D. Crict Geol	ogist, Prince George	Off Confidential: 91.10.24
ASSESSMENT RE	CPORT 20541 MINING DIVISION: O	mineca
PROPERTY: LOCATION:	Mt. Sidney Williams LAT 54 54 00 LONG 125 24 00 UTM 10 6086085 346103 NTS 093K14W	
OPERATOR(S):	Klone 1,One-Eye 1 Viceroy Res. Mowat, U.	
SEARCHED FOR: KEYWORDS:	Gold Cache Creek Group,Trembleur Intrusi Serpentinites,Peridotites,Dunites,N	
DIA GEO PET ROC SAM SIL SOI	<pre>blogical,Drilling,Geochemical AD 305.3 m 7 hole(s);BDBG Map(s) - 7; Scale(s) - 1:100 DL 200.0 ha Map(s) - 8; Scale(s) - 1:1000,1:250 CR 3 sample(s) CR 3 sample(s) CR 8 sample(s);ME Map(s) - 2; Scale(s) - 1:20 000 IP 343 sample(s);ME CT 6 sample(s);ME L 2 sample(s);ME</pre>	0
RELATED REPORTS: MINFILE:	17173,18089 093K 043,093K 072	

O

· - -

- - -

_.

-- -

LOG NO:	11-23	RD.
ACTION:		
FILE NO:		

MAPPING AND

DRILLING PROGRAM

on the

MOUNT SIDNEY WILLIAMS PROPERTY

OMINECA M.D.

N.T.S. 93-K-14W

Lat.: 54° 54'N Long.: 125° 24'N

by

UNE-RECEIVER B.SC. UNE-RECEIVED UNE 2 2 1990 IAR # South B.Sc. for

VICEROY RESOURCE CORPORATION

880 - 999 West Hastings Street Vancouver, B.C. V6C 2W2

GEOLOGICAL BRANCH ASSESSMENT REPORT

<u>Ь</u>2

September, 1990

TABLE OF CONTENTS

1.0	INTRODUCTION	•
2.0	LOCATION AND ACCESS	
3.0	CLAIM DATA	ļ
4.0	HISTORY	ļ
5.0	REGIONAL GEOLOGY	
6.0	PROPERTY GEOLOGY	;
7.0	MINERALIZATION	-
8.0	ALTERATION128.1LISTWANITE128.2SILICIFICATION168.3FELDSPATHIZATION168.4TALC/SERPENTINE/JADE168.5OTHER178.6ALTERATION17	
9.0	STRUCTURE	
10.0	WORK PERFORMED)
11.0	CONCLUSIONS	;
12.0	RECOMMENDATIONS	;
13.0	REFERENCES	ł
STATE	EMENT OF QUALIFICATIONS	
STATE	EMENT OF COSTS	
APPEN	NDIX I RECONNAISSANCE SAMPLING THIN SECTION DESCRIPTIONS	
APPEN	NDIX II DRILL LOGS	
APPEN	VDIX III	

.

GEOCHEMICAL ANALYSES RESULTS

____ ·

.

÷ •

()

 \bigcirc

0

.

MAPS

FIGURE 1	PROJECT LOCATION MAP	2
FIGURE 2	CLAIM MAP	IN POCKET
FIGURE 3	RECCE SAMPLE LOCATION MAP	IN POCKET
MAP A	GRID MAP AND LISTWANITE ZONES	IN FOLDER
MAP B	GRID MAP AND LISTWANITE ZONES	IN FOLDER
MAP 1	GEOLOGY	IN FOLDER
MAP 2	GEOLOGY	IN FOLDER
MAP 3	GEOLOGY	IN FOLDER
MAP 4	GEOLOGY	IN FOLDER
MAP 5	GEOLOGY	IN FOLDER
MAP 6	GEOLOGY	IN FOLDER
DRILL SECTION	HOLE #1	IN FOLDER
DRILL SECTION	HOLE #2	IN FOLDER
DRILL SECTION	HOLE #3	IN FOLDER
DRILL SECTION	HOLE #4	IN FOLDER
DRILL SECTION	HOLE #5	IN FOLDER
DRILL SECTION	HOLE #6	IN FOLDER
DRILL SECTION	HOLE #7	IN FOLDER

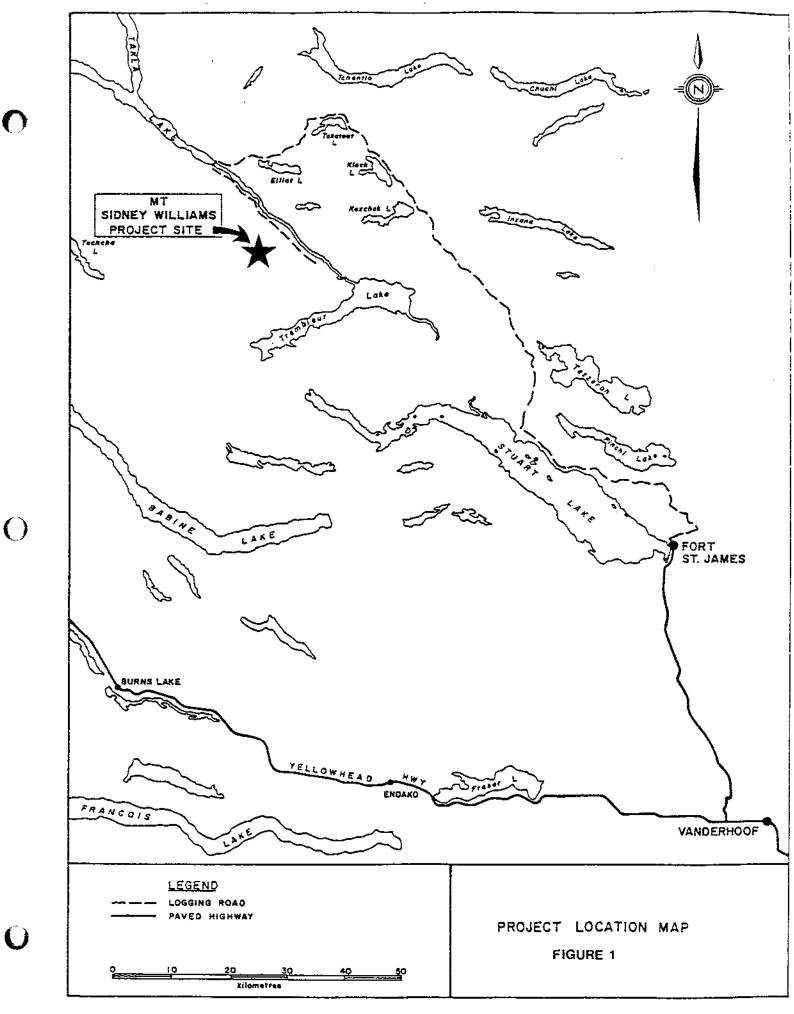
0

 \mathbf{O}

0

1.0 INTRODUCTION

A program consisting of mapping and drilling was conducted on the Mount Sidney Williams property from July 1 to August 31, 1990. Mapping was concentrated in the areas of know listwanite occurrences in an effort to determine the extent and orientation of the listwanite. Twenty-five thousand four hundred twenty-five metres of grid line, plus 25,425 metres of in-between grid mapping were done at a scale of 1:1,000. In addition, 1,950 metres of creek traverses were also completed. Two hundred hectares were covered by the mapping program which was concentrated on the Klone 1 and One-Eye 1 claims.


Six silts, 2 soils and 8 rocks were collected during property traverses. All samples were analyzed for 30 elements by ICP and Au by atomic absorption.

During August, 305.3 metres (1,001 feet) of BDBGM drilling was completed. All core was split and analyzed for 30 elements by ICP and Au by atomic absorption. In addition, 3 sections of core were analyzed for platinum group elements. Sludges were collected where possible and analyzed for 30 elements by ICP and Au by atomic absorption.

2.0 LOCATION AND ACCESS

Mount Sidney Williams lies 87 kilometres due northwest of the town of Fort St. James and is located at co-ordinate 54° 54' N/125° 24' W on map sheet NTS 93-K-14W.

Access to the property is at present by helicopter.

O

0

. . .

3.0 CLAIM DATA

The Mount Sidney Williams property consists of the following claims:

<u>Claim Name</u>	Record No.	<u>No. of Units</u>	<u>Record Date</u>
Mid	8108	20	Dec. 22/86
Van 1	8127	20	Jan. 15/87
Van 2	8128	20	Jan. 9/87
Klone 1	8593	9	Jul. 28/87
Klone 2	8977	9	Sep. 16/87
Klone 3	9181	20	Nov. 13/87
Klone 4	9182	20	Nov. 13/87
Klone 5	9183	20	Nov. 13/87
Klone 6	9184	20	Nov. 13/87
Klone 7	9185	20	Nov. 13/87
Klone 8	9186	20	Nov. 13/87
One-Eye 1	9070	18	Oct. 30/87
Terannoursus	9642	3	Aug. 9/88
Money	12177	4	Jul. 1/90

The property is presently held under option by Channel Resources Ltd. from U. Mowat. Viceroy Resource Corporation, which is acting as operator on the project, is sharing exploration expenditures in order to earn an interest in the property.

4.0 HISTORY

The first known geologic record of the Mount Sidney Williams area was made in 1937 following a brief reconnaissance of the Fort St. James area by J.E. Armstrong of the Geological Survey of Canada. In 1942, nine chromite deposits were located in the Middle River Range by the G.S.C., plus several asbestos showings of varying quality in the area of Mount Sidney Williams.

Prospectors working in the region reported gold values in carbonate-quartz-mariposite and carbonate-talc rocks in shear zones in altered Trembleur Intrusions (Armstrong, J.E., Fort St. James Map Area, Cassiar and Coast Districts, B.C., G.S.C. Memoir 252, p. 181). One sample of carbonate-quartz-mariposite rock high in quartz (75%) taken on Baptiste Creek contained 0.036 oz/t Au, 0.07 oz/t Ag.

During the late 1930s a small placer operation was located on Van Decar Creek for a brief period. The operation was located below serpentinized peridotite and nuggets valued at \$.50 to \$2.00 were found (1935 prices).

Old flagging and numerous camp sites would indicate that Mount Sidney Williams has been examined in the past for its chrome, nickel and asbestos potential. No mention is made of any exploration, however, until 1962 (MMAR) when the main asbestos showing is described. Blasting caps found at this location indicate an attempt to trench the showing.

Since 1975, various groups have examined the Mount Sidney Williams area for chrome, platinum and gold.

5.0 REGIONAL GEOLOGY

...

.

The area of Mount Sidney Williams is underlain by a 15 km. wide belt of northwesterly-trending Pennsylvanian and Permian Cache Creek Group rocks consisting of ribbon chert,

____ ·· ·

argillaceous quartzite, argillite, slate, greenstones, limestone with minor conglomerate and greywacke. The Cache Creek Group has been intruded by Upper Jurassic or Lower Cretaceous Omineca Intrusions consisting of granodiorite, quartz diorite, diorite with minor granite, syenite, gabbro and pyroxenite. As well, Post-Middle Permian, Pre-Upper Triassic (?) Trembleur Intrusions consisting of peridotite, dunite, minor pyroxenite and gabbro with serpentinized and steatized equivalents intrude the Cache Creek Belt.

The northwesterly-trending belt of Cache Creek rocks is bordered on the east by the Pinchi Fault and Upper Triassic and later Takla Group andesites, basaltic flows, tuffs, breccias and agglomerates with interbedded conglomerate, shale, greywacke and limestone. On the west, the belt is bounded by the Takla Fault, an east-dipping zone, up to 5 km. wide, containing a melange of serpentine and greenstone. The melange is adjacent to Triassic metamorphosed pyroclastic rocks, basalt, rhyolite, greywacke and argillite of the Sitlika Assemblage.

Between the Pinchi Fault and the Takla Fault, the predominant units of the Cache Creek Group of chert, phyllite, carbonaceous phyllite and argillite with minor greywacke and limestone, are highly deformed. Three deformational periods have been recognized in the Cache Creek Group which has been lower greenschist facies with metamorphosed to local glaucophane. The oldest structures are a prominent foliation that parallels compositional layering and trends east-west, marking the axial planes of isoclinal folds. A later structure consists of chevron folds which trend north-south with axial planes dipping moderately westwards. The youngest

structures are warps and kinks, probably related to late faulting.

6.0 PROPERTY GEOLOGY

.

The Mount Sidney Williams property is divided into two different geological domains by Van Decar Creek, a fault zone with a postulated 1,000 metre horizontal displacement. On the west side of Van Decar Creek, the rock types consist dominantly of Cache Creek Group dark green andesitic volcanics and black argillites which have been intruded by rootless pods of olivine harzburgite and gabbroic to pyroxenitic rock. One small dyke of feldspathic nature was also seen intruding the argillite.

A volcanic cone-like feature also intrudes the dark green andesitic-argillite package. In addition, dark black, freshlooking, basaltic flow material has been seen in Van Decar Creek covering the argillite. The source of the basaltic material is postulated to be the volcanic cone-like feature.

From reconnaissance prospecting it would appear that the black argillite is overlain by the dark green andesitic volcanics which appear to be, at least in part, thrust over the argillite.

The largest ultramafic seen on the west side of Van Decar Creek is a nodular olivine harzburgite measuring approximately 1,300 x 800 metres.

On the east side of Van Decar Creek, the dominant rock type is harzburgite with lesser amounts of dunite, nodular olivine harzburgite and altered equivalents of the

- ---- ---- ----- -----

harzburgite. A minor amount of schist has been seen at the contacts of the ultramafic massif. A small, glassy, vuggy volcanic and several small bodies of norite have been found intruding the harzburgite. Also, a small outcrop of monzonite has been located on the Van 2 claim.

A description of what is believed to be the youngest to the oldest lithologies on the properties follows.

- (1) Felsic dyke: Possibly the youngest unit on the property. The dyke is light grey with fine-grained, dark green chloritized mafic dots. The dyke does not appear to have a chill zone and trends 280°/90. The dyke intrudes a listwanite zone in steeply-dipping argillites.
- (2) Andesitic dykes: Several small outcrops of dyke material have been found on the east side of Van Decar Creek. The rocks have a dark grey matrix and contain pyroxene phenocysts up to 1 cm. in length. The dykes do not show any preferred orientation and are relatively unaltered.
- (3) Black basalt flow: This rock is a very fine-grained rock with minor ragged feldspar occasionally visible. The only outcrops found to date have been in Van Decar Creek. It appears to be relatively flat-lying and in one outcrop was seen to cover black argillite. The source of this flow is postulated to be the volcanic cone-like feature on the west side of the property.
- (4) Glassy volcanic: A small plug of glassy, vuggy volcanic intrudes harzburgite in only one location, near Tear Drop Lake.

(5) Volcanic cone: On the postulated cone itself, the lithology consists of a pale green matrix with finegrained to medium-grained feldspar laths visible. Within the volcanic unit are rounded fragments with the same lithology as the matrix (i.e. feldspar lath volcanic). However, the feldspar laths within the rounded fragments are coarse-grained. The cone is cut by black basaltic dykes and vuggy dykes which appear to be vertically oriented.

On the flanks of the postulated cone, a pale green aphanitic to tuffaceous-appearing volcanic has been found. This material resembles the matrix of the feldspar lath volcanic.

No sulphides were seen in any of the rocks examined. There is, however, an immense amount of quartz veining within the flank material of this unit.

(6) Norite: Norite outcrops were located during the 1990 mapping and have been found in two places to date - the crest of Mount Sidney Williams and in Jade Valley located at the upper head waters of Van Decar Creek. The norite is fine-grained, dark grey, strongly magnetic and consists of 80% mafics and 20% feldspar. Occasionally 1% disseminated pyrite can be seen. The norite appears fresh and intrudes the harzburgite (Unit #10). Contacts appear to be sharp, fault-controlled except on occasion where they are vague and serpentinized and grade into serpentinized harzburgite. The norite does not appear to be a dyke (except on the ridge of Mount Sidney Williams) but rather an amorphous body. It is postulated that the

observed outcrops are tongues of a major intrusive body of norite.

- (7) Monzonite (?): A small outcrop was located near the 4 North corner post of the Van 2 Claim. The rock is white, sheared and sericitized.
- (8) Nodular olivine harzburgite: This rock unit which weathers a distinctive light green consists of 1-3 cm. wide ovoids of dunite/peridotite in a harzburgite matrix. The unit generally forms pod-like bodies within or intruding the harzburgite (Unit 10). An exception is the nodular olivine harzburgite located on the west side of Van Decar Creek which is by far the largest showing of this lithology.
- (9) Olivine harzburgite: This rock type, which also weathers a distinctive light green, is black, dense on fresh surface. This unit forms a roughly "east-west" trending series of pods within the harzburgite (Unit 10). Although these pods are considered to be dunite and they are dominantly monomineralic (olivine), the harzburgite texture (i.e. the orthopyroxenes) can be seen gradually being obliterated towards the core of the pod. It is believed that these pods represent areas of later olivine-enrichment and/or replacement (?) of the harzburgite (Unit 10).
- (10) Harzburgite: This rock type is the most predominant lithology on the east side of Van Decar Creek. It is composed of 50-60% olivine and 40-50% orthopyroxene. The harzburgite weathers a distinctive orange-brown with the

.

resistant orthopyroxene, which reaches up to 1 cm., forming a rough surface. Within the generally massive harzburgite are layers of dunite and minor randomlyoriented orthopyroxenite veinlets up to 10 cm. wide.

- (11) Dark green, andesitic volcanics: This unit appears to overlay the argillite of Unit 12, as a flow or as a thrust. A gossanous sheared contact was found in only one outcrop. The andesite is dark green to almost black, massive with vague feldspar laths occasionally visible. Occasionally it is highly magnetic. The andesite has been altered by chloritization with minor epidote and possible fine-grained laths of actinolite. Minor chalcopyrite and pyrite were noted in the andesite.
- (12) Argillite: Argillite is the dominant lithology on the west side of Van Decar Creek. It is black, fairly carbonaceous with minor pyrite. Occasionally the argillite is cut by numerous quartz veins. In one location near a thrust, the argillite has been intensely sheared and also serpentinized. The argillite would appear to trend 300° and dip 65° to the southwest.
- (13) Limestone: Only one fairly small outcrop of this lithology was discovered to date. The rock is light grey, buff, black (argillaceous) or light green (micaceous?). It is cut by white carbonate veinlets, and is poorly altered by listwanite zones with mariposite. Minor pyrite has been noted in the limestone.
- (14) Schist: This unit is light grey with minor pyrite. It is believed to be altered argillite. Alteration includes

- 10 -

areas of intense sericite and talc. The schist has been found along the contact of the harzburgite on the east side of Van Decar Creek and in close proximity to shear zones such as Van Decar Creek.

From a brief reconnaissance of Baptiste Creek which cuts through the Mid Claim it would appear that the Mid Claim is underlain by harzburgite which has been weakly to severely altered by serpentinization. The harzburgite was seen to be bounded by either listwanite or talc zones, both of which contain numerous quartz veins. Baptiste Creek, which appears to be a major shear zone, also contains zones of intense silicification as well as coarsely crystalline ankeritic alteration.

In one location on a cliff face a zone of vuggy quartz, chalcedonic quartz and carbonate was discovered. It is believed that the vuggy material was formed by more "recent" hot spring activity. Soil samples taken above the suspected hot spring vent were of chalcedonic sinter.

7.0 MINERALIZATION

The Mount Sidney Williams ultramafic massif is an extremely sulphide-poor system. Only trace amounts of a very fine-grained yellowish sulphide were noted in a few locations within the ultramafic rocks.

Chromite has been found throughout the harzburgite and in some of the dunites and olivine harzburgites. The chromite has been altered to a high Mg-Al spinel and occurs as small massive chromite pods, fine-grained clots and as veinlets which occasionally form a stockwork within the harzburgite. Asbestos, both long-fibre and tremolite, has been found scattered throughout the property, closely spatially related to the olivine harzburgite.

A small outcrop containing coarse-grained stibnite was located in a vertically-dipping, brecciated listwanite zone near the west boundary of the Klone 1 Claim.

Minor chalcopyrite has been seen in the dark green andesitic volcanics, along with minor pyrite.

Sulphide mineralization of economic importance consists of very fine-grained arsenopyrite and pyrite located within listwanite zones. It is believed that the arsenopyrite is the source of the gold values in the listwanite. Drill core has shown that the sulphide mineralization within the listwanite is erratically distributed in intensely silicified areas and also along fault zones. The distribution of sulphides and silicification is directly related to the norite intrusives forming an alteration-mineralization halo at the contact of the norite.

The only sulphide noted on the Mid Claim was pyrite, and possibly minor chalcopyrite, in some of the listwanites and shear zones.

8.0 <u>ALTERATION</u>

8.1 <u>LISTWANITE</u>

Listwanite alteration forms a vivid red-orange rock composed of variable amounts of carbonate, quartz, mariposite and occasionally sulphides (pyrite and/or arsenopyrite). Carbonate forms the major component of the alteration zones and is probably ankerite or ferro-dolomite. Quartz occurs as white quartz veinlets, virtually always vertical, and as a pervasive alteration of the carbonate alteration. Mariposite is seen in both the carbonate and the pervasively silicified sections and is generally very fine-grained imparting a pale green hue to both rock types.

The major listwanite outcrops have been named as follows:

- (1) Camp Zone Listwanite outcrop is exposed over a length of 50 metres. The listwanite is unique in that some material has an epithermal appearance. Vuggy quartz forms the matrix to carbonated brecciated ultramafic fragments.
- (2) Upper Zone Listwanite is exposed by trenches, pits and outcrop over a length of 85 metres. A fault zone 2 metres wide assayed as high as 1.290 oz/t Au.
- (3) Middle Zone Listwanite is poorly exposed over a distance of 70 metres.
- (4) Lower Zone Listwanite occurs as isolated outcrops near the junction of Van Decar and Teardrop Creeks. This zone may be a dislocated section of the Oro Zone.
- (5) Oro Zone Listwanite is exposed over a distance of 300 metres, trending $\approx 290^{\circ}$. It is by

- 13 -

far the most continuously exposed zone and consists of dominantly carbonate and carbonated harzburgite. Minor pervasive silicification and quartz veining are present.

- (6) Stibnite Zone The Stibnite Zone is an area of alteration (listwanite, serpentine and talc) that extends for a distance of ≈ 200 metres. The actual listwanite can be traced for ≈90 metres and appears to have a width of ≈ 35 metres.
- (7) RJS Zone The RJS zone consists of a 10 metre wide carbonate listwanite. The zone is a complex mixture of serpentine, norite and altered harzburgite/listwanite.

In addition, there are several other large outcrops and numerous sporadic small outcrops which have not been named at present.

Originally it was believed that listwanite zones were strictly structurally controlled. It would appear from drilling plus the mapping of the RJS zone that listwanites form a contact alteration halo around norite intrusives. There are a minor number of listwanites of dominantly carbonate alteration that occur as blind lenses along major fault zones. Sampling of these lenses has indicated that they are non-auriferous.

. . . .

_ . _ _ _

Listwanites in the major outcrops appear to be zoned both horizontally and vertically. The zonation would appear to be as follows:

(1) Norite.

- (2) Bleached, highly pyritic (10-20% pyrite) sericitic contact.
- (3) Pervasively silicified zone sulphides are predominantly arsenopyrite (5-10% sulphides).
- (4) Carbonate zone 0-5% sulphides with pyrite predominant.
- (5) Talc serpentine zone 0.-1% pyrite.

Drill core and thin sections have shown that there are multiple phases of alteration within the listwanites. It would appear that the earliest phase of alteration of the harzburgites was the introduction of carbonate, followed by the intrusion of norite and hence the pervasive silicification. A second but weaker stage of pervasive carbonate alteration was then introduced. The last stages of alteration include pervasive chalcedonic quartz replacement and carbonate, carbonate-quartz, quartz and chalcedony veinlets.

The mineralization in the listwanites was introduced with the pervasive silicification and concentrated by shearing and the late-stage carbonate, carbonate - quartz veinlets.

Argillites and limestone have also been seen to be altered to listwanite.

8.2 SILICIFICATION

In addition to the pervasive silicification and the chalcedonic quartz in the listwanites, quartz occurs as veins and as replacement bodies along major structures.

Quartz veins are usually white bull quartz which have been shattered into cleavage quartz. Veins have been seen up to 3 metres wide and traceable for approximately 1000 metres.

Along major structures, located on the west side of Van Decar Creek, pods of silicified material have been seen and appear to be either replaced argillite or replaced volcanic of unit #5. In one case the silicified material was cut by an erratic magnetite veinlet.

8.3 FELDSPATHIZATION

Plagioclase of undetermined composition has been seen in thin sections to selectively replace the groundmass of harzburgites (particularly in the Stibnite Zone). The source of the plagioclase is believed to be the norite.

8.4 TALC/SERPENTINE/JADE

Massive talc alteration consisting of a distinctive reddish matrix with 1 cm dark grey ovoids has several geologic settings. The main occurrence of talc alteration is at the outer most periphery of the listwanite zones. Numerous bodies of talc have been located along fault zones and appear to be isolated occurrences with no relationship to the listwanites.

- 16 -

In addition, pervasive talc alteration along major structural breaks has affected the volcanics and argillites of units 11 and 12 as well as recent basaltic volcanic plugs. The volcanics are pale green with the talc being coarse grained. The argillites are greasy and highly sheared. The recent basalts while still retaining a macroscopic fresh appearance are also replaced by coarse grained talc.

Dark green serpentine and jade are located on the outer periphery of listwanite zones and are formed under structurally controlled situations.

8.5 OTHER

The volcanics on the west side of Van Decar Creek (unit 11) have been altered by varying intensities of chlorite, epidote, tremolite and jasperoid material. This alteration reflects the contact metamorphic effects produced by pyroxenite intrusives.

8.6 ALTERATION - MID CLAIM

Alteration on the Mid Claim consists of zones of reddishgrey talc, cut by numerous .3 metre wide, vertical white bull quartz veins immediately adjacent to serpentinized harzburgite.

High-carbonate, buff listwanites with minor quartz veinlets have been cut by intensely silicified zones which appear glassy and have a distinctive greenish hue.

Coarsely crystalline carbonate (listwanite?) with occasionally intense mariposite and up to 5% pyrite locally have also been seen. The coarsely crystalline carbonate has

· ------

been found as a matrix to brecciated dark grey, carbonated ultramafic.

In addition, in the vicinity of the hot-spring like area, kaolinization has been found along fractures and shears. The rock has also been intensely altered by chalcedonic quartz and carbonate.

9.0 STRUCTURE

Although it has been postulated that the listwanites are structurally controlled zones that generally run east-west (except for the Oro zone), neither mapping nor previous soil geochemistry show this to be the case. The Oro Zone is the only listwanite body that shows any discernible orientation trending approximately 290°.

The predominant trend for major faults, the strike of the argillites and the Oro Zone is 290-310°. This orientation is particularly predominant on the west side of Van Decar Creek. A weaker subsidiary orientation of N20°E to N40°E is also prevalent and is called the Van Decar influence as this orientation roughly parallels that of Van Decar Creek. Quartz veining, possibly the orientation of the Stibnite Zone and creek drainages which appear to be structural breaks are affected by the Van Decar influence.

On the east side of Van Decar Creek preferred orientations are subtle, generally east-west, and have affected the norite dykes on the ridge of Mt. Sidney Williams, and possibly the Camp Zone listwanite. Quartz veinlets in some listwanites also have a preference for an east-west trend. The role of structures appears to be less important in the formation of the listwanites than the geologic setting. From drill core it is apparent that the occurrence of the norite is the critical factor for the formation and mineralization of the norite. Whether the norites are structurally controlled has not yet been determined.

The only economic structurally significant feature that was revealed by drill core is that shear zones are most definite conduits for auriferous fluids.

Van Decar Creek is a major dislocation zone with a postulated horizontal displacement of approximately 1000 metres. Blocks of tectonic breccia have been located in the upper portion of Jade Valley. It is not known whether the displacement occurred prior to the listwanite formation. It is suspected by the apparent lack of continuity of talc zones and also carbonate listwanites that movement is post-liswanite formation.

Blocks of tectonic breccias and mylonites have been located in several areas on the west side of Van Decar Creek suggesting that major faulting is present.

On line 6+00W/5+25S, an ultramafic plug located near Coy Lake appears to be folded. The fold trends $\approx 290^{\circ}$ and has been up-ended into a vertical position. Layering in the ultramafic is also vertical.

.

10.0 WORK PERFORMED

10.1 MAPPING

During July, 1990, the author and an assistant mapped an area of 200 hectares concentrating the work in an area of known listwanite occurrences. Mapping was done at a scale of 1:1,000 and was concentrated on the Klone 1 and One-Eye 1 claims. In all, 25,425 metres of flagged line, 25,425 metres of between-line, and 1,950 metres of creek traverses were mapped.

Mapping did not reveal any new listwanite zones, nor any orientation of the known zones. However, numerous listwanite debris trails were discovered indicating the presence of extensive covered zones.

Of major importance was the discovery of several small norite bodies in the upper reaches of Jade Valley. The norite was seen to intrude harzburgite producing an alteration halo of serpentine/jade and listwanite. Orientation and contact features were not clear. Some contacts appeared to be faults while others showed a gradational serpentinization of both norite and harzburgite. It is believed that the norite bodies are probably tongues of a major intrusive body and not dykes.

A major structure extends from line 10+00W/6+50S northwesterly to 18+00W/0+00BL. The structure consists of black, phyllitic, vertical argillites, phyllitic volcanics, silicified pods of argillite, recent serpentinized basaltic volcanics, talc and asbestiform alteration, minor pyroxenite, and a zone of silicification-quartz veining paralleling the structure. The zone trends 290-310° and shows that alteration by serpentinization was continuing until probably Tertiary time.

___.

10.2 DRILLING

Seven holes, totalling 305.3 metres (1,001 feet) of BDBGM core, were drilled. The core is stored at an unmarked location on the property. The following is a summary of the purpose and results of the seven holes.

<u>Hole 1</u>

Purpose: Hole #1 was drilled to test a possible westerly extension of the Camp Zone and to test for the source of two anomalous gold values in soil on Line 2+00W/4+25S and Line 2+00W/4+50S.

```
Bearing: 192°
```

```
Angle: -45°
```

Depth: 61.0 metres (200 feet)

Results: Drilling did not intersect the listwanite of the Camp Zone. However, red sludge samples and a piece of listwanite in boulders cored while casing the hole indicate that the zone may still exist.

The hole did intersect both norite and minor listwanite showing the geologic relationship between the two rock types. Also the potential of shear/fault zones to carry gold values was indicated.

The best values in hole #1 were found at 48.8-49.7 metres (160-163 feet) in a shear zone which ran 1321 ppb Au (0.039 oz/t).

- 21 -

<u>Hole 2</u>

- - - - -

Purpose: Hole #2 was drilled to test the vertical extent of gold values in the Stibnite Zone (samples 60511-60513). Bearing: 038° Angle: -65° Depth: 61.0 metres (200 feet)

Results: Drilling intersected both norite and listwanite. The best values were obtained in the contact zone of the norite at 47.9-49.0 metres (157-160.5) feet which returned values of 2690 ppb Au (.078 oz/t). Minor gold values were found in the norite itself (270 ppb).

<u>Hole 3</u>

Purpose: Hole #3 was drilled to test the depth of the Camp Zone and to test for the source of a 19,900 ppb Au value in soil.

Bearing: 320° Angle: -80° Depth: 30.5 metres (100 feet)

Results: A fault zone was intersected from 0-8.2 metres (0-27 feet). The fault zone (which at the time of drilling was believed to be overburden) contained cobbles of silicified listwanite. These were collected while the hole was being cased. From 0-9.2 metres returned an average grade of .115 oz/ton Au.

In addition a felsite dyke was encountered which also gave weak gold values. Fault gouge located at the bottom contact 23.2-23.5 metres (76-77 feet) returned a value of 5040 ppb Au (.147 oz/t Au).

<u>Hole 4</u>

Purpose: Hole #4 was drilled on the same setup as Hole #3 and was drilled to locate bedrock listwanite of the Camp Zone.

Bearing: 274°

Angle: -80°

Depth: 29.3 metres (96 feet)

Results: Hole #4 encountered the listwanite of the camp zone which was silicified and broken by faulting. From 3.7-5.8 metres (12-19 feet) the core averaged 0.151 oz/t Au.

<u>Hole 5</u>

Purpose: Hole #5 was drilled to test the depth of a fault zone with values of up to 1.290 oz/ton Au which was exposed in Trench #1.

Bearing: 300°

Angle: -65°

Depth: 45.8 metres (150 feet)

Results: Hole #5 did not intersect the shear although return was lost and core recovery was low at the Extensive listwanite was corresponding depth. encountered in the hole. In addition, the contact phase of the norite intrusives was also seen. Surprisingly, talcose harzburgite at 16.2-19.2 metres (53-63 feet) 1500 ppb with no discernible sulphide assayed mineralization.

<u>Hole 6</u>

Purpose: Hole #6 was drilled on the same setup as Hole #5 and was to test for the extension of the 1.29 oz/t Au zone in Trench #1. The hole was also intended to test

for the source of a 615 ppb Au value in soil and to possibly determine if the exposed listwanite outcrops of the Upper Zone are continuous. Bearing: 030° -65° Angle: 30.5 metres (100 feet) Depth: Results: Hole #6 immediately encountered a norite with subsequent contact zone and listwanite. The best value obtained was from a bleached section of the norite with 20% pyrite at 6.9-7.3 metres (22.5-24 feet). This section assayed 5830 ppb Au (.170 oz/t Au).

···---

<u>Hole 7</u>

---- ----

· _·----

Purpose: Hole #7 was drilled to test the depth of listwanite exposed in Pit #11 which gave a value of 3825 ppb Au over 1.5 metres. Bearing: -Angle: -90° Depth: 47.3 metres (155 feet) Results: The hole encountered intense silicification including total replacement of fault gouge by chalcedonic quartz. Several small zones with gold values were encountered.

No dip tests were done on any of the holes.

10.3 <u>SLUDGE SAMPLING</u>

Sludge samples were collected every 10 metres where possible. In general gold and arsenic values correspond reasonably well to values obtained in core for the corresponding footage. However, in at least 2 instances high silver values were obtained in the sludge samples with no corresponding silver values in the core.

- 24 -

Since silver values have not been previously reported in rock samples from the property and soil geochemistry does not indicate the presence of silver, it was assumed that the silver values of 20.4 ppm and 36.9 ppm were from somewhere in the drill string. However, no high-silver matrix bits were used on the job site. The source of the silver values remains problematic.

11.0 CONCLUSIONS

Drilling has shown that the norite is the ultimate generator of mineralizing fluids although some of the younger volcanics (unit #4) may have had some influence.

The norite has generated multiphased alteration consisting of carbonate and silicification, with the accompanying sulphide mineralization. Gold values usually are accompanied by high arsenic values from arsenopyrite. However, gold values have been found with very low arsenic values. The gold-low arsenic relationship suggests that gold may be present as native gold. Furthermore in the gold-low arsenic sections there is little to no sulphides. In addition there are several sections of gold-low arsenic values with a substantial amount of pyrite. It would appear that pyrite may be auriferous.

Shear zones have acted as conduits for gold-bearing solutions and gold values are enhanced in sheared silicified zones.

In addition to the silicified zones, shear zones and listwanite, some serpentinized sections of the ultramafic have also been found to carry gold. Any further exploration work should be focused on locating norite intrusives with its alteration-mineralization halo and also shear zones. The norite, although encountered in drill holes, has only been seen on surface in one location. It is postulated that the norite is buried under an ultramafic layer.

It is suggested that geophysics in conjunction with geology be used to attempt to locate the norite/listwanite and shear zones. In particular, a detailed ground magnetometer and VLF-EM survey is suggested with readings at 12.5 metres since the norite target may have narrow dimensions. Approximately 35 km of line need to be surveyed. This would cover the grid mapped in 1990 plus some additional proposed grid particularly near the norite showings.

Depending on the success of a magnetometer and VLF-EM survey, some experimental IP may be useful. Ideally, and without knowing how successful an IP survey will be, the 1990 mapped grid plus any new grid should be surveyed. However, a minimum of 25 km of IP is required to cover the known listwanite occurrences and anomalous arsenic and/or gold values.

In addition, 8.7 km of new grid is required and should be soil sampled and mapped. At the present 25 meter spacing this would be approximately 2175 soil samples.

In conjunction with the IP survey all grid will have to be cut to geophysical standards.

In summary the proposed future work involves:

New grid: 8.7 km Mag survey: 35 km VLF survey: 35 km IP survey: 25 km Soil samples: 2175 Cut grid: 35 km

- ----- ..

13.0 <u>REFERENCES</u>

. . . .

--- -

Paper 37-13, West Half of the Fort Fraser Map - Area, B.C., by J.E. Armstrong, 1937.

Paper 38-10, Northwest Quarter of the Fort Fraser Map - Area, B.C., by J.E. Armstrong, 1938.

Paper 78-19, Jade in Canada, by S.F. Leaming.

Paper 74-1, Part B, Geology of the Cache Creek Group and Mesozoic Rocks at the Northern End of the Stuart Lake Belt, Central B.C., by Ian A. Paterson, 1975.

Memoir 252, Fort St. James Map - Area, Cassiar and Coast Districts, B.C., by J.E. Armstrong, 1949.

Assessment Report 5648, Rock Sampling and Prospecting on the Pauline Claims, by D. Stelling, 1975.

Assessment Report 8135, Prospecting Report on the CR Claims, by V. Guinet, 1980.

Assessment Report 10286, Geophysical Report on the CR 1-6 Claims, by T. Pizzot, 1982.

Assessment Report 11879, Geochemical Survey on the BAP Claims, by R.R. Culbert, 1984.

STATEMENT OF QUALIFICATIONS

· - - - - · · ·

- I am a graduate of the University of British Columbia having 1. graduated in 1969 with a Bachelor of Science in Geology.
- I have practised my profession since 1969 in mineral 2. exploration, oil and gas exploration and coal exploration.
- I have a direct interest in the Mount Sidney Williams 3. property.

Ursula G. Mowat

.

DATED THIS 14th DAY OF november, 1990 AT VANCOUVER, B.C.

09-24-01 UM/SB

· · ____ · ·

STATEMENT OF COSTS FOR JULY 1 - AUGUST 9, 1990

<u>Labour</u>

the second se

n

()

()

- --- -

1	man	for	40	days	at	\$333.33/day	\$ 13,333.20
1	man	for	37	days	at	\$144.00/day	5,328.00

<u>Analysis</u>

6	silt samples analysed for 30 elements	
	by ICP & Au by AA at \$7.75/sample	46.50
2	soil samples analysed for 30 elements	
	by ICP & Au by AA at \$7.75/sample	15.50
8	rock samples analysed for 30 elements	
	by ICP & Au by at \$7.75/sample	62.00
6	silt prep charges at \$0.85/sample	5.10
2	soil prep charges at \$0.85/sample	1.70
8	rock prep charges at \$3.00/sample	24.00
		154.80

<u>Helicopter</u>

5.0 hrs. at \$635/hr	3,175.00
16.8 hrs. at \$595/hr.	9,996.00
45 gal. at \$2.10/gal.	94.50
247.5 gal. at \$3.45/gal.	853.88
252.5 gal. at \$4.36/gal.	1,100.90
Oil - 1.8 hrs. at \$2.00/hr	3.60
	15,223.88

Drilling Costs

130 feet (39.65 metre	s) at \$38/ft.	4,940.00
-----------------------	----------------	----------

<u>Fuel</u>

Gas	219.61
<u>Meals</u>	525.88

<u>Groceries</u>

1,354.91

Camp Rental

\$40.00/day for 40 days		1,600.00
-------------------------	--	----------

SBX Rental	
\$250/mo. for 40 days	333
Truck_Rental	
\$300/mo. for 40 days	400
Auto <u>Rental</u>	
3 days at \$42.95/day \$128.85 704 km at \$0.19/km 133.76 Extra hours 17.00 Less 15% discount (41.94) Insurance - 3 days at \$12/day 13.39 6% tax 30.00 Fuel .30.00	316
<u>Airfare</u>	394
<u>Expediting</u> 1.75 hrs. at \$30/hr.	52
Accommodation	
	410 41 37
2 men @ \$41.04/man/day for 5 days 1 man @ \$41.04/man/day for 1 day 1 man @ \$37.80/man/day for 1 day 2 men @ \$55/man/day for 4 days	<u> 44(</u> 93:
1 man @ \$41.04/man/day for 1 day 1 man @ \$37.80/man/day for 1 day	
1 man @ \$41.04/man/day for 1 day 1 man @ \$37.80/man/day for 1 day 2 men @ \$55/man/day for 4 days	933
1 man @ \$41.04/man/day for 1 day 1 man @ \$37.80/man/day for 1 day 2 men @ \$55/man/day for 4 days <u>Telephone</u>	933
1 man @ \$41.04/man/day for 1 day 1 man @ \$37.80/man/day for 1 day 2 men @ \$55/man/day for 4 days <u>Telephone</u> <u>Consulting Fees</u>	93:

. . __

0

Ο

0

(Statement of Costs for July) (Page 3)

Thin Sections

---- -----

3 polished thin sections @ \$20.00/section 3 reports @ \$65.00/report 3 reflected light examinations Shipping	60.00 195.00 20.00 <u>16.00</u> 291.00
Airphotos	
95 photos @ \$8/photo + 6% tax	815.60
<u>Courier</u>	97.40
Radio Licence	41.00
Field Equipment	943.35
B.C. Tel Equipment/Generator	1,925.93
Postage	1.17
Drafting	
25 hours at \$25.00/hr.	500.00
Typing	
20 hours at \$20.00/hr.	400.00

· · · · · · · · · · · · · · ·

TOTAL

()

\$ 51,290.24

STATEMENT OF COSTS FOR AUGUST 10-31, 1990

.

Labour

1	man	for	20	days	at	\$333.33/day	6,666.80
l	man	for	21	days	at	\$144/day	3,024.00

<u>Analyses</u>

290	rock/core samples analysed for 30 elements	
	by ICP & Au by AA at \$7.75/sample	1,860.00
179	rock prep charges at \$3.00/sample	537.00
18	sludge prep charges at \$1.50/sample	27.00
35	sludge prep charges at \$4.50/sample	157.50
3	rock samples analysed for Au, Pt, Pd	
	by FA & AA at \$7.50/sample	22.50
2	rock samples analysed for Au, Ag by FA	
	at \$12.00/sample	24.00
	Shipping charges	319.90
	Surcharge	5,00
	-	2,952.90

<u>Helicopter</u>

14.4 hrs. at \$635/hr.	9,144.00
4.7 hrs. at \$595/hr.	2,796.50
45 gal. fuel at \$3.45/gal.	155.25
25 gal. fuel at \$2.00/gal	50.00
115 gal. fuel at \$3.25/gal.	373.75
Oil 14.4 hrs. at \$3.00/hr	43.20
	12,562.70

Drilling Costs

870	feet	(265.35	metres)	at \$38/ft.	33,050.00
-----	------	---------	---------	-------------	-----------

<u>Fuel</u>

Jet B - 12	barrels at	\$176.00/barrel	2,112.00
Gas			313.17

Meals	
-------	--

<u>Groceries</u>

187.83

227.75

(Statement of Costs for August 1990) (Page 2)

-

.

Camp Rental

_____ ___ ___ ___ ____

\$40.00/day for 20 days	800.00
-------------------------	--------

SBX Rental

\$250/mo.	for	20	days	166.	67
Q220/1401		~~~			

Truck Rental

\$300/mo. for 20 days 200.00

<u>Airfare</u> 428.60

<u>Parking</u>

Accommodation

2 2 1 2 1	men at man at men at	<pre>\$41.04/man/day for 4 days \$51/man/day for 1 day \$52/man/day for 1 day \$55/man/day for 3 days \$55/man/day for 1 day</pre>	328.32 102.00 52.00 330.00 <u>55.00</u> 867.32
Telephone	Ŀ		658.29
Reproduct	ion		185.28
	-		

TOTAL

\$ 64,420.74

7.43

RECONNAISSANCE SAMPLING

· - - · · - · · - ·

·· ·-- --- · --

··---

•

SAMPLE NO.	SAMPLE DESCRIPTION	Au (ppb)	As (ppm)
11432	silt	2	7
11433	silt	2	8
11434	silt	2	5
11435	silt	1	7
11436	silt	l	11
11437	rusty, quartzose float; pervasively silicified mat- erial with pale green areas.	3070	492
11438	red hematitic material	240	23
11439	green, heavily epidotized volcanic	8	2
11440	silt	2	6
11441	tectonic breccia composed of buff, silicified? matrix with some cobbles of listwanite	2	4
11442	intensely silicified schist with 1 cm wide magnetite veinlet	25	2
11443	white silicified material in a shear zone	1	3
11444	reddish soil from Jade Valley	2	51
11445	white silicified volcanic? quartzite? sucrosic texture; minor oxidized pyrite.	2	2

0

()

• • • • • • •

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

PETROGRAPHIC STUDY OF THREE SPECIMENS

Report for: Ursula Mowat 1405-1933 Robson Street Vancouver, B.C. V6G 1E7.

May 10, 1990

Invoice 56

Sample #1: CHLORITE-CARBONATE-OUARTZ ALTERED ULTRAMAFIC

Pale green, highly altered rock containing coarse (up to 7 mm) dark green blotches that may have been phenocrysts; they contain minor sulfides. The rock is cut by thin cream coloured veinlets up to 1 mm wide. There is no reaction to cold dilute HCL, but the rock is strongly magnetic and rusty weathering. In thin section, the mineralogy is:

Chlorite	40%
Carbonate (ankerite or magnesite)	30%
Quartz (secondary)	10%
Sericite (muscovite)	10%
Magnetite (trace hematite)	5%
Relict plagioclase (?)	2%
Sulfide (pyrite)	1%
Limonite (goethite)	<1%

The bulk of this rock is apparently composed of chlorite and carbonate, with minor quartz. Chlorite forms flaky masses up to 0.5 mm diameter, as well as interstitial grains of 0.05 mm that are difficult to distinguish from quartz. It shows no anomalous interference colours and no colour or pleochroism, indicating a chlorite rich in Mg and poor in Fe. The chlorite is coarsest in patches that are up to 1 cm across (which are also rich in skeletal magnetite); these probably were former mafic phenocrysts (?olivine or pyroxene).

Carbonate forms anhedral interlocking grains of 0.1 to 0.2 mm diameter, and is obviously a hydrothermal replacement mineral: it is most abundant in and along the margins of carbonate-quartz veins, although it also partially replaces the former phenocryst? sites. There are two generations of carbonate, the earlier being semi-transparent and the later as clear thin veinlets, occasionally with subhedral quartz grains up to 0.2 mm long. Both carbonates must be ankerite (ferroan dolomite) or magnesite since there is no reaction to HCl even after powdering the mineral.

The principle opaque mineral is magnetite, which forms anhedral to skeletal grains up to 1 mm across in aggregate, although individual grains are generally less than 0.1 mm in diameter. There is minor alteration to hematite. In summary, both the composition (abundant magnetite plus chlorite and carbonate, which are probably both magnesian) and the colour and texture suggest that this sample probably represents a highly carbonate altered ultramafic rock ("listwanite"). Minor sulfides are hydrothermal additions during carbonate veining and alteration. Much of the rusty weathering is due to oxidation of the iron in the carbonate, typical of listwanites.

2: CARBONATE-QUARTZ-?FUCHSITE-PYRITE ALTERED ULTRAMAFIC

Very light emerald green (fuchsitic, or chrome mica colour) highly altered rock containing large white to brown blotches up to 1 cm diameter that may be similar to the ?phenocrysts seen in sample 1. Rusty spots are due to oxidation of pyrite, but the main rusty weathering is probably due to weathering of Fecarbonate. The rock does not react to cold dilute HCl, even after powdering, and is not magnetic. In thin section, the mineralogy is:

Carbonate (ankerite or magnesite)	65%
Quartz	10%
Pyrite	10%
Limonite (goethite)	5%
Sericite (?fuchsite)	5%
Chlorite	3%
Chromite (?)	2%

This rock is composed almost entirely of carbonate as interlocking anhedral grains of 0.1 mm or less average diameter, which from their rusty weathering, high relief in thin section and resistance to HCl, must be ankerite or possibly partly magnesite. As in sample 1, there are two distinct generations of carbonate, with the former being cloudy and pervasive, whereas the latter is clear and confined to thin veins.

The coarse blotches in the rock are also principally carbonate, which is even cloudier than that forming the groundmass of the rock. In places, a relic lamellar texture can be seen in the patches that is suggestive of former orthopyroxene (enstatite) phenocrysts.

Minor mica forms fine-grained (0.03 mm dimaeter or less) flaky masses interstitial to the carbonate; the bright green colour in hand specimen suggests it may be a chrome variety such as fuchsite.

Occasional patches up to 0.5 mm across are composed principally of chlorite, as fine anhedral flakes up to 0.05 mm diameter. These are most common in the groundmass between the ?phenocrysts, and are accompanied by minor quartz as anhedral grains up to 0.1 mm diameter.

In reflected light, the principle opaque is pyrite, which forms anhedral grains up to 1 mm across that are mildly to moderately replaced along grain margins and fractures by supergene limonite (mainly goethite). The sulfides are disseminated throughout the rock, although there is a tendency for preferred distribution in phenocryst sites. In addition, there is abundant intergranular films of limonite throughout the rock, due to weathering of the carbonate. Scattered coarse (up to 2 mm) opaques with low reflectance, also altering to limonite at their rims, are probably chromite. They may be relics of a primary ultramafic rock that contained coarse orthopyroxene phenocrysts and chromite grains, and has been subjected to more intense quartz-carbonate-fuchsite (listwanite) alteration than sample 1.

3: SERPENTINIZED ULTRAMAFIC CUT BY CHRYSOTILE VEINS

Black rock containing a fibrous mineral up to 1 cm long as cross-fibres in a vein. The rock is strongly magnetic, and does not react to cold dilute HCl even after powdering. In thin section, the mineralogy is as follows:

Serpentine	(antigorite)	55%
Chrysotile		20%
Magnetite		10%
Chlorite		10%
Muscovite		5%

As in samples 1 and 2, this rock is made up of remnant ?phenocrysts, in this case set in a monomineralic matrix. The ?phenocrysts are composed of relatively fine-grained (0.1 mm or less on average) clear, colourless, anomalous blue birefringent ?chlorite or zoisite with lesser muscovite (higher birefringence), and minor green chlorite. Relict lamellar textures suggest these may be pseudomorphs after orthopyroxene crystals that were 2 to 4 mm in diameter.

The matrix consists of unusually large (up to 1 cm) anhedral interlocking grains of antigorite (serpentine) that have an appearance suggestive of replacement of coarse olivine. Normal antigorite is very finely flakey, but this is coarse enough to see a biaxial positive interference figure with a small (30 degree) axial angle. The birefringence is weak, up to 0.010, and the colour is pale yellowish green. In places this is cut by thin veinlets of cross-fibre serpentine (chrysotile) with slightly higher birefringence and sub-parallel extinction.

The coarsely fibrous ("prismatic") mineral is also chrysotile, occurring as finely layered and sheared monomineralic veins up to 1.5 cm thick.

The principal opaque in this sample is magnetite, as very coarse anhedral to subhedral grains up to 6 mm across as well as along fractures and grain boundaries, and as skeletal aggregates where the individual grains are as fine as 0.05 mm. There are no sulfides present.

In summary, this rock probably represents a strongly serpentinized ultramafic that may have originally consisted of roughly 20% orthopyroxene phenocrysts and 10% opaques in a matrix of coarse olivine, i.e. a peridotite (variety harzburgite?). It has not been hydrothermally altered as have samples 1 and 2.

(ABLaile

Craig H.B. Leitch, Ph.D, P.Eng.

(604) 921-8780

(METRES IN BRACKETS)

PROPERTY Sidney Williams

Н	OL	Ε	No.	1
---	----	---	-----	---

	Angle			
Footage	Reading	Corrected		
		i		

Hole No. <u>1</u> Sheet No. <u>1</u>	Lat. <u>2+00W/4+35</u> S
Section	Dep
Date Begun <u>Aug. 9/90</u>	Bearing 192 ⁰
Date Finished Aug. 10/90	Elev. Collar
Date Logged Aug. 9-10/90	Angle - 45 ⁰

Total Depth	200'	<u>(61.</u> 0	M)
Logged By U.	Mowat	<u> </u>	
ClaimKloi	ne l		
Core Size_BDBC	GM		

DEP		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
0	15		<u> Overburden - piece of white calcite with orange</u>								
(0	4.6)	carbonate listwanite fragments at 15' (4.6m)								
15 .	20.5	· · · · · · · · · · · · · · · · · · ·	Serpentinized harzburgite - dark green grey,	11446	4.6	6.3		3	6		
<u>(4.</u>	6.3	<u>) </u>	generally f.q. with .75 cm black phenocrysts of								
			pyroxene altered to magnetite; miror rust on						ł		
			fractures								
20.5	35		Harzburgite -c.g. phenocrysts of pyroxene altered	11447	6.3	10.7		З	56		
(6.	3 10.	7)	to orange (limonitic talc - carbonate - magnetite)								
			in a light grey talc matrix; minor orange carbonat	e							
			veinlets; trace of disseminated pyrite	. <u> </u>							
35	44.5		Fault zone? above rock (20.5-35) cut by myriads	11448	10.7	13.6		2	60		
(10	7 13	.6)	of dark green tal <u>c - chlorite - magnetite veinlets</u>		l 						
			and white c.g. talc veinlets up to lom wide; at								
			36' (11m) patch of silvery metallic dots; trace								
			of disseminated pyrite; veinlets vary from 30 to			• •					
			45 [°] to core axis								

PROPERTY_____

HOLE	No	1	

Angte		
Reading	Corrected	
<u> </u>		

 Hole No.
 1
 Sheet No.
 2
 Lat.

 Section
 Dep.

 Date Begun
 Bearing.

 Date Finished
 Elev. Col

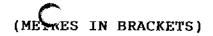
.at	Total Depth
Dep	Logged By
Bearing	Claim
Elev. Colidr	Core Size

DE! FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ац. 	AS ppm		
44.5	52		<u>Harzburgite - c.g. orange talc - carbonate pyroxen</u>	e 11449	13.6	16.2		3	41		
		1	phenocrysts in a medium grey c.g. talc matrix;		10.0	10.4					
	6_16		texture appears brecciated by areas of black					·			
	_		magnetite - talc - chlorite (?) with trace of			ļ					
			pyrite - f.g. disseminated; cut by buff stringers		 			<u> </u>			
			of talc; occasional pyrite in fractures								
.53	57.5		<u>Serpentinized harzburgite - greenish grey talc</u>	11450	16.2	17.5		2	24		
-(16	2 17	.5)	matrix with light grey talc semi-ovoid pyroxene								
			shapes; disseminated silver grey metallic flakes	·				<u> </u>	ļ ļ	ļ.	
			throughout; cut by occasional thin veinlets of				·				
			black green talc - chlorite at 30 ⁰ to core axis	· · · · · · · · · · · · · · · · · · ·		_					
57.	64		Breccia? pale green serpentinized areas and up	11451	17.5	19.5			53		
(17.5	_19.5)	to 1 cm patches and ovoids of orange carbonate -				<u> </u>	·····			
			talc in a dark green black matrix of chlorite - talc - magnetite; minor disseminated pyrite? at						 		
			62.5 (19.1), 10 cm shear zone of pale to dark								
			green chlorite at 50° to core axis; minor white								
			carbonate veinlets								
64	68		Shear zone - dark green c.g. talc cut by myriads	11452	19.5	20.7		2	/8		
(19	5 20	.7)	of irregular thin 1-2 mm orange carbonate - talc								

NEVILLE GROSBY IND-TELEPHONE USE-4343

2

DIAMOND DRILL RECORD


PROPERTY____

HOLE	No.	1	

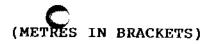
Angle				
Reading	Corrected			
	· · · · · · · · · · · · · · · · · · ·			
<u> </u>				
	An Reading			

Hole No Sheet No3	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
(co	n <u>t'd</u>)		veinlets and magnetite veinlets								
68	71.5		As 57.5-69 (17.5-19.5); upper contact gradational	11453	20.7	21.8		/	38		
(20	.7 21	.8)	with64-68 (19.5-20.7) dominantly dark green text-		 						_
			ureless; minor disseminated silvery flakes and								1
			pyrite		ļ	<u> </u>					_
71.	585	5	Shear zone? dark green talc with patches of pale	11454	21.8	24.9		5	36		4
_(21	.8 20	.1)	green (talc altered pyroxene?), minor white carb-	11455	24.9	26.1		2	55		
			onate veinlets (1-2 mm wide); trace disseminated	_							
			pyrite? pyrrhotite? minor areas of orange tale								4
			carbonate patches (altered pyroxene)								
	5 96		Harzburgite - 1 cm patches of orange talc -	11456	26.1	29.3		/	39		
(26	.1 2).3)	magnetite altered pyroxene in dark green matrix of	···					<u> </u>		
			c.g. talc - chlorite (?) - magnetite; minor	—							
			patches of pale green talc pyroxene plus matrix;								
			minor_1-2_mm_veiplets_of_white_talc_and/or_carbona	te	 	;					
			and orange talc; trace disseminated pyrite		ļ			··· ·			_
96	102		Bleached zone - white to pale olive green talc	11457	29.3	31.3		4	266		
(29.3	_31.3	5)	carbonate? with occasional relict pyroxene still								
			visible; magnetite clots with rare disseminated f.	J•		· · · •					
			pyrite?; zone is shattered, mariposite throughout;								
			at 100' (30.5) white quartz - talc - carbonate								
L1					L		. i		*	,i	

PROPERTY_____

÷


HOLE	N.,	1

DIP TEST						
	Angie					
Footage	Reading	Corrected				
	·					
	1					
	1					

Hole No	Sheet No4
Section	
Date Begun	
Date Finished	
Date Logged	

Lat	Total Depth
Dep	Logged By
Bearing	Claim
Elev. Collar	Core Size

DE FROM	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ац. ррв	As ppm	
(con	<u>t'a)</u>		veinlet, 1 cm wide at 15 ⁰ to core axis							
102.	<u>\$ 106</u>	.5	Shear zone - variably bleached zone and variably	11458	31.3	32.5		5	85	
(31.	3 32.	5)	shattered; ranges from 1)pale green talcose rock							
			cut by myriads of white talc - filled tension			 				
 			fractures and talc veinlets up to 2 cm at 20 ⁰ to		ļ					
			core axis. 2)orange talc-carbonate - mariposite		ļ					
	 		shattered material; 3) remanant orange pyroxene							
			clots in a black talc matrix (altered harzburgite)							
			<u>shear contacts appear to be at 65⁰ to core axis</u>							
106.	\$ 109		Silicified zone - light grey with minor patches	11459	32.5	33.2		10	207	
(32.	\$ 33.	2)	of green mariposite and dark grey to green black	11437	ļ					
L		.	chlorite - talc patches; white carbonate veinlets							
			at 25 ⁰ to core axis.							
109 1	112		Shear zone - gougey, dark grey zones in pale green	11460	33,2	34.2		/	17	
(33.	2_34.	2)	bleached areas cut by myriads of 1 mm hairline							
Ĺ			talc veinlets							
112	114.5		Shear zone - dark greenish black chlorite - talc	11461	34.Z	34.9		2	104	
(34.2	34.9)	magnetite, sheared and cut by myriads of hairline							
			orange talc - carbonate veinlets							
114	5 117		Medium grey, competent talcose zone with minor	11462	34.9	35.7		6	14-	
	35.		hairline talc veinlets							

PROPERTY_____

HOLE	No	1

	DIP TEST				
	Angle				
Footage	Reading	Corrected			
	1	· · · · •			

Hole No Sheet No	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged.		

DEF	אדי סד	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	AS ppm	
117	120.5		Listwanite - pale grey, erratically silicified with	ı 11463	35.7			14	934	
35.7	36.	8)	mariposite, 1% pyrite and a trace of arsenopyrite							
			cut by 4 cm white carbonate veinlet (30 ⁰ to core							
			axis) and a 1.5 cm pale green talc veinlet; patch	nes						
			of orange carbonate							
120.5	5 138		Norite, m.g., dark grey with ≈ 30% white feld-	11464	36.8	39.8		3	2	
(36.8	42.	1) :	par laths visible; trace of disseminated pyrite;	11465	39.8	42.1		/	6	
			slightly magnetic; cut by strong set of white							
		· · · · · · · · · · ·	carbonate, carbonate-talc and quartz veinlets							
			predominantly at 35 ⁰ to core axis							
138	139		Fault zone - norite altered by c.g. talc altera-	11466	42.1	42.4		114	51	
(42.	42.	4)	tion; cut by rusty zones and limonitic talc;							
			minor white bleached areas of talc							
139	144		Norite - c.g., dark grey with 65% biotite (?)	11467	42.4	43.9		2	2	
(42.4	43.	9)	and 35% white feldspar; cut by occasional							
			white carbonate veinlet and dark green talc -							
			chlorite (?) veinlet; trace to 1% disseminated							
<u> </u>			pyrite (?) pyrrhotite (?)		· · · · · ·					
144	148.5		Bleached zone - light grey to pale green, tal-	11468	43.9	45.3		3	56	
(43.	945.	3)	cose, with patches and veinlets of silca/quartz,							
			pyrite in silicified areas; minor limonite on							

)

DIAMOND DRILL RECORD

	PROPERTY							HOLE No.	1		
F		DIP	TEST Angle								
ŀ	Fo	olog e	Reading Corrected							h	
-				Section Date Begun	•						
ļ				Date Finished	-						-
L		<u></u>		Date Logged	_						
DE FROM	РТН ТО	RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	AS ppm	
(con	t'd)		fractures; int	ensely sheared at 148.5 (45.3), rem	-						
			nants of felds	spar and veinlets parallel to core					<u> </u>		
			axis								
148.	5 16	þ	Intermixed m	.q. norite and pale grey bleached	11469	45.3	48.8		4	180	
45.	3_48	8)	talcose zones	with stringers of pyrite; norite		ļ					
			has_a_trace_c	<u>nas a trace of disseminated pyrite and pyrrhotite</u>						<u> </u>	
			at 152 (46.4)	, talcose bleached zone, 12" (30cm)		ļ			ļ		
 	ļ		long with 5%	pyrite disseminated and on fractures	 	 					
[ļ		minor 2 cm w	vide white carbonate veinlets						<u> </u>	
160	163		Bleached she	ar zone, light grey, talcose with	11470	48.8	<u>49.7</u>	1	1321	1722	
(48.	8 49	.7)	minor maripo	site and 5% disseminated pyrite; cut		·					
			by white car	bonate veinlets 1-2 cm wide at 35 ⁰		<u> </u>				.	
			to core axis	· · · · · · · · · · · · · · · · · · ·			[ļ		
163	169		Bleached_nor	te - pale grey, talcose with 1-3%	11471	49.7	51.6	ļ	261	460	
(49.	7 51	.6)	disseminated	pyrite; trace of arsenopyrite? minor	-						
			small green r	mariposite patches; 1 cm wide white							
ļ			carbonate vei	nlets at 50 ⁰ to core axis							
. 169	183		C.g. norite -	60% c.g. biotite (?) 40% white feld	- 11472	51.6	55.8		17	6	
(51	6 55	.8)	spar; cut by	minor 1 cm white carbonate veinlet	\$;						
			minor zones o	of pale grey, talcose bleached areas			·		ļ		
			occasionally	with disseminated pyrite					-		

PROPERTY

_

HOLE	No	1
NULL		

÷

	Angle				
Footage	Reading	Corrected			
	L				
	· ···				
	· · · · · · · · · · · · · · · · · · ·				
		•••••			

Hole No1 Sheet No7	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bedring	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au. ppb	As ppm	Ag ppm	
183	190		F.g. norite - dark grey with 70% biotite and 30%	11473	55.8	58.0			13		
(55.	8 58	0)	white feldspar; bleached pale grey talcose to dar	<u>k</u>							
ļ			green chlorite - talc along fractures, occasionally								
ļ			with pyrite; white carbonate veinlet from 184-187	.5							
ļ	 		(56.1-57.2) parallel to core axis; shear zone at								
			190 (58.0) at 50 ⁰ to core axis								
190	200		Altered harzburgite - pale green, generally tal-	11474	58.0	61.0		2	31		
(58.	p 61	0)	cose with light grey silicified patches; rare		ļi						
-			light grey pyroxene (talc replaced) remnants; minor mariposite; cut by myriads of 1-2 cm white	•	,						
			carbonate veinlets; up to 3% pyrite disseminated								
			throughout sporadically								
0	10	(Hole 1A)	Sludges					28	106	20.4	
10	20							15	82	3.7	
0 1	.0	(Hole 1)				· · · · · ·		19	131		
10	20			- . .				20	82	6.9	
20	30				L			17	40	3.4	
30	40							20	95	1.2	
60	70							39	61	2.0	

-

-

DIAMOND DRILL RECORD

PROPERTY Sidney Williams

HOLE	No	2

	DIP TEST	
	}An	gie
Footage	Reading	Corrected
]
·····	·····	
	·-···	
• • • •		

Hole No. _____ Sheet No. ____ 1 Section _____ Date Begun Aug. 12/90 Date Finished Aug. 13/90 Date Logged Aug. 12-13/90

Lat. 5+00W/3+50S
Dep
Bearing 0380
Elev. Collar Angle -65

Total Depth 200' (61.0 M) Logged By U. Mowat Claim Klone -1 Core Size BDBGM

DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
0	10	(3.1)	Overburden							
10	27		Altered harzburgite - talcose; ovoids up to 1.5	11475	3.1	6.1		2	4	
(3.1	8.2		cm in dark green talc - chlorite matrix, pale	11476	6.1	8.2		1	8	
	f 		green talc matrix and black magnetite - talc -							
ļ			chlorite? matrix; oroids are white to dark red			l				
			(hematitic) and are probably either nodules of		 					
			replaced peridotite or c.q. pyroxene or both;	 						
			cut by white veinlets of talc and/or carbonate			L				
			-at 55 ⁰ and 25 ⁰ to core axis			 				
27	55		<u> Altered harzburgite - dominantly greenish grey</u>	11477	8.2	11.3			2	
(8.2	_16.	в)	<u>matrix with occasional 1 cm dark green talc</u>	11478	11.3	14.3		а	2	
			replaced remnants of pyroxene crystals; black	_11479	14.3	16.8			2	
			ovoids of magnetite - also replaced pyroxene?							
			minor amount of sulphides - nil to trace of pyrite? (very fine grained); rare speck of							
			silver, platey metallic; white carbonate - talc]
			veinlets throughout; at 41.5 (12.7) core has							
			appearance of layering and may a dunite replace	a						
			by talc with magnetite bands; from 48-55							
			(14.6-16.8) zones of intense pale green talc -	r						
			textures obliterated veinlets of dark red							

į

:

:

İ

DIAMOND DRILL RECORD

.

PROPERTY_

н	01	F	No.	. 2

DIP TEST								
	Angle							
Footage	Reading	Corrected						
	·							
· · ·								

Hole No2 Sheet No2	Lot,	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Cottor	Core Size
Date Logged		

DE	РТ <u>Н</u> ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
(con	t'd)		hematitic talc; minor remaining pyroxene? dark								
ļ			red also								
55	69.5		Altered dunite - pale green with black dots of	11480	16.8	19.8		/	29		
(16.	8 21	.2)	magnetite disseminated throughout; completely	<u>11481</u>	19.8	21.2	! •	1	3		
			replaced by talc/carbonate; minor white carb-				[]				
<u> </u>	· ·		onate veinlets		ļ 					⊢	
			- 57.5-59.5 (17.5-18.2) dark grey with fragments	\$?							
			of c.g. grantic intrusive; magnetite in this			ļ			····	·	
!			section blood red hematitic; intrusive			 				h .	
			appears to be a c.g. diorite				ļ				
			- 61.5-64.5 (18.8-19.7) pale green and pale pink	· · · · · · · · · · · · · · · · · · ·			<u> </u>				
			carbonated zone of dunite							-	
			<u>- 65.5-69.5 (20.0-21.2) as 61.5-64.5 (18.8-19.7)</u>							<u>·</u>	
69.5	84		Altered harzburgite? c.g. granitic? dark grey	11482	21.2	24.3	 	1	z		
(21	.225	.6)	matrix with irregular .575 cm white semi-	_11483	24.3	25.6		1	4		
			rectangular outlines; cut by anastomising white								
			to pale green talc - carb veinlets; whole rock								
			altered to talc; strongest veinlets running								
			at 0°-10° to core axis]
84	89		Altered dunite? pale green with disseminated	_11484	<u> 25.6</u>	27.2		8	293		
(25.6	27.	2)	magnetite; occasionally dark grey mottled from								

PROPERTY____

н	o	1	F	No.	2	
	~					

	DIP TEST	
] An	gle
Footage	Reading	Corrected
	Į	

DE I FROM	тн то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm		
(con	<u>'a)</u>		concentrated magnetite; cut by minor white car-								
			bonate - talc veinlets		L						
89	_95_		Listwanite - orange to buff, silicified carbonate?	11485	27. Z	27.9		1	197		
(27.	2.29	0)	with mariposite, 3-5% disseminated pyrite (part-	11486	27.9	29.0		50	462		
			ially altered to limonite) and trace arsenopyrite; sulphides also on edges of c.g. magnetite crysta	(orange ls; sectio							
			minor fragments of dark grey norite			7.0 (65	36/		
95	107 32.		Norite - dark grey, f.g., 80% mafies; cut by		29.0			<u> </u>	22		
	<u>)</u> 2.		bleached_zones_of_silicified_carbonate? containing 5-10% disseminated pyrite; bleaching may be re-			##**Ø					
			lated to vuggy carbonate veinlets with peripheral pyrite; veinlets at 0° and 35° to core axis;	.							
			heavy limonite on fractures - norite becoming								؟
			chloritic from 104-107 (31.7-32.6)								·
			- at 104 (31.7) patch of c.g. pinkish semi-		 						
			euhedral K-spar?								
107	110		Altered harzburgite and dunite - pale green with	11489	32.6	<u>33.6</u>		2	16		
(32.	6_33	6)	disseminated magnetite and occasional c.g. clots		-				 		
			of magnetite (replaced pyroxene?); cut by num-				 		 		
		[erous irregular white to orange carbonate veinlet	3							

PROPERTY_____

HOLE	М.	2
UAFE.	146.	

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
		· · · · · · · · · · ·				

Hole No2 Sheet No4	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE FROM	РТ <u>Н</u> ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
(con	t'd)		mariposite bands					,,		
110	117		Listwanite - pale grey, silicified with moderate	ly 11490	33.6	35.7		20	814	
(33.	6 35	7)	intense mariposite, 3-5% disseminated pyrite and							
			trace arsenopyrite in silicified areas; cut by							
L			vertical white carbonate - silica veinlets; limo-		ļ					
			nite on fractures							
			- 115.5 (35.2) - gypsum? in carbonate veinlet							
117	134		<u>Altered harzburgite - dark green to pale green</u>	11491	35.7	38.8		/	12	
-(35,	7.40	.9)	talc replaced; pyroxene altered to black chlor-	11492	<u>38.8</u>	<u>40.9</u>	· · ·		2	
ļ			<u>ite - talc - magnetite; occasional red hematitic</u>							
			patches; cut by myriads of white hairline talc-	··	 					
			carbonate veinlets and minor dark green talc -							
			veinlets; minor mariposite at base; trace							 . <u></u>
			disseminated pyrite							
.134	157		Listwanite - pale grey, silicified with intense	11493	40.9	42.1		25	1317	
.(40	9 47	.9)	mariposite and minor buff carbonate; cut by	11494	42.1	<u>44 2</u>		240	1363	
		-	myriads of white talc - carbonate, carbonate and	11495	44.2	<i>45.</i> /		55	27/	
			_carbonate_silica_veinlets_with_no_preferred	11496	45.1	<u>45,8</u>		20	309	
			orientation; stromest veinlets vertical; occasional	11497	45.8	4 7.4		260	1553	
			vague outlines of pyroxene replaced by pyrite	11498	474	47.9		3/	1246	
			with coarser pyrite - arsenopyrite on rims;							ļ

DIAMOND DRILL RECORD

PROPERTY____

HOLE N.	2	

	DIP TEST	-
	An	gle
Footage	Reading	Corrected

Hole No Sheet No5	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM	н те то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
(cor	t'd)		1-3% pyrite; trace arsenopyrite throughout							
157	160.	5	<u>Contact zone – pinkish grey, dense carbonate</u>	11499	47.9	49.0.	l · · · · · · · · · · · · · · · · · · ·	2690	2694	
(47.	9.49	.0)	with 15% pyrite in veinlets running 10 ⁰ -30 ⁰ to		ļ					
			core axis; trace arsenopyrite in carbonate						ļļ	
			_veinlets			 			ļ	
160	5-16	1.5	Norite - dark grey, f.g., 70% biotite; trace	11500	49.0	49.3		270	126	
_(49	49.3)	chalcopyrite in talc veinlet						 	
_161	5 16	6.5	Interbanded contact zone as at 157-160.5 (47.9-	11501	49.3	50.2		35	95	
- (49	3 50	-8)	49.0), dark green to pale grey listwanite -	11502	50.Z	50.8	│ ┝╴╾──┺╶┨	6	107	
			<u>altered harzburgite (chlcrite - talc- mariposite)</u>							
			and minor norite as at 160.5-161.5 (49.0-49.3)					- .		
			cut by strong carbonate veining at 40 ⁰ -45 ⁰ to							
			core axis; 1-3% disseminated pyrite, trace							 ,
			arsenopyrite_except_in_contact_zones - pyrite							
			-10%-as-veinlets; norite contacts limonitic							
166	5 17	0	Very altered harzburgite - dark green chlorite	- 11503	50.8	51.9			54	
(50	<u>8 51.9</u>)	talc altered; pyroxene replaced by magnetite,							
			chlorite and/or pyrite; myriads of hairline talc							
			carbonate veinlets							
170	173		Listwanite = pale grey, silicified carbonate	11504	51.9	52.8		15	655	
(51.9			and bright green intense mariposite; cut by whi	ie ,						

NEVILLE CROSBY IND: TELEPHONE USE 4343

Angle

Corrected

PROPERTY_	PRC	PE	RT	Υ_	
-----------	-----	----	----	----	--

Reading

DIP TEST

Footage

1

				HOLE No.	2		
Hole No 6 Section Date Begun Date Finished Date Logged	Dep Bearing Elev. Colic				Logged By Claim	h	
ESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	
s at 35° - 40° to core axis							

•

DE FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Are ppb	AS ppm		
	t'a)		carbonate-talc veinlets at 35 ⁰ -40 ⁰ to core axis								
	i		mariposite replacing pyroxene phenocrysts; 1-3%						ļ		
L			disseminated pyrite; trace arsenopyrite; pyroxene								
			phenocrysts also replaced by pyrite							 	
173	200		<u> Altered_barzburgitedark_green,_chloritetalc</u>	11505	52.8	<u>53.9</u>		4	18		
(52.8	எ.0)	altered, very magnetic; pyroxene replaced by	11506 -	<u>55.9</u>	58.9		2	6		
			white talc, black magnetite and red hematite;	11507	58.9	61.0		4	15		
			hairline_carbonate_veining - white_with_dark_gree	n]
 		· · · · · · · · · · · · · · · · · · ·	talc selvages occasionally; trace pyrite								
		•									
0	10		Sludges					14	22		
10	20								18		
20	30								17		
30	40							11	18		[
40	50							/	23	-	
50	_60							. (21]
60	_70							a	22		
70	_80							11	12		
80	_90							7	68		
90	100							2	130		
190	200							38	51]

DIAMOND DRILL RECORD

PROPERTY____Sidney Williams

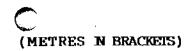
HOLE	Na	3	

	DIP TEST Angle					
Footage	Reading	Corrected				
	-					

 Hole No.
 3
 Sheet No.
 1

 Section
 Aug.
 14/90

 Date Begun
 Aug.
 14/90


 Date Finished
 Aug.
 15/90

 Date Logged
 Aug.
 14-15/90

Lat. <u>3+60E/4+72S</u>
Dep
. 3200
Bearing320
Elev. Collar
Angle ~80 ⁰
2

Total Depth.	100' (30.5M)
•	U. Mowat	_
Claim		
Core Size		

DE FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ац. РРБ	As ppm	
0	25_		OB and apparent fault zone containing frags of	11508	0	7.6		2960	6270]
(0	7.6)		listwanite with pale grey silicified patches and					· · · · · · · · · · · · · · · · · · ·		
 			mariposite;arsenopyrite disseminated throughout;							
	• •		one minor cobble of f.g. norite							
- 25.	27		Cobbles of listwanite with pale grey silicified	11509	7.6	<u>8.2</u>		240	1284	
(7.6	8.2)		patches with arsenopyrite and mariposite;							
27	30		Listwanite - pale grey irregular silicified patche	s 11510	<u>8</u> . Z.	9.2		14860	12218	
(8.2	9.2)		with irregular pale green to bright green talc -							
			mariposite patches; cut by anastomising white to							
			grey carbonate - quartz veining; 3-5% vfg. arseno							
			pyrite and 1% disseminated pyrite concentrated in							
			the silicified areas							
30	32		Listwanite - lessaltered; similar to above except	11511	9.2	9.8		32	589	
(9.2	9.8)	less silicified and more talcose; also remnant	.				.		
			pyroxene? texture (white irregular talc replaced							
			phenocrysts); intense anastomising white hairline							
			talc veinlets							
32	34.5		Altered harzburgite – white irregular patches	11512	9.8	10.5		29	93	
(9.8	10,5)		of talc (replaced pyroxene) in a dark grey mag-							
			netite talc matrix; cut by zones of pale to dark							
			green talc and anastomising white hairline talc]

PROPERTY_

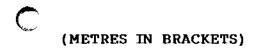
Н	101	F	No.	3

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
	l					

Hole No Sheet No	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Coltar	Core Size
Date Logged		

DEF FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au PPb	As ppm	
(car	t'd)		veinlets; trace pyrite, arsenopyrite							
34.5	36		Listwanite - pale grey, silicified patches contain	- 11513	10.5	11.0		220	562	
(10.5	11.0)		ing up to 10% vfg pyrite, 1% arsenopyrite, and							
			pale green talc - mariposite; anastomising white		ļ					
			hairline talc veinlets; 1 cm wide carbonate - gtz							
			vnlt at 45 ⁰ to core axis; vague harzburgite text-							
			ure occasionally as at 32,-34.5 (9.8-10.5)							
36	41		Altered harzburgite - w hite remnant clots of	11514	11.0	12.5		4	B	
(11.0	_12.5)	talc in dark grey talc - magnetite matrix; cut by							
			dark green talc zones and anastomising white							
			hairline talc veinlets		ļ					
41	42		<u>Shear zone - dark green talc, magnetic; upper</u>	11515	12.5	12.0			16	
(12.5	12.8		contact 70° to core axis - bottom contact 30° to							
			core axis; anastomising white hairline talc veinle	ts						
42	69		Altered harzburgite - same as 32-34.5 (9.8-10.5)		12.8	15.9		2	6	
(12.8	21.0)	more white carbonate veining; trace pyrite and	11517	15.9	19.0		3	5	
-	ĺ		arsenopyrite; pyroxene crystals occasionally re-	11518	19.0	21,0		2	12	
			placed by red hematite - talc; section very							
		i	broken with gougey patches virtually at 0° to							
			core axis							

.....


PROPERTY_

HOLE No.	3	

	An	gle
Footage	Reading	Corrected
	· · ·	

Hole No	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	C faim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE F FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ai ppb	As ppm	
69	70		Fault gouge - grey clay with minor streaks of	11519	21.0	21.4	-	18	49	
(21.0	21.4	· · · · · · · · · · · · · · · · · · ·	mariposite and 1% vfg disseminated pyrite							
70	76		Felsite?- vfg, pale to medium grey with 80%	11520	21.4	23.2		97	591	
(21.4	23.2	·	white feldspar crystals; fractures extremely rust	<u> </u>						
			1% disseminated vfg pyrite; rare patch of m.g.							
			feldspar laths		ļ			_		
76	77		Fault gouge - same as 69-70 (21.0-21.4); 18	11521	23.2	23.5	·	5040	47/8	
(23.2	23.5		pyrite and trace of arsenopyrite							
77	78		Listwante - pale grey, silicified with minor	11522	23.5	23.8		780	2930	
(23.5	23.8		bright green mariposite with carbonate veinlets;							
			2% pyrite and trace arsenopyrite		ļ					
78	90		<u> Altered harzburgite - varies from 1cm white talc</u>	11523	23.8	26.9		8	3	
(23.8	27.5		replaced pyroxene crystals in pale green talc mat	+1524	26.9	27.5		- 8	13	
			rix to a dark green matrix; anastomising white]
			talc_hairline_veinlets; strong_set_of_veinlets_run=							
			ning at 10 ⁰ to core axis							
90	.95	į	Black chloritic - talc aphanitic rock (probably	11525	27.5	29.0		3	72	
(27.5	29.0	ļ	extremely altered harzburgite) cut by anastomis-							 ,
			ing orange talc veinlets; minor orange talc pyrox-	-						
			ene? outlines; trace pyrite	· · · · · · · · · · · · · · · · · · ·	· · · ·					
	Í									ļ

PROPERTY_

HOLE	N _n .	3

	DIP TEST	
	An	gte
Footage	Reading	Corrected
	<u> </u>	

DEF FROM	тн то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm	Ag ppm	
95	100		Altered harzburgite - black magnetite replaced	11526	29.0	<u>30.5</u>		1	4 8		
(29.0	30.5)		pyroxene remnants and minor orange talc replaced		_						·
			pyroxene remnants in a dark greenish grey matri	<;		 					
			minor white and orange talc veining						· · · · · · · · · · · · · · · · · · ·		<u> </u>
0	10		Sludges					2210	223/		
10	20							10340	6849		
20	30							1640	1086		
30	40							5860	3717	36.9	
40	50							600	918	6.9	
_50	60							112	106		
60	70							168	215		
70	80							860	1089		
80	90							380	317		
-90	100	·						530	521		
									· · · · -· · · · ·		
										-	

r		DIP	TEST								
F			Angle Reading Correcte	Hole No. <u>4</u> Sheet No. <u>1</u>		2/4+7	28		Total Depi	. 96	(29.3 M)
F		itage i	reduing correcte						Logged By	··	
				Section Date Begun Aug. 15/90	_ Dep _ Bearing	2	274 ⁰		Claim	Klone	
-				Date Finished Aug. 15/90					Core Size	BDB	GM
L			l .	Date Logged Aug. 15-16/90	Angle	-80~					
DEF	то	RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As	
						i				ppm	
0	<u>10</u>		<u>Dverburden</u>						+		
.(0					11507				200		
10.	12		1	carbonate predominantly with minor	11527	3.1	3.7		300	1160	
(3.1	3.7)			atches of silicified material; carbonat	e			<u> </u>			
			1	e to buff by limonite; mariposite and							
			myriads of c	arbonate veinlets throughout;≈5%							
			disseminated	pyrite and arsenopyrite in equal					ļ	 	
			porportions;	sulphides concentrated in silicified					ļ		
			areas and oc	casionally along selvages of carbonate				[ļ	
			veinlets; ma	iposite throughout				·			
12	16		Breccia - pa	le grey listwanite, brecciated in	11528	3.7	4.9		2330	3427	
(3.7	4.9)		part by yugo	y quartz veinlets; 15% sulphides pre							
	,		1 1 5	senopyrite as dark grey selvages on							
			• •	ts at 50° to core axis and concen-							
			<u>}</u>	e grey silicified areas; limonite on							
			fractures; m	riposite throughout - at 12 (3.7)							
				veinlet at 50 ⁰ to core axis with vf	 F						
			sulphides al								
16	17		-	ure Zone – very broken listwanite as	11529	4.9	5.2		18100	12493	
	5.2			3.7); silicified areas black with							
-1344	_ ,			nd arsenopyrite; 30% sulphides overa	1					† · · · · · · · · · · · · · · · · · · ·	

....

(METRES IN BRACKETS)

DIAMOND DRI	LL RECORL)
-------------	-----------	---

· _____

PROPERTY____

÷

HOLE	N.	4
	1.449.	

	DIP TEST				
	Angle				
Footage	Reading	Corrected			
	I				
·····					

Hole No Sheet No	L.at	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM	РТ <u>Н</u> ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Arc ppb	As ppm	
(con	t'd)		dominantly pyrite					•		
17	18		Fault Zone - dominantly black sulphide - rich	11530	5.2	5.5		6430	6542	
(5.2	5.5)		gouge; 60% sulphide, mainly pyrite, 1% arseno-							
			pyrite; streaks of mariposite							
18	19		<u> Annealed Breccia - fragments of listwanite as at</u>	11531	5.5	5.8		2360	4039	
(5.5_	<u>5.8)</u>		10-12 (3.1-3.7) and guartz vein material in black							
			silicified matrix with vfg sulphide; 40% sulphide							
			overall, pyrite and arsenopyrite; contacts at							
			55 [°] to 40 [°] to core axis							
19	22.5		Altered harzburgite and/or nodular harzburgite -	11532	5.8	6.9		55	564	
(5.8	6.9)		mottled pale grey to pale green, talcose with							
			white talc replaced pyroxene? remnants, rare							
			pale grey ovoid silicified nodules? up to 4cm							
	Ì		and black magnetite - talc patches of pyroxene?							
			mariposite throughout; white carbonate veining					<u> </u>		
			1% disseminated pyrite, arsenopyrite							
22.5	_23		Orange carbonated harzburgite with tension hair-	11533	6.9	7.0		58	271	
(6.9	7.0)		line_carbonate_veinlets							
_23	29		Poorly_developed_listwanite_consisting_of_areas		<u>z.</u> ?	<u>8.9</u>		18	260	
(7.0	8.9)		of irregular white talc outlines (pyroxene?) in							
			dark grey talc matrix; pale grey silicified areas							

.

DIAMOND DRILL RECORD

PROPERTY_____

HOLE	Na.	4
		· · · · · · · · · · · · · · · · · · ·

÷

÷

	Angle			
Footage	Reading	Corrected		
	1	·· <u>-</u> ·····		
	<u>.</u>			

Hole No Sheet No Section		Total Depth
Date Begun	•	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEF FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	AS ppm	
(ant	'a)	· · · · · · · · ·	with 10% pyrite and minor arsenopyrite and pale							
			green talc - mariposite areas; cut by myriads c	f					ļ 	
			white talc veinlets and occasional irregular white							
			carbonate – quartz veinlet: average sulphide con- tent 1% for this section							<u> </u>
29	32		Silicified Zone - pale grey with streaks of brigh	t 11535	8.9	9.8		5/70	6809	
(8.9	9.8)		green mariposite and 10% disseminated pyrite and							
			arsenopyrite (dominantly arsenopyrite .); at 30'							
			(9.2) rusty vug with quartz crystals; pink hem-							
ĺ			atitic patches (replaced nodules?) occasionally							
32	46.5		Listwanite - pale grey, silicified areas with	11536	9.8	12.9		250	1120	
(9.8	14.2)		5-10% pyrite and minor arsenopyrite, pale green	11537	12.9	14.2		610	1591	
			talc - mariposite patches and areas of partially							
			altered harzburgite (white talc outline in dark						İ	
			grey magnetite - talc matrix); average sulphide	· · · · · ·					[
			1% disseminated pyrite							 <u> </u>
46.5	52		Altered harzburgite and listwanite - white talc	11538	14.2	15.9		45	382	 <u> </u>
(14.2	15.9)	replaced pyroxene? remnants in dark grey matrix							<u> </u>
			of magnetite - talc; cut by zones of pale green							 _
			listwanite consisting of carbonate - silica -							 L
	Ī		mariposite and pyrite and/or arsenopyrite;							

PROPERTY_

.. _. ._

C

	DIP TEST	
	An	gle
Footage	Reading	Corrected
· -		
	<u> </u>	
	1	

Hole No Sheet No Section		Total Depth Logged By
Date Begun	Bearing	Claim
Date Finished	Etev. Collar	Core Size
Date Logged		

HOLE N. 4

DEF		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ari ppb	As ppm		
cont	'd)		average sulphide content overall 1%; sulphides		ļ						
			concentrated on black fragments? and in pale grey								
			silicified zones; all rock types cut by white hair line talc veinlets	n							
			-50-52 (15.3-15.9) pale bluish opaline quartz							·	
			veinlets								
52	.53		Altered harzburgite - white talc remnants of	11539	15.9	<i>16</i> .2		32	100		
15.9	16.2)		pyroxene in dark grey magnetite - talc matrix;								
			cut by zones of medium green talc and white cart								
			onate quartz veins, and white anastomising hair-								
			line talc veinlets; trace disseminated pyrite and								
			arsenopyrite								
53	54		Sheared harzburgite - as above but sheared and	11540	16.2	16.5		4	50		
16.2	16.5)	limonitic; extremely talcose; contacts at 50° and								
			55 ⁰ to core axis					·····	ļ		
54	_81	 	Nodular harzburgite - white semi-ovoids of talc in	11541	16.5	19.6	<u>/</u>	8	11		
16.5	24.7)	dark green talc matrix; ovoids have remnant		19.6	<u>12.7</u>		4	7		
			magnetite_disseminated in the white_talc; occasion	- 11543	<u>22.7</u>	<u>24.7</u>		2	12		
			ally ovoids which average 2 cm across have red								
			hematite_core								
Ì	1										

(METRES IN BRACKETS) DIAMOND DRILL RECORD

____

PROPERTY_____

HOLE	No.	4

ļ

1	• • •
מ א (igle
Reading	Corrected
{ · -····	
	DIP TEST An Reading

Hole No 5	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE F FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Arc ppb	A5 ppm	Rg ppm	
81	85		Fractured Nodular harzburgite; same as above 54-	11544	24. Z	Z5.9		1	7		
(24.7	25,9)	81 (16.5-24.7) but cut by intense irregular white								
			carbonate veinlets								[
85	. 88	, 	<u> Shear Zone - Nodular harzburgite: same as above</u>	11545	25.9	26.8		3	6		
(25.9	_26.8)	but sheared to gouge		 			· .			
88	90		Talc Zone - dominantly pale grey talc with white	11546	26.Ą	<u> 27,5</u>		2	5		
(26.8)	talc remnant pyroxene?; cut by intense medium	· · · · · · · · · · · · · · · · · · ·							
			green_talc_zones								
90	95		<u> Carbonated Zone - orange hairline talc - carbonate</u>	11547	27.5	29.0		3	144		
(27.5	29.0)	hairline veinlets with preferred orientation due to)							
			shearing?; rock dark green talc				[
95	96		Felsite - medium grey, vfg, 70% feldspar laths	11548	29.0	<u> 29.3</u>	····	4	173		
(29.0	29.3)	visible; upper contact at 90 ⁰ to core axis							- 	
			Sludges								
0	10							9840	4716	8.2	
10	20							13660	8439		
20	_30							2430	2152		
_30	40							3630	3712		
40	_50_							1350	1611		
50	_60_							1080	1785		

(METRES	IN	BRACKETS)
---------	----	-----------

PROPERTY_____

HOLE	No.	4	

	Angle			
Footage	Reading	Corrected		
· · ·				

Hole No Sheet No6	Lat	Total Depth
Section		Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au	AS		
		······					OF SAMPLE	.,	ppm		
	ont'd) 3	Sludges					280	454		
60								450	633		
70	80					· 		250	18/		
80	90			<u>-</u>		· · · · ·		210	161	: 	
90	100										
							<u> </u>				
									,		
}		· · · · ·									
i				<u> </u>							
		· · · · •							·		
<u> </u>							-	_			

DIAMOND DRILL RECORD

PROPERTY_	Sidney	Williams	
-----------	--------	----------	--

HOLE	N.	

DIP TEST			
A1	g le		
Reading Corre			
1			
·			
1			
	An		

Hole No Sheet No							
Section		· · · · · ·					
Date Begun							
Date Finished	Aug.	17/90					
Date Logged							

Lat. 1+53E/2+07S
Dep
Bearing300 ⁰
Elev Collar <u>o</u> Angle –65

Total Depth_	150'	(45,8M)
Logged By_	U. Mow	at
Claim.	Klone	1
Core Size	BDBGM	

₹.

DEF FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	AUL	AS ppm	
(0	1.8)		Overburden					.,		
0	6									
6	18		Listwanite, pale grey, silicified with remnant	11549	3.1	5.5		/	37	
(1.8	5.5)		pyroxene? texture of semi-ovoids of carbonate,							
			magnetite and brown felty material; cut by white						· · · · · · · · · · · · · · ·	
			carbonate, carbonate-quartz and rarely bluish							
			chalcedonic quartz veinlets; sulphides average							
			3-5% pyrite and arsenopyrite forming rims on							
			black magnetite?; replacing pyroxene remnants,							
			concentrated in intensely silicified areas and							
			rarely as fracture fillings; very minor mariposite	;						
			limonite stain on fractures				3			
18	24		Listwanite - very rusty, dominantly carbonate,	<u>11550</u>	5.5	7.3		53	1038	
(5.5	.7.3)		fractured, minor carbonate veinlets, minor mari-							
			posite; virtually devoid of texture except for a	·						
			few patches of remnant harzburgite texture; sulphides as at 6-18 (1.8-5.5)							
24	31.5		Listwanite - pale grey, silicified with very	11551	7.3	9.6		200	367	
(7.3	9.6)		minor mariposite; 1-3% sulphides locally concen-							
			trated in very silicified areas consisting pyrite							
			and minor arsenopyrite; intense carbonate - quart	z						

t

		PRO	PERTY					HOLE N.	5		
	DIP TEST Angle Footage Reading Corrected		Angle		Dep Bearing				Total Dept Logged By Claim Core Size.		
DE	РТН ТО	RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As PPM	
(cont	'd)		veining; limo	nite on fractures							
<u>31.5</u>	42		Listwanite -	very rusty, dominantly carbonate as	11552	9.6	12.8		97	316	
(9.6	12.8)		at 18-24 (5.5	-7.3); very shattered; 2% sulphide		ļ				-	
 			- oxidized, o	lisseminated;minor_carbonate					ļ		[
 			guartz veinin	g; mariposite minor and bleached o	4t						
42	47		Silicified har	<u> Silicified harzburgite – pale grey, very silicified</u>			13-9		280	526	· · · · · · · · · · · · · · · · · · ·
(12.8	14.3) 	with areas of	dark greenish grey (talcose);	11554	13.9	14.3		49	186_	
	 		pyroxene_rem	nants of black magnetite and orange					 		
				nite quartz- carbonate veining at					<u> </u>		
			10° to core a	uxis; 1% disseminated pyrite		<u> </u>					
	50.5		Altered harzh	urgite - dark greenish grey, tal-	11555	14.3	15.4		42	255	
(14.3	15.4)		cose with wh:	it <u>e to orange pyroxene remnants;</u> cu	•					<u> </u>	
			by pale green	talc zones and white talc veinlets.							
50.5				burgite, medium_grey_with_vague	11556	15.4.	<u>16-2</u>		5	7/	i
(15.4	16.2		_	remnant pyroxene? minor mariposit	ł	<u> </u>					
			-	zones of carbonate; 2% disseminated	<u>d</u>	<u> </u>					
	78		pyrite		11000		10 2		1500	1584	
<u>53</u>			1	argite - talcose; white remnant talc		T			24	90	
(10,2	23.8			<u>kene in dark green talc matrix;</u>	11558			··· .	<u> </u>	1	
			<u>occasional red</u>	hematite - replaced cores	11559	22.4	25.8			22	·

(METRES IN BRAKETS)

.

PROPERTY

HOLE No5	F No5	
----------	--------------	--

igle Corrected
 ł
·· ····

DEF		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Arc ppb	As PPM		
			61.5-62.5 (18.8-19.1) limonitic orange talc pyroxe	nes?						[
			sheared								
			63-75 (22.1-22.9) remnant pyroxene entirely red								
			(hematitic) in pale green talc matrix, trace								
			disseminated sulphide (pyrite and arsenopyrite); some white carbonate veining up to 2.5 cm wide					· · · · · · · · · · · · · · · · · · ·			
78	.79		<u>Silicified harzburgite - green from mariposite to</u>	11560	23.8	24.1		1	22		
23.8	24.1		pale grey (silicified); dominantly carbonate;								
			minor red hematite blotches; guartz and carbonate	;							
			veinlets; 1% disseminated pyrite - arsenopyrite								_
. 79	81		Altered harzburgite - talc varying from dark	11561	24.1	24.7		/3	27		
24.1	24.7		green to dense whitish green (carbonated?); red								
			hematite blotches								
81	- 86.5		Silicified harzburgite - generally pale grey with	11562	24.7	26.4		4	66		
24.7	26.4)	remnant pyroxene replaced by mariposite and						[
			occasionally red hematite; 20% pyrite as dissemi-								
			nations, replacing pyroxene lamellae, as rims on								
			magnetite and minor hairline veinlets; carbonate							·	
			and quartz veinlets - no preferred orientation								
								1			

)

PROPERTY____

HOLE	. M.	5
TULE		

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	· ·	===

Hole No. 5Sheet No. 4	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE I FROM	РТ <u>Н</u> ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ari ppb	As ppm
86.5	88		<u> Altered harzburgite - pyroxene remnants as ovoid</u>	s 11563	26.4	26.8		19	550
26.4	26.8)		of red hematite, black magnetite in pale green to			L			
			dark green talc matrix; very rusty						
88	90.5		Carbonate Zone - intensely altered harzburgite -	11564	26.8	27.6		14	364
26.8	27.6		remnant pyroxene texture almost obliterated;	<u></u>		<u> </u>			
			mariposite_replacing_pyroxenes	.				 	
90.5	99		Silicified harzburgite - pale grey silicified mat-	11565	27.6	28.5		67	559
27.6	30.2		rix_with_5-20%_vfg_pyrite, irregular_white_car_	11566	28.5	29.4		7/	617
			bonate and bright green mariposite blotches; chalcedony, quartz and carbonate veinlets general	<u>11567</u> Ly	29.4	<u>30.2</u>		1/30	2087
			at 25 ⁰ to core axis; minor red hematite ovoids						
99	101.5		Altered harzburgite - dominantly carbonated with	11568	30.2	31.0		42	551
(30.2	31.0)	minor patches of silicification; generally pale grey with irregular white carbonate patches and						
			green mariposite patches - replacing pyroxene; 5	Š					
			pyrite concentrated in silicified areas; trace of						
			arsenopyrite; anastomising white carbonate veinle	s					
101.5	108		Silicified harzburgite - pale grey, occassionally	<u>11569</u>	31.0	31.7		14	351
(31.d	32.9		mottled with white carbonate pyroxene remnants	<u>11570</u>	31.7	32.9		360	1242
			and rarely reddish hematitic ovoids; mariposite						
			dark green, crystalline and replacing pyroxene;						

PROPERTY_

HOLE No. _____5_____

Total Depth_____

Logged By_____

Claim____

Core Size_____

2

	DIP TEST				
	Angle				
Footage	Reading	Corrected			
	·				
<u> </u>	·				
	<u> </u>				
	<u> </u>	·			

DE I FROM	РТ <u>Н</u> ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au PPb	As ppm	·	
(con	<u>t'd)</u>		quartz and carbonate veining at variable angles;								
			10% disseminated pyrite and arsenopyrite		ļ						
108	_111.	5	Breccia - fragments of rock at 101.5-108 (31.0-	11571	32.9	34.0		1290	1284		
32.9	34)		32.9) in white carbonate matrix; zone parallel to								
			core axis; no sulphides in breccia zone; 10% pyr	ite							
			in unbrecciated material								
111.5	114		Altered harzburgite - carbonated with limonitic	11572	34.0	34.8		32	183		
34	34.8		fractures; pale green matrix with black pyroxene								
			red hematite spots and minor mariposite					·			
114	123		Silicified nodular harzburgite - pale grey with	11573	34.8	36.6		760	1786		
(34.8	37.5		whitish grey ovoids and bright green mariposite	- 11574	36-6	37.5		1850	2581		
			replaced ovoids; occasional red hematite ovoid;								
			10% sulphides (pyrite, arsenopyrite 50:50)								
			disseminated in pale grey silicified matrix and	· · · · ·							
			as rims and in lamellae of black fragments								
			- from 119.5-123 (36.5-37.5) core cut by vertica								
			carbonate breccia veinlet with angular fragment	s							
			of silicified nodular harzburgite								
_123	140		Carbonated shatter zone - rusty, buff to orange	11575	37.5	40.6		1260	1104		
(37.5	42_7				40.6	42.7		39	380		
			bonate veinlets around shatter fragments; 5-10%								

PROPERTY_

HOL	E	No.	5

DIP TEST						
	Angle					
Footage	Reading	Corrected				
•						
	<u> </u>					

Hole No5Sheet No6		Total Depth Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DEP FROM		RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	AS ppm	Cu ppm	Ag ppm
(con	t'd)		sulphides (pyrite, arsenopyrite) disseminated, as						<u> </u>		
			hairline fracture fillings and on black magnetite								
			remnants; several minor sections and fragments of								
			pale grey silicified rock								
_140	141		Contact zone - typical zone encountered at norite	11577	42.7	'43		6	47	746	1.9
(42,7_43)	contacts although no norite is present in this hol	e;									
			beige, dense with black areas of soft nonmagnetic								
			mineral; 3% pyrite concentrated in black areas								. .
141-	-145-		Highly altered nodular harzburgite - generally	11578	<u>43,0</u>	44:2		4	57		
(43	(43 44.2)	mottled pale grey (silicified) and bright green									
		(mariposite); nodular texture appears towards									
			base; upper contact contains speckled appearance								
			(intrusive?) with white semi-angular (av. 0.5 cm)							
		areas in greenish grey matrix; cut by minor									
		carbonate_veining; 3% pyrite_predominantly_dis-									
		seminated in pale grey silicified areas									
145	150		Nodular harzburgite - talcose with orange 1 cm	11579	44.J	<u>45.8</u>		4	78		
(44.2	(44.2 45.8)		ovoids of talc - carbonate in a black matrix;								
		minor hairline talc veinlets			<u> </u>						

ł.

_				·					HOLE No.		5	_		
-		<u>מ</u>	IP TEST	igle										
	Foo	e e e e e e e e e e e e e e e e e e e	Reading		Hole No. <u>5</u> Sheet No. <u>7</u> Section	Dep				Total Depti Logged By				
					Date Begun Date Finlshed Date Logged	Elev. Colle	Elev. Collar				Claim Core Size			
DEP ROM	TH TO	RECOVER	14		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	As ppm			
0	10		Slude	ges						75	435			
10	20									280	982		<u> </u>	
20	30									380	1193		 	
.30.	40					-				480	933		 	
										<u> </u>				
													 	
													<u> </u>	
													 	
													_	
									[–	
						_							 	
[<u> </u>		-	
				· · · · ·									<u> </u>	
													\vdash	
-+										···				
-+			- <u> </u>							<u> </u>			 	
-+				· · · · · · · · · · · ·		_			l				<u> </u>	

- F		<u>DI</u>	P TEST									
	Angle Footage Reading Corrected			Hole No. <u>6</u> Sheet No. <u>1</u> Section <u>Aug. 17/90</u> Date Begun <u>Aug. 17/90</u> Date Finished <u>Aug. 17/90</u> Date Logged <u>Aug. 27/90</u>	Dep Bearing Elev. Colla	03 w	0 ⁰		Total Depth <u>100+(30.5M)</u> Logged By U. Mowat Claim <u>Klone 1</u> Core Size <u>BDBGM</u>			
DEF	тн то	RECOVER	r		DESCRIPTION	SAMPLE No.	T	r	WIDTH OF SAMPLE	Au PPb	As ppm	
·	6,	} 	Dverbi	urden								
6	1.8) 35		Norite	а, с.д., а	ppears relatively fresh, 70% mafic	11580	1.8	6.9		5	55	
.8	10 . 7)				te feldspar predominantly as sub-	11581	6.9 7.3	· ·		<u>5830</u> 6	9480 68	
					(6.9-7.3) norite bleached to white			10.7		/	8/	
			1		with 20% pyrite as 2-5mm clots;							
				or maripo n 33-35 (1	site 10.1–10.5) norite is shattered with							
			ligh	nt grey b	leached shear zones at 90 ⁰ to core	i						
35		· · · · · · · · · · ·	Contac	t Zone -	es very limonitic	; 11584	<u>10.7</u>	11.0	· · · · · · · · · · · · ·	770	1364_	
0.71	11.0)	· 		-	pyrite: arsenopyrite 50:50) as ots and hair line fractures and							
					ong the periphery of a lcm wide carbonate veinlet			· ·	· · · · · ·			
6	37.5		Listwa	anite – or	ange to buff, carbonated, dense,	11585	11.0	11.4		23	<u>389</u>	
	11.4			-	e; rare patch of pale grey silici- nanitic; 5% pyrite - disseminated;							

(METRES IN BRACKETS)

PROPERTY_____

(METRES IN BRACKETS)

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	· ···	

Hole No. <u>6</u> Sheet No. <u>2</u>	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

DE FROM	PTH TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au PPb	As ppm	
37.5	42.5		<u>Silicified nodular harzburgite - pale grey silici-</u>	11586	11.4	13.C	1	23	852	
(11.4	13)		fied nodules in dark grey sulphide-rich matrix;							
			20% pyrite (minor arsenopyrite); mariposite throu	gh						
	Ì		out; cut by veinlets of crystalline quartz with							
			occasional speck of arsenopyrite					.		
42.5	47.5	· · · ·	Nodular harzburgite - dominantly red hematite		13.0	14-5	 	/	44	
(13	14.5)		ovoids 1 cm wide in a black to green talc -							
<u> </u>			magnetite matrix; trace pyrite, white hairline							
			carbonate_veinlets							
47.5	49		Shear Zone - green, talcose cut by myriads of		14.5	<u>14.9</u>		/	58	
(14.5	14.9)	white tale - carbonate anastomising hairline				 			
ļ			veinlets							
			- at 48 (14.6) orange carbonated gouge at 35° to							
ļ			core_axis						ļ	
ļ		r	<u>at 49 (14.9) greenish grey gouge at 40° to</u>							
			core axis							
49	73.5		Harzburgite - very altered by talc, dark green	11589	14.9	<u>19.0</u>		/	7	
(14.9	22.4)	with black magnetite - chlorite - talc patches of	11590	<u>18.0</u>	<u>21.1</u>		2	21	
ļ			remnant pyroxene	11591	2/,_	22.4		2	14	
ļ			<u>- at 53 (16,3) black aphanitic dyke with buff</u>	·					 	
			speckles of incipient feldspar? contacts at 55°							

NEVILLE CROSBY IND-TELEPHONE: USE-4343

HOLE No. 6

(METRES INBRACKETS)

DIAMOND	DRILL	RECORD
---------	-------	--------

PROPERTY_____

÷

	DIP TEST						
	Angle						
Footage	Reading	Corrected					
· ·							
	- · · · ·						

Hole No. <u>6</u> Sheet No. <u>3</u>	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

HOLE No. _____6

DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Are ppb	As ppm	
(cor	t'a)		to core axis							
			- from 57-73.5 (17.4-22.4) harzburgite with less							
 			talc alteration; appears to be fresh							
 			- entire section cut by carbonate veinlets with			[
			no preferred orientation; trace to 1% dissemin-	.		<u> </u>				
			ated vfg_pyrite (?); pyrite more noticeable							
			in talcose_sections							
73.5	74.5		Gouge - greenish; upper contact 75 ⁰ to core axis;	11592	22.4	22.7	¢	5	13	
	22,7)		lower_contact_at_45 ⁰							
74.5	100		Harzburgite - fresh - looking with bronze -	11593	22.7	25.8		1	5	
(22.7	30.5)	coloured pyroxene still visible in black to dark	11594	25.8	28.9		1	20	
			grey matrix; c.g. pyrite occasionally in pyroxene	; 11595	28.9-	30.5		1	21	
			cut by myriads of white carbonate - talc veinlets	;						
			sulphides trace to 1% disseminated throughout		 				ļ	
			Sludges					·		
0	10							320	1122	
_10	_20							270	934	
. 20	_30					[250	726	
-30	40							/37	503	
40	50							127	795	

(METRES IN BRACKETS)

DIAMOND	DRILL	RECORD
---------	-------	--------

		PR	OPERTI	۲						HOLE No	6			
}		DIP TEST Angle												
	Fo	Footage Reading Corrected		Hole No. <u>6</u>	Lat					ì				
					Date Begun		Bearing							
ł				<u> </u>	Date Finished Date Logged	······································	_ Elev. Collo	ır			Core Size_			.
FROM		RECOVER	Y		DESCRIPTION		SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Are ppb	As ppm		
(co	ht'd)	i.												
50	60										142	509		
60	70	 									131	450	u	
70	80	ļ_									104	303		
80	90	<u> </u>									85	316	<u> </u>	
	100	· · · · ·									46	141		
					·									
				·										
								ļ _						
						· · ·								
		_		* 18 • 18 • 1										
			- 											
			ļ											

(METRES IN BRACKETS)

Sidney Williams PROPERTY_

н	o	F	,	Ya.	7	
	~	 -				

Claim.....

Dep._____

Bearing_____

Total Depth __ 155' (47.3_M)

Logged By U. Mowat

Core Size____BDBGM_____

Klone 1____

	DIP TEST	
	Ал	gle
Footage	Reading	Corrected
	<u> </u>	
•••		

Hole No. Section ____ Date Begun Aug. 18/90 Date Finished Aug. 19/90 Elev. Collar. Angle -90⁰ Date Logged Aug. 28/90

DE I FROM	тн то	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Are ppb	AS ppm	
0	8		Dverburden							
(0	2.4)									
8	11		Breccia - buff, silicified carbonate with breccia	11596	2.4	3.4.		280	266	
(2.4	3.4)		fragments in chalcedonic matrix; chalcedony vein-		[]					
			lets at 15 ⁰ to core axis; trace pyrite; minor							
			mariposite							
11	16		Harzburgite – listwanite – pale grey silicified wi	h 11597	3.4	4.2	 	390	467	
(3.4	4.9)		brownish remnant pyroxene and occasionally white				 			
			carbonate and dark green talc - chlorite; 1% pyri	te	<u> </u>					
			and arsenopyrite; minor mariposite; gouge zones						ļļ	
			2 cm wide at 30° to core axis; chalcedony vein-							
			lets at 30 ⁰ to core axis							
16	_18_		Carbonate Zone - fractured, orange vague remnant	11598	4.9	<u>5.5</u>		5067	806	
(4.9	5.5)		outlines of nodules; minor mariposite							
18	32		Nodular harzburgite - variably altered ranging	11599	5. <u>5</u>	8.6		128	324	
(5.5	9.8)		from pale grey, silicified to pale greenish from	11600	8.6	9.8		4	53	
			mariposite with silicified patches and also dark							
			<u>green talcose areas with nodules up to 4 cm acros</u>	s						
[of orange talc and red hematite; cut be anastomis	ing						
[white hairline talc veinlets							

ŝ

	_		
NEVILLE	CRO	558Y	IND-
TELEON	A	LIDE 1	

	-
NEVILLE CROSBY IND	
TELEPHONE DEE 1212	

TELEPHONE USE 4343

r			PERTYSidney Williams				HOLE No		<u> </u>	-		
بر من هو له من في من الم الم من ما الم	Foo		Angle	ion Dep, Begun Bearing Finished Elev. Collar		ishedElev. Collar			Logged By Claim			
DE I FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Ari ppb	AS			
32	33,5		Shear zone - limonitic, very fractured talcose	11601	9.8	10.Z		4	299			
(9.8	10.2		harzburgite with vague orange talc patches (nodu	es?								
			pyroxene?)		[
3.5	.34.5		Altered nodular harzburgite? orange talc - carb-	11602	10.2	10.5	1 f	918	219			
10.2	10.5		onate patches in dark greenish grey magnetite -	ļ	<u> </u>			· .				
			talc_matrix, minor_patches_of_red_hematite	ļ								
4.5	35		Siljcified zone - silicified carbonate, dense with	11603	10.5	10.7		17	213			
10.5	10.7)		occasional nodule of orange carbonate (replaced									
			by silica); minor mariposite; trace pyrite									
5	37		Silicified zone - poorly developed with numerous	11604	10.7	11.3		14	78			
10.7	11.3		areas of altered harzburgite; silicified areas are			· ··· · ··-						
			pale grey with 1-5% sulphide, mainly pyrite,									
			trace arsenopyrite, occurring as lamellae fillings	 	 				<u> </u>			
	 		in replaced pyroxene, on rims of black fragments	;								
			altered harzburgite talcose with white replaced			· · · · -			<u> </u>	<u>.</u>		
			pyroxene outlines in a dark green talc-magnetite	<u> </u>					ļ			
			matrix; section cut by numerous quartz and car-	ļ								
			bonate veinlets with no preferred orientation					-· ·	{ 			
37	. 40		<u> Altered harzburgite - talcose - white remnant</u>	11605	11.3	<u>12.2</u>		2	174			
11.3	_12_2)		carbonated pyroxene in dark green talc magnetite matrix					_				

PROPERTY_

HOLE N. 7

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
	 	····				
- <u>-</u>	f					

 Hole No.
 7
 Sheet No.
 3
 Lot.
 Total Depth.

 Section
 Dep.
 Logged By

 Date Begun
 Bearing
 Claim

 Date Finished
 Elev. Collar
 Core Size

DE FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au PPb	As PPM	
(cont	'd)		- at 39-39.5 (11.9-12.1) rock completely replaced	Ą						
			by buff carbonate							
40	51.5		Silicified nodular harzburgite - white irregular	11606	12.2	13.7		261	432	
(12.2	15.7		semi-ovoid shapes in pale grey matrix - totally	11607	13.7	15.0		441	862	
			silicified; mariposite throughout; 2 mm black	11608	15.0	15.7		3204	<u>3333</u>	
			fragments throughout; 2% sulphide throughout main	ly		[
•			pyrite, trace arsenopyrite							
			- from 49-51.5 (15.0-15.7) arsenopyrite predomin	ates						
			sulphide in lamellae and on black fragments;		L	L				
·			zone cut by limonitic carbonate alteration along	_ _						
			fractures - very late stage alteration; minor							 ę.
			zones of dark green talc; numerous carbonate and							
			quartz veinlets which may be in part silicified							
			carbonate, veinlets							
51.5	57_		Breccia - totally silicified with crypto crystalli	ne 11609	15.7	17.4		1278	522	
(15.7	17.4)	1	quartz; angular fragments of white to pale green			L				
			from mariposite in a buff to pale grey matrix;							
			minor limonitic fractures; trace - 1% sulphide -							
			mostly pyrite							
57	61		Breccia - orange to dark brown, dominantly	11610	17.4	18.6		432	510	
(17.4	18.6)		carbonate; minor orange to dark green talcose							

PROPERTY_

HOLE No. 7

	DIP TEST					
	Angle					
Footage	Reading	Corrected				
	ł					
· · · · · · ·						
		··				

DEI	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au ppb	AS ppm	
(con	<u>t'd)</u>		zones; trace pyrite							
61	65		<u>Silicified zone - porcellanous, dense, pale green</u>	11611	18.6	19.8		57	854	
(18.6	_19.8	i)	from mariposite; 10% black fragments throughout;						Į	
			5% sulphides virtually all on rims of black			ļ 				
			fragments mainly pyrite trace arsenopyrite		ļ					
-65	67		<u> Altered nodular harzburgite - vauge whitish</u>	11612	19.8	20.4		10	48	
(19.8	20.4	.)	.575 cm patches in pale greenish grey matrix						ļ	
			of silica in part, carbonate in part and talc;		ļ					
			speckled with 10% black magnetite remnants;		· ·					
			minor marposite; trace pyrite and arsenopyrite		ļ					
67	1.5		<u> Talcose nodular harzburgite - whitish patches</u>	11613	20.4	21.8		2	7	
(20.4	21.8	·	(replaced nodules) in dark greyish green talc]
			matrix; cut by white talc- carbonate veinlets of							~
			no preferred orientation							
71.5	84		Nodular harzburgite - orange nodules (av. lcm)	11614	21.8	24.9		5	28	
(21.	25.	<u>;</u>)	in orange - stained black matrix; very talcose;		24.9	25.6		3	6	
			cut by minor orange and occasionally white talc							
			veinlets; occasional zone of greyish nodules in							
			dark green talcose matrix							
_84	95		<u>Nodular harzburgite - pale grey nodules in dark</u>	11616	25.6	27.2		/	10	
(25.6	5 29 0))	green talc matrix; cut by minor talc and carbon					1	2	

PROPERTY_____

HOLE No. _____7

	DIP TEST						
·	Angle						
Footage	Reading	Corrected					
<u>.</u>	ļ						
	·····	f					
	· · ·						

Hole No 5	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		

		r ·····		-							
FROM	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE	Au PPb	AS ppm		
(con	t'd)		veining; minor orange staining along fractures								
95	99.5		Intensely carbonated nodular harzburgite - orange	116 18	29.0	30.4		1	2		
(29.0	30.4)	talc - carbonate zone, virtually textureless save								
		· ·······	for occasional pale orange nodular shape; cut by								
			intense white carbonate veining which appear to								
			be in fillings between fragments								
99.5	104		Shear - nodular harzburgite as at 95-99.5 (29.0	11619	30.4	31.7] [1	3		
(30.	31.	7)	-30.4) but cut by myriads of orange anastomising								
]			talc_veinlets_and_a_strong_white_carbonate_vein-					····]
			lets and a strong white carbonate veinlet at								
			.30° to core axis								
104	155		<u>Nodular harzburgite - whitish to greenish grey</u>	11620	31.7	<u>34.8</u>		1	a		
(31.	47.	3)	nodules up to 3 cm across (av. \approx .5 cm) in dark	11621	34.8	37.9	· · · · · ·	1	2		
			green_talc_matrix; zones_of_orange_staining	11622	37.9	41.0		1	2	-	
 			- from 127 (38.7) residual olivine present	11623	41-0	43-1		/	6		
			- minor white hairline talc veinlets	11624	<u>4</u> 3./	<u>4</u> 7.3		_/	5		
		• •								_	
20	30		Sludges					290	215		
								<u>~70</u>	a., j		
									· · · · · · · · · · · · · · · · · · ·		

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

· _ _ ·

·····

DATE RECEIVED: SEP 25 1990

DATE REPORT MAILED: O.C. 1. 9.

ASSAY CERTIFICATE

Viceroy Resources PROJECT SIDNEY WILLIAMS FILE # 90-3769R ,

SAMPLE#	AG** oz/t	AU** oz/t
HOLD 3 30-40	1.45	.103

AG** & AU** BY FIRE ASSAY FROM 1 A.T. - SAMPLE TYPE: Studge Pulp

SIGNED BY. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PEONE(604)253-3158 FAX(604)253-1716

DATE RECEIVED: SEP 25 1990

DATE REPORT MAILED:

<u>Oct :/%.</u>

ASSAY CERTIFICATE

Vicercy Resources PROJECT SIDNEY WILLIAMS FILE # 90-3591R

SAMPLE#	AG** oz/t	AU** oz/t
HOLD 1A 0-10	.21	.001

AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE TYPE: Sludge Pulp D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

____. _ ___

· - · ____

DATE RECEIVED: SEP 21 1990

DATE REPORT MAILED: Sept. 26/90

··· ____ · · · ___ · · · · · ·

GEOCHEMICAL ANALYSIS CERTIFICATE

Viceroy Resources PROJECT SIDNEY WILLIAMS FILE # 90-3435R 880 - 999 W. Hastings St., Vancouver BC V6C 2W2

SAMPLE#	AU** ppb	PT** ppb	PD** ppb
C 11448	1	2	2
C 11450	8	2	2
C 11453	1	2	2

- SAMPLE TYPE: ROCK PULP AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP.

D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY. .

852 E. HASTINGS ST. VANCOUVER B.C. VGA 1R6

PHONE(604)253-3158 FAX(6) 253-1716

GEOCHEMICAL AMALYSIS CERTIFICATE

Viceroy Resources PROJECT SIDNEY WILLIAMS File # 90-3435 Page 1 880 - 999 W. Hestings St., Vencouver BC V6C 2W2

SAMPLE#		Mo ppm	Cu ppm	Pb ppm	242	Ng N Sm pp			Fe X	As ppm	U ppm	Au ppm	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm		P X		Cr ppm	Mg X	Ba ppm	Ti X		AL X	Ne X	K X	eren -	Au*
C 11192			15	5	5.6	1 130	3 60	787	4.82	266	5	ND	•	23	1.6	21	5	21		.009	2	640	18.87	10	.01	12	.32	.01	.01		230
C 11437	1	5	ŝ	ś	7 2333	2 35		300	1.63	492	ś	3	1	3	3	2	ź	7		.006	5	140		7	.01	3	.03	.01	.01		5070
C 11438	107 I	2	76	ŝ	62	1 3		294	7.60	23	5	ND	1	73	1.4	2	2	85		.009	2	33	1.02	10		_	1.39	.01	.13		240
	5	2	191	4	65	1 8			4.40	2	5	ND	1	14	1.4	ž	2		1.92	1.0	ž	183		3	.29		2.79	.01	.02	i h	B
C 11441	Ū	1	69	ź		15		1321	4.80	4	5	ND	1	108	1.8	4	5			095	3	237		102	.09		.74	.01	.18	j.	2
	RE	-																												879î -	_
C 11442	٣	3	24	2	54 🐘	2 5	7 17	304	13.01	2	8	ND	1	14	1.7	2	2	60	.08	2017	11	22	.38	496	.03	6	.51	.01	.11	1 (1	25
C 11443		10	8	3	6 💹	1. S	₹ 1	63	.75	3	5	ND	1	2	.2	2	2	7		.018	2	35	.03	- 14	+03	4	.06	.01	.02		1
C 11445		3	9	2	5 🎇	(1)	52	73	.37	2	5	NÐ	1		2	2	2	4		.007	3	8		2200	01	4	.13	.01	.04	1.	2
C 11446			21	Z		1 166		988	4,98	6	5	ND	1		1.2	2	2	24		.007			13.72	26	.01	20	.41	.01	.01	88 1	3
C 11447		1	31	9	15	2 142	5 62	626	5.00	56	5	ND	1	11	1.4	2	5	28	.64	.007	2	1119	15.73	16	.01	21	.63	.01	101	<u></u>	3
			47		•n 🖗	10 10 172		072	5.67	2.0	E	10	4	47		•	•	20	1 17	.007	-	1757	14 00	17	800 C	- 27	20		.		
C 11448 C 11449			13 12	0 7		1 136 1 163			5.37	60 41	5	ND ND		13	2.2	5	7	28 28		.008			16.98	17 14	.01	24 39	.58	.01	.01		
C 11450			12	7		1 165		1110	5.14	24	5	ND		,	1.3	5	ż	24		.007			19.65	7	201	40	.45	.01	.01		
C 11450		1	13	0	10000	1 187		479	5.34	53	ś	ND	- i	- 7	2.0	5	2	32		007			22.34	Ś	, 01	33	.70	.01	.01		1
C 11452	、		13	12	1 - 22272	1 176			4.90	18	5	ND	i		1.5	2	2	27		.006			21.83	6	.01	41	.59	.01	.01		5
				•							•		•			-	-				-			-		•••		•••			-
c 11453 ,	. i	1	14	4	13 🐰	1 180	1 70	544	5.13	- 38	5	ND	1	5	1.1	2	3	32	.37	.007	2	1342	22.22	5	.01	33	,71	.01	.01	88 1	1
C 11454	ע I	1	13	6	12	1 164	5 70	640	4.98	36	5	ND	1		1.Z	2	2	29	.93	.007	2	1234	20.65	9	.01	38	.60	.01	.01	88 1 -	5
C 11455	N I	1	11	5	12 💹	1 159	70 70	615	5.19	55	5	ND	1	17	1.6	2	2	29	1.10	.006	2	1236	19.80	11		31	.61	.01	.01	839 -	2
C 11456	5	1	14	9	18 📖	2 141	70	928	5.31	39	5	ND	1	5	č1.9	2	2	31	.37	.007	2	1257	18.45	11	.01	26	.61	.01	.01		1
C 11457	1 1	1	12	10	8	1 142	62	644	4.49	266	5	ND	1	50	1.10	2	2	22	1.21	.006	2	756	21.75	- 4	01	22	.34	.01	.02	1	- 4
1						38															_										
C 11458		1	7	7		1 126			4.38	85	5	ND	1	19	.7	2	2	23	.69	.006			18.25	8	.01	13	.42	.01	.01	1	5
C 11459		1	10	5		1 141				207	5	ND	1	7		2	Ž	21		.007	_		17.73	1	.01		.33	.01	.01	1	10
C 11460		1	-9	ŝ		1 166		•	4.50		5	ND	1	6	8	2	4	28		.007			15.34	1	.01	11	.64	.01	.01		1
C 11461		1	30			2 129				104		ND	1	4 E7		4		28		.007	-		13.46	25	.01	12	.60	.01	.01		2
STANDARD C/	/AU-R	19	63	37	132 💱	6 7	5 52	1054	3,98	37	17	0	36	53	18,4	15	22	56	.52	.094	37	61	.86	180	.08	32	.89	.06	_14	89 1 1	540

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 Rock P2 Silt/Soil AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLED

DATE RECEIVED: AUG 14 1990 DATE REPORT MAILED:

Hug 20 90.

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

C

Viceroy Resources PROJECT SIDNEY WILLIAMS FILE # 90-3435

Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn Ag ppm ppm	Ni ppm	Co ppm	Mn ppm	Fe As X ppm	U ppm	Au	Th ppm	Sr Cd ppm ppm	Sb ppm	Bi ppm	v ppm	Ce P X X	La ppm	Cr ppm	Mg X	Ba it ppm it		Al X	Na X	K N X ppm	Au*
C 11432	2	18	2	67 .2	585	37	826	4.92 7	5	ND	1	16 .4	2	2	51	.39 .035	6	637 4	L.90	51 14	7	1.46	.02	.04 1	2
C 11433	3	25	4		856	37	684	600000 01	5	ND	1	27 .2	2	2	48	.63 .050	7	757 6		72 .07	_	1.36	.02	.06	2
c 11434 W	2	26	z	66 .1	618	39	824	4.85	5	ND	1	18 .5	2	3	52	.45 .029	5	610 5	5.79	55 .14	. 9	1.52	.02	.04 1	2
C 11435 🕺	2	23	2	65 .2	515	35	78 7	4.57	5	ND	1	20 .4	2	2	53	.39 .035	6	488 4	4.41	64 .10	10	1.38	.92	.04 1	1
c 11436 V	2	14	2	55 21	538	31	571	4.05 11	5	ND	1	17 .2	2	2	45	.34 .027	5	541 5	5.65	52 410	9	1,28	.02	-04 1	1
c 11440 🗡	2	15	2	56 .2	579	35	764	4.27 6	5	ND	1	16 .2	2	2	46	.35 .024	4	559 5	5.89	55 ें 1	6	1.28	.02	.04 1	2
C 11444	3	30	7	68 .2	906	72	1348	8.19 51	5	ND	1	8 22	2	2	56	.08 .076	5	1043 2	2.49	77 .05	i 6	1.91	.01	.02 1	2
2+00W 4+50S	2	16	2	72 .3	727	76	1567	5.10 474	5	ND	1	14 .2	8	2	44	.39 .086	5	821 4	4.94	76 .05	5 8	1.23	.01	.06 1	61
STANDARD C	19	57	39	131 6.8	68	31	1050	3.92 38	18	6	37	53 18.4	15	20	55	.51 .091	37	57	.89	181 .07	34	1.90	.06	.14 11	

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL AN SIS CERTIFICATE

Viceroy Resources PROJECT SIDNEY WILLIAMS File # 90-3591 Page 1

880 - 999 W. Hastings St., Vancouver BC V6C 2W2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn pprs	Ag	Ni ppm	Co ppm	Mn ppm		As pom	U ppm	Au ppm	ĩh ppn	Sr C ppm pp	· •	Bi ppm	V ppm	Св Х		Cr ppm	Mg X	Ba Ti ppm X	B AL ppm %	Ka X	K ¥ X ppm	··· 1
C 11462	1	56	z	14	3	1107	42	435	3.69	14	5	ND	1	4	2 2	z	22	.31 .007		935	9.77	10 01	5.37	.01	.02	6
C 11463	1	35	2	17	.3	811	38	710	3.09	934	5	ND	1	106 🔅 🔒	2 33	2	23	5,37 2030	2	352	8.52	12 .01	13.33	.01	.06 1	14
C 11464	1	51	2	31	.2	28	13	406	2.81	2	5	ND	1	23 😳	2. 3	5	81	2.32 :039	2. 2	42	1.55	18 .16	3 1.33	.22	.07 1	3
C 11465	1	52	2	29	(1 .)	28	12	355	2.66	6	5	NÐ	1	23 🔆 .	2 3	2	79	2.10 .030	2	45	1.43	25 19	3 1.49	.24	.17 🧾	1 [
C 11466	1	34	2	52	. 1 .	42	22	552	4.56	51	5	ND	1	20	25	2	103	2.69 .011	2	70	2.19	76 .10	8 2.01	.17	.46 1	114
C 11467	1	48	3	33	1	33	13	358		2	5	ND	1	18 .	2 Z	2		1.51 .041		46		19 19	3 1.58		.17 1	2
C 11468 V	1	45	2	44	.2	33	17		3.95	56	5	ND	1	34 🖓	2, 3,	2		4.21 .067		44	2.51	40 .03	6 1.17	.06	.26 ⊖ି1	3 J
C 11469 V	1	53	2	56	:.1	40	22	635		180	5	ND	1	30	25	2		2.34 .042		52		45 207	6 2.11		.20 1	4 [
C 11470 Q	1	43	2	52	.2	52			5.29		5	ND	1	84	49	2		5.77 :012		24	3.58	2301	6 .45	.01		1321
c 11471 🗙	1	41	2	61	-2	50	Z5	935	5.56	460	5	ND	1	48	24	2	77	4.35 .034	2	51	3.04	57 .01	5 1.12	.02	.16 1	261
c 11472	1	57	4	42	-1	42	17	534	3.94	6	5	ND	1	24 🛄	23	Z	102	1.99 .040	ຸ 2	64	2.05	37 13	4 1.82	. 14	.11 - 1	17
c 11473	1	59	2	38	1	29	16	510	3.47	13	5	ND	1	36 📜	2 4	2	90 0	2.99 :029	່ 2	50	2.21	40 .06	7 1.36	. 12	.09 1	1
C 11474	1	11	2	17	.2	814	51	610	4.14	31	5	ND	1	9	22	2	38	1.02 .007	′2	766	11.26	8 03	6.95	.01	.04 🔅 1	2
STANDARD C/AU-R	19	57	40	131	7.1	73	31	1047	3.96	<u>_</u> 41	24	7	40	52 18.	9 16	20	59	.52 .096	40	60	,89	183 .09	35 1.89	.06	.13 13	490

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: P1 CORE P2 SLUDGE

DATE RECEIVED: AUG 17 1990 DATE REPORT MAILED: ANG 23/90. SIGNED BY.

 \mathbf{C}

Viceroy Resources PROJECT SIDN WILLIAMS FILE # 90-3591

Page 2

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	AB	Ų	Au	Th	Sr 🛞	Cd	Sb	Bi	٧	Ca	P	La	Cr	Ħg	Ba Ti	B	AL	Na	ĸ		Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	ppm	ppm	ppm	ppm	ppn ()	ppm	ppm	ppm	ppn	X	8 X	ppm	ppm	×.	ppm 🔆 🗱	ppm	X	×	*	ppm	ppb
					494.93			_	_	20. SM				3	apaté y					<u>.</u>										
HOLE 1A 0-10	4	54	13		20.4		- 44	605	4.70	106	5	ND	1	7 1	0.3	2	2	50	.43	_026	2	711	10.37	28 .02	15 1	.12	.03	.05	ं *14 ं	28
HOLE 1A 0-20	6	87	14	91	3.7	1152	55	631	5.35	82 S	5	ND	1	7 💱	2.9	2	2	51	.62	.019	2	972	12.94	25 .03	17 1	. 14	.05	.05	×31	15 Í
HOLE 1 0-10	6	48	25	52	•7	1513	66	578	5.70	131	5	ND	1	18 🖗	5	7	2	31	.54	.011	2	1240	17.96	238 .01	27	.63	.01	.01	10	19
HOLE 1 10-20 {	36	126	99	138	6.9	930	47	523	5.19	82	6	ND	1	18 🐰	1.0	2	2	46	.76	.025	2	918	9.83	199 .04	91	.09	.03	.04	N 2	20
HOLE 1 20-30 {	14	74	56	101	3,4	1191	51	582	4.65	40	5	ND	1	13 🖁	2,1	2	2	31	.55	.009	2	1184	14.95	52 _01			.01	.01	<u>_</u> 13	17
					20000																						•	•••		
HOLE 1 30-40	6	39	34	52	1.2	1144	48	564	4.52	95	6	ND	1	37 🖗	121	4	3	27	1.26	.009	2	1117	16.95	135 .01	19	.71	.01	.01	Ę	20
HOLE 1 60-70	13	179	65	701	2.0	1480		734		61	6	ND	1	24		2	3	31		039			18.64			.72	.01	.01		39
HOLE 2 0-10	3	55	10	74	3.6	758			4.56	Z2	5	ND	1	7		2	2	43		.031			8.05	44 .07	_		.01	.03		37
HOLE 2 10-20	4	18	3	27	3	796	45	460	3.69	18	5	ND	- i	2 🖇	2	5	5	23		,008			14.65	14 01		.61	.01	.01		44
HOLE 2 20-30	ς.	27	20	23	4	786	47	559		3333.C To.	Ā	ND		3	265 100	5	5	23		006			14.60	27 .01		.62	.01		6	
	-	•							4100		v	ND.	•			-	-	23			-	1120	14.00		61	.02	.01	.01		10
HOLE 2 30-40	7	23	15	20		854	49	490	4.35	18	5	ND	1	, 🖗	.3	2	2	26	40	2006	2	1285	15.82	12 .01	32	.69	.01			
HOLE 2 40-50	7	18		19		983	52	451	4.38	23	ž	ND	;		1.1	5	5	26		.006			16.49	4.35 6.6				.01		111
HOLE 2 50-60	7	24	14	23	÷.	1275		515		21	š	ND		; 🔅	.2	5	5	24		.006				4 .01		.67	-01	.01		1
	ŏ	51	· · -		4					22	Ē	ND		- -	8526	2	2	17		A			16.33	8 .01		.61	.01	.01	<u>.</u>	1
	, y	83	2	43						3000 T T 1	2	ND		28	-5	2				.009			14.94	13 .01		.41	.01	.01	····7	2
HOLE 2 70-80	Ÿ	83	2	63		860	53	071	6.56	12	2	ND		<u>د</u> ک	.2	2	2	25	.75	.008	2	1257	14.96	9 .01	21	.51	.01	.01	-24	11
	~	E 4		77		1055	ED	770	7 30			wn					-	-										· · ·		_1
HOLE 2 80-90	y y	51	.8		-4		58	720	7.20	68	2	ND	1	_ Z 🛞	-2	2	Z			.007			15.51	6 .01		.46	.01	.01	5 -	7
HOLE 2 90-100	12	85	17		.9					130	5	ND	!	19 🔮	.2	3	7			2011			13.14	7 .01		.41	.01	.03		2
HOLE 2 190-200	34	252	23		×1.3				14.60		5	ND	_1	_6 💮	-2	14	14	24		.015			13.60	36 .01		.53	.01	.01	- 36	38
STANDARD C/AU-R	21	62	40	133	7.4	73	32	1056	3.98	43	16	8	38	52 18	8.5	15	22	59	.52	.096	_ 39	60	.91	182	38 1.	. 89	.06	.14	13	490

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(6041253-1716

GEOCHEMICAL ANMEYSIS CERTIFICATE

Vicercy Resources PROJECT SIDNEY WILLIAMS File # 90-3724 Page 1 880 - 999 W. Hastings St., Vancouver BC Vóc 2W2

SAMPLE#		Но ррл			Zn	- Kai Ta	3	Co	Min ppm	fe X	3388 1.1 2.1		Au			Cd ppra		Bi ppm			P X			-		T		AL X	Na X	K X pp	
C 11475		2	7	2			590			3.83	362 A		ND	•	··· •	1.4	2		19		.007			15.00		2.08			.01		2 Z
C 11476		15	2	ź		 Records. 				3.95	8					8	ž	ź	21		.007					.01				0001	
			8					-							- !									16.23		5.71100			.01	1000	\$ _]
C 11477		1	-	2			379			3.19	Ž		ND	1		1.3	2				.006			12.65		.01	-	.43		2.99	
C 11478		2	4	2			§ 431			3.36	2			1	1	.9	2	2			.005			12.31		.01		.49		040	li zi
C 11479		2	6	2	10		609	36	563	3.27	2	5	ND	1	1	.5	2	2	12	. 16	.004	2	657	12.17	1	.01	20	.21	.01	.01 🎆	י ז
C 11480		6	16	5	10		1656	54	461	3.46	29	6	ND	1	1		2	3	3	05	.007	2	151	14.16	. 1	.01	79	64	.01	61 🎆	58 1
C 11481		2	12	ź			541			3.04	3		ND	- ÷	i	7	ž	ž	4	· · _	.005			14.98		- 656 156			.01	1968	8 i
C 11482		Ż	5	ž			627			3.16	Ž		ND		1		2	2	21		.006					.01		.44			8 H
			-								4					.4								15.86						75555	\$ 1
C 11483		3	3	2		 1000 - 200 	707			3.12	130302021	. –	ND	1	1	.9	2	2	- 11		.006			16.54		.01		.20			
C 11484		4	6	2	11		1061	52	579	3.81	293	5	ND	1	2	1.0	3	2	6	. 10	.008	2	202	18.46	8	.01	5	.08	.01	.01 💥	8
C 11485		4	12	z	5		1311	56	485	3.75	197	5	ND	1	1	.8	2	z	4	.06	.006	2	257	19.03	2	.01	3	.03	.01	.01 🎆	្តី 1
C 11486		7	9	2					637		462		ND	1	Ĺ.	11	27	ž	Ś		.007			19.94		- G F 28		.07			50
C 11487		1	42	ž			156			8.49	361			1	60	8	27	-			.051	-						1.08	•	· · · · · · · · · · · · · · · · · · ·	65
C 11488		1	87	ž	-		324			9.46	22			í	26	.8	4	_			.024	-		6.78		17		3.03			1 3
C 11489		4	12	ž			1193			4.47	16	. –		i	Ž	1.0	ż	ž			.006			15.75		.01		.48		- 11 - 1899	1 5
• • • • • • • •	n?			-	14		•••••		004	4441		-		•	-		-	-	~			-			-	- 19 A			•••	••••	
C 11490	N	6	Z 0	2	8		1360	59	554	4.20	814	5	ND	1	6	1.1	25	2	18	.42	.006	2	609	18.65	8	.01	7	.19	.01	.02 🚳	1 20
C 11491		3	7	2			798			4.35	12			Ť	ž	.6	2	ž	25		.006			14.17		.01			.01		1 1
C 11492	V	2	6	ž			653			3.88	2			1	2	.8	2	ź	21		.006			13.55		.01		.43		3993	1
C 11493	2	ŝ	8	ž			1330			4.25	1317			1	- 4	.8	31	ž	18		.007			17.67		.01		.18			25
C 11494	40	6	ğ	ž			1373			4.15	1363			Í	ž	o	42		17		.005			17.69		.01		.10			1 240
	X	_		_		163					1989-to	-			-			-			1.38	-				1933					
C 11495		5	5	- 4	- 30	्र 2	1254			4.21	271	5	ND	1	2	1.0	40	2	11		.006	2		18,85		.01	- 4	.12	.01	.01 🎉	1 55
C 11496		4	9	2	6	े.3	1263	- 58	677	4.72	309	5	ND	1	1	.5	13	2	21	.06	.006	2	795	19.42	- 4	. 01	9	.30	.01	.01 🛞	1 20
C 11497		5	23	2	9	.9	1382	- 59	623	4.48	1553	5	ND	1	2	1.1	47	Z	16	.12	.006	2	356	18.72	- 3	.91	6	.07	.01	.01 🚿	1 Z60
C 11498		6	15	2	16	.6	1471	61	683	4.99	1246	5	NÐ	1	19	1.0	35	2	19	1.26	.005	2	393	18.53	- 4	.01	8	.16	.01	.03 🛞	1 31
C 11499		1	96	2	66	1.0	92		1336		2694	5	ND	1		1	53				.110			4.63				1.33	.01	.16 🛞	2690
												:									1. Add										ž.
C 11500		1	82	5	- 68		- 49	- 28	982	8.05	126		ND	1	83	1.1	16	2	149	5.66	.136	2	32	3.75		.12		2,10	.09	.09 💮	1 270
C 11501		3	9	2	18	- 1	952	- 50	548	4.54	95	5	ND	1	30	1.0	2	2	36	2.92	.019	2	455	12.37	- 14	.02	7	.74	.01	.05 🛞	t 35
C 11502		1	72	2	63	. 1	- 34	23	951	6.85	107	5	ND	1	48	1.3	33	2	130	4.96	.123	2	27	4,68	39	.09	9	2.61	.07	. 11 🎡	16 1
C 11503		4	18	2	19	.1	1082	50	506	3.88	54	5	ND	1	12	.9	2	2	28	1.34	.004	2	892	14.74	- 4	.01	5	.75	.01	.01 🔅	19
C 11504		4	51	2	11	.4	1186	54	448	4.10	655	5	NÐ	1	9	.8	27	2	19	.55	.006			17.26	- 4	.01	4	.24	.01	.02 🐰	15
												-									1977-1										
C 11505		3	15	2			1089			4.25	18			1	2	.7	2	2	28		.004			13.42		.01		.60			<u>E</u> 41
C 11506		5	9	- 2	11	1	1306	- 68	708	5.07	6	5	ΝD	1	2		2	- 4	26		.005			16.25		.01	62	.58	.01	.01 淤	18 Z
C 11507		5	12	2			1462		741	4.44		5	ND	1	2	.7	2	2	24		.005			18.03		.01	73	.53	.01	.01 🛞	
C 11508	ŋ	-5	- <u>9</u>	2			1423		671	5.19	6270		2	1	5	.Z	43	Ź	20	.27	-005	2	651	18.86	7	.01	7	.17	.01	.01 🏼	1 2960
C 11509	2	5	8	2	10	.2	1212	55	685	4.83	1284	5	NÐ	1	8	1.2	15	2	22	.53	.006	2	836	18.60	8	.01	7	.27	.01	.01 🛞	1 240
						184			_		* .S				_	1998 1997 - 1997 1997 - 1997 - 1997		_				_				1000	_		_ /		
C 11510	юH	6	10	2	- 5	.7	1512	67	603	4.18	12218		17	1	3		71				.005			16.28		.01		-			1 14860
C 11511	× 1	5	26	2	17	_ 4	1331	- 54	540	4.40	589	5		1	9		52				.005			19.24	12	.01	19	.20	.01	.01 🔬	I
STANDARD	C/AU-R	19	63	40	133	7,3	73	- 31	1056	3.98	37	18	- 7	36	52	18.5	16	20	57	.52	-096	38	61	.90	180	.07	38	1.89	.06	. 14 [1	2 540

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P2 Core P3 Sludge AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM #AMPLE.

С

Viceroy Resources PROJECT SID

SAMPLE#						Ag	Ni ppm	Co ppn	Hn ppm	Fe X	As		Au ppm			Cd PD#	Sb ppm		V	Ca X		La ppm	Cr ppm		Ва ррп:			Al X	Na X		W	Au* ppb
C 11512 C 11513 C 11514 C 11514 C 11515 C 11516		3 4 2 2 1	11 9 10 9 5	6 6 2 9 2		.1 .1 .1 .1	885 1231 692 581	50 61 51 44	555 566	4.23 4.04 5.08 4.56	93 562 8 16 6	5 5 5 5	ND ND ND ND ND	1 1 1 1	8 10 7 12 15	.6 .8 .8 .7 .7 .2	6 24 2 2 2	2 3 2 2 2	23 20 24 25 27	.72 .40 .56	.004	2 2 2 2 2	1010 690 1067 1172	15.15 18.39 16.99 16.99 14.79	12 9 9 11		5 9 11 12	.45 .24 .50 .54 .49	.01 .01 .01	.01 .01 .01 .01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29 220 4 9 2
C 11517 C 11518 C 11519 C 11520 C 11521	Hare 3	2 2 3 1	11 8 61 72 62	2 3 9 15 8	65	.1 .1 .1	141	40 27 25	754 497 711	5.03	5 12 49 591 4718	5 5 5	nd Nd Nd Nd 5	-	105 170	.6 .5 .6 .2 .7	2 2 10 48 43	2 4	23 54 103	2.16 2.53 3.51	.004 .004 .460 .521 .312	2 43	931 46 32	16.48 13.26 6.85 3.76 3.58	7 52 164	.01 .01 .01 .03 .01	11 19 15	.45 .42 1.02 2.26 .94	.01 .01 .05	.01 .19 .20	1111	3 2 18 97 5040
C 11522 C 11523 C 11524 C 11525 C 11525 C 11526	`	5 1 2 2	35 16 13 13 18	9 3 2 3 4	9 10 8	.1	1389 508 559 548 777	41 47 53	618 642 594	4.02 4.19	2830 3 13 72 48	5	ND ND ND ND ND	1 1 1 1	11 8 11 9 6	.2 .6 .5 .6 .2	59 2 2 2 2 2	3 2 2 2 2 4	15 26 29 23 23	.70 .91 1.19	.008 .006 .005 .005 .005	2 2 2	1028 1103 877	16.13 14.05 16.50 15.41 14.05	7 7 16	.01 .01 .01 .01 .01	8 17 12	.13 .52 .61 .52 .53	.01 .01 .01	.01 .01 .01	11121	780 8 8 3 2
C 11527 C 11528 C 11529 C 11530 C 11531		6 3 8 5 6	18 12 19 14 19	44222	8 1 11 4 4	.6 .7 .3	1461 804 1531 955 1059	35 64 42	378 259	2.31 4.42 3.40	1160 3427 12493 6542 4039	5 5 5 5 5 5	ND 3 20 7 3	1 1 1 1	1 1 2 1	.6 .3 .6 .5 .5	34 26 55 57 32	3 2 6 2 2	15 9 12 9 7	.05 .08 .12	.005 .004 .005 .005 .005	2 2 2 2 2 2	195 350 245	18.61 7.25 8.70 6.04 6.53	2 4 4	.01 .01 .01 .01 .01		.06 .05 .09 .09 .07	.01 .01 .01	.01 .02 .01		300 2330 18100 6430 2360
C 11532 C 11533 C 11534 C 11535 C 11536		5 5 4 4	27 15 19 15 13	2 5 3 2 5	6 3 8 5 7	.1 .1 .3	1442 1260 1037 1324 1194	59 57 62	521 666	3.81 3.58 4.13 4.36 4.08	564 271 260 6809 1120	5 5 5 5 5 5	ND ND ND 6 ND	1 1 1 1	3 3 6 5 6	.2 .4 .2 .4 .2	72 20 10 52 82	2 2 6 5 5	17 20 18 16 19	.25 1.11 .37	.005 .004 .005 .005 .005	2 2 2	752 639 478	19.71 19.49 17.93 16.12 17.82	12 12 7	.01 .01 .01 .01 .01	8 7 10 8 9	.20 .35 .22 .15 .22	.01 .01 .01	.01 .01 .01	1 1 1 1	55 58 18 5170 250
C 11537 C 11538 C 11539 C 11540 C 11541	\$ 370	4 5 2 2 2	17 11 9 15 5	8 2 4 2 5	3 2 10 12 9	.1		56 39 40	518 503 595 671 694	4.58 3.80	1591 382 100 50 11	5 5 5	nd Nd Nd Nd Nd	1 1 1 1	8 9 45 9 14	.2 .2 .3 .2 .5	39 17 2 6 2	222222	20	.66 2.01 .63	.004 .005 .004 .004 .004	2 2 2	745 808 875	17.49 17.03 14.07 12.64 14.87	10 5 8	.01 .01 .01 .01 .01	5 7	.14 .30 .41 .36 .42	.01 .01 .01	.01 .01 .01	1 1 2 1 1	610 45 32 4 8
C 11542 C 11543 C 11544 C 11545 C 11546	N.	2 2 1 1 2	11 5 3 4 18	2 2 2 2 2 2 2	9		396	47 38 39	635	4.54 3.65 3.24	7 12 7 6 5	5 5 5	ND ND ND ND ND	1	11 12 106 74 9	:2 :2 :4 :2 :2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42422		.82 3.53 2.45	.005 .004 .004 .004 .005	2 2 2	1044 932 796	18.50 17.70 11.73 10.72 14.79	7 9 7	.01 .01 .01 .01 .01	20 7	.47 .52 .46 .35 .48	.01 .01	.01 .01 .01	1 1 1 2 2	4 2 1 3 2
C 11547 C 11548 Standard	C/AU-R	2 1 19	11 71 63	8 7 40		.1 .1 7.3	86	25	564 578 1056		144 173 40		ND ND 7	1	73 131 53	.2 .4 18.4		2	111	2,90	.005 .528 .095		60	12.20 6.48 .91	183		13	.41 4.05 1.89	.01	-14	1 1 12	3 4 510

Page 2

Viceroy Resources PROJECT SIDN WILLIAMS FILE # 90-3724

С

SAMPLE#	Mo				Ag		Со ррп	Mn ppm	Fe X	As ppm		Au		Sr DOM	Cd ppn		Bî pom	V maq	Ca X	P %		Cr ppm	Mg X	Ba ppm	11 1	B ppm	AL X	Na X	K X	N PCRI	Au* ppb
		<u> </u>	FF			FF	FF	F F								F F	rr ·	r1 ·			·				101200					10000 XX	
HOLE-3 0-10	1	72	2	50	.7	1493	72	581	4.25	2231	5	2	1	2	.2	27	2	21	.07	.007	2	732	8.75	11	.01	5	.17	.01	.02	150	2210
HOLE-3 10-20	1	76	2	54		1236	46	413	3.09	6849	5	9	1	5	<u>,</u> 2	199	2	14	.21	.004	2	381	9.12	9	.01	5	.09	.01	.01	145	10340
HOLE-3 20-30	t i	40	_	40	- 2020-723	1088	54	581	3.81	1086	5	Ż	1	8	ે.2	9	2	22	.47	.004	2	888	11.79	13	.01	5	.29	.01	.01	31	1640
HOLE-3 80-90	1 7	68	2	51	1.6		42	756	6.04	317	5	ND	1	81	9	ż	3	39	1.95	100	12	989	9.08	42	.01	10	.78	.01	.09		380
HOLE-3 90-100	9	78	31	64			50	738	7,51	- XXIII - 224		ND	Ż	41	.5	6	2	41	1.35	.065	7	1413	11.18	43	.01	11	.79	.01	.08	2	530
										- 38883	(
HOLE-4 10-20	4	283	14	22	.7	1295	109	395	4.04	8439	5	12	1	1	.2	58	2	9	.01	.001	2	369	7.65	8	.01	5	.10	.01	.01	50	13660
KOLE-4 20-30	7	202	2	52	1.5	1350	115	709	6.73	2152	5	2	1	1	.2	34	2	16	.44	.001	2	818	12.01	14	,01	3	.17	.01	.02	132	2430
HOLE-4 30-40		116	_	22	1.3	1313	76	1040	7.20	3712	5	- 4	1	6	7	68	2	16	.37	.006	2	576	10.94	18	.01	5	.16	.01	.02	8 14	3630
HOLE-4 40-50		255	5	50	. 6	1389			12.69	- N. 100 - J	ś.,	ND	1	3	1.3	31	2	15	.39	.001	2	1015	10.67	10	.01	2	.16	.01	.02	63	1350
ROLE-4 50-60		164	ź	83	- 365 TS	1189			10.01	1.		ND	ż	7	1.0		3	17	.33	.008	_	908		17	.01	2	.15	.01	.03	81	1080
			_																												
HOLE-4 60-70	32	205	10	113	.3	966	60	1336	12.31	454	5	ND	1	10	1.2	6	2	20	,40	.010	2	1026	10.04	19	.01	4	.30	.01	.02	Z1	280
HOLE-4 70-80	22	159	24	102	.3	1102	69	1086	10.44	633	5	ND	1	11	.8	10	2	26	.54	.009	2	1264	11.11	22	.01	5	.36	.01	.03	11	450
STANDARD C/AU-R	20			133				1047	3.97	- 10 C - 1	8 . 1	7	40	53	18.4	15	21	60	.52	.095	39	61	.89	184	.09	39	1.90	.07	.13	11	540

Page 3

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Viceroy Resources PROJECT SIDNEY WILLIAMS File # 90-3769 Page 1 880 - 999 W. Hastings St., Vancouver BC V6C 2W2

SAMPLE#		Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr 🐰	Cd S) Bi	٧	Ca 😒 I	ta 🕹	Cr	Mg	Ba Ti	8	AL	Na	K 🔆 ¥	Au*
		ppm	ррт	ррп	ppm	ррп	ppm	ppm	ррт	X	ppm	ppm	ppm	ppm	pbu t	pon pp	n bbu	ррт	*	i ppn	ppm	X	ppm 🕺 🏌	ррт	X	%	X ppm	ppb
C 11549		1	2	4	12	1	619	41	844	3.09	37	6	ND	1	1	ं र	۷ ۲	13	.12 .00	,	733	14.39	6 .01	3	.27	.01	.01	1
C 11550		3	2	2	6	10000	1468	57			1038	5	ND	1	Ś	3 5	5 8		.50 .00			17.78	5 .01	4	.09	.01	.01	53
C 11551		2	11	2	ã	SSS:	1167	48		3.39	367	Ś	ND	1	17 🖏	.2 3			1.94 .00			14.32	2 .01	2	.28	.01	.01 🤙 1	200
C 11552		2	,, 5	2	Ř	2	997	43		2.98	316	ś	ND	i	85	3 1	ī 7		2.60 .00			15.03	4 .01	2	.15	.01	.01 5 1	97
C 11553	۱	2	ŝ	2	Ř	2005 7	1252	51		3.56	526	5	ND	1		.4 i	3 2		1.89 .00			14.62	6 .01	4	.24	.01	.01	
l i	5					84 ⁹					939QN -				8.	. 1				ei.			1.0000				\$.	с.
C 11554		2	8	2	8	841.	993	45	418	3.90	186	5	NÐ	1	7 淤	.2	53	21	.79 .00	2	767	12.81	6 .01	3	.29	.01	.01 🔬 1	49
C 11555	ধ	2	15	2	9		1052	46	409	3.98	255	5	ND	1	- 46 🖗	.2 (> 2	18	1.07 .00	2	676	13.33	3 .01	6	.22	.01	.01 🐘 1	42
C 11556	Ň	1	7	Ż	8	1	688	42	620	3.27	71	5	ND	1	ा 🕄	.2	; 5	15	.12 .00	2	701	13.77	6 🤢 01	2	.28	.01	.01 📜 1	5
C 11557	Q,	2	14	2	8	.2	1207	56	773	4.16	1584	5	NÐ	1	4 🐰	.2 2	5 Z	15	.16 .00	2	491	16.99	9 .01	6	. 12	.01	.01 🛞 1	1500
C 11558	X	1	6	2	7	1	545	38	706	2.96	90	5	ND	1	1	2 2	; 2	13	.29 .00	2	666	14.27	2 .01	2	.26	.01	.01 1	24
C 11559		1	4	2	8		419	34	883	2.83	22	5	ND	1	1	.5	: 8	12	.42 .00	2	684	13,19	3 .01	3	.22	.01	.01 👘 1	1
C 11560		1	2	2	10	1	558	37	799	2.84	ି 22 ୍	5	ND	1	3 🖗	.4	2 2	15	1.02 .00	1 0 2	705	14.26	7 .01	3	.Z3	.01	.01 1	(1)
C 11561		2	- 4	2	9	8. 1	1170	49	675	3,47	ं 27े	5	ND	1	8 🖗	.4 6	2	20	2.27 .00	ິ 2	525	15.10	10 . .01	6	.12	.01	.01 1	13
C 11562		2	- 4	5	10	.2	864	49	883	3.70	66	5	NÐ	1	4 🛬	:15 :	; 2	20	.92 .00) 2	838	15.54	6 .01	8	.22	.01	.01 1	4
STANDARD	C/AU-R	19	60	37	130	7.0	72	32	1049	3.96	- 40	19	7	39	53 18	3.6 ₁ 1	5 21	56	.51 .09	38	57	.92	182 .07	34	1.98	.06	.14 .11	530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 Core P2 Sludge AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. //

 \bigcirc

è

Viceroy Resources PROJECT SIDNER WILLIAMS FILE # 90-3769

SAMPLE#	Mo ppm	Cu ppm	Pb	Zn	Ag	Ni ppm	Со ррп	Мл ррл	Fe As % ppm	U ppnt	Au ppm	Th ppm	Sr Cd ppm ppm	Sb ppnt	8i ppm	V ppm	Ca P X X	La ppm	Cr ppm	Mg %	Ba Ti ppm %	B ppm	Al X	Na %	K W X ppm	
·					- 1 0891.	/	· · ·										70 000	~	047	+1 70	17 04	4	.29	.01	.01 151	5840
HOLE 3 30-40	205	355	27	124	36.9/	1068	60	884	8.35 3717	5	- 3	1	11 .8	36	2	18				11.38	47 .01	_				
HOLE 3 40-50	44	111	197	100	6.9	847	52	793	6,70 918	5	ND	1	12 1.1	14	13	24	.43 .001	2	1143	11.55	32 .01	- (.48			600
			12		1.5				5.18 106		ND	1	20 .2	4	10	31	.92 .001	2	1457	14.85	15 010	12	.68	.01	.01 🔅 11	: 112
HOLE 3 50-60	13	52			10 A A A A A				200 - Lander C.				T 1 65000 k av	75	7	41	2.29 .227	21	455	7.60	142 .02	13	1,46	.03	. 12 313	860
HOLE 3 70-80	13	96	28	- 74	2.7		53		5.71 1089	2	ND	. !	116 .6	35	2								.37	.01	- · - · · · · · · · · ·	250
HOLE 4 80-90	9	72	6	33	1.0	566	44	884	4.81 181	5	NÐ	1	80 .2		2	20	2.76 .003	2	904	10.26	14	2	,	.01	.UI	
HOLE 4 90-100	5	106	6	37	.4	534	42	717	4.36 161	5	ND	1	74 .2	9	10	36	2.03 .077	8			59 .01		1.08	.01	.05 2	210
HOLE 5 30-40	11	130	7	46	0	1585	132	905	6.33 933	5	ND	1	34 3	77	2	19	1.12 .003	2	592	11.39	16 .01	3	.23	.01	.01 015	480
STANDARD C	19	58	41		7.4	73			3.95 40		7	39	53 18.6	16	22	56	.51 .095	38	57	.89	182 .07	34	1.88	.06	.14 11	-

/ ASSAY RECOMMENDED

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL A LYSIS CERTIFICATE

Viceroy Resources PROJECT SIDNEY WILLIAMS File # 90-4197 Page 1 880 - 999 W. Hestings St., Vancouver BC V6C 2W2

SAMPLE#		Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm	Со ррл	Mn ppm		As ppm	U ppm	Au ppm	Th ppm	sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba Ti ppm %		Al X	Na X	K W X ppm	Au*
C 11563		2	9	2	9	.2		56	729		550	5	ND	1	7	.2	18	2	16		.903			17.53	3 .01	8	.11	.01	.02 1	19
C 11564		1	8	2	10		1098		739		364	5	NÐ	1	3	.2	11	Z	18		.002			17.69	4 .01	6	.13	.01	.02 1	14
C 11565		2	1 7	ź	ģ		1419 1284	54 58	425	3.77	559	5 5	ND ND	1	2	-2	20 13	2	19 17		.002	2		18.54 17.97	4 .01 3 .01	5	. 14	.01 .01	20000000	67 71
C 11566 C 11567		ż	8	ź	7		1357	57		3.50		5	ND	1	3	.2 .2	32	2 2	13		.003			17.36	3 .01 2 .01	4	.15 .06	.01	9000000	1130
C 11568	ľ	1	3	3	7	.1	1159	54	643	3.84	551	5	NÐ	1	4	.2	13	2	18	.39	.003	2	751	17.34	4 .01	3	.20	.01	.02 1	1 42
C 11569	,	1	- 4	2	9		1288	56	513		351	5	ND	1	2	:2	15	2	21		.003	2		18.22	4 .01	5	.20	.01	.02 🔅 1	14
C 11570	5	2	11	4	8		1437	61		3.26		5	ND	1	7	.2	33	2	17	.40		2		17.84	3.01	5	.08	.01	23333	360
C 11571			11	3	8		914	37		3.36		5	ND	1	112	-2	34	2		2.26		2		15.67	3 .01	3	.05	.01	201220	1290
C 11572	75	3		S	9	31	1255		722			2	ND		· · ·	.2	29	2	20	.49	.003			17.37	4 .01	6	. 15	.01	.02	32
C 11573		2	2	4	7		1195		675			5	ND	1	52	.2	34	S	• -	1.30		_		16.40	2 .01	3	.04	.01		760
C 11574	40	1	.7	Ž	8	200000000000000	1135	49		3.42		5	ND	2	74	.2	32	2		1.86	e se soù			16.27	2 .01	3	-04	.01	.02	1 1850
C 11575		1	12 57	2	7		1087 1346		460 446			5	ND ND	•	88 12	.2 .2	24 33	2		2.45				15.43	7 .01 6 .01	3	.07 .23	.01 .01		1 1260
c 11577		i	746	3		1.9			751		ないいいやかい	5	NÐ	1	46	3.0	31	ž	119 2					10.14	6 .01	3	.57	.01	.01	6
C 11578		1	7	z	9		906		640		-59	5	ND	1	8	-2	2	2		.93				16.00	2 .01		.34	.01	.81	6 4
C 11579		1		<u>2</u>	11		_		978		78	5	ND	1	8	.2	2_	2	_	1.64				15.78	6.01	5		.01	.01 1	
C 11580		1	72	Z	27		44	13	290		55	5	NÐ 4	1	15 156	.3	4	2		1.48	a	2	56 27	1.50	9 .18 28 .01		1.65	.33	.05	1 5830
C 11581 C 11582		1	51 73	2	37 32			17 14	389		9480 68	5	ND	1	150	.2	25 5	2		7.66 2.22	S	2 2	46	4.54	28 .01 14 .17		1.72	.21	 • • • • • • • • • • • • • • • • • • •	2 6
C 11583		4	66	3	36	.1	36	17	661	3.21	81	5	ND	4	26	.2	7	2	07	2.48	074	2	47	1.85	21 .08	7	1.62	,23	.07 2	2 1
C 11584		-	24	68	26	3		29			1364	5	ND	i	113	ž	11	ź		5.47		2	195	8.46	25 .01	8	.75	.04		770
C 11585		ż	5	ž	9		1392	47			389	5	NÐ	i	10	.2	13	ž	23	.71		_		16.97	6 .01	8	.22	.01		1 23
C 11586		2	7	3	7	• .Z	1367	60	561		852	5	ND	1	6	-2	44	2	18	.38	.004	2	616	17.65	4 .01	7	.13	.01	.02	1 30
C 11587	9	1	10	2	11	•1	539	40	847	3.62	44	5	ND	1	3	.2	2	2	21	.66	-002	2	933	14.70	2 .01	5	.34	.01	.01	1 1
C 11588	Y I	1	5	2	11	99598769765 -			596		58	5	NÐ	1	3	.2	z	3	22		.002			13.26	1 .01	3	.46	.01	.01	<u>í</u> 1
C 11589	7	1	26	2	12			49	687		7	5	ND	1	3	-2	2	2		1.20				14.08	1	13	-49	.01	.01 💮 1	! 1
C 11598	\$	1	5	Z	17	200000.0000	1430		769		21	5	ND	!	4	.2	2	2		1.41				16.87	1 .01		.39	.01		12 2
C 11591 C 11592	X	2	16 8	2	17 24	Second for the	1481	61 76	769	3.98	14 13	5 5	ND ND	1	6 10	.2	2	2		1.76				15.94	1 .01 2 .01	23 8	.45 .63	.01 .01	.01 1 .01 1	1 2 5
1		٤	Ŭ	Ľ	24							2	RD	'			5	Ľ												
C 11593		1	2	2	15		978		799		5	5	ND	1	13	.2	2	2		1.15				15.27	1 .01	17	.36	.01	.01 🔅 1	1
C 11594		1	7	2	14		1439		642		20	5	ND	1	2	-2	2	2	22		.003			15.94	1 .01		.43	.01	8600000	
C 11595		- 4	12	. 2	<u>15</u> 13		1650 1085		<u>582</u> 655		21	<u>5</u>	ND ND	- 1	2	.2	- 2	<u>2</u> 2	<u>26</u> 19	.72	.004			<u>15.71</u> 15.78	<u> </u>	<u>40</u> 7	<u>.42</u> .28	<u>.01</u> .01	.01	1 280
c 11597 H	61E 7	Ż	2	2	,s 8		1399	53			467	5	ND	1	6	.2 .2	43	ź	15		.002			15.75	3 .01	6	.20	.01	1000000	1 390
STANDARD	C/AU-R	19	58	42	133	7.2	73	31	1047	3.96	38	21	7	40	53	19.0	16	18	60	.52	.094	41	60	.89	188 .09	37	1.89	.06	.13	2 530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 TO P2 CORE P3 SLUDGE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: SEP 7 1990 DATE REPORT MAILED

С

A-1445

3

Viceroy Resources PROJECT SID

SAMPLE#		Mo	Cu	Pb	Zn		Ni	Co	Mn	Fe As	6	Au	Th	Sr Cd	\$b	Bi	۷	Ca P	La	Cr	Mg	Ba Ti	B	AL	Na	- 1 M M M	Au*
		ppm	ppm	ppm	ppin	ppm	ppn	ppm	ppm	7 ррг	pom	þþu	pm	ppn ppn	ppm	ppm	ppn	× ×	þþm	ppn	X	ppm 🛛 🔭	ppm	<u> </u>	X	% ppn	ppo
C 11598		7	4	2	11		1786	65	490	4.38 806	é e	5		6 .2	49	2	18	.24 .003	2	477	18.45	13	8	.13	.01	.03	5067
		5	0	5		2000770		56		5.68 324		ND	4		14	2	21	.58 .006	2		17.24	36 .01	7	.25	.01	.02 1	128
C 11599		e e		5	14			43	578				-	11 .2			19	.57 .002	ź		14.67	500000 (1000)	50	.34	.01	.02	120
C 11600					11	33337-532					÷ -	ND		2.2		4 7			_	•		4 .01	10	•		255525133	1
C 11601			13	41	22		810	46	652		-	ND	1	2 .2	.9	2	20	.49 .003			10.26	11 .01	11	.46	.01	.02 1	4
C 11602			6	2	9	' 1	917	46	525 3	5.83 219	כ	ND	ſ	3 2	13	3	19	.43 .002	2	1087	14.78	6 .01	11	.33	-01	.01 1	918
C 11603		2	10	Z	11	231.	1404	57	423 3	3.09 213	5	ND	1	4	6	2	18	.24 .003	2	639	17.98	7 .01	9	.17	.01	.02 1	17
C 11604		1	5	2	11		1056	52	493 /	4.27 78	5	ND	1	4 8.2	2	2	20	.51 .003	2	841	15.72	6 .01	9	.25	.01	.02 1	14
C 11605	i	1	10	8	14		972	48	522	4.17 174	5	ND	1	6 .2	7	2	21	.49 .003	2		15.28	5 .01	9	.35	.01	.01 1	2
C 11606		2	5	Z	8		1352	56	603	5.66 432	5	ND	1	10 .2	19	2	18	.72 .003	2		17.15	4 .01	8	.11	.01	.02 1	261
C 11607		2	5	2	9		1429	54		5.62 862		ND	1	14 .2	31	2	18	1.16 .003	2	556	15.70	5 .01	7	.09	.01	.03 1	441
		_																									
C 11608		2	5	2	8	100000	1301	55		3.91 3333	6 -	3	1	6 _2	33	2	18	.77 2003	2		16.03	4 .01	6	.08	.01	5565556573	3204
C 11609	N	3	6	7	8	1004		36	277 (ND	1	6.2	12	2	11	.45 ,003	2		10.27	2 .01	4	.05	-01		1278
C 11610		1	7	2	6		1100	40		2.67 510		ND	1	45 .Z	27	2		6.39 .002	2		8.65	10 .01	26	.06	.01	.03 1	432
C 11611	• •	2	- 6	2	9		1387	57	409			ND	1	7 .2	38	2	15	.55 .003	2		15.81	401	5	.09	.01	.02 1	57
C 11612	W.	2	6	2	10	•	1260	56	529 3	3.45 48	5	ND	1	7.2	26	2	15	.43 .003	2	771	15.62	4 .01	9	.25	.01	.02 1	10
C 11613	ð	1	R	2	12		644	47	706	۲ ۸۳	5	NÐ	4	7.2	2	2	16	.55 .002	2	620	11.88	1 .01	A	.33	.01	.02	,
C 11614	N			5	13		1076	53	700		j - 5	ND		18 .2	5	ī		1.43 .003	2	_	12.80	3 .01	38	.34	.01	.01) El
C 11615			10	5	15	N	1367	55	551		÷ -	ND		17 .2	5	5		1.12 .003	2		14.57	4 01	43	.37	.01	.02 1	
C 11616			.0	2	15	555555666777	1187	54	705			ND		23 .2	2	5		1.75 .002	5	-	15.75	4 01	45	.43	.01	.02	نې ا
C 11617			2	2	15	-00000715300	859	47	897			NÐ		5 .2	2	5		1.02 .003			14.51	2 .01	36	.38	.01	.01	
6 11017			4	4	1.0		0.77		077	J.JU		ΠU	•		٤	-		1.05 1003	-	1.55	14.31		-01				'
C 11618		1	12	2	9		389	28	580	3.21	5	NÐ	1	32 .2	2	2	21	3.38 .003	2	1004	10.55	2 .01	17	.37	.01	.01 1	1
C 11619		1 1	9	2	10	1 288 1	434	34	570	3.44 🔍 3	5	NÐ	1	32 .2 9 .2	2	2	22	1.65 002			12.29	2 .01	18	.41	.01	.01 1	1
C 11620		1	9	2	12	: 1821î	1076	50	633	3.15	ŝ	ND	1	82	2	3	20	.74 .003	2	1076	15.67	1 .01	38	.37	.01	.01	ं 1
C 11621		Ż	10	ź	12		1325	58	692		5	ND	1	3 .2	2	2	20	.28 .003	2		16.35	1 .01	39	.36	.01	.01 1	i 1
C 11622		1	7	Ž	11		1230	54	553		5	NÐ	1	3 2	2	2	20	.51 .004	2		15.80	1 .01	41	.40	.01	.01 1	1
0 41407			••		13		450/	52	112	3 OF 000		ND		40	-	-	47	74 007		eto	1/ 00		10	74	01	- A4 -	<u>ا</u>
C 11623		! \$	11		12		1504		462			ND	1	15 .2	2	2	17	.76 .003	2		14.98	1.81	48	.36	.01	.01 1	
C 11624	e / 444 . e		50	4	13		1293	59	719		S -	ND	1	3 2.2	2	2	19	.62 .003	,4		15.60	1 .01	50	.36	.01	.01	510
STANDARD (C/AU-R	19	59	40	133	7.3	- 73	52	1047	3.96 39	20		39	53 19.8	17	21	60	.52 .100	41	60	. 89	187 .09	37	1.67	.06	.13 12	510

2 P

Viceroy Resources PROJECT SIDN WILLIAMS FILE # 90-4197

Pā,

											<u>.</u>																	
SAMPLE#	Mo	Cu	Pb	Żn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr 🖉 Cd	Sb	Bí	V	Ca 📖	👸 La	1 Cr	Mg	Ba 💹 Ti	B	Al	Na	K	W.	Au*
	ppm	ррт	ppm	ррп	ppm	ppm	₽ ₽m	þþm	<u>×</u>	ppm	рря	ррп	bbu	bbu (bbu	ppm	ppm	ppn	* 📰	(ppr	n ppm	x	ррп 🎆 🎗) ppm	*	<u>×</u>	*	ppm	ppb
HOLE #3 60-70	12	57	13	24	2.7	531	43	741	4.99	Z15	5	NÐ	1	65 .5	2	3	33	2.06 .050	8	1041	11.22	28 .01	š 11	.71	.01	.06	12	168
HOLE #4 0-10	40	95	2	14	8.2	1149	93	578	6.66	4716	5	8	2	3 .2	65	2	17	.06 01	n i	2 438	3.12	24 301	83	.16	.01	.03	104 9	2840
HOLE #5 0-10	3	46	6				89	1102	5.87	435	5	ND	1	12 22	25	2	28	.40 .01	8 1	947	8.53	21 .01	š 5	.51	.01	.02	25	75
HOLE #5 10-20	3	142	2	1	- 20 million - 1990	1312	93	592	4.95	982	5	ND	1	11 .2	56	2	16	.54 000	ë i	478	13.36	13 .01	\$5	.13	.01	.02	13	280
HOLE #5 20-30	1 7	79	ž	25	1.1		86			1193	Š	ND	1	18 27		2	21	1.02 000	š i		11.78	17 .01	Š 5	.20	.01	.03	48	380
	1																	100	8									
HOLE #6 0-10	7	114	3	45	2.4	189	56	1114	6.66	1122	5	ND	1	10 .5	15	2	93	.44 .019	2 2	2 163	1.14	47 .01	6	1.97	.08	.11	25	320
HOLE #6 10-20	35	143	6	51	5.5	141		1051	5.67	934	5	ND	1	11 24	14	2	87	.75 02	<u> </u>	2 108	1.23	38 .04	6	1,90	.14	.11	30	270
HOLE #6 20-30	19	159	8		100 A 100 A 100	114	33	785	4.81	726	5	ND	1	14 1.1		2		1.15 02	1.45	2 95		32 .08		1.77	.17	.09	126	250
HOLE #6 30-40	1 14	99	10	61	2.9	184	25	688		503	5	ND	1	27 8	e	Ž		2.17 .02	.66	2 128		30 12	<u>.</u>	1.79	.21	.08	35	137
HOLE #6 40-50	12	77	2		2.3		42			795	5	ND	1	11 22		2	59	.75 .01		416		27 .02		1.20	.06	.07	14	
HOLE NO TO SO	1	••	-	• ·			•••				-		-			-									•			
HOLE #6 50-60	1 11	76	2	30	2.8	502	45	826	5.01	\$509	5	ND	1	7 .6	4	2	55	.80 .01	ŝ	673	7.88	22 .02	6	1.14	.05	.07	14	142
HOLE #6 60-70	6	63	2		2.0		51	857	4.97	81.18	5	ND	1	7 2	2	ž	52	.91 .01	- 00		11.00	21 .02	Ø	1.09	.05	.06	10	131
HOLE #6 70-80	5	57	2				51	800		X. Q.	5	ND	1	6 3	2	2		1.04 .01			11.81	30 .03		.99	.05	.06	z	104
HOLE #6 80-90	7	61	5		1.7		48		4.74	6	5	ND	1	9 2	ž	2		1.10 .01	- C.S.		10.05	47 .04		1.04	.06	.06	5	85
HOLE #6 90-100	i ś	37	2		8		57	664	4.50		5	ND	1	5 3	2	2	35	.75 .01			14.90		<u>.</u>	-	.03	.03		46
1	1		-		13440						-		-	- 9967	- T.	. –			8									- 1
HOLE #7 20-30	44	343	72	227	2.2	1182	56	1240	11.34	215	5	ND	1	5 2.9	18	2	18	.75 .00	5	2 986	11.99	44 .01	7	.32	.01	.02	136	290
STANDARD C/AU-R	18	59	40		7.1						21	7	40	53 20.0		20	57	.51 09				181 .09	34	1.90	.06		13	

•