50	384.00	90.00	114.00
0.10	1.00	2.50	69.00	48.00	30.00
0.30	1.00	2.50	102.00	106.00	31.00
0.10	1.00	2.50	90.00	73.00	16.00
0.10	1.00	2.50	78.00	250.00	12.00
0.10	1.00	2.50	24.00	158.00	8.00
0.10	6.00	2.50	116.00	255.00	13.00
0.10	2.00	2.50	89.00	170.00	7.00
0.10	120.00	2.50	246.00	110.00	28.00
0.10	2.00	2.50	81.00	93.00	14.00
4.00	14.00	2.50	138.00	840.00	15.00
5.20	80.00	2.50	98.00	120.00	29.00
0.10	1.00	2.50	16.00	70.00	5.00
0.10	1.00	2.50	16.00	146.00	6.00

1.00	36.00
1.00	74.00
1.00	63.00
1.00	87.00
1.00	91.00
1.00	50.00
1.00	40.00
1.00	60.00
1.00	86.00
1.00	100.00
1.00	74.00
1.00	64.00
1.00	60.00
1.00	44.00
1.00	134.00
1.00	60.00
1.00	276.00
1.00	178.00
1.00	63.00
1.00	88.00
1.00	50.00
1.00	82.00
1.00	500.00
1.00	1150.00
1.00	80.00
1.00	77.00
1.00	87.00
1.00	66.00
1.00	45.00
1.00	120.00
1.00	88.00
1.00	115.00
1.00	204.00
1.00	91.00
1.00	181.00
1.00	37.00
1.00	53.00

APPENDIX III

SAMPLING, SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

SAMPLING PROCEDURES

Rock samples generally comprised two fist size pieces of material representative of the outcrop or float being sampled. These are referred to as grab samples. One piece was submitted for analysis; the second retained for reference. Chip samples were obtained by taken chips of rock up to three centimetres in diameter as often as possible along a line across the structure being sampled. A rock hammer and moil were used to obtain the samples, which were described at the time of sampling.

Soil samples were taken mostly from a "B", and to a lesser extent a "C" horizon, at a depth of 10 to 40 cm using a mattock or an auger. Samples from the "B" horizon were generally a reddish-brown mixture of clay and silt with minor sand and organic material. samples from the " C " horizon were composed of a brownish mixture of silt, clay and sand with minor organic material and varying amounts of rock fragments. Descriptions of the sample site and material sampled were recorded at the time of sampling

SAMPLE PREPARATION PROCEDURES

(Placer Dome Inc. Research Centre)

Rock samples were collected in plastic bags. They were dried, then crushed by a jaw crusher followed by a cone crusher. A 250 gram subsample of crushed material was separated using a riffle splitter. This subsample was pulverized by rolling to -100 mesh for analysis.

Soil samples were collected in kraft envelopes. They were dried at approximately $60^{\circ} \mathrm{C}$, then screened to obtain the minus 80 mesh fraction for analysis.

ANALYTICAL PROCEDURES

(Placer Dome Inc. Research Centre)

Element	Unit	Weight(g)	Digestion	Range	Instrumentation
Au1	ppb	10.0	Aqua Regia 3 hrs	5-4000	A.A. Solvent Ext.
Ag	ppm	0.5	$\begin{gathered} \mathrm{HCLO} 4 / \mathrm{HNO} 3 \\ 4 \mathrm{hrs} \end{gathered}$	0.2-20	A.A. Backgd. Cor.
As	ppm	0.5	Aqua Regia 3 hrs	2-2000	D.C. Plasma
Sb	ppm	0.5	$\begin{gathered} \mathrm{HCL} / \mathrm{HNO} 3 \\ 3 \mathrm{hrs} \end{gathered}$	2-2000	D.C. Plasma
Hg	ppb	0.25	$\begin{gathered} \mathrm{HNO} 3 / \mathrm{HCL} \\ 3 \mathrm{hrs} \end{gathered}$	5-2000	A.A. C. Vap. Gen.
Cu	ppm	0.5	$\begin{gathered} \mathrm{HCLO} 4 / \mathrm{HNO} 3 \\ 4 \mathrm{hrs} \end{gathered}$	2-4000	Atomic Absorption
Pb	ppm	0.5	$\begin{gathered} \mathrm{HCLO} 4 / \mathrm{HNO} 3 \\ 4 \mathrm{hrs} \end{gathered}$	2-3000	A.A. Backgd. Cor.
Zn	ppm	0.5	$\begin{gathered} \mathrm{HCLO} 4 / \mathrm{HNO} 3 \\ 4 \mathrm{hrs} \end{gathered}$	2-3000	Atomic Absorption

APPENDIX IV

HISTOGRAMS AND PROBABILITY GRAPHS

$$
\begin{gathered}
\text { PLACER D OME I N C . } \\
\text { PDI Data Analysis System }- \text { STATS } \\
\text { run on } 90: 11: 05 \text { at } 15: 48: 29 \\
\text { Current directory: /placerl_2f } \\
\text { KASHSTAT2 }
\end{gathered}
$$

Summary of data from file : kashstat2 (rocksonales)
This data file contains an internal header: (5 records)
Data grouped into 13 fields
with format: (3A8,A4,A2, 8F6.0)

Character ID fields:
GRID SAMP SMP 2 PROJ TYPE
Coordinate fields:

Other data fields:
$A G$ AS AU1 CU HG PB SB CN
Missing data indicated by NULL value 99999.0

BASIC STATISTICS OF SELECTED DATA FIELDS:

NAME	NDATA	NULLS	MINIMUM	MAXIMUM	MEAN	STD. DEV.	GEOM. MEAN
AU1	65	0	2.50000	80.0000	7.76923	12.8781	4.21131
AG	65	0	0.100000	5.40000	0.406154	0.734182	0.226761
HG	65	0	8.00000	1200.00	158.769	277.626	64.6116
AS	65	0	1.00000	260.000	15.0462	45.2740	2.62912
CU	65	0	3.00000	770.000	77.4154	124.581	29.9713
PB	65	0	1.00000	362.000	27.4615	54.0974	10.5211
ZN	65	0	1.00000	6200.00	235.769	822.855	60.9292

File: kashstat2

65 SAMPLES WITH AU1

Field name: AU1
MINIMUM: 2.50000
0 NOT IN RANGE 2.50000 to 80.0000
4.21131 DISPERSION: $1.67098 \quad 10.6136$
4.21131 DISPERSION: $1.67098 \quad 10.6136$
2.00 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$

MAXIMUM: 80.0000
-

SCALE OF HISTOGRAM IS

46	$2.5000 \quad \# 7$
0	2.7263

$0 \quad 2.9730$
$0 \quad 3.2421$
0.00
0.00
$0 \quad 3.5355$
0.00 I

I
$0 \quad 3.8555$
0.00
04.2045
04.5850
45.0000
$0 \quad 5.4525$
$0 \quad 5.9460$
$0 \quad 6.4842$
$0 \quad 7.0711$
$0 \quad 7.7111$
$0 \quad 8.4090$
$0 \quad 9.1700$
$4 \quad 10.000$
$0 \quad 10.905$
$0 \quad 11.892$
$0 \quad 12.968$
$0 \quad 14.142$
$5 \quad 15.422$
$0 \quad 16.818$
$0 \quad 18.340$
$0 \quad 20.000$
0.00 I

I
-

0.00
6.15
0.00
I
I
I

LOG $=1$ REPVAI $=0.0010 C$

65 VALUES PLOTTED:

N MIDPOINT PERCENT
$0 \quad 23.784$
0.00

I
I
$0 \quad 25.937$
$0 \quad 28.284$
$2 \quad 30.844$
$1 \quad 33.636$
\# $\quad 3.08$
$0 \quad 36.680$
1.54
0.00
$2 \quad 40.000 \quad 3.08$
$\begin{array}{lll}0 & 43.620 & 0.00\end{array}$
047
0.00
0.00

I
56.569
0.00 I

I
01.688
$0 \quad 67.272$
0.00
I
$0 \quad 73.360$
0.00 I

File: kashstat2
65 SAMPLES WITH AS
65 VALUES PLOTTED:
GEOMETRIC MEAN:
SCALE OF HISTOGRAM IS

Field name: AS LOG $=1$ REPVAL $=0.0010 \mathrm{C}$
MINIMUM: 1.00000 MAXIMUM: 260.000
0 NOT IN RANGE 1.00000 to 260.000
2.62912 DISPERSION: 0.562829
12.2813
2.00 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$

N MIDPOINT

$42 \quad 1.0000$
\# 64.62
$0 \quad 1.1491$
01.3205
$0 \quad 1.5175$
$0 \quad 1.7438$
22.0039
$0 \quad 2.3027$
$0 \quad 2.6462$
$0 \quad 3.0408$
$0 \quad 3.4944$
34.0155
$\begin{array}{ll}0 & 4.6144 \\ 0 & 5.3026\end{array}$
5.3026
$2 \quad 6.0935$
0.00
$\begin{array}{ll}I * \\ I & I \\ I\end{array}$
I
I
I
07.0023
28.0466
$0 \quad 9.2468$
310.626
012.211
$0 \quad 14.032$
$0 \quad 16.125$
$1 \quad 18.529$
$4 \quad 21.293$
$0 \quad 24.469$
0.00

I I
0.00
0.00

I I
0.00 I I
3.08 I*

I
0.00
0.00 I I
0.00 I I I I
$\begin{array}{lll}0.00 & I & I \\ 4.62 & I \star \star & I\end{array}$
$\begin{array}{lll}0.02 & I & I \\ 0.00 & I & I \\ 0.00 & I\end{array}$
3.08 I* \quad I
0.00 I
3.08 I* I
$0.00 \mathrm{I} \quad \mathrm{I}$
4.62 I** I
$\begin{array}{ll}0.00 \text { I } & \text { I }\end{array}$
$\begin{array}{lll}0.00 & I & I \\ 0.00 & I & I\end{array}$
1.54 I* \quad I
$\begin{array}{lll}6.15 & I * * & I \\ 0.00 & I & I\end{array}$
$0 \quad 28.118$
0.00
0.00

I
I
$0 \quad 32.312$
0.00 I I
$0 \quad 37.131$
0.00 I

I
42.668
1.54
1.54
\# 1.54
164.749
074.405
185.502
$0 \quad 98.255$
0.00
1.54
0.00
$0 \quad 112.91$
0.00 I

I
I
$0 \quad 129.75$
0.00 I
0.00 I
0.00 I
0.00 I
1.54 I* I I I I I I
1.54

File: kashstat2
65 SAMPLES WITH CU
65 VALUES PLOTTED:

Field name: CU
MINIMUM: 3.00000

0 NOT IN RANGE
29.9713

DISPERSION: 7.10049
126.510

SCALE OF HISTOGRAM IS 0.20 COUNTS /PRINT POSITION \# = 5,50,95\%

File: kashstat2
65 SAMPLES WITH PB
65 VALUES PLOTTED:
GEOMETRIC MEAN:

Field name: PB
MINIMUM: 1.00000
0 NOT IN RANGE
10.5211
0.20 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$

1
0
$0 \quad 1.3426$
$0 \quad 1.5556$
$0 \quad 1.8025$
$5 \quad 2.0885$
$0 \quad 2.4199$
$7 \quad 2.8040$
$0 \quad 3.2489$
$4 \quad 3.7645$
$0 \quad 4.3619$
$6 \quad 5.0541$
$6 \quad 5.8562$
6.7855
7.8623
9.1099
10.556
12.231
14.172
16.421
$5 \quad 19.026$
$0 \quad 22.046$
$0 \quad 25.544$
$0 \quad 29.598$
$1 \quad 34.295$
39.737
46.043
53.349
61.815
71.625
82.991
96.161
111.42
129.10
149.59
173.33
200.83
232.70
269.63
312.42
362.00

Field name: AU1 LOG $=1$ REPVAL $=0.0010 C$

PRBPLT:
file: kashstat2

```
MIN = 1.0000 MAX = 260.00 STD DEN = 45.274
NUMBER OF DATA PLOTTED = 65 ( 0 NULLS 0 < YMIN 0 > YMAX)
```



```
                    P L A C E R DOME IN C.
    PDI Data Analysis System - STATS
    run on 90:11:05 at 15:23:26
    Current directory: /placer1_2f
        V264 KASHUTL
Summary of data from file : kashsoil
This data file contains an internal header: ( 5 records)
    Data grouped into }14\mathrm{ fields
    with format: (3A8,A4,A2, 9F6.0)
    Character ID fields:
GRID SAMP SMP2 PROJ TYPE
    Coordinate fields:
    Other data fields:
AG AS AU1 CU HG MO PB SB ZN
Missing data indicated by NULL value 99999.0
```

 (Soil Samples)
 BASIC STATISTICS OF SELECTED DATA FIELDS:

NAME	DATA	NULLS	MINIMUM	MAXIMUM	MEAN	STD. DEL.	GEOM. MEAN
AU	38	0	2.50000	170.000	8.93421	27.9827	3.37056
AG	38	0	0.100000	7.00000	0.705263	1.50422	0.256302
HG	38	0	48.0000	840.000	199.632	190.594	150.453
AS	38	0	1.00000	1100.00	37.5263	178.467	2.95207
CU	38	0	7.00000	460.000	92.9211	104.120	56.1210
PB	38	0	4.00000	156.000	24.9474	30.8036	15.8877
ZN	38	0	36.0000	1150.00	126.079	189.983	86.5714

File: kashsoil

38 SAMPLES WITH AG
38 VALUES PLOTTED:
GEOMETRIC MEAN :
SCALE OF HISTOGRAM IS

Field name: AG \quad LOG $=1$ REPVAL $=0.0010 \mathrm{C}$
MINIMUM: 0.100000 MAXIMUM: 7.00000
0 NOT IN RANGE 0.100000 to 7.00000
0.256302 DISPERSION: $0.788038 \mathrm{E}-010.833598$
0.40 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$

0	4	8	12

$16 \quad 0.10000 \mathrm{E}+00$ \# 42.11
$0 \quad 0.11121 \quad 0.00$
$0 \quad 0.12367 \quad 0.00$
$00.13753 \quad 0.00 \quad \mathrm{I}$
$0 \quad 0.15294 \quad 0.00 \quad$ I
$00.17007 \quad 0.00$
$\begin{array}{lll}0 & 0.18913 & 0.00\end{array}$
$7 \quad 0.21033$ \# 18.42
$0 \quad 0.23389 \quad 0.00$ I
$00.26010 \quad 0.00$ I
$4 \quad 0.28925 \quad 10.53$
00.32166
0.00 I
********** \quad I
I
I
00.35771
0.00 I
7.89 I*******
0.00 I
$\begin{array}{ll}0.00 & I \\ 2.63 \text { I** } & I \\ I\end{array}$
$0 \quad 0.44237$
10.49194
$0 \quad 0.54707$
20.60837
10.67654
00.75235
00.83666
$0 \quad 0.93041$
0.00 I
$\star \star \star \star *$ I
5.26
2.63 I**
0.00 I
$0 \quad 1.0347$
$0 \quad 1.1506$
$0 \quad 1.2796$
$0 \quad 1.4229$
$0 \quad 1.5824$
$0 \quad 1.7597$
$0 \quad 1.9569$
2.1762
2.4200
2.6912
$0 \quad 2.9928$
$0 \quad 3.3282$
0.00
0.00

I

$I * I I ~$
I I
I
\qquad
N MIDPOINT PERCENT

$0.35771 \quad 0.00$
 I
0.39779
0.00

I
I

File: kashsoil
38 SAMPLES WITH HG
38 VALUES PLOTTED:
GEOMETRIC MEAN:
SCALE OF HISTOGRAM IS

Field name: HG LOG $=1$ REPVAL $=0.0010 \mathrm{C}$
MINIMUM: 48.0000 MAXIMUM: 840.000
0 NOT IN RANGE 48.0000 to 840.000
150.453 DISPERSION: 74.6422
303.262
0.20 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$
248.000
$0 \quad 51.561$
$0 \quad 55.385$
$0 \quad 59.493$
163.907
$2 \quad 68.647$
$1 \quad 73.739$
$1 \quad 79.209$
$1 \quad 85.084$
$2 \quad 91.396$
198.175
$2 \quad 105.46$
$1 \quad 113.28$
$1 \quad 121.68$
$1 \quad 130.71$
$1 \quad 140.40$
$6 \quad 150.82$
162.01
174.02
186.93
200.80
215.69
231.69 248.88 267.34 287.17 308.47 331.35 355.93 382.33 410.70 441.16 473.88 509.03 546.79 587.35 630.92 677.72 727.99
$1 \quad 781.99$
1840.00

\# 5.26
 $I * * * * \star \star * * * * \quad I$

$$
0.00
$$

0.00
0.00
I
0.00 I
$2.63 I * * * * *$
5.26 I********** I I
2.63 I***** I
2.63 I***** I
2.63 I***** I
5.26 I********** I I
2.63 I***** I
5.26 I********** I
2.63 I***** I I
2.63 I***** I
2.63 I***** I
2.63 I***** I I
\# 15.79 $I * ~ I ~ I$
5.26 I********** I I I I I I

5.26 I********** I
$2.63 I \star \star \star \star \star \quad$ I
2.63 I***** I
0.00 I I
5.26 I********** I I
0.00 I I I
0.00 I I
$\begin{array}{ll}0.00 & I \\ 0.00 & I \\ I\end{array}$
0.00 I I I
0.00 I I I I I I
2.63 I***** I I I
0.00 I I I I I I I
0.00 I I I I I I I
2.63 I***** I I I I I I
0.00 I I I I I I
$\begin{array}{ll}2.63 & I * * * * * \\ 0.00 & I\end{array}$
$\begin{array}{ll}0.00 & I \\ 2.63 & I * * * * *\end{array}$
$\begin{array}{lll}\text { \# } 2.63 & I * * * * * & I \\ 2.63 & I * * * * * & I\end{array}$

38

File: kashsoil
38 SAMPLES WITH AS
38 VALUES PLOTTED:
GEOMETRIC MEAN:

SCALE OF HISTOGRAM IS

Field name: AS
LOG $=1$ REPVAL $=0.0010 \mathrm{C}$
MINIMUM: 1.00000
0 NOT IN RANGE
1.00000

DISPERSION: 0.582546
14.9597
2.95207

MAXIMUM: 1100.00
to 1100.00

N MIDPOINT PERCENT

$\begin{array}{rr}20 & 1.0000 \\ 0 & 1.1913\end{array}$
\# 52.63
I***************************************
$\begin{array}{r}52.63 \\ \hline 0.00\end{array}$
0.00
0.00
13.16
0.00
0.00
0.50 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$
$0 \quad 1.4193$
01.6908
$5 \quad 2.0144$
$0 \quad 2.3998$
$0 \quad 2.8590$
$0 \quad 3.4060$
14.0577
04.8341
35.7590
$0 \quad 6.8609$
$2 \quad 8.1737$
19.7376
011.601
13.820
16.465
19.615
23.368
27.840
33.166
39.512
47.072
56.079
66.809
79.592
94.821
112.96
134.58
160.33
191.00
227.55
271.09
322.96
384.75 458.37
546.08 650.56 775.04 923.33 1100.0

File: kashsoil
38 SAMPLES WITH CU
38 VALUES PLOTTED:

Field name: CU
LOG $=1$ REPVAI $=$
0.0010 C

MINIMUM: $7.00000^{---} \quad$ MAXIMUM: 460.000
0 NOT IN RANGE 7.00000 to 460.000
DISPERSION: 20.0783
156.865

GEOMETRIC MEAN:
SCALE OF HISTOGRAM IS
56.1210
0.10 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$

N MIDPOINT PERCE

17.0000
07.7721
$0 \quad 8.6294$
$0 \quad 9.5813$
$1 \quad 10.638$
$1 \quad 11.812$
$0 \quad 13.114$
$0 \quad 14.561$
$3 \quad 16.167$
$0 \quad 17.950$
$1 \quad 19.930$
$0 \quad 22.129$
$3 \quad 24.569$
$1 \quad 27.280$
$2 \quad 30.289$
$2 \quad 33.630$
$1 \quad 37.339$
$0 \quad 41.458$
$0 \quad 46.030$
$0 \quad 51.108$
$2 \quad 56.745$
$1 \quad 63.004$
$3 \quad 69.954$
$2 \quad 77.670$
386.237
$2 \quad 95.749$
$1 \quad 106.31$
131.06
145.51
199.17
221.14
245.53
302.69
414.30

PERCENT	$\begin{array}{llll}0 & 1 & 2\end{array}$	4
2.63	I**********	I
0.00	I	I
0.00	I	I
0.00	I	I
\# 2.63	I**********	I
2.63	I**********	I
0.00	I	I
0.00	I	I
7.89	I******************************	I
0.00	I	I
2.63	I**********	I
0.00	I	I
7.89	I******************************	I
2.63	I**********	I
5.26	I********************	I
5.26	I********************	I
2.63	I**********	I
0.00	I	I
0.00	I	I
0.00	I	I
5.26	I********************	I
2.63	I**********	I
\# 7.89	I******************************	I
5.26	I********************	I
7.89	I******************************	I
5.26	I********************	I
2.63	I**********	I
2.63	I**********	I
2.63	I**********	I
0.00	I	I
5.26	I********************	I
2.63	I**********	I
2.63	I**********	I
0.00	I	I
0.00	I	I
2.63	I**********	I
0.00	I	I
2.63	I**********	I
	I---------I---------I---------I-	1
	$\begin{array}{llll}0 & 1 & 2\end{array}$	4

I
\# 2.63 I
2. 6 I
0.00 I I
I7.89
0.00 I I
0.00 II
I2.63 I**********
5.26 I

5. 26

I**********I
0.00 II
0.00 I I
5.26 I
2.63 I********** I
\# 7.89 I

7.26 I
I5.26
2.63 I********** I

118.04$1 \quad 131.06$2.63$I * * * * * * * * * * \quad I$
0.00 I I

161.56
$0 \quad 161.56$ I0.00

179.38$0 \quad 199.17$$2 \quad 221.14$

272.620302.69

336.07

373.14$\begin{array}{ll}1 & 373.14 \\ 0 & 414.30\end{array}$

460.00
1460.00

File: kashsoil
38 SAMPLES WITH PB
38 VALUES PLOTTED:
GEOMETRIC MEAN :
SCALE OF HISTOGRAM IS

Field name: PB LOG $=1$ REPVAL $=0.0010 C$
MINIMUM: 4.00000 MAXIMUM: 156.000
0 NOT IN RANGE 4.00000 to 156.000
15.8877 DISPERSION: 6.48316 38.9348
0.20 COUNTS /PRINT POSITION $\quad \#=5,50,95 \%$
14.0000
2.63

$0 \quad 4.3837$
0.00
\# 7.89 I*************** I I I I
0.00
5.26
0.00 I
13.16 It************************ I I I I I I I I
0.00 I
2.63 I***** I I
0.00 I
0.00 I
$2.63 I \star * \star * * \quad I$
5.26 I********** I I I I I I
2.63 I***** I I
\# 13.16 I************************* I
5.26 I**********
7.89 I*************** I
0.00 I

I
0.00 I

I
0.00 I I
2.63 I***** I I
2.63 I***** I I I I I
10.53 I******************** I I I I I I
0.00 I I
2.63 I***** I I I I I I
5. 26 I********** I I I
$\begin{array}{lll}2.63 & I * * * * * & \text { I } \\ 0.00 & I & I\end{array}$
$\begin{array}{ll}0.00 & \text { I } \\ 0.00 & I\end{array}$
$\begin{array}{lll}0.00 & I & I \\ 0.00 & I & I\end{array}$
$\begin{array}{lll}0.00 & I & I \\ 0.00 & I & I\end{array}$
$\begin{array}{ll}0.00 & I \\ 2.63 & I \star \star \star \star \star \\ I\end{array}$
0.00 I I I I I I
$\begin{array}{lll}0.00 & I & I \\ 2.63 & I \star \star \star \star * & I\end{array}$

File: kashsoil
38 SAMPLES WITH ZN
38 VALUES PLOTTED:
GEOMETRIC MEAN:
SCALE OF HISTOGRAM IS

Field name: ZN LOG $=1$ REPVAL $=0.0010 C$
MINIMUM: $\quad 36.0000$
0 NOT IN RANGE 36.0000
DISPERSION: 42.5266
176.233

N

$1 \quad 39.257$
$1 \quad 42.808$
146.680
350.903
$0 \quad 55.508$
$5 \quad 60.529$
$2 \quad 66.004$
271.975
$2 \quad 78.486$
$6 \quad 85.586$
$2 \quad 93.328$
$1 \quad 101.77$
$1 \quad 110.98$
$1 \quad 121.02$
$1 \quad 131.96$
$0 \quad 143.90$
$0 \quad 156.92$
$1 \quad 171.11$
$1 \quad 186.59$
$1 \quad 203.47$
$0 \quad 221.88$
$0 \quad 241.95$
0263.83
$1 \quad 287.70$
$0 \quad 313.73$
$0 \quad 342.11$
$0 \quad 373.05$
$0 \quad 406.80$
$0 \quad 443.60$
1483.73
$0 \quad 527.48$
$0 \quad 575.20$
$0 \quad 627.23$
$0 \quad 683.97$
$0 \quad 745.84$
$0 \quad 813.31$
$0 \quad 886.89$
$0 \quad 967.11$
$0 \quad 1054.6$
$1 \quad 1150.0$
38


```
file: kashsoil
Field name: HG LOG =1 REPVAL = 0.0010C
MIN = 48.000 MAX = 840.00 STD DEV = 190.59
NUMBER OF DATA PLOTTED = 38 ( 0 NULIS 0 < YMIN 0 > YMAX)
```


Field name: AS LOG $=1$ REPVAL $=0.0010 \mathrm{C}$

MEAN $=37.526 \quad$ STD DEV $=178.47$ 0 NULLS $0<$ YMIN $0>$ YMAX)

Field name: $C U \quad$ LOG $=1 \quad$ REPVAL $=0.0010 C$

```
MIN = 7.0000 MAX = 460.00 STD DEV = 104.12
NUMBER OF DATA PLOTTED = 38 ( 0 NULLS 0 < YMIN 0 > YMAX)
```


$M I N=4.0000 \quad$ MAX $=156.00 \quad$ STD \quad DEV $=30.804$
NUMBER OF DATA PLOTTED $=38$ (0 NULLS $0<$ YMIN $0>$ YMAX)

| MIN $=36.000$ | MAX $=1150.0$ |
| :--- | :--- | :--- | :--- | :--- |\quad MEAN $=126.08 \quad$ STD DEV $=189.98$

APPENDIX V

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Dale A. Sketchley, hereby certify that:

1. I am a graduate of The University of British Columbia in Honours GeologyGeophysics (B.Sc. 1975) and Geology (M.Sc. 1986);
2. I have practised within the geological profession for the past eighteen years;
3. I am a member of the Canadian Institute of Mining and Metallurgy and a Fellow of the Geological Association of Canada;
4. The opinions, conclusions and recommendations contained herein are based on field work supervised and conducted by me on the Kashutl property during July, 1990.

Vancouver, B.C.
November 9, 1990

APPENDIX VI

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES
 Kashutl Property
 (August 14, 1989 to August 13, 1990)

Personnel (field)

D. Sketchey	-10 days @ 371.25	$3,712.50$
J. Taylor	-10 days @ 167.72	$1,677.20$
J. Baril	-11 days @ 249.04	$2,739.44$
Personnel (office)		
D. Sketchley	-10 days @ 303.75	$3,037.50$
Transportation		
Airfare	$-1 / 2$ trip @ 307.60 (Vancouver/Port Hardy)	153.80
Helicopter	-2 hours @ 681.00 (Port McNeil/Kashutl Inlet)	$1,362.00$
Vehicle	-10 days @ 70.00 (Horseshoe Bay/Nanaimo)	700.00
Ferry	-2 trips @ 26.50	
Barge	-2.5 hours@ 250.00 (Fair Harbour/Chamiss Bay)	625.00

Room and Board
Interfor Logging Camp - 24 man-days @ $45.001,080.00$
Miscellaneous Motel/Restaurant -
211.15

Analytical Costs

65 rock samples @ 19.75 ($\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Hg}, \mathrm{Sb}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}$) 1,283.75
37 soil samples @ 17.40 ($\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Hg}, \mathrm{Sb}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}$)
643.80

Field and Office Supplies 500.00
Drafting/Reproduction/Report Preparation on 3,000.00

Total

