EQUINOX OPERATIONS GROUP

Geological and Mining Technical Services A Division of Equinox Resources Ltd. 900-625 Howe Street Vancouver, B.C., Canada V6C 2T6 Telephone (604) 684-1175

LOG NO:	11-22	RD.
ACTION:		·····

A GEOLOGICAL REPORT FILE NO: ON THE JORDAN RIVER PROPERTY

REVELSTOKE MINING DIVISION, BRITISH COLUMBIA

Lat: 51 08 North Long: 118 24 West

FOR

FIRST STANDARD MINING LTD. Goldcrest Acres R.R. #1 Gilford, Ontario LOL 1R0

୭ କ S I **S** O P 19 **6** 0 \mathcal{O} **n** 2 **E O** z 🄈 9 2 17 X 70 🎾 o Z **z ೧**

BY

R.G. MACGILLIVRAY, B.Sc. and J. LAIRD

October 4, 1990

TABLE OF CONTENTS

.

Page

SUMMARY AND RECOMMENDATIONS	1
LOCATION AND ACCESS	4
HISTORY	5
GEOLOGY	6
DISCUSSION	8
COST PROJECTIONS	9
STATEMENT OF COSTS	10
STATEMENT OF QUALIFICATIONS	11

FIGURES

	APPENDICES	
SAMPLE LOCATION		pocket
REGIONAL GEOLOGY		pocket
CLAIMS MAP		3
LOCATION MAP		2

APPENDIX ISample Descriptions11APPENDIX IISample Results22

.

.

SUMMARY AND RECOMMENDATIONS

The Jordan River Deposit is a large, stratiform, massive sulphide body formed by replacement of a marble horizon within the Monashee Group, located 19 km northwest of the town of Revelstoke in south-central British Columbia. Silver, lead and zinc are the economic constituents. During the period Monday September the 3rd through to Tuesday September the 11th, 1990, the Jordan River Property was examined by geologist R.MacGillivray and prospector J.Laird. The focus of the program was to prospect the Pb-Zn-Ag sedex layer and to examine and sample late cross cutting faults on the property in search for anomalous gold values. During this time period 31 rock samples were collected along with 2 silt samples.

An anomalous gold value of 892 ppb, along with an arsenic value of 25156 ppm was sampled in one of the cross cutting structures on North Copeland Ridge and represents the highest gold value obtained.

Attention on the Jordan River Property should be directed towards defining the reserves and grades of the sulphide layer at depth. The assay results released in this report present the ability to delineate higher grade zones then previously sampled. Prospecting done in this time frame further traced the outcropping of the Pb-Zn-Ag layer to show

greater continuity within the deposit. Drill hole locations were chosen to test continuity and grade at depth and to test increased grade at cross cutting fault contacts. Eleven drill sites have been chosen and plotted to suggest a program of 21 holes involving approximately 3000m of drilling.

LOCATION AND ACCESS

The Jordan River Property is situated 19 km northeast of the city of Revelstoke, B.C.. Revelstoke is serviced by the Trans Canada Highway, Canadian Pacific Railway and a municipal airport. From Revelstoke an all weather logging road services the Jordan River Valley up to Hiren Creek which flows on the south side of Copeland Ridge. Historically a trail was cut through the remaining section, up the Jordan River and into the Copeland Creek Valley to the property. Access for this work program was supplied by helicopter involving a fifteen minute flight time from Revelstoke. Hydro electric power is readily available as the Revelstoke Dam lies 18 kilometers to the southeast.

The Copeland claims are comprised of 70 units which cover 1750 hectares of land. The claim boundaries of the property encompass Mount Copeland, a section of Copeland Creek and a section of the south facing slope of the ridge north of Copeland Creek. The property centers on the coordinates 51

degrees 8 minutes North and 118 degrees 24 minutes West.

HISTORY

Annual reports from the Ministry of Mines first mention activity in this area during the years 1895, 1896 and 1898. No specific developements are mentioned. The next mention of work refers to the staking of the ground by S. and A. Brewer, who granted an option late in 1955 to American Standard Mines Limited. Work in 1956 was restricted to sampling and opencut work. In 1958 the property, under option to Bunker Hill Exploration Ltd., saw bulk sampling and metallurgical testing as trenches were blasted across the mineralized bed at 25 foot intervals. In 1963 the registered owners, Jordan Mines Limited and Bralorne Pioneer Mines Limited, drilled five diamond drill holes with a total length of 4,929 feet. Bralorne Pioneer Mines Limited, under option from Consolidated Standard Mines Limited, drilled two holes totaling 2,966 feet in 1965 and completed a fan of four holes in the western part of the mineralized area and one more in the eastern part of the property in 1966. The total length of drilling was 7,979 feet. In 1975 Consolidated Standard became Golden Standard and in 1978 became International Standard Resources Ltd., which is now First Standard Mines Ltd.; the current owner of the property.

GEOLOGY

The Jordan River Property lies within the Shuswap Metamorphic complex, specifically it is composed of the metasedimentary gneisses and schists which drape the southeastern flank of the Frenchman Cap dome. The metasedimentary rocks include guartzite, mica schist, calc-silicate gneiss and minor amounts of marble. The marble and the quartzite layers provide for excellent marker beds within this stratigraphy. These rocks have undergone high grade regional metamorphism to the kyanite/garnet/amphibolite facies. Folding is locally complex and has formed an isoclinal syncline with the deposit and the surrounding rocks. The southern limb is overturned. The fold axis trends NW/SE with a 45 degree dip to the south. The hinge of the fold plunges 12-15 degrees to the SE. The stratigraphically lowest unit seen on the property is termed a grey green gneiss (unit 6, Fyles 1970). The rocks are mainly quartz-biotite-hornblende gneiss with lesser amounts of calc-silicate gneiss, fine-grained mica schist, and a few thin, well-defined layers of white quartzite (Fyles 1970). Overlying unit 6 is the calcareous portion of unit 5, which hosts the sulphide layer. This part of unit 5 is characterized by porphyroblastic and calcareous mica schist, thin layers of calc-silicate gneiss, and three distinct marble layers (Fyles 1970). The sulphide layer is of a

sedimentry exhalative origin, it is described as a partial replacement of an impure marble layer by iron, zinc and lead sulphides, that has since undergone regional metamorphism. The deposit appears continuous for the 2.5 kilometers of its exposed strike length, but moraine, ice and steep topography do not allow complete access. An extrusive carbonatite layer has also been discovered within unit 5, and conformably underlies the marble unit denoted 5e on Fyles map. The carbonatite lies approximately 10 meters below the forementioned 5e layer and is up to 5 meters thick. The stratigraphic occurrence and appearance of this carbonatite closely resembles the Mount Grace carbonatite as described by Hoy (M.E.M.P.R. Bulletin 80).

The younger portion of unit 5 is the quartzitic section containing white, greyish, and greenish quartzite interlayered with greyish and brownish micaceous quartzite and mica schist. This rock directly underlies Fyles unit 4, a medium-grained rusty-weathering biotite-sillimanite gneiss and schist. Late cross-structures appear on the property and were investigated for shear or vein hosted sulphide zones. The faults trend north/south with a moderate to steep easterly dip and frequently are host to lamprophyre dyke swarms. The dykes appear elsewhere on the property and indiscriminately cut stratigraphy. They strike north to

northeast with a steep dip and cut country rock with no mineralizing effect.

Immediately to the west of the property lies the Mount Copeland gneissic nepheline syenite intrusion. The margins of the syenite is persistantly mineralized with molybdenite. Pods or veins of granular aplitic phase of the syenite produce the best values. Mount Copeland saw the developement of a molybdenum mine that started producing in 1970. Production to the end of 1973 was 188,602 tons from which 2,352,547 pounds of molybdenite was recovered (B.C.D.M. Annual Report 1973, pg.104).

DISCUSSION

During the nine day program a total of 31 rock samples and 2 silt samples were taken on the property. Six of these days were spent on or around the sulphide layer and three days were spent prospecting in the tributaries of Copeland Creek that occur within the claim boundaries.

Although not much encouragement was seen in the Copeland Creek valley, the results from the sedex layer show the possiblity of a substantial increase in the grade of the potential reserves.

The extension of ore for 400 meters through the Northwest Zone is also of importance as it expresses increased

continuity from the South Limb through to the North Limb. Economic implications with regards to the rare earth content of the carbonatite should be given merit as a large reserve is present on this property.

COST PROJECTIONS

These estimates are based on a two month field program of which the first two weeks would be devoted to mobilization and the establishment of control. Three thousand meters of drilling is recommended at a price of \$140/meter exclusive of helicopter support.

Permitting, reports, office, etc.	10,000
Camp construction, mobilization, demob.	20,000
Field expenses 60 days, excluding drill crew	8,000
Transport	•
Helicopter and fuel	32,500
Other	2,500
Wages (70 days + benefits)	,
Geologist	21,000
Assistant	15,000
Assay	2,000
Drilling	420,000
Subtotal	531,000
Contingencies	53,100
TOTAL	584,100

STATEMENT OF COSTS

Field personnel wages:

•

٠

1 geologist, 13 days @ \$210/day 1 prospector, 13 days @ \$185/day	2,730.00 2,405.00	
Salary benefits, expenses	1.223.93	6,358.93
Field expenses, incl. accommodation		2,313.75
Helicopter and travel		2,194.60
Assaying, 33 samples		<u>1,005.75</u> 11,863.03
10% overhead		1,186.30
		\$ <u>13,049.33</u>

.

STATEMENT OF QUALIFICATIONS

- I, R.G. MacGillivray hereby certify:
- That I am a Geologist residing at 201-995 Hugh Allen Dr. Kamloops, B.C..

• .

- -

- 2. That I am a Graduate of the University of British Columbia, B.Sc. (Geol.) 1989.
- 3. I personally participated in the field project described in this report.
- 4. I have not received, or do I expect to receive any interest, direct or indirect, in the Jordan River Property or the securities of First Standard Mining Ltd.
- 5. I consent to the use of this report, or excerpts therefrom, in any prospectus, statement of material facts, or other compilation as required.

Dated at Kamloops, British Columbia this 1st day of October, 1990.

R. M.

R.G. MacGillivray, B.Sc.

.

.

.

APPENDIX I

SAMPLE DESCRIPTIONS

Jordan River Area - King Fissure Ag, Pb, Zn, Ba Deposit

Sample Descriptions and Anomalous Values

Camp Fault Zone

#JLR-1 Grab sample from an old trench dump, centered on the N-S trending, east dipping, dextral Camp Fault. The fault cuts well-bedded marble, gneiss, shist, calc-silicate layers, extrusive carbonatite tuffs and breccias, and the stratiform sedimentary-exhalative Ag, Pb, Zn, Ba layer. The fault zone and conjugate structures are intruded by Tertiary biotite lamprophyre dike swarms. The mineralized zone is poorly exposed in dump rubble and oxidized subcrop for several meters in width. Mineralization consists of massive, fine to coarse-grained sheared galena, minor sphalerite and some chalcopyrite, in a manganese and iron oxide coated silicified gangue rock. Alteration minerals include; wad, pyrolusite, botryoidal psilomelane, jarosite, cerrusite, hydrozincite, malachite and azurite. Partially conductive, non-magnetic. 8.69 oz/ton Ag, 40.3% Pb, 3.45% Zn, 6130 ppm Cu, 283 ppm Sb. Ag:Pb ratio = 1:4.6

#JLR-2 Same sample type as JLR-1, grab sample from another old trench located 5 meters south. 8.31 oz/ton Ag, 41.2% Pb, 7008 ppm Zn, 5340 ppm Cu, 293 ppm Sb. Ag:Pb ratio = 1:4.9

#JLR-3 Same sample type as JLR-1&2, grab sample from subcrop in old diggings about 25 meters south of the old trenches. 8.58 oz/ton Ag, 45.5% Pb, 11894 ppm Zn, 967 ppm Cu, 384ppm Sb Ag:Pb ratio = 1:5.3

<u>Camp Fault Zone...cont.</u>

#JLR-4 Grab sample of massive, dark sphalerite and lesser galena in veins and wallrock replacements along lamprophyre dikes in the Camp Fault, adjacent to the sedex sulphide layer. Poorly exposed in subcrop and rubble. Other minerals noted include; manganese and iron oxides, hydrozincite, cerrusite, and scattered pyralspite garnets. Non-conductive, Non-magnetic. 7.61 oz/ton Ag, 16.1% Pb, 26.6% Zn, 1503 ppm Cd, 241 ppm Sb. Ag:Pb ratio = 1:2.1

#JLR-5 Grab sample of a narrow 10 cm. contact zone between a lamprophyre dike and a 1.5 meter wide barren quartz-breccia vein. Minerals noted include; small stringers of galena, green mariposite-fuchsite mica, quartz, ankerite, calcite, manganese and iron oxides in a grey to black silicified rock. Located on the Camp Fault, N-S strike dipping east. Non-conductive, non-magnetic. 8.7 ppm Ag, 7339 ppm Pb, 947 ppm Zn. Ag:Pb ratio = 1:2.9

#JLR-6 Grab sample of a 1 meter wide mineralized alteration zone along the edge of a lamprophyre dike 10 meters south of JLR-5. Minor galena and sphalerite with quartz, ankerite, and calcite in a manganese and iron oxide altered silicified wallrock. The Camp Fault cuts quartz-biotite gneiss and quartzite in this area. Non-conductive and non-magnetic. 11.1 ppm Ag, 2.74% Pb, 1581 ppm Zn. Ag:Pb ratio = 1:8.4

Camp Fault Zone...cont.

#JLR-7 Grab sample of a 30 cm. pod of massive coarse galena with quartz, calcite, ankerite, cerrusite, manganese and iron oxides in a NE-striking, steeply dipping conjugate fracture system about 20 meters east of JLR-6. Conductive, non-magnetic. 13.48 oz/ton Ag, 63.4% Pb, 1319 ppm Zn, 381 ppm Sb. Ag:Pb ratio = 1:4.7

#JLR-21 Grab sample of dump rubble and subcrop near an old trench or pit in the marker marble unit adjacent to the Camp Fault. Fine to coarse-grained sheared galena and minor sphalerite, with quartz, calcite, ankerite, cerrusite, iron and manganese oxides in silicified rock. Non-magnetic, partially conductive. 9.98 oz/ton Ag, 48.1% Pb, 7204 ppm Zn, 228 ppm Sb, 226 ppb Au. Ag:Pb ratio = 1:4.8

#JLR-22 Grab sample of dump rubble and subcrop near some old trenches and pits in the marker marble unit about 30 meters east of JLR-21, possibly on a conjugate fracture system. Coarse yellow-green sphalerite and lesser galena in a manganese and iron oxidized silicified wallrock. Nonconductive, non-magnetic. 11.52 oz/ton Ag, 3.37% Pb, 43.4% Zn, 553 ppm Cd. Ag:Pb ratio = 1:0.29

Copeland Extrusive Carbonatite

Grab sample of bedded tuffaceous carbonatite located #JLR-8 about 20 meters north (down section) of the marker marble unit near sample JLR-22. The bedded carbonatite unit may be more than 5 meters in thickness and is of regional extent. Published mineralogy includes; 80-90% calcite, phlogopite, biotite and muscovite micas, apatite, amphibole, plagioclase feldspar, dolomite, sphene, zircon, barite, strontianite, and graphite, with minor pyrrhotite, pyrite, magnetite. ilmenite, chalcopyrite, molybdenite, pyrochlore, allanite, It is noted to carry high contents of La, and monazite. Ce, Nd, Nb, Sr, Ba, Mn and others. Total niobium and rare earth contents may approach 1% combined. Non-conductive, rarely magnetic. ICP- 6.1 ppm Ag, 1773 ppm Pb, 577 ppm Zn, 1622 ppm Ba. REE assays - 69 ppm Y, 348 ppm Ce, 354 ppm La, 628 ppm Nd 231 ppm Tm, 33 ppm Nb.

#JLR-9 Grab sample of a bedded carbonatite pyroclastic breccia near JLR-8, same mineralogy. The clasts are up to 30 cm. in size and are composed of albitite with biotite and phlogopite micas. Samples of the tuff, breccia, and clasts have been sent to Victoria for positive identification. ICP - 5.6 ppm Ag, 1825 ppm Pb, 136 ppm Zn, 2198 ppm Ba. REE assays - 84 ppm Y, 527 ppm Ce, 491 ppm La, 1209 ppm Nd, 626 ppm Tm, 115 ppm Gd, 112 ppm Sc, 72 ppm Nb.

North West Limb - Lake Zone

#JLR-10 Grab sample from the west end of the Lake Zone, a 30-50 cm. thick extension of the sedex sulphide horizon, which is continously exposed for more than 400 meters in length. Host rock is a calc-silicate marble layer in grey micaceous porphroblastic shist. The marble layer contains pinkish-orange pyralspite garnets, quartz, calcite, ankerite, and a gemmy green silicate mineral which may be tourmaline or chrome diopside. A specimen has been sent to Victoria for identification. Sulphide mineralization includes; galena, sphalerite and greenockite, with cerrusite, hydrozincite, manganese and iron oxide alterations. Non-conductive and non-magnetic. 9.48 oz/ton Ag, 18.6% Pb, 14.75% Zn, 690ppm Cd 320 ppm Sb. Ag:Pb ratio = 1:1.96

#JLR-11 Same sample type as JLR-10, located about 20 meters west, near a lamprophyre dike swarm and ankerite stockwork. 10.44 oz/ton Ag, 25.2% Pb, 15.2% Zn, 898 ppm Cd, 338 ppm Sb. Ag:Pb ratio = 1:2.4

#JLR-12 Same sample type as previous samples, located about midway along the exposed layer. The mineralized layer is distinctly banded in this area. 3.49 oz/ton Ag, 9.68% Pb, 22.1% Zn, 1055 ppm Cd, 168 ppm Sb. Ag:Pb ratio = 1:2.8

#JLR-13 Same sample type as previous samples, located at the east end of the exposed layer, adjacent to the Lake Fault. 3.5 oz/ton Ag, 11.3% Pb, 19.5% Zn, 773 ppm Cd, 149 ppm Sb. Ag:Pb ratio = 1:3.23

South Limb - Cliff Zone

#JLR-14 Grab sample from a ±1 meter thick layer at the base of the over-turned Cliff Zone sedex ore horizon. The sulphide layer is hosted in a contorted calc-silicate marble layer in grey shists and gneiss, with a total thickness of 3-5 meters. Galena, sphalerite, pyrite, pyrrhotite, minor chalcopyrite, quartz, and possibly barite are concentrated near the base; the central ore section consists of massive pyrrhotite with lesser galena, sphalerite, pyrite, chalcopyrite, and watery grey quartz eyes; and an erratic silica cap of quartz and pyrite, with lesser pyrrhotite, galena, and sphalerite. Alteration is to manganese and iron oxides. Conductive and magnetic. 7.0 oz/ton Ag, 19.7% Pb, 15.45% Zn, 344 ppm Cd, 236 ppm Sb. Ag:Pb ratio = 1:2.8

#JLR-15 Grab sample from the quartz-pyrite rich upper layer on the Cliff ore zone, with lesser pyrrhotite, galena, and sphalerite. Located about 20 meters west of sample JLR-14. Magnetic and conductive. 4 ppm Ag, 2.68% Pb, 5.47% Zn, 139 ppm Cd, 22 ppm Sb. Ag:Pb ratio = 1:22.9

#JLR-16 Float sample of minor disseminated chalcopyrite, malachite, and iron oxide in quartz and calc-silicate marble. The host rock was found in place but is unmineralized where located. The calc-silicate band is located perhaps 50 meters up-section from the Cliff ore zone and is very similar to the ore host. Non-magnetic, non-conductive. 3189 ppm Cu.

North East Limb

#JLR-17 Mixed grab sample from an old shallow adit on the sedex horizon, with three parallel sulphide layers up to 50 cm. thick, in several meters of calc-silicate marble and shist. The mineralization includes; galena, sphalerite and pyrrhotite, with quartz, calcite, possibly barite, iron and manganese oxides. Magnetic and conductive. 82 ppm Ag, 21.68% Pb, 5.47% Zn, 328 ppm Sb. Ag:Pb ratio = 1:9.1

#JLR-18 Grab sample from the sedex layer about 150 meters west of the adit. Up to 50 cm. thick layer of massive grey barite with finely disseminated galena in a calc-silicate marble and grey shist. Minor iron and manganese alteration. Non-magnetic, non-conductive. 88 ppm Ag, 12.7% Pb, 1555 ppm Zn, 409 ppm Sb, 37.8% Ba. Ag:Pb ratio = 1:4.96

#JLR-19 Waterfall Fault Zone. Grab sample of fine to coarse grained sheared galena, 25 cm. maximum width, occurring as a bedding plane replacement in the marker marble unit adjacent to the poorly exposed Waterfall Fault. Alteration includes cerrusite and bindheimite (Sb oxide), and minor manganese and iron oxides. Strong manganese alteration and disseminated galena was noted near the fault. Conductive and non-magnetic. 19.4 oz/ton Ag, 75.5% Pb, 759 ppm Zn, 380 ppm Sb. Ag:Pb ratio = 1:3.89

North East Limb...cont.

#JLR-20 Grab sample of the sedex horizon near the Waterfall Fault, with up to 1 meter of massive, dark sphalerite in calc-silicate shist. Non-magnetic, non-conductive. 19 ppm Ag, 8042 ppm Pb, 46.3% Zn, 2401 ppm Cd. Ag:Pb ratio = 1:1.45

North Copeland Ridge

#JLR-23 Grab sample from a silicified shear zone trending N-S dipping east, exposed for about 5 meters in width and 50 meters in length along a creek. The silicified zone contains disseminated pyrite and narrow quartz veins with pyrite and some arsenopyrite. Iron and manganese altered. Non-magnetic, non-conductive. 892 ppb Au, 12.4 ppm Ag, 2512 ppm Pb, 900 ppm Zn, 420 ppm Cd, 25196 ppm As.

#JLR-24 Grab sample of a silicified, pyritized 1-3 meter wide shear zone along a creek. Iron and manganese altered. Non-conductive, non-magnetic. 4.5 ppm Ag, 1016 ppm Pb, 2296 ppm Zn, 568 ppm As.

West Zone

#JLR-25 Grab sample of the sedex horizon at the western end of the syncline, 2-4 meters thick with galena, sphalerite, barite, pyrite and pyrrhotite, with quartz and calcite in a contorted calc-silicate marble layer. Iron and manganese altered. Magnetic, conductive. 89 ppm Ag, 15% Pb, 2.43% Zn, 23% Ba, 149 ppm Sb. Ag:Pb ratio = 1:5.7

North East Limb

#RMR-1 Grab sample of medium to coarse grained galena, hosted in an impure marble occurring in a north/south trending fault zone. The sample showed minor cerrusite and strong manganese alteration. Sample was obtained from subcrop. 50.7 ppm Ag, 12.10% Pb, 523 ppm Zn Ag:Pb ratio = 1:8.12

#RMR-2 Grab sample of a siliceous horizon immediately overlying the 0.50 meter Pb-Zn layer. Sample contained fine to medium grained galena, with disseminated pyrite and pyrrhotite. 17.3 ppm Ag, 3.51% Pb, 2584 ppm Zn Ag:Pb ratio = 1:7.00

#RMR-3 Grab sample in the Pb-Zn layer. Sample showed pyrite, sphalerite, quartz with lesser pyrrhotite and galena. Heavy manganese and iron staining. RMR-3 taken 2 meters east of sample RMR-2. 8.3 ppm Ag, 5303 ppm Pb, and 4.97% Zn. Ag:Pb ratio = 1:2.05

North Copeland Ridge

#RMS-4 Silt sample of a stream in a north/south trending fault on the south facing slope of a ridge north of Copeland Creek. The silt was taken at an altitude of 4300 feet and at a bearing of 217 degrees from the lake in the valley.

#RMS-5 Silt sample from the same creek at an altitude of 4500 feet.

#RMR-6 Grab sample of a quartz vein occurring in a fault that strikes 003 degrees and dips 55 degrees to the east. Quartz contained very fine grained disseminated sulphides. The exposed cross section of the vein measured 3 feet by 1 foot. The sample site was located at an elevation of 4820 feet on a west branch of the creek mentioned in RMS-4.

#RMR-7 Grab sample of hanging wall rock of fault described in RMR-6. Sample is of silicified grey green gneiss with 2% disseminated sulphides. Sample site is same location as RMR-6.

Camp Fault Zone

#RMR-8 Grab sample of fault gouge taken in Camp Fault on the north facing slope of Mount Copeland at an elevation of 6300 feet. Sample was a limonitic stained, kaolinite altered siliceous dyke rock with quartz stringers parrallel to the fault. Fault orientation is 010 degrees with a 63 degree dip to the east.

•

•

.

.

۰.

٠

APPENDIX II

SAMPLE RESULTS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

0V-1454-RA2

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

Company:	EQUINOX RES/LAIRD EXPL.
Project:	237 JORDAN RIVER
Attn:	R.BEATY/J.LAIRD

Date: SEP-20-90 Copy 1. EQUINOX RESOURCES, VANCOUVER, B.C. 2. LAIRD EXPL., NORTH VANCOUVER, B.C.

He hereby certify the following Assay of 19 ROCK samples submitted SEP-14-90 by J.LAIRD.

Sample Number	AG g/tonne	AG oz/ton	FB %	ZN %	
JLR 01		8.69	40.30	 7 45	
JLR 02	285.0	8.31	41.20	0.00	
JLR 03	294.0	8.58	45.50		
JLR 04	261.0	7.61	16.10	26.60	
JLR 06			2.74		
JLR 07	462.0	13.48	 63.40		
JLR 10	325.0	9.48	18.60	14.75	
JLR 11	358.0	10.44	25.20	15.20	
JLR 12	119.5	3.49	9.68	22.10	
JLR 13	120.0	3.50	11.30	19.50	
JLR 14	240.0	7.00	19.70	15.45	
JLR 15			2.68	5.47	
JLR 17			21.68	5.47	
JLR 18			12.70		
JLR 19	665.0	19.40	75.50		
JLR 20				46.30	
JLR 21	342.0	9.98	48.10		
JLR 22	395.0	11.52	3.37	43.40	
JLR 25			15.00	2.43	

Certified by

MIN-EN LABORATORIES

PROJ: 237 J	ORDAN RI	IVER								705	; WEST	15TH	ST., NC	JRTH	VANCOU	IVER, E	.c.	V7M 1	12										D	ATE:	90/09/	20
ATTN: R.BEA	TY/J.LAI	RD										(604)	980-581	4 OR	(604)	988-45	24											* R	OCK	* (ACT: F3	1)
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	B1 PPM	CA PPM	CD PP m	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM I	U PPM	V PPM	ZN PPM	GA PPM	SN PPM 1	W PPM P	CR AU	
JLR 01 JLR 02 JLR 03 JLR 04 JLR 05	218.1 232.4 290.1 255.2 8.7	760, 970 310 4910 6620	1 1 90 3	6 5 1 25 1	70 84 87 105 1492	.1 .1 .7 2.8	2 3 5 10 2	800 430 310 5550 55830	97.5 32.1 58.9 1503.0 2.4	17 15 9 19 19	6130 5340 967 55 37	126840 136120 55730 48680 44750	600 690 150 1030 4010	1 1 3 5	1060 830 380 2320 28230	27477 29528 15114 2466 4300	3 1 13 23 1	10 10 10 60 70	32 38 22 8 25	90 160 170 430 7490	53224 52646 61223 54564 7339	283 293 384 241 14	34 22 27 44 649	1 1 1 1	1 1 1 1 1 1 4 6	2.6 2.6 5.5 0.2 50.5	20745 7008 11894 199591 947	1 1 1 1	22263	1 1 2 1	1 57 1 38 9 20 2 144 44 18	
JLR 06 JLR 07 JLR 08 JLR 09 JLR 10	11.1 396.2 6.1 5.6 306.6	2630 420 12290 18690 26690	1 132 39 1 37	1 1 1 12	98 53 1622 2198 215	.1 .1 1.4 .1 .5	43559	15780 17490 77580 73170 15720	7.7 18.2 .8 .1 689.9	18 8 10 11 15	14 12 18 13 86	60670 40870 22560 29400 30820	2220 280 10150 10150 3270	1 18 34 11	5030 2510 22460 27420 6660	14705 10003 423 2175 1466	10 4 2 3 16	10 10 1380 1770 370	55 34 12 18 17	340 90 400 1600 380	19268 58591 1773 1825 56570	25 381 1 320	19 44 153 899 37	1 1 1 1	1 1 1 4 7 6 4 1 2	9.1 5.7 6.0 4.8 5.3	1585 1319 577 136 112296	1 1 5 1	2 2 1 2 3	1 1 1 1	48 1 1 29 49 4 51 7 47 130	
JLR 11 JLR 12 JLR 13 JLR 14 JLR 15	332.3 120.6 116.8 206.2 4.0	8890 15780 25850 810 680	79 66 65 162 28	13 22 16 16 7	162 204 227 25 33	1.4 .2 .6 .8	8 9 7 1	4360 14420 21340 2230 450	898.3 1055.2 773.2 344.0 139.2	22 17 17 33 19	302 152 50 36 110	41820 44540 35440 106990 133760	1550 1460 2820 330 140	8 5 7 1	6500 4700 6420 870 230	1203 3184 1857 615 141	17 19 17 16 4	20 550 260 10 10	18 18 15 1	430 470 320 320 80	60972 57150 58039 51148 17663	338 168 149 236 22	32 46 48 20 10	1 1 1 1	1 1 1 1 1 1 1 2	6.9 6.7 6.8 4.7 4.8	122601 171665 135167 131186 50404	1 1 1 1	4 4 4 3	1 1 1 1	18 78 40 74 38 70 1 51 17 12	
JLR 16 JLR 17 JLR 18 JLR 19 JLR 20	1.8 81.8 87.8 614.3 19.0	550 6420 670 90 230	40 7 70 47 73	1 10 1 1 48	8 117 202 43 84	.1 .1 .2 .1 .5	1 2 6 13	100 11310 1170 380 540	1.6 59.3 9.7 13.1 2401.4	9 21 6 1 19	3189 771 319 55 63	13170 152620 15010 7280 60810	190 320 20 30 60	1 1 1 1	60 650 30 50 390	52 1052 51 2678 3813	1 20 5 4 29	10 20 10 10 10	14 1 12 4 7	10 130 60 50 640	608 51228 83813 140445 8042	5 328 409 380 68	1 130 578 67 47	1 1 1 1	1 1 3 1	1.2 1.8 1.8 1.4 2.6	560 56543 1555 759 261971	1 1 1 1	1 5 2 1 5	1 1 1 1 9	57 3 1 30 8 61 6 80 1 80	
JLR 21 JLR 22 JLR 23 JLR 24 JLR 25	322.6 320.0 12.4 4.5 89.4	600 990 960 3020 970	29 48 25156 568 257	1 34 4 1 2	162 198 44 65 84	.1 .1 .1 1.0 .5	64 11 14 4 3	70 860 17230 1860 13130	27.4 553.1 420.5 9.7 65.0	6 19 48 25 18	449 412 60 25 326	56960 45650 153230 54500 62420	240 140 1300 3650 80	1 1 1 1	70 680 4220 210 310	6034 9587 5408 178 387	5 25 1 4	10 10 10 30 10	1 23 1 1 2	180 610 70 960 100	56106 19294 2512 1016 58815	228 89 21 4 149	15 33 33 5 151	1 1 1 1	1 1 1 1	5.6 6.4 3.9 4.0 7.7	7204 220195 900 2296 15078	1 1 1 1	2 5 1 3	1 5 1 1	1 226 2 44 1 892 65 89 19 36	,
												<u>,</u>																				
											<u> </u>			•																		
	-																							<u></u>								
																			<u></u>					· · ·								

COMP: EQUINOX RES/LAIRD EXPL.

MIN-EN LABS - ICP REPORT

FILE NO: OV-1454-RJ1

•

י ו

Attn:

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Geochemical Analysis Certificate</u>

0V-1454-RG2

Company: EQUINOX RES/LAIRD EXPL. Project: 237 JORDAN RIVER

R.BEATY/J.LAIRD

Date: SEP-28-90 Copy 1. EQUINOX RESOURCES, VANCOUVER, B.C. 2. LAIRD EXPL., NORTH VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 2 ROCK samples submitted SEP-14-90 by J.LAIRD.

Sample	Y	CE	EU	LA	ND	TM	6D	SC	DY	ER	HO	NB
Number	PPM	PPN	Ppn	PPH	PPN	PPN	PPN	PPM	PPM	PPN	PPM	PPM
JLR 08	69	348	23	354	628	231	80	68	15	32	7	33
JLR 09	84	527	39	491	1209	626	115	112	37	63	12	72

Certified by

MAN-EN LABORATORIES

COMP: EQUINOX PROJ: 237 JOR ATTN: R.BEATY	(RES/LAIR RDAN RIVER Y/J.LAIRD	D EXPL	•					70	MIN 5 WEST	-EN 15TH (604)	LAB: ST., N 980-58	S	- ICE (ANCOUV) (604)9	RE R, B. 38-452	PORI c. v7M 4	! 1T2							F *	ILE NO D ROCK	: OV-1 ATE: 9 * (A	454-RL1 0/09/28 CT:F26)
SAMPLE	AL203	BA	BE	CAO	co	CR203	сų	FE203	K20	MGO	MNO2	MO	NA20	NB	NI	P205	PB	RB	\$102	SN	SR	T102	V	Ŵ	ZN	ZR
JLR 08 JLR 09	7.75 8.99	.230 .250	.001 3 .001 2	4.22 9.78	.005 .005	.01 .01	.005	3.33 3.77	1.47 1.26	3.96 4.06	.06 .30	.005 .005	3.23 3.64	.01 .01	.005 .005	.01 .23	.190 .140	.13 .07	28.53 26.16	.005 .010	.05 .24	.34 .29	.025 .010	.005 .005	.040 .005	.005 .005
																	- <u>-</u>	<u></u> .								
		<u></u>			4 	<u>, , </u>		<u></u>	<u> , ,</u>														<u></u>			
																			<u> </u>						. <u></u>	
							<u></u>										<u></u>						<u></u> ,	c		

2

`

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

n	17	 ٦.		5	A		T	2	-
U	¥	 т	4	J	4	<u> </u>	ĸ	A	1

Company:	EQUINOX RES/LAIRD EXPL.			Date: SEP-21-90
Project: Attn:	237 JORDAN RIVER R.BEATY/J.LAIRD	Сору	1. i 2. i	EDUINOX RESOURCES, VANCDUVER, B.C. LAIRD EXPL., NORTH VANCOUVER. B.C.
		-		

He hereby certify the following Assay of 2 ROCK samples submitted SEP-14-90 by J.LAIRD.

Sample Number	BA %	
JLR 18 JLR 25	3 7.80 23.00	

Certified by

MIN EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

0V-1455-RA1

Company:	EQUINOX RES./LAIRD EXPL.	Date: SEP-20-90
Project:	237 JORDAN RIVER	Copy 1. EQUINDX RESOURCES, VANCOUVER, B.C.
Attn:	R.BEATY/J.LAIRD	2. LAIRD EXPLORATION, NORTH VAN., B.C.

He hereby certify the following Assay of 3 ROCK samples submitted SEP-14-90 by J.LAIRD.

Sample Number	PB %	ZN %	
RMR 1	12.10		
RMR 2	3.51		
KMR 3		4.97	

Certified by Ammand

ÉIN-EN LABORATORIES

С

COMP: EQUINO PROJ: 237 JOI ATTN: R.BEAT	X RES./I RDAN RIV Y/J.LAIF	LAIRD E VER RD	XPL.							M] 705 W	EN-1 EST 1 (EN L 15TH ST (604)98	ABS ., NOF 0-5814	RTH VA	ICP INCOUVE 604)98	REE R, B.C 38-4524	POR' . v7	F M 1T2	2									FIL * R	E NO: DA OCK *	0V-1 TE: 9 (A	455-RJ 0/09/20 CT:F31;
SAMPLE NUMBER RMR 1 RMR 2 RMR 3 RMR 6 RMR 7 RMR 8	AG PPM 50.7 17.3 8.3 1.3 1.0 2.7	AL PPM 290 28970 3520 2380 2910 5180	AS PPM 1 41 120 132 95 1	B PPM 5 2 12 1 1 1 1	BA PPM 19 199 24 46 69 1880	BE PPM .1 1.6 .1 .9 1.0 3.6	BI PPM 10 4 1 2 1 2	CA PPM 74010 20990 2540 1110 5390 56250	CD PPM .1 .1 31.3 1.6 .1 9.5	CO PPM 11 9 46 7 5 17	CU PPM 13 24 475 8 9 88	FE PPM 102540 43090 244820 24830 23810 39280	K PPM 150 570 800 2820 3320 2970	LI PPM 1 7 2 1 1 4	MG PPM 28620 5310 2390 280 2030 39570	MN PPM 31382 1500 1413 140 560 5092	MO PPM 1 16 2 1 1 1	NA PPM 20 440 10 20 30 30	NI PPM 53 16 1 1 1 47	PPM 190 480 100 550 290 5750	PB PPM 51260 25326 5303 528 572 944	SB PPM 88 131 22 3 2 3	SR PPM 1 68 14 4 6 450	TH PPM F 1 1 2 1 1	U PPM 1 1 1 1 1 1 2 1	V PPM 13.1 46.0 11.7 1.9 2.5 51.0	ZN PPM 523 2584 39231 364 328 1677	GA PPM 1 2 1 1 1 1	SN PPM PI 3 1 5 1 1 2	W CI PM PPI 1 1 1 1 1 6 2 10 1 11	R AU M PPB 1 1 9 54 1 20 6 2 6 4 7 8
										····.																					
																											, . 				
									<u>.</u>					<u></u>													<u></u>			<u> </u>	

· · · ·

OMP: EQUINC ROJ: 237 JC	DX RES./I DRDAN RIV	_AIRD E /ER	EXPL.							M: 705 W	IN- IEST	EN 3 15th s	LABS	3 ORTH \	- IC	PRI	EPO] 3.c. \	RT /714 11	12									FIL	E NO: D/	: OV- Ate:	1455 90/0	-L. 197;
TTN: R.BEAT	Y/J.LAI	05									<u></u>	(604)9	80-58	14 OR	(604)	88-45	524				00	<u> </u>		ти		V	71	• s	ILT *	• •	ACT :	F3
NUMBER	AG PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM		PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PB	PPM	PPM	PPM	PPM	, PPM	PPM	PPM	SN PPM F	PPM F	PM P	PB
RMS 4 RMS 5	2.1	19760 16660	1	2	617 534	.6 .9	6	12500 12470	:1	21 17	59 30	45900 36750	65810 4650	16 13	12870 12360	623 496	1	280 340	57	3060 3370	156 140	1	40 53	1	1	73.2 68.5	165 247	1	1	1	17 19	3 1
	-		<u> </u>										<u> </u>																_			
														<u> </u>	·																	
				*,																	<u></u>				• <u> </u>							
	_					<u></u>							. <u> </u>								<u></u>								·			
														•																		
·																																
							·																									
															¥.							·								-		
																																•
L						•	•					• •					·······					<u> </u>		<u></u>				•				

.

· · · · ·

BIBLIOGRAPHY

- Brown, R.L. (1980): Frenchman Cap Dome, Shuswap Complex, British Columbia, Geol. Surv., Canada, Paper 80-1A, pp. 47-51
- Carne, R.C. and Cathro R.J. (1982): Sedimentry Exhalative (sedex) Zinc-Lead-Silver Deposits, Northern Canadian Cordillera. C.I.M. Bulletin, Vol. 75. No. 840.
- Currie, K.L. (1976): Notes on the Petrology of Nepheline Gneisses near Mount Copeland, British Columbia, Geol. Surv., Canada, Bull. 265, 28pp.
- Fyles, James T. (1970): The Jordan River Area near Revelstroke, British Columbia, B.C. Ministry of Mines and Pet. Res., Bull. 57, 64 pp.
- Hoy, T. (1978): Cottonbelt Lead-Zinc Deposits, B.C. Ministry of Mines and Pet. Res. this volume. (in preparation): Geology of the Goldstream Area, Southeastern B.C., B.C. Ministry of Mines and Pet. Res., Bull. 71 (in preparation).
- Hoy, T., (1979a): Geology of the Estella-Kootenay King Area, Hughes Range, Southeastern B.C., B.C. Ministry of Mines and Pet. Res., Preliminary Map 36.
- Hoy, T. (1987): Geology of the Cottonbelt Lead-Zinc-Magnetite Layer, Carbonatites and Alkalic Rocks in the Mount Grace Area, Frenchman Cap Dome, Southeastern British Columbia, B.C. Ministry of Mines and Pet. Res., Bull. 80.
- Hoy, T. and Kwong, Y.T.J. (1986): The Mount Grace Carbonite-An Nb and Light Rare Earth Element Enriched Marble of Probable Pyroclastic Origin in the Shuswap Complex, Southeastern B.C., Econ. Geol., Vol. 81.
- MacIntyre, D.G. (1982): Geologic Setting of Recently Discovered Stratiform Barite-Sulphide Deposits in Northeast British Columbia, C.I.M. Bulletin, Vol. 75. No. 840.
- McMillan, W.J. (1973): Petrology and Structure of the West Flank, Frenchman's Cap Dome, near Revelstoke, B.C., Geol. Surv., Canada, Paper 71-29.
- McMillan, W.J. and Moore, J.M. (1974): Gneissic Alkalic Rock and Carbonites in Frenchman's Cap Gneiss Dome, Shuswap Complex, B.C., Cdn. Jour. Earth Sci., Vol. 11, pp. 304-318.

- Okulith, A.V., Loveridge, W.D. and Sullivan, R.W. (1981): Preliminary Radiometric Analyses of Zircons from the Mount Copeland Syenite Gneiss, Shuswap Metamorphic Complex, B.C., in Current Research, Part A, Geol. Surv. of Canada, Paper 81-1A, pp 323-330.
- Riley, C. (1961): The River Jordan Lead-Zinc Deposit, Revelstoke Mining Division, B.C., CIMM Trans., Vol. 64 pp. 268-272.
- Wheeler, J.O. (1965): Big Bend Map-Area, British Columbia, Geol. Surv., Canada, Paper 64-32.

