LOG NO: 12-04	RD.
ACTION:	
FILE NO:	

Geological and Geochemical Report on the Isk-Bell Claim Block Liard Mining Division British Columbia

SUB-RECORDER RECEIVED					
NOV 29 1990					
M.R. #\$					

N.T.S. 104 B/15E

Longitude 130°36' West Latitude 56°50' North

For

Ivana Capital Corporation Ecstall Mining Corp. Omega Gold Corp.

November, 1990

Len P. Gal, M.Sc.

 $\geq \Omega$ の円 50 西口 0 N ି ମ **同**つ ZÞ P 网络 团团 78 🄊 OZ \mathbf{z} ゴ田

.c:32099

SUMMARY

The Isk - Bell claim block is located in the Liard Mining Division just north of the confluence of the Iskut River and Forrest Kerr Creek, on NTS map sheet 104 B/15E at latitude $130^{\circ}36'$ West and longitude $56^{\circ}50'$ North. The property is 20.5 kilometers north of the Eskay Creek gold discovery of Stikine Resources and Calpine Resources.

The Isk - Bell claim block consists of 76 units and is presently held by Ecstall Mining Corporation (50%), Omega Mining Corporation (50%) and Ivana Capital Corporation who presently hold an option on the property. The property was staked in 1988 and 1990 to cover favourable Lower to Middle Jurassic Hazleton Group and Upper Triassic Stuhini Group volcanic rocks of the Stikine Arch, mappped by the Geological Survey of Canada and the British Columbia Ministry of Energy, Mines and Petroleum Resources during reconnaissance programs in 1988 and 1989.

In 1989, a brief reconnaissance sampling program was carried out by Nicholson and Associates. In 1990, a mapping and thorough geochemical survey program on the Isk-Bell claim block was completed. Snow cover late in the season prevented a modest follow up program of detailed mapping and anomaly investigation.

Assay results on the whole have not been encouraging, and prospecting has failed to delineate any new zones of interest or mineralized gossans. It is recommended that no further ground work be done on the Isk - Bell property at this time. However, an aerial magnetic survey may be of use in delineating mineralized zones that could possibly be buried at a shallow depth and therefore do not crop out at the surface.

i

A total of 41467 was expended on the property during the 1990 season.

TABLE OF CONTENTS

TABLE OF CONTENTS
LIST OF FIGURES
INTRODUCTION
LOCATION AND ACCESS
CLAIM STATUS
PHYSIOGRAPHY AND CLIMATE
HISTORY
REGIONAL GEOLOGY
LOCAL GEOLOGY
MINERALIZATION
GEOCHEMICAL SURVEY RESULTS
CONCLUSIONS AND RECOMMENDATIONS
STATEMENT OF QUALIFICATIONS
REFERENCES
APPENDIX I - CLAIM RECORDS
APPENDIX II - STATEMENT OF WORK
APPENDIX III - ASSAY TECHNIQUES AND RESULTS

<u>Page</u>

APPENDIX IV - SAMPLE DESCRIPTIONS

.

LIST OF FIGURES

	Page	•
1.	OCATION MAP	Î
2.	LAIM MAP	ĵ
	EGIONAL MAP	ł
	CHEMATIC STRATIGRAPHY IN TRIASSAC AND JURASSIC	
	ITHOLOGIES	ļ
	EOLOGY OF THE ISK - BELL PROPERTY in back pocket	
	AMPLE LOCATIONS in back pocket	
7.	EOCHEMICAL ASSAY RESULTS (Au, Ag, As) in back pocket	-
8.	EOCHEMICAL ASSAY RESULTS (Cu, Pb, Zn, Sb, Ba) in back pocket	•

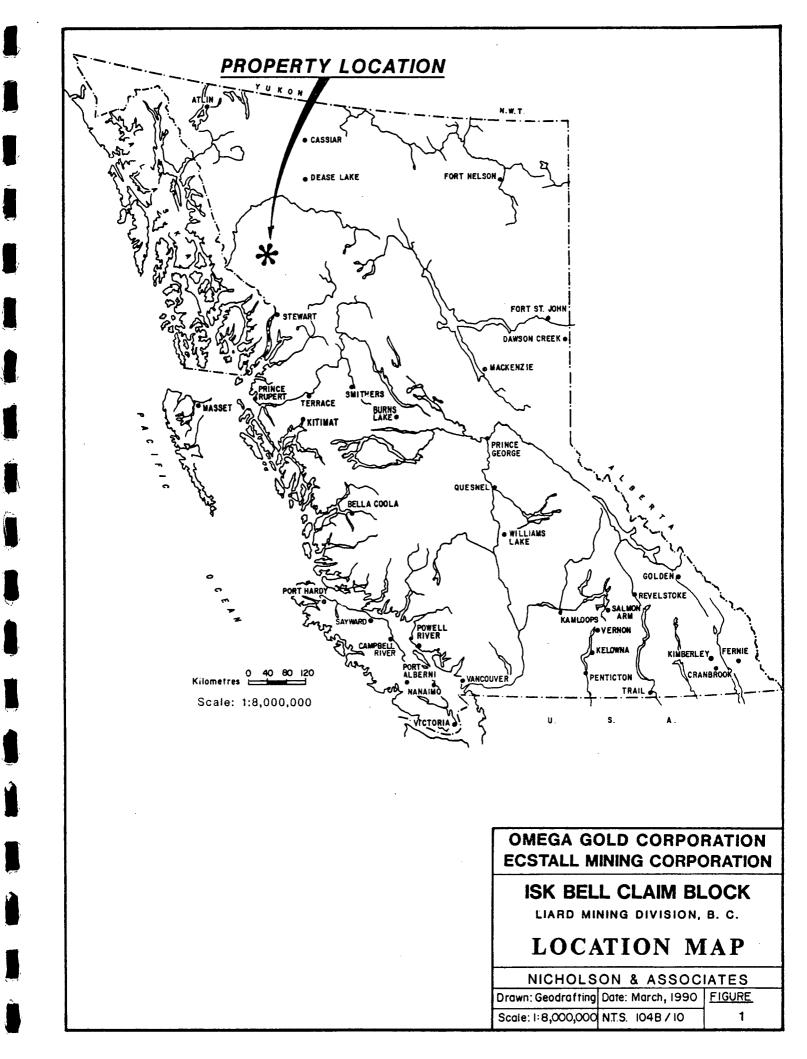
.

.

.

INTRODUCTION

The Isk - Bell claim block is in the Liard Mining Division and consists of 76 units. The original Isk 1-4 group was examined on a reconnaissance scale by crews of Nicholson and Associates in 1989. In 1990, a full program of stream sediment sampling, prospecting, and geological mapping was carried out by crews of International Kodiak Resources.

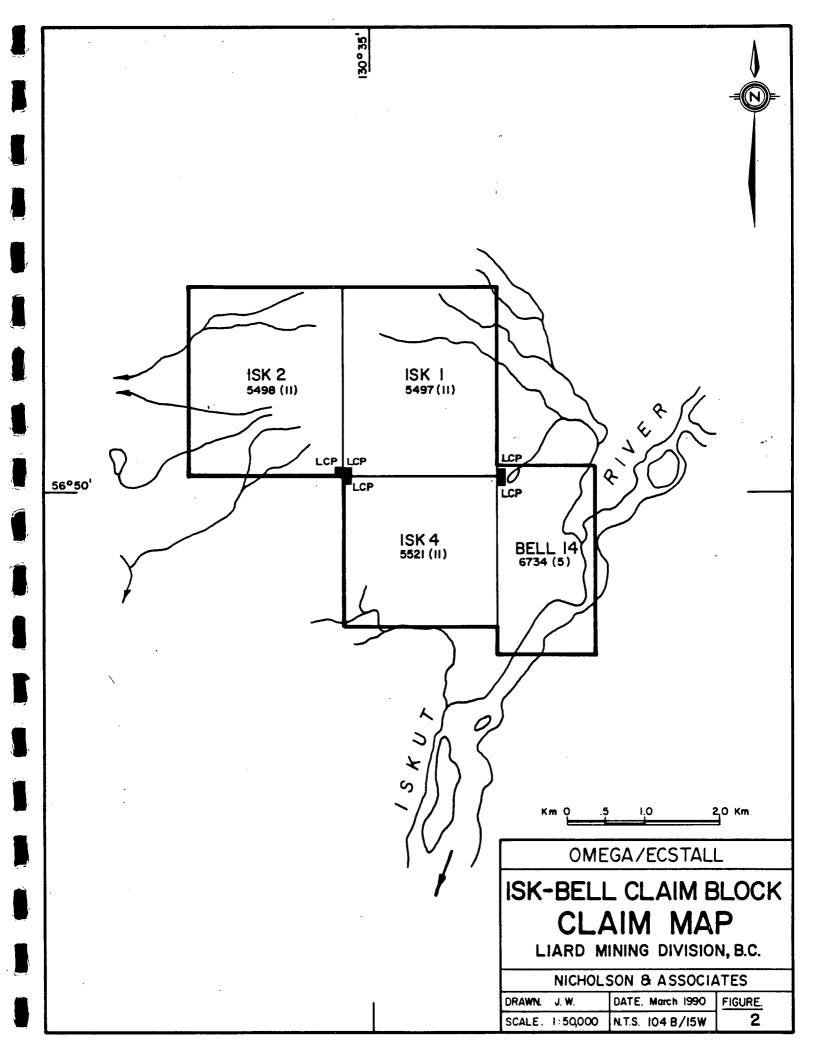

The Isk - Bell property was staked to cover favourable Jurassic volcanic rocks. The stratigraphic features of the property are similar to those at the Eskay Creek property although the Eskay Creek deposit is interpreted to be hosted at a slightly deeper stratigraphic level of the same rock units. Based on the interpretation of a favourable geologic setting, Ivana Capital Corporation entered into an option agreement with Ecstall Mining Corp. and Omega Gold Corp.

A total of 117 stream samples (silts and mosses) and 70 rock samples were taken from the property and geochemically analysed. No precious metal anomalies were found in any sample, although some samples reached 4ppm in silver. Base metal anomalies were restricted to weak to moderate zinc anomalies in some of the streams draining the property although the source of mineralization was not apparent.

LOCATION AND ACCESS

The Isk - Bell claim block is situated at latitude $130^{0}36'$ West and longitude $56^{0}50'$ North within the Liard Mining Division (see Figure 1). The property is adjacent to the Iskut River, north and east of Forrest Kerr Creek, and just 20.5 kilometers north of Calpine Resources'-Stikine Resources' Eskay Creek gold property.

Access to the property is from the Kodiak Camp just east of the Iskut River, directly east of the property. Initial construction has begun on an access road from Bob Quinn Lake on Highway 37 into the Iskut - Unuk River area, and will pass within 100m of the Kodiak Camp, and approximately two kilometers east of the Isk - Bell claim block, across the Iskut River.


CLAIM STATUS

The Isk - Bell property consists of Isk 1, 2 and 4 claim blocks which were staked in November of 1988 for Chris Graf, and Bell 14 which was staked in February 1990. The Bell 14 claim was overstaked in July 1990. All claims were staked in accordance with the new modified grid system. The Isk - Bell property was later transferred to Ecstall Mining Corporation and Omega Gold Corporation, which hold the property on a 50-50 basis. The property was optioned to the Ivana Capital Corporation, which is earning a 50% interest in the property. A claim map is presented on figure 2.

The pertinent claim information is summarized below.

<u>Claim</u>	Units	Record #	Mining Division	Expiry Date*
Isk 1	20	5497	Liard	Nov.14/93*
Isk 2	20	5498	Liard	Nov.14/93*
Isk 4	16	5521	Liard	Nov.14/93*
Bell 14	20	6734	Liard	Feb.18/93*

* After filing the 1990 work for assessment purposes.

PHYSIOGRAPHY AND CLIMATE

The Isk - Bell claim block is situated in the Boundary Ranges of the Coast Mountains. The property's elevation varies from 302m (990 ft.) along the Iskut River to 1920m (6300 ft.). The valley walls above the Iskut River and Forrest Kerr Creek are very steep and heavily forested with stands of cedar, fir and hemlock. Slide alders and devils club make up much of the undergrowth, especially along gullies. Stream drainages are generally immature and contain only moderate amounts of detritus. Water is plentiful in the form of creeks, small ponds and groundwater seeps.

The timberline stands at approximately 1370m (4500 ft.), above which rock exposures are very good. Alpine vegetation consists of scrub spruce and willow, heather, and lichens. Icefields occur along the northernmost edge of the property.

Climatically, the Isk-Bell property is under the influence of coastal weather patterns. The summer weather varies from warm days to cool, wet conditions. Up to 12m of snow can accumulate during the winter months. Normally, the property is workable from June until late September.

HISTORY

The Iskut River area has, for the most part, seen sporadic mineral exploration activity until very recently. The first documented mineral discoveries occurred around the turn of the century. Mineralization was discovered along the Iskut and Unuk Rivers, and in close proximity to the town of Stewart. Prior to World War II, small precious metal mines operated intermittently. The largest of these was the Silbak - Premier Mine which produced 41 million ounces of silver and 1.8 million ounces of gold between 1920 and 1985. After World War II, exploration was focused on large tonnage base metal deposits. Although several deposits were defined, only the Granduc Mine reached commercial production, with published reserves of 10.9 million tons grading 1.79% copper. Exploration in the 1970's shifted toward precious metals, and several deposits have since been discovered; including the Reg (Johnny Mountain Mine) of Skyline Gold Corp., with 740,000 tons grading 0.52 ounces/ton gold, 0.67 ounces/ton silver. Cominco/Prime's Snip deposit, with over 1 million tons of 0.875 ounces/ton gold. and the Eskay Creek deposit (Calpine/Stikine) with probable reserves of 4.36 million tons grading 0.77 ounces /ton gold, 29.12 ounces/ton silver, with a cut-off grade of 0.10 ounces/ton dold (Northern Miner, 6 Oct.90). Several companies are presently exploring for base and precious metal deposits, and some are in the feasibility and pre-feasibility stages of production, i.e., the Sulphurets deposit (Newhawk/Granduc) with 715,000 tons of 0.431 ounces/ton gold, 19.7 ounces/ton silver, and the SB deposit (Tenajon) with 308,000 tons grading 0.51 ounces/ton gold.

A review of government files indicated that no work previous to 1988

had been undertaken on the claims or in the immediate area. The British Columbia Ministry of Energy, Mines and Petroleum Resources took some stream silt samples from the Isk Bell property in 1988 as part of their geochemical reconnaissance program. In 1989, the GSC and BCMEMPR undertook a regional mapping program which covered the Isk - Bell claim block at a reconnaissance scale. Crews of Nicholson and Associates also mapped the property and took several samples in 1989.

During the 1990 season, field crews of International Kodiak Resources completed a thorough mapping and geochemical survey program on the Isk – Bell property. A total of 187 rock, silt, moss and soil samples were collected for geochemical analysis, a geological map was prepared, and the property was thoroughly prospected.

REGIONAL GEOLOGY

The Isk-Bell property is located near the boundary between the Intermontane Belt and the Coast Plutonic Complex. It is underlain by the Stikine Terrane, a mid-Paleozoic to Mesozoic island arc succession. Mesozoic rocks are represented by volcanic rocks of the Triassic Stuhini Group, and the volcanic and subordinate sedimentary lithologies of the Lower to Middle Jurassic Hazleton Group. This dominantly volcanic package is overlain by, and interfingers with successor basin clastics of the Bowser Basin (Figure 3).

An eastern facies and a western facies have been identified in the Upper Triassic Stuhini Group. The western facies can be traced from the Stikine River eastward at least to Snippaker Mountain. It is characterized by corraline limestone and polymict cobble conglomerate, overlain by breccia, felsic tuff, shale and micrite. Laminated mafic and felsic tuff with coarse pyroxene phenocrysts are present near the top. The eastern facies lacks the thick limestone and felsic tuff units. Orange and black weathering,thin bedded siltstone and fine grained, feldspathic, locally calcareous greywacke distinguish this facies. Polymict pebble conglomerate and shale are subordinate. Intermediate to mafic volcanics, breccias and conglomerates are typical.

A gradational contact between the Stuhini Group and the Hazelton Group has been mapped near the headwaters of the Unuk River (Anderson and Thorkelson, 1990). Siltstone above the orange and black weathering siltstones and shales becomes increasingly siliceous, and greywackes and conglomerates grow more abundant. This clast - supported conglomerate is present as discontinuous lenses and consists of porphyritic andesite and dacite clasts. The uppermost strata in this transitional zone consist of laminated siliceous siltstone, fine grained greywacke, minor coarser grained greywacke and matrix to clast supported conglomerate.

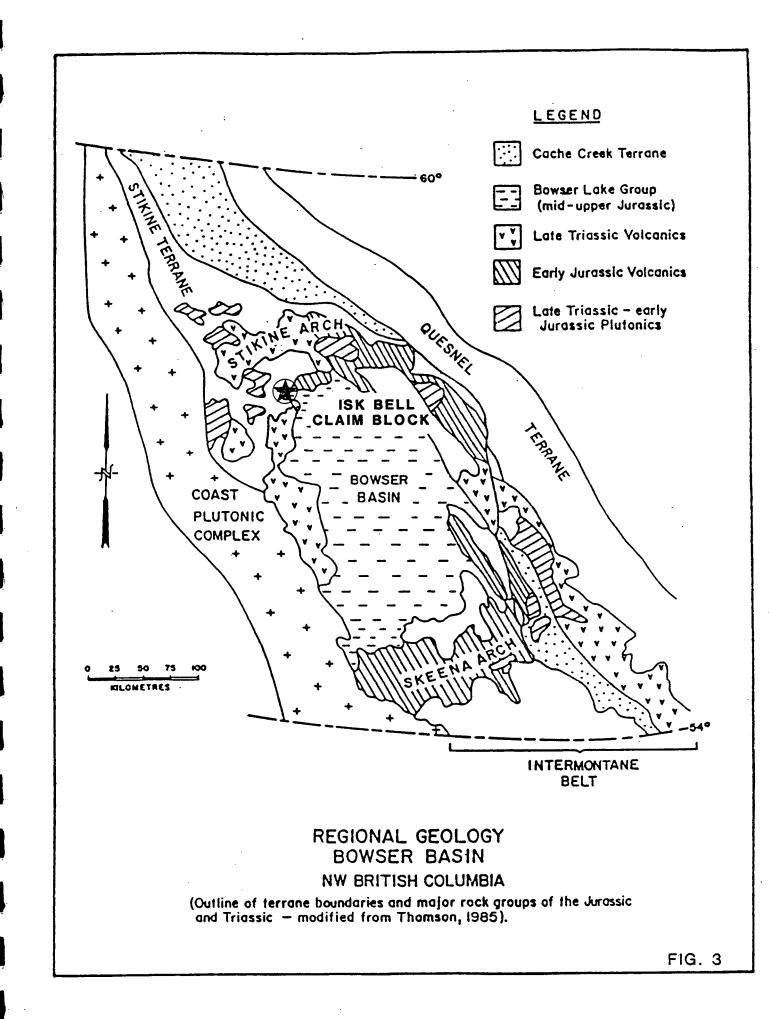
Mineralization at the Snip deposit is hosted within the Stuhini Group and is believed to have occurred during the Upper Triassic. Several other deposits have been found in the Stuhini Group; including the Kerr, the Doc, the Inel and the Stonehouse (see Figure 4).

The Hazelton Group has been divided into three heterogeneous formations: the Lower Jurassic Unuk River Formation and Betty Creek Formation, and the Lower to Middle Jurassic Salmon River Formation. In addition, a regional marker unit, the Mt. Dilworth formation, has been identified regionally between the Betty Creek and Salmon River Formations, and has come to gain informal status as a formation. Some workers (e.g., Grove, 1986) have identified a fourth and uppermost formation in the Hazelton Group, the Nass Formation. However, this package of rocks includes Bowser Basin rocks and should not be included in the Hazleton Group, which encompasses the Stikine Arch (Anderson and Thorkelson, 1990).

The volcanic sequences of the Unuk River Formation are characterized by basal pyroclastic flows that are progressively overlain by tuffs, argillites, local andesitic breccia, and finally conglomerates with interbedded tuffs, wackes and siltstones.

The Betty Creek Formation unconformably overlies the Unuk River Formation is comprised of maroon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas and andesitic flows. the conglomerate/breccia unit consists of matrix supported pebble to boulder sized clasts of aphanitic to porphyritic andesite.

Overlying these rocks is the Mt. Dilworth formation (Britton et al 1989; Anderson and Thorkelson, 1990), a regional marker unit consisting of tuff breccia, felsic tuff and dust tuff. These tuffs range from unwelded to welded, and aphyric to sparsely phyric.


The lower member of the Salmon River Formation ranges along strike from a limy argillite to limy greywacke to a sandy limestone. In most localities it is too thin to map, but it thickens in towards the north and northwest to at least 1500m of siltstones, greywackes and rare fossiliferous limestones south of Telegraph Creek.

The upper member of the Salmon River Formation is made up of three distinct facies from east to west: the Snippaker Mountain facies, the Eskay Creek facies, and the Troy Ridge facies. The gold deposit presently being defined at Eskay Creek is stratabound in Eskay Creek facies rocks. This medial facies extends 50-60 kilometers north and south along strike from the deposit. The Eskay Creek facies comprises aphyric to augite phyric pillow basalts with interfingered siltstone, tuffaceous wacke and conglomerate. To the west, the Snippaker Mountain facies consists mainly of volcanic breccia. The eastern Troy Ridge facies comprises shales with interbedded tuffs and breccias (Anderson and Thorkelson, 1990; see Figure 4).

At the end of the Middle Jurassic, the volcanic complex was uplifted to produce the Stikine Arch, which shed detritus into the adjacent Bowser Basin. These sediments form the Middle and Late Jurassic Bowser Lake Group sediments.

The volcanic and sedimentary rocks were subsequently intruded by

granitoid intrusions associated with the Coast Plutonic Complex. Intrusive activity is interpreted to have occurred from the Middle Cretaceous to the Early Tertiary. Late stage (Quaternary) basaltic volcanism resulted in widespread deposits of columnar basalt flows, ash and tephra, and scattered cinder cones. Much of these rocks were buried and/or eroded through glacial activity during the Pleistocene.

LOCAL GEOLOGY

The Isk-Bell property is underlain by sediments of the Middle to Upper Jurassic Bowser Lake Group, and volcanics of the Lower to Middle Jurassic Salmon River Formation of the Hazelton Group. North and northeast of the property, the Forrest Bend Fault juxtaposes Lower Permian sediments and volcanics and the Salmon River Formation (GSC Open File 2094, Brown et al., 1989). A large northwest trending anticline in the pillow basalts, named the Pillow Ridge Anticline, has been mapped by the GSC and BCMEMPR, based on the reversal of dips of pillow basalt flows (Brown et al 1989). However, this anticline could be simply a change in the dips of successive basalt flows separated by an unconformity. This alternative is favoured, as no evidence for large - scale warping in the homogenous pillow basalt sequence was observed on the Isk-Bell property. Aside from these structures, large scale geological features are lacking, or not recognizable, because the thick sequence of pillow basalts in the Salmon River Formation lacks marker horizons from which folds and/or fault displacements might be ascertained.

Rocks on the property are cut by a series of small, northwest trending faults of limited displacement. These faults are brittle features, generally marked by veining with some brecciation, or more rarely, thin gouge or crush zones. Abundant small shears with quartz and carbonate veins are present, particularly within the basalts. Shear textures are evident within the veins and sometimes in the enveloping rock. It is likely that many of these shear zones were reactivated under brittle stress. The shears trend both northwest and northeast, and may constitute a conjugate set. Ubiquitous fractures and joints with no

consistent orientation offset shears and veins.

One medium sized fold (3m amplitude), was recognized within a sediment band in the Salmon River Formation in the southwest part of the Isk 1 claim block. A resistant conglomerate is folded into an overturned, parallel isoclinal fold with a shallowly northwest dipping axial plane. The axis of the fold, plunging slightly to moderately southwest, is traceable over several hundred meters.

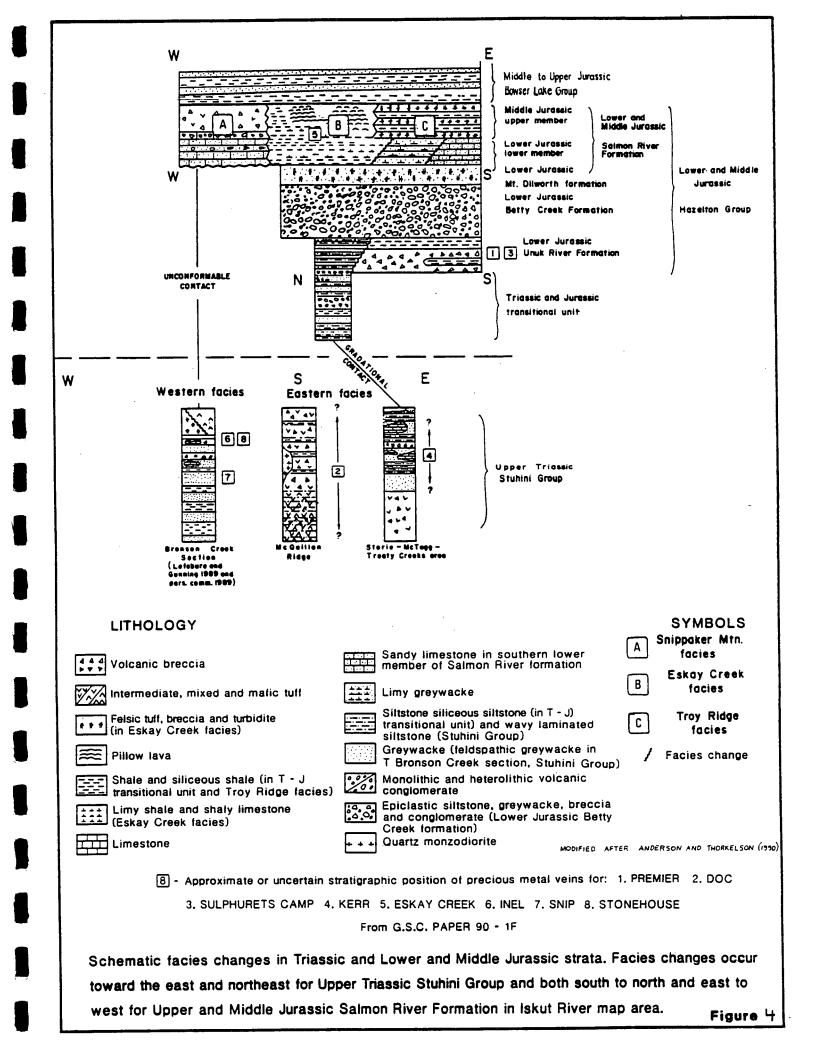
Smaller minor folds are apparent in the sediments of the Bowser Lake Group, and are generally open or chevron-shaped. Most have northwest and west trending fold axes. Axial planes dip southerly.

The lithologies of the Bowser Lake Group sediments and Salmon River Formation are discussed below.

Bowser Lake Group

Argillites, medium-grained wackes and subarenites, and rare conglomerates of the Bowser Lake Group crop out on the lower, steep slopes of the Iskut River valley. These sediments form part of the western edge of the Bowser Basin, a Mesozoic successor basin into which detritus was shed from the rising Stikine Arch. Hence, the Bowser Lake Group sediments onlap and interfinger with the Hazelton Group volcanics. The actual contact between Hazelton Group (Salmon River Formation) volcanics and Bowser Lake Group sediments was not observed due to poor exposure, but is interpreted to be an unconformity , due to the discordant dips of the adjacent units. The sediments strike northeast and dip moderately to steeply southeast, while the basalts dip moderately northwest. A cleavage fabric, strongly developed in the slates and argillites, is generally steeper than bedding and has a more northerly trend.

The bulk of the Bell 13 and 14 blocks are underlain by dark grey argillites, sometimes thinly laminated with lighter grey siltstone (Map unit 1). Fine to medium grained light grey cherty sandstones and greywackes form resistant bluffs and ridges on the lower slopes (Map unit 2). The wackes are well bedded, sometimes displaying cross stratification or grain size grading that indicate that the beds are right-way-up. The greywackes are interbedded with rare pebble conglomerates with clasts of chert, quartzite and volcanic and sedimentary rock fragments.


Salmon River Formation

Underlying the bulk of the Isk 1, 2 and 4 blocks is a huge thickness of pillow basalts, basalt breccias and gabbros (Map unit 3a, 3b). The greenish grey basalts are aphyric to plagioclase phyric, with rare pyroxene phenocrysts, and often slightly vesicular and/or amygdaloidal. Their weathered colour ranges from grey-brown to brick red. Pillows are well developed and slightly flattened, with cracked selvedges and brecciated interstices. They reach sizes up to 1.5m. Some basalts display no pillow textures and may be subaerial equivalents. These subaerial basalt flows are more common lower in the sequence. Pillow basalt breccias with abundant carbonate stringers are also common. Associated with the basalts are coarser grained mafic phases. These plagioclasepyroxene gabbros have a grain size of 2-3mm. Although clear crosscutting relations were not observed, these may represent hypabyssal feeder dykes to the overlying basalts.

Throughout the property, the basalt flows dip slightly to moderately to the northwest and west. The disconcordant dips suggest that the sediments unconfomably overlap the basalt sequence. The Pillow Ridge Anticline as mapped by Brown et al (1989) was not apparent, although the layering in the lower basalts could not be measured.

Within the basalts, there are concordant layers of sediments and locally, felsic volcanics. These range from a few meters to 50 meters thick, and consist largely of rusty-weathering dark grey argillite, light grey siltstones, polymictic conglomerate with rounded sedimentary and volcanic clasts. A very siliceous, grey and white banded to streaky felsic or intermediate tuff with rare crystals and lapilli outcropped in several localities.

Locally, a basalt cobble conglomerate to breccia was observed. The matrix is dark, chloritic and silicified. The genesis of this rock is unknown. It may be a fault breccia, as the conglomerate was observed to crosscut basalts at one locality.

MINERALIZATION

Mineralized zones in the Isk-Bell property are limited. Pyrite is the most common sulphide, occuring as disseminations and isolated euhedra, stringers and narrow pods that are mainly associated with quartz-carbonate veins. The veins, as previously mentioned, trend northwest and northeast. Mineralization is strongest where veins are hosted in thin sediment layers within the basalts. Where the veins cut the basalts, mineralization is less intense. In all cases, sulphides do not exceed 5% volume of the vein rock. The veins are usually less than 10cm wide. Rare arsenopyrite occurs with pyrite in some instances. The presence of stibnite is suggested by some elevated antimony anomalies in samples collected in 1989. Despite some high zinc anomalies in stream sediments, sphalerite was not observed, nor was chalcopyrite.

Despite the commonly rusty red (iron oxide stain) weathered colour, the basalts host only disseminated pyrite, in concentrations not exceeding 2-3% volume. In the thin felsic tuff layers, pyrite occurs as thin stringers and disseminations throughout the rock, 3-5% volume. However, this unit is thin and not widespread on the property.

Mineralization in the Bowser Lake sediments in the Iskut River valley is sparse, consisting of minor disseminated euhedral pyrite. In one outcrop of argillite, however, a thin (2cm) stratiform band relatively rich in disseminated pyrite (approximately 30% volume) was observed.

GEOCHEMICAL SURVEY RESULTS

A total of 70 rock and 117 silt and moss samples were collected by field crews for geochemical analysis. Rock samples were collected from mineralized outcrops, and those showing potential for mineralization. Silt and moss samples were collected from drainages on and adjacent to the property, at a spacing of 100 meters. Sample sites were marked with flagging, and in the case of most rock samples, with flagging and aluminum tags. Rock silt and moss samples were shipped to Loring Labs in Calgary, or Min-En Labs in North Vancouver.

Samples were analysed for 31 elements by inductively coupled plasma (ICP) analysis . A brief description of the analysis techniques can be found in Appendix iii. Eight elements have been plotted on maps in two groups (gold, silver, arsenic (Figure 8); and copper, lead, zinc, antimony, barium (Figure 9)).

Gold values were low, not exceeding 10ppb in any sample. Silver values reached values of up to 4.3ppm, (H-CC-R-321) from a silicified banded tuff. Four other values of >4ppm were obtained, mostly from samples of quartz carbonate veins within the basalts. Arsenic values were generally low, though some slightly elevated results were obtained from stream sediments on upper "Ugly Creek". H-BC-R-134, from a rusty weathering carbonate vein, yielded 279ppm As.

Base metals of copper, lead, and zinc were not anomalous except for some zinc and barium values of 200ppm and 300-900ppm, respectively, in silts from creeks flowing through Bowser Lake Group argillites. In addition, some moderate zinc values were obtained from silts and mosses draining basalts on east and west sides of the property. A single anomalous copper value (832 ppm, HDMSO71) was obtained on a silt draining the southeast part of the property. No mineralized outcrops were found at the head of this drainage, nor along its course.

Antimony levels were low, only 6 samples had values of 25ppm or more Sb. Most of these were from rusty weathering sediment bands within basalts; or from quartz carbonate veins. High antimony anomalies from two samples taken in 1989 (up to 143ppm) were not duplicated in 1990, although the actual site was not resampled.

CONCLUSIONS AND RECOMMENDATIONS

The Isk - Bell property is underlain by a thick succession of pillow basalts and related mafic volcanics, unconformably overlain by sedimentary rocks of the Bowser Basin. Although the same facies is present in the Isk - Bell property as at the Eskay Creek Camp, the latter is interpreted to be at a lower stratigraphic position, at the base of the pillow basalt sequence (see Figure 4). The Isk - Bell property encompasses the upper part of the pillow basalt sequence and the overlying sediments. Thus, it is possible that Eskay Creek type geology, and deposits, could exist at depth under the property. Workers from the BCMEMPR have estimated thicknesses of the pillow basalt unit of the Eskay Creek Facies of the Salmon River Formation to be up to 2000m, and this is close to the estimated thickness exposed on the Isk - Bell property. Thus, the base of the pillow basalt sequence, and Eskay Creek type geology should not be far below the lowest basalts exposed. Furthermore, the presence of carbonate and quartz veining in the exposed rocks indicates that hydrothermal processes have been at work on the property. This evidence for hydrothermal activity somewhat enhances the potential for mineralization on the property. The most economical way to explore this potential would be some type of airborne geophysical survey.

With regard to field work completed this season, assay results from the Isk-Bell property (on 187 rock, moss and silt samples) have not been promising, with a general lack in Au, Ag, As, Pb, Zn, Cu, Ba or Sb anomalies. Thorough prospecting and mapping of the property have failed to identify any gossans or areas of strong mineralization. An antimony anomaly sampled in 1989 was not resampled because of snow cover, but a brief investigation of this area may be warranted.

In conclusion, although surface exposures do not appear to hold potential for economic mineralization, there is a possibility of mineralization at depth that might be delineated by airborne geophysics. No further ground work is recommended at this time.

STATEMENT OF QUALIFICATIONS

I, Leonard P. Gal, of 3373 West Seventh Avenue, Vancouver, British Columbia, V6R 1V9 do hereby certify that:

1/ I am a contract geologist in the employ of International Kodiak Resources, Inc., with offices at 606, 675 West Hastings Street, Vancouver, B.C.

2/ I am a graduate of the University of British Columbia (B.Sc. Geology) and the University of Calgary (M.Sc. Geology), and have worked in British Columbia and the Northwest Territories since 1986.

3/ I am the author of this report and my findings are based on work undertaken on the property between June 20 and September 27, 1990.

4/ I have no interest, direct or indirect, in Ivana Capital Corporation Inc. or Ecstall Mining Corp. or Omega Gold Corp., nor in any of their properties, nor do I expect to receive any such interest.

5/ This report may be used by Ivana Capital Corporation or Ecstall Mining Corp. or Omega Gold Corp., in whole or in part, as they so require.

Dated at Vancouver, British Columbia this 29 day of November, 1990.

Loonard rel

Leonard P. Gal, M.Sc.

REFERENCES

- Alldrick, D.J. (1988): Volcanic centres in the Stewart Complex. (103P and 104A,B). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 233-240.
- Anderson, R.G. (1989): A Stratigraphic, plutonic, and structural framework for the Iskut River Map Area, northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Anderson, R.G., Thorkelson, D.G. (1990): Mesozoic Stratigraphy and Setting For Some Mineral Deposits in Iskut River Map area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-IF, pages 131-139.
- Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., and Alldrick, D.J. (1988): Sulphurets Map Area (104A/05W, 12W,: 104B/08E, 09E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 199-209.
- Drobe, J.R., Koyanagi, V.M., and Logan, J.M. (1990): Geology of the Forrest - Kerr Creek Area, Northwestern British Columbia (104 B/15); in B.C. Ministry of Energy Mines and Petroleum Resources Geological Fieldwork 1989, Paper 1990-1, pages 127-139.
- Franklin, J.M., Lyndon, J.W. and sangster, D.M. (1982): Volcanic-Associated Massive Sulphide Deposits; in Economic Geology Seventy-Fifth Anniversary Volume, pages 485-627.
- Grove, E.W. (1971): Geology and Mineral deposits of the Stewart Area, British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63. 152 pages
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River - Anyox Area. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63.
- Kerr, F.A. (1982): Lower Stikine and Western Iskut River Areas, British Columbia. Geolocial Survey of Canada Memoir 246, pages 31-34.
- Nicholson, G.E., Robb, W.A. and Sampson, C. (1990): Geochemical and Geological Report on the Isk - Bell Claim Group, Liard Mining Division, B.C. Assessment Report for Omega Gold Corp. and Ecstall Mining Corp.
- Panteleyev, A. (1986): A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits; reprinted in Ore Deposit Models, Geological Association of Canada Reprint Series 3, pages 31-44.

INTERNATIONAL KODIAK RESOURCES INC.

Mineral Exploration Services

STATEMENT OF COSTS

PROJECT:	ISK-BELL		for	T V	ΔΝΔ	CAPITAL CORP.
	PERIOD:	JUNE	to	ОСТОВЕ		
				<u></u> ,, . <u></u> ,		
10.8man 8.0 man	days @ \$275/day days @ \$240/day days @ \$225/day days @ \$200/day					\$4,180.00 \$2,592.00 \$1,800.00 \$2,800.00
Helicopte	r s@\$ <u>725</u> /hour (fu	uel inclu	ded)			\$8,120.00
	Board days @ \$125/day days @ \$40/day (fl <u>)</u>	y camp)				\$5,875.00
Vehicle @\$1	,350/month					\$540.00
Field Sup 47_days	plies @\$20/man/day					\$940.00
Soil	@ \$20/sample @ \$20/sample @ \$20/sample					\$3,740.00
Mob./Demo	b.					
Office						\$4,800.00
2. L	leous illing Fees and Survey ravel					\$1,320.00 \$1,700.00 \$3,000.00
Subtotal						<u>\$</u>
Continger	су					
	TOTA	L TO DATE	• •			\$41,467.00
E. & O.E.			-			

APPENDIX III

χ.

ASSAY TECHNIQUES AND RESULTS

MINERAL • ENVIRONMENTS LABORATORIES

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures:

÷

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067

 MINERAL
 ENVIRONMENTS LABORATORIES

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B. C., laboratory employing the following procedures:

ē

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized on a ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

Division of Assayers Corp. Ltd.

MERCURY ANALYTICAL PROCEDURE FOR ASSESSMENT FILING

Samples are processed by Min-En Laboratories at 705 West 15th St., North Vancouver, B. C., employing the following procedures.

ž.

After drying the samples @ 30 C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for 2 hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable delutions made if necessary.

GOLD ASSAY PROCEDURE:

MINERAL

 ENVIRONMENTS LABORATORIES

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

OFFICE AND LABORATORIES: 05 WEST FIFTEENTH STREET, NORTH VANCOUVER, BC. CANADA V7M 1T2

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

Division of Assayers Corp. Ltd.

AG, CU, PB, ZN, NI, AND CO ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3 - KCL04 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

To: INTERNATIONAL KODIAK, 606, 675 Hastings Street, Vancouver, B.C.

File	No. <u>33475-Sm</u>	_
Date	<u>July 9, 1990</u>	_
	es <u>Soil</u>	
Ref.	Smithers # 00003	

Certificate of Assay LORING LABORATORIES LTD.

SAMPLE NO.	РРВ
	Au
aniasl Analysis	
emical Analysis	
-001	NIL
002	NIL COR
003	NIL
004	NIL
005	NIL
006	NIL
007 008	NIL
008	NIL
H-LGS-001	NIL
002	NIL por est
003	NIL
004	NIL
005	NIL
006	NIL
007	NIL
008	NIL
009	NIL
010	NIL
011	NIL
012	NIL
013	NIL
014	10
015	NIL
016	NIL
017	NIL
018	NIL
019	NIL
020	NIL NIL
021	
I Hereby Certify	that the above results are those upon the herein described samples
assays made by me	upon the herein described samples
ots retained one month. Os retained one month	4 / 0
res specific arrangements	they twally
made in advance.	Assayer
	- 0

TO: INTERNATIONAL KOULAK,
606, 675 Hastings Street,
Vancouver, B.C.

Hile No.	33475-SM	
Hile No. Date July	9, 1990	
Samples <u>R</u>		
Ref. Smi	thers # 000	03

Certificate of Assay LORING LABORATORIES LTD.

Page	# 2
SAMPLE NO.	PPB
	Au
023	NIL
024	NIL
025	NIL
026	NIL
I-LG-R-022	NIL
023	NIL
024	NIL
025	NIL
026	NIL
027	NIL
028	NIL
029	NIL
030	NIL
031	NIL
032	NIL
033	NIL
034	NIL
035	NIL
036	NIL
037	NIL
038	NIL
039	NIL
040	NIL
-024	NIL
037	NIL
001	NIL
002	NIL
008	NIL
010	NIL NIL
011	NIL
017 019	NIL
	NIL
I Hereby Certify that the assays made by me upon the	e above results are those he herein described samples
ts rétained oné month. retained oné month	
s specific arrangements adé in advance.	When Carty

- 7

ഹി

				1	Lori	ing	La	bora	ator	ies	Lt	đ.	PRC	JEC	T 3:	347	5	FIL	E #	90	-23	70			' i i			Page	e 7	
EN THE CONTRACTOR	Mo prata	Cu ppm	Pb ppm	Zn ppni	37771	Ni	Co ppa	Mn ppm		As. ppm		Au ppm	Th ppm		Cd ppa	•	8i ppns	V ppm	Ca X	A P	La ppm	Cr ppm	Mg X		TI X	B ppm	Al X	Ha X		
H-LG-R 22 H-LG-R 23	24) 62	9 18	(1) (1)	1 A 1 T 1 A	43 58	8 4		2.16 3.52	2 21		ND ND	-		.2 4:0	25	2 2	18 87		1030 1025	2		.74		-01 -01		1.15 2.21	.05 .02	.09	<u> </u>
N-LG-R 24 H-LG-R 25		39 9	19 10	123 65	1	150 55	15 8	148 147	5.55 2.79	3	: 5 5	ND ND	-		3		2 2	45 31		048 :049	· 3		1.77		01	• _	3.04		. 14 . 18	
H-LG-R 26 H-LG-R 27 H-LG-R 28		47 27 35	2	70		69 35 46		855 429 571		22	5	ND ND ND	1	20	7	2 2 2	2	139 71 103	7.34 5.58 2.94	2050	2	75	1.57	15	151	6	3.95			
H+LG+R 29		32	-	91	.2	32	25		6.82		5	KD				2	د 2		12.88	10.00		-	2.04 z.72		-52 	ś	3.19 4.30			調
N-LG-R 30 H-LG-R 31	2	26 12		34	.1	33	14	1024		55.5	5	ND ND	-	- 31	3:4 ्र.8	2	2		13.86		- 4	78	1.44	17		2	1.40	.03	.03	题
H-LG-R 32 H-LG-R 33	1	31 32	3		1	30 19	21 12	645 305	6.85 1.72		5	ND ND			.8 .3	2	2 2		1.55 12.89				z.60 .29		3		3.67 3.35			
H-LG-R 34 STANDARD C	4Z		-	104 (132 (.1 7.3	54 68	22 31		6.45 3.87			ND 7	1 37		.9 18.7	2 15	2 19	173 55	2.13 .50	-849	-		1.81		.72 .09		2.59		.05 .14	

Loring Laboratories Ltd. PROJECT 33475 FILE # 90-2370

				-	Lor	ing	La	borz	ator	ies	Lt	đ.	PRO	JECI	3	347	5	FIL	E	90	-23	70		.	· /			Pag	e 7
SANPLES	No ppn	Cu ppm	РЬ ppm		Ag post	Ni ppm	Co ppn	M/n ppm		An Ppm	U ppm	Au ppm	Th ppm	Sr 🛔	Cd ppre	Sb ppns	81 ppm	V ppm	Ca X		La ppm	r: ppm	Mg	8a PP		8 mag	Al X	Na X	K Self
H-TCG-1-001	2	\$7	8	206	2	39	16	759	5.90	est E	5	ND	2	25	1.7	2	Ž	82		125			1.79	86	.17		2.84	.03	
H-LG-S-002	2	51	7	202		39	15	707	5.70	171D	5	ND	1	24	1.8	2	2	80	1.05	5 111	9	40	1.71	84	. 16	4	2.69	.02	.04 0001
H-LG-S-003	1	55	3	<u>212</u>		41	16	731	6.17	19	5	ND	Z	26	118	2	2			129	9		1.85		. 18		2.89	.02	.05 🔆 1
H-LG-S-004	2	- 55	10	210	- 21	39	15	740	5.85	::14:	5	ND	1		1.4	- 4	2			- 11Z	9		1.81		. 15		2.84	.02	.02
3-LG-\$-005	2	67	12	238	2	42	17	799	6.15	21	- 5	ND	2	27 🗄	2.1	3	Z	87	1.13	151	10		1.81		S. 17		2.85	.03	.05 5 1
H-LG-S-006	2	- 64	11	233	2	- 43	17	800	6.21	S(15)	5	NÐ	- 3	28 3	2.0	4	2	88	1.19	: 124	10	- 44	1.86	90	17	5	2.93	.02	.06 (3911
**-LG-S-007	2	64	7	211	13	39	16	758	5.87	X18	5	ND	1	28	1 .8	4	2	83	1.30	119 8	10	40	1.78	85	- 15	7	z.75	.02	.05 8 1
H-LG-S-008	2	58	8	229	2 Z	41	. 16	781	6,08	27/	5	ND	2	27	2.0	3	2	85	1.21	119	10	41	1.84	83	-16	5	2.88	.02	.05
H-LG-S-009	2	58	6			41	16	765	6.11	10	5	ND	2	27	1:8	2	2	84	1.20	1120	9	42	1.87	- 82	3.16	5	2.93	.02	.05 551
H-LG-S-010	2	62	10			39	16	734	5.97	E AL	5	ND	3	26 ž	1.8	3	2	84	1.13	120	9	40	1.76	- 90	317	- 4	2.76	.02	.05 🔮 🗄
H-LG-S-011) 3	64	9	226	1911	40	17	771	6.05	tî î Ŝ	5	ND	2	- 28 💡	2,3	3	2					40	1.77	- 95	16	7	2.78	.03	.04 🖄 1
H-LG-S-012	3	- 55	8	234	2	43	16	792	6.02	89 1 5	5	ND	Z	29 j	2.1	3	2	84	1.32	117	9	47	1.80	83	19 11	3	2.83	.02	.04
:H-LG-\$-013	2	71	9	196	122	43	18	711	6.65	AX.	5	ND	2	25	1.8	4	2	93	1.20	126	9	48	1.94	66	21	5	3.01	.02	.04 201
H-LG-S-014	1 2	59				40	16	760		18	5	ND	1	30	Z.0	4	2			\$119	9	41	1.77	79	. 15				.02 201
H-LG-S-015	1 2	65	-	227		40	16	762		138	Š	ND	Ż		2.2	4	2			112			1.80		2.16		2.81		05 1
H-LG-S-016		62				40	16	782		311	Š	NO	3	30		3	ž			321			1.84		15		2.86	.03	.06
H-LG-S-017		68		253		41	17	808		12	Š	ND	ž	27		3	Ž			124			1.79		.17		2.85	.03	.06 01 1
ан. С на с сос	1.					70	47				-				98	,	~	47			10	то	4 92	97			- - - - -	~	
.K-LG-S-018	1 3	68			267.57	39	16	779		21	2	ND	2		2.3	<u></u>				. 126			1.83				2.83	.02	.06 101
H-LG-5-019		52		342		90	29	1107		24	2	ND	- Z		3.1	č,	<u> </u>			<u> 211</u>			2.59	88			3.80	.05	.06
H-LG-S-020		- 46	-			93	29	946	7.71	12	2	ND	3		237	•	- č			, 103			2.75	81			3.64	.05	.06
H-LG-S-021		52	-	329		<u>91</u>	28	998	7.67	.28	2	ND	2		3.0,	5	Z		1.69				2.74	80	· · · · · ·		3.87	.05	.06 🔅 🗍
STANDARD C	18	59	38	132	27.3	72	30	1021	4.05	1-43	15	6	39	52 (0- (+	15	50	59	.56	,075	- 38	60	.93	181	.09	- 36	1.98	.06	<u>.14 (1)</u>

Loring Laboratories Ltd. PROJECT 33475 FILE # 90-2370

. .

Page 3

Loring Laboratories Ltd. PROJECT 33475 FILE # 90-2203A

SAMPLE#	Ho	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As.	U	Au	Th	Sr 🛛 Cd	SР	Bi	٧	Ca P	La	Cr	Mg	Ba T1	B	AL	Na	ĸ
L	ppi	ppn	ppm	ppn	ppn	ppm	ppn	ppm	*	(ppm)	ppm	ррп	ppm	ppn ppn	ppm	ppm	ppna	X 🕺 X	ppm	ppn	X.	ppn 🕺 🎗	ppm	X	X	% ppr
H-LG-R 35	9	38	6	93	.4	63	26	597	9.39	29	5	ND	1	5 .2	9	z	226	.74 :060	3	212	2.07	30 .51	5	2.15	.05	.05
H-LG-R 36	1	34	5	52 🖁	্য	58	28	825	5.04	66	> 5	AD.	1	52 .2	(28)	2	54	11.24 .053	- 4	80	.77	17 DL	7	.73	.01	.20
H-LG-R 37	2	- 4	11	9 0 🕴	1	3	1	282	1.65	.4	5	ND	1	4 .2	2	2	5	.29 .006	18	91	.31	15 .05	5	.70	.11	.01 🕅
H-LG-R 38	8	9	16	94	.1	7	2	123	1.58	19	5	ND	2	56	2	2	14	.25 ,009	16	130	.16	43 .08	3	.42	.11	.07
H-LG-R 39	1	24	2	71	.2	31	17	1112	6.24	Ð	5	ND	1	206 .2	ෂ	2	44	9.07 1058	3	63	2.54	57 .D 1	18	.37	.02	.20
H-LG-R 40	11	54	11	156	.5	24	6	174	3.60	27	5	ND	1	6 1.3	6	2	217	.33 .046	10	56	.69	66 27	9	.98	.07	.08 🔅
STANDARD C	18	58	36	130 🕴	7:2	70	31	1004	3.85	42	17	7	37	52 18.7	16	20	55	.48 .097	37	58	.87	179 .07	33	1.84	.06	.14 313

PROJ: UNUK

ATTN: G.NICHOLSON

COMP: INTERNATIONAL KODIAK

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

DATE: 90/07/2 * MOSS * (ACT:F31)

										• • •	•		•	• · · ·														J33 -	(10	. i . r . i i
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	8 PPM	BA PPM	BE PPM	BI CA PPM PPM		CO PPM	CU PPM			L I PPM	M PPI				NI PPM		PB PPM			TH PPM	U PPM	V PP N		GA PPM F		W CR PM PPM	
H-LG-R-138	4.0	30910	1	8	3 30	.1	11 25700	.1	37	50	57680	280	_ğ 2	0000	678	i :	3400	50 0	570	7	ĩ	1	1	1 1	58.1	57	1	1	7 120	1.5
H + LG - R - 139 H - LG - R - 140 H - LG - R - 141 H - LG - R - 142 H - LG - R - 143	3.3 1.4 2.0 1.3	11760 16100 11960 24860 10940	14 1 25 1 127	4 4 11 13 16	109	.1 .1 .1 .1 .2	5 6600 8 14540 1 64360 4 30360 1 64360	19.2 .1 .1 .1 .1	9 24 28 36 31	36 46 40 41 36	31800 50910 47750 61400 49040	2060 2040	10 1 17 1 30 2	7320 5070	223 524 951 705 1130	-Ğ	270 460	53 (62)	700	14 7 13 7 7	1 34 25 30	1 1 1 1	1 1 1 1	1 25		294 310 37 69 27	4 2 4 1 2	1 6 1 6 1 6 1 6	2 38 5 99 2 62 4 110 1 39	5 5 5 5 5
	.8 2.4 1.7	13790	1 1 1 1	7 5 5 6 4		.1 .3 .1 .1 .8	5 12550 1 19090 6 9530 1 68270 1 18610	.1 .1 .1 .1	32 17 44 12 15	14 41 18 6 2	43390 34600	1000 1530 4750	92 81 14	4020 2850 7360 7070 2670	1826 1004		180 50	14 19	210 180 280	10 17 9 7 12	1 1 1	12 5 16 30 32	1 1 1 1	1 11 1 7 1 5	21.2 10.0 74.8 52.8 26.5	74 98 58 167 53	1 1 1 1	1 2 1 1 1 1 1 1	2 23 1 22 1 5 1 9	10 5 5 5 5
	1.1 .7 1.7 1.0 .3	4610 8200 3640 3380 3770	7 33 1 1	5 6 7 9 6	84	.6 1.3 .1 .1	1 28290 1 14040 1 5360 1 8810 1 4840	.1 .1 .1 .1	6 15 51 71 6	4 3 25 18 4	23770 38130 56800 106220 19050	4690 2280 2180	1 1	8090 4650 1590 3640 870	927 918 124 345 158	1 19 25	360 60 200 50 330	5 11 1 1	810 850 780	18 13 17 39 25	1 1 1 1	4 9 5 5 10	1 1 1 1	1 2	13.4 21.3 6.3 14.9 2.0	34 64 20 27 29	3 2 1 1	1 1 1 1 1 1 1 1	28 1 15 1 4 1 38	5 5 10 5 5
	1.9	3290 3120 34970 16900 28590	9 6 1 21 1	3 1 6 4 5	1008 357 105 50 27	.3 .1 .3 .1	1 3390 1 5800 3 32280 2 73840 7 13820	.1 .1 .1	2 3 27 11 35	3 8 36 30 9	9020 61910		71	330 640 2330 0080 7260	948	1	660 690 390 150 590	2 16	150 360 890	18 16 9 20 14	1 1 1 1	10 1 5 47 51	1 1 1 1	1 1	3.6 3.7 27.4 39.2 04.9	31 29 76 42 67	1 1 1 8 1	1 1 1	1.60 1.48 1.10 1.17 2.54	5 10 5 5
H-LG-R-144 H-LG-R-145 H-LG-R-145 K-LG-R-151	1.6	21250	1 4 21 61	4 8 7 2 5	85 112 30 41 47	.1 .5 .1 .3 .1	10 8710 1 43960 3 11240 1 820 1 1450	.1 .1 .1 .1 .1	29 27 17 2 7	317 72 169 11 40	50260 92560 19260		1 3 16 2 5	1920 4310 0670 2030 3900		1 7 5	340 120 740 620 330	45 7 40	490 540 3 70	21 11 9 15 21	1 1 22 7 37	1 5 15 1	1 1 1 1	14	23.5 60.0 31.6 30.9 86.8	96 92 62 66 137	2 1 1 3 2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 19 4 28 1 36 1 23	5 5 10 5 5
H-LG-R-152	.1 .1 .2	19300 22320 26930 6340 42430	183 1 78 31 1	8 5 10 56 13	101 9 5 31	.1 .1 .1 .1 .3	1 3000 1 1230 1 420 1 300 14 50990	.1 .1 .1 .1	11 17 52 49 38		92780 66870 114850 43970 89640	2780 690 740	12 12 3	6260 4340 7770 3260 4730	234 444 758 127 170	11121	280 230 20 60 110	1	560 520 380 330 480	11 9 9 9	13 1 1 1	1 1 3 44	1 1 1 1	1	04.3 7.0 88.5 21.1 32.8	137 27 29 9 71	1 1 2 1	1 1 1 1	3 34 1 1 1 11 3 103 1 1	5 5 5 5 5
	.1 .1	17440 34320 23430 4790 24860	123 1 1	4 9 18 34	3 20 1 5 38	.1 .1 .1 .1 .1	1 3490 1 2590 1 2790 1 240 7 9110	.1 .1 .1 .1	13 23 29 51 20	35 7 26	43110 123970 149590 384640 62860	4440 540 220 270	16 1 9 1 1	6050 3370 3870 920 7540	345 644 622 1 3621	1 1 1 3	90 70 610 60 660		560 350 310 10 390 3	13 9 9 9 74	1 1 1 1	1 7 1 1 18	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		27 30 17 1 871	4 1 1 1	1 1 1 1	1 18 1 1 4 1 1 1 2 28	5 5 10 5 5
	132.7 13.7 6.2 281.2 3.5	5620 8110 1060	130		2 2548 0 4655 6 1579 1 4615 7 392	. 1	1 3940 2 59770 1 4530 1 1420 1 23820		14 1	7407 1182 3875 2527 445	69460 44380 50490 5050 42980	2730 1970 560	11	320 1410 1530 210 25870	3059 383 225	1 1 1 1	160 70 620 10 120	1 1	750 100 80	23 26	555 103 63 234 19	14 20 13 372 16	1 1 1	1 3	44.3 33.4	475 311 168 282	1 1 1 1	1	1 1 1 12 1 20 1 47 1 20	5 5 5

FILE NO: OS-0160-BJ1+.

22
and Server

COMP: INTERNATIONAL KODIAK PROJ: UNUK ATTN: G.NICHOLSON

MIN-EN LABS - ICP REPORT

FILE NO: 05-0160-BJ1+2 DATE: 90/07/2 * MOSS * (ACT:F31)

ATTN: G.NICHOLSON											(604)980-5	5814 0	OR (60	OUVER 4)988	-4524								T 11		<u>-</u> ,,			IOSS •			:F31
SAMPLE NUMBER	AG PPM	AL PPN	AS PPM	B PPM	BA PPM	BE PPM	PPM	CA PPM	CD PPM	PPM	CU 	PP	4 PPM	LI <u>1 P</u> PM	i PP	G MI M PPI	N MO	PPN	A NI <u>M PPM</u>	PPN	PB PPM	PPH	PPM	PPM	PPM	PPM	PPM	PPM	SN PPM F	PM_P	PPM 1	PPB
H TT R 069	.6	1920	żõ	i	ĴŎ		1 447		<u>.'i</u>		\$	5400	330	ŭ	1940	802	1	80	9	90	25	1 78		1		5.8	7	1	1	28	30	5
														<u> </u>					· _								<u></u>					
																														i V i V		
] {		l.																														
		ľ	<u></u>																													
		-																														
	- <u>-</u>												<u></u>																			
			-																													
			i :																													
1																																
1 :			}																													
	1										·		·												<u> </u>							
		ļ	, ,																								•					
	l:	<u> </u> :					·,				·																					

COMP: INTERNATIONAL KODIAK PROJ: UNUK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 0S-0160-BJ1+ DATE: 90/07/2

MOSS * (ACT:F31)

ATTN: G.	NICHOLSON											(604)9	80-58	14 OR	(604)988-4	524						_					• MO	ss 📍	(Á(T:F3
SAMPLE		AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	B1 PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	PPM	PPM		SE S PPM PP	R T M PP		PPN	PPM	GA PPM P	SN Pm PP	PP	
H GB M H GB M H LG M H LG M H LG M	1 036 1 105 1 106	.3 18 .3 21 .3 22 .7 23 1.5 27	590 290 980	1 1 1 1	2 2 5 4 5	33 34 78 63 89	.4 .3 .8 .5 .8	5 · 4 · 6 ·	14090 13650 14140 12160 12080	.4 .1 .1 .1	15 21 20 27 29	27 4 39 4 42 5	1230 2320 1160 2460 6710	1270 1310 6630	11 13 19	10490 12360 11980 18330 17200		1 1 1 1	310 720 560 720 440	25 32 49 49	2150 1440 1700 1960 1220	33 35 38 33 38 38	1 1 1 1	1 9 1 8 7	1 1	75.0 107.6 91.8 114.0 128.0	118 125 155	1 1 1 1	1 1 1 1	1 21 1 30 1 30 1 51 1 41	10 5 10
H LG M H LG M H LG M H LG M H LG M	4 109 4 110 4 111	1.5 26 1.2 22 1.4 21 .3 4 1.7 28	2960 1900 1900	1 2 1 5 1	4 4 3 1 7	86 57 44 11 64	.7 .5 .4 .1 .4	7 7 1	12170 12350 11890 12560 12640	.1 .1 .1 3.5 .1	29 25 25 4 35	44 4 37 5 17	6430 9550 50790 7110 53620	5940 3480 9860	17 17 2	18370 17150 18140 3640 23160	797 723 196	1	480 1030 510 1660 810	45 46 11	1370 1920 1350 1970 1080	39 40 32 29 37	1 1 1	7 9 6 5 6	1 1 1 1 1 1 1 1	123.2 118.9 116.4 25.0 142.4	134 76 237	1 1 1 1	1 3 5 1	1 50 1 50 1 49 1 20 1 80	
H LG H H LG H H LG H H LG H	H 113 H 114 H 096 H 099	1.6 29 1.7 30 .1 15 .4 14 .4 21	0840 5860 5050	1 1 1 1	8 8 2 3 3	62 64 211 201 122	.6 .4 1.1 1.5 1.3	9 2 2	13130 14030 5760 13280 6250	17.8	36 36 17 10 14	54 6 53 3 42 2	55320 56850 53240 21360 54380	1140 2810 2860	22	24010 24540 6120 4840 7700	1154 1007	1 1 9 4 4	800	80 116 99	1110 1140 1130 1830 1170	36 28 36 36 36	1 1 2 1 10 1 2	21	1 1 1 1 1 1 1 1	30.0 57.6	234 1055 558 749	1 1 1 1	1 1 1 1	1 80 2 90 1 11 1 11 1 10	1
N LG H H BC H H BC H H BC H H BC H	M 001 M 002 M 003	.8 21 .9 20 .7 19 .8 17 .8 2	0 73 0 2570 7600	1 81 176 21 46	1 4 3 4 4	112 73 69 245 78	1.3 .8 .7 .6 .9	6 6 4	6330 13790 13380 11850 15990	1.5 2.1 .1	12 16 20 18 13	24 4 27 4 43 4	54670 46940 44730 42000 50870	1040 2190 1220	48 11 12 17 13	7550 5350 5800 9420 4880	1181	43322	600 660 520 940 720	16 21 34	1180 1150 1300 1280 1590	35 33 31 35 30	1	8 6 7 8	1 1 1 1 1 1 1 1	57.7 93.2 94.6 82.1 62.6	152 198 139	1 1 1 1	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) }
H BC H H BC J	M 007 M 008 M 009 100 M 010	.8 2 .5 18 .6 18 .9 20 .9 19	3340 3280 0400	69 30 20 51 35	32254	83 68 64 54 78	.8 .6 .5 .5 .7	5 5 6	11980 11990 11790 14910 14650	.1 .7 .2 .1 1.0	30 17 17 19 17	29 28 39	56430 38420 38370 38040 36740	1250 770 770	17	9590 7310 10180 10890 7630	1239 1081 879	2 2 1 2 2	1000 240 280 330 640	23 31 46	1010 1160 950 1040 1310	38 30 24 31 29	1 1 1 1	6 5 5 7	1 1 1 1	130.3 87.6 91.0 91.1 83.9	133 128 117	1 1 1 1	1 1 1 1	1 2 1 2 1 3 1 4 1 2	1 1
H BC H BC H BC H BC H BC	M 013 M 014 M 015	1.3 2 1.3 1 1.1 2 .8 2 .2 1	8480 0860 3220	32 20 17 12 40	4 2 3 1 3	64 74 73 94 176	.5 .5 .4 1.0 .8	6 7 6	13800 11590 12150 10460 9480	.1 .1 .1 8.6	20 18 19 17 16	27 31 30 54	42700 38920 42680 39450 37030	1240 900 670 1340	18 21 21 12		836 834 1067 953	2 1 1 2 3	370 320 370 330 170	58 37 30	1100 1000 1000 960 1210	31 26 26 30 34	1 1 1 1	6 5 6 9	1 1 1 1	1 100.5 92.4 1 103.0 1 93.8 1 58.4	132 132 137 518	1 1 1 1	1 1 1 1 1	1 4 1 3 1 4 1 3 1 1	2 1
H LG H LG		.5 1 .2 1.0 2 1.3 2 1.0 1	8000 2550 4190	1 71 1 1	24 42 8 4 7	198 197 71 166 139	1.0 .8 .6 .9 .8	2 6 7	15610 19000 17000 9810 13550	7.6 .4	22 9 21 21 15	50 4 43 4	25830 16570 41090 46760 34820	1300 840		10760 7810	1296 1394	2 1 3 2 2	500 410 370 260 220	101 52 32	1620 2000 1080 1230 1350	39 30 37 36 30	1 2 1	28 56 7 10 11	1 1 1 1	1 31.3 1 15.9 1 96.4 1 96.0 1 70.8	447 133 281	1 1 1 1	3 4 1 1 1	1 2 1 1 1 5 1 2 1 1	
		1.4 2 1.4 2 2.6 3 2.5 2 2.7 3	2100 2910 9090	1 1 1 1	4 20 12 39	193 128 234 185 212	.7 .7 1.1 .9 1.1	6 10 9	11030 11300 23490 19820 23510	.7 10.5 9.0	19 19 28 26 30	35 4 70 52 5	43340 43320 59510 55350 66290	640 3440 2550	15	9560 10200 13200 13400 13640	873 2016 1610	2	290 280 600 500 680	35 47 48	1050 1050 2760 2030 2830	40 33 48 50 54	7 '	9 8 25 18 25	1	93.5 95.4 132.0 120.4 146.5	259 441 415	1 2 2 2	1 1 1 1	1 2 1 - 2 1 4 1 4 1 4	5 5 1
		2.6 3 2.8 3 2.6 3 3.1 3 1.9 1	5860 2860 9430	1 1 1 1 1	21 30 18 51 8	201 233 183 254 88	.9 1.2 .8 1.1 .4	10 10 11	27680 43770 23050 53630 15650	15.2 8.6 14.2	27 29 26 32 16	83 (59) 101 (58970 62040 59540 65190 39160	3690 2290 2910	14 14	13710 13150 13150 13440 8870	2117 1699 2341	2 2 1 3 2	610 650 580 750 360	47 44 52	2610 3020 2220 3390 1260	47 50 39 53 34	8 5 11 1	24 26 23 37 13	1 1 1 1	1 129.1 1 133.1 1 132.8 1 150.4 1 86.8	511 436 517 268	2 1 2 2 1	1 1 1 1	1 4 1 4 1 4 1 4 1 2)
H BC	M 112 M 017	2.1 2	2250 5700 8280	1 35 1 115 1	22 4 6 8 10	213 191 103 100 132	1.0 .9 1.0 .7 .9	3 7 9	49780 7900 16000 10340 18320	.3 3.9 .1	34 18 18 28 13	84 46 43	67090 49710 44920 52590 20850	2380 1270 2020	15 18	7860 15570	1269 1198 1033		640 220 350 840 180	16 43 42	3280 1360 1550 1160 1930	53 53 34 32 27	4 2 9	32 11 9 8 32	1	1 148.3 1 97.0 1 115.1 1 135.3 1 27.0	211 405 117	2 1 2 2 1	1 1 1 1	1 4 1 2 1 4 1 4 1 2	3
	in the second	1.2 1 1.5 1 1.7 2 1.2 1	7720 5120	24 2 1 29	5 9 5 6	46 61 97 112	.4 .6 .7 .8	5	15020 18590 14830 9310	2.8	14 13 17 16	39 39	35190 30560 41990 36210	1760 1020	16 15 18 27	6070	1229 1240	- 4	270 270 290 280	35 40	1640 1430 1380 1210	32 39	1 1 2 2	8 9 8 19	1	1 112.8 1 86.9 1 105.3 1 80.7	317 376	1 1 1 2		1 3 1 3 1 2 1 1	1
																						-									

1 1

1-----

COMP: INTÉRNATIONAL KODIAK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 112

PROJ: UNUK

FILE NO: 05-0161-PJ3 DATE: 90/07/2-

OJ: UNUK TN: G.NICHOLSON								(604)980-58		(604)988-	4524										• PU		(ACT
SAMPLE NUMBER		AS PPM		BA BE PPM PPM	I PPM - PPM	PPM	PPM		PPM		PPM	MO NA PPM PPM	PPM		PPM P			H U M PPM	PPM	PPM	GA : PPM Pi		W CR M PPM
H-LG-R 041	3.6 36850 2.9 36800 2.0 12180 4.8 39020 3.6 30140	1 29 1	42144	21 . 6 . 31 . 51 . 31 .	2 7 10330 20 21580	· .1 · .1 · .1 · .1	29 22 9 44 29	59 54160 41 44530 44 44810 61 86280 44 64300	370 110 670 710 570	10 19110 5 6960 6 5840 14 31170 9 16280	268 288 1124	1 2400 1 210 5 450 1 2210 1 270	34 22 1 2 51 14	670 400 930 930 760	40 35 35 35 35 34	1 1 1 1	1 1 4 4 1	1 1 1 1 1 1	126.3 77.8 267.8 246.4 178.7	51 83 155 184 71	2 2 1 1 2		1 23 1 35 1 45 2 100 1 12
H-LG-R 042 H-LG-R 043 H-LG-R 044 H-LG-R 045 H-LG-R 046	2,3 34280 2,5 28210 3,9 37760 4,0 22660 2,8 41590	1 1 1 1 18	3 2 5 2 1	13 . 102 . 41 . 48 . 5 .	8 43060 2 12 19560 15 50550 17 21330		24 32 37 31 8	45 39540 56 61840 51 66740 33 67880 55 31130	240	18 22930 18 36960 15 25490 13 24640 3 4060	540	1 890	65 65	590 770	35 32 36 25 38	1 1 1 7	1 1 1 1	1 1 1 1 1 1	77.8 167.9 194.3 219.8 388.1	47 62 77	2 1 1 1 1	1	1 72 2 121 2 135 2 151 2 50
H-LG-R 049	3.7 39190 1.9 8900 11.1 1840 2.9 16300 1.7 37160	1 29 32 12 1	1	18 358 184 47 59	15 20040 7 6190 6 1860 7 5 2580	.1 .1 70.8 79.9	31 7 6 33	50 58660 1003 23500 2057 34880 1240 69740 49 60130	720 680 180 180	10 26780 3 7670 1 1110 4 20700	596 463 52 1153	1 3220 2 390 4 150 17 30	52 4 1 2	000	36 46 611 577	1 1 1 8 6	11 7 8 6 13	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	145.3 36.7 16.9 81.3 71.9	59 54 8994 9545	1 2 1 2	1	2 99 2 170 1 134 1 141 1 49
H-CC-R 113 H-CC-R 114	2.3 33200 2.0 7300 2.9 15660 .8 15770 .9 26690	1 53 25 82 26	27 22 28 19 27	92 .8 241 .4 116 .6 169 1. 26 .9	8 5770 3 1960 5 2140 3 57580	18.4 18.4 1.1	14 10 10 43 31	263 58360 291 39160 351 32050 47 68950 35 63970	800 520 340 6040 2190	8 39270 2 8850 4 24170 12 29580 31 26400	3543 733 2316 1269 951	1 230 5 130 3 160 1 150 1 160	3 1 7 16 53 53	370 1 340 1 370 980	300 605 934 62 53	4 1	12 5 9 1		129.1	710 2166 594	222222	2 1	1 54 2 265 2 151 1 93 1 85
H-CC-R 116	2.3 12450	28	1	49 .5			11	27 34160	810	6 5700	302	8 810	19 2	580	46		7	1 1	115.5	121	2	1 3	2 159
																		<u></u>			. <u></u>		
					•		·····	<u> </u>				<u>, </u>					. .						
										,													
												<u></u>										• . •	•
																		<u> </u>					
							— _										<u> </u>				<u> </u>		
				1 ÷																			
	<u> </u>													 .									
				1.1														. <u></u>					
1																							

COMP: INTERNATIONAL KODIAK PROJE UNUK

PROJ: UNUK		·							70)5 WE	ST 15	TH ST.			NCOUVE	R, B.(:. v	-	2										DA	TE:	90/07	/24
ATTN: G.NICHOLSON	AG PPM	AL	AS PPM F	B	BA PPM	BE	B1 PPM	CA PP M	CD PPM	CO		FE PPM	ĸ	LI	(604)98 MG PPM		MO	NA PPM	N1 PPM	P	PB PPM		SR PPN		U	PPM	ZN	GA	SN SN PPM P	W	ACT:F	U)
H TT R 070 H TT R 071 H TT R 072	1 1	4700 6940 0230	1 2 6	2 2 3	252 261 378	1.0	1 1 1	4450 2380 1900	.8 .1 .1	8 9 8	35 51 37	26590	3580 4400 5040	25	6650 6920 9650	154 78 129	4 2 2	830 510 700		680 520 510	46 44 47	1	20 12 8	1	1 1 1 1	45.2 40.6 48.6	209 75 50	1 1 2	1	1 1 2	74 1 53 79	0 5 5 5

ICP REPORT

MIN-EN LABS

.

): 05-0153-PJ4

;

,

5.
V

ing (190

																										•		•	
	COMP: INTERNATIONAL	KODIAK												CP R											F	ILE N	0: 09	-0162-5	1+2
	PROJ: UNUK	in the second se	3					705						OUVER,		V7H	112									• • • •	DA1	E: 90/0 (ACT:	
	ATTN: G.NICHOLSON			/			CA	CD	со	(604) CU	FE	K	L1)988-4 MG	MN	MO	 NA	NI	P	PB	, SB	SR	TH L	v v	ZN	GA		W CR	
	SAMPLE NUMBER	AG AL PPM PPM	AS PPM F	B BA PPM PPM	PPM	BI PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM		PPM	PPM	PPM	PPM		PPM F	PPM PP	I PPM	PPM			M PPM P	2 8
	H GB S 037 H GB S 038	1.9 36780 2.0 37260	1	2 72 1 72	.3 .4	9	15770 18160	.1	38 37	50	79590 83370	1360	20	33590 32350	1200	1	940 890	67	2650 4130	34 31	1	11 14	1	161.0	237	1	1		10
	H GB S 039 H GB S 040	2.1 37340 1.8 26610	1	1 66	.9	8	18020 14690	.1	38 19	38	81710 46000	1070	14	36420	1148	1	750 680	27	3370 1250	28 36	1	14 10	1		249	2	1	1 64	5
,	H GB S 041	2.5 41100	1 7	<u>5 84</u> 1 247	.5 1.5	<u>11</u> 3	<u>17790</u> 4940	.1	<u>41</u> 18	59	79130 39350	4170	32	31380 8020		10	1230 360		1270 950	<u>36</u> 42	2	8 23 10	<u> </u>	192.3 86.5	1017	2	1	2 120 1 27	5
	H BC S 005	.5 20310 .9 28520	13 29	1 126	1.4	3	3620 - 10800	4.0	10 19	- 38	30730 43520	1340	39 20	6550 9230	1517		480 1420	97 32	580 790	36 45	1	10 7	1	56.8 93.4	181	2	1	1 20 1 30	5
		1.0 23190	51	1 96	.7 .9	6	10650 8460	1.5	22 18	32 31	52810 39930	1200 1790	13 15	10230 9430			1250 1150	29 41	640 940	48 46	1	5 9		137.8 89.4	165 187	1	1	1 28 1 27	5
	TH DS S 016 H DS S 017	2.6 37760	1	1 87	1.4	10 6	7480 9810	.1	14 21		31760 51880		7 13	4790 6830			1980 1040	13 29	1810 1500	29 42	1	19 12	1	112.1	100 233	1	1	1 18 1 17	5
	H DS S 018 H DS S 019	.8 26930 .8 27180	1	1 119	1.3	6	7950 9230	.1	17 17	26	46250 43870	1680	18 16	8830	1456	2	1120 1070	35	1120 1400	42 38	1	10 12	1	96.4 93.8	225 251	1	1 1	1 22 1 23	10
	H DS_ S 020	.8 27560	<u>i</u>	<u>1 125</u> 1 113	1.2	6	11530 16560		20 26	33	46750	1670		10160	1722		1020		1310 1500	42	1	11 15	1	99.1	277 222	1	1	<u>1 27</u> 1 29	5
	HLDS S 021 H DS S 022 H DS S 023	1.5 28610 3.4 20330 2.3 36070	1	1 98	.7 .1 2.0	14 11	8050 7470		19	46	57740 49930	1310	7	4640 6590	592	1	2470	7	1180	47 51	1	8 19	i :	156.5	118	1	1	1 18 1 14	5
A -		1.0 25150 .7 23750	9 11	1 139	1.0	6	9970 11090	2.9 3.8	32 22 20	40	52840 51950	2130	14	9790	2223	3	1440	44	1390 1580	58 55	6 6	12 14	1		358	1	1	1 28	5
	H DS S 026	.9 23730	1	1 114	1.0	5	7580 21540	.1	16 27	26	40100 61260	1590	16		933	2		31	1110 2210	37 75	1	11 25	1	86.5	153	2	1		10
	H DS S 027 H DS S 028 H DS S 029	1.0 33920	1 13	1 145		6	9770 15650	14.4 5.2	22 18	- 46	52210	2280	21	11470	2051	2	1080 1350	47	1040	56 48	1	9 14		120.8	207	12	i	1 36	5
	H DS S 030	1.2 23540	29	1 127	1.2	6	11110	3.1	22	49	54430	1460	9	10050	1864	3	1540 1260	40	1350 1120	<u>65</u> 46	4	12	1	109.6	423	2	1	<u>i 31</u> 1 40	5
	H DS S 031 H DS S 032	1.5 29410 1.8 30880	1	1 103	.9 .8	8	15530 16490	1.2 .1 .7	24 25 23	- 38	55760 54220	1510	17	17250	1201	1	1640 1210	44	1120	53 42	43	11 11		130.3	335	22	i	1 42	5
	H DS S 033 H DS S 034 H DS S 035	1.6 29320 1.6 28300 1.1 20500	1	1 96 1 90 1 83	8. 6. 6.	8	15210 15920 15710	.1 5.0	23 18	- 39	52180 38460	1560		16080	1124		1090	43	1050	39 39	1	11		132.1	319 276	2	i		IŚ
		.7 23330	1	1 76		6	14230	3.4	19 17	34	43570	1100		13090	917	1	510	36	930 1270	29 35	1	6	1	111.3	295	1	1	1 34 1 28	5
		1.0 20310	1	1 80 1 90	.4	6	18230 18180 14750	4.6	20	41	35390 42660 52020	1280	8	9510 12540 13850	1193	1	460 520 600	40	1310	33 30	1	12 12 9		106.0	308	1	1		5
		1.5 29020	1	1 98 11 201	.6 1.2	6	41400	10.0	22 30	87	64600	3180	12	15230	2058	1	840	56	1980	47	1	21	1	166.2	536	1	1	1 52	5
Ł	KA MB S 068 - A MB S 069	2.5 36480 .1 13430	1 22	15 94 1 163	.8	2	57720 7900	2.2	19 13	- 34	51600 30970	1830		7560	1043	5	690 210	34	4900 640	53 35	2	37		234.2	430	2	1		5
,	A MB S 070	.9 24040 1.2 31130	25	1 177	.6	6	13700 12260	.1	17 27	34	47210	1500	18	16980 23640	675	1	290 540	62	1280 1350	35 35	1	Ś	1			1	1		5
	A CC D 117	.1 11620	42	<u>1 240</u> 1 91	.4	<u> </u>	2300	<u>.1</u> .1	<u>44</u> 19		52870 44500		1 25	<u>2460</u> 11630		2	<u>90</u> 550	43	670 710	<u>34</u> 37	<u>2.</u> 1	<u>3</u> 6	1	90.5		1	1	<u>1 28</u> 1 35	5
	A CC S 115	1.7 32020 2.0 35530	1 1	1 78 1 74	.8 .3	8 9	9330 16350	.1 .1	28 36		56750 69190			16210 27130			1020 1040		1050 1100	37 32	1	9 5		132.7 1171.7		1	1	1 46	5
	A SECTOR					_																							
																												•	
			1	····; /								<u> </u>			^_				· · · · · · · · · · · · · · · · · · ·					•					
				17																									
				/																									
				2 d																									
								-	.		.	- -	j	-							·	-	1					·	

OJ: UNUK TH: G.NICHOLSON					/				705						OUVER, 4)988-		V7H	112				/						• MC	DAT SS •	E: 90 (AC	
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE	K PPM	L1 PPM	MG PPM	MN PPM	MO PPM	PPN	NI PPM	PPM	PPM I	SB PPM P	SR PPM F	TH PPM P	U PM	V PPM	ZN PPM	GA PPN F	SN PPM PP	W CR	{ • •
H-LG-M-116 H-LG-M-122 H-GB-N-041 (042) H-GB-M-043 H-GB-M-044	.5 2.6 1.5	20780 23260 35290 24970 23650	1 1 1 1	6 5 9 6 8	110 279 46 197 181	.3 .6 .1 .1	6 19 13	10370 8640 19680 14040 16360	.1 .1 .1 .1	18 21 38 27 25	79 47 58	48640 72760 55030	3730 1850 1040 1730 6110	23 23 17	11810 14730 25970 15540 15750	1214 1009 1032	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300 170 720 450 2130	24 19 59 31 41	1720 1420 920 1260 2200	21 17 6 14 27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 7 1 2 4	1 1 1 1		91.3 90.0 66.8 23.2 10.1	134 121 175	1 1 1 1	1	3 69 1 25 1 37	1
H-CD-M-054 H-LG-M-146 H-LG-M-148 H-LG-M-149 H-LG-M-150	.2 1.4 2.2	28950 13280 32810 36260 26120	18 1 1 1	7 10 11 17 21	132 37 81 71 109	.5 .1 .1 .1	13	10780 16280 15170 18250 11070	.1 .1 .1 .1	26 11 34 40 25	30 49 46	20830 65290 73760) 1620) 3980) 1370) 1470) 1460	6 25 28	17230 8420 24950 28980 17340	531 1018 940	1	670 2040 570 640 470	18 49 56	2330 950 940	18 30 11 6 14	1 1 1 1 1 1	8 8 3 1 4	1 1 1	1 1 1	24.1 46.0 45.0 67.0 18.6	59 115 134	1 1 1 1	1 1 1	2 37 1 14 2 48 3 67 1 30	4 3 7
																										1					
									<u></u>		ł						<u> </u>														
				<u> </u>									L						<u> </u>												
																			<u> </u>											·	
																													- • · i i	• • • •	
				·																											
							<u></u>																				i .				

COMP: INTERNATIONAL KODIAK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 112 (A04)980-5814 DP (A04)988-4524

PROJ: UNUK ATTN: G.NICHOLSON

.

リド

FILE NO: 0V-1032-LJ1 DATE: 90/08/13 * SILT * (ACT:F31)

IOJ: UNUK TŃ: G.NICHOLSON				1			705			-		NCOUVER, B.C. 604)988-4524	VZM	112				1						• S	04 • ווו	TE: '	90/C Act:
NUMBER	AG AL PM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM		CO PPN	CU PPM	PPH PP	M P	LI NG MI PPM PPN PPI	MO PPM	NA PPH	NI PPM	PPN	PPH	SB PPH	SR PPH 1	TH PPH	U PPM	V PPM	ZN PPM	GA PPM I	SN PPH F	W I	CR PH F
H-LG-S-117 2 H-LG-S-118 1	.2 20720 .5 23130 .3 25900	1	5 7 7	239 211 251 194	1.1	7 10650 8 12100	.1	21 23	66 63	52250 182 53860 199	0	17 12620 1069 18 13860 105 17 14590 118	1	350 340	26 26	1650 1520 1670 1560 1530	34 20 16	6	11 5	2	- 1 1	93.5	223	1	1	1	11 14
H-LG-S-119 1 H-LG-S-120 1 H-LG-S-121 1	.3 25900 .2 24570 .0 25470		5 11	251 194 217	.5 .1 .2	8 12100 9 12280 9 12280 9 12180	.1 .1 .1	23 24 24 23	67 63	53860 199 57790 295 56830 196 55340 272	0	17 14590 118 19 14980 1098 18 14310 113		340 320 340	27 25	1670	16 14 8	1	5 3 3	1	11	16.9 112.1 114.4	184	1	1	1	13 14 14
H-LG-S-123	.8 23640	1	11 15	198	.2	8 10450 11 12840	.1	22	 68	52840 156 56700 231	<u>, o</u>	21 14810 1094 20 14500 999	1	220 380	24	1430	11	1	4	1	1	101.8	163	1	1	1	8
H-LG-S-124 1	.4 25550 .9 22690 .1 30310	1	11	244 403 149	.1 .4 .1	10 9950	.1	22 24 27 25	139	55430 130	0	8 14490 115 13 18510 154		330	13	1430 1380 1120 990	10 20 22	1	18 13	1	i	128.9 90.0 84.8	188 128	1		1	26 1
H-GB-S-045	.4 25190	<u>i</u>	15	229	.3	10 13270	.1	25 26 20	61	60620 148 59900 224	0	15 14460 1270) 1	360 390	34	990 1540	22 12 14	<u>i</u>	4	<u>i</u>	<u> </u>	117.1	298	<u>i</u>	1		<u>19</u> 26
R-CD-S-055 1	.6 26720 .2 32160 .5 32950 .0 24300 .9 42120	1	13 14 11 15 15	123 107 80 135	.1 .8 .6	17 17040 13 7790 8 12820 16 14850		29 32 24 16 42	56 40 28 57	61980 212 65180 192 53390 158 34670 169 79590 173	90 20	15 15510 137 18 19150 105 20 12230 53 14 9890 39 20 23920 149		490 750 850	46 34 25 56	1460 1460 1770 2190 1200	7 6 10 6	1 32 1	5 6 13 10			168.5 134.4 89.6 188.6	236 219 91	i 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	26 72 24 42 35
H-LG-S+147 1	.8 37780	1	16	99	.1	15 17030	.1	39	61	72390 151	0	26 27570 1074	- 1	680	53	920	6	1	2	1	1	167.3	129	1	1	1 (60
							<u></u>																				
					•									• •													
						· · ·									_						•						
																											• -
· · ·			<u> </u>		<u></u>																						
												····															
																									·,		
					. /																						
					. •																						
		7	5		· · ·																						
					1						_														-		
																									.		

FILE NO: OV-1259-MJ1

51

64

49

79 89

•

DATE: 90/09/06

5 170

- ATTN: G.NICHOLSON

SAMPLE

NUMBER

COMP: INTERNATIONAL KODIAK MIN-EN LABS - ICP REPORT PROJ: UNUK 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 * MOSS • (ACT:F31) / CO CU MN MO NA NI P PB SB SR TH U MG AG AL AS В BA BE BI CA CD FE K LI V ZN GA SN W CR AU HG PPM 2 2 1 1.5 27920 11 54 5 14070 31 68 65890 1540 26 22640 872 1 460 49 2580 20 H-BC-M-126 27 5 1 134.4 214 2 . 1 .1 1 1
 31
 42
 68370
 1340
 27
 26450
 836

 28
 41
 59940
 1890
 23
 20470
 812

 38
 51
 78470
 2700
 31
 31940
 994

 38
 46
 77280
 1460
 31
 33770
 1047
 1 550 56 1720 12 1 480 49 2190 13 1 630 69 1120 12 H-BC-M-127 54 72 6 14890 .1 7 149.1 186 1.8 31260 - 1 1 1 1 2 1 1 1 1 135.6 198 1 161.3 187 1 161.5 148 1.6 26420 2.2 38330 H-BC-M-128 14 12 6 13830 1 42 1 .1 1 H-BC-M-129 H-BC-M-130 8 16260 7 16700 60 Ż 52 33 1 11 .1 .1 1 1 ò 1 580 70 850 61 12 2.3 39220 1 1 .1 .1 1 1 1 1.11 N. 193

COMP: INTERNATION PROJ: LINUK	AL KODIAK												P RE Ver, 8.												FILE			59-LJ1 /09/06
A)TN: G.NICHOLSON SAMPLE NUMBER H-BC-S-123	AG AL PPM PPM 2.4 20470 1.2 13120 1.3 19940 .1 19780 1.3 25600	AS PPM 21 23 4 22 13	8 PPM 20 6 7 5 6	BA PPM 45 88 191 127 94	BE PPM .5 1.0 .8 .8 .4	BI CA PPM PPM 5 19100 2 10910 3 7650 1 5120 4 12220	CD PPM .1 .4 .1 .2 .9	CO PPM 21 18 19 23	(604) CU PPM 71 54 78 98 53	980-58 FE PPM 43590 45410 55110 55020 54890	814 OR K PPM P 560 870 2050 1300 1130	(604) LI PM P 32 198 12 91 19 109 21 133 23 169	988-452 MG MH PM PPH 90 1325 10 1040 10 1133 00 1920 30 1142	24 MO PPM 5 1 5 1 5 1 5 1 2 1	NA 1 PPM Pf 240 180 730 520 370	PM PP 19 97 1 141 16 158 16 127 55 211	0 42 0 33 0 200 0 42 0 21	<u>PPN</u> 3	SR PPM 1 10 9 15 11 6	TH PPM 1 1 1 1 1	<u>РРМ</u> 1 1 1 1 1 1 1 1	PPM 127.8 80.3 107.1 127.7 119.4	86 465 140 260	GA	SN	W CI M PPI 1 1: 1 1 1 1 3	R AU M PPB 3 5 1 5 5 5 1 5 7 10	PPB 120 85 180 180 260
H-BC-S-124 H-BC-S-125 H-BC-S-131 H-BC-S-132 H-BC-S-133	1.5 28100 1.8 28960 2.1 39020 2.0 37880 2.2 41580	8 8 1 1	7 10 9 9 8	89 85 74 67 64	.2 .1 .1 .1 .1	5 14060 5 14550 6 15900 7 14810 7 16060	.1 .1 .1	40 41	56 (55) 53)	52360 53930 76100 75800 77770	1400 800 620	24 192 31 298 30 299	30 1100 90 1109 00 1263 90 1279 20 1470	2 1	410 440 560 490 420	53 270 54 251 72 80 75 77 81 82	0 18 0 17 0 9 0 11 0 8		77674	1 1 1 1	11	141.6 148.0 152.2 147.6 157.8	261 150 147	1 1 1 1	1 1 1 2	2 4 1 4 2 7 2 7 3 7	6 10 1 5 1 5	340 330 155 105 150
· · · i : · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																											
						R ₁ E			L.	 > (~									- <u></u>								
															•											<u></u>		
																						:						
																											<u></u>	
				34 . 4	() : () :																	:						

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

COMF: INTERNATIONAL KODIAK - PROJ: UNUK

FILE NO: 0S-0565-RJ2

DATE: 90/09/30

I: UNUK N: MIKE BROWN										(60	4)980-5	5814 (OR (604)		24													DATE DCK •	(A(CT:1
AMPLE JMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI N PPM PF	G MN M PPM	MO	NA PPM	NI PPM	P PPM	PB PPM 1	SB PPM F	SR PPM P	TH PPM P	U PM	V	ZN PPM	GA PPM	SN PPM F	W CI	R AL M PPI	U H B PF
-CC-R-320 -CC-R-321 -CC-R-322	4.3	50830 26540 24510	1 1 1	14 7	11	.1	11 47980 11 61960 3 39550	.1 .1 .1	31 28 32	51 9 42 41 9	52380 46220 59880	100 620 2460	5 1609 9 1548 48 2524	0 550 0 1177 0 1177	1 1 1	330 2500 300	57 37 54	800 1000 990	15 12 15	1 1 17	1 1 1	1 1 1	1 1 1 1 1 1	37.5 48.0 57.0	52 54 93	3 2 1	1 1 3	2 79 2 33 2 104	3	5 5 5 1
								<u> </u>							+ + + <u>a</u> c				<u></u>											
												<u></u>																		
																				<u> </u>									<u>.</u>	
													••••																	
																		•						···					, ·	
											<u></u>	<u>-</u>									<u></u>									
																		_												
											<u></u>																			
										<u> </u>						···-,					· · · · · · · ·									
																				<u>.</u>										
							<u>. </u>			<u></u>																				

, <i>r</i>	- - - - - - - - - - - - - - - - - 																					:					1	
	,											-															. '	•
													-					.							6	F	:	
COMP: INTERNATIONAL PROJ: UNUK ATTN: G.NICHOLSON	KODIAK				£				WEST	15TH (604)		ORTH	VANCO	JVER, 988-4		7м 1та								F		oss *	E: 90 (AC)/07, :T:F:
SAMPLE NUMBER H-BC-R-134 H-SM-R-67 H-SM-R-68	AG AL PPM PPM .5 9040 2.8 35950 3.2 39870	PPM 279	57	BA PPH 19 20 22	BE PPM .1 .1	BI PPM 1 3750 9 2549 10 2144	CA PPM 00 1.8 00 .1	₿PM	PPM	CU PPM 40750 57610 66800	FE PPM 520 210 290	К РРМ 7 1 10 2	LI PPM 3770 1970 1350	MG PPM 1050 608 450	MN 1 PPM P1 1 - 50 1 408 1 401	0 78	NA NI PM PPM 830 790 990	р ррм 17 8 8	12-	SEL S PH PP 1 1 8 1		U PPM 138.7 133.1 149.0	2 PPM 30 72 81	ZN PPM -1 1	PPN I	SN PPH PP 3 105 4 124 3 86	W. CR M PPM S	Al PPI 675 9
H-SH-R-60 H-SH-R-70 H-SH-R-71	.7 12450 4.1 24520 2.9 49610) 70	7	11	.1	1 3696 11 3049 6 9947	50 .1 20 .1	1 35 1 41	45	57920 61050 29010	390	9 1 12 2 4	5880 5880 7210	1202 685 359	1 13 1 91 2 9		1070 870 390	13 8 9	1 1 1	7 1 1 1 1 1 1 1 1 1 1	1	203.0 132.1 66.8	42 71 29	1 1 3	2	4 108 5 125 1 85	5	250
											1	K.	- 7		MR				<u>.</u>				<u> </u>					
														1	HR	Ġ										vni A	1:1-1 1:1 1:	
																										,	× • •	
	1												.									, <i>i</i>				********	•	
	,		······											<u> </u>														
								·																			<u></u>	

APPENDIX IV

-

SAMPLE DESCRIPTIONS

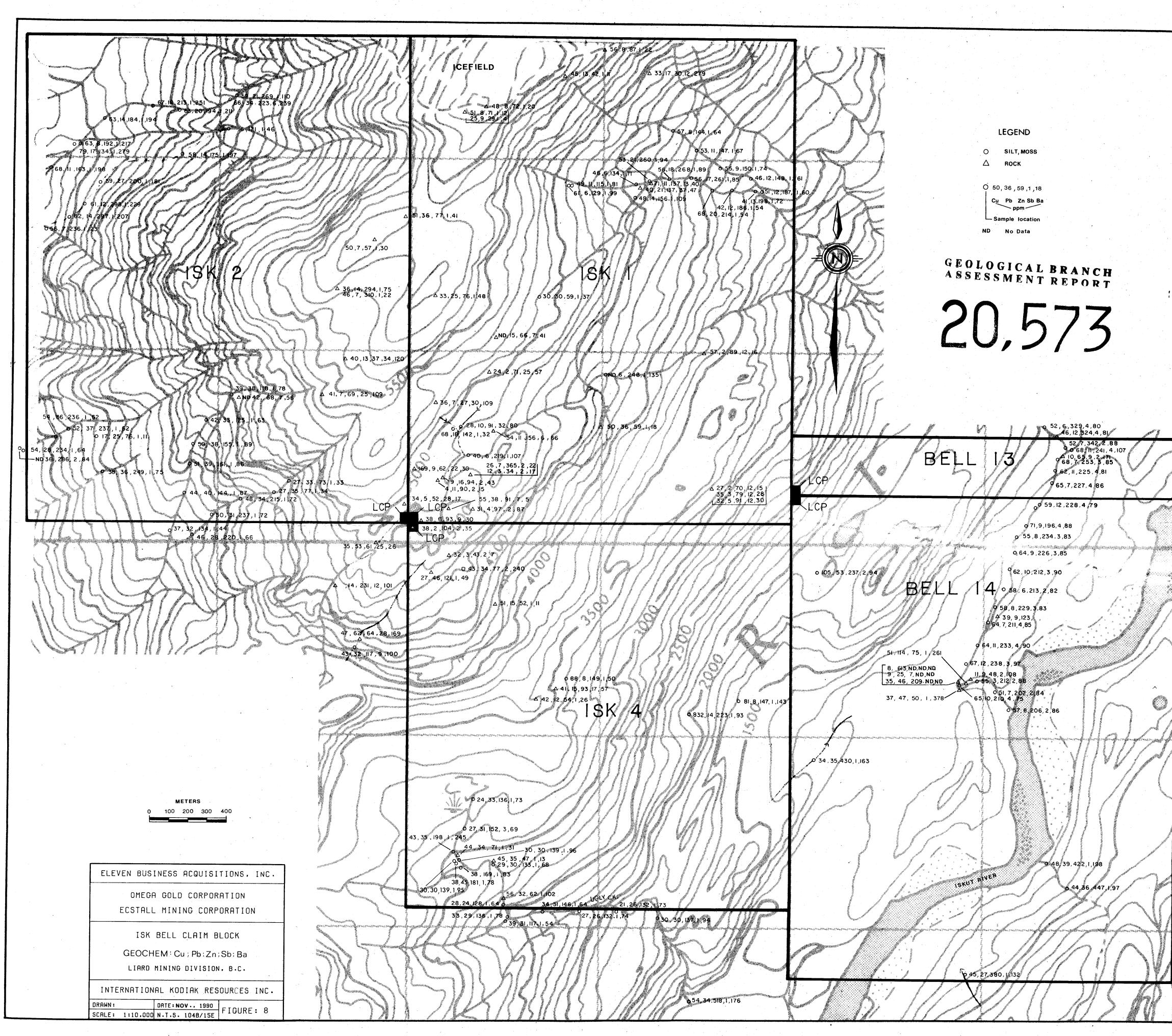
· · · · · · · · · · · · · · · · · · ·		ROCK SAMPLE DESCRIP	TION REC	ORD			
Page:		Project: ISK-BELL(H)	Locatio	n :		Operator	: KODIAK
Sample No.	Location	Description		A	nalytica	al Results	5 0117
			Au pph	Ag	Pb	Zn	Other
HLGRO23	BELL 14 CLAIM	WELL BENDED MEDIUM CRAINED WHENES WITH SOME SILTSPONE INTERBEDS ADJACENE TO GUMPTE UN	0	0.7	18	613?	
HLEROZY	SOUTH ISKI CLAIM	PARK CREM MRGLUTE	0, D	0. j	19	123	
HLGR025	Y	TUINCY LAMINATED SILTSTONE WITH TUIN QUARTE STRINGERS HAD TUIN PYRITE STRINGERS.	0. 1 0	0.1	10	65	
HICR026	,	SUCTIONS VISICULAR BASINT SHOT MROULD WITH QUARTE	0,0	0.1	2	89	
hlGR027	1501 4 CUM	FRECHERS STRINGERS.	0. D	0,1	2	70	
HLEROZE	t.	BASALT WITH IMM MASSES OF MANDE (VESILLE OR REPLACEMENT)	0 · D	0.1	3	79	
1L GR029		CREENISH BLACK ANSALT BRECKA CHLORITIZETS, NO SISIBLE SUPPLIES	0.B	0.2	5	91	
16- ROBO	Arizz	SULPHINE (PARINE) - NOTING- CNERTY MUDSTORE	0 · D	0,1	7	365	

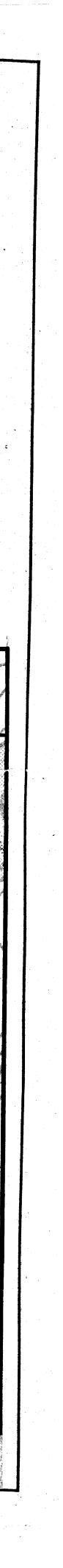
		ROCK SAMPLE DESCRIP	PION REC	ORD				
Page:		Project: ISN BUL(H)	Locatio	n:		Operator	: KODIA	K
Sample No.	Location	Description		1	Analytic	al Results	s ppm	
HLGR OBI	15K1 - 15K 4	QUARTE - CARBULATE (SIPERITE?)	Auppb	Ag	Pb	Zn	Othe	r
	ЦКЕД	VEN WITH PURINE POSSIBLE CHALOPTHINE 3 CM THICK.	0	0.1	3	34		
HL6R032.	٢	AURTICO AND SUEARED BASAUT WITH QUARTE CAMPONIATE VEN	v	0,1	Ч	97		
HLC-R 033	<i>(</i> 1	QUARTE VEN, SMEARED WITH A LITTLE SULPHIPES	0	0.1	3	43		
HLERO34	ν ι	MINEMULZED (PU STRINGERS) IN HUNDLED BASALT	D	0.1	2	104		
И СС 12035	· .	Sm CHIP TO STE SMIRC. BASALT U/ PYRINE STRINGERS.	Ø	0.4	6	93		
11 LC-RO36	۲,	MINERALIZED (PYRIDE) VOLLANIC ADJACENT TO FULL QUARTE VN	0	0.1	5	52		
HLERO37	· r	HRU WITH DISSEMUMENS PURINE	0	0.1	il il	90		
162030	. 1	SILICIFLED PARTIC BREECHA IN TUFFACEDAS VOLCANC	0	0.1	16	94		

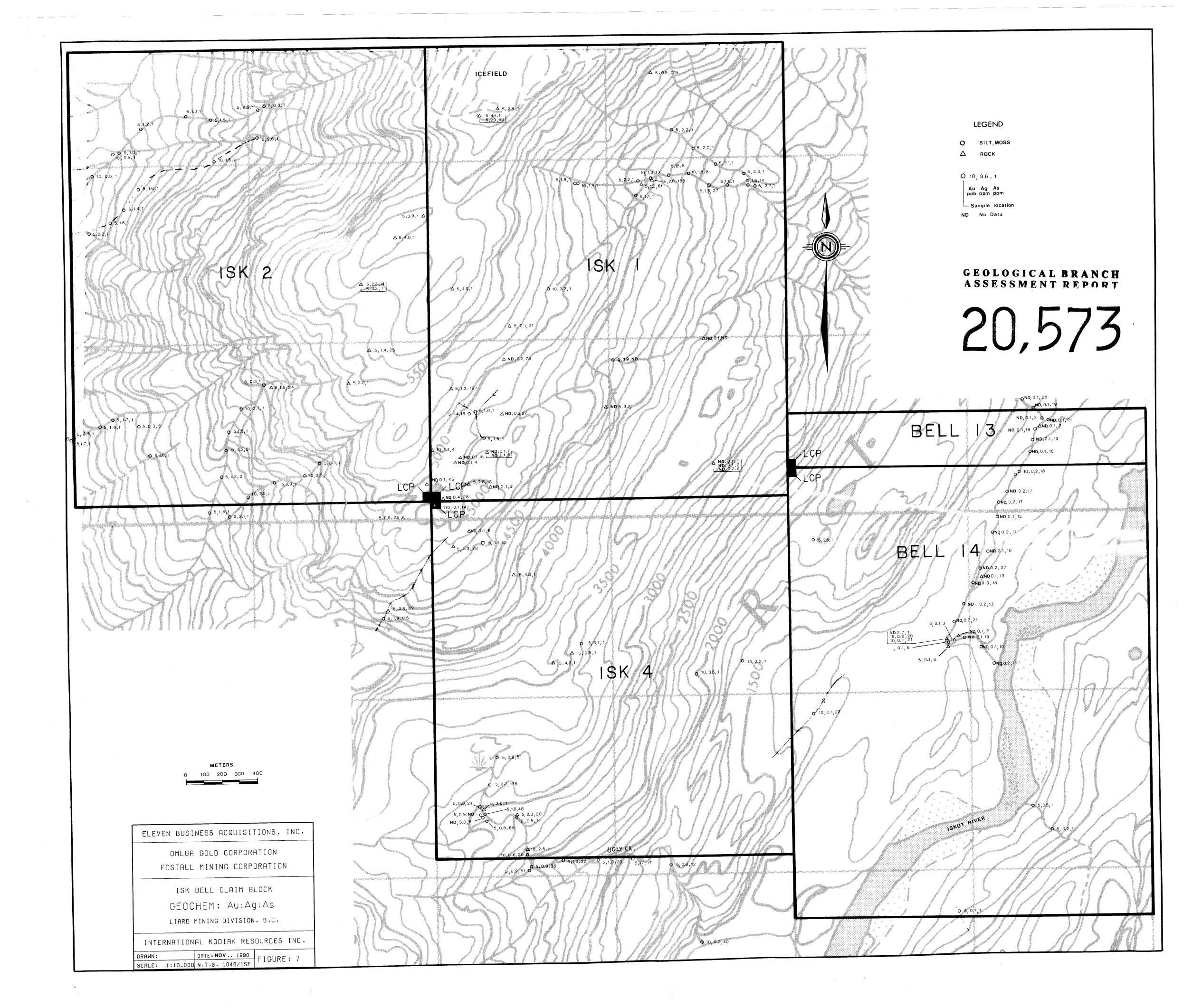
		ROCK SAMPLE DESCRIP	TION REC	ORD			
Page:		Project: 15k-BELL (4).	Location	n:		Operator	: KODIAK
Sample No.	Location	Description		1	Analytic	al Results	
			Auppb	Ag	Pb	Zn	Other
HL6 R 033	15K 1 - 15K 4 AREVA	NUSM FERSIC VOLCANIC WITH PHRITIC STOCKWORZER.	0	0.2	2	71	
MLGRUND		SILTSTON- , RUSTY WEATHERRYC-	6	0.5	11	156	
HLC RO41	"	BASALT WITH DISSEMINATED PURITE (+ PYRAMOTITE?)	35	3.6	34	71	
ML 6 R 0 4 Z	(1	FELSIC VULCANIC WITH MARINE STRINGERS. DUFF?	5	2.3	35	47	
MLER043	4	PERITIC SILICIFED BASALT WITH SOME QUARTE FRACTURES.	10	2.5	3.2	62	
11 LE R044	۰,	BRECCHARD BASHLT WITH QUARRE AND PURITE STRIMETS.	5	3,9	36	77	
1 LC-R045	••	DARK SULTSOME WITH BLEBS	5	4,0	25	76	
1LC R046	•	RUSTY BASALT WITH FINT PURITE STRINGERS.	5	2.8	38	91	

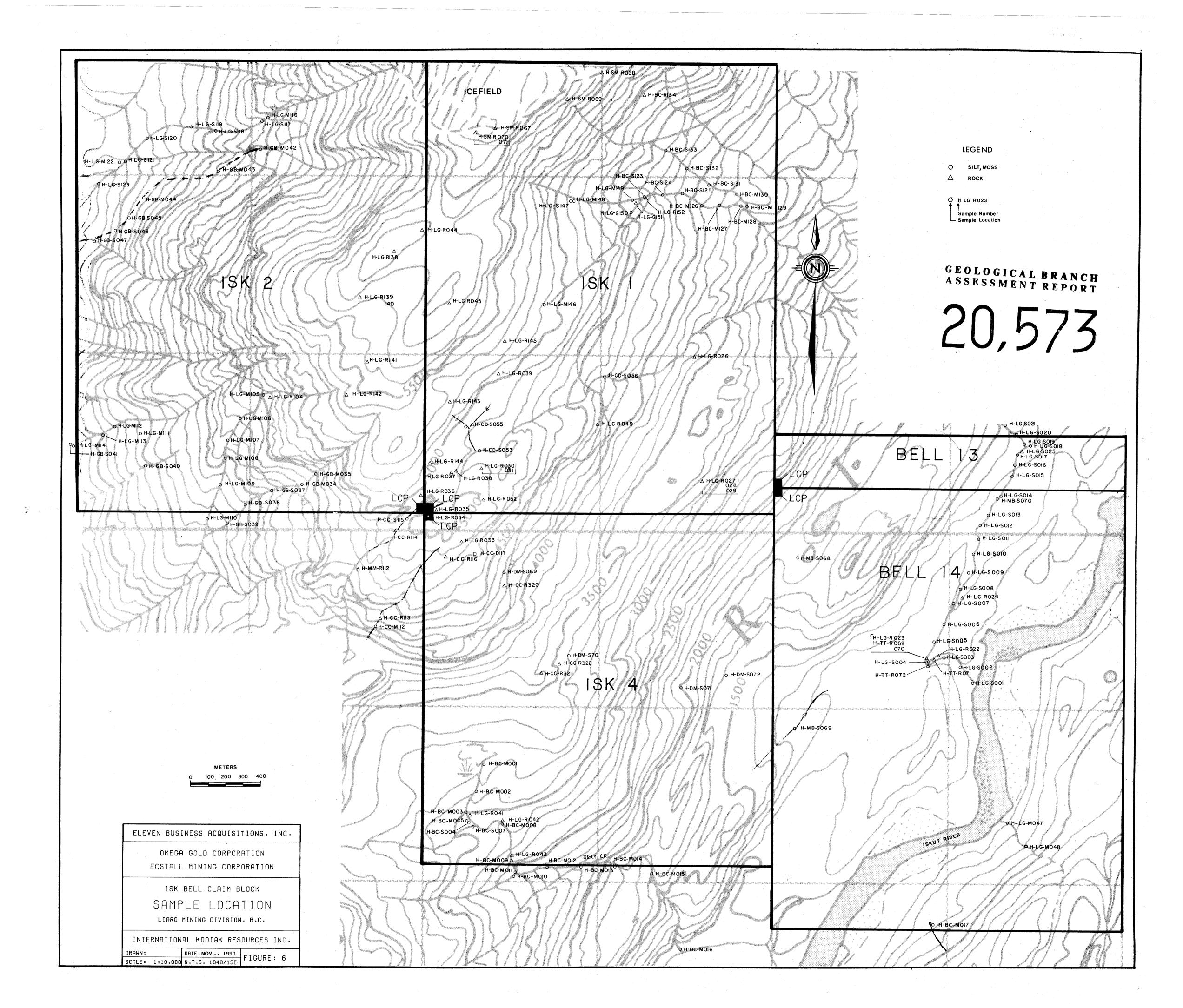
•

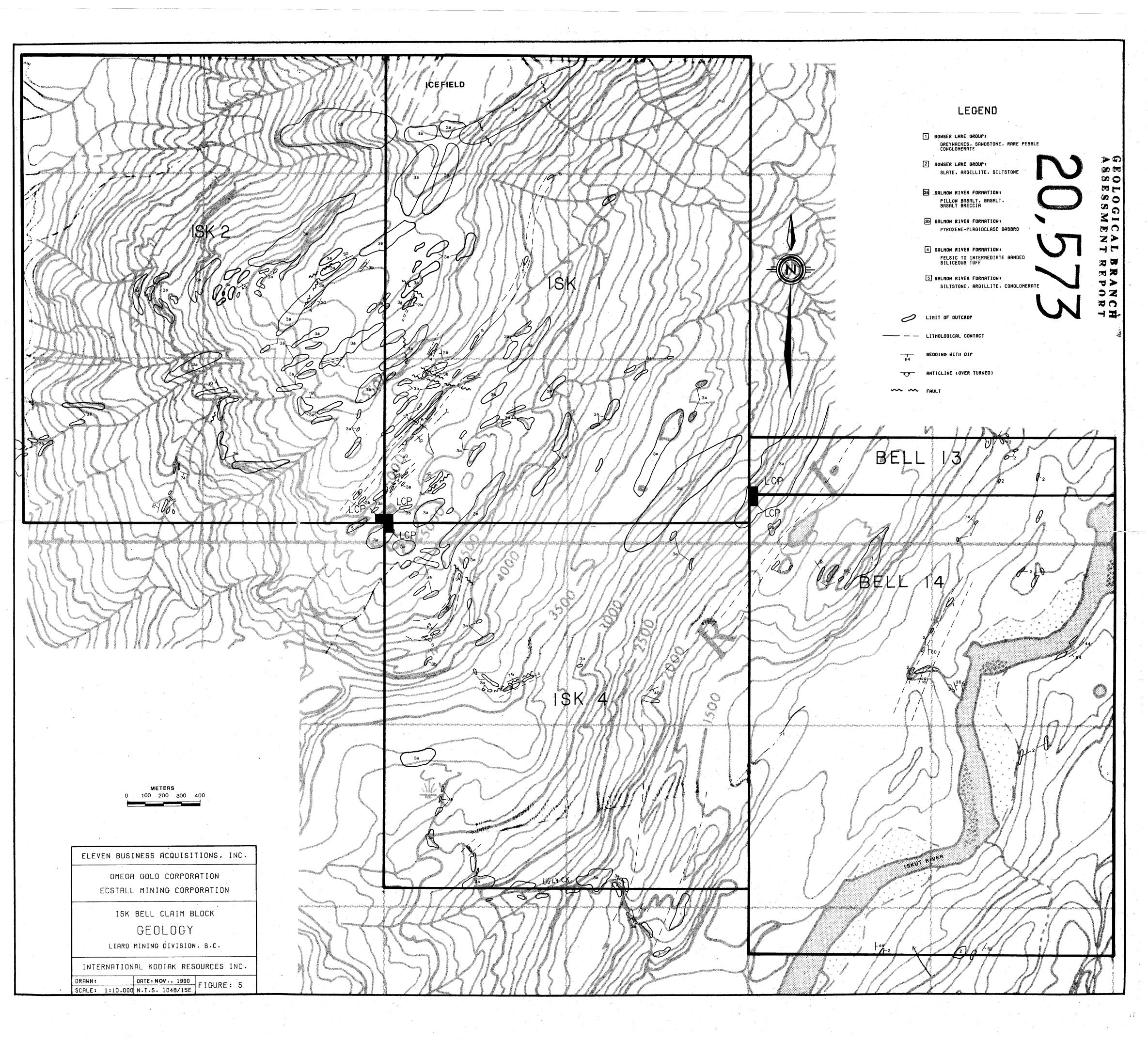
		ROCK SAMPLE DESCRIPT	VION RECO	JRD			
Page:		Project: (SK-BELL (H)	Location: Operator: KO DIAW				KODIAK
Sample No.	Location	Description		A	nalytica	al Results	ppm
			Au ppb	Ag	Pb	Zn	0ther
HLEROHS		1 M WEATLOW - BASALT.	5	3.7	36	59	
				J. ,	<i>J</i> E		
HLER 103	NORTH OF ISK BELL PIZORERTY	CREENISM TOPE WITH PURITE STRINCERS (NORTH OF PROPORTY)					
HLGR 104	ISK 2 CLAIM	MEMATIZED AND SILICIFIED BASHLT WITH QUARTZ CARDWARE AND PURINE STRIVERS.			-		
466 R 134	15K 1	BASALT COSALE CONCLONENTATE IN PAULT ZONE (?)	5	4.0	7	57	
HLCR133	<i>u</i>	IN PAULT ZONE (?) DANK SILTSIONE MACHLUIZ- BAND IN BASIATS.	5	2.3	14	294	
M LG R140	11	BASALT ADVACENT RISGT	5	3,3	7	310	
H LER 141	Ŋ	FERSIC TUFF WITH PURITE AND GUARTE STRINGERS	5	1.4	13	37	


		ROCK SAMPLE DESCRIPT	TION RECO	ORD				
Page:		Project: isk-BELL (H)	Locatio	n :		Operator	: KODIAK	
Sample No.	Location	Description		P	analytica	al Results	s ppm	
			Au ppb	Ag	Pb	Zn	Other	
HLC-R142	15K (CLAIM	VEINS AN WERMEDIARE THEF.	5	2.0	7	Ġŋ		
HLCR143		RUSTY VOLCANIE (BERNAR) WITH OLIMITE - CHRISCHIME - PUBLICE SMONTH	5	1. 3	7	27		
468149		PURINE + PERMINOIT NE(?) IN MIN (Icm) STRATIFORM CONCENTION OF DISSEMINATION SUPPLIFIES-	10	1. 4	3	6 11.62		
116-12-145	••	ARCILLINE AND INDUSCIONED DEFACED	5	0.1	15	66		
HLCRISI	(1	RUSTY BLACK LAMINATED ARGULITE	5	1.0	27	137		
HLCR BZ		PHEIRE-RICH SILTSIONE AND BEDDING- PARALLER CONCENTATIONS OF PHRINE IN SET 5.	5	2.6	11	137		


		ROCK SAMPLE DESCRIP	FION RECO	ORD			
Page:		Project: 1sk - Bell	Location	1.1		Operator	· KODIAK
Sample No.	Location	Description		A	nalytica	l Results	ppm
HTTR 069	(Roangle of)	linequer quarte lesses inthis	Au pp b	Ag	Pb	Zn	Other
	LGROZZ BELL 14 CWIM	Coarse giained mader Lense width anerages 20-30cm, a000 - auting bedding / foliation Host weakly graphitic Stock of meathing, oriented 022/38 V. No visible minis	5	0.6	25	7.	
H7772 O7O	-1	Host rock to allow lesses. Weakly graphitic, well foliated, some rusty paletes on fracture surfaces- no visibile mineralisation	10	0. 1	46	209	
HTR 071	() ,	Intensity foliated, usty graphitic shales. Appen to lie within none of overturned, the mithin none fold. Minion descented py, minor guests of urgers.	5	D. 1	44	75	
旧田水 072	.1	Black angillites on s side of creek Appear to be officed from N. side rocks. No approved mineralization Bedding one til 002/4/10.	5	0.1	47	50	• 91 × • 91.


		ROCK SAMPLE DESCRIP	TION RE	CORD			
Page:	· _ ·	Project: ISK - BELL (H)	Locati	on:		Operators	KODAK
Sample No.	Location	Description		Aı	nalytic	al Results	
			Au	Ag	Pb	Zn	Other
HSMR 67	NORTH SIDE ISK I CLAIM	BLEBS OF PHRITE IN FILLOW BASALT	5	2,8	(72	
19M R 64	4	FINE BLEES AND STRINGER OF PURITE IN A BRECCIATED AND SILICIFIED	5	3,2)	81	
	۰,	BASALT	5	0,7	1	42	
15M R 69		QUARTZ AND CARBONATE ALTERED BASALT, IRON STAINED	5	4.1		71	
HSM R70	14	BRECCIATED FILLOW NASALT WITH BLEBS AND STRINGERS OF PYRITE, CHALSPYRIX? SILICIFIED					
ISMR71		QUINCE VERN WITH TRACE DISSEM-	S	2.9	1	29	


Sample No. Location Description Analytical Results Heike-113 WEST SIDE 15K 4 CM/M Pale grey siliceous volconic, WKpy stringers of clar transporent diz (1mm). py in larger bieccia quartz veinlets. S 0.8 62 64 Heike-114 " Argillite - angular quartz breazing 5 0.9 53 61	Page:		Project: 15K - BELL	Locatio	on:		Operator:	KODI	AK
HeiR-113 WEST SIDE 156 4 CLAIN Pale grey siliceous volconic, 156 4 CLAIN Plane press of clar transpirent dtz (1mm). py in larger brecch quartz veinlets. HeiR-114 HeiR-116 HeiR-	Sample No.	Location			A	nalytica	l Results		
HCCR-116 HCCR-1				Au	Ag	Pb	Zn	Otł	her
Heck-114 Heck-114 Heck-116 Heck-1	HerR-113	15K 4	Wherey stringers of clart transparent atz (1mm). py in larger bieccia quartz	5	Ö.8	62	64		
+ccR-116 Carbonate altered Eq. andesite fuff-small circular frags. 5 2.3 46 121 of pule green chert. carbonate	HCCR-114	<i>t</i> ,	Fragments in glassweats, py, trace - 10% in drusy vein	5	0.9	53	61		
	Heck-116	.	tuff - small circular frags. of pull green chert. carbonite	5	2.3	46	121		


Page: Project: ISK-BELL	Locatio	n:		Operators	KODIAK
Sample No. Location Description		A	nalytica	l Results	<u></u>
	Au	Ag	Pb	Zn	Other
tecR-320 CENTRAL 15K4 Grab - Baselt Fine grained, CLAIM Vesteular, trace pyrite.	5	4,0	15	52	
Light grey lapilli tutt- flow textures obvious, matin clasts (3-4 mm), very	5 C	4,3	12	54	
Stliceous, py K1th. Heck-377 Felsiz tuff - Orange wearing. light colored on fresh surfaces trace py in stringers and in blebs.	ther. 5	0,9	15	93	

