
LOG NO:	11-28	RD.
ACTION:		
FILE NO:		·····

GEOLOGICAL, PROSPECTING AND GEOCHEMICAL REPORT

ON THE

GILBERT PROPERTY

Skeena Mining Division, British Columbia NTS 104A/12W Latitude: 56° 32' 20"N Longitude: 129° 56' 45"W

on behalf of

CANADIAN CARIBOO RESOURCES LTD. Vancouver, B.C.

by

Brian R. McIntyre, Senior Prospector KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

GEOLOGICAL BRANCH ASSESSMENT REPORT

November 7, 1990

SUMMARY

Keewatin Engineering Inc. was commissioned by Canadian Cariboo Resources Ltd. to carry out a reconnaissance exploration program on the Gilbert Property to determine it's potential for hosting economic precious and base metal deposits. The property is located in the active Sulphurets-Unuk River area of northwestern British Columbia, 30 kilometres east of the Eskay Creek deposit.

The geology of the Gilbert property was determined to consist almost entirely of dark grey to black, fine grained, well bedded to massive siltstone, shale, sandstone and minor conglomerate with lesser basal limestone and rare interbedded tuffaceous siltstone lenses. These sediments have been assigned to the Salmon River Formation. The sequence has a predominant west-northwesterly strike and a variable dip due to property wide folding. The package includes variably trending mafic to intermediate volcanic dykes near the western boundary and a monzonite intrusion near the southwestern corner.

The 1990 exploration consisted of helicopter-supported reconnaissance prospecting, geological mapping and geochemical sampling. A total of 89 soil samples and 31 stream silt samples were collected in conjunction with the geochemical survey. Thirty (30) rock grab samples were collected in conjunction with the prospecting and mapping.

No mineralization of significant extent or tenor was outlined, however, a zone 200 m x 500 m in the northwestern quadrant exhibits elevated values in soils for copper (to 185 ppm Cu), zinc (to 438 ppm Zn), silver (to 2.5 ppm Ag), arsenic (to 84 ppm As) and mercury (to 1.421% Hg). One anomalous gold-in-soil value (115 ppb Au) lies on the southwestern extremity of this zone and weakly anomalous gold-in-stream sediments (27, 30, 35, 46 ppb Au) were found in three proximal drainages to the east and west.

Further work on the Gilbert property is warranted to determine the source, extent and significance of the geochemical signatures outlined by this program.

TABLE OF CONTENTS

Page No.

SUMMARY	
INTRODUCTION	1
Location and Access Property Status and Ownership Physiography and Climate	1 2 2
PREVIOUS EXPLORATION	3
GEOLOGY	4
Regional Geology Economic Geology Property Geology	4 5 9
GEOCHEMICAL SURVEYS	10
Soil Geochemistry	10 11 12
CONCLUSIONS	12
RECOMMENDATIONS	13
BIBLIOGRAPHY	14
CERTIFICATE	15

·

LIST OF APPENDICES

APPENDIX IItemized Cost StatementAPPENDIX IISummary of PersonnelAPPENDIX IIISoil and Stream Silt Geochemistry ResultsAPPENDIX IVRock Geochemistry ResultsAPPENDIX VStream Silt Geochemistry NotesAPPENDIX VISoil Geochemistry NotesAPPENDIX VIRock Geochemistry Notes

LIST OF FIGURES

Following Page No.

Figure 1.	Property Location Map	1
Figure 2.	Gilbert Property Claim Map and Compilation	2
Figure 3.	Regional Geology - Bowser Basin, Northwestern B.C.	4
Figure 4.	Mesozoic Stratigraphy and Setting for Some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia, GSC Paper	
	90-1F, Figure 2	4

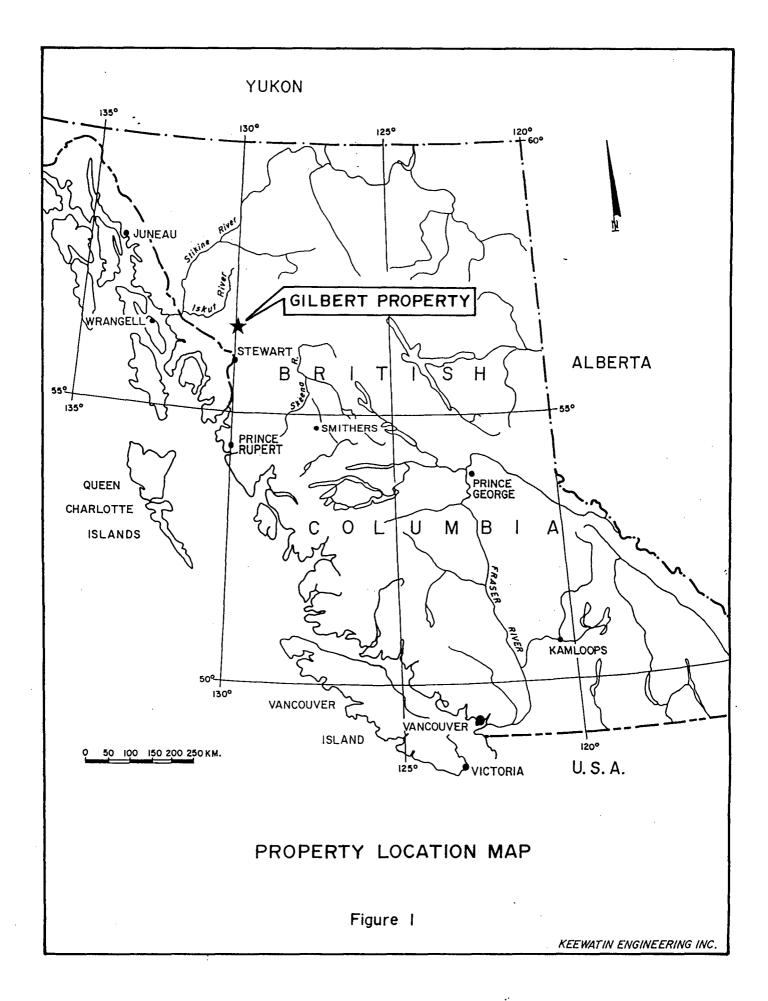
LIST OF PLATES

Map 1.	Geology of Gilbert Property	in pocket
Map 2.	Rock, Soil and Silt Sample Locations	in pocket
Map 3.	Rock, Soil and Silt Geochemistry (Au, Ag, As)	in pocket
Map 4.	Rock, Soil and Silt Geochemistry (Cu, Pb, Zn)	in pocket

INTRODUCTION

The Gilbert property straddles the Gilbert Glacier in the Treaty Creek area of northwestern British Columbia, about 70 km north of Stewart. The property is underlain by a stratigraphic package which is similar, in part, to that which hosts the Eskay Creek (Corona-Placer) gold discovery 30 km to the north-northwest.

The exploration program on the Gilbert Property was contracted to Keewatin Engineering Inc. of Vancouver, B.C. Fieldwork was carried out during August 1990 from the Doc Camp on the South Unuk River with support provided by a Hughes 500 helicopter. Access to the camp was via helicopter from Stewart, B.C.


Work on the property resulted in 31 stream silt samples and 89 soil samples being collected from 4.5 km of contour lines, and 30 rock samples collected in conjunction with prospecting and geological mapping. All samples were fire assayed for gold, AA finish, and geochemically analyzed by ICP for a suite of 8 elements. Gold/silver/arsenic and copper/lead/zinc values were plotted for all samples on the Gilbert Property. Lithologies, creeks and contour lines were prospected and mapped at a 1:5,000 scale using topographic maps re-drafted and screened from 1:50,000 scale.

Location and Access

The Gilbert property is located in northwestern British Columbia, approximately 70 kilometres due north of Stewart, B.C. (Figure 1). The claims are situated within NTS 104A/12W and are centred at about 56° 32' 20" north latitude and 129° 56' 45" west longitude.

The Gilbert property is accessible by helicopter only. Helicopter bases are located in the town of Stewart, at the Brown Bear air strip just south of Meziadin Junction on the Stewart-Cassiar Highway, approximately 75 kilometres to the southeast, and at the Bell-Irving River crossing on the Stewart-Cassiar Highway, 27 kilometres to the northeast. The Stewart-Cassiar Highway passes the Gilbert property area 20 kilometres to the east and provides good all season road access into the area. An airstrip large enough for DC-3 aircraft is located near the base of Knipple Glacier approximately 15 kilometres to the southwest of the property. At present a barge operates on Bowser Lake, operating between a road to the Stewart-Cassiar Highway at the eastern end and a road to the Knipple airstrip at the western end.

1

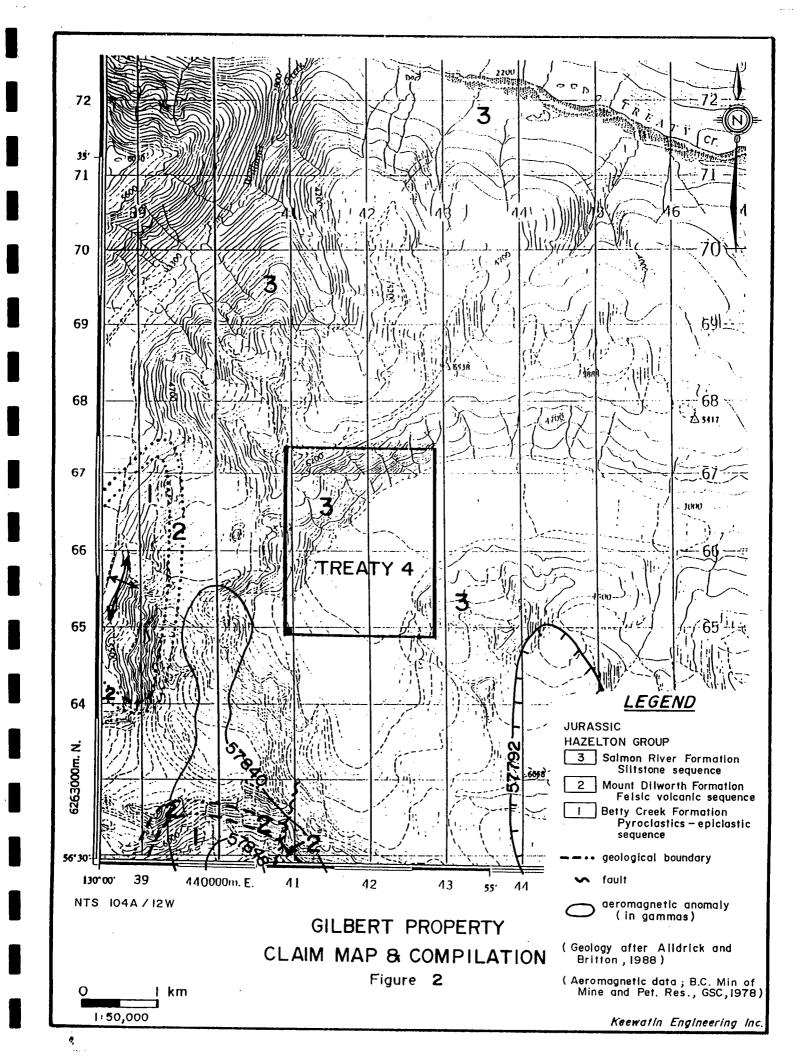
R.

Property Status and Ownership

The Gilbert property comprises a single 20 unit claim located within the Skeena Mining Division (Figure 2). The claim is more fully described as follows:

Claim Name	Record No.	No. of Units	Date of Record	Expiry Year	Owner
Treaty 4	7816	20	August 26, 1989	1990	Gerald N. Ross

The above claim is apparently the subject of an agreement between the owner and Canadian Cariboo Resources Ltd.


Due to the severity of topography and presence of glacial ice, a witness post was placed at 800 m on a bearing of 360° from the true position of the legal corner post. This witness post was not observed during the 1990 program.

Physiography and Climate

The Gilbert property is in a mountainous region, heavily dissected by stream erosion and modified by glaciation. The area is in the Boundary Ranges of the Coast Range Physiographic Division.

Precipitation is heavy, exceeding 200 cm per annum, with mild short summers and very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

The Gilbert Glacier occupies a broad valley and flows northeasterly through the property covering approximately 60% of the claim at elevations between 1,200 and 1,370 metres. The glacier is flanked to the northwest and southeast by steep barren bluffs that extend to elevations of up to 2,000 metres. Steep, high energy creeks flow down the northwestern slope to the glacier. The entire property is above tree line and is very sparsely vegetated.

PREVIOUS EXPLORATION

The first gold in northwestern B.C. was discovered in the late 1800's when prospectors passed through the region on their way to the Klondike. In the early 1900's work was concentrated in the Stewart area where as many as 50 gold producers were established. With the exception of the Silbak-Premier Mine, these were mostly small scale operations. Exploration to the north of Stewart in the late 1920's and early 1930's resulted in the discovery of mineralization in the vicinity of the Eskay Creek, Summit Lake and East Gold occurrences. Activity was relatively intermittent until the 1950's copper "boom" when the Granduc and Galore Creek deposits were discovered. Much of the Golden Triangle area underwent preliminary prospecting during the 1950's and 1960's. Numerous showings and prospects were documented but the inaccessibility of the region and low metal prices resulted in limited exploration activity.

With the dramatic increase in precious metal prices in 1979, all prospects and former producers in the region were re-evaluated. Exploration programs focusing on potential high grade gold and silver deposits were initiated. Approximately \$140 million in exploration expenditures have been spent in the region over the last ten years. Subsequent to 1986, total annual expenditures have averaged between \$25 to \$40 million. These expenditures have pushed several prospects to the advanced stage and resulted in the discovery of over 100 new mineralized occurrences. The advanced projects include the SNIP (Cominco-Prime), Eskay Creek (Corona-Placer Dome), SB (Tenajon-Westmin), Kerr (Placer Dome) and Sulphurets (Newhawk-Granduc) deposits. Skyline Gold's Johnny Mountain deposit, and Westmin/Pioneer/Canacord's Silbak-Premier and Big Missouri deposits went into production during the late 1980's. The exploration activity has been extended north of the Iskut River where numerous gold occurrences have been reported. The most prominent of which include the McLymont Creek (Gulf International), Iskut J.V. (American Ore-Golden Band-Prime), KRL (Kestral) and Forrest (Avondale) properties. Major exploration programs on these properties were reportedly carried out during 1990 and the SNIP is scheduled for production in 1991.

The 1988 discovery of the Eskay Creek gold-silver-zinc-lead deposit demonstrates the Golden Triangle's potential to host world class deposits.

The recent level of exploration activity in the Golden Triangle led to federal-provincial government geological mapping programs which began in 1986. These programs will continue in the 1990's.

The Stewart-Sulphurets-Iskut River areas have been covered by regional geological mapping programs by the B.C. Ministry of Energy, Mines and Petroleum Resources (Grove 1986, 1971 and Alldrick, 1988/1990). These studies also examined the mineral deposits of the area. The area is currently being mapped by R.G. Anderson (1990) of the Geological Survey of Canada. No government regional stream sediment sampling program has been conducted in the NTS 104A area to date and no known exploration work has been conducted on the Gilbert property.

The property occurs on the flank of an aeromagnetic high to the southwest and a low to the southeast as shown on government airborne geophysical maps (EMPR & GSC, 1978).

GEOLOGY

Regional Geology

The Gilbert property is underlain by Middle Jurassic sedimentary rocks of the Salmon River Formation, the youngest member of the Hazelton Group (Britton, 1988). The Salmon River Formation is considered to be a transitional package between the overlying Middle to Upper Jurassic Bowser Lake Group and the younger formations of the Hazelton Group described as the Stewart Complex (oldest to youngest): Unuk River Formation, Betty Creek Formation and Mount Dilworth Formation (Alldrick, 1987). The Stewart Complex consists of Lower to Middle Jurassic volcanosedimentary strata that host the Stewart-Sulphurets-Unuk River precious and base metal mining camps. Rocks of the Stewart Complex and the Salmon River Formation are collectively referred to as the Hazelton Group in this area (Britton, 1988). However, some confusion and conflict exists in stratigraphic nomenclature and other formational subdivisions within the Hazelton Group which have been proposed (Alldrick, 1989 and Anderson, 1989, 1990).

The Stewart Complex and the Bowser Basin lie within the Intermontane Belt, one of five parallel northwest-southeast trending belts which comprise the Canadian Cordillera. The Gilbert property occurs along the contact of the Stikine Terrane, which makes up most of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin (Figure 3).

The stratigraphic sequence in the Sulphurets area has been folded, faulted and weakly metamorphosed. At least four episodes of intrusive activity are recorded in the area spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, dyke swarms, isolated dykes and sills as well as batholiths belonging to the Coast Plutonic Complex.

4

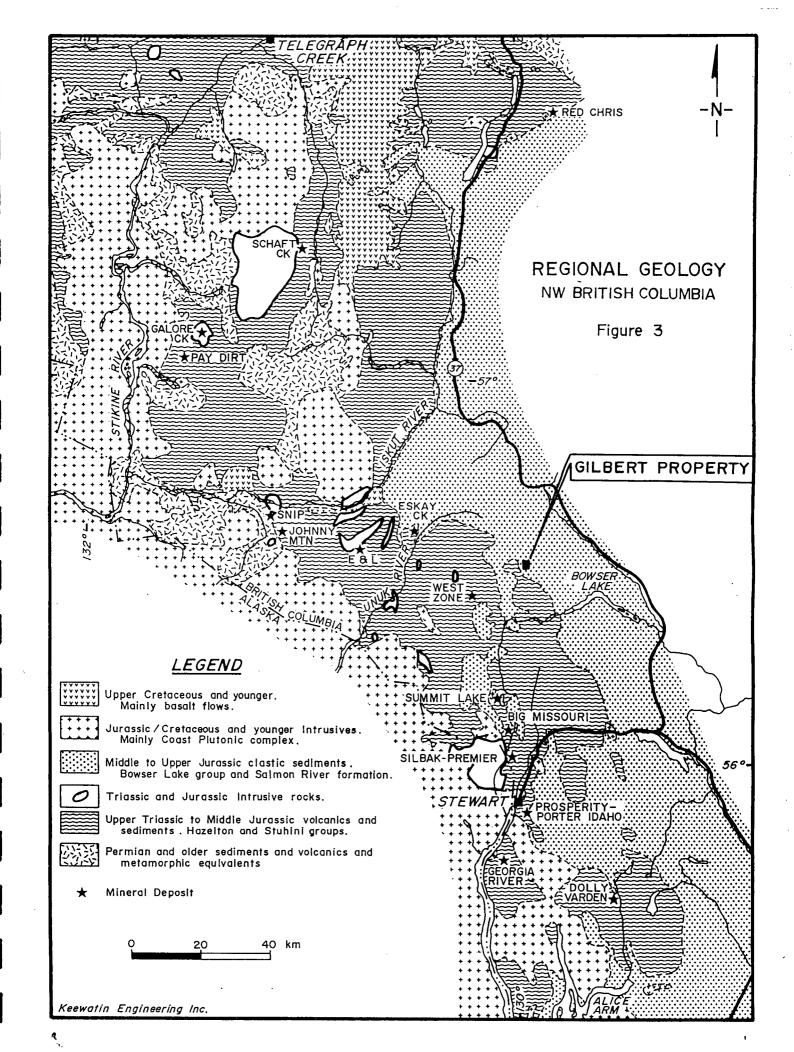
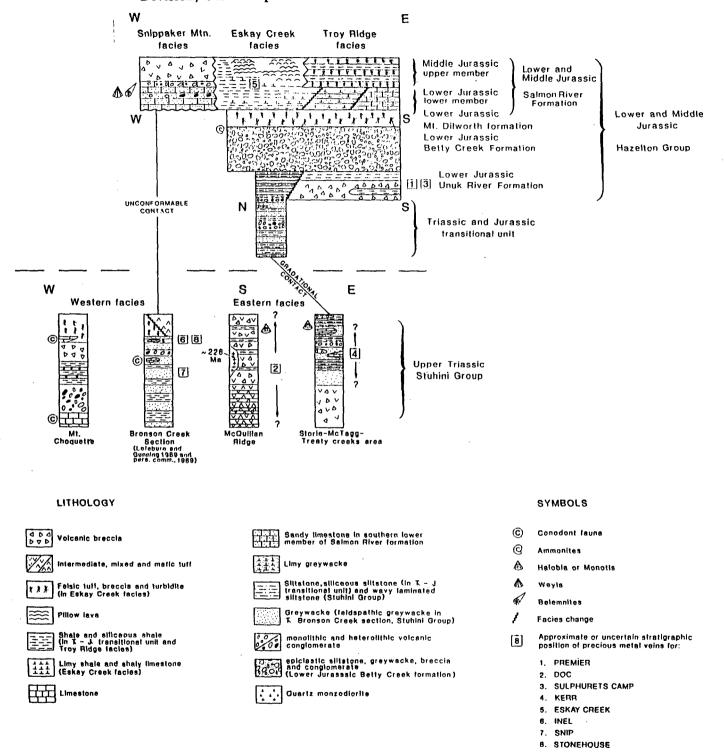



Figure 4.

R

Mesozoic stratigraphy and setting for some mineral deposits in Iskut River Map Area, Northwestern British Columbia, R.G. Anderson and D.J. Thorkelson, Cordilleran Division, G.S.C. Paper 90-1F.

WSE Approximate orientation for stratigraphic transect

Figure 2. Schematic facies changes in Triassic and Lower and Middle Jurassic strata. Facies changes occur toward the east and northeast for Upper Triassic Stuhini Group and both south to north and east to west for Upper and Middle Jurassic Salmon River Formation in Iskut River map area.

Economic Geology

No mineral occurrences have been documented on the Gilbert property. The Salmon River Formation rocks which underlie the property are generally not considered the most favourable host for precious/base metals mineralization. However, Anderson (1990) has recently postulated that the Eskay Creek deposit is hosted in a sequence of pillowed lavas and limy to siliceous shale and siltstone comprising the medial "Eskay Creek facies" of the Lower Salmon River Formation, overlying the Mount Dilworth Formation. This sequence was not recognized during 1990 mapping of the Gilbert Property.

The Unuk River and Sulphurets areas host many significant gold, silver and base metal deposits. The main deposit types in the region include epithermal and mesothermal precious metal shear veins and replacements, disseminated-stratabound occurrences and the unclassified Eskay creek-type. The geological setting of the more important deposits in the area are briefly described as follows:

Eskay Creek (21 Zone)

The deposit has been described (Idziszek et al., 1990) as consisting of stratabound gold-silver-base metal zones, hosted by a carbonaceous mudstone unit (Salmon River Formation?) at the top of a rhyolite breccia sequence. The mudstone is overlain by andesitic pillow lavas. The rhyolite (Mount Dilworth Formation) is underlain by dacitic tuffs of the Betty Creek Formation. The southern part of the deposit (21A Zone) contains massive to disseminated stibnite-realgar mineralization with associated high grade gold and minor silver contents. This is underlain by a footwall stockwork zone in the rhyolite. The northern part of the deposit (21B Zone) is a very gold-silver rich, base metal sulphide lens, with extensive footwall stockwork mineralization. This mineralization is associated with pervasive quartzchlorite-muscovite alteration and minor gypsum, barite, feldspar and calcite. Eskay Creek appears to display characteristics of both epithermal exhalative and volcanogenic massive sulphide types of deposits. Exploration and drilling is still in progress so new data on the deposit and the discovery of new zones is anticipated.

Sulphurets Area

Several different deposit types are present in the Sulphurets map sheet (Open File 1988-4). A group of occurrences known as the Sulphurets Camp is located approximately 20 km southeast of Eskay Creek and 15 km west of the Gilbert property. Both porphyry type and mesothermal to epithermal precious metal deposits are present. Apparent overprinting of mineralization types and multiple generations of alteration and vein assemblages have been observed. Most mineral occurrences in the area are hosted by the upper part of the Unuk River Formation or the lower part of the Betty Creek Formation (Britton et al., 1988). The Goldwedge Zone is hosted by the Betty Creek Formation. Other occurrences in the camp include the Sulphurets and Snowfield Zones, the West Zone deposit and the Kerr deposit. Mineralization can be grouped into four main categories; veins, disseminations, intrusive contacts and stratabound. Extensive gossans are associated with mineralization in the area.

The mineralization of the West Zone is located in structurally controlled quartz vein stockworks within a silicified, sericitic alteration zone. The complex vein system, within the zone, is up to 40 metres thick and contains in excess of 60% vein material. The zone has been traced for over 600 metres along strike and for 500 metres at depth. Andesitic tuffs of the Unuk River Formation, near the volcanic-sediment contact, host the deposit. The mineralization consists of pyrite, electrum, native gold, argentite, galena, sphalerite, chalcopyrite, tetrahedrite, pyrargyrite, proustite, freibergite and stephanite.

Johnny Mountain

This mine has produced 100,300 tons of ore grading 0.46 oz/t gold, 1.0 oz/t silver and 0.75% copper to the end of October, 1989 (D. Yeager, personal communications, January, 1990). The deposit comprises five subparallel quartz veins, hosted by interbedded andesitic to dacitic volcaniclastics and volcanic sediments (Lower Jurassic) which are cut by feldspar porphyry dykes. The veins reportedly thicken and contain higher grades at quartz-carbonate cross structures and at lithologic contacts. The northeast trending veins are generally one to two metres wide and contain pyrite and chalcopyrite with minor sphalerite, galena and pyrrhotite. Electrum and native gold have been reported. A distinctive alteration halo surrounds the veins (Alldrick, 1989). Outward from the vein, the alteration sequence changes from massive potassium feldspar and ankerite to a quartz-pyrite stringer zone to a disseminated pyrite zone.

<u>Snip</u>

This deposit is hosted by massive to bedded siltstone and feldspathic wacke (Upper Triassic). The ore zone ('Twin Zone') is described as a one to ten metre thick, discordant, banded shear vein which trends southeasterly. The zone consists of veins with alternating bands of massive, streaky calcite, heavily disseminated to massive pyrite, biotite-chlorite, quartz and pyritic to non-pyritic fault gouge. Mineralization consists of pyrite, lesser pyrrhotite, minor sphalerite and locally abundant arsenopyrite, galena, molybdenite and chalcopyrite. The gold grades are reported to be fairly uniform throughout, although native gold has been observed locally.

Summit Lake (Scottie Gold)

This mine produced 160,264 tonnes of ore grading 18.6 g/t gold and 10.1 g/t silver between 1981 and 1984. Epigenetic, mesothermal veins are developed along three subparallel shear systems which form part of a ladder vein set. Within these structures are plunging, parallel ore shoots consisting of massive pyrrhotite and/or pyrrhotite-pyrite, up to 5 metres wide. The shoots are usually symmetrically bordered by gold-bearing, quartz-carbonatepyrrhotite-base metal sulphide vein swarms and disseminated base metals. These are hosted by brecciated and intensely silicified, hematized, carbonatized and chloritized wallrock. The overall gold/silver ratio is 2:1.

SIB Group

American Fibre and Silver Butte Resources have drilled 20 holes on their SIB claims and intersected mineralization contained in graphitic mudstone interbedded with felsic volcanic units. One hole returned 49.6 feet grading 0.42 oz/t Au and 30.91 oz/t Ag which includes 16.7 feet of 0.86 oz/t Au and 50.24 oz/t Ag. The geological setting is believed to be similar to the Eskay Creek deposit (The Northern Miner, October 22, 1990).

<u>Inel</u>

Avondale Resources conducted underground drifting and drilling on the AK Zone at the Inel property which produced significant high grade assay results in 1989. The underground program comprised 1,500 feet of adit and footwall drifting. A recent 24.3 foot

intercept grading 1.19 oz/t Au, 1.39 oz/t Ag and 0.87% zinc was returned from underground drilling (The Northern Miner, October 15, 1990).

Recent exploration activity north of the Iskut River has resulted in the discovery of three different styles of mineralization. Gulf International has been drilling stratabound skarn mineralization (Mississipian age) on their McLymont Creek property. The zone has been traced for some 300 metres along strike and 200 metres at depth. The best reported drill results include 3.55 oz/t gold over 6.5 feet and 0.62 oz/t gold over 10 feet (L.O.M. Western Securities Ltd., 1990). Mineralization consists of pyrite, chalcopyrite, sphalerite and galena with a gangue of barite, calcite, gypsum, magnetite and specularite. It is believed that the formation of the deposit is due to the presence of a strong structure, chemically reactive host rocks and close proximity to intrusive bodies (Logan et al., 1990). Palaeozoic strata on Kestral's KRL property and Avondale's Forrest property are reported to host mesothermal, shear related gold mineralization. Kestral has reported that channel samples from veins graded up to 7.28 oz/t gold. Avondale has indicated that a large mineralized hydrothermal system, which has been traced for over 3 miles, hosts at least 19 precious and base metal occurrences. Rock samples grading up to 5.8 oz/t gold, 3.6 oz/t silver and 9.5% copper have been reported (L.O.M. Western Securities Ltd., 1990). The mineralization is found in quartz stockworks and veins and consists of gold and silver-bearing quartz-chalcopyrite, with or without malachite, azurite, arsenopyrite, galena, bornite and hematite. The mineralization is spatially related to granitic (Jurassic) and, locally, dioritic (Permian) intrusions. Further north, Cominco has reported polymetallic, massive sulphide float on their Fore More property. They have found more than 200 massive sulphide boulders containing fine-grained pyrite, sphalerite, galena, barite, chalcopyrite and, locally, silver minerals (Logan et al., 1990).

Britton et al. (1989) listed 55 mineral occurrences on the Unuk area map sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn, and disseminations. Grove (1986) determined that the age of the mineralizing events is variable, and notably, can be post-Triassic.

Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or restricted set of strata. The best example is the Eskay Creek deposit.

Property Geology

The Gilbert property was geologically mapped in 1990 at a scale of 1:5,000 (Map 1) in conjunction with prospecting which was concentrated in the western and northwestern quadrants and the southeastern corner, where recent glacial ablation provides good outcrop exposure.

Regional geological mapping by Britton and Alldrick (1988) and Grove (1986) provides an adequate picture of the bedrock geology of the Gilbert property area. The property is shown to be primarily underlain by Salmon River Formation siltstones, shales, sandstone and minor conglomerate and limestone. Intermediate volcanic dykes trending north and east are mapped near the western boundary and a monzonite intrusive(?) near the southwestern corner of the property. This geological setting was confirmed by Keewatin's mapping in 1990. The westerly extent of these units is masked by glacial ice but intermediate volcanic and epiclastic rocks of the Betty Creek Formation and felsic volcanics of the Mount Dilworth Formation are shown to outcrop two to three kilometres to the west and south of the property (Figure 2). An aeromagnetic anomaly (EMPR and GSC, 1978) to the southwest of the property may be correlative to these occurrences of Betty Creek and Mt. Dilworth Formations. Brief geological descriptions of the main formational units in the area are described below. Although only the Salmon River Formation is present on the Gilbert property, the two underlying units are described for completeness.

Betty Creek Formation (Lower Jurassic)

The Betty Creek Formation is an epiclastic sequence comprising sedimentary rocks with interbedded tuffs and flows. It is up to 1,200 m thick within the region. Sedimentary rocks consist of conglomerate, sandstone and siltstone. They are generally maroon coloured due to the presence of hematite, but local greenish units occur. Limestone lenses are also present. The volcanic rocks consist of dacitic dust tuff, lapilli tuff and porphyritic flows.

Mount Dilworth Formation (Lower Jurassic)

This Formation is a felsic volcanic sequence and provides an important regional marker. The rocks are mainly dense, resistant, variably welded tuffs. They display distinct lateral facies variations and compositional changes. The formation is 75 - 150 m thick regionally.

Salmon River Formation (Middle Jurassic)

The main part of this Formation comprises carbonaceous and calcareous, thin to medium bedded siltstone, shale, argillite and sandstone with minor conglomerate and limestone. This unit is at least 1,000 m thick. The basal member is up to 10 m thick and consist of grey to black grits, ash-rich siltstone, sandstone, argillite and limestone. This basal unit is often fossiliferous and pyritic.

Structure

Structurally, the region is characterized by doubly plunging, northwesterly trending, folds of the Salmon River and underlying Betty Creek Formations. Regional trends are reflected in the geology of the Gilbert property. In the western part a synform/antiform pair have been mapped with small scale isoclinical folds observed in hand specimens associated with the synform. Southwest of the latter, near the western property boundary, a monzonite unit intrudes the sediments and may be the cause of the tight folding observed.

North of the headwaters of the drainage sampled by 90JJL009/011B (35/30 ppb Au) folding in the sediments was observed on the western margin of a possible intrusion. Precipitous terrain and rockfall prevented examination.

GEOCHEMICAL SURVEYS

Soil Geochemistry

Eighty-nine (89) contour soil samples were collected from the property during August, 1990, placed in kraft sample bags and shipped to Bondar-Clegg & Company Ltd. in North Vancouver where they were dried and sieved to minus 80 mesh.

Gold values are determined on 10 gram, representative samples of minus 80 fraction by fire assay with AA finish; remaining 8 elements are determined using 0.5 gram sample of minus 80 fraction by hot aqua regia digestion followed by ICP. The results are listed in Appendix I with sample locations shown on Map 2. Values for Au, Ag, As are shown on Map 3 and for Cu, Pb, Zn on Map 4. Soil sampling was completed along widely spaced contours on the ice-free northwestern sector of the property-at elevations believed to be above remnant glacial moraine. Sampling at chained 50 metre intervals in conjunction with stream silt geochemistry was used to evaluate the property in a systematic fashion. The contour lines crossed observed stratigraphy to provide good coverage of lithologies present. Samples were collected with a mattock at an average depth of 30 cm from the B soil horizon, where present, and from fine talus material where soil development is not present. Soils were typically light to medium red-brown in colour and contained >20% angular fragments.

Somewhat elevated values were found for zinc, copper, arsenic and silver with the greatest coincident values centred in a well defined area (200 m x 500 m) between the 5,000 foot and 5,500 foot elevations in the northwestern sector of the property. Gold values in the soils are low (<5 ppb-18 ppb) with the exception of one anomalous sample (90AWS035) which yielded 115 ppb Au on the downslope, southern fringe, of the 'elevated value' area. Further work in this area is warranted. Follow-up should consist of closely spaced contour soil sampling between 4,800 feet and the ridge at 6,400 feet combined with silt sampling at 50 metre intervals of the drainages included within and proximal to this zone. Prospecting of these drainages and upslope of the anomalous gold-in-soil sample would seek to determine a source for the 'elevated values' and Au anomaly.

Stream Silt Geochemistry

Thirty-one (31) silt samples were collected from drainages crossed and traversed in the northern to northwestern sector of the property during the course of contour soil sampling. Samples were placed in kraft sample bags and shipped to Bondar-Clegg & Company Ltd. in North Vancouver where they are dried and sieved to minus 80 mesh.

Gold values are determined on 10 gram, representative samples of minus 80 fraction by fire assay with AA finish; the remaining 8 elements are determined using a 0.5 gram sample of minus 80 fraction by hot aqua regia digestion followed by ICP.

The results are listed in Appendix I with sample locations shown on Map 1. Values for Au, Ag, As are shown on Map 2 and for Cu, Pb, Zn on Map 3.

The map shows scattered, weakly elevated Au values (27 ppb - 46 ppb) between 4,700 feet and 5,500 feet but no structural or stratigraphic relationship is apparent. The drainage sampled by 90JJL009 and 011 yielded elevated values for gold (35-30 ppb), for arsenic (37-63 ppm) and for mercury (0.222-0.314 ppm). Follow-up prospecting of the upper reaches of this drainage and the drainage to the east (46 ppb Au) may reveal a source for these elevated values. Folding in the bedded sediments is observed above the former drainage along the western margin of a possible intrusion. The site is precipitous, subject to rockfall and was not visited during examination of the property.

Rock Geochemistry

Thirty (30) grab rock samples were collected from the Gilbert property during August 1990. The samples were selected in conjunction with prospecting and mapping on the basis of alteration or mineralization and averaged 1-1.5 kg.

All samples were shipped to Bondar-Clegg & Company Ltd. in North Vancouver where they were crushed, split and pulverized to -150 mesh, fire assayed AA finish for gold and analyzed by ICP for 8 elements. The sample locations are shown on Map 2 and the results are plotted on Map 3 and Map 4.

Four samples yielded somewhat elevated gold values. Sample 90XR1830 (33 ppb Au) is a float block from lateral moraine material some 600 metres east (down-ice) of the property boundary in the northeastern corner of the map. Sample 90XR1843 (46 ppb Au) was taken at the southeastern corner of the property from a two metre angular float block mineralized by a 2 x 20 cm pod of olive brown pyrite. The source of this apparently local float block was not located.

CONCLUSIONS

The Gilbert property is almost entirely underlain by sediments belonging to the Salmon River Formation with minor intermediate dykes and a monzonite unit found near the western boundary.

While the Salmon River rocks are not generally considered the most favourable host for precious/base metal mineralization, Anderson (1990) recently postulated that the Eskay Creek deposit is hosted in mudstones at the base of the Salmon River Formation.

Gold values in soils from the property were uniformly low. One sample (90AWS035) yielded 115 ppb Au from the 5,100 foot contour. Four stream silts gave elevated values for gold (27, 30, 35, 46 ppb Au) from three drainages in the northwestern sector. Two rock grab samples assayed >20

12

ppb Au. Sample 90XR 1830 (33 ppb Au) is from a monzonite float block taken 600 m east (down-ice) of the eastern property boundary and 90XR1843 (46 ppb) is from an intermediate volcanic float block taken from the southeastern corner.

North of the anomalous soil sample, within an area of approximately 200 m x 500 m, soil geochemistry from two widely spaced contour survey lines reveals elevated to anomalous values for copper (to 185 ppm Cu), zinc (to 438 ppm Zn), silver (to 2.5 ppm Ag), arsenic (to 84 ppm) and mercury (to 1.421% Hg). The abundance of anomalous soil geochemical results within a discreet area suggests that this zone may have potential to host base or precious metals. The source of the anomalies was not discerned in 1990 and represents an attractive target to be evaluated in the future.

RECOMMENDATIONS

The 1990 exploration of the Gilbert property failed to outline any significant precious metal showings. Elevated to anomalous base metal values in soils and silts and one anomalous gold value (90AWS035 - 115 ppb Au) in soils within a well defined area between 5,000 feet and 5,500 feet warrant further attention.

Prospecting and Mapping

The three drainages which yielded elevated silt values should be prospected and mapped to determine the lithologies, structures and mineralization present. Outcrop in the vicinity of and upslope from the anomalous gold value in soil and the entire area of elevated base metal values should be examined to determine the source of these values and the controls of mineralization.

Detailed Geochemistry

Stream silt sampling should be conducted at 25 metre intervals above 5,000 feet in the two streams which drain the area of elevated base metal values.

A mini-grid should be established to envelope sample 90AWS035 with sampling at minimum 25 metre intervals. A closely spaced contour soil survey with elevation control should be conducted over the area of elevated base metal values and extended north, up-slope to the ridge.

Respectfully submitted,

KEEWATIN ENGINEERING INC.

Brian R. McIntyre, Senior Prospector

BIBLIOGRAPHY

- Alldrick, D.J., Britton, J.M., Webster, I.C.L. and Russell, C.W.P. (1989). Geology and Mineral Deposits of the Unuk Area. NTS 104B/7E, 104B/8W, 104B/9W, 104B/10E. Open File Map 1989-10.
- Alldrick, D.J. and Britton, J.M. (1988-4). Geology and Mineral Deposits of the Sulphurets Area, NTS 104A/5, 104A/12, 104B/8, 104B/9. Scale 1:50,000 (Open File Report 1988-4).
- Anderson, R.G. (1989). A Stratigraphic, Plutonic and Structural Framework for the Iskut River Map Area, Northwest British Columbia. G.S.C. Paper 89-1E.
- Anderson, R.G. (1990). Mesozoic Stratigraphy and Setting for Some Mineral Deposits in the Iskut River Map Area, Northwestern British Columbia. G.S.C. Paper 90-1E.
- Britton, J.M. and Alldrick, D.J. (1988). Sulphurets Map Area (104A/05W, 12W; 104B/08E, 09E). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1987, Paper 1988-1.
- Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989). Unuk Map Area (104B/7E, 8W, 9W, 10E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Field Work 1988, Paper 1989-1.
- Grove, E.W. (1986). Geology and Mineral Deposits of the Unuk River Salmon River Anyox Area. B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.
- Idziszek, C., Blackwell, J., Fenlon, R., MacArthur, G. and Mallo, D.W. (1990). The Eskay Creek Discovery, Mining Magazine, March 1990.
- Idziszek, C., Blackwell, J.D., Fenlon, R., Mallow, D.W. and McArthur, G. (1990). Exploration Updates - Eskay Creek Project, Abstract (revised) November 9, 1989, Prime Explorations Ltd.
- Kruchkowski, E.R. (1988). Geochemical Report on the Brucejack 4 and 5 Claims, Skeena Mining Division, British Columbia, Assessment Report No. 17383.
- Logan, James M., Koyanagi, V.M. and Drobe, J. (1990). Geology of the Forrest-Kerr Creek Area, Northwestern British Columbia (104B/15). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1.
- L.O.M. Western Securities Ltd. (1990). Stikine Arch Canada's Golden Triangle.

Minfile 103A (1988). Bowser Lake Mineral Occurrence Map, Scale 1:250,000.

Northern Miner, November 7, 1988, October 15, 1990; October 22, 1990.

Vancouver Stockwatch, September 18 and October 1, 1990.

STATEMENT OF QUALIFICATIONS

I, BRIAN ROBERT McINTYRE, OF 3443 Saanich Street in the City of Abbotsford in the Province of British Columbia, do hereby certify that:

- 1) I hold a certificate (May 1989) in Advanced Prospecting from Malaspina College and the Ministry of Energy, Mines and Petroleum Resource, British Columbia.
- 2) I have over 4 years of experience in exploration for base and precious metals in the Canadian Cordillera.
- 3) I am an independent prospector and hold a current Free Miners Certificate No. 302982 for the Province of British Columbia.
- 4) I am an presently under contract to Keewatin Engineering Inc. with offices at Suite 800 900 West Hastings Street, Vancouver, British Columbia.
- 5) I am an author of the report entitled "Geological, Prospecting and Geochemical Report on the Gilbert Property, Skeena Mining Division, British Columbia, dated November 7, 1990.
- 8) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Canadian Cariboo Resources Ltd., in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this 7th day of November, 1990.

Respectfully submitted,

Brian R. McIntyre, Senior Prospector

APPENDIX I

Itemized Cost Statement

Keewatin Engineering Inc.

.

'n,

ITEMIZED COST STATEMENT

	BERT SUMMARY (PROJECT NO. 2841) ber 26, 1990	
1	Domicile	\$ 1,575.00
2	Wages	4,990.00
3	Helicopter	6,255.56
4	Field/Office Supplies	225.00
7	Shipping estimate	25.00
8	Mobilization/Demobilization and Post Field	6,546.86
9	Assays	
	Soils & Silts - 120 @ \$11.00 each Rocks - 33 @ \$13.48 each	1,320.00 444.68
10	TOTAL	\$21,382.00

APPENDIX II

Summary of Personnel

SUMMARY OF PERSONNEL

Name	Days	Day Rate	Total \$
Brian McIntyre	4	\$250.00	1,000.00
Sandy Gibson	1	\$325.00	325.00
Scott Thompson	4	\$300.00	1,200.00
Heath Whittam	3	\$190.00	570.00
Aaron Wardwell	3	\$190.00	570.00
TOTALS	15		\$3,665.00

Keewatin Engineering Inc.

.

'n

APPENDIX III

Soil and Stream Silt Geochemistry Results

Keewatin Engineering Inc.

٠.

Jar-Clegg & Company Ltd. J Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V90-01741	- D	ı			D: 29-AU	IG-911 Page	1			
KEPURI: V90-01/41					FR	0.JFCT: 284	+1	PH6E		
SAMPLE E	LEMENT Au 30g	Ag	Cu	РЬ	Zn	Ая	Sb	No	Hg	
NUMBER	UNITS PPB	PPH	PPM	PPN	PPM	PPN	PPN	PPM	PPM	
90 JJ GIL (PR	EFIX)									
S1 S003 1+50	8	0.4	32	16	101	<5	<5	3	0.096	
S1 S004 0+DNE	8	1.3	153	27	293	36	<5	. 6	0.101	
\$1 \$005 O+UUF	9	0.9	114	26	265	31	7	5	0.085	
S1 S006 1+ONE	6	0.8	108	27	233	13	11	6	0.094	
S1 S007 1+50F	9	1.0	105	22	2118	16	8	5	0.128	
S1 S008 2+00E	<5	1.4	127	29	358	22	11	9	0.433	
S1 S009 2+5(IF	9	1.1	118	24	276	41	7	7	0.213	
S1 S010 3+00E	<5	0.8	68	22	189	<5	<5	3	0.133	
S1 S011 3+5(IF	6	1.0	101	30	226	25	8	5	0.199	
JI OUII 5 ,500.	······	T * 11	101			6. s. F	v			·- · ·
S1 S012 4+00	10	0.4	69	21	165	14	6	4	0.129	
S1 S013 4+50F	10	1.6	185	25	318	30	7	5	0.198	
S1 S014 5+DNE	1	1.0	SN	18	170	11	<5	4	0.098	
\$1 \$015 5+50F	1.8	0.7	45	15	148	22	<5	4	0.080	
S1 S016 6+00E	<5	1.0	57	19	161	16	<5	3	0.089	
S1 S017 6+511F	6	0.5	55	21	137	16	<5	2	0.109	
S1 S018 7+00E	in	0.8	125	28	236	18	<5	4	0.207	
\$1 \$019 7+5UF	10	0.3	52	20	140	14	<5	3	0.122	
S1 S020 8+0RE	10	0.7	63	19	153	21	<5	4	0.110	
S1 S021 8+50F	8	0.6	59	26	157	21	5	3	<0.010	
S1 S022 9+DNE	6	0.4		20	132		<5	5	0.082	
\$1 \$023 9+511F	14	0.3	54	21	146	6	<5	3	<0.010	
S1 S024 10+00E	10	0.6	64	26	147	13	7	4	0.020	
S1 S025 10+50F	<5	0.6	55	24	141	28	11	4	<0.010	
S1 S026 11+DDE	7	D.6	67	28	153	10	<5	3	<0.010	
S1 S027 11+511F	8	0.5	57	16	126	9	<5	3	0.023	
S1 S028 12+D0E	8	Ŋ .8	75	25	159	13	5	4	<0.010	
S1 S029 12+511F	9	0.6	61	19	145	<5 15	<5	4	0.039	
T1 L001 1+5D	<5	0.9	48	20	144	15	<5	2	0.012	
T1 L002 1+85	8	0.6	58	18	146	-13	8	3	0.020	
T1 L003 3+40		0.6	50	16	132	10	6	3	<0.010	
T1 LOO4 4+45	12	0.4	36	12	124	<5	<5	2	0.174	
T1 LOOS 5+40	13	0.8	69	20	171	17	<5	4	0.210	
T1 L006 7+80	9	0.8	79	16	2(18	32	6	4	0.134	
T1 L007 9+75	<5	Ŋ.8	58	16	149	16	<5	3	0.172	
T1 L008 14+38	<5	0.5	53	15	151	26	6	2	0.134	
T1 L009 16+60	35	0.5	46	15	131	37	6	3	0.222	
T1 L010 16+60	<5	0.6	48	15	31.8	48	11	5	0.254	
T1 L011416+80	8	0.7	46	16	246	63	9	6	0.297	
I1 L011/16+80 ST		Ű.6	43	17	248	51	11	5	0,286	
11 C012/10:00 01	Ju Ju	0.0	-J		/			5		

dar-Clegg & Company Ltd. J Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

......

Geochemical Lab Report

REPORT: V90-D1	741.0				<u>TE PRINTE</u> OJECT: 28	<u>10-70</u>	PAGE 2					
SAMPLE	FI FMENT	-	Ag	Cu	Ръ	Zn	Âß	Sp	Mo	llg		
NUMBER	UNITS	PPB	PPN	PPN	PPN	PPM	PPN	PPN	PPN	PPN		
T1 L012 17+11(1		9	0.6	511	20	183	58	12	3	0.314		
T1 L013 14+40		9	8.7	57	19	172	30	8	.2	0.167		
T1 L014 14+40		46	0.5	61	17	161	30	9	<u></u> 3	0.169		
T1 L016 2+50E		15	n.9	86	18	244	26	7	4	0.218		
T1 L017 4+8(IF		27	0.7		18	206	<5	6	3	0.177		
T1 LD18 5+35		11	N.6	49	16	142	11	<5	3	0.064		
_ T1 L018 14+40		12	0.6	57	16	165	25	7	3	0.149		
T1 L019 6+00E		9	0.5	46	15	132	. 9	<5	2	0.089		
<u></u>												
\mathbf{i}								_				
> L008	14+40	59~01	led twi	c e ~ 7	this spi	le 008	9 <i>B</i>	`t				
······································												
					•							
· · ·					·							
					·							
			· · · · · · · · · · · · · · · · · · ·									
			· · · · · · · · · · · · · · · · · · ·									
			· · · · · · · · · · · · · · · · · · ·									

dar-Clegg & Company 1.td. 30 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex ()4-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-0	REPORT: V90-01806.0							E <u>PRINIE</u> DJECT: 28		2-90	PAGE 1]
SAMPLE . NUMBER	ELEMENT AU UNITS	30g PPB	Ag PPM	Cu PPM	Pb PPM	Zn PPM	As PPH	Sb PPM	Mo PPM	Hg PPM		
S1 90 AW 2841 S1 S001 0+00	(PREFIX)	<5	0.9	32	15	95		<5	4	0.060		
S1 S002 1+50		8	0.8	65	19	132	15	6	2	0.172		
S1 S003 1+75		<5	0.5	39	15	101	<5	<5	2	0.079		ļ
<u>\$1 \$004 2+00</u>		<5	0.5	31	13	111	17	5	1	0.057		
S1 \$005 2+50		6	0.6	38	12	111	11	<5 - (5	2	0.074		
S1 S006 3+00 S1 S007 3+50		<5 11	0.7 1.0	32 68	16 19	112 156	9 20	<5 9	3 3	0.059 0.130		
S1 S007 5150 S1 S008 4+00		6	1.0	44	19	108	20	8	2	0.142		
S1 S009 4+50		16	0.7	47	15	106	<5	< <u>\$</u>	2	0.146		
S1 S010 5+00		б	0.9	54	16	115	20	6	2	0.177		
S1 S011 5+50		8	0.5	60	16	115	15	5	2	0.151		
S1 S012 6+00		<5 ⁄5	0.6	27	14	. 72	<5	5	. 2	0.080		
S1 S013 6+50 S1 S014 7+00		<5 <5	0.8 0.7	33 62	15 22	76 165	13 12	<5 8	2	0.119 0.081		
												J
S1 S015 7+50		б	0.7	74	20	174	25	6	3	0.160		
S1 S016 8+25 S1 S017 8+50		<5 6	0.6 0.8	68 75	19 21	148 166	19 13	7 · <5	4 2	0.184 0.163		
■ S1 S017 0+30		<5 [°]	0.6	35	15	100	22	<5 <5	3	0.056		
S1 S019 9+50		6	1.1	62	21	122	56	6	3	0.153		
S1 S020 10+00		6	0.8	53	19	111	29	7	4	0.080]
\$1 SO21 10+50		<5	0.6	57	17	113	10	7	4	0.087		
S1 S022 11+00		<5 .5	0.8	46	16	114	11	<5	4	0.085		
S1 S023 11+50 S1 S024 12+00	·	<5 <5	0.8 0.7	51 40	17 14	119 107	7 15	7 6	3	0.079 0.104		
	······	·J		40	14	107				0,104		
\$1 \$025 12+50		12	0.3	15	15	43	6	<5 د	2	0.067		
\$1 \$026 13+00 \$1 \$027 13+50		<5 б	0.3 0.5	23 49	13 17	69 123	<5 25	<5 ئ	1 2	0.059 0.080		
S1 S028 14+00		<5	0.5	61	21	144	19	7	2	0.000		
S1 S029 14+50		6	0.7	74	22	180	29	11	2	0.146		
\$1 \$030 15+00		<5	0.3	31	14	71	16	6	1	0.087		
s1 s031 15+50		<5	0.4	46	15	110	27	9	2	0.101		
S1 S032 16+00		8 -	0.5	53	16	133	31	7	2	0.124		
S1 S033 0+00E		7	0.7	83 74	27	165	6	<5 /5	3 E	0.058		
S1 S034 0+50E		6	1.0	74	28	204	24	<5	5	0.119		
S1 S035 1+00E		115	1.0	81	22	178	<5	6	3	0.090		
S1 S036 1+50E S1 S037 2+00E		9	1.0 1.0	104	25	211	26	/	4 c	0.099		
S1 S037 2+002 S1 S038 2+50E		10 15	1.0	101 94	24 24	216 204	18 84	10 8	5	0.080 0.161		
\$1 \$039 3+00E		10	1.1	100	31	242	44	10	5	0.101		
									······			

Indar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

	•				in noncer	i kar de fi se	DA	IE_PRINIE	D:4-SEI	P-90			
REPOR	T: V90-01806.0							DJECT: 28		· · · · · · · · · · · · · · · · · · ·	PAGE	2	
SAMPL	ELEMENT	Au 30g	Ag	Cu	Pb	Zn	٨s	Sb	Мо	Hg			
NUMBE	R UNITS	PP8	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	•		
S1 S0	40 3+50E	8	1.1	72	23	160	40	<5	· 3	0.089			
	41 4+00E	<5	0.8	58	23	166	82	8	4	0.068			
	42 4+50E	6	1.3	103	21	168	39	<5	5-	0.134			
	43 5+00E 44 5+50E	13 <5	2.4 0.7	180 47	63 18	438 140	66 24	10 7	9 4	1.421 0.087			
<u> </u>				٦ <i>۲</i>			,	، ئوچنىدىن سىسى					
	45 6+00E		0.9	47	22	194	23	7	4	0.064	V Y	¹ ⊾ ∳ ¥ 1	•
	46 6+50E	6	0.9	117	24	236	33	10	4	[#] 0.164			
1	47 7+00E	6	0.6	46	21	131	18	<5 E	4	0.092			
	48 7+50E 49 8+00E	6 8	0.6 0.6	54 55	17 - 16	145 125	12 16	5 <5	3	0.063 0.056			
L			0.0	JJ	10			·	<u>د</u>	0.000			
	50 8+50E	<5	1.1	119	22	206	22	7	4	0.078			
	51 9+00E	6	1.5	117	27	182	14	< 5	5	0.156			
	52 9+50E 53 10+00E	. <5 <5	0.8 1.4	85 108	26 20	211 229	24 24	<5 10	3	0.056 0.113			
	54 10+50E	<5	0.8	39	18	103	14	10	2	0.109			
							× 1		 			······	
	55 11+00E	б	1.0	108	29	182	25	6	3	0.168			
	56 11+50E	8	1.1	67	23	144	24	<5	5	0.092			
	57 12+00E LUS 90A₩284I (PRE)	<5	0.5	40	14	93	<5	<5	3,	0.089			
	01T 1+85E	7	0.8	63	24	146	55	13	3	0.087			
1	021 2+65E	7	0.8	80	20	194	23	8	5	0.153	1		
	03T 3+50E	6	1.2	128	21	290	19	9	4	0.214			
	041 3+75E 05T 4+25E	0 7	1.0 1.0	84 91	21 23	166 184	27 23	<5 10	3	0.100 0.098			
	AW 284I (PREFIX)	1	1.0	71	25	104	L.)	10	J	0.050			
	····· ···· ···························								*				
	01 0+00 MOSS MAT	10	0.7	73	18	167	20	<5	3	0.132			
	02 0+50E	6	0.5	41	15	122	19	<5 .5	1	0.091			
	03 1+00E MOSS MAT	1	0.4	31 05	13	109	8	<5 7	2				
	04 3+07E 05 4+86E in the operation	<u>о</u> ,	0.8 0.6	85 77	23 20	200 208	27 30	715	્ય '્રે. હ#`રૂ*જ'	0.185 7*0:103	n 1. u .		
[; 11 L0	UU T'UUL I. I. I. BUMAR		U . U						,	·	1. 7. 1.		
	06 5+38E	12	0.5	49	17	143	22	<5	,2	0.064			
	07 7+25E MOSS MAT	<5	0.7	69	20	161	16	<5	3	0.107			
	08 7+50E MOSS MAT	<5	0.6	75	21	165	7	<5 6	3	0.140			
	09 11+20E 10 11+34E	6 7	0.6 0.6	53 62	21 21	121 135	10 8	6 7	2 2	0.053 0.084			
	10 11.04	/	0.0		<u> </u>		0			0.004			
T1 L0	11 11+48E MOSS MAT	9	0.6	46	18	126	б	<5	2	0.123			

APPENDIX IV

.

Rock Geochemistry Results

^

Keewatin Engineering Inc.

÷

ίς.

s Company Ltd. ∞n Ave. sicouver, B.C. ∠R5

ą

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & LESTING SERVICES DATE PRINTED: 3-SEP-90

			······				UA				
<u> </u>	REPORT: V9U-1118115.0				PR	OJFCT: 28	41		PAGE 1		
-	SAMPLE ELEMENT NUMBER UNITS	Au 311g PPR	Ag PPM	Cu PPM	Pb PPM	Zn PPN	As PPN	S b PPN	No PPN	Hg PPM	
	R2 90 ST 284I R1829	13	1.6	69	18	187	27	5	31	0.456	
	R2 90 ST 284J R1833	<5 -	11.8	39	32	166	7	<5	2	0.053	
	R2 90 ST 2841 R1901	<5	ft.5	6	10	160	8	13	4	0.115	
	R2 90 ST 2841 R1902	K 5	11.3	5	8	12	9	6	5	0.114	
	R2 90 ST 284I R1903	<5	11.7	6	8	77	22	14	30	0.347	
	R2 90 ST 284I R1904	<5	(1.3	15	14	75	11	<5	1	0.089	
	R2 90 ST 284I R1905	<5	0.7	43	27	12	19	<5	2	0.337	
	R2 90 ST 284I R1916)	×5	1.0	42	6	64	13	(5	<1	0.017	
	R2 90 ST 2841 R1907 284	ال ا ×5	1.3	111	8	95	16	6	<1	0.026	
	R2 90 ST 2841 R19118)	<5	0.7	51	5	71	1.7	<5	<1	0.039	
	R2 90 ST 2841 R19119	8	1.8	63	211	184	46	7	3	0.183	
	R2 90 P 2841 R4155	<5	<11.2	11	5	42	<5	<5	1	0.014	
_	R2 90 P 2841 R4156	<5	<0.2	13	7	75	6	<5	<1	0.059	
	R2 90 P 284I R4157	<5	<f1.2< td=""><td>210</td><td>18</td><td>2118</td><td><5</td><td>6</td><td>2</td><td>0.080</td><td></td></f1.2<>	210	18	2118	<5	6	2	0.080	
	R2 90 P 2841 R4158	<5	0.9	38	29		43	8	2	0.128	
	R2 90 P 284I R4159	<5	0.9	13	6	21	<5	<5	<1	<0.010	
	R2 90 P 284I R416N	<5	0.4	61	11	59	55	7	5	0.058	
	K2 9N P 2841 R4161	<5	8.6	44	13	59	8	<5	2	11.124	

.

1

idar-Clegg & Company Ltd. 30 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

A INTERANTAL INTERACTOR INCOLATION & RECEINER OF DWILL	i e	
A DIVISION OF INCHCAPE INSPECTION & FESTING SERVICE	<u></u>	

			A DIVISION OF INCLICAPE INSPECTION & FESTING SERVICES DATE PRINTED: 29-AUG-90									
REPORT: V90	-01735.0	·					PR	0JFCT: 28	41		PAGE 1	
SAMPLE NUMBER	ELEMENT UNITS	Au 30g PPB	Âg PPN	Cu PPN	Pb PPN	Zn PPH	As PPN	Sb PPM	No PPM	Hg Pph	<u></u>	
R2 90 X 284	I R1830	33	<0.2	16	25	150	<5	<5	7	0.099		
R2 9D X 284		9	<0.2	18	17	49	24	<5	2	0.049		
R2 90 X 28		8	8.4	59	4	69	<5	<5	2	0.056		
R2 90 X 284		7	0.6	75	9	76	<5	5	1	0.045		
R2 90 X 28		1	8.4	34	28	21	22	1	9	0.389		
R2 90 X 284	4I R1836	7	0.3	41	3	38	126	6	4	0.217		
R2 90 X 28	4I R1837	8	1.2	72	16	118	50	7	36	0.853		
R2 90 X 284	4I R1838	7	0.6	21	7	37	<5	<5	4	0.640		
R2 90 X 28	41 R1839	9	1.6	94	16	97	26	8	27	1.537		
R2 90 X 28	4I R1840	6	0.7	63	13	149	41	14	15	0.969		
R2 90 X 28		<5	<0.2	88	24	203	<5	43	3	0.349	 _	
R2 90 X 28		9	(1,8	94	18	139	<5	7	3	0.252		
R2 90 X 28		46	<0.2	63	119	85	111	19	5	U.439		
R2 90 X 28		20	0.8	36	21	50	16	9	4	0.359		
R2 90 X 28	4I R1845	19	1.8	48	40	57	611	<5	5	0.307		···
	<u></u>											
												*
· · · · · · · · · · · · · · · · · · ·												
·												
		<u> </u>										
>												

APPENDIX V

-

Stream Silt Geochemistry Notes

Keewatin Engineering Inc.

-

Υ.

.

Froject: Gilbert 284 I	EWATIN ENGINEERING INC. STREAM SEDIMENTS Results Plotted By: <u>Flath Withan</u>
-rea (Grid):	Map: Crilbert N.T.S.: 104A12
collectors: Leath Whitlam.	Date: Aug 12/90
30T5	SEDIMENT DATA STREAM DATA
Sample NOTES	Gravel Gravel Clay Clay Clay Clay Clay Clay Clay Cla
Number- 1500	Gravel Sand Silt Silt Clay Clay Active Bank Bank SPRIN(Clay Clay Clay Clay Clay Clay SPRIN(GULLY
2001 MOSS matt	52 57 80 B 102 4 12m 10 m
1202 (4540) most matt.	5 15 70 Ø 12 7 2 10 m
2003 (4560) moss matt	5 37 52 \$ 15 7 1m 5 5
1224 (450) mass matt	5 10 70 0 15 4 12m 10 m
2005 (4600) mass matt	0 5 75 0 23 7 3m 20 F
706 (4650)	10 60 30 0 0 4 3m 20 F
- 307 (46.80) moss matt.	$\frac{5}{5} \frac{5}{5} \frac{20}{40} \frac{9}{10} \frac{10}{10} \frac{9}{10} \frac{10}{10} \frac{5}{10} \frac{5}{10} \frac{5}{10} \frac{10}{10} \frac{9}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{5}{10} \frac{10}{10} \frac{10}$
2.223 (4652)	
209 (4620)	
2310 (4340)	20 5 80 1 8 7 8 20 Fr
2311 A (4903)	To \$ 30 \$ \$ 1 2m 20 m
1012 (5220) 1012 (5220)	
1013 (5060)	62 5 35 p 6 4 1m 10 m
214 (49,00) 215 (4800)	70 5 25 \$ \$ \$ <u>1</u> Im 10 m
	(n) 10 30 \$ \$ \$ J Im 10 m
1016 (5500) 1017 (5500)	55530 ¢ ¢ 7 2 10 m
1018 (5500) moss matt.	0 0 90 0 10 4 1m 20 m
	20 \$ 70 \$ 10 Y 12 10 m.
-219 (550) moss matt.	
DIIB (4900) intermittant?	20 10 70 1 2 4 12 5 m
	<u>~~~~</u>
	╶────╫──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──

	- 1300 Control, 5100 Control	WATIN I STREAM				Resu	ults P	lotte	d By:		N	LT.S.	 :i(' <u>Zn</u> 14	<u></u> ۱۱.	~~ 2		
	- Action Westweil (Heath Whittam)	_				Date		0635	+ 12	2 140	10 -	> Au	aint	15	1990	7		
			T		IMEN								1.	1	1			Ŧ
nple mber	NOTES		Gravel	1	Silt		1 in the second	Bank	Active	Width	Depth	city c	SPRING	DRY GULLY				
	45-30% Frag. Aliver Organics, Moss Mat	39601	1	1	1	<u>† – – – – – – – – – – – – – – – – – – –</u>		<u> </u>	Yes	4-5m	licom	F	Î		<u> </u>			t
		42861	1		1		·				3-5-m							t
204 X 5		4300'									le.m		·					T
	ICC' Contes;		1		T													T
<u> </u>	Bed cik, Mayular iniks, silt	5175'	40%	5%	55%						15 im							Γ
20:5	Redicik, drewter wicks silt	51001	40.5%	20%	46%				Yes	1-2m	20.m	F						
DOE	Beinsch Alerso Alet	51801					20%		Yes	Im	10.00	M						Γ
007	AVIAURA JOCKS, MOOS MAT	5100'						· .			26,00		İ					L
<u>008</u>	Moss Mat	5075	11	5.72			10%		Yës			F						L
004	Silt, Aled BM. Sample Creek splits to HD + 166" above li	ne 5080'	_	 	ļ				No									L
CIC	Berlinik Annularieck, Silt	5080	10%								16cm							Ļ
011	Mars Meet	5100'					10%				IÚ:LM	4			<u> </u>			Ļ
0118	Glucial fill - intermittant -	- 5100'		30%			-			1/2 11	6cm							Ļ
									Y#s				<u> </u>					┝
			 	<u> </u>													-+	╞━
			┣──┤														-+	-
			├ ───┤					:								╧╼┥╋	-+	
																	+	
	****		┠──┤									· ·						
	······································		 														-+	
							·							-	-		=	
	······································	··													• 1		\rightarrow	
														T	I		1	
	· · · · · · · · · · · · · · · · · · ·							·										
													· [Τ	
							1		1	1	ľ		. [li li	T	T	T	

APPENDIX VI

Soil Geochemistry Notes

.

Keewatin Engineering Inc.

÷.

Project: _ Area (Grid Collectors):	ant 2 300'		e 10eure		ATIN EN SOIL S - -				Res	ults :	Plott zilla Au	ed E	By:		<u>m</u> N.T.S	.:	L. 19	44	-th 12	• <u> </u>	Liti
	1	Location					To	pogr				Ve	egeta	 pt.ion					So	.i 1	Date	a
Somple				Notes			ottom	f slope		round	Wooded	Wooded			9		Sampled	t to Horizon Sample	Horizon	Develop - ment	Parent	Material
Number 9055 4300	Line	Station					Valley B	Direction of	HIII Top	Level G	Heavily V	Sporsely	Burnt	Logged	Grossland	Swompy	Horizon	Depth to Samp	Good	Poor	Drift	Bedrock
5002		1+ 20-	min of	Stel	or y Saw	d/Silt-		0 ≠ 	bice	ed	- di	alie	c he	AN	13.	_		20		$\overline{\mathbf{v}}$		- VI
5002 5003		1+50	unin ared	20210		d/silt							·				&	20		<u> </u>	┝━╌┼	K
5004	5500'	0+200	Talus 0	6 pro 2	57 4102	silt/chy	<u> </u>										k_	·	<u>\</u>		╞╾╾╾╋	
5025		0+505	Talus	1 sur	sittle		└──┤							<u> </u>			B	25	V.	┼──┤		
2001	l	1+000	Talas. 2	57 Fire	Silt/C						{	;[`					6	15 Zí		┼┤		<u> </u>
5007	[1+50E	Terins;	min or		Isitt							+				0	20	V	┼──┼		K
5008	ļ	21000	Talus,	\$ ove,	sitt /	len										ł		20	Ť	┝━─┼		
5009	ļ	2+50E	Toms.	\$ 2.5	Semol/S			+										2.2		$\overline{\mathbf{v}}$		
5010	ļ	312015			Ver Su	ma/silt			+									20	V			h
5211		3+50 E	\$ prz;	3574	ich ser	-d/Sitt			╾╌┼╴					 -		<u> </u>		15		┝──┼		
50:2		4790 E			, O OVC	Sund Kilt							<u> </u>				s S		V V	┟──┼		- K
5013		4750 5	307 Krog		sitt/cl			·		+	·							15	<u>v</u>	∇		
214	[54000	Talus 2	511000	m or	2 Silt ICla	<u>y - </u>	·	-	+								30		$\overline{\mathbf{t}}$		G
5215		57505	202 Vyrag	, han pre	SITT/	clay			<u> </u>									10				
016		GADS E	257 4 100		5 sena						`	<u> </u>				/		20		V V		
5217		4500	157 Kill			1/silt									 	<u>k</u>		2/1			<u> </u>	K K K
5013		7703 E 7+52 E	mi tray	5703	sutt f	relay		<u> </u>		<u> </u>	<u>-</u>						<u>z-</u> +	25	<u> </u>	+		
219.		7+525	307 / yes,	som of	a sitt	Iclay .		+							-+			15		$\overline{\cdot}$	┉┯┿	- 1
1920 1921		3100 E	30714100,	min	z. Silt/	Cay												15		$\vee \downarrow$		<u>_47</u>
5221		8+50 5	ZSZ Kyes,	um ev	0. Som	15mi													_	+	<u> </u>	
3022		9+205	207 Fring	mor	<u>z 417/</u>	clay												10			<u> </u>	-ki
023		9+50 E	10% 1 vore	min 2rg	, silt!	<u>ciay</u>		+-				<u> </u>					2+	22	<u>×</u> +	-+	-+-	-
024		VERDE	15% 4.90	, Q 000	, Silt /	ic las		_+					{					15				- 4
025		7+50 E 3+50 E 9+50 E 9+50 E 10+50 E 10+50 E	257 40	; Ø 0 10	, Silt/	clar.		<u> </u>	_+										<u>v</u>			NEW WWWWWW
024		11400 E	25 % Kype	, port	, SILT/	clay Isilt (7				<u> </u>							2	10		∇		<u> </u>
027		11+50E	323 Kvo	, Ø 5VC	, Saine	Usit (T	ala	51									2	25		→ +		(71
023		12+00E	LO 1 KIDA	. 0 pv2	. Sill	clay 1													× 1,	-+-		
229	•	12+505	652 Kroc	\$ 250	SITT	Sand.					İ.						7_1	20		2		(7)

Area (Grid): Collectors: Sample Number	4300	<u>+ 284 I</u> <u>Contour</u> <u>Wardwell</u> ocation	• 	Bottom	ol slope	raphy	Date		<u>040:</u> v	st	<u> </u>	1990	V.T.S	····/	4000	<u>-/1</u> <u></u>	13.	Dat	0	
Sample Number	<u><u>Aaron</u> Sample L Line</u>	Wardwell	(Heath Whittam)	Bottom		abhy	Date		<u>040-</u> V	<u>s</u> +	12,	199(<u>></u>		4000	So So	13,	Dat	0	
Sample Number	Sample L	ocation		Bottom		aphy									1	So	11	Dat	0	
Sample Number	Line		Notes	Bottom		raphy				eget	ot.i or) 		 	e	1		r	<u> </u>	T
Number		Station	Notes		of slope				9					[E	E	1			T
Number		Station	Notes		of slope		₽	÷.											-	1
Number		Station	Notes		01 10) () () () () () () () () () (•	Sampled	N	2	Develop ment	Porent	Material	
Number		Station	Notes				1 51	Wooded	Wooded		-		•	1 E	ī	õ	a a a	- Co	10	-
		Station	•				Ground	ş	Ň	•		P	ļ	So	T =	[- م	<u>م</u>]
		Station	•			Top	υ		<u>></u>	· .	-	u o	þλ	·e	₽ Ĕ				×	Ι.
		Station	1	e e	∎		=	Ξ	28	t u	96	25	E	20	E S	8	2	=	Š	Colour
			↓	Voiley	Direction	H	Level	Heavily	Sporsely	Burnt	Loged	Grassland	Swompy	Horizon	Depth to Horizon Sample	Good	Poor	Drill	Bedrock	3
	11200V		_					_ <u></u>								[_		<u>+</u>
104W284I			The Tree States of the second second			┼───				·				ß	SC.m	<u> </u>			,	LILE
5002		0-0-	15% Francis Stevenment Alter 1. 4265		+	1								ß	2000	1.				1.00
		1+50	25% Frage 5% regenies silts or 1 438 Ethe Frage 2 % regiones silts or 1 455		+	1								В	3. m	1			-	MCF
5003		2+06	Inthe Free S-10 16 courses sills well 43	70	+			†		.					Herm	~				LIT
5004		2+50	E'VE FRAM 10 TE YE CHANNES S. THA SENT	1922											45.m	V				-> 25
5 00 6		3+00	5 % Fran V 1/0 menonics Silty 4550		1			1	1					ß	Rem	\checkmark				LKE
5.007		3+50	I've From 10-12 % expanses wilty YEED		1									ß	Kim					LRE
5'009	<u> </u>		Sto Fran 2014 ma chipath 4550												35:m	V.				MAB
5'009		4-50	127. Frank 2017 a cent Silta . HERE												Hêcm	×]	LCR
5 010	· · · · · · · · · · · · · · · · · · ·	5400	10 Frag. 5 16 mg 5. Hy 4550												SUCM	<u>v</u>				MER
5 011		5+50	40% Fran 27 - ra sinding, 4650				<u> </u>	·		·					Sim	\checkmark				NIPE
5.012		6+00	25% Free 5-10% w. S. Hu 4600		<u> </u>						╧╼╾╃				Scim	~				MRB
5.6.13		6+50	40 % from 5-10 % way silting 4600		<u> </u>										37.cm				_	MB
5 0.14		7+00	50% From claw Isitt 4600		<u> </u>	· .									25cm	~				-KB
505		7+50	SC-60% Frag, chay /Sunday, 4600						+		+		<u> </u>		2 cm	-¥-	<u> </u>			MRB
5.016		9-25	Glaciel Morrine, 50-40 % Fran, 4400						+	+					35 cm	- -				6.e.j.
5 (17		8-50 1	Charlet Abraine, 60-70 % Frog. 4600				 					+			35cm	\rightarrow				524
SCIE		4+00	30% Fr. 10% wa 4662 Silty-		<u> </u>				- +				+	5	2° cm	~				MB
2019		9+50	30% Frag 10% 400 4660" Silty- 50% Frag, 30% are + Hy 4680"		┟╌╌╽			-+		+	 †	+	<u></u> †.		3C cm	$\overline{}$	~ 			HEB
5020		10+02	20% Fran In Yuman Silta		<u>├</u>			-+							30°Lm		-+-			m2B
5.021		10+50	20% Frag. 10% erg. 14 4700				—- -].					Zin	~ 	$\overline{\mathbf{v}}^{\dagger}$	-+		m(5
5:022		11+00 1	10:1- Fraz, 20:1/2 N.S. 5110 - 4720'							+			<u> </u>		35.cm	71	┹ー┼	-+		MEB
5 623	·	11+50 1	10% Fras 10% erg , 5.143 4720'										$\neg \uparrow$		30 cm		-†			MRB
5:025		12.50	15-20 % Fras 10% org. silty 4700						-+	+					25 cm	-	- ŀ			LEB
5 026		12+50 1	15% Frag. 5% arg. silto 4700												35.m					MIG
5027		13+50	20% Fran 2 % or 314 4700											B	Hein	\checkmark			1	LLB
5 628		14+00	30 40% Frag, Silting, 4700'							T					39:m			T		MER

.....

فيستنب فرسي فسرم الأنبيين للمربر فرسو فتروي فالمسر والاستنبار والمتحد

KEEWATIN ENGINEERING INC.

SOIL SAMPLES

Project:	Gilbert	284I
1 1010011		

Area (Grid):	4300'	Center:	5300' and 5100' Centeurs
Collectors: _			

Service

a con

Date Acaust 13, 1990 - and August 15, 1990

	Somple L	ocation			T	opogi	aphy	· ·		v	'eget	at.i oı	n				So	11	Dat	0	
Somple			Notes		Bottom	of slope		round	Wooded	Wooded					Sampled	Horizon ple	Horizon	Develop - ment	Porent	Material	
Number 1012 Joy T	Line	Station	•		Voiley B	Direction	HIII Top	Level G	Heavily	Sporsely	Burnt -	Logged	Grassland	Swampy	Horizon'	Depth to Samp	G ood	Poor	Orl f I	Bedrock	Colour
8.030	43001	15-00	State % From Till clash Sand								·				B	35 m	1			Ť	14
2 234		15+50	70-90% For Till Sandy	4646							·				A	25im	1			· ·	: . 4
5:032		16+00	70 -FC & Frig. T. II. Sendin	4640'											A	30. m					(vz:
SCOLT	53001	1+57E	00-70% Erro Tolos savia	53001									·		Falus	23.10	1				m
S.COAT		.2+65E		5330											TELLOS	20cm	~				D
> CC ST		3+EDE	60% Frag. Tales Sancing	5400 1							·				Talus	2Cim	\checkmark				4
5:004T		3+75 E		5320											Telu:	15cm	V		·		Ċ,
SICOTT	-	4+25 E		53201											Teles	Ken	~				LĒ
5:035	51001	T+CCE	40-50% Frac Claulsondu	5100'											B	Rim	1				M
5.034		ಲ+೯೮೯	SC EL / Frag charlsilta	50501					·						B	2Ccm	1	T			LR
5: 527				50501								·			B	20 im	1				MR
5 036		1+50E	50-60 1= Fran. Talus siltu Kin	lu 5075'				<u> </u>			•			ŀ	Telvs	35cm	\checkmark			1	MI
5 057		2+CAF	75% Frac. Tribes Sorth Ol	5100	!		1					· ·	·	t	chr.	45cm	1		.]	ľ	njf
5 030		2+50E	65% Frag Talus sandy	5100~	·									1	6102	35:m.	~			!	MI
5 059		3+00E	40-SC% From Talus sandy	5150'			·		·						Talve	15cm	1			N	nE
5 040		3+50E	20-30 % Pray 5:14	5160'											B	25 UN	\checkmark	·		. N	MR
5 641		4 HOUE	20% Frag silta 5150'		· ·										_	9. m	4			1	ME
5 042		4+506	20% Frig. 10% mg. silty.	5125'					!·						B	25cm		1			VIR
5.042		5+008	35% Fran Siltu	5125'						<u> </u>							2			4	NR
5 0.44		54508 1	S'ls track 5% era.	5150												Zin	$\sqrt{1}$				ΝQ
5 545		67002 1	10% Fray. Siltis	5150'											_	35cm	$\overline{}$			M	的
5 546		6+506 1	15% may Talks, siltu-	5150'	!·											Ocm .	$\angle \Gamma$				RF
5:047		7+00E 1	5% Frag silty	5100				-+			<u>ŀ</u>			_			1				R
5:040		7+50E	10% Frag. silfy / clay	50751		-+	\perp							and the other designment of the local division of the local divisi		Kim					RG
S' Citte			20:1/ Fray silty.	5100										_			1				101
5 0.50			10% Fag. Silty	51001												Sim .		ŀ		M	le
5 (5)			20 4. Fran Silty	5100'		$- \downarrow$				\square						_	/			M	K F
5:052		4+30E 1	C-15 % Fray Silby	5100		-			-+					Щ	1	Son	$\angle \Gamma$			MI	<u>P</u> R
5:05			0-157: Frag. 5% rrg. silty	5100'											Blz	CLM	\mathbf{v}			MI	ER!

KEEWATIN ENGINEERING INC.

è

. .)

....**J**

.

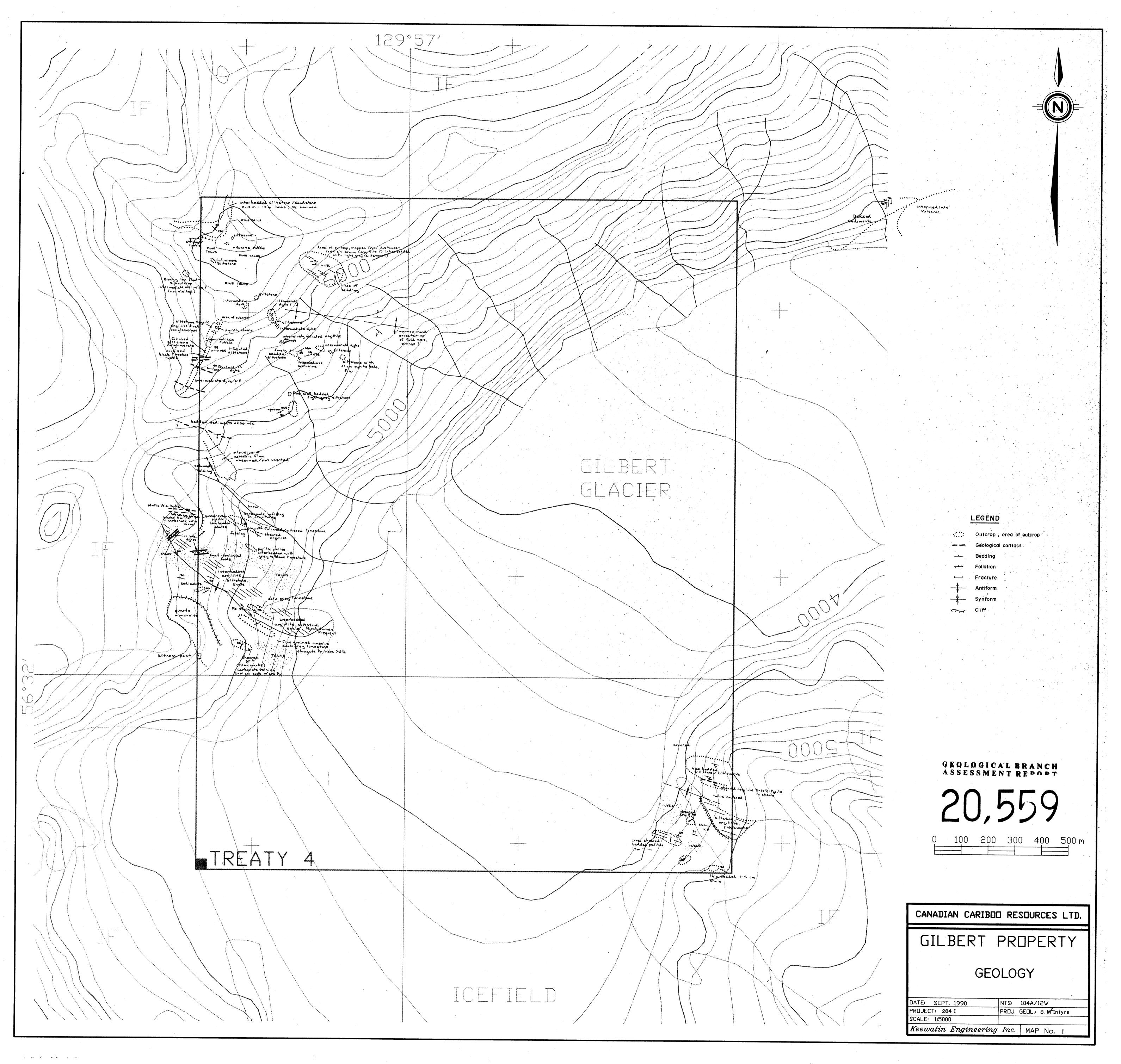
Area (Grid)): <u>5100</u>	+ 284I		SOIL 5	SAMI	PLES	3	Res Map	ults):	Piot Gilt	ted	By: _	(N.T.S	<u>5.</u> s. : _	<u>MC</u> 104		1. <u>7</u> 7 12	<u> </u>		•
Collectors		L'Aibiell			<u>і т</u>	0000	raphy		e 			atio			Ī		So	 []	Daf		
	Somple (_0001100				T		T.,		, T	1			.		1		_			
Sample			Notes	· ·	Bottom	of slope		Ground	Wooded	Wooded		Logged	pc.		Sampl ed [.]	Depth to Horizon Somple	Horlzon	Develop.	Parent		
Number	Line	Station		•	Vailey 1	Direction	Hill Top	Level	Heavily	Sporsely	Burnt	Logged	Grossla	Swamp	Harlzon	Depth 1 Som	Good	Poor	Drill	Bedrock	
5 025	SICC!	11+C(-E	15% From Telos Silty 10% From Silty 40-50% From Silty	50.00]	_	ļ	ļ	ļ	<u> </u>		<u> </u>	ļ		1 5	1 - i - i m	<u> </u>	<u> </u>		<u> </u>	MER
> C5=		11+55 2	15th Fring. Silty	Sinc '			<u> </u>	 		ļ					B	25 m				<u> </u>	MCC
5 0.77		13+000	HC-TCH Frage, Silter	5120	┨───	<u> </u>		<u> </u>	[B	21 : m	<u> </u>	{		┢───	m 25
					╉╍╍╍						<u> </u>	┝╌╌┥			1			├──			+1
			/		┼	+	 		}	<u> </u>	<u> </u>				<u> </u>			ţ		├	
							1.														
					1																
				<u></u>											<u> </u>	<u> </u>		[]			
												·		! 	ļ			<u> </u>		<u> </u>	\vdash
						<u> </u>	 							-	<u> </u>				<u> </u>	'	┝──┥
					·	<u> </u>	 					<u> </u>				┝╍╍╍┥			┝──┥	├ ──── [!]	┝──┤
			· · · · · · · · · · · · · · · · · · ·	······································	<u> </u>	<u> </u>	 								<u>.</u>	┝──┤					<u> </u>
						┼	<u>├.</u>										·			┢╍╍╍╺┥	$\left \rightarrow \right $
							 									[]			 		\vdash
				<u> </u>		[i — –												· · · ·		
			<u></u>			1				•											
										•		_									
		1				L			~												
1																		<u> </u>			
						<u> </u>												{			
		·					{	ł	{	{		<u> </u>							<u> </u>		<u> </u>
									{					†							
		{									{					†		+	; 		
		<u> </u>																-+			<u> </u>
		<u>{</u>	· · · · · · · · · · · · · · · · · · ·																		
~ ~~~ †		 	······································																		
		l	and the second second second second second second second second second second second second second second second	a ana ay a sa kasa ana ay ay ay ay			i i			<u> </u>											

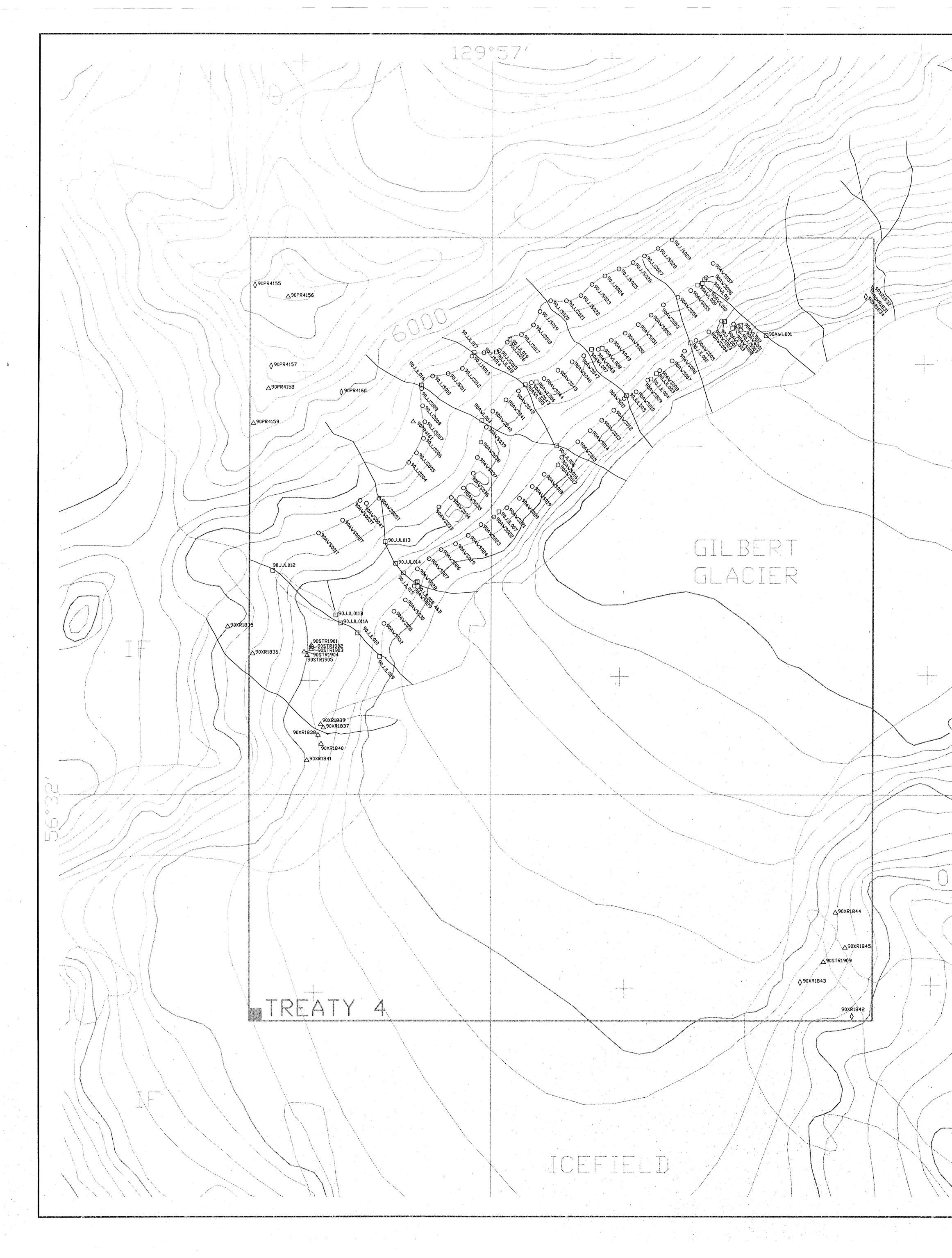
APPENDIX VII

-

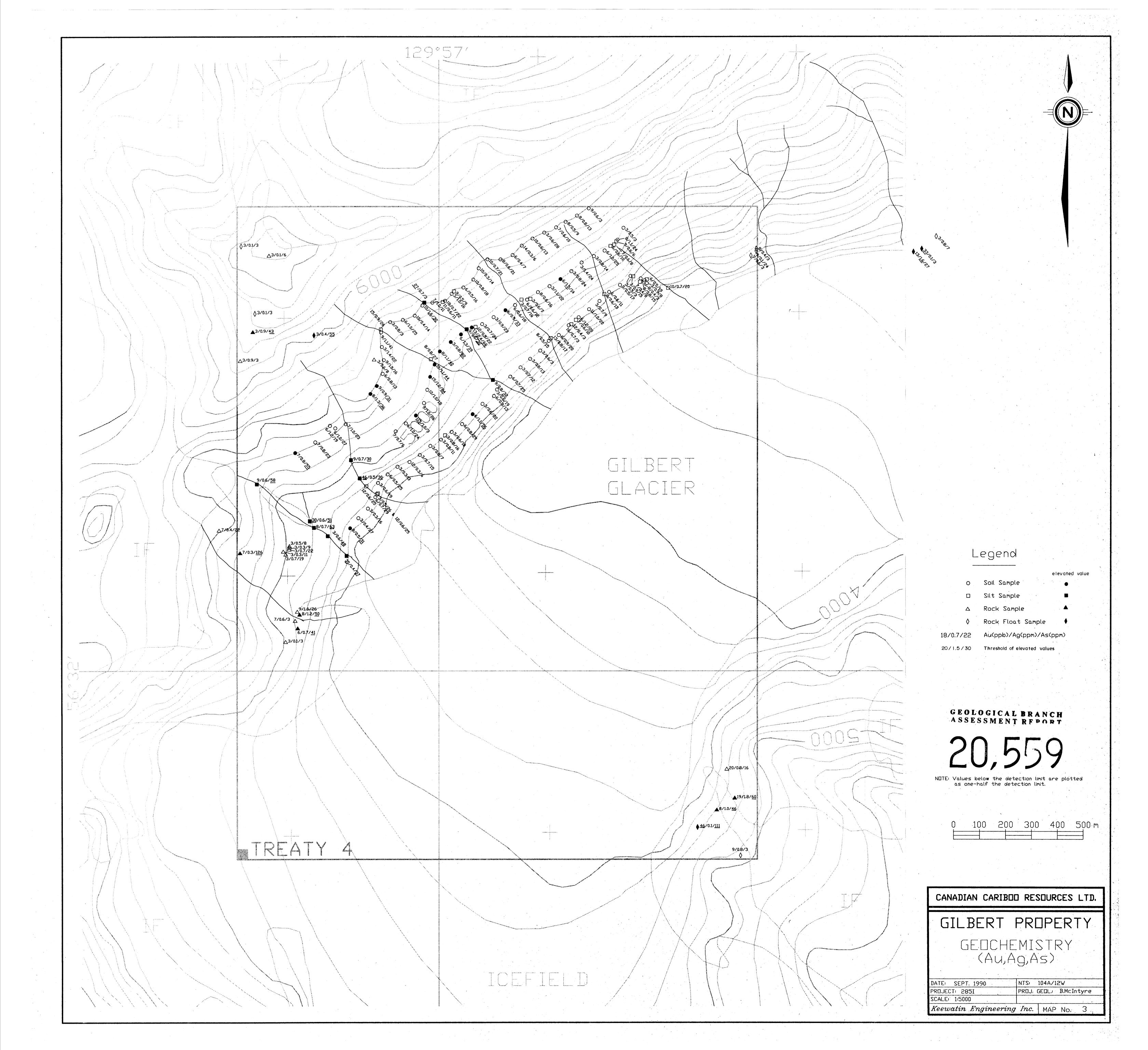
<u>Rock Geochemistry Notes</u>

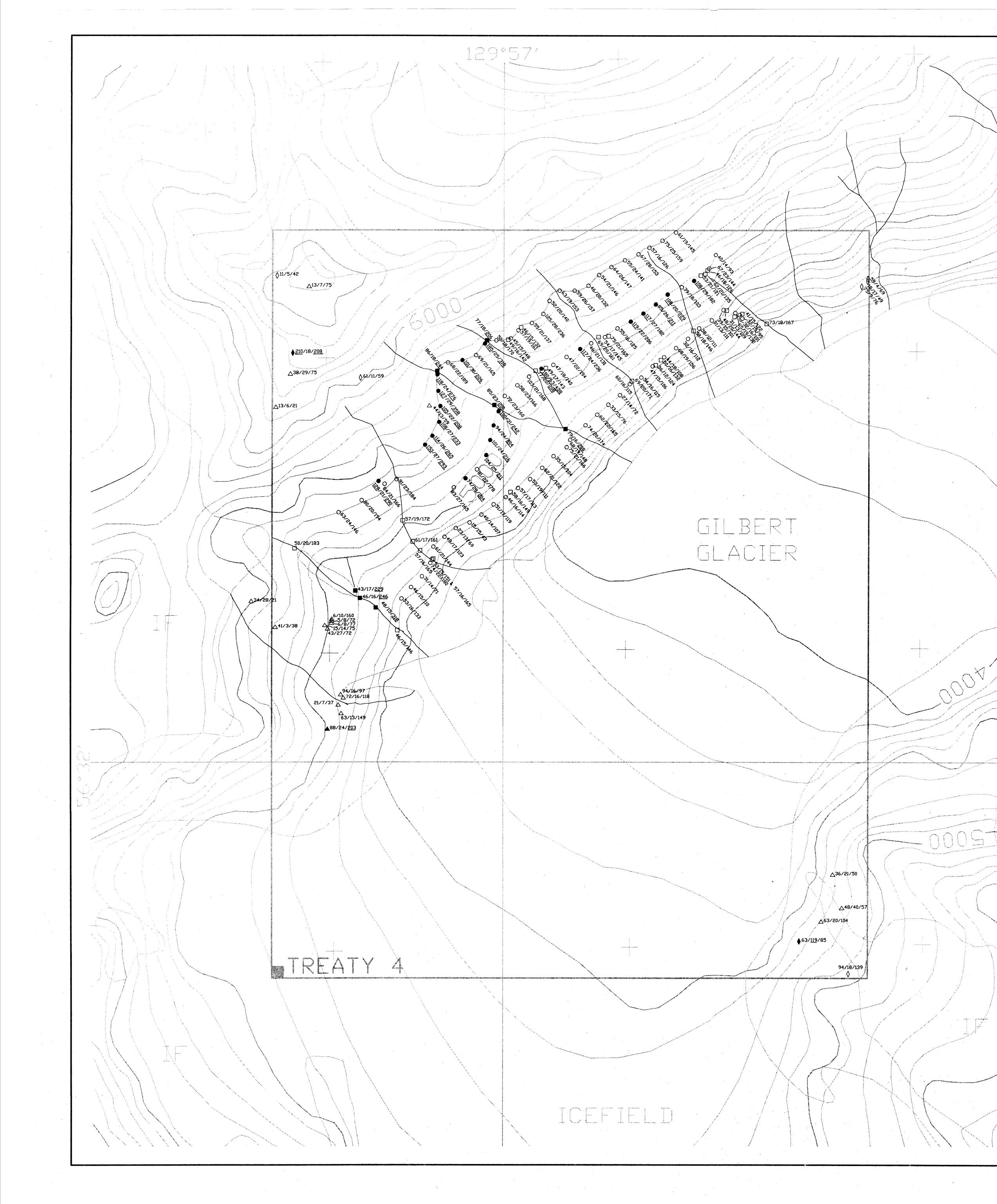
Keewatin Engineering Inc.

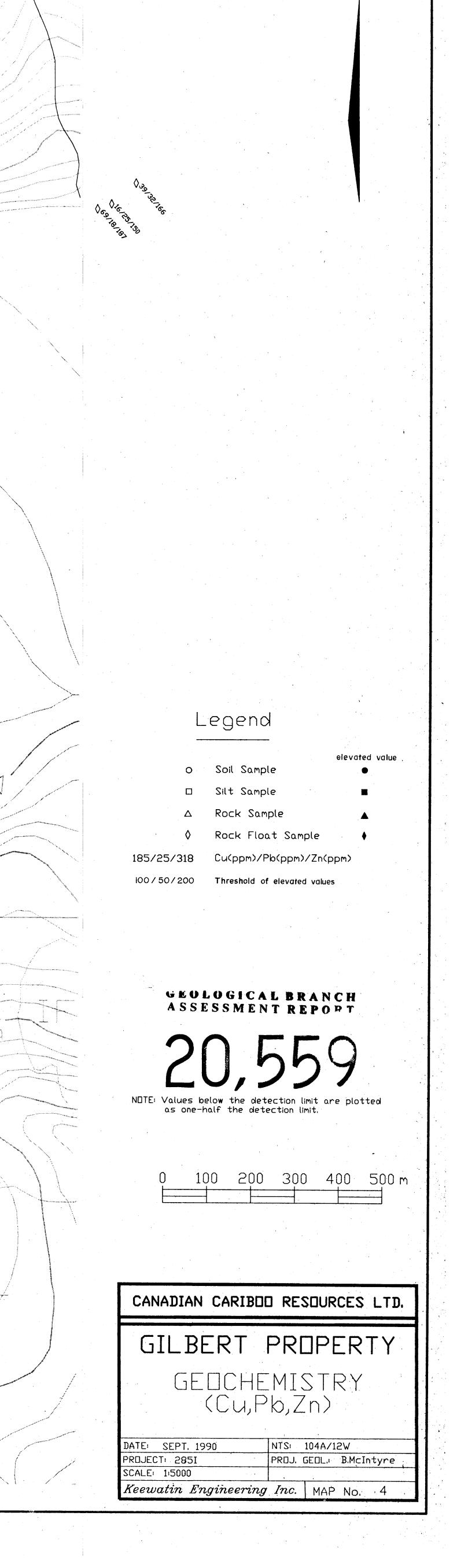

...


ί.

oject: ea (Grid):_ llectors:						-	. 1	ROCK	· · · · ·	Results Plotted By: <u>A.M. CrrBScN</u> Map: <u>Crcbigy</u> NTS: <u>104A 112</u> Date: <u>Aug. 11 [90</u> Surface <u>L</u> Underg
			REP.	SAM	PLE 1	TYPE	LENG	TH)		
SAMPLE NUMBER	LOCATION (For Fix)	NOTES	SAMPLE NUMBER	GRAB	CHIP	HANNEL	CORE	FLOAT	ROCK TYPE	SAMPLE DESCRIPTION
1.4155		W lerger		·	i			V	Gaa-tz	Brants stringer in rabble Ton / Floor
									stringer	Vaggy with sutstone inclusions.
Cuset	0					ļ				
<u>(</u> 4156	Peak in 1	VN COM	+						Guart =	Quartz Stringer in rubble (weether-
									stringen	fractured Subscep) From duggt.
41.57	North West	Corner							Brucie	Chickered Rematitie schoons fault zone
		6320'								horacic protocial in flact in South city:
· · · · · · · · · · · · · · · · · · ·						<u> </u>	ļ			
415ê	North Wast	t conin		\checkmark		<u> </u>	·		Proitic	Excite rich rounded to obtany clasts
		6746							Siltston	within sultstene (Icm + 3cm) Simply of
4154	Northnest			7				~	Constance Limestere	clasts alone. Exidized skarn / limeston 1-2%
-1.1-1	16 5 11 11 251	<u>corner</u>				<u> </u>	┼───		Line Star	fin & medium grained limiston
	· · ·		1							Fanta Martin
4160	Northwest	coner.				1	<u> </u>	V	breartz	Subcrop sample of drusy anartz with
	East ruly								Stringer	iron strained weathing fin pormert
		_				<u> </u>	<u> </u>			(eyrik) Kutcsep / subcree Sample of Iron Stains Acquilite with <1 to / cn budded pyrike within acquilite.
4161	No-Thoust	corner	4	2			ļ		Amillike	Elistersp / subarco Sample of Iron Stains
	East ridge	2560'				 	 	ļ		signik with <1 to Ica budded pyrike
		·	<u> </u>							within acgulate.
	· · · · · · · · · · · · · · · · · · ·	•				<u> </u>				
······································			+				<u> </u>			
			1.			<u> </u>				
and the second se										


ea (Grid):	Sigt Thomps: 1					I	ROCK	SAMPLES	Results Plotted By: 2. Mc Intyre Map: NTS: 104 A 12 Date: 11.8.90 + 13 8.90 Surface V Undergr	oun
SAMPLE NUMBER		REP. SAMPLE NUMBER	GRAB GRAB	CHIP	CHANNEL AL	(LENC	FLOAT (H1	ROCK TYPE	SAMPLE DESCRIPTION	M. SHI
	NE CORNER (700 m 5) 3100'	R1527					35cm	Siltstone		
	150 w of R1829; 50 m in Glavier	R 1833				1	250		Pyritic, polito,	An
. 5.90)	(") 20(')					1				77
	ion 4900' SE(200m) of middle know	R1921	** ~~ AIO			l T		Pe1. 1+	this lodding of sulphides contraining pelites interbolded & lineste	- 41
	between witness just and first but									1
	-5m N + 219:01 (49001	RIDEZ	Moc	n		1		Pelite.	Layers at stalphides intostation butware interbullion times to	LA.
	Ion Not 2002 Miles	RHUS	isca Obia					k 1	tarry is in terms diate telsic slightly pyr. tic ; nor budding of point	J. H.
	500. NW + RIF-5 (5027)	R193+						4.3	thick balding - collections; international; liaustone (?), suppliedos.	A.
	30. E of RIGUY (50")	R1925						Pelite	wide badding, stightly calcarious, "intermaliante	Au:
5.8.90									In share zone ; pyritic slightly (fine grained)	Aut
	1 4700' SE comer beside glacier	21929	V					fel.te		An
A CHILL						1			· · · · · · · · · · · · · · · · · · ·	<u>† – – – – – – – – – – – – – – – – – – –</u>
RIG27	EXAMILE	ST	San!		+++++	0-+	Sinc	-A-D		+
		<u> </u>						f f		<u>† </u>
									· · · · · · · · · · · · · · · · · · ·	<u>†</u>
								·		1
	······································						· ·		· · · ·	\uparrow
										1
										<u>†</u>
ł										
†	······································							· · · · · · · · · · · · · · · · · · ·		<u>†</u>
			х. Х.							<u> </u>
										\mathbf{t}
									· ·	1
										<u> </u>
		• ·						-		
1							_			


Ollectors: Image: Sample Type Date: Aug 1990 Surface Undergrou SAMPLE REP. SAMPLE Type (LENGTH) ROCK SAMPLE DESCRIPTION	roject: rea (Grid):_	GILBERT		<u>- I</u>				ROCK	SAMPLES	Results Plotted By:B. MCINTYRE Map:NTS:NA/12	
SAMPLE NUMBER LOCATION NOTES SAMPLE NUMBER Image: Sample big big big big big big big big big big	•	3 Mc Intyr	-2			-				Date: <u>Auc 1990</u> Surface Undergro	ound
NUMBER LOCATION NOTES SAMPLE B </th <th></th> <th></th> <th>REP.</th> <th>SAM</th> <th>PLE</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>(LEN</th> <th>STH)</th> <th>BOCK</th> <th></th> <th>Γ</th>			REP.	SAM	PLE	· · · · · · · · · · · · · · · · · · ·	(LEN	STH)	BOCK		Γ
1829 See 70 ST 1830 From downice of Eboty N. 1830 From downice of Eboty N. 1831 ISOm 3 of NE c.p. 1832 ISOm 3 of NE c.p. 1832 ISOm 5 of NE c.p. 1833 See 70 ST. 1834 ISOm 5 of NE c.p. 1833 See 70 ST. 1834 ISOm 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1835 Stop 5 of NE c.p. 1836 Stop 5 of NE c.p. 1837 Hold 5 of NE c.p. 1838 Stop 5 of NE c.p. 1838 Hold 7 - m.y. 1839 AB70' m 10000000000000000000000000000000000	NUMBER	LOCATION NOTES		GRAB	CHIP	TANNEL	CORE	LOAT		SAMPLE DESCRIPTION	MA She
1830 Room downice of Ebdry N. Image: Argentite course of a factor 2-5% Py + Po. 1831 150m 3 of NE c.p. Image: Argentite course of a factor 2-5% Py + Po. 1832 150m 3 of NE c.p. Image: Argentite course of a factor 2-5% Py + Po. 1832 150 5 of NE c.p. Image: Argentite course of a factor 2-5% Py + Po. 1833 see 90 57. Image: Argentite course of a factor 2-5% Py - waaking manuality sector 2-5% Po. 1835 5400' 50 m west of W. Bdrg Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1835 5400' 50 m west of W. Bdrg Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1836 5300' west bdrg - raily. Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1836 5300' west bdrg - raily. Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1836 5300' west bdrg - raily. Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1836 5300' west bdrg - raily. Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1837 4870' image: Argentite course of a factor 2-5% Py - 2-5% Po. Image: Argentite course of a factor 2-5% Py - 2-5% Po. 1838 4870' image: Argentite course of a factor 2-5% Py - 2000 model a factor 2-5% Py - 2000 model a factor 2-5% Py - 2% Py							<u> </u>	1 4			┼──
1831 150m 3 of NE c.p. Image: State of NE c.p. 1832 150 S of NE c.p. Image: State of NE c.p. Image: State of NE c.p. 1833 read gos ST. Image: State of NE c.p. Image: State of NE c.p. 1835 5400' 50m west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1835 5400' 50m west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1836 5300' west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1836 5300' som west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1836 5300' som west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1836 5300' som west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1836 5300' som west of W. Bdrg Image: State of NE c.p. Image: State of NE c.p. 1837 4870' image: State of NE c.p. Image: State of NE c.p. Image: State of NE c.p. 1838 4870' image: State of NE c.p. Image: State of NE c.p. Image: State of NE c.p. 1839 4870' image: State of NE c.p. Image: State of NE c.p. Image: State of NE c.p. 1840 48					 	┼───	┼──	12	ite	$f = \frac{1}{2} \int \frac{1}{2} \frac{1}{2$	╂───
1832 150 5 of NE C.P. V grey wacke \$270 Py - week/2 megachic spot: 1833 see 90 ST. Intern. volc caponete altered med gra tugrey (21.PY 2.5% Po. 1834 150m S of NE C.P. V intern. volc caponete altered med gra tugrey (21.PY 2.5% Po. 1835 5400' 50m west of W. Bdr. V barie dyke. Subplide veillets th Scar 2.50% Py. Bladed beite associal 1836 5300' west bdr mill. V ettd. pelite very fine Sulphides at contact with basic volc. 1837 4870' cliff W 200 m V ettd. pelite very fine Sulphides are limerime locifie contact. 1838 4870' " " 180M P grey limestors highly alkered zere limerime locifie contact. 1839 4870' " " 180M P grey limestors highly alkered lens in maxing (imethat - Y fine Py wisps. 1840 4870' " " 180M P grey limestors pelite lens in maxing (imethat - Y fine Py wisps. 1840 4870' " " 180M P Pelite highly alkered lens in maxing (imethat - Y fine Py wisps. 1840 4870' " " 180M P Pelite highly alkered lens in maxing (imethat - Y fine Py wisps. 1840 4870' " " 180M P Pelite highly alkered lens in maxing (imethat - Y fine Py wisps.<						+	†	1-	T T		\vdash
1833 see 90 ST. 1834 150m S of NE C.P. 1835 5400' 50m west of W. Bdry 1836 5300' west bdry - mix. 1837 4870' cliff W 200 m 1838 4890' " " 150M 1839 4870' " " 150M 1840 4870' " " 150M 1841 4970' " " 1000M. 1842 4920 5E COAKA 1846 50 00 1846 4680' do 1846 4680' do 1846 4680' do 1846 4680' do 1846 4680' do 1846 4680' do 1847 4680' do 1848 4680' do 1848 4680' do 1848 4680' do 1844 4680' do 1844 4680' do 1844 4680' do 1844 4680' do 1845 4680						<u> </u>	<u> </u>	1/			
1834 150m S of NE C.P. Interm. volc carponete altered med grantugrey (27.PY 2.5% Po. 1835 5400' 50m west of W.Bdrg V baria dyke. Sulphide winlets to Scale.) SDZ Py. Bladed baite associal 1836 5300' west bdrg - mild. V baria dyke. Sulphide winlets to Scale.) SDZ Py. Bladed baite associal 1836 5300' west bdrg - mild. V Baria dyke. Sulphide winlets to Scale. 1837 4870' cliff W 200 m V Bit. Intertors build velices at contact with barie volc. 1838 4870' " " 150M V Greg linestor pools or blebs Py (veryfine) to 10cm. Reck hours 10% pyrak 1839 4870' " " 150M V Greg linestor pools or blebs Py (veryfine) to 10cm. Reck hours 10% pyrak 1839 4870' " " 150M V Greg linestor pools or blebs Py (veryfine) to 10cm. Reck hours 10% pyrak 1840 4870' " " 150M V Greg linestor pools or blebs Py (veryfine) to 10cm. Reck hours 10% pyrak 1840 4870' " " 150M V Greg linestor pools or blebs Py (veryfine) to 10cm. Reck hours 10% pyrak 1841 4970' " " 1600M V Greg linestor pools or blebs Py (veryfine) to 10cm. Reck hours 10% pyrak 1842 4920 SE coantia V Gregit/kee Zx10cm pools v.fine Py f	· · · · · · · · · · · · · · · · · · ·		·				†		gieg wacke		
1835-5400' 50 m west of W. Bdry V barris dyke. Subhide vehilets to 5cm.) 50%. Py. Bladed baite association of the state of the						1	 	1	interm. volc	carbonute altered med gratugray (2%, Py 25% Po,	
1836 5300' weet bdrg-mid. 1837 4870' cliff W 200 m 1837 4870' cliff W 200 m 1838 4890' " " 150 m 1838 4890' " " 150 m 1839 4870' " " 180 m 1840 1860' " M 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 180 m 1840 1870 1870 1870 1870 1870 1870 1870 187				V		1					- de
1837 4870' cliff W 200 m // blk. limestons highly altered zone limestone /pelite ientert 1-27. By the 1838 4890' " " 150 M // grey limestone pods or blebs PY (veryfine) to 10cm. Reck horts 100 pyrok 1839 4870' " " 180 M // pelite lens in messive (imestone - v fine Py wisps, bleas 1840 4870' " " 150 M. // pelite lens in messive (imestone - v fine Py wisps, bleas 1841 4970' " " 100 M. // grit/worke 2x10cm pods v. fine Py fill narrow shears. 1842 4920 SE CORNER Substance // pelite this badded, 1cm Py print + lesser dissem. 1843 4650 do // 2molock // intern vols. 2x20cm pod dive brown sulphide- 1844 4680' do // argillite heavily sheared, beded by fine elive Py				~			1		, ,		
1838 4890' "" '' 150 M - grey limestor pods or blebs Py (voryfine) to 10cm. Rock hout, 10% pyrok 1839 4870' "" " 100 M - polite polite lens in messive (incertant - v finic Py unips, bleas 1840 4870' " " 150 M. - - polite polite lens in messive (incertant - v finic Py unips, bleas 1840 4870' " " 150 M. - - - polite buildly altered lens in finicertant - v finic Py unips, bleas 1840 4870' " " 100 M. -				/		1	I	[
1839 4870' 100 M 100 M 1840 4870' 130 M 100 M 1840 4870' 130 M 100 M 1841 4970' 100 M 100 M 1842 4920 55 conAKA 516 monos 1843 4650 100 100 M 1844 4680' 40 100 M				-							
1840 4870' ~ " 130m. V 1841 4970' " " 100 M. V 1842 4920 SE CORNER Submond V Pelite this bedded, I cm PY perio + lesser dissem. 1843 4650 do V 2molock V intern volc. 2x20cm pod dive brown sulphide- 1844 4680' do V angillite heavily sheared, healded by fine alive By				~						• • • • • • • • • • • • • • • • • • • •	í '
1841 4970' " " 100 M. V 1842 4920 SE CORNER Subcroped V pelite this bodded, I cm PY pris + lasser dissen. 1843 4650 do V 2molock V intern vols. 2x20cm pod dise brown sulphide- 1844 4680' do V argillite heavily sheared, healed by fine olive by				~							
1842 4920 SE CORNER Suboro V pelite this badded, icm Provis + lesser dissen. 1843 4650 do V 2molock V intern volc. 2x20cm pod dive brown sulphide- 1844 4680' do V argillite heavily sheared, healed by fin dive by				~					arit Iwaske		
1843 4650 do 2 2molock V intern volc. 2x20cm pod dive brown sulphide- 1844 4680' do 2 argillite heavily sheared, healed by fine alive By	1842	1				sub c	. 00	-	pelite		
	1843			~		2 ~	Jock	V	intern volc.	2×20cm pod dive brown sulphide-	
1845 4150' de V argillite pycthe geit cleat in argillite	1844	4680' do		~					amillite	heavily sheared healed by fine alive By	
	1845	4750' do.		~					argillite	pyritic grit clast in argill.	
	•				1						
	. · ·										
]							
					_				••		



Legend o Soil Sample ~00~ Silt Sample Rock Sample Δ Rock Float Sample 0 90XR1843 Sample Number GEOLOGICAL BRANCH ASSESSMENT REPORT 20,559 0 100 200 300 400 500 m waana digaa u CANADIAN CARIBOO RESOURCES LTD. GILBERT PROPERTY SAMPLE LOCATIONS DATE: SEPT. 1990 PROJECT: 2851 SCALE: 1:5000 NTS: 104A/12W PRDJ. GEDL.: B.McIntyre Keewatin Engineering Inc. MAP No. 2 an in the i $\{\mathbf{v}_{i}\}_{i=1}^{N}$

