LOG NO: //-28	RD.
ACTION:	
CHE NA.	

Prospecting Report on the AY 1, 2

Mineral Claims, Iskut River Area, British Columbia

Skeena Mining Division

N.T.S.: 104 B/10E

W. Longitude 130°42' N. Latitude 56°40'

1.0 SUMMARY

Kinghorn Energy Corporation of Vancouver, B.C. has requested this evaluation and prospecting report on the AY property.

The AY property consists of the AY 1 and AY 2 claims totalling 24 units, located in the Liard Mining Division on map sheet 104B/10E.

Two days were spent prospecting the property. Geologically, Betty Creek Formation outcrops on the north half while the Lehto porphyry of presumed Jurassic age outcrops on the south half of the AY property.

The Betty Creek Formation andesites should be further prospected, shears containing quartz veins assayed up to 1.89 oz/ton Au over a 15 cm width.

i

TABLE OF CONTENTS

		<u>Page</u>
1.0	SUMMARY	i
2.0	INTRODUCTION	1
	2.1 Location and Access2.2 Physiography2.3 Property Status	1 1 2
3.0	HISTORY AND PREVIOUS WORK	2
4.0	REGIONAL GEOLOGY	3
5.0	PROSPECTING	4
	5.1 Rock Sampling	5
6.0	CONCLUSIONS	6
7.0	REFERENCES	7

LIST OF APPENDICES

APPENDIX	I:	Statement of Qualifications
APPENDIX	II:	Sample Preparation and Analytical Methods
APPENDIX	III:	Analytical Data for Rock Samples
APPENDIX	IV:	Rock Sample Descriptions
APPENDIX	V:	Statement of Costs

LIST OF FIGURES

<u>After Page</u>

FIGURE	1:	Location Map		1
FIGURE	2:	Claim Map		1
FIGURE	3:	Regional Geology Map		2
FIGURE	4:	Property Geology and		
		Sample Locations	In	Pocket

LIST OF TABLES

<u>After Page</u>

TABLE 1:	Summary of Major Showing	2
TABLE 2:	Regional Geology Map Legend	2
TABLE 3:	Regional Geology Map Symbols, Prospects and Mines	2

2.0 INTRODUCTION

This evaluation of the AY 1, 2 mineral claims (AY property) has been completed at the request of the directors of Kinghorn Energy Corporation of Vancouver, B.C. who have optioned the AY property from the owner Brazos Petroleum Corp. of Calgary, Alberta.

This report outlines the prospecting done on the property to evaluate the precious metal and or base metal potential. Personnel of Hi-Tec Resource Management Ltd. conducted the prospecting and rock sampling which amounted to \$ 7,691.20.

2.1 Location and Access

The AY property is located within the eastern boundary of the Coast Range Mountains (Figures 1, 2) on NTS Map 104B/10, immediately south of the Iskut River.

Access is by fixed wing aircraft from Wrangell, Alaska, 105 km to the west, or Smithers, British Columbia, 300 km southeast to either the Bronson airstrip, 15 km to the west or the Snippaker airstrip, 5 km to the southwest and then by helicopter to the claims.

Alternately one can drive to either Bob Quinn or Bell II on Highway 37, 40 km to east, then charter a helicopter to the claims.

2.2 Physiography

The AY property is located on the steep mountainous west slope of a unnamed mountain. Relief ranges from

300 - 1750 m A.S.L. in spectacular but extremely rugged terrain. Slopes which are not cliffs are covered in slide alder, stinging nettles and devil's club. There are several talus filled ravines incising the mountain side, allowing partial access onto the property.

2.3 Property Status

The AY 1, 2 mineral claims consists of 24 units, held in the name of Brazos Petroleum Corp. Paul Daigle worked on the property during August 1990 and examined the common legal claim post located 80 m east southeast of survey point AD 3856 near the above unnamed mountain's peak. The claims are in the Liard Mining Division and are recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:

CLAIM	UNITS	RECORD NO.	RECORI	DA'	<u>re</u>	EXPIR	Z DA	<u>re</u> *
AY1	15	6281	Sept.	10,	1989	Sept.	10,	1990
AY2	9	6282	Sept.	10,	1989	Sept.	10,	1990
* prio	r to fil	ing of this re	eport.					

3.0 HISTORY AND PREVIOUS WORK

Hardrock prospecting started at the turn of the 20th century in the Iskut River and Unuk River area. Since then a number of major mineral occurrences have been delineated. These include the former Johnny Mountain Au, Ag, Cu mine and the Snip Au deposit soon to be mined, both 15 km to the west and the Eskay Creek Au, Ag, Pb, Zn deposit 12 km to the east. The E & L Ni, Cu deposit is 5 km to the south. (Figure 3, Table 1,2,3).

TABLE # 1 SUMMARY OF MAJOR SHOWINGS IN THE ISKUT RIVER - UNUK_RIVER_AREA

•	SHOWING/DEPOSIT	EPOSIT LOCATION OWNER WORK HISTORY* RESERVERS OR COMMODITIES PRESENT		DEPOSIT_TYPE		
1)	Sulpurets: Bruce Jack Lake Zones	1048/8	Granduc/Corona	E,D,1	720,000 tonnes @ 28.4g/t Au Equiv.	veins
2)	Sulphurets Snovfield	1048/9	6r anduc /Cor on a	E ,2	7,000,000 tonnes @ 2.86 g/t Au	disseminated
3)	E&L	104B/10	Silver Standard Sumitomo	E,D,2	2,300,000 tonnes @ 0.7% Ni, 0.6% Cu tonnes	intrusive contact
4)	Johnny Mtn.	1048/11	Skyline Expl.	E,D,M (1987-89),1	Au, Cu	veins
5)	Snip	104B/11	Cominco/Delavare	E,D,M (1990-?),1	1,100,000 tonnes @ 24.0 g∕t Au	veins
6)	Doc	1048/8	Silver Princess	E,D,1	426,000 tonnes @ 9.26g/t Au 4.91g/t Ag (Pb, Zu, Cu)	YEINS
7)	Eskay	1048/9	Prime/Stikine	E, D, 1	5,025,000 tonnes @ 15.8 g/t Au, 441g/t Ag (Pb, Zu, Cu, Sb, As, Hg)	stratabound
8)	Bossan	1048/10	Lonestar/Western Canadian	E,1	Au	disseminated, vein
9)	Inel	104B/10	Inel Resources	E, D, 1	Au, Zu	stockwork, veins
10)) VV	1048/10	Crest/ Corptack	Ε,2	Cu, No (Au, Ag)	porphyry type dissea- inated and stockwork
11) Max	1048/7		Ε,2	9,300,000 tonnes 45% Fe	skarn

51.4

- E surface exploration and drilling D underground development
 - H Hine Mill complex
 - 1 current expl. (development)
 - 2 dormant

TABLE # 2 (See Figure 4)

REGIONAL GEOLOGY

Legend (from Britton 1988, 1989)

INTRUSIVE ROCKS

TERTIARY	///	King Creek dyke swarm
	x [×] x [×]	Coast Plutonic Complex
	+ ⁺ + ⁺	Lee Brant stock
JURASSIC	۵ ^۵ ۵	Lehto porphyry and Iskut River Plutons
LATE TRIÀSSIC	人公	Diorite and Gabbro

STRATIFIED ROCKS

TERTIARY 000	° ~~-	-	Basalt flows and Tephra
MIDDLE JURASSIC		_5 _4	Marine Basin Turbidites Felsic Pyroclastics
LOWER JURASSIC	3 2	D V S	Dacite Marker Andesite Volcanics (with <40% sediments)
UPPER TRIASSIC	2	V S M	IntermedAnds Volcanics Sediments Basalt
PALEOZOIC		1	Metamorphosed sediment(s) and Tuffs(v)

TABLE #3 (See Figure 4)

REGIONAL GEOLOGY SYMBOLS

CONTACT	
AIRSTRIP	
CREEK, RIVER	
GOSSAN .	
MINE, PROSPEC	T × A
PILLOW LAVAS	P

ANTICLINE, SYNCLINE

MOUNTAIN PEAK

PROSPECTS AND MINES

Α	JOHNNY MOUNTAIN	Au,	Cu,	Ag		
В	SNIP	Au,	Cu,	Ag,	Pg,	Zn
С	INEL	Au,	Ag,	Cu,	Zn,	Pb
D	KHYBER PASS (GOSSAN)	Au,	Cu,	Zn		
Ε	PINS	Au,	Ag,	Cu,	Zn,	Pb
F	MACKAY	Au,	Ag,	Pb,	Zn,	Cu
G	COPPER KING	Cu,	Fe			
Н	E & L NICKEL	Ni,	Cu			
I	CUMBERLAND / DALY	Au,	Ag			
J	VV	Cu,	Mo,	Au,	Ag	
К	MAX	Fe,	Cu		-	
L	DOC	Au,	Aq,	Pb,	Cu	
М	GLOBE	Au,	Ag,	Pb,	Cu	
		•		-		

Previous work immediate to the property includes three stream sediment samples taken as part of the NTS 104B sheet regional stream sediment and water data survey (G.S.C. Open File 1645). Samples 871166, 871168, 871169 ran respectively 53 ppb, 31 ppb and 102 ppb Au (Figure 4).

No previous work has been filed as assessment work with the B.C. government nor are there any Min file showings on the AY property. Work by Barytex Resources Corp. on the east bordering Chance 2,3 and Mystery 1,2 claims uncovered quartz - sulfide vein float with 0.118 oz/ton Au. No bedrock source was found according to E.A. Scroggins (1987). Further work was conducted during 1990. H.P. Salat (1989) mapping and sampling on the Au 1, 2 claims to the west found quartz - sulfide veining with trace values of Cu, Au.

4.0 REGIONAL GEOLOGY

The most recent geological mapping was by Alldrick (1989) in his Unuk Map area work. It follows up former mapping by Grove (1986, 1971) and Kerr (1948). The map area (Figure 3) is in the Intermontane Tectonic Belt near the Intermontane's western boundary with the Coast Plutonic Complex.

The four main tectonostratigraphic assemblages (Anderson, 1989) bounded by unconformities are:

- 1) Tertiary Coast Plutonic Complex
- 2) Middle and Upper Jurassic Bowser overlap assemblage
- 3) Triassic Jurassic, volcanic plutonic arc complexes
- 4) Paleozoic Stikine assemblage

Most of the area is underlain by a thick succession (more than 5 km) of sedimentary and volcanic rocks of Upper Triassic to Lower Jurassic age, intruded by Upper Triassic diorites, Jurassic alkali feldspar porphyry, the Cretaceous - Tertiary Coast Plutonic Complex and Tertiary felsic dykes.

Particular to the AY property are Lower Jurassic Betty Creek Formation andesites and andesite lapilli tuffs (Alldrick, 1989). These are intruded by the newly discovered (Britton, 1989) Lehto porphyry batholith, a potash feldspar, plagioclase, hornblende porphyritic granodiorite to syenite (Figure 3).

5.0 PROSPECTING

The first day of prospecting, August 13, 1990 was spent near the top of the unnamed mountain searching for a possible traverse route into a gully then down to the north drainage on the valley bottom. No route was found down the mountain. Outcrop between the Chance claims LCP and sample 90APR001 was Lehto porphyry. At sample site 90APR001 the outcrop was light grey to beige aphanitic dacite with < 1% pyrite. This seems to be an isolated block in the intrusive. Walking eastward off the AY property toward the mountain peak outcrop was of hornblende, potash feldspar porphyritic Lehto porphyry, at sample 90APR002 containing 1% pyrite and magnetite (Figure 4).

On August 14, 1990 a traverse was made up one of the side gulchs draining the AY claims. The lower 200 m of the gulch has exposure of glacial fluvial tills. Above this the gulch banks are predominantly outcrop of andesite. The first sample 90APR003 was float from the

gulch of a 4 cm guartz carbonate vein with 2% pyrite containing inclusions of the sheared volcanic host Sample 90APR004 was a sample from the qulch rock. cliff wall of sheared dark grey andesite with 2% pyrite and minor quartz and carbonate veinlets to 4 cm width. Twenty meters up the qulch the andesites host a 40 cm wide limonite altered vein with 15% pyrite (90APR005). Sample 90APR006 was taken as a representative sample of the host dark grey andesite, in this case there was some silicification and shearing. The traverse continued west with a 25 cm wide sheared quartz vein with limonite being sampled at 90APR007. Host rock is grey green andesite with slickensides, carbonate veinlets, and < 1% pyrite. At samples 90APR009, 010 a 15 cm wide quartz vein was sampled with 20% pyrite, it is limonitic and hosted by sheared andesite. Shearing is generally parallel to the gulch being easterly trending. The traverse ended 10 m further up gulch at a cliff of massive andesite.

All the quartz veins found are lenses with maximum 5 - 10 m strike lengths.

5.1 Rock Sampling

Ten samples were submitted to Vangeochem Lab Limited for analysis, analytical procedures are in Appendix II, Au and 25 element ICP results are tabulated in Appendix III, and descriptions in Appendix IV. Sample locations are plotted on Figure 4.

Sample 90APR001 yielded > 1000 ppm Ba with 20 ppb Au. Sample 90APR005 a 40 cm wide quartz vein yielded 180 ppb Au with no anomalous ICP results.

By far the best results were from the upper quartz vein in samples 90APR009, 010 which were re-analyzed and yielded respectively 3800 ppb Au, 960 ppb Au and 6600 ppb Au, >10,000 ppb Au (assayed 1.890 oz/ton Au). Sample 90APR010 also recorded 6335 ppm Cu, 21 ppm Mo and 2.4 ppm Ag. Unfortunately this vein is of limited strike length in sheared andesites.

6.0 CONCLUSIONS

Two days of traversing revealed one quartz vein with high grade gold values in sheared andesites at sample sites 90APR009, 010. Unfortunately this vein is of limited extent in very steep terrain. The southern part of the property, as witnessed from the mountain top traverse, consists of the Letho porphyry batholith. The extent of the Lehto porphyry was not observed, but by Alldrick's (1989) mapping it extends south, east and west off the AY property.

Minor pyrite and magnetite was observed in the Lehto porphyry at sample site 90APR002.

Possibly, further high grade quartz veins may be found in the east west sheared andesites.

Respectivly submitted, HI-TEC RESOURCE MANAGEMENT LTD.

R. F. BROWN Robert F. Brown, P. Enq.

Paul Daigle, B.Sc.

November 5, 1990

and a subglice of

- Alldrick, D.J. Britton, J.M., Webster, I.C.L. and Russell, C.W.P. (1989a): Geology and Mineral Deposits of the Unuk Map Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-10.
- Alldrick, D.J., Britton, J.M., MacLean, M.E., Hancock, K.D. Fletcher, B.A., Hiebert, S.N. (1990): Geology and Mineral Deposits of the Snippaker Area (N.T.S. 104B/6E, 7W, 10W, 11E) B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990 - 16.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia, Current Research, Part E; Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Britton, J.M., Webster, I.C.L. and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., Fletcher, B.A., Alldrick, D.J., (1989): Snippaker Map Area (104B/6E, 7W, 10W, 11E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1, pages 115-125.
- Grove, E.W. (1971): Geological and Mineral Deposits of the Stewart Area, British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 58, 219 pages.
 - (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63, 152 pages.
- Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pages.
- National Geochemical Reconnaissance 1:250 000 Map Series (1988): Iskut River, British Columbia (NTS 104B), Geological Survey of Canada, O.F. 1645, B.C. Ministry of Energy, Mines and Petroleum Resources, RGS - 18.

Salat, H.P. (1989): Au 1 and 2 claims, B.C. report prepared for Brazos Petroleum Corp. and filed for assessment.

Scroggins, E.A., Ikona, C.K. (1987): Geology and Rock Sampling on the Chance 1, 2, Mystery 1, 2, claims, B.C., for Barytex Resources Corp. B.C.M.E.M.P.R., assessment report 18198

APPENDIX I

.

Statement of Qualifications

Statement of Qualifications

- I, Robert F.Brown, of the City of Vancouver, Province of British Columbia, hereby certify :
- 1. THAT I am a geologist residing at 1450 West 64th Avenue, Vancouver, British Columbia, Canada, V6P2N4.
- THAT I obtained a Bachelor of Science (Engineering) degree in Geology from Queens University at Kingston, Ontario, Canada in 1975.
- 3. THAT I have been practising my profession as a geologist since 1975.
- 4. THAT I am a registered Professional Engineer, in good standing, with the Association of Professional Engineers of British Columbia.
- 5. THAT this report is based upon the results of a field program of geological mapping and sampling supervised by the author in August, 1990. All published maps and reports on the AY property and the surrounding area have been thoroughly reviewed.
- 6. THAT I have no interest in the AY property, nor the securities of Kinghorn Energy Corporation or Brazos Petroleum Corp. or any company associated with the property, nor do I expect to recieve any such interest.
- 7. THAT I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose private or public financing.

Dated in Vancouver, British Columbia, this 5th day of November, 1990.

Statement of Qualifications

I, Paul Daigle, now residing in the City of Montreal, Province of Quebec, hereby certify:

- 1. THAT I am a geologist employed by Hi-Tec Resource Management at 1500-609 Granville, Vancouver, British Columbia, Canada, V7Y 1G5.
- THAT I obtained a Bachelor of Science degree in Geology, Specialization from Concordia University, Montreal in 1988.
- 3. THAT I have been practising my profession as a geologist in Quebec, Ontario and British Columbia since 1988.
- 4. THAT this report is based upon a thorough review of published and printed reports and maps ont he subject property and the surrounding area. I have worked on the property personally and I have directed exploration programs on properties in the Iskut River area.
- 5. THAT I have no interest in the Ay 1, 2 claims described herein, nor in securitites of Kinghorn Energy Corp. or any company associated with the property, or in any property within a 10 km radius of the claims, nor do I expect to receive any such interest.
- 6. THAT I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose private or public financing.

Dated in Vancouver, British Columbia, this 5th day of November, 1990.

Paul Daigle, B.Sc

APPENDIX II

Sample Preparation and Analytical Methods

IGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST. N.B. RENO, NEVADA. U.S.A.

October 10, 1990

TO: Mr. Robert Brown HI-TEC RESOURCE MANAGEMENT LTD. 1500 - 609 Granville Street Vancouver, BC V7Y 1G5

FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6

SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

C VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST. N.B. RENO, NEVADA. U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.

3. <u>Method of Detection</u>

- (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.

4. <u>Analysts</u>

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

APPENDIX III

Analytical Data for Rock Samples

				(6)	04) 251-5656	Ů		
V		GEOCHEM LA	AB LIMITED		MAIN OFFICE 1900 TRIUMPH 9T. 1000UVER, D.C. VSL		IRANCH O PASADENA BATHURS AISSISSAUC NO, NEVAL	FFICES , NFLD. T, N.B. 3A, ONT. DA, U.S.A.
<u> </u>	REPORT NUMBER: 90049	S GA JOB NUMBER: 9	0495 HI-TEC I	RESOURCE	KARAGENEET LTD.	PAC	1 OP :	2
	SINCLE I	k a						
		ppb	-					
	APRO09	300	AY PROPER	74				
	APRULU	> 10000						
	APR031	1540						
	APR032	10						
	APROJJ	170						
	APR034	60						
	APR035	bá					•	
	APR036	ъđ						
	APR037	bđ						
	APRO36	nd						
	APRUJ9	DO						
	APR040	00						
	APRU41	54						
	APRO42	nd						
	APR043	ađ						
	APR044	nđ						
	90AGR001	nd						
	901GR002	bđ						
	901GR003	240		• •				
	901GE004	nđ						
	901GR005	bđ						
	901GR006	nd	•					
	901GR007	nd				•		
	90AGROOB	ZĆ						
	JOAGROO9	ad						
	90xGR810	nd						
	NOAGRO11	nđ						
	90162017	nd						
	401CD011	ad a						
	901GR014	rd rd						
	301GR015	ad						
	90AGR016	20						
	901GR017	bđ						
	\$0AGR018	rd						
	SOAGRO19	nd						
	90369070	nð						
	40109031	44 72						
	401/20077	กก้						
	461/2011	· • • •						
	JAPATATJ	au						
	DETECTION LINIT	\$	、					
	ad = none detected	= not analysed	is = insufficient	sample				

---- --

ì

ICAP GEOCHEMICAL ANALYSIS

bablibat.........

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and 1s diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

		n	ij gra∎	Sample 1	s arges Th	is leach	is parti	at for A	1 to na 1, 8a, 0	3, Cr, f	e, K, Mg	-c 107 50 g, Mn, Ka	, P, Sn,	Sr and i	i.		1 AICU A	4127.	ANAL	/ST:	L	-1	4		C
REPORT #: 900495 PA	HI-TEC RESO	URCE NAN	IAGEMENT	LTD.		PROJE	CT: 90BC0	41		DATE	IN: SEA	PT 17 199	IO DAT	E DUT: DO	CT 16 19	90	ATTENTIO	N: MR. DE	ENNIS COL	LINS		PAG	E 1 OF	2	
Sample Name	Ag	Al	As	Ba	Ði	Ca	Cd	Co	Cr	Cu	fe	ĸ	Kg	Ma	No	Na	Ni	P	Pb	Sb	Sn	Sr	U	N.	Zn
	ppm 1 1	A 21	pp= /2	40	21 21	5 10	pp 2 2	py∎ 11	44 72	pp∎ 160	754	1 20	4 1 02	•001	12 12	A A2	pp∎ 14	/0 01	pp=	ppe.	pp∎ 7	pp∎ 40	pps.	ρρ α (2)	ppa 25
AFRONS H	, <u>1.1</u>	0.31	(3)	0F 47	1/0	3.10	2.3	11	116	100	7.J¶	0.33	1.00	1201	12	0.02	10	10.01	(2	10		42	()	(3	23
APPO3I	0.8	3 37	(3	111	(3	0.16	2 2	37	R4	295	5 73	0.13	1 70	100	16	0.01	17	0.02	(2	(2	12	4	(3	(3	2J 55
APP032	0.2	3 45	(3	75	(3	2 79	1 7	26	34	99	5.04	0 28	1 78	1292	14	0.07	4	0.03	()	(2	13	114	(5	(3	106
APR033	0.1	2.18	(3	39	23	3,38	1.3	24	62	25	2.64	0.24	1.90	507	12	0.03	13	0.04	<2	<2	7	64	(5	<3	51
APR034 -	0.2	1.41	{3	58	25	7.19	1.0	38	42	191	1.97	0.29	1.22	998	14	0.03	14	0.15	<2	<2	5	134	۲5	(3	51
APR035	0.2	2.40	(3	69	27	7.97	7.1	19	57	92	2.91	0.32	1.71	1435	12	0.05	60	0.04	4	<2	7	247	<5	<3	482
APROJE	10.5	1.54	(3	26	6	4.21	5.6	30	46	1903	3.50	0.27	1.06	1048	54	0.04	17	0.02	126	<2	9	131	(5	<3	236
APR037	0.6	2.01	<3	76	20	1.55	1.5	23	84	460	3.03	0.19	0.94	273	9	0.06	19	0.06	<2	<2	13	44	<5	<3	38
APR03B	0.1	0.60	<3	18	46	0.37	1.0	11	47	123	2.16	0.08	0.25	143	٤	0.04	6	0.03	<2	<2	8	17	۲\$	(3	16
APR039	0.1	3.68	<3	128	20	0.79	0.4	17	58	86	4.04	0.17	1.82	266	44	0.09	61	0.04	<2	<2	14	77	(5	(3	35
AFR040	0.1	1.83	(3	10	27	0.17	1.7	12	76	47	2.52	0.07	1.38	272	11	0.02	15	0.02	<2	(2	1	4	(5	(3	44
APR041	0.2	2.72	<3	66	8	0.39	0.5	16	71	155	3.92	0.14	1.49	202	35	0.04	21	0.07	<2	<2	11	19	<5	<3	40
APR042	0.1	0.43	(3	12	38	>10.00	1.0	22	12	17	1.13	0.29	0.44	1610	14	0.03	16	<0.01	31	4	5	384	<5	<3	21
APR043	0.1	0.41	<3	32	36	>10.00	1.2	16	9	9	0.64	0.27	0.35	2047	7	0.04	22	<0.01	32	3	5	448	<5	<3	18
APR044	0.1	0.90	(3	40	22	0.92	1.3	11	45	140	2.45	0.12	0.48	424	5	0.04	6	0.03	<2	<2	11	34	<5	(3	30
90A6R001	(0.1	1.33	<3	145	30	2.61	(0.1	8	53	10	2.55	0.21	0.67	B 82	6	0.03	8	0.08	<2	<2	6	46	(5	(3	42
90A5R002	<0.1	0.72	(3	25	35	1.44	<0.1	3	52	4	1.02	0.12	0.44	286	3	0.03	10	0.02	<2	<2	4	29	(5	<3	9
90A6R003	<0.1	0.14	(3	21	32	1.54	0.8	56	186	8	3.87	0.17	0.07	337	3	0.01	17	<0.01	4	7	3	29	<5	(3	6
90AGR004	<0.1	1.05	<3	39	26	1.11	<0.1	15	34	113	1.94	0.13	0.30	167	12	0.04	11	0.12	<2	<2	12	56	۲5	<3	13
90A6R005	(0.1	0.79	(3	107	30	>10.00	0.2	41	30	115	1.54	0.33	0.51	1086	6	0.04	41	0.01	<2	3	5	204	<5	<3	12
SOAGROOE	(0.1	1.29	(3	179	35	2.40	0.4	11	43	12	3.28	0.21	0.95	433	1	0.03	20	0.08	<2	<2	6	66	<5	(3	27
90AGR007	0.1	1.96	<3	25	21	>10.00	0.9	12	38	37	2.56	0.34	1.44	961	8	0.03	20	0.03	<2	<2	9	150	<5	<3	3£
90A6R008	<0.1	0.80	<3	18	19	>10.00	1.3	43	34	66	5.25	0.42	2.22	5709	17	0.03	22	0.02	4	6	8	260	<5	<3	25
90A6R009	0.1	1.12	<3	12	15	1.06	0.8	25	85	141	2.89	0.13	0.56	336	9	0.03	114	0.04	{2 /	<2	12	26	<5	<3	18
90A6R010	1.1	1.76	<3	42	(3	0.60	1.5	46	55	289	5.76	0.16	0.92	410	13	0.04	25	0.03	<2	<2	14	26	(5	(3	33
90AGR011	0.1	1.12	(3	>1000	38	0.70	0.5	9	56	10	1.90	0.10	0.59	732	9	0.04	19	0.05	<2	<2	8	116	<5	<3	33
90AGR012	0.1	0.87	(3	665	26	0.28	(0.1	1	65	9	1.71	0.05	0.49	644	5	0.02	112	0.04	28	<2	7	37	<5	(3	34
90A6R013	0.1	0.36	(3	>1000	42	0.13	(0.1	1	106	15	0.61	0.02	0.17	207	1	0.01	14	0.02	73	<2	5	102	<5	<3	15
90A6R014	0.1	0.97	(3	511	27	0.40	0.6	5	45	5	1.56	0.06	0.58	704	4	0.03	17	0.04	<2	<2	7	43	<5	<3	39
90AGR015	0.1	0.90	(3	201	28	0.57	(0.1	6	46	5	1.50	0.07	0.52	642	5	0.02	20	0.04	<2	<2	7	36	<5	(3	33
90AGR016	0.3	0.09	<3	394	46	0.01	(0.1	- 4	190	103	0.52	(0.01	0.02	137	13	(0.01	278	(0.01	1020	3	5	9	<5	<3	2
90A6R017	0.1	1.01	<3	413	28	1.86	0.6	4	49	7	1.52	0.16	0.52	525	4	0.03	20	0.05	<2	<2	6	75	<5	<3	23
90AGR018	0.1	1.07	(3	451	22	2.26	0.4	2	39	- 4	1.59	0.18	0.56	870	3	0.02	18	0.05	<2	<2	3	59	<5	(3	14
90A6R019	0.3	0.24	<3	94	36	0.56	<0.1	2	283	113	1.20	0.06	0.13	552	11	(0.01	348	(0.01	9	<2	6	14	<5	(3	5
90AGR020	(0.1	0.97	<3	395	25	2.07	(0.1	3	36	5	1.51	0.16	0.47	815	5	0.02	19	0.06	<2	<2	7	63	۲۵	(3	19
90A6R021	(0.1	1.11	(3	229	33	1.45	0.3	7	55	6	1.69	0.13	0.61	441	4	0.03	19	0.06	<2	<2	9	122	<5	<3	22
90AGR022	0.9	0.18	(3	123	41	0.26	(0.1	(1	127	80	0.69	0.03	0.03	264	1	(0.01	17	(0.01	13	3	5	10	<5	<3	(1
90AGR023	0.1	0.70	<3	396	23	0.82	0.6	6	74	17	1.55	0.10	0.23	481	5	0.01	115	0.05	<2	<2	5	32	<5	(3	13
Miniaua Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	i	0.01	2	2	2	t	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000 	10.00 March 10	1000.0	20000 - No Coar	1000	20000 440#31.00	10.00 c prciji T	10.00 S Furt	10.00 her Anal	20000 yser By A	1000 Uternati	10.00 e Method	20000 Is Sugges	10.00	20000	2000	1000	10000	100	1000	2000(

	OCHEM LAB LI	MITED	MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. VSL 1L6 TEL (604) 251-5656 FAX (604) 254-6717	BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.
REPORT NUMBER: 900495 11	JOB NUMBER: 900495	EI-TEC RESOURCE	MANAGEMENT LTD.	PACE 1 OF 1
SAMPLE #	Au oz/st			

.248

1.890 - AY PROPERTY

DETECTION LIMIT 1 froy or/short ton = 34.24 ppm

APR010

90APR052

.005 1 ppn = 0.0001%

ppm = parts per million

< = less than

signed: lynn ___

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

E

REPORT NUMBER:	900336	GA JOB	NUMBER:	900336	HI-TEC RESOURCE	MANAGEMENT	LTD.	PAGE	2	OF	2
SAMPLE I		k u									
		ppb									
90ACR007		20									
90ACR008		20									
90ACR009		30									
90ACR010		30			· · · ·						
90ADR001	7	20									
90ADR002		40									
90ADR003		50									
90ADR004		40									
90AJR001		40							·		
90AJR002		20									
90APR001		20	-2								
90APR002		30									
90APR003		20									
90APR004		nd									
90APR005		180		AY	PROPERTY						
90APR006		10									
90APR007		nd									
90APR008		20									
90APR009		3800									
90APRO10		6600									
901SR001		40									
901SR002		60			•						
90ASR003		60									
90ATR009		20									
90ATRO10		20									
90ATRO11		10									
90ATR012		20									
90ATR013		30									
90ATRO14		300									
90ATR015		20									
90ATR016		20									
90ATR017		60									
90ATR018		30									
		••									

DETECTION LIMIT nd = none detected

5 -- = not analysed

·- ··

1630 Pandora Street, Vancouver, B.C. VSL 1L6 Ph:(604)251-5656 Fax:(604)254-5717

LA

1

TI

ANALYST: Royalt

HE

Ed

VA

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₅ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT 8: 900336 PA	HI-TEC RESOURCE MANAGEMENT LTD. PROJECT: 908C041							DATE IN: AUG 29 1990 DATE OUT: SEPT 15 1990 ATTENTION: V. KURIN									PAGE 2 OF 2								
Sample Name	Ag	A1	As	Ba	Bi	Ca T	Cd	Co	Cr	Cu	Fe 7	ĸ	Ng	Mn	No	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	In
90402007	ρμ∎ 0.1	0.84	γμ∎ (3	69 68	44 (3	0 70	03	µµ∎ 6	99% 81	γμ∎ 17	1 59	0 10	6 37	µµn 495	pha 4	70 01	ρρ∎ 12	0.05	21 21	рр а / 2	ppa 7	pp∎ (57	pp∎ ./5	pp	ppe 20
90402007	(0.1	3.31	(3	32	(3	2.21	0.5	33	77	57	5 23	0.10	2 36	1065	r 9	(0.01	48	0.03	32	22	19	143	13	(3	114
90ACR009	(0.1	1.54	(3	72	(3	1.08	0.7	14	71	26	4.52	0.21	0.98	331	i	(0.01	12	0.15	26	6	- 11	115	(5	(3	31
90ACR010	(0.1	1.37	<3	208	(3	1.15	0.2	10	61	19	2.55	0.18	0.73	405	3	(0.01	8	0.10	15	(2	9	120	(5	(3	30
90ADR001	0.3	1.19	37	40	<3	2.22	<0.1	22	47	785	1.54	0.32	0.55	381	5	<0.01	9	0.05	10	<2	3	53	<5	(3	8
90ADR002	0.1	1.21	17	45	{3	0,99	(0.1	60	57	42	2.53	0.17	0.87	332	7	<0.01	13	0.08	12	<2	5	24	۲5	(3	19
90ADR003	0.3	0.84	<3	42	(3	9.11	(0.1	20	49	56	2.66	0.80	2.49	2688	6	(0.01	16	0.06	16	<2	5	229	(5	(3	43
90ADR004	<0.1	0.84	(3	104	(3	>10.00	<0.1	78	15	12	2.58	0.95	0.53	1343	13	(0.01	14	0.01	11	<2	3	223	(5	(3	8
90AJR001	<0.1	0.38	4	56	<3	0.37	<0.1	38	199	6	3.43	0.06	0.12	163	4	<0.01	- 14	0.02	10	<2	4	11	(5	<3	8
90AJR002	0.1	0.33	3	123	<3	0.84	0.3	4	214	1815	1.15	0.12	0.10	782	3	(0.01	29	0.02	6	<2	2	16	<5	<3	6
90APR001	(0.1	0.43	4	>1000	(3	0.66	(0.1	3	133	20	1.58	0.10	0.12	455	1	(0.01	8	0.03	3	<2	<2	67	<5	<3	15
90APR002	(0.1	1.00	(3	967	(3)	2.29	0.1	6	45	9	2.49	0.34	0.56	993	2	<0.01	11	0.11	11	<2	4	165	(5	(3	51
90APKUU3	(0.1	0.83	(3	110	(3	1.24	(0.1	6	117	4	1.94	0.18	0.42	920	2	(0.01	11	0.02	10	(2	4	41	(5	(3	23
90APR004 90APR005 AY	<0.1 <0.1	6.32 0.56	<3 <3	58 26	<3 <3	3.00 0.24	0.7	35 52	224 251	35 26	7.19	0.44 0.11	5.78 0.17	1110 144	12 6	<0.01 <0.01	94 35	0.11 0.02	38 19	43 2	24 B	60 10	(5 (5	(3 (3	86 7
90199006 000000T	V (0.1	1 72	(3	246	(3	2 86	(0.1	7	70	3	2 48	0.38	6 92	929	4	(0.01	10	A 11	,	12	6	100	/5	12	21
90APR007	(0.1	0.28	11	35	(3	0.09	(0.1	á	199	67	2.69	0.03	0.05	131	1	(0.01	14	0.11	, 8	(2	2	100	(5	(3	5
90APR008	(0.1	2.03	<3	64	(3	0.91	(0.1	i.	100	10	2.47	0.15	1.38	342	4	(0.01	10	0.04	16	()	Â	20	(5	(3	47
90APR009	0.4	0.43	<3	7	(3	0.56	3.6	27	145	49	>10.00	0.43	0.28	479	15	(0.01	35	0.02	44	57	រត	Ŷ	(5	(3	10
90APR010	2.4	0.30	<3	8	103	0.90	6.6	22	156	6335	>10.00	0.59	0.32	511	21	0.01	39	0.01	54	78	22	8	(5	(3	15
90A5R001	0.1	0.32	<3	31	(3	>10.00	<0.1	32	11	26	0.97	0.94	0.29	1679	. 7	(0.01	14	0.01	7	<2	<2	284	(5	(3	13
90ASR002	1.2	1.19	119	21	16	4.21	<0.1	190	46	1724	3.58	0.53	0.80	963	6	<0.01	22	0.05	15	<2	5	123	<5	(3	18
90A5R003	0.1	0.21	<3	37	<3	>10.00	(0.1	8	13	107	0.62	0.94	0.14	1378	(1	(0.01	9	(0.01	5	(2	<2	293	(5	(3	9
90ATR009	(0.1	0.58	12	952	(3	0.47	(0.1	5	102	21	0.91	0.06	0.27	237	(1	<0.01	11	0.04	72	(2	(2	100	(5 ((3	33
90A1K010	(0.1	0.69	3	369	(3	1.00	(0.1	2	110	12	1.06	0.15	0.30	662	· 1	(0.01	13	0.04	8	(2	<2	27	(5	(3	12
90ATR011	<0.1	0.74	7	149	(3	0.73	<0.1	· 11	74	15	1.97	0.12	0.31	311	(1	(0.01	18	0.06	13	<2	4	102	(5	(3	18
90ATR012	0.5	0.55	(3	245	(3	0.25	<0.1	6	71	3	2.33	0.04	0.19	229	2	(0.01	13	0.03	10	<2	<2	32	<5	<3	13
90ATR013	0.1	0.42	(3	61	(3	0.70	(0.1	4	135	4	3.49	0.16	0.07	586	3	(0.01	18	0.03	12	(2	3	16	(5	(3	14
90ATR014	0.1	1.46	(3	14	(3	2.32	(0.1	13	91	25	5.59	0.39	1.21	831	5	(0.01	25	0.07	20	3	8	52	<5	(3	40
90ATR015	0.2	1.03	(3	13	(3	2.31	0.5	10	68	5	5.02	0.40	0.54	1702	5	(0.01	18	0.10	21	(2	1	72	<5	(3	29
90ATR016	0.1	0.44	<3	192	<3	1.84	<0.1	8	47	4	1.81	0.29	0.15	1011	1	(0.01	14	0.0B	11	<2	<2	58	(5	<3	. 40
90ATR017	4.0	0.35	4	63	(3	1.60	3.4	3	91	5	1.30	0.22	0.03	979	<1	(0.01	13	0.04	250	(2	<2	62	<5	(3	312
90ATRO18	0.2	0.36	8	43	(3	1.40	(0.1	4	62	1	1.90	0.20	0.04	545	(1	<0.01	15	0.05	23	<2	(2	58	<5	<3	24
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	i	0.01	2	2	2	1	5	3	1
Naximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
(- Less Than Minimum)	- Greater II	nan Maxieu	18 :	15 - Insu	Illicien	t Sample	e ns	- No Samp	ie	ANURALOU	IS RESULT	5 - furti	ner Anal	yses by i	niternat	e Nethod	is Sugges	ted.							

APPENDIX IV

Rock Sample Descriptions

	PC-XPLOR V Exploration By BENCCM	ERGION 1.30 n Data Manager BERVICES INC.	*** AU-GOL! ***	C CLAIMS, 1990 EXPL	KINGHO DRATION	RN ENERGY CORP. Database	₹ ** ***
	90488025	ALT. DIDSITE		ROCK	3548	/ 170V	8:
	SOABR025	ALT. DIGRITE: SI	LT: RHEX	ROCK	GEAB	(127V	135
	SOASR027	SULTISIE: GIGHT	E: 9HCX	800%	GRAR	(170V	
	90A88028	RHDK?.BIF: SHEAR		ROCK	GRAB	1-27227	35
	-^258029	2238		9008	SPAR	2+70V	443
	90489030		Ute	2007	5040		:
	90489031	DIORITE, year SIE	• •	ROCX	GRAR	2170V	
	90A88032	DIGRITE, FE-CB A	17.	RUCK	GRAR	1797	30=
	94758033	INTRATE STAR A		9002	SPAR	2179V	50=
	30483034	DIORITE, FE-CB A	• • • •	RCCK	BRAB	CITEY	321
	90A88035	DIORITE waak FE-	CB ALT.	ROCK	GRAB	KIIPY -	
	90ABR035	SILT. SHEARED. F	E-CB ALT. 5% QV	ROCK	GRAB	(17PY	195
	90ABR037	DIDRITE DYKE, CV		ROCK	GRAB	K112Y. (0. 1102	76
•	90ABR038	SILT. MUDSTONE:	SIF TO CHERTY	ROCK	GRAB	<1ZPY:<0.1ZCP	249
	9CA88039	SILT. MUDSTONE:	FE-CB ALT.	ROCK	GRAB	LI	482
	30A23001	L gry/beics ach	dac slightly calc	Rock	arab	2I unknowa. (11 by	atz-valts
Ĩ	90APR002	Grn/gry/blk fsp	porphyry slightly cal	Rock	orab	12 aag % py	
	90APR003	Gtz/cb vn 4ca w	volc incl	Rock	orab	2X av	
	30APRC04	D gry and siknsd	s calc gtz & cb-volts	Rock	nrab	21 av 11 diss mag	ctz/cb_vn4ca
- AY	90APR005	Altrd stz-yn 40c	a hosted in and Fe-rus	st Rock	crab	151 ov	472722 7002
PROPERTY	30APR006	D cry sil and ct	z volts sikosos/stear	Rock	crab	<11 5V	
<i>i noren 17.</i>	90APR007	Stz yn 25ca Fe-r	usted sheared	Rock	irab	0	
) .	30APRCO8	Gry/orn sil and	sikneds ch-vnits(rhodd	?) Rock	arat	trace ov	
	90A22009	Stz vn 15ca high	ly altrd Fe/Mn-stain	Rock	brab	201 av	
	90429010	Str vn 7rn extre	ne altric and rust	Rock	trab	307 cv	
¥	90ACH001			Rult	tream		
	9040002			Ralk	stream		
	30403003			Bulk	tream		
	90ACH004			Bulk	typan		
	90404005			- Bull	117925		
	9040406			Sull a			
	90454007			Relie a	591 CG.#		
	90109001	Ote unin Mai at		Bork :	rah	27 DV CDV	1319
	90402002	Granding stless	0 4 M	Pock	yr au or ah	25 auk av	152.
	90202002	Charty sk	GT 1)	Pork	yrab	Car can by	tersion
•	30ACR003	Grandiarita sh	l-etzin	Pock	yi au srah	(12 p) (17 p)	deratud
	SOLESOOS	Crandiavite th	- Stall	Rock .	yr au ar ab	117 sv	
	JANCAOAD	Charristeria	-Stain Shearing	Bock	9:60 	A PY	
•	SOMEROOD	gueri Theingtie	I MERE: MIDE	Coil	ງເອນ	v	3221
	JUNESUUI BOACCOOO			Coil			
•	30A63002			SULL Call			
• · · · · · · · · · · · · · · · · · · ·	50AC3003			5011 Coll			
· · · · · · · · · · · · · · · · · · ·	JUALSUUA	ĸ		5011			
	JUALSUUJ			5011			
	JUALSUUD			5011			
	SUACEUU/			5011			
	90ACS008			5011			
,	POCEURDE			5011			
	90ACS010			5011			
	90405011	· ·		3011			
	90ACS012			Soil			
	90AC5013			Soil			
	90ACS014			Soil			
	90ACS015			Soil			
	90ACS016			Soil			
	90ACS016			Soil			

Ŀ

1:

.

APPENDIX V

Statement of Costs

Statement of Costs

Project Preparation \$	500
Мар	60
Mobilization, Demobilization	1,300
Salaries	·
Paul Daigle, geologist 2 days @ \$300/day Justin Himmelright, technician 2 days @ \$225/day Cook 1 day @ \$225/day Domicile 4 man days @ \$150/day	600 500 225 575
Geochemistry 10 @ \$17.5	175
Freight	50
Chopper 2 hrs @ \$661.5	1,323
Fixed Wing	300
Radio Rental/Walkie Talkie Rental	60
Field Supplies	30
Equipment Rental 4 days @ \$25/day	100
Generator Fuel/Propane	70
Computer Rental 1 day @ \$20/day	20
Expediting	100
ACC/COMM	100
Report	600
Project Management 0.15% 1,	003.20
TOTAL: \$7,0	691.20

No. of Years covered 3

AL CONTRACT

