LOG NO: //-21	RD.
ACTION:	
FILE NO:	······································

DIAMOND DRILL REPORT

ON THE

SAWMILL ZONE

Cariboo Mining Division 93 B8

(Latitude 52° 30', Longitude 122° 15')

OWNER AND OPERATOR GIBRALTAR MINES LIMITED McLEESE LAKE, B.C.

Author: Garry D. Bysouth

Submitted: November 14, 1990

Table of Contents

1.	Introd	lucti	o n .		••	••				•		•		•	•••	•	• •	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	1
2.	Miner	al C	laim	s.	••	• •		•••	••	•	•••	•		•	•••		• •	•	•		•	•	• •	•	•	•		•	•	•	•	1
3.	Geolog	gy.		•••	••	••	• •	••	••	٠	• •	•		•	• •	٠	•••	•	•			•	• •	•	•	•			•	•	•	2
4.	Drill F 4.1 3.2 3.3	Prog Obj Res Inte	ram ectiv ults rpret	es atioi	••• •• ••	•••	• • • • • •	• • • • • •	••• •••	•	• •	• • •	••• •••	• • •	• • • •	•	• • • •	•	• • •	• • • •	• • •	•	• •	•	• • •	•	· ·		• • •	• • •	• • •	3 3 3 4
4.	Staten	nent	of E	lxpe	ndi	ture	es	••	• •	•		•	• •	•		•	•••	٠	•			•	• •	٠	•	•		•	•	•	•	5
5.	Conclu	usior	1 S		• •	• •				•	••	•		•		•	•••	•	•	••	•	•	• •		•	•		•	•	•	•	5
7.	Biblio	grap	hy.	· · ·	•••	• •	• •		•••	•		•		•		•	• •				•	•	• •	•	•	•		•	•	•	•	6
APPE	NDICE	ES.			• •	•••	• •	•••	•••	•	•••	•	•••	•		٠							• •	•	•	•			•	•	•	7
APPE	NDIX 1	1. §	tater	men	t of	Qı	uali	ific	ati	on	s	•			• •	•	••	•	•			•	• •	•	•	•			•	•	•	8
APPE	NDIX 1	II.]	List	of A	bbi	revi	iati	on	S .		••	•		•		•	•••		•	•••		•			•	•		•	•	•	•	9
APPE	NDIX I	III.	Dril	l Lo	gs.	•				•	••	•		•	••	•			•	••	•	•	• •			•		•	•	•	•	10
FIGU	RES:																															
Figure	e 1.	Are	a Lo	cati	on	Ma	p.	•			•	•••	••	•	••			•		•	•		•			• •	•	•	(Ir	1	Tex	(t)
Figure	e 2.	Dri	il Ho	ole I	-008	atio	n N	Ma	р.	• •		•	•••	•	•••	•	• •	•••	•		•	•	•	••	•	•	. (In	F	' 0	cke	t)
Figure	e 3.	Saw	mill	Gr	oup	Cl	ain	n N	/ laj	p.	•••	٠		•	• •	• •	•				•	•	٠	••			. ((In	F	' 0	cke	t)

1. Introduction

The Sawmill Group lies about 4.0 miles (6.44 km.) south of the Gibraltar Mines concentrator, along the southern flank of Granite Mountain at approximately the 3500-foot (1067 m.) elevation. Access is via a network of old logging roads which link the property to the paved road leading to Gibraltar Mines. General location of the claims is shown in Figure 1.

The first claims of the Sawmill Group were staked in 1978 to cover a large I.P. anomaly and several older copper prospects. Of the prospects, the most important was the Iron Mountain property on which the first recorded work dates back to 1925. The chief focus of work for Gibraltar Mines was the I.P. anomaly which was located west of Iron Mountain over an area of very limited rock exposure. The anomaly had been outlined in 1978 and was attributed to a graphitic source rather than sulphide mineralization. Diamond drilling in 1979 by Gibraltar Mines however, revealed that extensive pyrite and chalcopyrite mineralization occurred within the I.P. zone, and by 1981, approximately 30 million tons of open pit inventory had been outlined, which graded at 0.28% total copper and 0.022% molybdenite. More diamond drilling and I.P. surveys followed from 1982 to 1986, but little change was made in the inventory. Most of the above work is covered in Minister of Mines Reports and assessment reports. (See attached bibliography).

This report covers a diamond drill program conducted in 1990 within the Sawmill Zone. Four vertical N.Q. diamond drill holes, totalling 2,455 feet (748.28 meters) were completed. Drilling was done by L. D. S. Diamond Drilling Ltd. of Site 5, Comp. 13, R.R.#2, Kamloops, British Columbia during the period June 5, 1990 to June 22, 1990. The whole core was assayed except for a two-inch segment per ten-foot section which was retained and stored at Gibraltar Mines.

2. Mineral Claims

The mineral claims of the Sawmill Group are shown in Figure 3 (in pocket). Information on these claims is tabulated below:

CLAIM NAME	RECORD NO.	NO. OF UNITS	ANNIVERSARY DATE
Tim 1	815	2	28 Aug 78
Cole 1	816	9	28 Aug 78
Geoff 1	1009	9	29 May 79
Ryan 1	1048	1	26 Jul 79
Aaron 1	1049	1	26 Jul 79
Doug 1	1047	3	26 Jul 79
Brent 1	1330	6	14 Nov 79
Barb l	1329	12	14 Nov 79
Janis 1	1331	3	14 Nov 79
Kate 1	3799	12	29 Jun 81
WD 1	3800	6	29 Jun 81
Bruce 1	3801	12	29 Jun 81
Paul 1	3802	12	29 Jun 81

3. Geology

The Sawmill covers a broad contact zone formed between the Permian Cache Creek Group and the Upper Triassic Granite Mountain pluton. Within the claim area, the Cache Creek Group consists of volcanic flows, tuffs, breccia and sediments mainly of andesitic to dacitic composition, with minor interbeds of graphitic schist and impure limestone. These rocks have been regionally metamorphosed to the Greenschist Facies and have undergone a much higher grade of metamorphism along the contacts of the Granite Mountain pluton. The plutonic rocks underlying the Sawmill Group consist mainly of diorites of variable texture and composition which have been collectively referred to as the Border Phase As the name implies, an assimilative origin is assumed for these rocks. Diorite. The actual contact zone, which is about a mile wide, consists of a bewildering array of dioritic rocks and recrystallized andesitic and dacitic rocks of the Cache Creek Group, all having a similar composition and texture. To add to this complexity, two other plutonic rock types have been recognized along the northwestern side of the claim group. One is a white quartz porphyry which has been interpreted to be a hypabyssal intrusion related to some period of acidic vulcanism. It forms a small body along the northeast side of the Sawmill ore zone, and also occurs as small dykes scattered throughout the property. The other is a quartz diorite which forms a large body along the northern edge of the deposit. correlative with the Mine Phase Quartz Diorite which is the host rock for the Gibraltar ore body, and is of particular interest because it is closely associated with the best grade mineralization of the Sawmill ore zone.

A large pyrite zone has been outlined within the Sawmill Group. It covers all rock types but appears strongest along the Cache Creek side of the contact. Chalcopyrite and molybdenite occur throughout the pyrite zone and in a general way the copper and molybdenite grades increase as pyrite concentrations decrease. In the Sawmill ore zone, which is located along the northwestern edge of the pyrite zone, the best grade ore occurs when the pyrite concentrations decrease to below three percent. This figure is taken as the boundaries of the pyrite zone.

The ore and gangue mineralogy of the Sawmill ore zone is very similar to that of the Gibraltar deposits. Pyrite, chalcopyrite and molybdenite occur in veins and shears accompanied by various combinations and concentrations of quartz, chlorite, carbonate, sericite and epidote. There is however, one ore type not found at Gibraltar. This has been referred to as a quartz-gypsum zone which is characterized by gypsum veins and often strong chalcopyrite mineralization accompanied by minor bornite. Pyrite is invariably weak or absent, and the zone is interpreted to represent the extreme low sulphide end of the pyrite-chalcopyrite zoning system.

Structural controls have not yet been worked out for the Sawmill ore zone. Much of the ore is confined to westerly and northwesterly striking shear zones which dip southerly, but the gross configuration of rock units and ore types also suggest fold structures have been operative. In a general way, the ore zone lies along the contact formed between the Mine Phase Quartz Diorite and the older rocks. The ore is not confined to any one rock type but is best developed in the Mine Phase and weakest in the Quartz Porphyry. The Sawmill ore zone is cut off towards the northwest by a large fault system which has been referred to as the West Boundary Fault. This fault is considered to be a wide complex north trending system with numerous individual zones separating wedges and blocks of displaced rock.

4. Drill Program

4.1 Objectives

Each drill hole of the program had separate objectives:

- 1. Drill Hole E90-1 was located east of the ore zone to test an outlying I.P. anomaly.
- 2. Drill hole E90-2 was located east of the ore zone to test the grade and thickness of a quartz-porphyry body.
- 3. Drill hole E90-10 was positioned along the southwest flank of the ore zone to provide further ore definition.
- 4. Drill hole E90-11 was located northwest of hole E90-1 to test for any possible connection between the main ore zone and ore outlined in hole E90-1.

3.2 Results

The drill hole locations are shown in Figure 2. Drill sites were located by hip chain and compass from surveyed control points. Drill holes E90-1, E90-2 and E90-11 were on the Cole 1 Mineral Claim. Drill hole E90-10 was on the Aaron 1 Mineral Claim. Drill logs are included in the pocket of this report. All copper concentrations reported here and in the logs are for total copper. All molybdenum reported is MoS_2 . All pyrite concentrations are visual estimates. An outline of pertinent results is provided in the following table and descriptions.

Hole No.	Collar Elev.	Depth	Casing	Ore Inte From	rsection To	Width	%TCu	%MoS₂
E90-1	2973′	644′	22'	450'	570'	120′	0.24	0.006
E90-2	3081′	707'	821	01	0'	-	-	-
E90-10	2906′	502'	70′	70 ′	250'	180'	0.25	0.016
E90-11	2962'	602'	22'	380'	530'	150'	0.19	0.007

Core is sampled in 10-foot (3.048m.) sections, crushed and passed through a Jones Splitter. The product is pulverized to minus 100 mesh and rolled. A 1/2 gram sample is weighed out and digested in a mixture of Potassium Chlorate, Nitric Acid, and Sulphuric Acid for a period of 30 minutes. Following digestion, each sample is bulked to 10% HCl and assayed in a Perkin Elmer 3030 Atomic Absorption Sectrophotometer.

Drill hole E90-1 was confined entirely to metavolcanic rocks of the Cache Creek Group. A 10-foot scarn zone carrying about 25% combined pyrite and magnetite, and .35% copper was intersected at 170-feet. The scarn was contained within an unusually barren host rock. A second scarn was intersected at 280-feet which also marked the beginning of weak pyrite and chalcopyrite mineralization. The top of the ore zone and the main concentration of pyrite was intersected at 450-feet. At 570-feet both the pyrite and chalcopyrite showed an abrupt decrease in concentration.

Drill hole E90-2 was confined entirely to a white barren quartz porphyry. The hole was assayed down to 260-feet without any ore grade copper or molybdenite being encountered - the remainder of the hole appeared equally barren. Weak pyrite mineralization was noted throughout the hole, either as disseminated grains, or as a common constituent of quartz veins.

Drill hole E90-10 intersected Border Phase Diorite throughout its length. An ore zone, associated with about 3.0% pyrite, was encountered directly beneath the overburden cover and traced to a depth of 250-feet. Weak pyrite and chalcopyrite mineralization underlies the ore zone to a depth of at least 500-feet.

Drill hole E90-11 went through a metavolcanic sequence down to 358-feet, followed by Border Phase Diorite from 358-feet to the end of the hole at 602-feet. A ten-foot scarn zone containing about 4.0% sulfides and grading at .20% copper was encountered at 108feet. The main pyrite and chalcopyrite concentration however, was found to begin at the Border Phase contact and to extend to about 550-feet.

3.3 Interpretation

The Sawmill copper-molybdenum mineralization is related to a large pyrite zone which can be outlined by a 3.0% pyrite concentration contour. Drill hole E90-1 intersected the pyrite zone at a depth of 450-feet, and hole E90-11, which was collared at a similar elevation, intersected the same zone at 370-feet. In both cases, a significant width of ore grade mineralization was found which was contained entirely within the pyrite zone. These holes confirm an earlier interpretation which suggested the southeast flank of the pyrite zone plunged to the southeast at about 30- to 40- degrees. Of interest also, are the scarn zones intersected in each hole. These are interpreted as bands of reactive rock which had trapped copper mineralization under temperature and pressure conditions not otherwise conducive to copper concentration. From a prospecting viewpoint, the scarns may be considered outliers of more extensive mineralization.

Drill hole E90-10 was collared over an area of projected mineralization. A 180-foot section of near surface ore was encountered which generally confirms this projection, however, only the bottom part of the system appears to be present. That is, in this area, the upper portion of the ore is accompanied by heavy pyrite mineralization which was not intersected in the hole. The pyrite content encountered was about 3.0% which is normal

for the lower part of the ore body.

Drill hole E90-2 provided some change to the geological model of the Sawmill Zone. The length of the quartz porphyry encountered was more than expected, which suggests the body has either a steeper dip or greater thickness than originally predicted.

4. Statement of Expenditures

1990 Diamond Drill Program, Sawmill Group

Site Preparation Costs 1. Duckworth Lake Logging Ltd. \$375.00 D8 Cat Bulldozer, 3 hrs. @ \$125. per hr. 2. Diamond Drill Costs LDS Diamond Drilling Ltd. 748.28m. of drilling at \$38.04 per meter 28,464.57 3. Personnel Costs 1. Field Work G. Barker, May 2 - June 22, 1990 26 hrs. @ \$27.38 per hour \$711.88 2. Supervision and Core Logging G. Bysouth, April 30 - June 29, 1990 68 hrs. @ \$38.54 2,620.72 3,332.60 \$32,172.17

5. Conclusions

The near surface ore outlined by drill hole E90-10 will cause a small increase in ore reserves. The ore encountered in drill holes E90-1 and E90-11 is too deep to be included in a mineable reserve. In general, this drilling program has not changed the mining feasibility of the Sawmill Zone.

G. D. Bysouth Senior Geologist

5

7. Bibliography

B. C. Minister of Mines Annual Report

 1925, pp. 156
 1956, pp. 33
 1957, pp. 16
 1972, pp. 135

2. Assessment Reports - Gibraltar Mines Limited, Cariboo Mining Division

- (1) Bysouth, G. D., Diamond Drill Report on the Cole Claim, August, 1979.
- (2) Bysouth, G. D., Diamond Drill Report on the Cole Claim, April, 1980.
- (3) Bysouth, G. D., Diamond Drill Report on the Ross Group, November, 1980.
- (4) Walcott and Associates Limited, A Report on an Induced Polarization Survey, Sawmill Claims, February, 1982.
- 5) Bysouth, G. D., Diamond Drill Report on the Sawmill Zone, February, 1987.

APPENDICES

.

APPENDIX 1. Statement of Qualifications

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally logged the core and assessed the results of this drill program.

Sang Byrout

Garry D. Bysouth

APPENDIX II. List of Abbreviations

ank
bo
cal
carb carbonate
chl
cp chalcopyrite
dissem
epepidote
foln
gg gouge
gm
gyp
hem
lim limonite
mal
mag magnetite
py pyrite
qtz quartz
rx
ser sericite
str strong
stkwk
wk
Wt. Q.D White Quartz Diorite = Leucocratic Phase

APPENDIX III. Drill Logs.

•

.

.

æ

	0							0								0		
						GIBR	ALT	AR MINES		: AITED			ł	HOLE	NO.	<u> </u>	90-1 OF _!!	
LOCA	TION	APED THE 5 1990		BEA	RIN	G		LATITUDE .	3162	ON Chainstein ins	CORE	SIZE	<u>N.</u>	Q.W. L	OGGE	D BY.	G. Byso	U
DATE	COM	PLETED June 7. 19	10		GIH	- 90°	T	ELEVATION	29	72 } tapo map	REMA	E OF	LOG _	$L = 10^{-1}$	DATE _	June	1990	0
DAIL	UUM		2	GR/	APHI	d., .			Est	BOTTOM DEPTHS		INNO.		A	SSAY F	RESULTS	S S S S S S S S S S S S S S S S S S S	0.2
ters	ţ	AND	ATION	Luo	.0G	veins < to	of		%	LEACH CAP LIM. ZONE 88'	Footoge	Estimated	ROD	SAMPLE	%	%	Estin	Ima
W M	> Fee	ALTERATION	< TC	Follat	Foota	Core Axis	Vein	Mineralization	Py	Remarks	Blocks	Recovery	1	NUMBER	Cu	Мо	Gra	ade
3.05	10	Casing To 22' - <u>META ANDESITE ?</u> (22'- 97') -resembles a foliated Fine-med gra diorite	To Mod	5 - 18 60 0 S	20	70-8*×6 90 5*	X-Y_=6 6* 14*	qta-carb e s qta-carb qta-carb	0	limanite very wk. to 88'- mainly oxid. ferrous carb.	22	8¤ ,-		59776	2.01	.001	4	A5
6.10	20	mainly a dark green - Foliated fine - med gri rock with alternating bands, lamme and wisps of dark chipler and light plag-gts.	80 Mart		40		10'	some of inch glz-carb in places by reant glz- carb	4.5	" this interval (22-97) prob. is a carbonate altal barren shaar zone (dark alta) cutting a source secure	37	95		59926	2.01	.col	. •	0
9.14	30	- Carb (ankenter) occurs throughout the rock as vendets and seas - the carb, oridises to a cleep brown - the rock is gen soft (550)	65 Mot		-6-10-1-1		s' '	iner qts-earb (mag) broken qts ((carb)) ven	Z.5	of meta-volcanics	17	85		59927	-01	.002	. 0	>5
12 10	40	- the rock is cut by numerous light colored some - mainly gtz-carb- - spar ± minor py, mag. and rore sphal. - note that feldspars	Bo VJK.		60		5	pale gray alsocarboseur pale gray alsocarboseur	×.5		\$7	80		59928	101	1001	.0	23
_12,13	_40	may be barb-chi shear bone cuttors normal shear att c ret	70 Nod	1	1	4-10-	7 ²	pair group at seast - space group with a confection and min. dissert may Its	4.5		67	90		59929	2148	.001		25

								.0								0	
			1			GIBI	≺ALT	AR MINES	LIN	AITED		1	H	HOLE	NO. NO.	<u> </u>	= <u>_1(</u>
S		ROCK TYPES	CORE	GR.	APH _OG	Vein	s Width		Est %	LEACH CAP	Footone	Estimated	1	SAMPLE	SSAY I	RESULTS	
o Mete	Feet	ALTERATION	< TO FOLIA	Alteratio	Tootag	Core Axis	Vein	Mineralization	Py	Remarks	Blocks	Core Recovery	R.Q.D.	NUMBER	Cu	Mo	Grade
_3.05	_10		20 -45 Str Cren	NUMBER OF	30	70	K X	$q t_{3-} c h (q r)$ $q t_{3-} c (q - q r)$	4.5			? 5		59930	2.01	< -007	.05
6.10	20		Sa Mad	-a -	6.	\$0	5'	pale grey of 3-ser-carb zone with v 1-3-/schi- and brown carb.	46		67	100		59931	.01	1001	.05
LB.10	20	META JOI CANIC	GO Mod	1111 CARDONALA	10	10 10 10	Ц»с Уз ЗХ++	carb-py ez gts-carb-py-cphal* gtz-ep-poidmonthte	4.5	* resinose orange-yellow Mineral	97	18		59932	101	1001	. 05
_9.14	-00- -	SEQUENCE (97-260)- a complex unit of variable texture and composition but many of chartic composition	No.	*	100	10 10 50 10	2.7£" Yz. 2." 2."	95 qts qts-carb	<.5		107	98		59933	101	· ct 2	.05
15.24	50	- 140-45 0/5 ragged chingraws - 50 Save plag.	ND		20	5t 90	8 "	chl-ep-qt3	<i>د</i> .ع		7	100		59934	·c/	1001	.05
		Another variation is a play porp. with 30% another sais play up to 1%" dia is a finer					5'	dts-chi-ch-beit (bu)*	2.5	* approxision	121	વેદ		51935	1.07	n.2	-01

	C								0								0	
						(GIBH	KALT	AR MINES	LIN	MITED			ł	HOLE	NO.	E 90-1	
		ROCK TYPES	ORE	GF	RAPI	HIC	Veins	Width		Est	BOTTOM DEPTHS	1			SHEET A	NO.	RESULTS	OF
leters	eet	AND	TO CO	ation	Loge to t	oture	< to Core	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%	Estimo
0.00	0	ALTERATION	VG	Follo	Foo	sta	Axis	Vein		Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grade
3.05	10	the Meta anderte unit of 22'-97' may be a carb alta shear zone cutting this zone. Typical chicritic rxs occur which	80 WK		140	Y	40† 76	Y3+Y1	gts-ep xz	2.5		137	95		59936	.03	· 00 Z	.0
6 10		likely are not a plutonic nools but nather a recrystallized. Scauses of volcanics and volcano classic sedentits of pred. diaritic ar	ga WL		140	ų	50	8 4	chl-sb-bi	0.5		147	45		59937	+0Z	1002	.05
_6.10	0		ық		150		20-60	28.*	αδ-cµi - 4↓7 - 6λ ((cb))	0.5		157	95		59938	.02	1002	.05
_9.14	_30.		нр		165	1	30? 30	6 ['] 172 ⁻	ep-pied-gavnet scarn ats	×.5		167	98		59939	·c1	·cc1	.05
12.19	_40		ND		170	6 10 10 10	557	12'	ep-pied-gamet-shi-py- mag (cp) scarn	10 0/2 97 -10-15 +/2		רדי	98		59940	.35	1002	.20
15.74	50		7.5 1416		150		15	7'	chi-ep-912 (pu)	0.5		187	36	-	54/347	·c2	100.24	.08

	0								0								0		
							GIBr	ALT	AR MINES	LIN	NITED			ł	HOLE	NO. NO.	<u>E 90-1</u> +	OF	- 1/
ι β		ROCK TYPES	CORE	NOI	RAF	PHIC	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		Estimated		A	SSAY F	RESULT	5	
Meter	Feet	AND	10	OLIAT	eration	otoge	< to Core	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%		Estimo
_3.05	10		111111 14	0 19	20	20				<.s		197	78		59942	2:01	1001		
_6.10	_20		N0		210	. 14	ŝ	(o ⁺⁺	9/3-chi-ep ((ep))	<.5		207	105		59943	.06	+601		.01
_9.14	_30_		3	D	22	11111	4= ?	2' 1% 2'	chi-ep zone ep.p.ed(py)((cp)) chi-ep-atz7.carc (py)	015		211	38		59344	10 S	1001		, 0.6
_12.19	_40		N 11111	>	234	0		7'	mattled ep. exi some -poss an altic vole. bx	0.5		227	93		59945	151	1002		.05
15.24	50				24	1 11	98 er.	2,4 t 4	gizocaru gtz-caru xz	<.5		227	95		59944	101	жсу		05
18 20	60		1111111					A ¹	wattled op - cht zone	L.5.		249	85		59047	-01			đ

	0							0								0	
						GIBH	(ALT	AR MINES	LIN	, MITED			H	IOLE	NO.	_E90-1	
			Ш,	GR	APHI	id., .	[Fst	BOTTOM DEPTHS			5	HEET AS	NO.	5 (RESULTS	DF
ters	t	ROCK TYPES AND	A TION	Luoi	.OG	Veins e < to	Width		%	LEACH CAP LIM. ZONE	Footoge	Estimated	ROD	SAMPLE	%	%	Estim
.00.0	Р. Не́	ALTERATION	< TC FOLL	Follat	Foota	tore Axis	Vein	Mineralization	Py	Remarks	Blocks	Recovery	1.0.0.	NUMBER	Cu	Мо	Grad
3.05	10	SCREN ZONE (240-340)	50		24.0	15 ⁴	5, df7+1,24	q ² 5-22008-0-64-9492	.5		257	95		59948	,01	·c+2,	
	_10	matted ant-ep zone with short seen of sears - the contact with the sears zone at zon - is gradutional.	72			5	74 X.	ep-py eh-py-ep	1.0		261	13		59549	103		
_6.10	20	- This appends to be a source of lime Sediments and impure Linestone locars - 5-20 Toute.	7.9 (4.4		210	50×4 70×2	20" X10-74 x 4 X10 x 3	ch - φγ × 4 ch - φγ × 4	i.5		0.11	75		59950	.05	1002	. 01
_9.14	_30				180	75	3'	ep.chl.zone	-								
12,19	_40		ND		200	P-	10'	$\frac{\mathrm{d} p \cdot p \cdot \mathrm{d} }{\mathrm{d} p \cdot \mathrm{d} r \cdot \mathrm{d}} = \underbrace{\mathrm{d} r \operatorname{d} \mathrm{d} \mathrm{d} }_{\mathrm{d} + \mathrm{d} + $	3-5	cp appends to be assoc with op and ats society as consections	287	100		41701	.15	-002	
			4p			1	5.5 ' 4.5 '	(mothed chi-opicied)	0.5	tie up Brisen Heaven-score	297	15		41762.	. 01	2.001	.01
15.24	50		No		300		10'	store store store	1.0			150		41703	.10	. 001	

							0								0	
					CIBH	2Δ1 T	AR MINES	1 11								
			1				AN MINES					H S	HOLE	NO. NO.	<u> </u>)F _//
eters	set	ROCK TYPES AND	TO CORI		Veins	Width of	Mineralization	Est %	LEACH CAP LIM. ZONE SUPERGENE	Footage	Estimated	R.Q.D.	SAMPLE	%	%	Estim
.0.00	ц ц	ALTERATION	L N L N	Alter	Axis	Vein	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grad
_3.05	_10		ND.	320	7 45+10×1	5 1 + Y1 + Y10	chl-ep-mag (cp) scarse atz-carb-pyxz } mothed cp-ch-ep z are	3:2		317	32		41704	.20	.001	13
6.10	20	cherty some - Poss a sea. band- bedding appenes a so	go WK	240	13× 4	1/10-Y3×4 3/4+YL 1/10×3 2/10×3	qt3-py (cp) x 4 qt3-py - cp x 2 qt3-py x 2 px x 3	3.0		327	100		41705	.06	. 001	
	20	Similar to about but with bounds of meta-anderite	80 ШК	233	20×2 40×1 30×4	Nox2 Yax2 hlex4	atz-pyxz atz-ser-pyxz pyxz	1.5		337	95		41706	.03	.001	.0
_9.14	-30	META VOLCANIC SEQUENCE (340 - 64+) typical assemblage of	Be wx	340	# 60x 6 # # 0 # 45 # 50	h)e-Yox6 1X4 2"	qt3-ser-py-cp qt3-ser-py-cp qt3-ser-py-cp	2.0		347	100		41707	.14	,602	.14
15.04	L40	variable textured andesitic rocks which appear to be recep. This beds of volc. Directia, flows, and varios, pyroclastic seducers, much of	75 Mail	350	45x3 60x3	710×3 1/10×3 1/10×3	973-64 973-64-1988 3	Lo.		397	95		1 1708	.05	.002	. 0
15.24	50	District Pow resembles - Overite - volcanie - Parentose is hisplayed in many of the variation mlost distance of which -	75 Non	340	+ +0+40 + 5+24	y'. 2" hlex 2	973-500-260,978 0	t.o		397	78		41249	.97	يو ده.	. 0

(9								0								0	
6						(GIBH	ALT	AR MINES	LIN	NITED			H	IOLE	NO.	<u>E 90-1</u>)F
		BOCK TYPES	122	GF	RAPI	HIC	Voine	WEATH		Est	BOTTOM DEPTHS				AS	SSAY I	RESULTS	//
ters	et	AND	ATION	lon	LOG	ure	< to	of		%	LEACH CAP	Footoge	Core	R.Q.D.	SAMPLE	%	%	Estimat
₩ 0.00	D Fe	ALTERATION	< T(Follat	Foote	Struct	Core Axis	Vein	Mineralization	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grade
3.05	10	up ta 2" dia in a swirled dark green chloritic matrix.	70 Mod		380	1 +4. W. 16. 4	? 70 7#	4' % 720	Pale grey ats-ser-carb-py 3 one PY-cp	1.0	111111	317	95		<i>41710</i>	, 0	.002	23
			10 Mod				30 4=	Yn 1	qts-er qts-ep-fy-ep	1,5		387	98		41711	,07	.006	.08
_6.10	20		50 WK		390	Y 11/1/1	5+10 40.20x6 50 5 30	Xe+Yis Xox6 2" Xo Y3 Y10	ata-py cnl-py(cp3x k chl-py chl-py-cp qt3-chl-py-cp qt3-cp	2.5		397	98		41712	. 2 †	, 015	. 15
_9.14	_30	-mainly a ch1+ep-be Jone From 297 to 406	на		100	8	5 d 2 20 + (5 40 30 54	1/8 - 1/10 1/4 x 2 1" V.	qtz.chl.queq.zz chl.carbeq qtz.qv(cp) chl.ep ch.ca	1,5		407	(00		f17/3	.19	.016	.11
_12.19	_40	from fiz to fso, bands - and clots of med-coarse grin. hb-sous segregations in dense finer grin chloritic matric - the fends to be	2 X		410	11-21 - 1	: : :	3" 2" Ys	eppha dizeb	.د		<u>417</u>	98		1 1714	. 09	.011	,08
15.24	50	black			420		45 to	¥3 \$*	93 93	.5			18		417/5	, •5	.008	,05

(0							0								0	
									1.11								
						GIBF	(AL I	AR MINES	LIN	ITED			H S	HOLE	NO. NO.	E 90-1 8 0	F
Suc		ROCK TYPES	CORE	GR.	APHI	Veins	Width		Est %	BOTTOM DEPTHS LEACH CAP	Freetaan	Estimated		AS	SAY I	RESULTS	L
o Mete	Feet	AND ALTERATION	< TO FOLIA	Alteratio	"ootag	Core Axis	of Vein	Mineralization	Py	Remarks	Blocks	Core Recovery	R.Q.D.	NUMBER	Cu	Mo	Grode
3.05	10	(70 WK		445	10 45 30 40	2%. Уен Хю 2''	ats-pr chl-cp ats	1.0		. 437	95		41716	.13	,010	.10
		zones of ep-chl	фа- сэ јак			70 30	Уль УВ Узах3	chl. py qts.ch-py chl.qye3	1-S		447 -	95		†17/7	-10	. 007	, •8
_6.10	_20		Bo mod		450	19-30	X10173 2K 742'	chl-pyes qt3-py chl-ep-mag(py)((cp))scarn	3.5		457	78		41718	.15	,007	ot
_9.14	_30		60 WK		460	40-30×6	%ω-Yiυ×6 3'	сы-рухб 93-62	2.0		467	90		41719	, 21	.013	.08
15.24	_40		ND.		470	35 55-70×8 45 70×4	8" Y ₂₀ -Yiox B Y2 Y20× 4	ets-py ets-exil-py ets-exil-py chl-pyxe fine dissem exil-pyxe fine dissem	2.5		477	95		41723	.20	.009	.12
1.1.24					100	6542 80 80	Xorz 15" 15" 15" 15" 15"	Pt-cpx2 ch(cp)(cp) ch-cp ch1-carb(py)(cp) gg-bx	3-0	1	487	75		41721	.43	, 054	.14

	0						0								0	
									, E							
1		2	Lu I		GIBH	(ALT	AR MINES	LIN				H	HOLE	NO. NO.	<u> </u>	F_4_
ers	t.	ROCK TYPES	CORI		Veins	Width		Est %	LEACH CAP	Footage	Estimated		SAMPLE	SAT P	%	Estimo
o Met	Fee	ALTERATION	< TO FOLIA	Alteroti	Core Axis	Vein	Mineralization	Py	Remarks	Blocks	Recovery	R.Q.D.	NUMBER	Cu	Mo	Grade
			50-60 WK.		?	3' 4%.'	Vuggy-chl-ep-py(cp)30xe	6.5		497	95		4172.2	۰٦،	. 004	.25
_3.05 _	_10		50 WK	500	45×3×10×4 7 40×3	10-15-1 1/2-1/4+1/2+1/0 4' 1/2-1/052	973-chi-py x 7 ep-chi-bx zone laced with chicaria-py veinlet: ata-py(cp)es	40		507	80		41723	,13	. 0 01	.10
_6.10	_20		70 Mach	510	5082 4052 5+5583 80 80	yesz yesz yesz yesz yesz yesz yesz yesz	chl-py < 2 pts-chl-py < 2 chl-py (cp) × 4 qts. dark green Chl-carb-py (cr)	4.0		517	95		\$ 1724	.16	,002	
_9.14	_30.		fo Str	520	30 1 30 40 40 40 40 5 10 10 10 10 10 10 10 10 10 10	X= 7" 16" 10" X= X= X	chi-carb-py-cp qts qts-cer-py ((co)) qts-cer-py qts-chi-py×5 qts-chi-py×5	7.0		527	95		41725	. 21	, 004	,12
_12.19	_40	banded chi-ep sone alternating chi and saus-ep bauts up to brivide + minor ep-chi-br	70- 85 Str	530	10×2 40 5+74 30+40+55 85* 85*	Ke Mare Mare Mare	ets-carb-ey(cp) ets-carb-ey(cp) ets-carb-ey(cp)<3 en(cp)×2 quarts-porphyny with	3-5	* 85° contacts	537	્ક		41726	-01	,005	,15
15.24	50	from ~ 538 to 567 mainty a banded chi-es rate with Bonds at a chi-ep-be as show	85 Str	540	X 4012 10+45 70-85×4 30 40×2	410×2 1/2×2 1/0-1/0×4 1/3	$\frac{d_{13}(c_{11})}{d_{13}(c_{11})} = \frac{d_{13}(c_{11})}{d_{13}(c_{11})} = \frac{d_{13}(c_{11})}{d_{13}(c_{$	4.0	Soft core sons		100		ŧ1727	.18	. 8 0 5	20
		,			15 10	10	ato-py enl-cp		\ =	547				1989		

								0								0	
						GIBH	K ALT	AR MINES	LIM	IITED			ł	HOLE	NO.	<u>- 590-1</u>	
		ROCK TYPES	ORE	GR	APH	Veins	Width		Est	BOTTOM DEPTHS		Estimated		AS	SAY F	RESULTS	
leters	eet	AND	TO C	ation	toge	e < to	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%	Estimat
≥ 0.00	0	ALTERATION	V Å	Atter	FI OO	Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grade
3.05	10		60-80 Mod		540	2082 40450 3042	1/2 = 34 1/2 = 34	qtz.chl.cario.py er. chl.cario.py(cp)ez chl.cario.py ez chl.cario.py	3.5		557	100		41728	.12	.008	.14
			forto WR			10+40A1 4043 20 61 15-1014	Y10=3 Y10+3 2" f" 1"+ (12+4cz	973-641-44 × 73 973-641-64 × 53 973-611-6876-94 611-669) 973-94(698)	4.0		567	48		41729	.20	. ***	.12
6.10	_20	From 557 to 576 the re resimbles a sheared and Crished disorts or gty-dionte with stringers of ep alarg folk ploves - numerous ep-py veinlets to E.O.H	ao to 80 11r		570	10	× × ×	chi-carb-py qts(py)	2.0		577	95		4 1730	, 09	,003	08
.9.14	_30 40	From 576 to EOH the rx is a typical mata valganic with rapid variations in text. ie, epicul bx, builded epical, med grin diorite, -a crosched diorite civiliar -a crosched diorite civiliar	60 57c		580	1 43 8013 4 40 1 5×3	18 Y10 + 3 Yax 2 Yox 3	ciri-carp-bairs ciri-carp-bairs df2-cpi-bars	2.5		557	ęş		4/731	•16	. 005	.08
15.24	50	405 and 620	80 Med			70-20 x6	Xa-X4 x4 Xa Xa Xa	ер-рун 6 1ts 1ts	2+0		<u>597</u>	95		41732	.07	.007	• 08
1			44.			44	¥3 ∀4 ∀4	413-366-94 413-601-94	3.0		6.07	98		41733	.08	.003	, 05

(0									0								0	
							GIE	3r Ai	_T	AR MINES	LIN	, AITED					NO		
_			_		ha										5	SHEET	NO.		OF 11
ters	at	ROCK TYPES AND		ATION	GR up	APH LOG	Vei	ins Wid to o	dth f		Est %	LEACH CAP	Footage	Estimated	R.Q.D.	SAMPLE	55AT 1	% %) Estime
.0.00	P. F.	ALTERATION		< TC FOLL	Follat	Footo	Axi	re is Ve	in	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grade
			TITIT	¢и			1 50×2	- Y10 x 2%	2	afr. chi-bhar dir. chi-bhar	3.0		617	95		41734	.07	, 001	30,
_3.05	_10_		11111	ND		620	10-8	ora 13-14 Kore	***	gtaxa carbxs	1.0			15		1 (735	, 08	. 003	. 65
6.10	20		-			630	-1K 3=+ 6	* • y2+1	r.	ba zore healert by 9tz gtz-corb + 2			62.7						
			TITTI	мQ			a sour	*80 %*3		qt3* 2	o.s		637	98		41736	.87	.005	. 05
9.14	_30		-			640	(5 (5	1/10+3		q=3-chl-carb-pyx3 chl-py-cp			-	95					
	$\left \right $	EOH 644'	-	нb		_	X Sorth	14.5		be zone healerd by gtz-carb	0.5		644			41737	, 2.0	.005	.20
12.19	40	BQB.	E																
			1111111								4								11
15.24	50		111111																
1			-	1								-							

	0							0								0	
						GIBR	RALT	AR MINES	LIN	NITED			ł	HOLE	NO. NO	<u> </u>	<u>-2</u> OF <u>11</u>
		SAWMILL ZONE	E	BEA	RIN	G			3266	chain É compas	CORE	SIZE	100	Q.W. L	OGGEI) BY (F. Bysout
DATE	COLL	ARED 7 June 19	190 D	EN ND	GIH	- 90'			308:	? from topo map	DEM	EUF	LUG 1	<u>= [0</u> D	IAIE _	June	(110
JATE	COMP	LETED	L L	hp.		4	1		Fet	BOTTOM DEPTHS	REMA	I I	1	A	SSAY F	ESULTS	
ters	et	ROCK TYPES AND	O COR	tion	.OG	Veins < to	Width of	Minoralization	%	LEACH CAP LIM. ZONE 90' SUPERGENE	Footage	Estimated	R.Q.D.	SAMPLE	%	%	Estim
ž 0.00	E E	ALTERATION	FOL	Folla	Foot	Axis	Vein	Mineralization	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grad
3.05	10	<u>QUARTZ ADRPHYRY</u> <u>(B2 - 707')</u> a pale grey rock with rounded phenocrysts of grey gts, ~ y10"dia;	to-ts Mod		90		У <u>к</u> 2* 3″	ats-en gg-lim gg-lim	1.5	limonite weak to 90'	82	80		44676	,08 (.06)	.002	, 05
6.10	20	which form about 35-40% of the total Matrix appears to be Composed of white feldspar and gtz with white Sericite. Chl. occurs in some Sections up to 5-60 but is demonstration	40-15 Med		100	45 x 5 43 x 8	15" Xo-78×5 L"= Xox7	93-11m 972-171 (69)×5 973-171 (69)×7	2.5		97	95		44677	•13 (•02)	.013	. 08
9.14	_30	absent. Dissen, py sometimer with minote inclusions of cp. forms is to 104 of the rock as fine gras and ovoid clots up to Kordia which	45 Mod		110	45 35 58 44+35 80 60 45<7	1/3 1/3 1/4+1/8 2* 10* 2*+1/2	913-171 913-171-61 913-171-62 913-54-71 (69) 913-54-71	4.5		107	95		44678	• // •× * (L •01)	.006	ð1.
		appear alianed along fain. planes: Only the definite veins are described.	40 Med			20 ? Sor 40	×2 5 7/3+2 2	atz-py-cp atz atz	4.0		117	98		44679	•05	.006	,1+
12.19	40		50 Nod		120	45 5 45+2 5 50	10" /2073 2" 12"	df2-266-64 df2-266-64 df2-266-64	4.0	A	127	98		44680	•08	1207	.10
	50	3			130	1	3.4	9+3-ser-py		3				4			

	9							0								0	
		;				GIBH	ALT	AR MINES	LIM	ITED			H	HOLE	NO.	<u> </u>	
		POCK TYPES	La R	GR.	APHI	dvaine	Width	1	Est	BOTTOM DEPTHS				AS	SAY F	ESULTS	-11
ters	at	AND	ATION	Lou	LOG	g < to	of		%	LEACH CAP LIM. ZONE	Footage	Estimated	ROD	SAMPLE	%	%	Estim
₩ 0.00	F.e.	ALTERATION	< TC	Follat	Foota	Axis	Vein	Mineralization	Py	Remarks	Ellocks	Recovery		NUMBER	Cu	Мо	Gree
_3.05	_10	dark zone -chillor Ser? altin,	50 Med		:40	50 x 6 55 + 6 + 60 50 x 8 45 60 (3	Y10×6 Y4×2 Y8 Y10-Y4×8 5* Y10×3	972-6462 972-6010-171-60) 62 972-581-64×8 972-581-64×8 972-581-64(60) 972-64×3	4.5		187	ęθ		446B1	.67	.005	.14
6.10	20		50 Med		150	50+10 541	2' XerXia Viar2 1×2' X4	33-6x 973-64 60) x 2 973-64 973-64 973-64 973-64	l-S		147	95	•	44682	.06	-004	. (c
	70		45 Mad- W6			45 × 6 50	X2-Y10×6 Y10 X8	df3-ree-bd xo df3-ree-bd xo	2.0		157	95		44683	.03	.004	.01
3.14			"fs rlad		140	45-50 x7 45 45 45 45 x4 58 45 x4 58 45 x6	920-910+7 92 910 × 4 3/4 910-92×6	412-61× + 412-61 (co) (cn) 412-61 (co) (cn) 412-61 (co) × 1	2+0		167	98		+ 4634	25	-007	,01
15.24	50		fo WR		120	40×3 ·	Y4x3 1"+Y10+2 Y10×3	9t3-py(6p)*3 9t3-carb-py(6p) 9t3-py×3	3-6		177	٩٥		44685	.07	· 005	. 10
15.74	- 20		40- 50 WK		100	504 10	1/0-1/2×10	gts-Mx10	3.0		18,7	ŝ		49636	+04	-015	

	0							0		*						Ð,	
										22							
						GIBH	KALT	AR MINES	LIN	MITED			HS	HOLE	NO. NO.	<u> </u>)F
ŝ		ROCK TYPES	CORE	GR.	APH	Veins	Width		Est	BOTTOM DEPTHS		Estimated		AS	SSAY F	RESULTS	
Meter	Feet	AND	DUIAT	lite tion	otage	Core	of	Mineralization	%	SUPERGENE	Footage Blocks	Core	R.Q.D.	SAMPLE	%	%	Estim
0.00	0		У Ц 	F	700	AXIS	Yro 12" 4×2±YE XA Ylost	972-64 972-672-672-672-672-672-672-672-672-672-6	1.5	Remarks	197	40		44687	-05	M0	. 0:
6.10	20	the ragged takes	60 WK		200	- 60 80 15 15	2" 2" 2" 73	qts-carb-rf(sp) qts- qts-rf ats-rf	1.5		_207	95	•	11 688	.03	.003	.08
0.14	30		40 WK		210	50 45 15×3	¥4 У4 Уюх 3	qt3.ep qt3.py.cp qt3.pyx3	[.5		217	98		446.89	•11	.002	,10
12.10			60 WK		220	40 1 601 4	1" 3" Xax t	ats-pr ats-arr.pr ats-prx r	2-0		227	95		14690	-04	·002	.0
15.24	50		40 Wik			5+13	y.0*2 %	વોર-૧૧ ((માર્ચ)	1.5		237	98		44691	:05	.002	.01
10.00	60		60 142			30 - 20 80' 45	1/4 = 1/10 1/4 - 1/4	9t3-5ri-p/ en 9t5-pr(cp) 9t5-py	1.5		147	100		44692	·°6	-004-	84

					(GIBr	ALT	AR MINES	LIN	AITED					NO		
			μ	RAF	ни	1	1		Fet	BOTTOM DEPTHS			S	HEET AS	NO.	<u>4</u> (DF
ters	t.	ROCK TYPES AND	A TION	LO	G	Veins < to	Width	10. 1. 1.	%	LEACH CAP	toge	Estimated	R.Q.D.	SAMPLE	%	%	Estimo
₩ 0.00	ц т е́	ALTERATION	< T(FOLI	Altero	Struct	Core Axis	Vein	Mineralization	Py	Remarks	cks	Recovery		NUMBER	Cu	Мо	Grode
			so Wi		11 1 1 1	60X2 80 80 15	Yiox2 2" 2% 2"	9t3-py ets ets ets-carb-py	2.5	25	7	٩s		44693	.07	.007	08
	00		40 11)X	26	0 241 1	45 1 = 30	+** **	39-be 93 93-ch-py	ro	26	1	95			e.		.05
_6.10	20			27	0				-		-	95					
9.14	30	Pyrite decreases at 2.75 and] from 270 to 310'.	70 W3E	28		65	K,	975- P1 (CM055)	1-0	2.1	7						03
		coarser and with Atz, phenocrypts up to Kindia and sections of mixor pinks anhedral spor phenocrysts accur	нь						0.5	2.8-	7	98					03
_12.19	_40			29	0.5	-					-						
			50? WE		1	9042	YIOKZ	972-62+5	1.0			45					.05
15.24	50	=		30	2/	15	K	9ts- PV-33									
			45		1	† \$	Y4.	913- 97-53	015			۹۶					. 05

	0								0								0		
							GIBH	(ALT	AR MINES	LIN	1ITED			H	HOLE	NO. NO.	<u>E</u> 90-2 5	OF	_1]
		ROCK TYPES	La C	N	RA	PHI	Veins	Width		Est	BOTTOM DEPTHS		Estimated		AS	SAY F	ESULTS	5	
leters	eet	AND	C CF	LIATIC	rotion -	100.	< to Core	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%		Estimo
.0.00	ш 0	ALTERATION	V	PO I	Atter	P.00	Axis	Vein		Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
7.05	10		TITTT	45 24			50 60 30	Х4 Х2 Ув	dfz-en bi dfz-zen bi	1.0		317	૧૬						. 05
05			111111	NS		20	70 80	1" 6" X1	afz.con prep	2.5	11111	321	90					-	.05
6.10	_20		-	-	3	30					-								-
			,	70 WX						0.5		337	100						.05
9.14	_30		1		3	340	75	Y2_ Y8	Atz-FY Atz-sen CD-PY		-		100			-			-
			-	42			6.	%	g ¹ 2-py(cp)-ep	1.0		347							.10
12.19	_40		-	-	3	50 -	- 75	1%。	9tz-ep-py		-						-		-
15.01			,	NЪ			45+2	Xo Xo	9t3-px at3-pxx2	1.0		357	100						. 05
15.24	50		-		3	Ce	40	7*	23-b×				95						
			1111	45,			5 50 SO	X10+3 1/4	9 ¹ 3-91-00×3 9 ¹ 3- 04	1.0		367							.18

	0							0								0		
						GIB K	AL T	AR MINES		ALTED		1.4						
			lш	how		4	1		L	BOTTOM DEPTHS			5	SHEET	NO.	6 6 FSHLTS	OF	11
Meters	Feet	ROCK TYPES AND	TO COR	erotion - 2	OG	Veins < to Core	Width of	Mineralization	%	LEACH CAP LIM. ZONE SUPERGENE	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%	,	Estimate
0.00	0	ALTERATION	ND	Fo	Fo Fo	Axis 45 15 * 1 45 45 45 45 45 45 45 45 45 45	Vein <i>Y₁₀ +1</i> <i>Y₂+2+ Y₃x2</i> 2" <i>Y₁₀</i> <i>Y₁₀</i>	973-87 ×2 973-87 × 4 973-67 × 6 973-67 (69)	3-0	Remarks	377	Recovery 98		NUMBER	Cu	Мо		Grade
_3.05			Мэ		390	40+45 5 15 45 4512	1/10×2 1/5 2" 1/4 1/10	dz-bi dz dz dz dz dz dz dz dz dz dz dz dz dz	1.5		287	95						.10
6.10	_20	("	ИР		575	5 55 5	\" У́4*	dfz-bl (b) dfz-curp-bl	1-0		107	95						. 08
_9.14	_30_	core has a paie greets	цц	4	100	85 33 40	yia Vis Vis	442-64 (2010) 442-64 (2010) 442-64	1.0			98						,12
12.19	_40_			-	10	50	2" 7 [′]	gls-ep BB-bx (steep fault)			407	90						
15.24	50		ND	4	20	6 60 410 65 50	40+1" 24	qt2 * 2 qt3 qt3 (1100)	0,5		417							.05
		4			1 1 11	60 37 80	10"	9+3 (CND) 9+3 (CND)	0.5		427	95						.05

(0							0								0	
						GIBH	ALT	AR MINES	LIM	IITED			H	HOLE	NO.	<u> </u>	OF v
		ROCK TYPES	ORE	GR	APH	Veins	Width		Est	BOTTOM DEPTHS		Estimated		AS	SAY F	ESULTS	5
eters	eet	AND	TO CI	ation	600	e < to	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%	Estimo
≥	й 0	ALTERATION	. ℃	Follo	00	Axis	Vein	ata	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо	Grade
_3.05	10		1111111 «×		940	10 10 10 10 15 15 4511	10 10 10	12-61 × 5 42-61,000 42-64,000 43-64,000 43-64,000	1.5		137	95					,08
			11111 **			90 30 × 2	C"	ats.	0,5		447	98					,85
6.10	_20				450	/ 20	No	412-81									
			2			10	5	612(002)	0.5		457	48					,05
_9.14	_30		ND ND		460	6 70+ 45	2**2	9 ^{tz} 3-ser-py(co)×z	0.5		467	100			-		,05
_12.19	_40		=		470	40	Yra	ats-ser-pylep)		-							
15.24	50		2		485	35 43<2 \$0	1/3 1/10 ez 2"	qts-ser-py qts-pyx= qts	0-S		477	100					. 05
			80			75	Y ₈ 2*	eta-pr	1.5	2	+87	97 97					. 05

									0										
							GIBR	ALT	AR MINES	LIN	IITED			H	OLE	NO.	E 90 -	2	
			-	ω }	DA		4			Fet	BOTTOM DEPTHS				AS	NO.	BESULT	. OF S	11
ters	et	ROCK TYPES AND		O COR	LC	G	Veins < to	Width of	Mineralization	%	LEACH CAP LIM. ZONE SUPERGENE	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimate
N NO	E E	ALTERATION		FOL	Altero	Foot	Axis	Vein	Miller di 20 cion	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
				нр			6 40 40x3+ 60 20x2	2* Yinx3+ Ya X4×2	gtz-ep-py qtz-ep-py	1.5		497	98						.10
3.05	_10	Weak Saus all'a K	-		5	20	70.	1/2 1/10x3	973-ser-py 973-pyks										
				¢И						1.0		507	100						5
6.10	_20	several pea goeen	-		5		60 .	13	9 ⁺ 3										
		SECTIONS -> SETICITE	11111	70 WK				¥4	qts-pi	2.0		517	100						, 05
9.14	30		11		.5	20	115	715	4.0		=								
			11111	70 WK			50	1" Xo	אז-ג <i>ן</i> ף אז-גלף	0,5		527	100						.05
12.19	_40		-		5	30													
			11111	70 WK.			1013	Yox3	9 - 104. 33 - 104.	1,0		537	98						. 05
15.24	50		111		5	10	- 80	z"	eta		-	201					1		
LU.74			1111	80			\$ 87	s *	als	0.5			100						.05

	0								0								0	
						(GIBR	ALT	AR MINES	LIM	IITED			H	IOLE	NO.	<u>द २०-२</u>	
			L.t	h		und				[Fat	BOTTOM DEPTHS	Т		S	SHEET	NO.	9 ESULTS	DF
ŝ		ROCK TYPES	CORE	GF	LOC		Veins	Width		Est	LEACH CAP	E			SAMPLE	2	200210	Felimat
Meter	Feet	AND	01 01	ULIA	leratio	tructur	Core	of Vein	Mineralization	PV	SUPERGENE Blo	cka j	Core	R.Q.D.	NUMBER	Cu	Mo	Grade
0.00	0	ALIENATION	UT SS WK	- E	2 1	1/1/1	AXIS 59 25 47	1/4 1/20 1/10	9+3-84 9+2 (Ma) +1-3-84	0.5		57	98	_				. 05
_3.05	_10		11111 N5		345	-10 1	15 45 45	Уъ 8" Хо * 2 Хо	qt3-cp qt3-ser-py-cp (not q solid) qt3-pr qt3-pr	1.3		7	100	2				. 05
_6.10	_20		11111 ×		570		40 X 2	410 + 45 410	9 ¹ 5-51	0.5	57	7	98					. 08
_9.14	_30		11111		58:		50K2 5	hotz K	9+3(ep)((wa))	1.0		.7	98					.01
_12.19	_40_		11111		590	-1 1-1	512 80 80×2 50	14+110 160 160×2- 100 14	973-97 ×2 973-97 973-97 973-77 973-77 973-77(69)	1.5	51	7	[00					.05
15.24	50		1111		60	0	40 63 90 XL	X10 1" Y10 = 2	4, (m2) 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	1.0			98					. 05

									12							
							AR MINES	1.11								
					GIDIN	ALT	AN MINES	LIIV				F	HOLE	NO	E 90.2	OF
	ROCK TYPES	ORE	GR	APHI	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		Estimated		AS	SAY R	ESULTS	- 1
set	AND	10 OT	ation	100	< to Core	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%	Estimat
ц О	ALTERATION	VL	Folk	100	Axis	Vein	abuseror	Ру	Remarks	BIOCKS	Recovery		NUMBER	Cu	Мо	Grade
		1			\$ +5 x 2	Xo+1"	gts-pyx 2				95					
		CA LL								617				8		
10		-	╫	620	* 60	Ys	9tz-14				35					
		- ND			*			0.5	. 3	623	1					.05
20	f 122' + 657' + .	Ē		630	60-70+3	Yoxa	qt3. pyx3				סר					
	core has a greenish hue - 1 saus ?? or service ?	w <u>k</u>		420	4		broken zone of lost		-	633						
		To str.			6 4		PEG STOON SOME WITH	1.0		637	85					وه ج
30		=		640	A 40	6*	Snowerons by the's at	-	-							
							1-				95					
		Wed Wod			5 60	6"	7/3	0.9		647		1				
_40		-	╢	650	- 10	y10	ets (cp)				95					
		50			85	2" 2%	9t3-00 9t3-00(W0)	1.5	-		2.5					, os
60		- WK			6012	ye+1"	9/3-97+2			657						
-30		Ξ			70	z*	q ¹ 3-ser-py(ma)		Ξ		98					
		HP NP			- 65	18 14	atel(u(a))-ry	1.0								. 05
		ROCK TYPES AND ALTERATION 10 20 <u>From 630' + 6457' the</u> Core has a greenish hue- saus ?? or Serieite ? 30 40	ROCK TYPES Hoo of your o	ROCK TYPES Horizon SR AND ALTERATION V.L. SR ALTERATION No No 10 No No 10 No No 10 No No 20 From b3.0' + 0.657' the No Core bas & differentiation in the core with strending in the core with strends in the core withe core with strends in the core with strends in the core wi	ROCK TYPES WOULVID GRAPHI LOG AND ALTERATION VI State ALTERATION NS 40 40 10 HS 40 40 20 From 530' + 0 657' the Saus ??? ar Serieite ? 635 30 HS 635 40 HS 635 50 HS 650	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CIDICAL IROCK TYPES AND O $U = 10^{\circ}$ String $U = 10^{\circ}$ 	ORDITAL FARE IMITLESROCK TYPES AND ALTERATIONBRAPHIC OF LOG STREETWidth of AxisMinerolization0ALTERATION V_{22} V_{22} V_{22} V_{22} V_{22} V_{22} 10 V_{22} V_{22} V_{22} V_{22} V_{22} V_{22} V_{22} 10 V_{22} V_{22} V_{22} V_{22} V_{22} V_{22} V_{22} 10 V_{22} V_{22} V_{22} V_{22} V_{22} V_{22} 10 V_{22} V_{2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OIDITAL TARK WITCLS LIMITEDROCK TYPESBRAPHIC LOG SUPERAL TARK With LOG SUPERAL AND ALTERATIONSRAPHIC LOG SUPERAL AND QC Core SUPERAL ALTERATIONEst EACH CAPT MineralizationMineralization QC <b< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></b<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

								12											
						C	SIBR	ALT	AR MINES	LIN	NITED			H	IOLE I	NO	E 90-2	OF 1	1
		ROCK TYPES	DRE	e Gl	RAP	HIC	Veins	Width		Est	BOTTOM DEPTHS	-	Estimated		AS	SAY R	ESULTS		
leters	eet	AND	T0 C0	ation	rotion 7	ucture .	< to Core	of	Mineralization	%	LIM. ZONE SUPERGENE	Footage	Core	R.Q.D.	SAMPLE	%	%	E	istimat
_0.00	0	ALTERATION	Vi	Fol	Alte	Str	Axis	Vein	ate	Ру	Remarks		Recovery	-	NUMBER	Cu	Мо		Grade
			111111				30 5 5 + 4 5 + 5 50 < 2	10x3	913 913-97 913-9743 913-97603 +2	1-0		<u>477</u>	98						, 09
_3.05	_10		-	+	68		76	710	40-ch (ma)	-			105						
						1	50	X.	413-(m*)	as									.05
6.10	20_		-		69		50×2	1/10 × 2	afz-bxz		3	951							
			11111			まて、言語	60+5+45AL 65 30+12 40	1"+ Y.o+Ymr2 1Yz 2" 1"+ Yz" 10"	10000 1000 1000 1000 1000 1000 1000 10	3.5		697	98				-		10
9.14			-	_	70	1011	70 70	1/2 0/4 12"	973-00-0112 973-01 973	-	=	-							_
		ECH 707'	11111			7	8=+ 75	Yoxz	qts.pyxz	o,s		707	100						.05
12.19	_40	bors.	-	_							-								
			111																
										1		1							

	0							0								0)	
						GIBR	ALT	AR MINES	LIN	AITED			ł	HOLE	NO. . NC	<u> </u>	0-10 OF	8
DATE	COLL	ARED June 20,1	990 L	EN.	GTH	50	2'	LATTODE .	48/03	Chain & compass E Survey	SCAL	E OF	LOG	<u>1 "10</u> D	ATE _	JUNE	22 ,1	1990
DATE	СОМ	PLETED June 21,19	<u>190</u> [DIP.		-90	•	ELEVATION	2900	,) from topo map	REMA	RKS .						
(0		ROCK TYPES	ORE	GR/	APHI(Veins	Width		Est	BOTTOM DEPTHS		Estimated	5	AS	SSAY F	RESULT	S	1
Meters	Feet	AND	TO C	flation eration	otage	< to Core	of	Mineralization	%	LIM. ZONE - SUPERCENE -	Footoge Blocks	Core	R.Q.D.	SAMPLE	%	%		Estimot
0.00	-	ALTERATION	Vi	Pre-	0 H	Axis	Vein		Ру	Remarks -		Recovery		NOMBER	Cu	Mo		Grade
_3.05	_10				10											•		
		<u>BORDER PHASE</u> <u>DIORITE (70-502')</u> this is a plutonic rx. grading between	ND			5-30×4 40 45×80470	1/2-1/3×4 1/2	qtz-py ++	3.5	no limorite	-77	76	קו	44751	•19	.013	ane	.12
_6.10	20	diorite and quartz diorite. It has a - general "crushed" appearance - often healed" by ep veinlets and gashes. The crushing, foln, and	NS		90	?	7'	chl-ep-bs py (cp) zone (ep elots in enlivion matrix)	4.0	mineralization an This page is gen along miero sticers and veinlets - there are numeroos file at veinlets - grade	87	95	27	44752	.30	038		.17
.9.14	_30	obscur the plutonic nature of the vock It is fine to med grn - Xio - Xio dia gras. - aug comp. is:	145		70 4	80 10 40 x2 15 5x4	10 10 10 10 10 10 10 10 10 10	43-97-60582 43-97-60582 973-641-47 973-641-47 973-641 973-641 973-641 973-641 973-641 973-641 973-641 973-641 973-641 973-641 97-64-97 97-74-97 97-74 97-74-97 97-74 97-74-97 97-74 97	3-0	estimates are difficult only the larger verse are listed	97	95	20	44753	.43	·028		.22
_12.19	40	Saos 75 % The ater is not readily Usible without magnification			100	5 5072 40 354082 40-50 (2 40-50 (2	YB 7/10+2 7/10+2 7/10+2 7/10+2 7/10+2 7/10+2	qt3.ch1.cp qt3.ch2.py(cp) ch1.cp(cp) x ch1.cp(vy) x ch1.cp(vy) x ch2.ch2.py(x)	5.0		101	95	27	44754	. 42	1032		.16
					10	40	y.,	atrior		=							1	1.11

	0							0								0		
						GIBH	ALT	AR MINES	LIN	NITED			ŀ	IOLE	NO.	<u> </u>	-10	
		BOCK TYPES	W W Z	GR	APHI	dusing	WELTE		Est	BOTTOM DEPTHS			1	SHEET AS	NO. SSAY F	2 RESULT	OF S	8_
sters	et	AND	O CO	tion	LOG	e < to	of	Mineralization	%	LEACH CAP LIM. ZONE SUPERGENE	Footoge	Core	R.Q.D.	SAMPLE	%	%		Estim
× 0.00	ů O	ALTERATION	FOL	Folia	Foot	Axis	Vein	Millerdization	Рy	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grad
3.05	10		1111111 wr wr		120	to to 30 55 3 540+3	Ya Yio Ya Yio Yio Yio Yio Ya Yio Ya Yio Ya	atz. 14 atz. 14 atz. 160) * 2 atz. 160) * 2 atz. 160) * 2 atz. 14 atz. 16 atz. 16 atz	2.0	Mineralization remains fine and except for vents of qts.col.py - meet of the cp occurs of the cp occurs back around - estim		90	0	44755	•22	1015	.325	.14
			HD.		120	30 45 1++====	10-1423 2" 1/4x2 3' 1/0-1/843	atz-chipy gz-bx gz-chipy zz-chipy=3	2.0	at grode are diff -only miniwow est.r are given - the vock still has a crushed appearance	.121	9p	10	4 {756	,15	.017	2795	.1 0
_6.10			QH 1111		130	3052 342 20 20+2+80/2 20+2+80/2 20-70-22	1/4 1/10+1/8 1/5 1/10+4 1/2-1/10+3	913 913 (Py)+2 913- Py (Vog) 913 913- Chi-py (+ 915 × 3	1.5	- a large number of gtz voins ore present	127	95	33	44757	-20	.013		40
_9.14	_30_		45 1 45		140	10+2 50 10-80 *5 14+3 50 2.	yiox 2 12" yiox 3 yiox 3 3'	ats 2 ats cp ats c ats a ats-chl-carb-py (cp)	2.0		147	9.0	20	44758	-16	. 0 10		,12
_12.19	_40				150	45 50-70 ¥ 5 5+ 20 2 30	3" y ₁₅ x s y ₂ x 5 2" 12"	atz-chi-pri atz-chi-pri atz-chi-carb-pri (ch) atz-chi-carb-pri (ch)(mb)	8.5		157	90	27	44759	.16	1009		,14
15.24	50		N5 .		160	13×3 Lo 10+10x2 5+3 40+2+50	X10×3 Y20×3 X10×2 X10×2 X10×2	9/3-cid-py (cp) +3 9/3-corb-py (cp) +2 9/3-corb-py (cp) +2	3.0		157	d D	2.7	44760	• 2.3	.009	-17.9	.12
			-		/	5012 + 10	/8	412-64-66		-								1

(9							0								Ô		
						GII	3ral T	AR MINES	LIN	NITED			ŀ	HOL E	NO.	EQD	-10	
			W.	_ 6	RAPH	41d			Est	BOTTOM DEPTHS			5	SHEET A	NO.	3 RESULT	. OF	3
ters	et	ROCK TYPES AND	O COF	I A TION	LOG	e <	to of		%	LEACH CAP LIM. ZONE	Footage	Estimated	R.Q.D.	SAMPLE	%	%		Estim
.000	ц В Ц	ALTERATION	L V	FOL	Altero	XA Strue	re is Vein	Mineralization	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Gra
3.05	10		43		180	53 30 10+30 10+30 10+30 10+30 10+30 10+30 10+30 10+30 10+30	10 45 15 16 16 16 16 16 16 16 16 16 16 16 16 16	chi-ri ηts-chi-pi(cp) ηts-chi-pi(cp) ηts-chi-pi(cp) ηts-chi-pi(cp) ηts-chi-pi(cp) ηts-chi-pi(cp) ηts-chi-pi(cp) ηts-chi-pi(cp)	3.0	Cp mineralization remains fixely discer offer associated with The short gash - like ep venlets	77	15	2.7	44751	• 3 3	.019		.1
					105	1 20-10 2042 45+2 45+3 7	20 Yesto 20 Yiox2 Yisx2 1"	42-64-64 x + 42-64-64 (cb) + 5 42-64-64 x + 42-64-64 x +	1-0		18-7	18	27	44762	.40	-019		
_6.10	_20		HILLING	,	180	5-104 4+×3	1/4-1/1042 5 1/10x5 1/10x3 41	qts-cid-pyxs qts-cid-pyxs qts-cid-pyxs laucocratic zmc (yy)	3.5		137	98	23	44743	.16	1011		
_9.14	_30_		1 1 1 1 1 1 1 W		200	20 4012 404 404 30-4 70	12 120×2 120×2 120×2 12+1/	broken zone off-chico (No) chicop x2 off-y2 off-y2 qtz-chicop(cp) x2 qtz-chicop(cp) x2 qtz-chicop(cp)	3.5		207	95	17	44764	•2.7	• cc B	-,-35	
_12.19	_40		11111 MB		210	+5 +5 +10-60 +5 +1 20x5 +0-5	1/10 1/10-1/3×5 1/4 1/10-1/3×5 1/4 1/10-1/3×5 1/10-1/4×6	13- chi-py 13- chi-py 13- chi-py 13- chi-py c	3.5		217	૧૭	17	44765	.19	.008	- 2965	.1
15.24	50		1 111 45 str		220	40×3	<u>78-75 + 2</u> + 4 - 54 - 6	9+3×3 9+3×4 9+3-carb-ch1-(pr)(cp)	24		227	90	30	44765	.10	·015		. 19
	60		-		120	Leox3	1/10+3	9/3-EN- P/YS		=								

						GI	ЗкА	ALT.	AR MINES	LIN	ITED			H _o		NO.	E 90-10)F *
			127	GR	APH	Id.				Est	BOTTOM DEPTHS	-			AS	SAY F	ESULTS	
Grs	+	AND	A TION	- uoi	LOG	< <	to	of		%	LEACH CAP	Footops	Estimated	ROD	SAMPLE	%	%	Estimo
Met o	Fee	ALTERATION	FOLIN	Foliot	Footo	C A	is \	Vein	Mineralization	Fy	Remarks	Etor⊁n	Rest Arry		NUMBER	Cu	Мо	Grade
		a fine grn pale grey hock with ~ 200% black Great bio as plates < yes" dia	45 Mod			10 5	- 1/2 - 1/4 - 1/0 - 1/0	143 012	qts(qt)(cp)((cr.)) qts(cp) v z qts-cp dts-cp	1.0	mmi	237	93	23	44767	,35	.015	.35
_3.05	_10		45 1/11d		240	1 501 3316 5 804 100	-2 * 60 Yi 0 Yi 1* 1* 1 hle	e + Y2022 e + Y2022 e + Y2026 e + Y2026 e + 2	413-14-60 CH-64	1-5	11111	247	٩٥	50	÷4768	.15	1006	.15
_6.10	20		to uk		250	30+5 30+5 50+5 10	2460 Ye Ye Xe 1/2	10x3 543 542 5	chi-py(Gp) x 3 qt3xJ (ap ventil chi (cp) xz (up to x) qt3.chi-py atr. chi-py	1.5		257	95	40	44769	.15	.069	-11
_9.14	_30		нъ		260	1/4 10 1/4 10 1/1 5 47	12 13 13 13 13 13	2" 1 * Y3 1/2 -V3 * 4	g_{3}^{+} $g_{$	1-0		267	75	٥	44770	•07	·ce 2	-10
_12.19	_40		ND		270	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 24 24 24 24 24 24 24 24 24 2	+1/2+2" 1+ 2-420410	4/2-ch-8/(ch) x 10 4/2-ch-8/(ch) x 10 12-ch	1.0		2)]	80	†Þ	14771	107	006	,10
15.24	50				250	11-12-12-12-12-12-12-12-12-12-12-12-12-1	2 2'	-/4 ==== -/4 ====================================	9+3+12 9+3+12 19-13-14-24 22	10	-	-	95					

															÷.				
									°		Ŀ								
8							GIBr	AI T	AR MINES	i IN	NITED			-		NIO			
							0101				in i EB				SHEET	NO.	E 90-1	OF	-
		BOCK TYPES	L		GR/	PHI	ducina	Width		Est	BOTTOM DEPTHS				AS	SSAY F	RESULT	S	
Grs	+	AND	00	SIG	Luo	OG	e < to	of	6-945 (E) (9/5)	%	LIM. ZONE	Footage	Core	ROD	SAMPLE	2	%		Eet
Met	Fee	ALTERATION	L L	FOLI	Merot	0010	Core	Vein	Mineralization	Fy	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		
0.00	0		TITTI	на			10-10 = 6 30 10-60 + 5 50 + 5	6" hle-Yessi Ya Yan X	chi-17 (cp) < c eta - 77 (cp) < c eta - 60 (cp) × 5 eta - 2	3.0		291	95	20	44773	.14	1007		
_3.05	_10	· beginning of the gyp. zone. - end of ep-(cp) type gash vening	TITIT	ND		300	10×2 10×2 10×2 10×2 10×2 10×2 10×2 10×3 10×3 10×3	1/20+3 1/4 1/8+1/10 hle 1/4-1/2+3 1/10×2 1/0×2	AT 2 chi py (cp) + 2 pt2-Pr pt3-carb-py (cp) + 2 chi Ho pt2-2 at p + 2 chi	3.0		307	90	37	44774	.14	.008		
_6.10	_20		111111	ИЭ		310	2043 60 ×3 20+30×2 5+30 Stockwark	910×3 1/8×3 1/4×1/3×2 1/4×2 1/4×2 1/0-1/3	df2 stockmps + 216 name df2 cynfrhx 5 gf2x3 gf2x3 ffbx3	1.5		317	98	93	41775	•12	.007		
9.14	_30		1111111	ND		320	4 4 8 30 + 00 10 7 2 40 30 4 2 60 - 75 x 6	1/3 1/8+1/10 1/10x2 2" 1/8*2 1/10x2	qts-carb-chl-py Byp x 2 Byp x 2 qts (py) qts-chl-py x 2 qts-chl-py x 2	1-5		327	98	97	44?75	.13	.010		
_12.19	_40	~	TILLIT	мр	0	30 000000000000000000000000000000000000	45-55(9 14+70+90 5-70×6 15+80<3 50-70×6 80×7	1/20-10+1 1/10+1/2+2 1/10-1/2+6 1/2+4 1/2+6 1/2+2 2/2'	chilpy (cp) + 9 qts-chilpy (cp) + 9 qts-chilpy (cp) + 2 qts-chilpy (cp) + 2 } qts-chilpy (cp) + 2 }	t-o		327	98	97	44777	.17	1024		
15.24	_50		11111	70-80 Str		340 45707.00		3/2	gts and gyr. veins forming ctkucks.	1.0		347	100	93	4 4 77 3	-11	.010		

	0							0								0	
						GIBr	ALT	AR MINES	LIN	, AITED			ŀ		NO	6 m. 1	
		-	1	_									5	HEET	NO.	6	OF _B_
ters	et	ROCK TYPES AND	O CORE	GR	LOG	Veins	Width of	Minoralization	Est %	BOTTOM DEPTHS LEACH CAP UM. ZONE SUPERGENE	Yoo'aao	Estimated Core	R.Q.D.	SAMPLE	SSAY I	RESOLTS	Estino
₩ 0.00	ů. O	ALTERATION	FOL	Folla	Foot	Axis	Vein	Mineralization	Fy	Remarks	Blocka	Read very		NUMBER	Cu	Mo	Grade
3.05	10		an Str.		81.0	9.9	10	qt3-cer-chl-carb-gyp. (Pr) zone	1.0	Py mainly accurs Finely dissent - along folg planes	357	95	87	4 * 779	.09	.011	.08
						70-80	10'	qts-ser-cit-earlo-gyp-(p))	1.5		347	98	93	44180	. 11	·011	. 10
_6.10	_20_		11111 80 Str.		315	80000000 Bo	10'	qt-3-Sect-Chl-carb-Byp-fpd	1.5		. 371	98	93	44781	•11	.017	. 08
_9.14	_30_	2	Bo str		355		8' ·	qt3-chl-carb (py)	1-0		387	150	Ŷ٦	44782	.09	·008	,08
_12.19	_40	-			390	10-644 d 3240 10+6012 5042 70 13 20 80 80 80 80 80 80	10-13×5 11/2+24 12/2+24 14×5 14×5 14×5 24×5 24×5 24×5 24×5 24×5 24×5 24×5 2	11 2 2 12 2 Chi-py x 3 12 2 Chi-py x 3 14 2 x 2 14 2	1.5	Lack althe	397	105	90	44783	107	.008	. 08
15.24	50		10-80		400	30-60+6 50+60+20+2	71 71	qt3×8 qt3×4 qt3-(ch)-cavir(py))	.5			85	13	44.78÷	.09	.007	-10

(3								Ø								10		
		ð				0	IRH	ΔίΤ	AR MINES	i IN	ALTED :								
			Ιw	h										S	HOLE	NO. NO.	7	OF	8
ters	t.	ROCK TYPES	A TION	NULLAN	LOC	iu san	Veins < to	Width of		%	LEACH CAP LIM, ZONE	Foutage	Estimated	R.Q.D.	SAMPLE	7.	37		Estinat
چ 0.00	0 Fee	ALTERATION	V TC	Follot	Facto	Struct	Core Axis	Vein	Mineralization	Рy	Remarks	Blocks	Receivery		NUMBER	Cu	Mo		Grade
			70- 80 576	•		A WOODAN L	70-80	8'	qt3-chl-carlo-py (cp)	i-s		417	70	50	44 78 5	.10	. 00 lp		,12
_3.05	_10 _		70 Hod		42.0	東くなく	7042 20+20 15 10×1+\$2+3 30+70 40+3	1/4+2 1/2 1/2-1/4 * 7 1/2+2 1/2+2	ots-chi-py cz ots-chi-py gis-chi-py gis-chi-py	1.0	davik Altin	427	95	87	44786	.15	.004		.14
_6.10	_20		-		430	A ANA A	\$5+20 109720 \$5 Stewly	1/2 +2 1/4~1/3 1/6 1/6-1/2	distriction of the second seco	1.0		437	18	97	4+787	. 14	.003		.16
9.14	_30		1 1 1 1 1 1		410	THE REAL PROPERTY AND A DECIMAL OF A DECIMAL	8012 7823 3524+7022 20+20 70×4	1/2+1/4 1/2×3 1/8-1/2×6 1/0+1/4 1/4×4 1/4×4	973-ch1-py (cp) x2 973-ch1-py (cp) x2 979-x4	2.0		447	95	97	44788	• 11	1005		-to
_12.19	_40	-	11111		450	AN WALLING ST	10-70 10-80 Xú 45 80-70 x 4 5	1/2×2 1/0-1/2×6 1/0 1/0 1/0 1/2×6 2/2×6	93-py 95x6 95x6 95x6 95x4 95x4 qt3-feldispar porph.	1-0		457	78	93	4 47 <i>8</i> 9	.09	·cc7		, 09
15.24	50		To elsd.		460	CHATTAN AND	80×6 70 10-70×1 70	Y3-X4×6 Ye Y10-Y2×9 6'	ats + e ats + mag ats + ? ats - carb - py (cp)	2.5		447	?8	67	44790	• 11	- 010		.12
18 20	80		-		470	1			1. A. S. A.									6 - 9	

	0						0								\bigcirc	
					GIBH	KALT	AR MINES	LIN	NITED			F S	HOLE	NO. NO.	<u>E 90-10</u>	DF <u>s</u>
2		ROCK TYPES	CORE	RAPH LOG	Veins	Width		Est	BOTTOM DEPTHS LEACH CAP	-	Formated		A	SSAY F	RESULTS	
Meto	Feet	AND ALTERATION	< TO	oriation disrollor ontage	Core Axis	of Vein	Mineralization	Fv	SUPERGENE	Elocks	Cons. Reid very	R.Q.D.	NUMBER	Cu	Mo	Ertinat
0.00	0	.(E)	11111	-< 4	50-60 x 15	1/10x3+1/2 1/4- 1/4 x10 1/2-2"x15	9t3+ch1+9+++ 9t3+10 9t3+15 9t3+10ating	.5		477	90	50	44 79 1	.07	1005	,10
_3.05	_10			180	39-60 t f	14-14+4 8* 1/2-1/2) 9tz++ 9tz-cmic-chi-py 9tz stock wks	1.0		497	95	53	44792	.10	.008	, D B
6.10	20_		-	490	40-65" x 12	No-Yexiz	atax 12 atarpy		-	101						
						5'	some of Bg-be and lost core	1-0		495	60	10	44793	.06	.014	. 6 9
_9.14	_30		-	500	:	1/3+14+2	leucocratic zone with No.		Ξ		95					
	-	JoQ 3-			2		folk plant			502						
_12.19	_40_								-							
15.24	50	~														
	6															

	0							0								0		
						GIBR	RALT	AR MINES	LIN	AITED -				HOLE	NO.	<u>E 90-</u>	1	
LOCAT	10N	SAWMILL ZONE	F	RFA	RIN	G -		LATITUDE	APP2 32.04	DX . VALUES / EB	CORE	5175		SHEET	. NC). 1	OF	10
DATE	COLL	ARED June 21, 19	90 1	LEN	GTH	160	2'	LONGITUDE	4921	5 E Survey	SCAL	E OF	LOG	1 [*] = 10' D	ATE .	June :	<u>7. D. D</u> 27, 199	ysourn lo
DATE	сом	PLETED June 22,10	190 [DIP.		- 90°		ELEVATION	2962	1 } from topomap	REMA	RKS						
		ROCK TYPES	ORE	GR/	PHI	Veins	Width		Est	BOTTOM DEPTHS		Estimote	8	A	SSAY I	RESULT	S	
eters	eet	AND	TO C	ation	toge	< to Core	of	Mineralization	%	LIM. ZONE 40' SUPERGENE -	Footage	Core	R.Q.D.	SAMPLE	%	%		Estimoted
≥	0	ALTERATION	VE	Foll	100	Axis	Vein		Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
3.05	10	META VOLCANIC SEQUENCE (22'-158) a complex ascendalage of the secondalage	8.0 WK		30	80	12" 3'	fine gra Q+b broken zone and last care	ح .5	lim . weak to 40'	27	75	17	802.01	10/	21001		. 05
		appearance but predon. dark green in color and andesitie or dortie in composition. A typical member is a	50 1.1			7.	5' Ys	gg-ba-lost core (lim) qtz-chl-py	4.5	disritic rock	37	60	27	80202	103	21001		ps
ь.10	20	porphyry with Yw Y10° dia. sous. Phenor in a chloritic matrix. Another- is a chl-ep. breecia consisting of ep clots up to 1°. in a swirled	65 Mad		70	80 55×5	1" 2.1 2.7 _{2"+1} "	qtz gg-bx qtz-carb x 2	0,5		47	80	67	80203	.03	6.001		.05
12 10		dense dark green bieds dense dark green bieds are also common singung variable degrees of lamination of dark and lighter green material. Included also are numerous geness of median gen.	N5- 15 WK		50	10	/s	qłs	4.5	mishi a chice	_57	85	50	80204	.01	2.001		.05
15.24	40	diorite - which may be rearly a lides to a pass. dulies - these zones mange from incluss to teas of feet in which Much of this material is identical to Border Phase Diorite	פא		10				4,5 ,		67	t5	87	80205	•08	2.001		. 58

										6							
						GIBr	KALT	AR MINES	LIN	NITED			H	IOLE	NO.	<u></u>	
		ROCK TYPES	N RE	GRA	PHI	Veins	Width		Est	BOTTOM DEPTHS				AS	NO. SAY I	<u> </u>)F <u>10</u>
leters	eet	AND	TO CC	ation T	OG	e < to	of	Mineralization	%	LIM. ZONE SUPERGENE	Footoge	Core	R.Q.D.	SAMPLE	%	%	Estimot
0.00	0	ALTERATION	V Å	Alte	0 4	Axis	Vein	Construction (co) (co) constr	Рy	Remarks	Blocks	Recovery		NUMBER	Cu	Mo	Grade
		The same from the to as prob. represents a bed of meta. limy valcancelation sects the mame applies - to ~100' to 120'	40 Mod to ND			10	2/6	col-ep precess units	.5			78	83	80206	.06	.001	.10
J.05			ND		80	2	(2.9 2.1"	chi-qtz-ep(r1)(66) chi-qtz-ep(r7)	.s	mainly chi-ep-be with minor scarn Banes	87	98	57	80207	·02	21001	.05
_6.10	20			1	90	1 = 	a" .	ep(p)									
			50 Mal					(from (froles)	¢.5		97	98	83	80208	.08	2.001	.05
_9.14	_30			1	00											·	
			50 Mod.			30-4073	X0-Y8+3	eb.dfz-61×2	5		107	100	87	80209	.04	2,001	.05
12.19	40			1	10	45	2'	collect-sta-(by) scarn		-							
			50?		1000	60?	8'	ep-chl-gamet-py (ep) scarn	4.0			95	93	80210	.79		.20
		-	~~	11				A		=	117				-/		

0	0								0								0		
						(GIBr	ALT	AR MINES	LIN	AITED			ŀ	IOLE	NO.	<u> </u>	*11	
	-		ы Ш	GR	APH	hid			[Fet	BOTTOM DEPTHS	-	-	5	AS	NO.	3 RESULT	OF S	_10
ers	ţ	ROCK TYPES	ATION	Log	LOG	ire .	Veins < to	Width		%	LEACH CAP LIM. ZONE	Footage	Estimated	POD	SAMPLE	%	%	Ĩ	Estimo
Met	5 Fee	ALTERATION	< TO FOLL	Follat	Foota	Structi	Core Axis	Vein	Mineralization	Py	Remarks	Blocks	Recovery	R.Q.D.	NUMBER	Cu	Mo		Gred
_3.05	10	much of the rock from ~118 to ~220 is fine on and si cherty offer with streaks of pale gray at spar material - post meta toff beds. The recorded foin angle	нъ		140	11-26 11	50 50 60 70 KZ	2" 2" 6" Y4 • Y3	afiz-zer-bi (co) eyi-th diz diz zero-bi	1.0		137	98	47	80212	•04	1001		.08
-6.10	20	ep-pied breccia. + nizor pale grey frage.	ND		150	1.9	4312 405014	24" Y4x2 Y10x4	ap-picol(pn) qt3-carbo-chl-py(cp)x2 qt3-chl-pyxt	1.0		(45)	100	40	80213	.02	. 001		. 09
9.14	30	at a 160 the made	NĐ			/	1.	1 ⁴⁴	qt3 qt3-ser-py(re)	.5		157	98	67	80214	.05	2.00)		. 08
12.10		changes from a prodoni saus phose to dark alt'n which persists to	60 WK		-		20-fox + 5-20% 3 60x +	Yeox 10 Yox 3 hle-Yzo 44	chl-py(cp) < +	1.0		187	100	80	80215	·04	2.001		.12
15.24	_40		70 Mod		110	SAN.	5-40×6	Хо-Ую×6 6″	chil-py x6 qt3-chil-carb-py(cp)	1.5			100	73	80216	•02	2.001		.08
1.1.74			45-70		192	×.	5-2016	Yrox6	9 ⁴ 3-54- 8445	1.0	1		95	60		.04	1.001		05

(0								0								6		
						(GIBr	ALT	AR MINES	LIN	NITED			H	HOLE	NO.	<u> </u>	- <u>1</u>	
		DOCK TYPES	12.	, G	RAPI	HIC				Est	BOTTOM DEPTHS				A	SSAY I	RESULT	5	
eters	set	AND	TO COF	tion of	LOO	sture	< to	of	Mineralization	%	LEACH CAP LIM. ZONE SUPERGENE	Foologe	Estimated Core	R.Q.D.	SAMPLE	%	%		Estimat
≥	ш О	ALTERATION		Follo	Alter	Struc	Axis	Vein	Million Ghiza cront	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
_3.05	_10	somes (beds?) of cherty	30 Wit		305	Contraction of the	5-20×2. 5+3 20	X+ X3 X=X==3 2' 14"	qt5-carb-chi-py (cp) = 2 ehi ((cp)) ehi (cp))	2.5	the core contains very fine p((cp) -py and grade estimates may be low-ie. py may be iolo hickor.	.197	98	63	80218	.06	.001		.14
6.10	20	re in places "streaky" with - rooged felsic laminae in dark green chloritie material (190-228") -in places resembles a migmatite.	10 mad			子が見いいな	15×3 3×2 5+10×5	%+Y1++2 Y1++2 Y2++5	qt3-chl-carb-py(cp)×3 chl-py(cp)×2 chl-py(cp)×5	1.5		207	95	60	80219	.06	1002		.10
	20		30-4 Mac	D /	210	A CHAN	523 524 3514062	10×4 10×4 13+1/10×2	etz-chi-p.1(cp)+2 chi-p.1(cp) x 4 qtz-chi-p.yx 2	1.5		-217	95	67	80220	.06	.001		.10
9.14	_30		50 Hlad	-	120		80x3 30	1/20 x 3 1/10 1/10+1/13	chl-py x 3 qt3-chl-carb-py chl-carb-py	1.0		227	100	87	80221	107	.001		.05
15.24	_40_		SD WK		230	K C C AN	4042 50X3 50 50 30+50	1083 1082 1/2+1/4+2 1/2 1/2 1/2 1/2 2/2+2	chi-carb-py zz chi-carb-chi-py zz chi-carb-py gz-carb-chi-py (cp) gz-carb-py - cp xz	2.5		227	15	53	86272	.15	.001		-10
18 20	50	Ch. smc	\$2 W4		250	THE STREET	75 Junitelori 4445 75 50 50 50 50 50 50 50 50	Ve Vorz Vz Vz	the py chipy at 3-conto-chipy (50) x + at 3-conto-chipy s= at 3-conto-chips at	8.5		241	95	83	802.23	. 08	2,001		.10

						GIBR	al I	AR MINES	LIN	NITED			F	HOLE	NO. NO.	<u>E 90 -</u> 5	OF	10
10		ROCK TYPES	ORE	GR		Veins	Width		Est	BOTTOM DEPTHS LEACH CAP		Estimated		AS	SAY F	RESULT	S	1
Meters	Feet	AND	C TO C	ollation	ootoge	< to Core	of Vein	Mineralization	% Pv	SUPERGENE Remarks	Footage Ellocks	Core Recovery	R.Q.D.	SAMPLE	% Cu	% Mo		Estimo
0.00	0	shi see	VIL	24	h.	6-70410	1/20-1/4	qts.cul-carlu-py (cp) x 10	. ,			95				1.005		
			7o Not			85.42	Xex2	qtz-chi-py=z	2.0		257		40	80224	106	·co/		. 01
_3.05	_10	the rock is mainly chlinic with abundant carb this may be a chlicari althi zone or a meta - basalt - in places, chli- carb. zones have been	60 Str		240	70 10?	//3 z" 2' 4 '	qt3-sarb-py chil(py) chilcarb. 3one Phile grey-brown weatherist	.5	* ~ 500/0 brownish	2.67	93	53	80225	.02	1001		0 :
6.10	20	outlined byt the entire 240-355 introd may be a chl-carb zone Note that the incr chl and carb actually starts at 100' with a loss of ep and Sous.	15.80 Str		270	90×15	10'-	qt3 - cano (chi)(ph) 2040*	45	Carb	277	98	80	80224	.01	.001		.0
_9.14	_30		ts Str		250	45	۹'	qtz-chl (sev)-cono-py	1,0		287_	100	97	80227	105	.001		,0
_12.19	_40		45- Bo Str		290	15-80	9'	973-carb-chil(ser)- py(cp)((414)	{•5		297	98	<u>80</u>	80228	• 22	.007		,14
15.24	50		70		300	f 10+40 120=2	:16+2 . Xox2	dis-curp-blebes dis-curp-blebes dis-curp-blebes	1.0			100	47	Delitate	.21	IDCP		.12

						GIBF	RALT	AR MINES	LIM	1ITED -		ł	HOLE	NO.	<u>E 90-11</u>	OF 10
			<u>ا</u>	GR	APH	id			Est	BOTTOM DEPTHS		T	AS	SSAY I	RESULTS	
eters	set	ROCK TYPES AND	TO COF	ation	LOG	Veins < to	Width of	Mineralization	%	LEACH CAP	Cor	R.Q.D	SAMPLE	%	%	Estimo
Š 0.00	щ.	ALTERATION	Fol	Follo	Foot	Axis	Vein		Ру	Remarks	Reco	ery	NUMBER	Cu	Мо	Grade
•			70° 80 WK			145 40 50-70 × 10 70	ys 172 1/2 - X ₀ K10 4'	app-cup-bl (ch) df2-cup-cp-bl x 10 cpl-cup-hl (cb) cpl-bl (ch)	25		qq	87	80230	12	1003	.1±
0.05			60 Vik- Mod		310	70 30×3 50-60×4 60	Ув У20×3 Хох4 5	chl-py qt3-carb-py qt3-carb-py(cp) × 4 chl-carb(qt3)-py(cp) 30=e	2.0	- 32	98	80	80231	.08	100 2	.12
_6.10	_20		SD- 60 Mod		330	50-63	7'	$\sigma_{\mu}(-c_{\alpha,\mu}-\dot{a}_{\mu}^{\gamma}-\dot{h}A(c\dot{a}))$	1.0		90	30	80232	109	.004	,10
_9,14	_30_		50 Xled		140	50	10	Chl-carb ((cp)) Chl-carb-py(cp)	aıl		95	27	80233	.10	.003	.15
_12.19	_40		so Hod		350	60	7'	chl-carb-py-cp	1.5		90	17	80234	.12	100 Z	.18
15.24	50	BORDER PHASE DIORITE (358- 602') a fine to med gro ro (ang. gro size ~ X00"dia) with a crushed and shored			360	5-20 × 10	1/20x7 1/20x10 1/4	ch1-97 × 7	2.0		95	20	80235	· n	.~3	. 68

. (0								0		
									1								•
					GIBR	ALT	AR MINES	LIN	NITED			H		NO.	E 90-1	OF	10
Meters	Feet	ROCK TYPES AND	C TO CORE	OR APH Iteration Cotage Ootage	Veins < to Core	Width of Vein	Mineralization	Pv	LEACH CAP LIM. ZONE SUPERGENE	Foologe Blocks	Estimated Core Recovery	R.Q.D.	SAMPLE	% Cu	% Mo		Estimated
0.00	0	general Comp: : qt3 10-20 o/o as interstit. grns not visible without magnificatione plag. ~50 o/o as anhedrol saus. grns up to 1/0"	ND		5-30 x3 5-60+70 60+70 x 6 ?	1/4-1/3 × 3 1/4×2 1/0-1/4×6	chi-carb-py (vug) * 3 chi-carb-py x2 chi-carb-py white qt2-porp. mainly a	3.5		377	95	23	80236	•14	.005		,12
6 10		chi -20-30 of as ranged wisps and gras ep up to 200/0 as short veinlets, gash veinlets and clots often carrying fine dissem. cp in places	45 WK	390	20+30 50x3 20+5×2 45x5 20x3 30x2 40x3	/4+/10 /8×3 /10×5 /10×3 /10×3 /10×3 /10×3 /10×3	(1) chl-cp x2 chl-carb-py(cp)×3 chl-carb-py(cp)×3 chl-carb-py(cp)×3 chl-carb-py(cp)×3 chl-carb-py(cp)×2 chl-carb-py(cp)×2	5.0		387	† 5	60	80237	·25	.005		.35
9.14	30	Crushed and "healed"- by ep.	70 WK	400	5+2+to-6x4 45 45 70	10-14×6 1" 1/3×2 31/2"	chl-carb-py(cp)x6 chl-carb-py(cp) chl-carb-py-cpx2 chl-(carb) py(cp)	6.0		397	100	57	80238	131	,010		.30
12.19	40	· · ·	ЫР	410	30x S 60-80x3 80 20 40×10	X10×3 X2×3 2×2 1" Yto-Y10×10	9t3-ch1-p1x = ch1 (cp) x3 ch1-carb-py(cp) qt3-ch1-py qt3-ch1-pyx10	5.0	> soft vuggy core.	107	100	83	१०२ ३५	.13	.011		.15
15.24	_50	se accepts to be	ND	420	40-15x4 45 40 30-60x12	1/8+1/3 x2 1/4 x 4 1/2 1/3 1/10-7/4 x 12	9t3-carb-py (cp) × 3 9t3-chl-py × 4 9t3-chl-py 9t3 9t3-chl-py × 12	4.5		417	100	87	80240	• 16	.014		_12
18 29	60	associated with ep clots wisps and veinlets as fine clisseminations		430	30 30x2 5×3 45×2 45	1/3 1/10×2 1/10×3 1/10×2 1/3 6"	973.chl-py-cp 973.chl-py=2 973.chl-py=3 973.chl-py(cp)== 973.chl-py 93bx	35		427	100	73	80241	.20	1015		.12

(0					i ŝ			0		
						(GIBR	ALT	AR MINES	LIM	1ITED			H	IOLE	NO.	E 90-1		
			μ	6						Fst	BOTTOM DEPTHS			3	AS	SAY F	ESULTS	S	_10
ters	et	ROCK TYPES AND	O COR	tion 9	LOG	ture	Veins < to	Width of	Mineralization	%	LEACH CAP LIM, ZONE SUPERGENE	Footage	Estimated Core	R.Q.D.	SAMPLE	%	%		Estin
W N	E E	ALTERATION	FOL	Folla	Foot	Struc	Axis	Vein	willer dización	Py	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Gri
. 3.05	10		***		410	Numperson and	40 45 20×3 40 35 25×2 5×2 3	1" YA Yox 3 YA Ya+YA	972, 587- 64-64 972 - 973- 677 × 3 973- 627- 67(60) 873 - 567- 67(60) 123 - 567- 67(60)	3,5		451	98	63	80292	15	,009		
6.10	20		2		450		70 2053 20 20 15 5 20 15 5 2 10 75 5 2 45 2	52 10×3 1/3 1/4 1/4+1/2 1/2+1/10×3 1/10×2	915 chl-py x 3 975-chl-py (cp) 973-chl-py (cp) 973-sec pl-cp 973-sec pl+ 973-chl-pyx 3 chl-py (cp) x 2	4-0		447	98	67	80243	•14	,006		
9.14	30		1111111		460	SALVAR	15×3 5×2+10 5×3 20+1 20 40 10+10	10×3 10×3 10×3 10×3 10×3 10×3 10×3 10×3	ahl-py(cp)x 3 chl-carb-py x 3 qt3-cmb-chl-py x3 qt3-ser-pj(cp) qt3-ser-pj(cp)	3-5		457	190	40	80244	/2	<i></i> 3		
12.19	40	×	ND ND		470		5-10 85 5 1082 2082 45+582	Xo=74+5 Y3 X2+74 X4+X10 X4+X012	chl-carb-py(cp) *= chl-carb-py carb-py *2 chl-py *2 chl-py *= chl-py (cp) *=	4.D		467	95	57	80245	- •11	.003		
15 24	50		11111		450	11.	20×3 30×2 5	410 c3 1012 14 10x2	qtz-chl-pyxz qtz-chl-py(cp)	3.5		477	95	57	80146	•14	1004		.1
						4 4	5 ^2	X4+ Y10	Chil carb-pyra	3.0			95		2-047	. 20	1006		

GIBRALTAR MINES LIMITED

						GIBH	(AL I	AR MINES	LIN	NIED			F	IOLE	NO.	E 90-11	OF	
	_	BOCK TYPES	E A	GR	APHI	dvoine	Width		Est	BOTTOM DEPTHS	1				INU. SSAY F	RESULT	OF S	_10
ters	et t	AND	0 CO	tion	LOG	e < to	of	Manager	%	LEACH CAP LIM. ZONE	Foologe	Core	R.Q.D.	SAMPLE	%	%		Estimate
₩ 0.00	ц Б Ф	ALTERATION	FOL	Follat	Footo	Axis	Vein	Mineralization	Ру	Remarks	Blocks	Recovery		NUMBER	Cu	Мо		Grade
7.05	10		16			1 5 10+15+2 45+2 5 5 10+70+2 45 5	Y10 Y4+Y2+2 Y6+2 Y6+3 Y10+3 Y10 Y10 Y10 Y10 Y10 Y10 Y10 Y10 Y10 Y10	4/2-11(cp) 4/2-(cp)×2 ch1-py 4/2-11(cp) 2/2-(cp)×2 ch1-py	2.5		497	18	33	80218	• 24	.010		,12
03			N		200	40 40 43 30? 43	2" % 4" %	chi-chipyichi qt3-ser-sp qt3-shi (cp) chi-carb-sp	3.0		507	98	53	80249	·21	.006		.20
	_20	the core contains numerous short venters and goshes of ep - sometimes vugot with 1ts and fine ep. - similar to E90-10 and the battons of E90-1 (300 - 602)	NS		\$10	544 542 50 30 30x3 5 3	110 × 4 110 × 2 3" 1/10 × 3 1/10 × 3 1/10 × 3 1/2 2"	chi-pyxt gts-chi-pyes gts-chi-pyes chi-py(cp)x3 chi-pyxs gts-chi-py(ms) ep-qt3	3.5		517	49	50	80250	.17	.003		.10
12 10		of the rx. and appears _ to incr. with depth	Ł		510	5×5 +5×5 60 c2 ?×5 70-80×6	1/2-1/10×3 1/2+1/4 3"+1 3+2×2 kle-1/20×6	qt3-chl-py x3 qt3-ser-py x2 qt3-ser-py x2 qt3-ser-py x2 ap-op x4	45		527	98	43	80251	.19	. 603		.10
15.04	50		ND			10+10 HOR	X108.4 X4+ Y1082 Y882 X4+2 Y4+2	ehinpy (rp) x 4 qt3-chi-ep-py (rp) x 2 qt3-ser-py x 2 qt3-chi-carb-py (cp) x 2 chin a (ce) x 2	2.5		557	90	n 57	B0252	• 13	.003		.14
18,29	60				550	20+30+50 3055 2=3056 15 5-10 x 8	1/3+1/4+2 1/4×3 1/0-1/4×6 1/2 1/0×8	93-chl-py(cp)×3 93-chl-py(cp)×4 93-chl-py(cp)×6	4-0		547	95	ا ه م	80253	•/0	+ 0C2		.12

C	2							0								0	
					0	ЯРЧ	ALT.	AR MINES	LIM	ITED			F	IOLE	NO	E 90-11	
			T						Te J	BOTTON DEPTHS			5	HEET	NO.	FSULTS	DF
		ROCK TYPES	CORE	LO	C	Veins	Width		Est.	LEACH CAP	Foologe	Estimated		SAMPLE	7	7	Est
Meter	Feet	AND ALTERATION	< TO FOLIAT	Alteration	Structure	Core	of Vein	Mineralization	Py	Remarks	Blocks	Core Recovery	R.Q.D.	NUMBER	Cu	Мо	G
0.00	0		нь		Story and	5×2 44 35 20×5 50 20	1/2 1/2 1/0 Hors 1/2	chl-py + 2 ft 3-chl py (cp) ft 3-chl py - ap ft 3-chl py x 3 chl-py at	3-0		554	5 0	י ד	80259	.07		
_3.05			мр			3**3 1072 2012	Yara Yara Yara	913-011-0483 913-011-0483	2.5		567	160	73	802.55	.10	.005	2
_6.10	_20	chi-ep by from 575- to - 590 with a few Q.P. Frage.	NO	57		2041 70 6012 1072	1002 1/8+2 1/3 1/8+1/10 1/4+3	412-64 412-64 413-64-64+2 642	1.5		\$77	18	47	80254	.08	.00 4.	
_9.14	_30		ND	55	50 /	3.	¥4 ¥4	chi-ty ats-chi-py	1.0		587	15	13	80257	• 11	.007	
12.19	_40		N'5	5)	P	20415 15+20 20 50-90 13 60 12	10+2 1/3+1/4 1/3 1/4+1/3+2 1/4+1/0	otz-py (oug) xz otz-chi-py otz-zen-py otz-zen-py otz-chi-pycz	3.0		594	98	10	82.258	.17	.005	
15.24	50	E.O.H. 602'		60	00 /	20	X.	973+3 973-ckl-carb-py			602				-		
		SCB															

