ARIS S	UMMARY	SHEET
--------	--------	-------

- - -- -

eistrict Geologist, Smithers Off Confidential: 91.10.25 **R**SSESSMENT REPORT 20589 MINING DIVISION: Skeena U PROPERTY: Story HOCATION: 56 37 00 130 23 00 LAT LONG 09 6275359 415103 UTM J NTS 104B09W 050 AMP : Stewart Camp ù CLAIM(S): Story 1-2, Story 5 OPERATOR(S): Ecstall Min. UTHOR(S): Gal, L.P. **WEPORT YEAR:** 1990, 118 Pages COMMODITIES FEARCHED FOR: Gold, Silver, Zinc, Lead, Mercury KEYWORDS: Jurassic, Betty Creek Formation, Salmon River Formation, Rhyolites Andesites, Tuffs, Slates, Siltstones, Argillites, Gossans, Pyrite Arsenopyrite NORK DONE : Geological, Geochemical, Physical GEOL 500.0 ha Map(s) - 1; Scale(s) - 1:50005.0 km LINĔ LSUR 25.0 km ROCK 486 sample(s) ;ME Map(s) - 4; Scale(s) - 1:100023 sample(s) ;ME SILT SOIL 91 sample(s) ;ME RELATED REPORTS: 19654

LOG NO: 12-05	RD.
ACTION:	
FILE NO:	

Geological and Geochemical Summary Report on the Story Claim Group Skeena Mining Division British Columbia

N.T.S. 104 B/9W

	SUB-RECORDER	
1	NOV 3 0 1990	
	M.R. # \$	

Longitude: 130°36' West Latitude: 56°50, North

For

Golden Arrow Resources Ecstall Mining Corporation Omega Gold Corporation

October, 1990

Len Gal M.Sc.

.c:32098

ľ

Ě.

.

.

P

£'7

تد. به

73 54

1

#"X

. فل

U

5 5

14

L.

GEOLOGICAL BRANCH ASSESSMENT REPORT

STERNES. . 1775-8

SUMMARY

اب ک

2.3

<u>اًهٰ ا</u>

The Story claim block is located in the Skeena Mining Division, east of the Unuk River in the Storie Creek area, on NTS map sheet 104 B/9E at longitude 130°36' West and latitude 56°50' North. The property is only 6 kilometers east of the Eskay Creek gold discovery of Stikine Resources and Calpine Resources.

The Story claim block consists of 20 units and is presently held by Ecstall Mining Corporation (50%) and Omega Gold Corporation (50%). Golden Arrow Resources presently holds an option on the property to earn up to 100% interest by making certain cash and share payments to Omega Gold Corp. and Ecstall Mining Corp., and by expending \$550,000 on the property. The Story claims were staked in 1988 to cover prominent gossans, a known mineral occurrence, and favourable Jurassic volcanic rocks that crop out on the property.

In 1990, a first-phase mapping and geochemical survey program was completed on the Story claim block at an expenditure of approximately \$91,000. Crews employed by International Kodiak Resources Inc. from August to October, 1990 geologically mapped and prospected the property, and a large gossan on the east end of the property (Jack Glacier gossan) was intensively sampled. Rock and soil samples were taken from throughout the property. Mercury anomalies up to 681250 ppb over a 5m continuous chip sample on a gossanous rhyolite were obtained north of Jack Glacier. Soil sampling on an established grid revealed coincident anomalies of Hg, Ag, Ba, Zn and to a lesser extent, Cu and Pb. Quartz-carbonate-sulphide veins within an aphyric andesite yield assay samples of up to 3.83g/tonne (.112 oz/ton) gold. The veins are relatively thin but traceable from 15

i

to 50m. One brecciated quartz vein / fault zone assayed 20.8 ppm Ag over 2m, with higher grade grab samples taken from the same zone.

· · -----

· - -·-- - · · --- · ·· ··

0

Ņ

بر د

#1 14

0

57) 14

Û

Ū

· -·

..

TABLE OF CONTENTS

0

a second

1

F

• • • • • •

13 14

18 16.#

57) 22

*3 24

~

•••

.....

Page
SUMMARY
LIST OF FIGURES
INTRODUCTION
LOCATION AND ACCESS
CLAIM STATUS
PHYSIOGRAPHY AND CLIMATE
HISTORY
REGIONAL GEOLOGY
LOCAL GEOLOGY
Betty Creek Formation
Salmon River Formation
MINERALIZATION
GEOCHEMICAL SURVEY RESULTS
SILT SAMPLING
CONCLUSIONS AND RECOMMENDATIONS
STATEMENTS OF QUALIFICATIONS 42
REFERENCES
APPENDIX I - COLOR PLATES
APPENDIX II - CLAIM RECORDS
APPENDIX III - STATEMENT OF WORK
APPENDIX IV - ROCK DESCRIPTIONS

APPENDIX V - ASSAY TECHNIQUES AND RESULTS

- . .----

iii

- .

LIST OF FIGURES

.. -

.

· · - · - - ----

(

1

1

n 4

• • •

** 1

1999 1

• • • • •

*** •

973 2013 1016

1

**

	Page
1.	LOCATION MAP
2.	CLAIMS MAP
3.	REGIONAL GEOLOGY
4.	SCHEMATIC STRATIGRAPHY AND FACIES CHANGES IN TRIASSIC AND
	JURASSIC LITHOLOGIES
5.	GEOLOGY MAP
5a.	GEOLOGY OF THE STORIE FALLS AREA
6.	SAMPLE LOCATIONS MAP in back pocket
7.	GEOCHEMICAL SURVEY (Au, Ag, As) in back pocket
8.	GEOCHEMICAL SURVEY (Cu, Pb, Zn) in back pocket
9.	GEOCHEMICAL SURVEH (Hg, Sb, Ba) in back pocket
10.	SOIL GRID LOCATIONS 27
11.	SOIL GRID GEOCHEMISTRY (Au, Ag, As) 28
12.	SOIL GRID GEOCHEMISTRY (Cu, Pb, Zn) 29
13.	SOIL GRID GEOCHMISTRY (Hg, Sb, Ba)
14.	SOIL GEOCHEMISTRY Ag CONTOUR DIAGRAM
15.	SOIL GEOCHEMISTRY CU CONTOUR DIAGRAM
16.	SOIL GEOCHEMISTRY P5 CONTOUR DIAGRAM
17.	SOIL GEOCHEMISTRY Zn CONTOUR DIAGRAM
18.	SOIL GEOCHEMISTRY Hg CONTOUR DIAGRAM
19.	SOIL GEOCHIMISTRY Ba CONTOUR DIAGRAM
20.	GOSSAN CHIP SAMPLE LOCATIONS in back pocket
21.	GOSSAN CHIP SAMPLE GEOCHEMISTRY (Au, Ag, As) in back pocket

INTRODUCTION

÷.

د .

1.4

2.

à đ

行用

73) 43

1.6

1

14

The Story property is in the Skeena Mining Division, in the Unuk River - Storie Creek area. The claim block comprises twenty claim units held jointly by Ecstall Mining Corp. and Omega Gold Corp. Golden Arrow Resources holds an option on the property.

In 1990, crews of International Kodiak Resources completed a soil sampling grid over the Story 2 claim block, collecting 91 samples. All steams were systematically sampled. Twenty-three silt and moss samples were collected. The property was geologically mapped, and 486 rock samples were taken from mineralogically promising outcrops. Several areas of mineralization were examined, most notable of which is the large gossan in the western part of the Story 2 block, north of the Jack Glacier. Large outcroppings of pyritic rhyolite had anomalous values in Zn, Hg and As. Adjacent intermediate extrusive rocks are cut by several quartz carbonate sulphide veins up to 25cm wide. Many of these are mineralized with precious metals, and returned Au assays of up to 3.83g/tonne (.112 oz/ton). These veins, although relatively thin, have strike lengths of 15-50m. These carbonate - quartz veins also occur in the rhyolite unit.

LOCATION AND ACCESS

· · -----

........

l anna 1

D

.

. تو يا

1.1

أعيا

<u>г</u>

17

i. 6

Ċ,

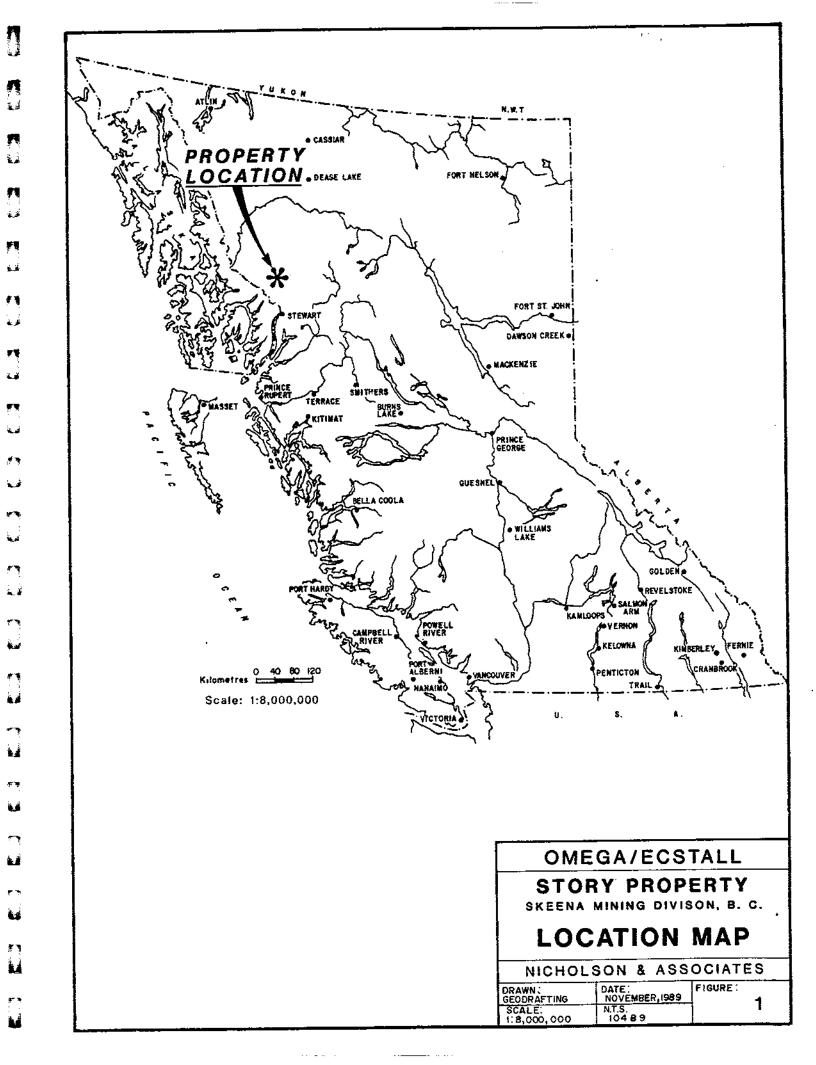
.

ن خ

25

×.

1


~ ? •

11

۱.

The Story claim block is situated at longitude 130°23' West and latitude 56°37' North within the Skeena Mining Division (see Figure 1). The property is just southeast of the Unuk River, and bisected by Storie Creek. The Story property is only 6 kilometers east of Calpine Resources' - Stikine Resources' Eskay Creek gold property. The Bruce and Jack glaciers are located just south of the property.

Access to the property is by helicopter from the Kodiak Camp just east of the Iskut River, 27 kilometers north of the property. Initial construction has begun on an access road from Bob Quinn Lake into the Iskut - Unuk River area, and will pass within 100m of the Kodiak Camp.

CLAIM STATUS

Π

n

1

U.

ŝź

2.5

7

73 1.3

. .

8 Å

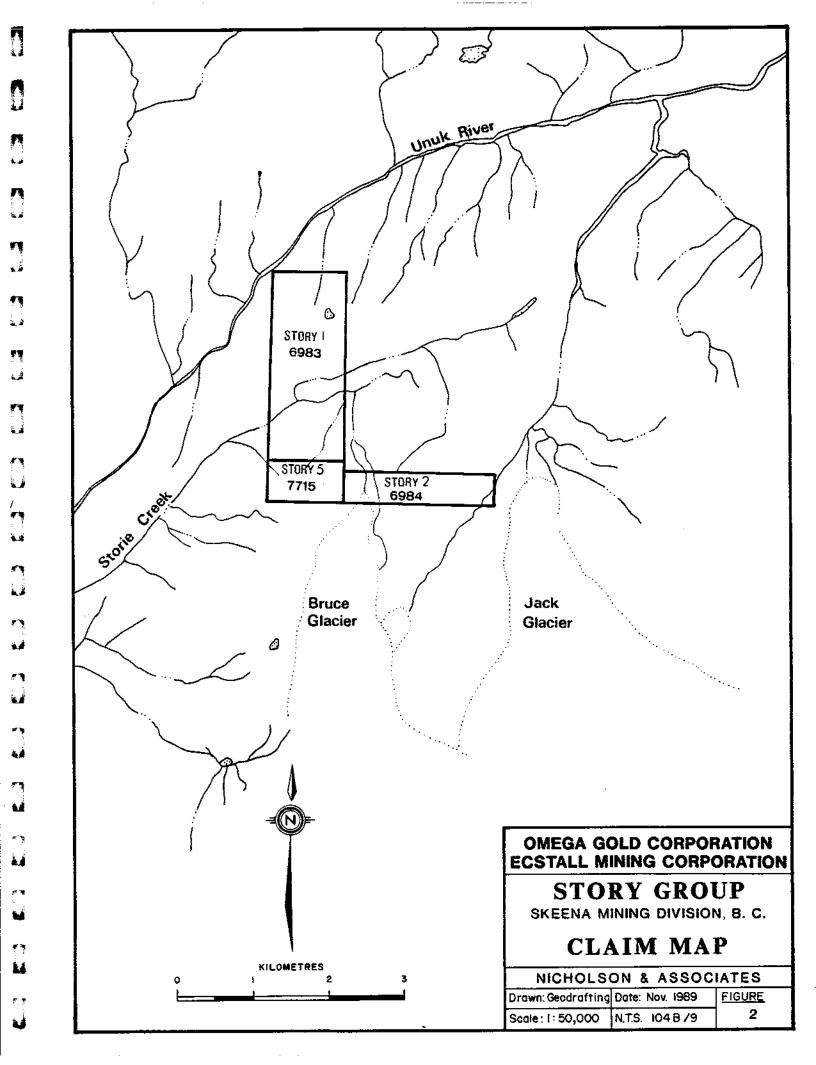
۱.

à.

۱.

L.

L


The Story claim block originally consisted of the Story 1 and 2 claim blocks, staked in November of 1988 in accordance with the new modified grid system. The Story 5 claim block was added in June, 1989. The claims are owned jointly by Ecstall Mining Corp. and Omega Gold Corp. on a 50/50 basis. Golden Arrow Resources is earning an interest in the property.

.

The pertinent claim information is summarized below. See Figure 2 for an outline map of the claim group.

<u>Claim</u>	<u>Units</u>	Record #	Mining Division	Expiry Date*
Story 1	10	6983	Skeena	Nov. 12/2000*
Story 2	8	69 84	Skeena	Nov. 12/2000*
Story 5	2	7715	Skeena	Jun. 30/2000*

* After filing the 1990 work for assessment purposes.

PHYSIOGRAPHY AND CLIMATE

ذذ

È.

u

The Story claim block is situated in the Boundary Ranges of the Coast Mountains. The property's elevation varies from less than 600m (2000 ft.) above the Unuk River in the extreme northwest corner of the property to 1311m (4300 ft.) below the Bruce Glacier. The Unuk River and Storie Creek flow through steep canyons on the property. Below 1200m (4000') the slopes are heavily forested with stands of cedar, fir and spruce. Stream drainages are generally immature and contain only moderate amounts of detritus. Storie Creek is very fast flowing and little sediment can be collected. Water is plentiful in the form of creeks, small ponds and glacial meltwater.

The timberline stands at approximately 1200m (4000 ft.), above which rock exposures are very good. Alpine vegatation consists of scrub spruce and willow, heather, and lichens. The Bruce and Jack glaciers, just south of the property, have carved wide valleys leaving excellent rock exposure and some till cover.

Climatically, the Story property is under the influence of coastal weather patterns. The summer weather varies from warm days to cool, wet conditions. Up to 12m of snow can accumulate during the winter months. Normally, the property is workable from June until late September.

HISTORY

أورعا

•

1

<u>1</u>

فكأ

The Iskut River - Unuk River area has, for the most part, seen sporadic mineral exploration activity until very recently. The first documented mineral discoveries occured around the turn of the twentieth century. Mineralization was discovered along the Iskut and Unuk Rivers, and in close proximity to the town of Stewart. Prior to World War II, small precious metal mines operated intermittently. The largest of these was the Silbak - Premier Mine which produced 41 million ounces of silver and 1.8 million ounces of gold between 1920 and 1985. After World War II, exploration was focussed on large tonnage base metal deposits. Although several deposits were defined, only the Granduc Mine reached commercial production, with published reserves of 10.9 million tons grading 1.79% copper. Exploration in the 1970's shifted toward precious metals and several deposits have since been discovered; including the Reg (Johnny Mountain Mine) of Skyline Gold Corp., with 740,000 tons grading 0.52 ounces/ton gold, 0.67 ounces/ton silver; Cominco/Prime's Snip deposit, with over 1 million tons of 0.875 ounces/ton gold, and the Eskay Creek deposit (Calpine/Stikine) with preliminary reserve estimates of 4.36 million tons grading 0.77 ounces /ton gold, 29.12 ounces/ton silver, at a cutoff grade of 0.10 oz. gold (Northern Miner, 6 Oct. 90). Several companies are presently exploring for base and precious metal deposits, and some are in the feasibility and pre-feasibility stages of production, i.e., the Sulphurets deposit (Newhawk/Granduc)with 715,000 tons of 0.431 ounces/ton gold, 19.7 ounces/ton silver, and the SB deposit (Tenajon) with 308,000 tons grading 0.51 ounces/ton gold.

The Storie Creek area has, for the most part, seen little exploration until recently. No historical record of work is present in government files.

ق ا

<u>د ب</u>

÷.,

أأست

<u>م</u> ا

ŝ.4

1.1

16 B

64

.

L

The only report of any exploration comes from Jarl Whist (personal communication) who, in the 1950's, made note of a large gossanous zone along Storie Creek, below Storie Falls. The British Columbia Ministry of Energy, Mines and Petroleum Resources took some stream silt samples from the Story property in 1988 as part of their geochemical reconnaisance program. These samples were taken in conjunction with regional mapping in the Unuk River region, which also located gossanous zones on the property.

Crews of Nicholson and Associates mapped the property on a reconnaisance scale, ran three soil sampling lines and took several silt and rock samples from the property during the 1989 season. Their work was concentrated near Storie Falls and south of the Jack Glacier, where some grab samples of interest were collected, such as SCR-025, which assayed 111.13 oz/ton Ag (Nicholson et al., 1990).

REGIONAL GEOLOGY

1.5

أسرينا

.

1

.

2

.

i i

14

9 Q

U

L.

1

η.,

M

أية

The Story property is located near the boundary between the Intermontane Belt and the Coast Plutonic Complex (Figure 3). It is underlain by the Stikine Terrane, a mid-Paleozoic to Mesozoic island arc succession. Mesozoic rocks are represented by volcanic rocks of the Triassic Stuhini Group, and the volcanic and subordinate sedimentary lithologies of the Lower to Middle Jurassic Hazelton Group. This dominantly volcanic package is overlain by, and interfingers with successor basin clastics of the Bowser Basin.

An eastern facies and a western facies have been identified in the Upper Triassic Stuhini Group. The western facies can be traced from the Stikine River eastward at least to Snippaker Mountain. It is characterized by corraline limestone and polymict cobble conglomerate, overlain by breccia, felsic tuff, shale and micrite. Laminated mafic and felsic tuff with coarse pyroxene phenocrysts are present near the top. The eastern facies lacks the thick limestone and felsic tuff units. Orange and black weathering, thin bedded siltstone and fine grained feldspathic, locally calcareous greywacke distinguish this facies. Polymict pebble conglomerate and shale are subordinate. Intermediate to mafic volcanics, breccias and conglomerates are typical.

A gradational contact between the Stuhini Group and the Hazelton Group has been mapped near the headwaters of the Unuk River (Anderson and Thorkelson, 1990). Siltstone above the orange and black weathering siltstones and shales becomes increasingly siliceous, and greywackes and conglomerates appear more abundantly. This conglomerate is present as discontinuous lenses and consists of clast-

.....

supported porphyritic andesite and dacite clasts. The uppermost strata in this transitional zone consists of laminated siliceous siltstone, fine grained greywacke, minor coarser grained greywacke and matrix to clast supported conglomerate.

Mineralization at the Snip deposit is hosted within the Stuhini Group and is believed to have occurred during the Upper Triassic. Several other deposits have been found in the Stuhini Group; including the Kerr, the Doc, the Inel and the Stonehouse (Figure 4).

è è

ia 🚽

÷ 4

è, i

14

-

١ź

h

The Hazelton Group has been divided into three heterogeneous formations: the Lower Jurassic Unuk River Formation and Betty Creek Formation, and the Lower to Middle Jurassic Salmon River Formation. In addition, a regional marker unit, the Mt. Dilworth formation, has been identified regionally between the Betty Creek and Salmon River Formations, and has come to gain informal status as a formation. Some workers (e.g., Grove, 1986) have identified a fourth and uppermost formation in the Hazelton Group, the Nass Formation. However, this package of rocks includes Bowser Basin rocks and should not be included in the Hazelton Group, which encompasses the Stikine Arch (Anderson and Thorkelson, 1990).

The volcanic sequences of the Unuk River Formation are characterized by basal pyroclastic flows that are progressively overlain by tuffs, argillites, local andesitic breccia, and finally conglomerates with interbedded tuffs, wackes and siltstones.

The Betty Creek Formation unconformably overlies the Unuk River Formation and is comprised of marcon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas and andesitic

flows. The conglomerate / breccia unit consists of matrix supported pebble to boulder sized clasts of aphanitic to porphyritic andesite.

أهنك

¥. Å

i i

F 1

16. Å

1

1

Overlying these rocks is the Mt. Dilworth formation (Britton et al., 1989; Anderson and Thorkelson, 1990), a regional marker unit consisting of tuff breccia, felsic tuff and dust tuff. These tuffs range from unwelded to welded, and aphyric to sparsely phyric.

The lower member of the Salmon River Formation varies along strike from a limey argillite to limey greywacke to a sandy limestone. In most localities it is too thin to map, but it thickens towards the north and northwest to at least 1500m of siltstones, greywackes and rare fossiliferous limestones south of Telegraph Creek.

The upper member of the Salmon River Formation consists of three distinct facies from east to west: the Snippaker Mountain facies, the Eskay Creek facies, and the Troy Ridge facies. The gold deposit presently being defined at Eskay Creek is stratabound in Eskay Creek facies rocks. This medial facies extends 50-60 kilometers north and south along strike from the deposit. The Eskay Creek facies comprises aphyric to augite phyric pillow basalts with interfingered siltstone, tuffaceous wacke and conglomerate. To the west, the Snippaker Mountain facies consists mainly of volcanic breccia. The eastern Troy Ridge facies comprises shales with interbedded tuffs and breccias (Anderson and Thorkelson, 1990, see Figure 4).

At the end of the Middle Jurassic, the volcanic complex was uplifted to produce the Stikine Arch, which shed detritus into the adjacent Bowser Basin. These sediments form the Middle and Late Jurassic Bowser Lake

Group sediments. Figure 4 summarizes the stratigraphy and lithology of Mesozoic rocks in the region.

.

ن.

ال ا

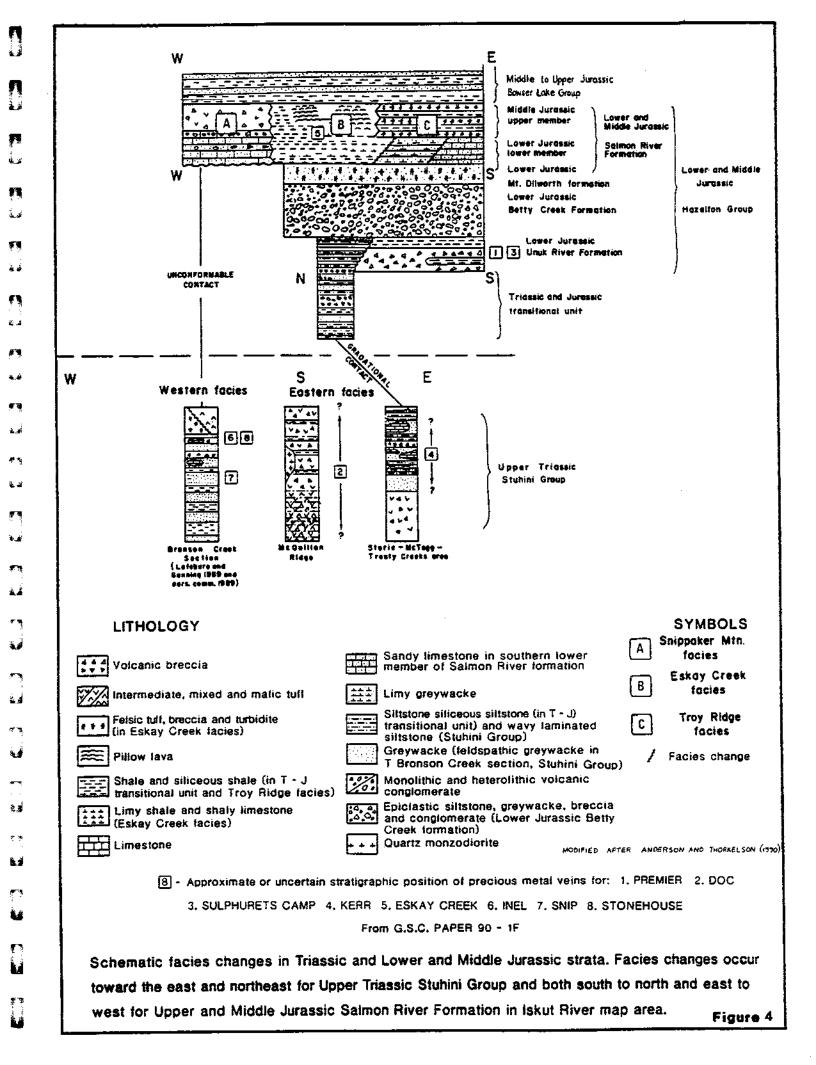
٠....

1.2

14

١.

۰.


Ľ,

ĥ

U

. .

The volcanic and sedimentary rocks were subsequently intruded by granitoid intrusions associated with the Coast Plutonic Complex. Intrusive activity is interpreted to have occurred from the Middle Cretaceous to the Early Tertiary. Late stage (Quaternary) basaltic volcanism resulted in widespread deposits of columnar basalt flows, ash and tephra, and scattered cinder cones. Much of these rocks were buried and / or eroded through glacial activity during the Pleistocene.

LOCAL GEOLOGY

4. 3

أأهية

لأريك

فن فأ

11

1

à đ

Ì.

ìi

The Story property was mapped at a scale of 1:5000. Both the Betty Creek Formation and the Salmon River Formations of the Hazelton Group outcrop on the Story property. In addition, the lower part of the Salmon River Formation is likely the Mt. Dilworth formation, based on comparison with lithological descriptions of published government maps (Unuk River map sheet).

Regional maps by the Geological Survey of Canada that cover the Storie Creek area show the series of Hazelton Group rocks striking NE across the property. Two northeast trending faults of unknown displacement are also shown to cut across the Story claims. Airphoto analysis reveals several strong lineaments on the property: west along Storie Creek, and strong north trending lineaments following Bruce Creek and Jack Creek. These structures are likely faults. Anderson (1990) mentions a reverse fault following the drainage of Bruce Creek. Several smaller faults are also present on the property which disrupt the otherwise uniform northeast strike and northwest dip of the units.

A description of the rock units mapped on the Story property follows below. The Story property geology map (Figure 5) can be found in the back pocket.

Betty Creek Formation

The Betty Creek Formation can be divided into two distinct units on the Story property: fine to medium grained clastics and felsic to mafic volcanic rocks which include tuffs, flows, and possibly hypabyssal intrusions. In the extreme eastern end of the Story 1 block, a series of east dipping sediments outcrop in the Jack Glacier valley (map unit 10). Their strike direction varies from NNW to NNE. Grain size grading and scour marks indicate that the sediments are right way up. Small folds occur, with steep northeast plunges and near vertical axial planes.

-- -

i.

أهد الأ

前着

44

È

à.

Dark grey, strongly foliated slates, siltstones with carbonate concretions, and fine to medium grained grey subarenites make up the bulk of this sedimentary package. The foliation in the slates and argillites strikes north, with a steep east dip. Some medium grained lithic sandstones have abundant pelecypod (?) shell fragments. A 5m thick conglomerate band was also observed, comprising subrounded chert and quartzite pebbles to cobbles in a sandy matrix. For the most part, the sediments lack the maroon colour the characterizes much of the Betty Creek Formation regionally. it is possible that these sediments are correlative with the upper part of the Unuk River Formation.

These sediments are intruded by two generations of felsic volcanics. A two meter wide quartz - feldspar porphyry dyke intrudes the sediments near the southern claim boundary. This dyke strikes just north of east and dips steeply south. An earlier generation of rhyolite dykes/sills strikes both east-west and north-south, and seem to be structurally disturbed. These bear a weak foliation that is parallel to the surrounding slates and siltstones. These older rhyolites bear a strong resemblance to the felsic phases of the Betty Creek volcanics to the immediate west and they are likely coeval.

The volcanic rocks of the Betty Creek Formation outcrop to the west of the sediments, separated by a north trending fault from the latter.

These volcanics underlie the central and west part of the Story 2 block, Story 5 and the southern part of the Story 1 claim blocks, in generally good alpine exposures. In the western part of the Story 2 claim block, these volcanics host a large gossan (Jack Glacier gossan).

- -

* 4

5.5

2.4

73

١Ň

--- -----

Lithologies in the gossanous zone include white to grey -green rhyolite and/or felsic crystal tuff (map unit 2). These felsic rocks are strongly pyritic and weather yellow to maroon colour. Numerous faults cut these rocks, trending mostly north and northeast. Faulted contacts separate these felsic rocks from grey-green to dark green coloured fine grained aphyric intermediate or mafic extrusive or hypabyssal intrusions (map unit 3). It is likely that this rock is an aphyric andesite, but the massive nature and lack of diagnostic textures or phenocrysts make a positive identification impossible. This rock is quite strongly silicified. Several quartz-carbonate and carbonate veins cut the andesite, and some brecciate the host rock.

Adjacent to the faulted contact between the sediments and volcanics a 10m thick sequence of bedded tuffs, ashes and agglomerates (map unit 9) underlie the intermediate volcanics. The orientation of these beds is north-northeast, with a moderate west dip. Thus they dip opposite to the adjacent sediments, which is further evidence for a fault contact between the sediment and volcanic rocks of the Betty Creek Formation. The contact with the overlying andesites seems conformable, though this wedge of volcaniclastics is cut off to the north by a northeast trending fault. The lithologies in this 10m thick package include lapilli and ash tuffs, and agglomerate. Most beds display fining upward size grading.

Along some of the fault zones between andesite and rhyolite, a volcanic breccia exists (Map unit 4). It is composed of white to buff, angular clasts, 2-8mm in size, that seem to be rhyolite or felsic ash. They are in a matrix of green - grey to dark green glassy to ash matrix. This rock may be a brecciated phase of the rhyolite, as it is often found in fault zones, or an ash supported lithic lapilli tuff. Closely associated with the breccia, at least in the northeast trending fault zone between the rhyolite and andesite units, is a black fissile mudstone, that may be volcanic in nature (Map unit 4a). It is also generally found in fault zones and it is uncertain whether this unit is of volcanosedimentary origin or associated with high strain and deformation in the fault zones. Locally, it displays sedimentary features such as bedding, with the same orientation as map unit 9. Thus it is likely part of the conformable sequence of rocks. However, the discontinuous nature of its outcroppings could indicate that it had been sheared and/or broken into discrete wedges along fault planes.

Ľ.

1 Å

ند ا

É.

ü

Also associated with the rhyolite in the western end of the property (map unit 2) is a plagioclase crystal tuff (Map unit 6). It is white to buff in colour, with abundant plagioclase crystals and a massive fabric. It seems to be concordant with the rhyolite, although its exposures are scattered and few.

West of the rhyolite - andesite units, the central portion of the Story 1 block is underlain by scattered outcrops of grey, tan and buff lapilli and crystal tuffs (Map unit 6). The tuffs are quite massive in nature, with no apparent bedding. A weak to moderate foliation fabric runs northeast, with a steep southeast dip. The strike of the foliation

is parallel to several faults which follow gullies, and the fabric is probably related to fault strain.

At the west end of the Story 1 claim, within the lapilli tuffs, a band of volcanic agglomerate crops out. This distinctive unit (Map unit 7) features rounded blocks of polylithic felsic and intermediate flows and tuffs up to 30cm across, and rarer argillite clasts, in an ash matrix. Coarse lapilli tuffs are interbedded. This unit strikes NNE and dips steeply southeast.

In the central part of the Story 5 claim block, a crystal -rich flow or hypabyssal (?) intermediate to mafic intrusion trends parallel to the volcanic units (Map unit 8). This green grey, medium grained rock features plagioclase phenocrysts in a groundmass of pyroxene and plagioclase microphenocrysts. Intrusive crosscutting relations with the volcanic rocks were not observed, so the unit may be a concordant flow, as the map pattern would suggest. This unit probably corresponds to the dacite marker unit mapped by Anderson et al. (1990).

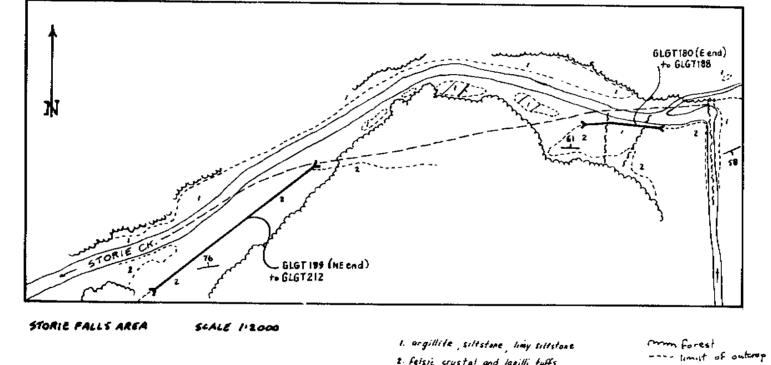
Salmon River Formation

Π

2,

73

The Salmon River Formation outcrops in the Story 2 block and the northwest part of the Story 5 block. The contact with the underlying Betty Creek Formation was not located with certainty. The Salmon River Formation consists of Mt. Dilworth felsic volcanics, and overlying sediments. Along the south side of Storie Creek, sediments of the Salmon River Formation (Map unit 1) are in faulted contact with the Mt. Dilworth formation (Map unit 2, 6). The Mt. Dilworth volcanics comprise light green to white rhyolites interbedded with felsic tuffs. The tuffs are


generally massive with few bedding features, and silicified with sparse crystals and lapilli. Steep north trending faults cut this sequence, juxtaposing the felsic volcanics with weakly folded argillites and siltstones at Storie Falls (see Figure 5a).

North of Storie Creek, the Salmon River Formation consists of black slates, argillites, lithic wacke and some chert pebble conglomerate. This thick package of sediments continues uninterrupted to the Unuk River, striking northeast and dipping moderately to steeply northwest.

1

Thin gabbroic or diabase dykes cut through the tuffs and agglomerates of the Betty Creek Formation, striking west-northwest and dipping steeply northeast. A somewhat thicker dyke of similar composition intrudes sediments north of Storie Creek, striking northeast.

In summary, the Story property is underlain by sediments and volcanics that are probably correlative with the Salmon River and Betty Creek Formations. These units stike northeast across the property. The sediments are weakly folded, and both the finer grained sediments and some volcanic units display a variably developed northeast trending foliation. All units are cut by numerous northeast and north trending faults.

C 3 1 3

2

Figure 5a

÷

:

•

2. felsic crystal and lapilli tuffs

E_ stream +--- trench non Fault

---- contact.

MINERALIZATION

Π

á.

- 2

2.3

١.

Two large gossanous zones were examined during the 1990 season. In addition, a thorough examination of the property was undertaken to discover new mineralized zones. In the south part of the Story 1 block, felsic volcanics of the Mt. Dilworth formation are quite rusty weathered. This is likely the gossan described by Mr. Whist who visited the area in the 1950s. The felsic volcanics on the south side of Storie Creek form steep bluffs above the creek. The accessible rocks at creek level were systematically sampled every five meters along the length of the gossan, for a total length of 165m.

The mineralization consists of disseminations and stringers of pyrite and arsenopyrite, up to 5% rock volume. Quartz and carbonate stringers are common, with some in the north striking faults reaching up to 10cm in width, and hosting disseminated sulphides. In contrast to the Mt. Dilworth facies volcanics, the Salmon River Formation sediments are only weakly mineralized, with some disseminated pyrite in rustyweathering argillites.

At the west end of the Story 2 block, a long string of gossans are exposed along the west side and the toe of Jack Glacier, continuing north and south of the property. On the Story property, this gossanous zone measures about 200m by 250m. The host rocks are the rhyolites of the Betty Creek Formation. The rocks are stained yellow to deep maroon, indicating both limonite and scorodite staining. One pyritized rhyolite boulder examined just south of the property had pink erythrite staining indicating cobalt mineralization. Malachite and azurite were not observed at any outcrop. The rhyolite is cut by a stockwork of pyrite, arsenopyrite and quartz stringers. The stringers range in thickness from 1 to 50mm. Some of the veinlets seem to be associated with shears or small faults. The sulphides often exhibit a vuggy and encrusting texture. The orientation of the stringers is not systematic, and often they pinch out or are offset by fractures. However, they are very numerous, and as much as 15-20% of the rock volume may be made of sulphides. Disseminated pyrite, and blebs of pyrite + arsenopyrite +/- sphalerite also occur. Chalcopyrite was not observed, except in a few quartz + carbonate + sulphide veins. These veins are discussed below.

أأمرها

6.5

Ì,

The andesite unit is separated from the rhyolite by a fault, and does not weather a rusty colour. It features very few disseminated sulphides and none of the abundant sulphide stringers found in the adjacent rhyolite. It is host to a series of mineralized quartzcarbonate veins. These veins range from 2-25cm in width and are traceable for many meters along strike. The veins appear to be fracture infillings, with very little shear evident. In fact they bear evidence for brittle deformation in that they often brecciate the host rock and angular fragments of andesite can be seen within several of these veins. The veins generally have straight margins with some pinching and swelling. There is little marginal alteration of the host rock, except for silicic alteration which pervades the entire rock. Some veins were observed to anastomose and pinch out. The veins generally strike northwest and dip moderately to steeply northeast and southwest. It is probable that they formed in a conjugate set of fractures. The comb texture apparent in the infilling minerals indicates periodic precipitation of carbonate, quartz

and sulphides, followed by further dilation of the fracture and subsequent precipitation of minerals by hot fluids.

- _____ - ___.

Ł.

4.8

ی خ

.

14

à

١Ĵ

Sulphides are present in all veins, but are more common in those veins with quartz and carbonate as gangue minerals rather than carbonate alone. Sulphide minerals include pyrite, sphalerite, arsenopyrite, chalcopyrite and galena, in general order of decreasing abundance. Geochemical assays suggest the presence of rare stibuite in a few of the veins. The volume percentage of sulphides in the veins can reach 40%.

The veins can generally be traced for 30 to 50m or more. They are cut off by the fault separating rhyolite by andesite, but can be followed across minor faults within the andesite. They cross uninterrupted from the andesite unit into the underlying bedded tuffs, but are not found in the Betty Creek Formation sediments. Near the south end of the property, approximately one dozen veins occur over a 30m interval, and then decrease in abundance toward the south. At the eastern side of the andesite unit, carbonate veins predominate over the quartz + carbonate veins. They are quite common but weakly mineralized with pyrite, sphalerite and galena.

Near the base of the Bruce Glacier, a small mineralized shear zone returned anomalous arsenic, antimony and mercury values (sample GCCR166, 569ppm As, 30ppm Sb, 31375ppb Hg). There are a series of these small (0.5m) mineralized shear zones, striking west-northwest and dipping southwest. The zones are often occupied by quartz and sulphide veins.

GEOCHEMICAL SURVEY RESULTS

14

1

ă à

Ĭ

Complete ICP and assay results for all samples can be found in Appendix 3. The map pocket holds sample location maps for regional grab samples, soils, silts, and continuous chip samples over the Jack Glacier gossan, as well as Au, Ag, As, Cu, Pb, Zn, Hg, Sb, and Ba geochemistry plotted for each sample.

Soil samples were taken along flagged grid lines at 50m intervals. Samples were taken from the B horizon where possible. Samples were typically taken from depths from 15-40cm and placed in numbered kraft bags. Rock sample locations were marked with flagging and aluminum tags. Samples were placed in labelled plastic bags. Continuous rock chip sample sites were marked with fluorescent spray paint. Silt and moss sampling sites were marked with flagging, and the samples placed in labelled plastic bags. All samples were shipped to Min - En Labs in North Vancouver for analysis. Analytical techniques are summarized in Appendix 3. Soil, silt and chip sampling results are discussed below.

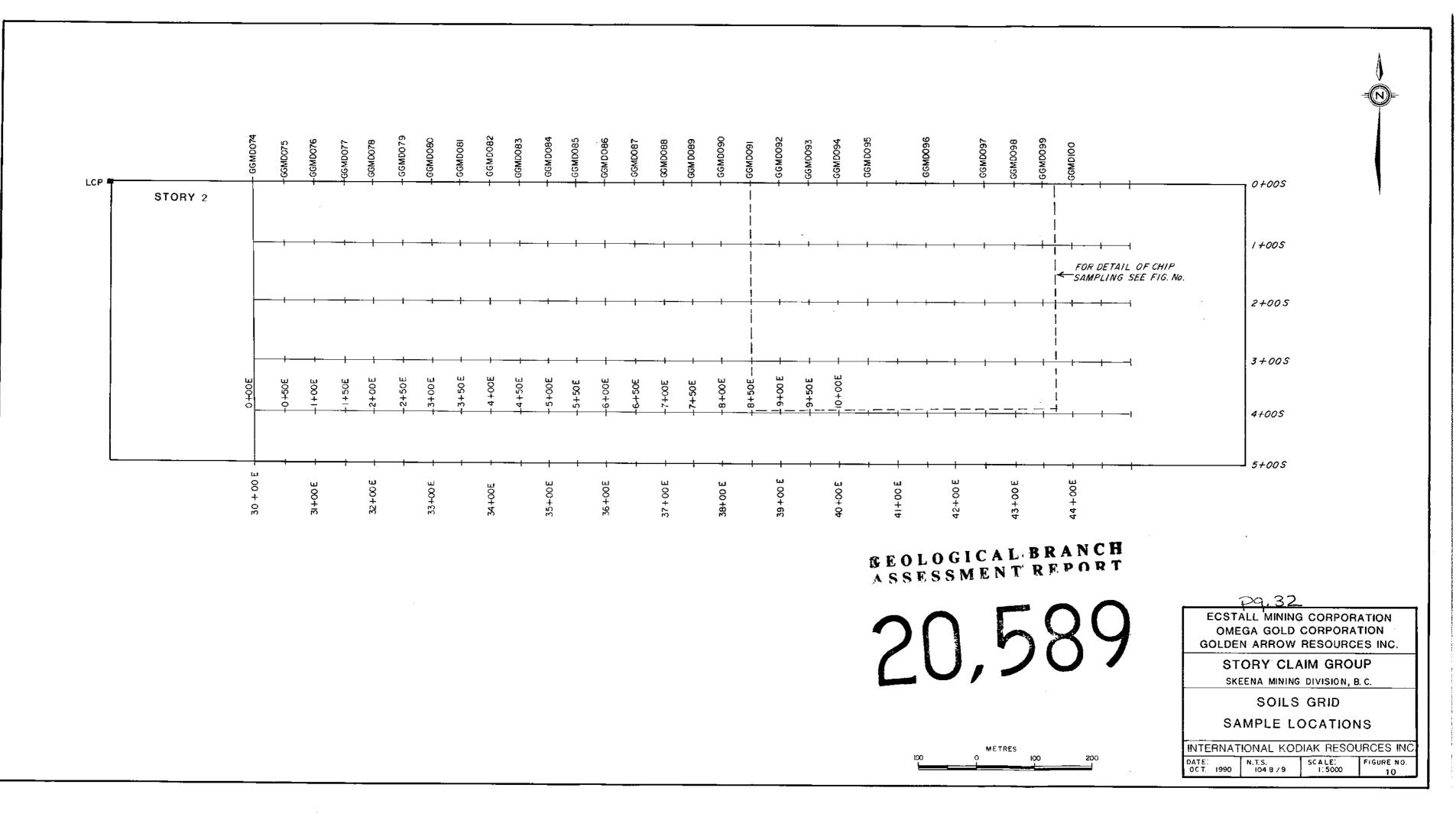
Soil survey: Three soil sampling lines were established in 1989, each approximately 1500m long, on the Story 1 claim block. These were sampled at 50m intervals, to test for westward extensions of the gossanous mineralized zone, where outcrop was covered. In 1990, three more lines were set up, to have line spacing every 100m. Unfortunately, some surveying errors resulted in lines from this season intersecting lines from last season.

Lines 0+00S, 2+00S and 4+00S, established this season, all maintain a spacing of 200m between them. The intersecting lines do not diminish the value of the soil survey, nor invalidate any observations or recommendations based on the data obtained. Soil geochemistry data from 1989 and 1990 (Figures 14-19) are plotted based on perfectly parallel lines for clarity.

All 91 soil samples were analysed for 30 elements plus Au. Nine of the more important elements were plotted and results were contoured for Ag, Cu, Pb, Zn, Hg, and Ba (Figures 14-19). Each contour plot, with some deviations, reveal anomalies over the eastern part of the Story 2 claim block, coinciding with the gossanous outcrops. The Zn and Hg contour diagrams best reveal the nature of the anomalies. The rough correlation of the soil geochemistry diagrams reflect the mineralization apparent in the gossanous rhyolite and andesite units. Indications from the soil data are that the mineralized rocks extend for some distance eastward, under the soil cover, for up to 100m, thereby expanding the apparent volume of mineralized rock.

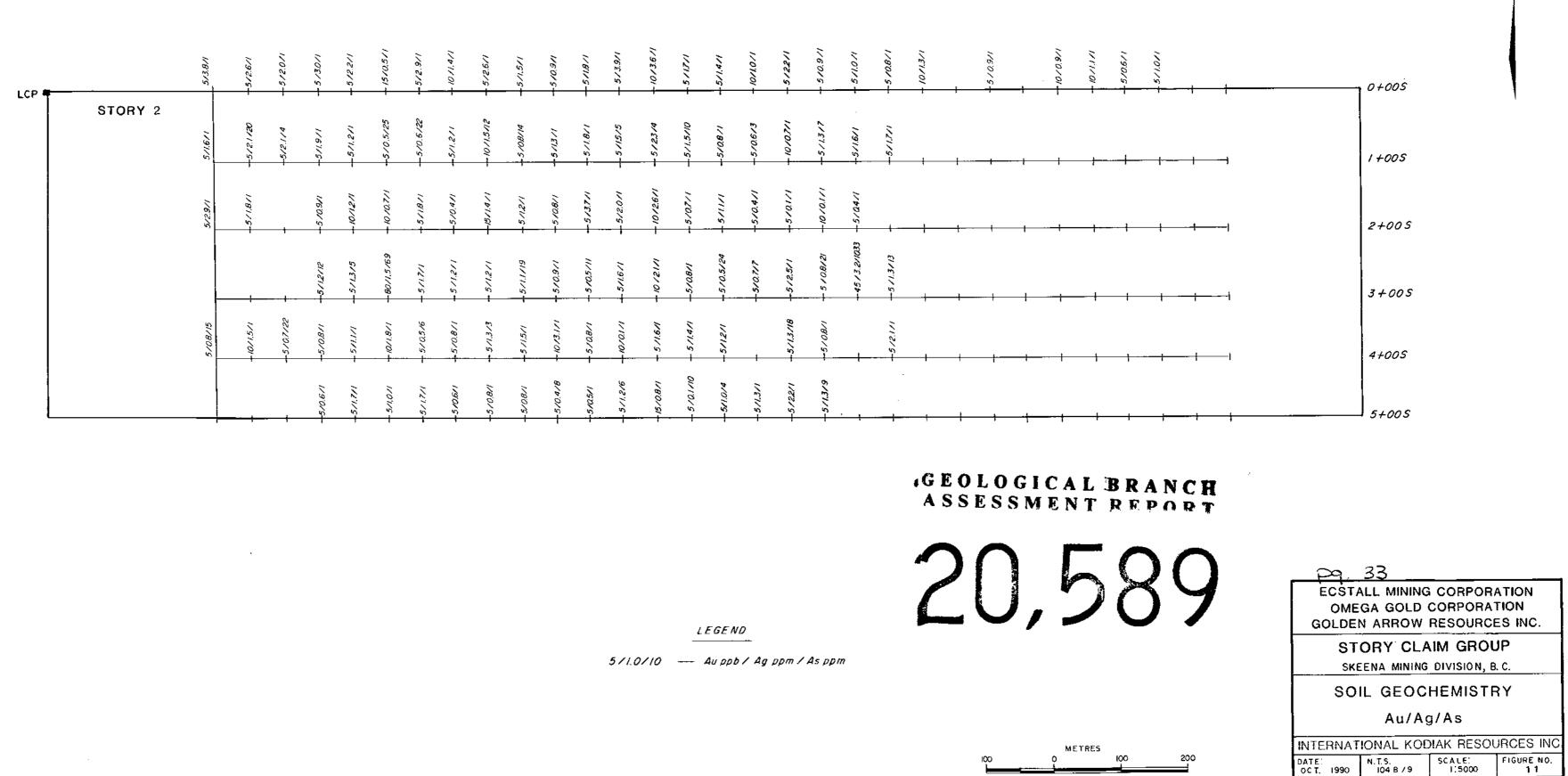
. Siana

£¥


22

6

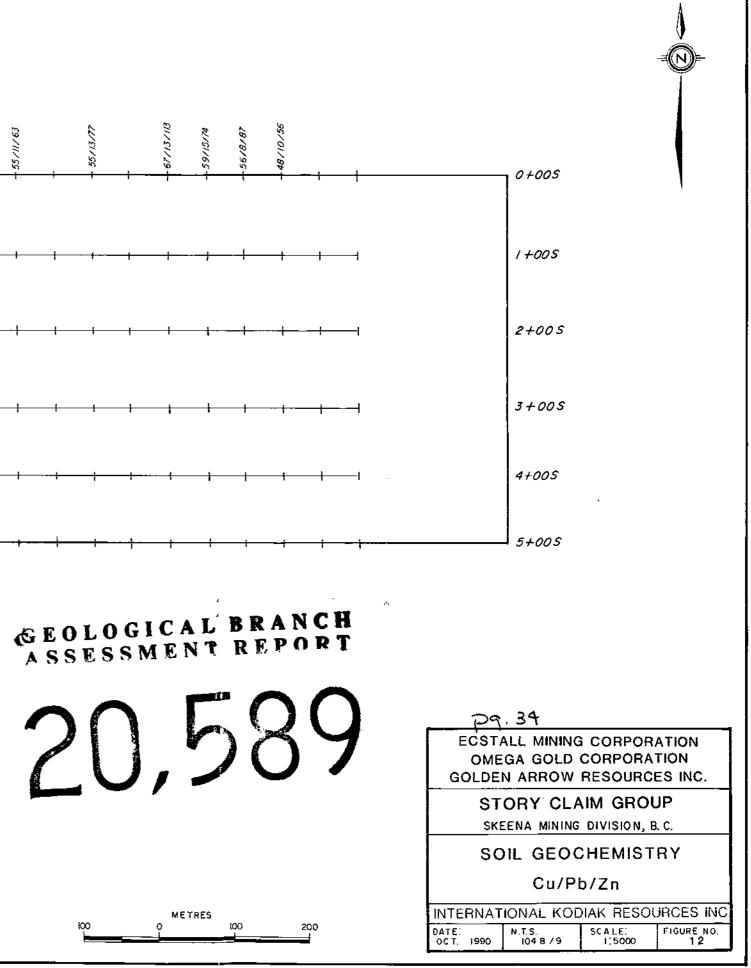
Mercury, which in one soil sample reached 27000 ppb, could indicate the upper levels of an epithermal system. Gold and arsenic values did not follow the pattern seen in the other elements, as they were generally not above background levels. Two slightly anomalous Au values (80 and 45 ppb) were obtained on line L3+00S. **.**.... - -100.00 ____ 6133 --------. — $\sim -$--- -------_ -... ... · ...


65 **- 5**,

- -

- -靜神 ____ 5-افت ا --er a - $i\pi \simeq$ 77 ··· -. -÷ e. 15 **\-** ----i____ - iх в. ----4.3 20 -----' ._. ÷. ._

-t-12

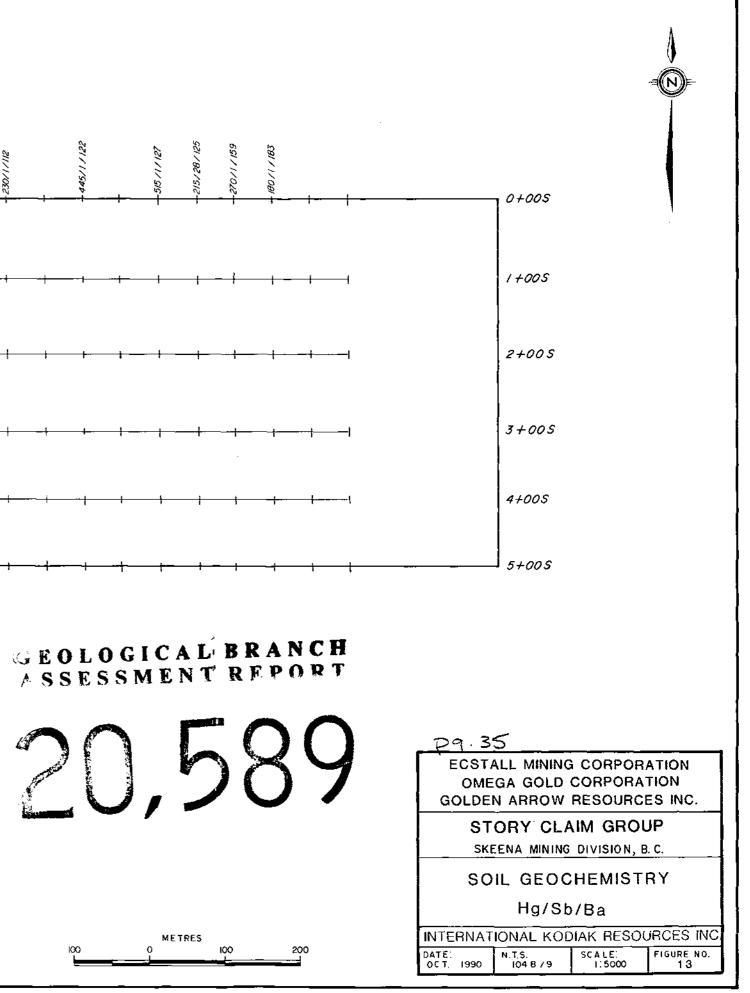


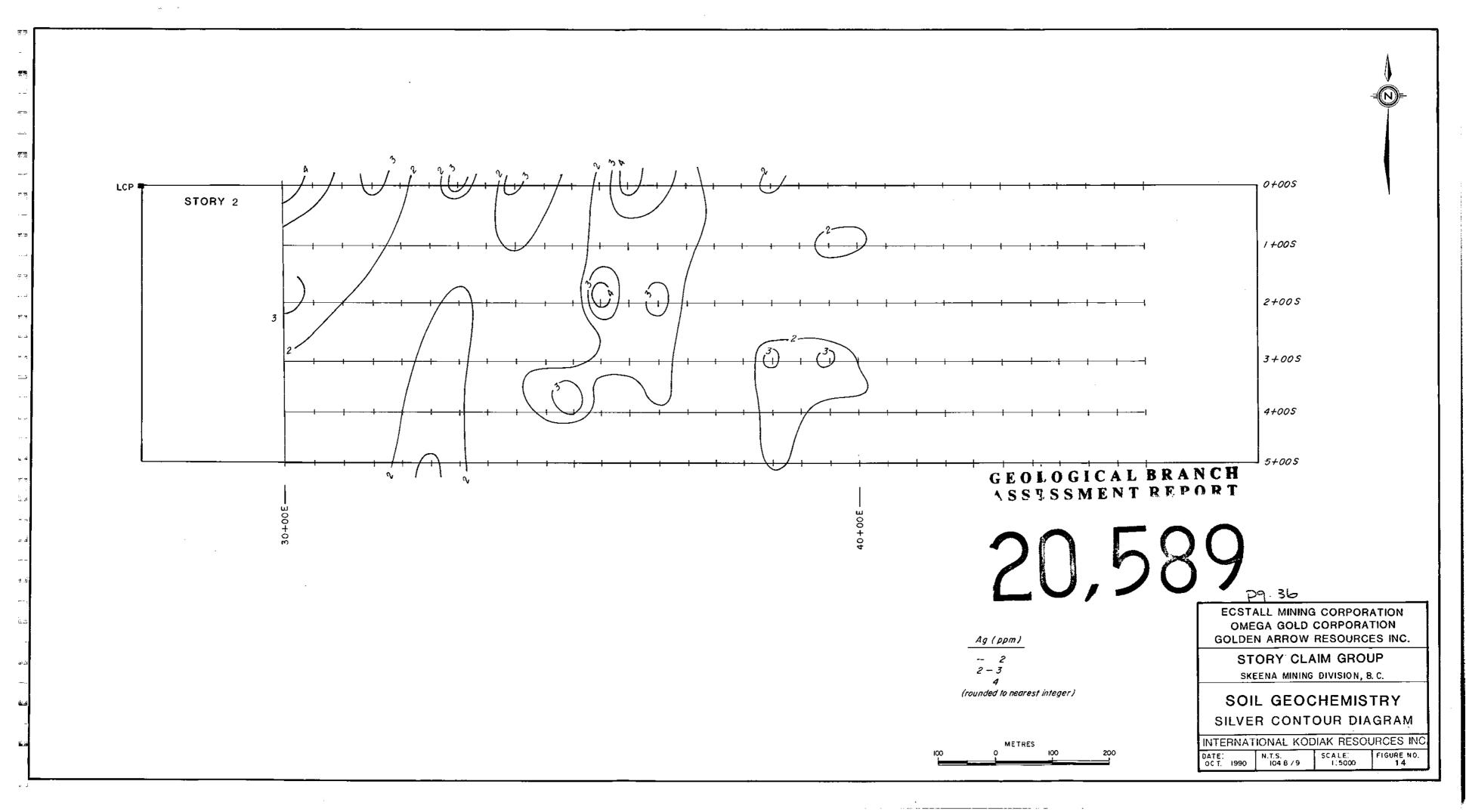
=(N)

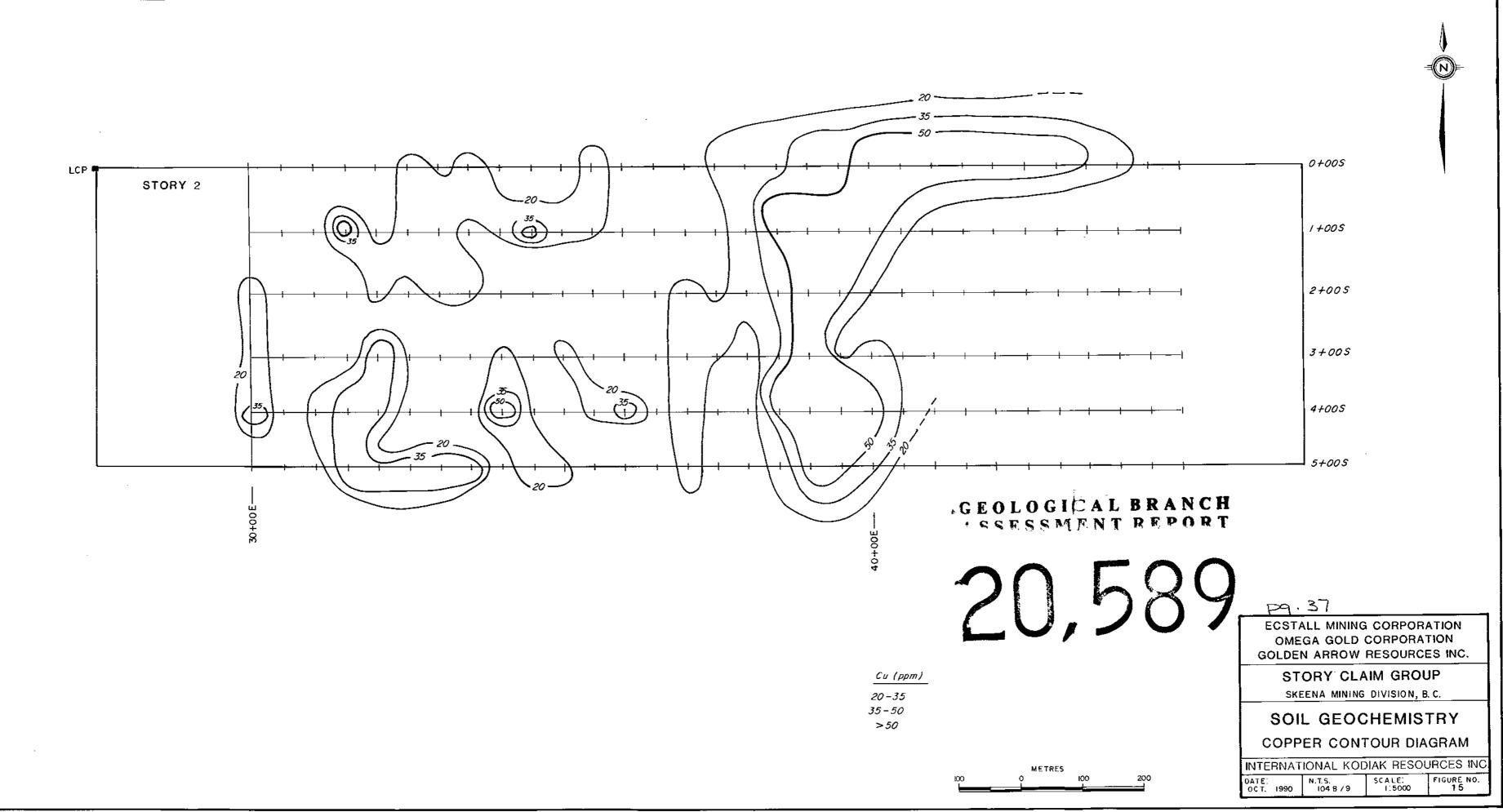
		18/4/54	-18/16/38	-13/25/30	- 19/14/31	- 12 / 7 / 15	-31/20/61	20/2/21-	- 20/25/67	26121121.	- 14/12/37	ÞI / 21 / 21-	-23/34/50	-18/16/37	- 18 / 14/41	-15/25/28	-33/20/78	-21/12/47	Eb/b1/b1-	- 47/20/128	- 48/18/104	-521/4/77	- 55 /11/63
LCP •	STORY 2	8/4/38	- 10/21/66	- 11/19/53	- 60/34/134	- 11/6/65	-30/15/77	-20/17/80	- 14/20/69	- 32/32/142		-30/36/148	- 29/4/89	-18/13/88	- 13/15/69	- 14/21/2/	- 19/51/82	- 53/31/152	57/47/148		- 66/38/131	- 83/41/125 -	I
		83/44/70	- 16/30/49		-17/24/52	-30/17/134	-17/20/75	- 33/19/46	-33/20/78	+16/18/50	- 9/13/50		4/13/69		- 14/10/59	-20/20/140	12/12/61-	-25/37/171	37/ 157/979	53/31/574	-56/28/154	{	
			·· [15 /8/57	99/21/108	- 13/28/79		-15/11/60	-23/5/41	-13/20/59		-14/10/69	-13/24/213	- 9/13/73	-30/16/231	-33/42/280	-19/34/289	- 14/39/140		- 13/26/80	-42/32/97	
		45/31/96	-12/24/37	-32/22/52		-35/33/106	- 11/27/28	- 17126/48	- 19/37/34	-62/27/108	- 15124126		-28/43/102	-35/42/127	-19/23/51	-30/28/81	- 16/19/37	i	- 72/48/271			-51/30/61	
					35/23/98	641/18/14	44110/121	621/11/92	Æ1201105	19/2/61	24/2/96	16/21/162	15/10/64	1219152	18/8/1	22134/442	- 16/13/105	4/16/211	33/5/85	51/24/159			

LEGEND

24/32/94 — Cuppm/Pbppm/Znppm

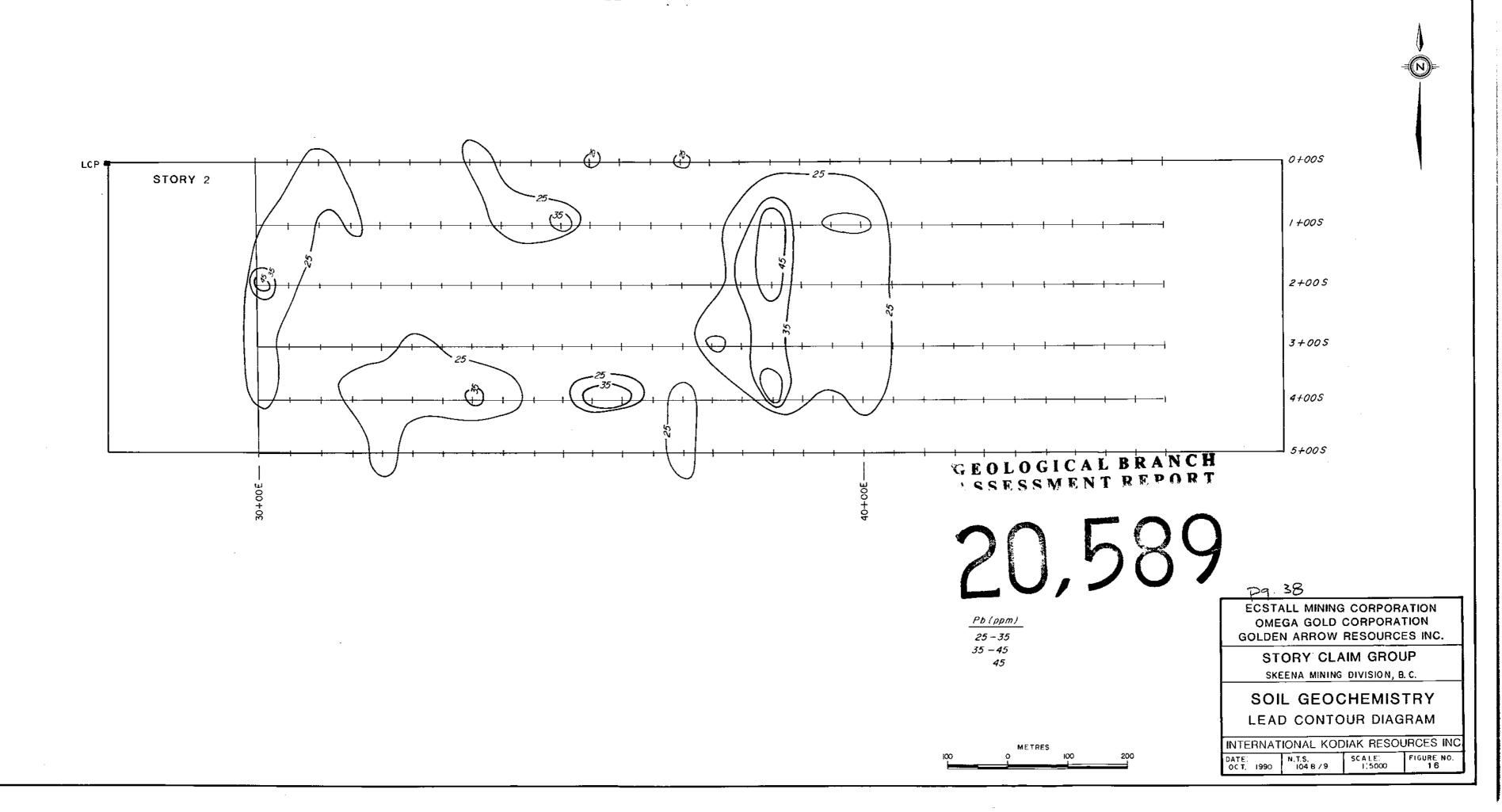

- --- - - ---


.....


LCP 🖣		40/1/60	. 1857 1 7 55	-195/1/89	- I	-200/1/63	- 285 /1/22	- 125/1/67	- 285/1/61	- 120 /1 / 70	- 185/1/78	• 25571755	- 175/1/41	-210/1/43	- 115/1/66	- 420/1/33	-665/1/83	-110/11/28	- 340/1/53	-1990/1/155	475111134	-315/1/117	-230/1/11/2
	STORY 2		,		1	•			·	•	I	1	I	•	F	i			1	•	ŧ.	;	_,_~
		-/-/65	<u>6</u> [//	/-/56	b 61-/-		-/-/2	66/-/-	-/-/25	87-/-	+-/-/183	£/-/- +	+-/-/35		-/-/44	121	-/-/82	75	£6/-/- +	bii/-/- +	+-/-/128	521/-/-	+
		370/1/36	-210/1/35		- 265/1/36	02/1/005-		- 25571/48	-295/1/74		- 385/1/45	-280/1/35	-300/1/23	-295/1/58	-155/1/58	-1050/1/80	-675/1/74	-2125/1/128	- 27125/28/123	-3255/1/151	-1570/1/ 140		 ł
					/-/50	85/-/-		-/-/22	-/-/55	- /-/3/	- 1-175	-/ /66	- 2E/-/-	- 56/-/-	- /~/45	-/-/48	· -/-/2	-/-/83	-/-/113	-/-/85	. 201/-/-	. 26-1	1
		130/1/66	E8/1/081-	-205/1/50	-150/1/54	-510/1/53 -	- 180/1/21	- 125/1/68 -	-225/1/25	-295/1/116	-205/1/125 -	285/1/47	- 180/1/84	- 365/1/67	-110/1/63 -	-125/1/167	- 195/1/110	- !	-405/2/38	- 120/1/34	 	-115/1/82 -	1
					· • • • • • • • • • • • • • • • • • • •	- 1-1106 -	- 12/-/- +	- 001/-/				-/-/65 .		/-/				/		* <u>EF</u> Y/-/			- 1

LEGEND

10/1/34 — Hgppb/Sbppm/Bappm



· · · · · · · · ·

FT 1

2.5

- -

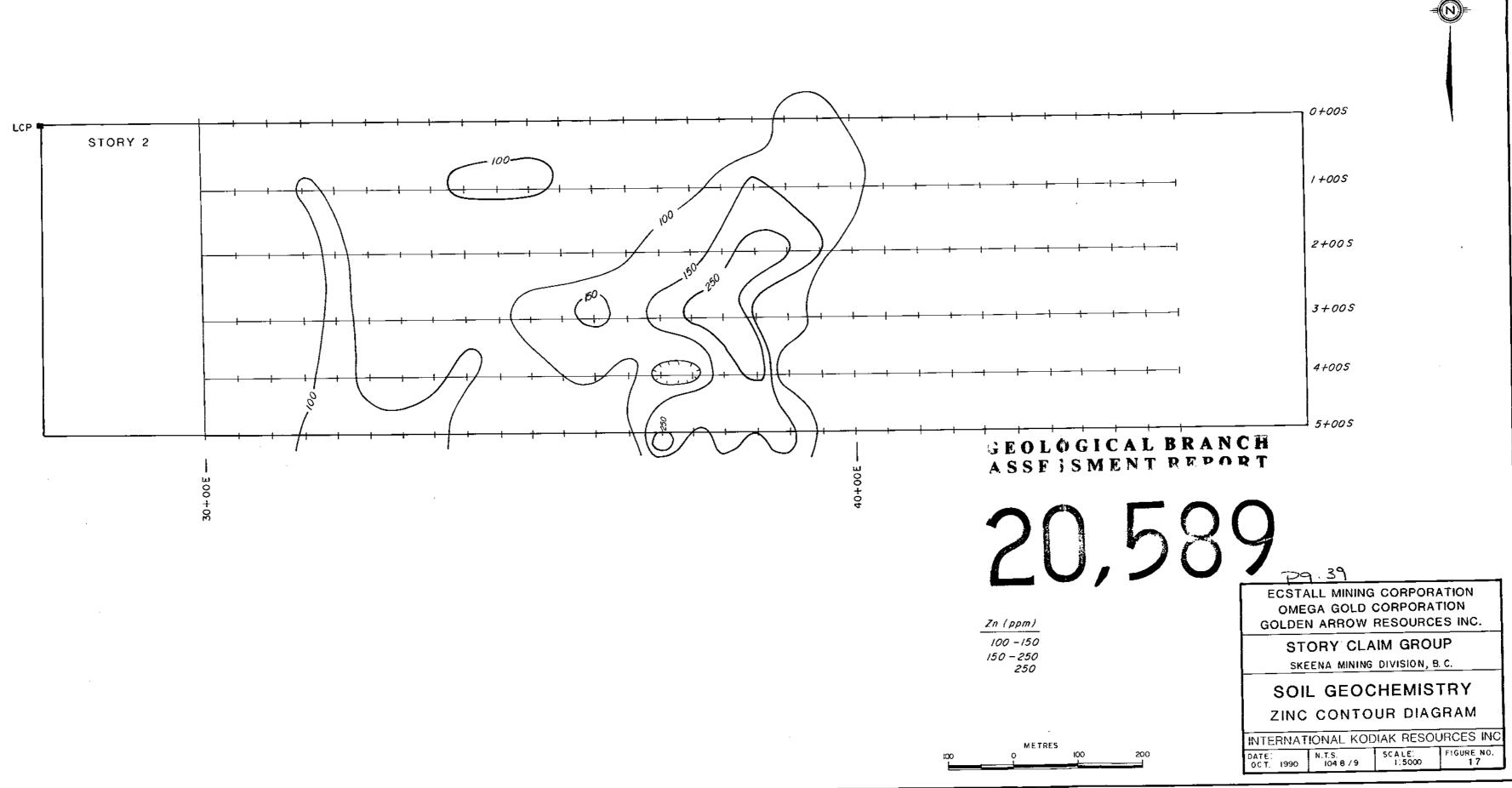
e na

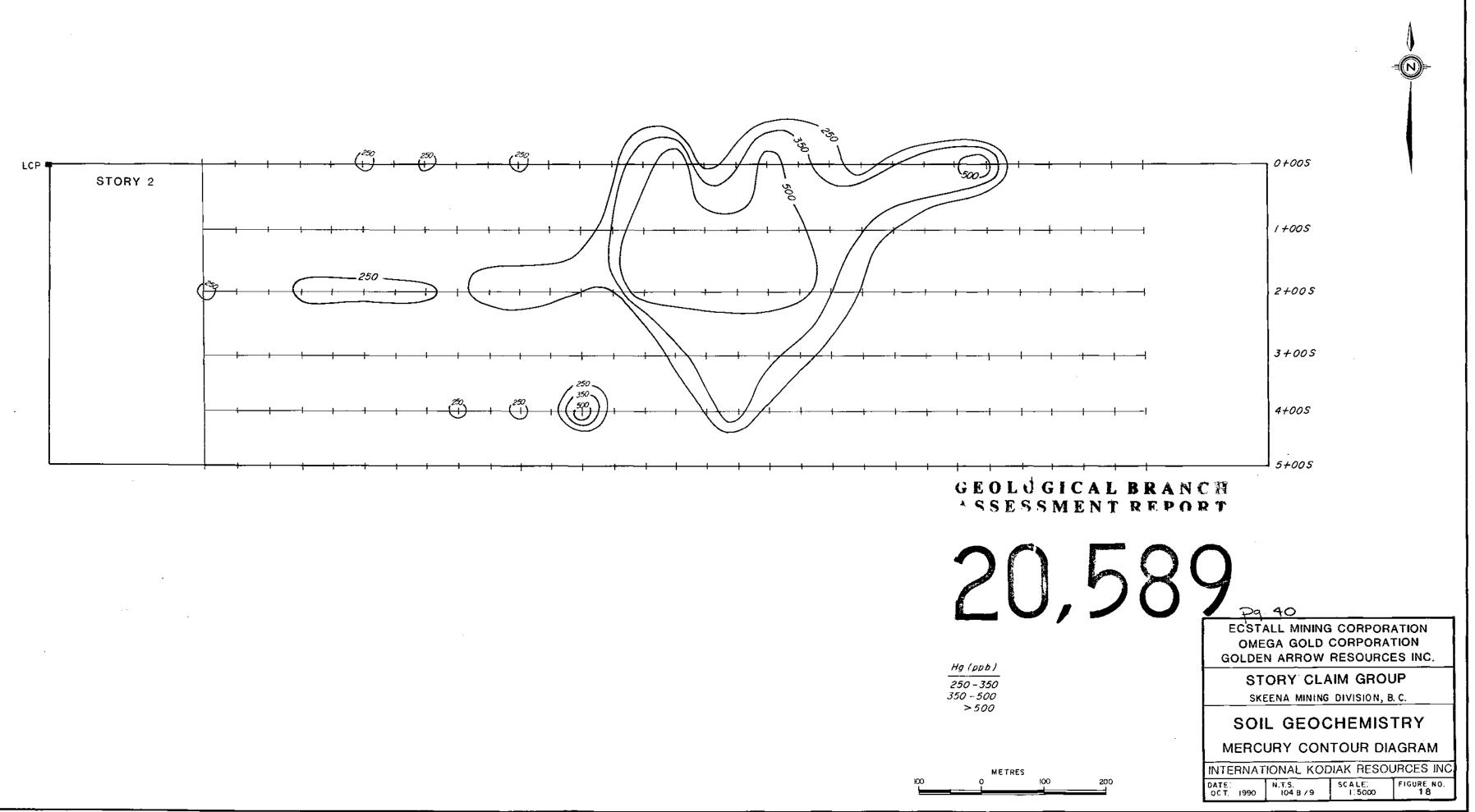
- •

. - -

с *С*

است س.




<u>ل</u>ا ي.

_

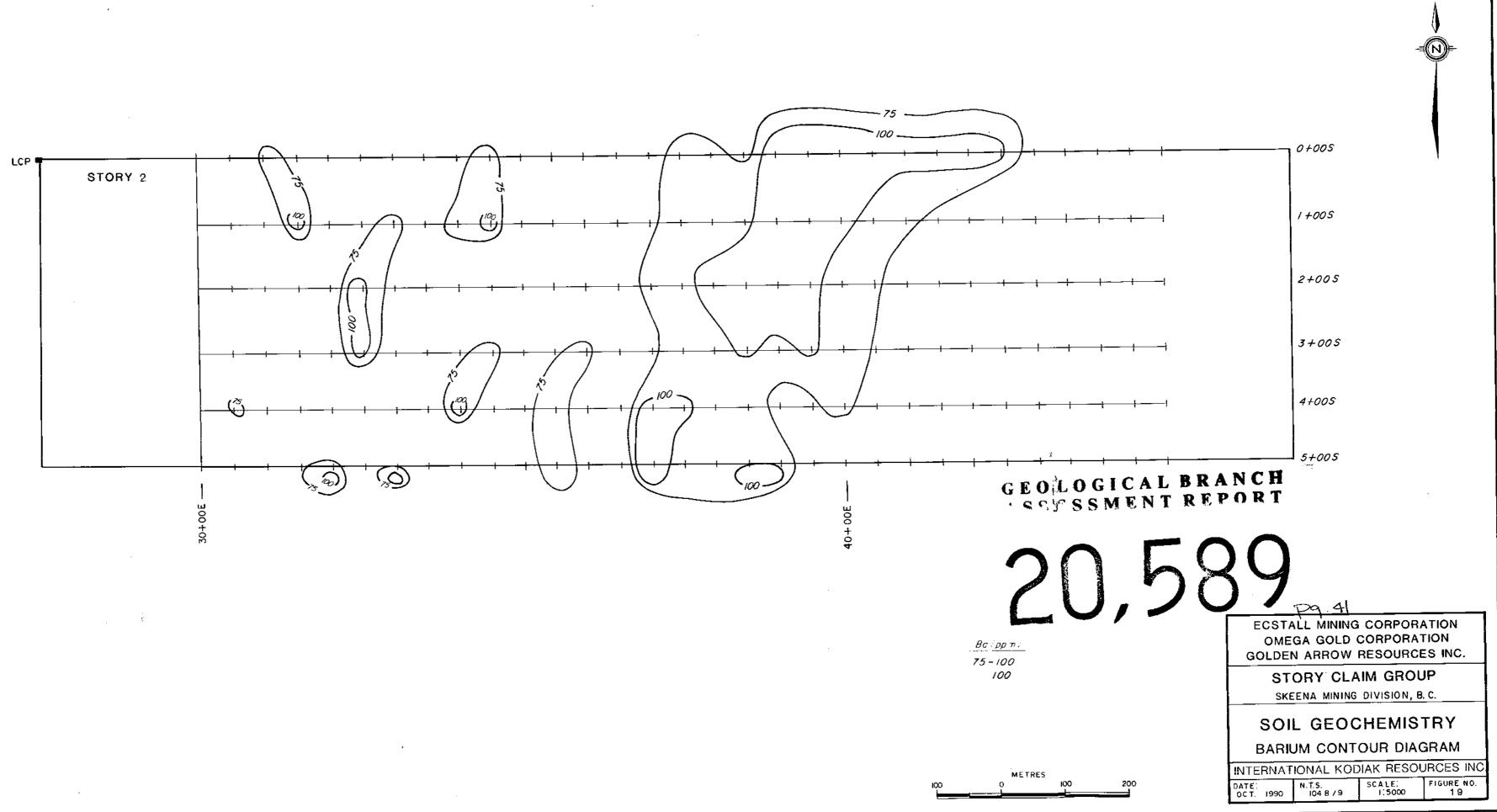
- -

X7

÷.

3197

ন স


e 4

-

ø 7

~ 0.7

<. .

SILT SAMPLING

أهلك

ŝś

Twenty-three silt and moss samples were taken from streams running through the narrow property, although the catchment basins of many of these streams lie outside the property. However, silt and moss samples are useful in targetting anomalous zones where prospecting can be concentrated.

Results from stream samples have indicated a drainage ('Dry Creek'), with anomalous zinc, cadmium and mercury values, as well as nickel and chromium. Zinc values ranged from 400-600ppm, and values for other elements were an order of magnitude greater than values from other streams. Dry Creek is a tributary directly north of Storie Creek. It originates east of the property, but probably recieves considerable sediment from the argillites on its northern bank. A few rusty weathering zones were observed on the bluffs above this creek and, although only disseminated pyrite was found in talus from the base of these cliffs, a more detailed inspection to determine if these rocks host any mineralization is warranted. The remainder of creeks sampled returned only scattered zinc, mercury, chromium and nickel anomalies.

Assay results from the gossanous Mt. Dilworth formation along Storie Creek failed to yield precious or base metal anomalies. One anomalous value in As (398ppm, GLGT185) was obtained.

The Jack Glacier gossan on the eastern end of the Story 2 claim has been intensively sampled. East – west lines were run across the gossanous outcrops at roughly 50m intervals, and continuous chip samples were taken over intervals of 2-10m (see Map pocket). Despite the strong pyrite + arsenopyrite mineralization, precious metal anomalies were not obtained. Anomalous values in arsenic, zinc and mercury were found at several locations. The arsenic and zinc anomalies are due to arsenopyrite and sphalerite in quartz-carbonate veins and sulphide stringers. The high mercury values are more enigmatic. In most instances, they are associated with high zinc and/or lead values, but there is no consistent pattern. No cinnibar or native mercury was observed in any samples. The presence of anomalous mercury may indicate the upper levels of an epithermal system (e.g., Panteleyev 1986). Thus, while no high gold values were found in the gossanous rhyolite unit, it may be an outcrop of an epithermal deposit with gold at depth.

73

غ الح

h á

5.5

é é

È

É di

÷.A

The best precious metal values have been found from grab samples of the quartz-carbonate-sulphide veins that are found in the andesite unit adjacent to the rhyolite. Sample GMMT201 yielded 1.44 g/tonne (.042 oz/ton). Sample GLGR354 from the same vein, 5m to the east yielded 3.83 g/tonne (.112 oz/ton). These samples also contained high arsenic and antimony. Silver values were relatively low. The samples were taken from a thin (1-8cm) quartz + pyrite + carbonate vein. The vein runs somewhat obliquely to most of the other quartz - carbonate veins, and seems to be slightly offset by the more westerly trending thicker veins, some of which will be described below. This vein is traceable for approximately 12m; it pinches out to the east and is offset by a fault on the west end.

A few meters away, a similar vein was grab sampled at two locations 15m apart. The veins were generally thin, and alteration envelopes absent, so chip samples were not taken. Sample GMMR203 yielded .590 g/tonne Au (.019 oz/ton) and 20.8 g/tonne Ag. In the same vein, GLGR337 had 1.94 g/tonne Au (.062 oz/ton) and 9.7 g/tonne Ag. The vein minerals

are principally quartz, pyrite, carbonate and sphalerite, with pyrite bands 1cm wide in a 15cm wide vein. The vein can be traced from a fault cutoff on its western end 30 to the southeast to a minor normal fault, across which the vein was offset about 2.5m. The vein continued to the southeast and off the property, for at least another 50m, somewhat anastomosing along it's course. Thus the veins are quite continuous, if thin, and the mineralization and precious metal content varies somewhat along their strike length. The locally anastomosing, brecciated and pinch-and-swell nature of these veins allows the possibility that they may merge or thicken at depth.

ند ية

a à

14

Some high silver values were taken from a thick quartz vein with brecciated rhyolite, interpreted to occupy a shear or fault zone, near the south line of the property. Similar veins are found elsewhere on the property. Grab samples from 1989 and 1990 (SCR025 and GMMR209, respectively) assayed 835.6g/tonne (29.95oz/ton) and 129.7g/tonne (4.65oz/ton) Ag. A 2m chip sample across the entire zone returned 21.8g/tonne Ag. Gold values were 40ppb across this southeast trending vein.

Grab samples from the rhyolite, although having low gold values, did have anomalously high zinc and mercury values. Sample GLGR342 yielded 1987ppm zinc and 69750ppb mercury, from a rusty weathering rhyolite with disseminated pyrite and pyrite (+sphalerite) in abundant fractures and stringers. In a fault zone occupied by numerous quartz and carbonate veins, a 2m chip sample GLGR352 yielded 17875ppb Hg and 2051ppm Zn. Nearby, a grab sample taken from a massive 10x30cm pod of pyrite + arsenopyrite within a brecciated quartz + sulphide vein returned 47500ppb

39

--- .

mercury and only 263ppm zinc. GGMT047 assayed 681250ppb Hg over 5m in the gossanous rhyolite. The mercury-zinc association is not found in all samples.

_

5Ý

à. a

ė. a

. 8. 6

1.4

فر الله

Ĺ

6

The general conclusions that can be reached from the geochemical survey are twofold:

- 1. The gossanous rhyolite is low in precious metals, but highly anomalous in mercury, which is likely associated with the abundant pyrite + quartz +/- arsenopyrite +/- sphalerite stringers which form a stockwork through the rock. The high mercury anomalies most likely indicate that the upper parts of an epithermal system are present and gold values may be higher lower down in that system.
- 2. Precious metal values of some significance are found in the thin quartz + carbonate + pyrite + sphalerite (+/-chalcopyrite, arsenopyrite, galena, stibnite) veins which cut the andesite unit, particularly the quartz rich northeast dipping veins. This is also true to some extent for the thicker, quartz breccia veins that probably follow faults. They may be related to the pyrite stringer stockwork in the rhyolite, as the quartz carbonate veins are not strictly confined to the andesite. It was not possible to tell if these thicker veins are a lower part in the same epithermal system.

CONCLUSIONS AND RECOMMENDATIONS

17

1.4

.

美市

Ĺź

Ťм.

نغ

نْتُ

The mercury, arsenic and zinc anomalies in the gossanous rhyolite, associated with pyrite stringer - stockwork mineralization, are good evidence that an epithermal system has been active on the Story property. The abundance of fracture filling quartz + carbonate + sulphide veins is further evidence. Mercury anomalies are generally thought to occur in the upper levels of epithermal systems, and precious metals could occur at lower depths (e.g., Panteleyev, 1986). An epithermal system is considered to have been the mineralizing agent at the Eskay Creek deposit six kilometers to the west.

Several notable gold values (>1000ppb) occur in the quartz carbonate veins and, while these veins are relatively thin, the veins could merge or thicken at depth.

It is recommended that blast trenching be employed to expose a deeper level of these veins, to see if weathering or surface leaching has diminished precious metal values. Blast trenching could also be used to expose outcrop in the vicinity of soil anomalies to the west of the exposed gossan.

An induced polarization (IP) geophysical survey is also recommended. Granges Inc., the company that holds the adjacent property to the south, successfully used an IP survey to pick drill targets in gossanous ground in the same rock units and on the same trend as the Story property gossan. The geophysical survey would require the establishment of a picketed grid over the Story 1 claim block, and some linecutting.

Pending the identification of viable drill targets, a 450m (1500ft.) drill program could be initiated.

STATEMENTS OF QUALIFICATIONS

.

£1

م ٤

⊾ /

6.4

1.1

÷,

8 H

۱.

M

۱.

14

I, Leonard P. Gal, of 3373 West Seventh Avenue, Vancouver, British Columbia, V6R 1V9 do hereby certify that:

1/ I am a contract geologist in the employ of International Kodiak
Resources, Inc., with offices at 606, 675 West Hastings Street,
Vancouver, B.C.

2/ I am a graduate of the University of British Columbia (B.Sc. Geology) and the University of Calgary (M.Sc.Geology), and have worked in British Columbia and the Northwest Territories since 1986.

3/ I am the author of this report and my findings are based on work undertaken on the property between July 27 and October 3, 1990

4/ I have no interest, direct or indirect, in Golden Arrow Resources Inc. or Ecstall Mining Corp. or Omega Gold Corp., nor in any of their properties, nor do I expect to recieve any such interest.

5/ This report may be used by Golden Arrow Resources Inc. or Ecstall Mining Corp. or Omega Gold Corp., in whole or in part, as they so require.

Dated at Vancouver, British Columbia this day of November 30, 1990

heonan gal

Leonard P. Gal, M.Sc.

REFERENCES

à é

i. d

٠.

ه ک

È. A

⊾*₿*

F 7

Ì.

. .

F 😤

1

Alldrick, D.J. (1988): Volcanic centres in the Stewart Complex. (103P and 104A,B). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 233-240.

. . .

- Anderson, R.G. (1989): A Stratigraphic, plutonic, and structural framework for the Iskut River Map Area, northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Anderson, R.G., Thorkelson, D.G. (1990): Mesozoic Stratigraphy and Setting For Some Mineral Deposits in Iskut River Map area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-IF, pages 131-139.
- Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., and Alldrick, B.J. (1988): Sulphurets Map Area (104A/05W, 12W,: 104B/08E, 09E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 199-209.
- Drobe, J.R., Koyanagi, V.M., and Logan, J.M. (1990): Geology of the Forrest - Kerr Creek Area, Northwestern British Columbia (104 B/15); in B.C. Ministry of Energy Mines and Petroleum Resources Geological Fieldwork 1989, Paper 1990-1, pages 127-139.
- Franklin, J.M., Lyndon, J.W. and Sangster, D.M. (1982): Volcanic-Associated Massive Sulphide Deposits; in Economic Geology Seventy-Fifth Anniversary Volume, pages 485-627.
- Grove, E.W. (1971): Geology and Mineral deposits of the Stewart Area, British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63. 152 pages.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River - Anyox Area. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63.
- Kerr, F.A. (1982): Lower Stikine and Western Iskut River Areas, British Columbia. Geological Survey of Canada Memoir 246, pages 31-34.
- Nicholson, J.A., Robb, W.A. and Sampson, C. (1990): Geochemical and Geological Report on the Story Claim Group, Skeena Mining Division, B.C. Assessment Report for Omega Gold Corp. and Ecstall Mining Corp.
- Panteleyev, A. (1986): A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits; reprinted in Ore Deposit Models, Geological Association of Canada Reprint Series 3, pages 31-44.

APPENDIX I

-

44

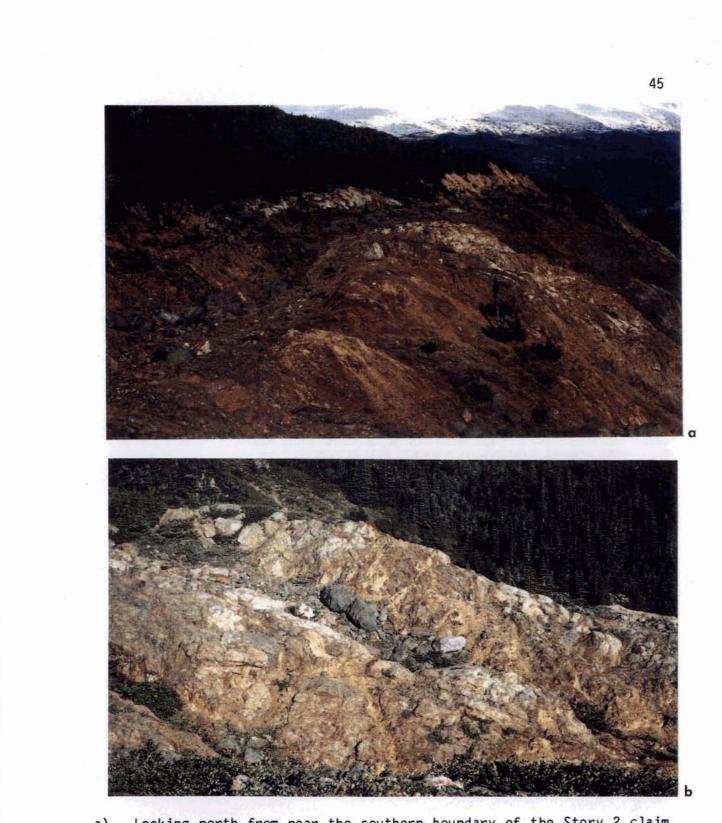
()

1

#1) 5.4

(1

*** 1 1

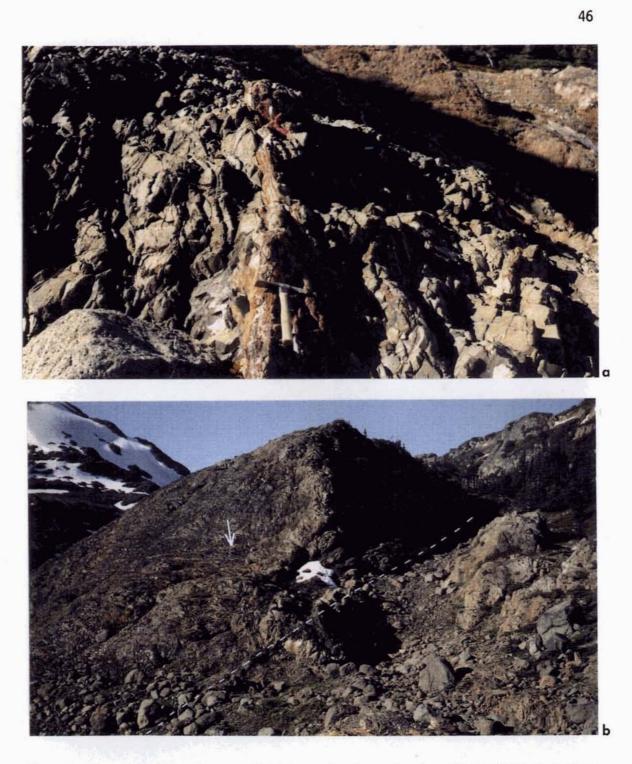

> 73 11

> 27 14

73

COLOUR PLATES

.

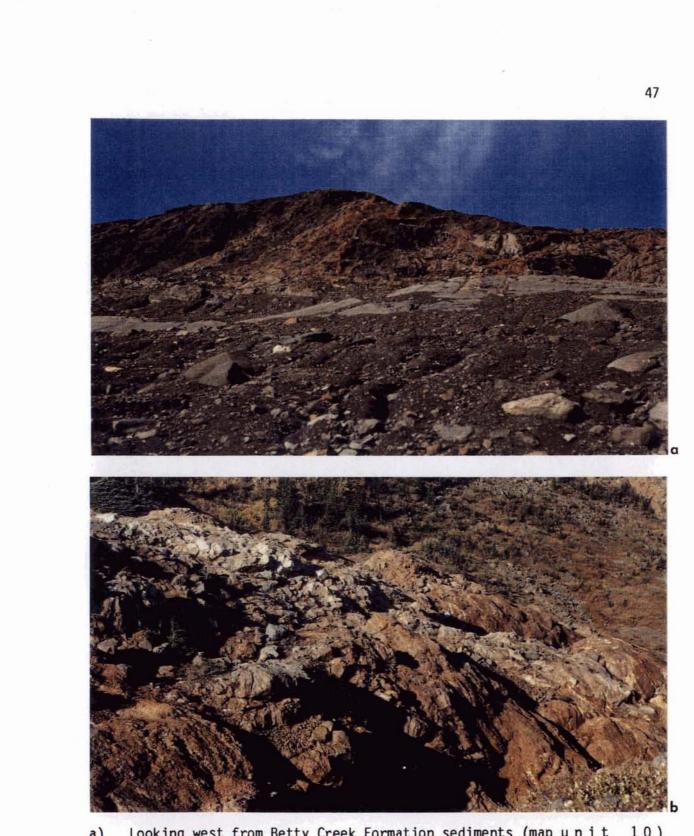


1

1

- a) Looking north from near the southern boundary of the Story 2 claim block toward the gossanous rhyolite.
- b) The gossanous rhyolite and felsic tuffs in the eastern part of the Story 2 claim block.

Plate 1



1

11

1

- Quartz + carbonate + sulphide vein in aphyric silicified andesite (map unit 3; sample site GMMR203).
- b) Looking south from gossanous rhyolite unit across fault (dashed line) to aphyric andesite with rusty - weathering quartz - carbonate - sulphide veins (arrow).

1

- a) Looking west from Betty Creek Formation sediments (map u n i t 10) toward aphyric andesite (map unit 3) with rusty weathering quartzcarbonate veins.
- b) Gossanous rhyolite unit (map unit 2) near the east end of the Story 2 claim block.

- a) Looking toward the north edge of the Story 2 claim block (located approximately at the white line). Gossanous rhyolite in the foreground.
- b) Aerial view of tuffs and agglomerates at the toe of the Bruce Glacier, Story 2 claim block. The approximate location of the north edge of the Story 2 claims are indicated by the white line.

· ~

INTERNATIONAL KODIAK RESOURCES INC.

Ξ.

. .

Mineral Exploration Services

STATEMENT OF COSTS

PROJECT: STORY GROUP for GOLDEN ARROW RESOURCES

PERIOD: June to October 1990

Personnel

0

n

1

N

۴Ţ

8. A

/1

الات ارب

7.9 2.2

۲. ۲ ۲. ۲

́." Х.Э́

त च ६ ∰

> • 3 **

> 1

アラ 在第

- آ قرية

k /

<u>24_3</u> man days @ \$275/day	<u>\$6,682.50</u>
_8_5 man days @ \$240/day	\$2,040.00
<u>18.0</u> man days @ \$225/day	<u> \$4,050.00 </u>
45.0 man days @ \$200/day	\$9,000.00
Helicopter hours @ _{\$725} _/hour (fuel included)	\$20,300.0 0
Room and Board <u>93.</u> 8man days @ \$125/day	\$11,725.00
man days @ \$40/day (fly camp)	
Vehicle @ \$1,350/month	\$4,000.00
Field Supplies 93_8days @ \$20/man/day	\$1,876.00
Samples <u>600</u> Rock @ \$20/sample	\$12,000.00
Soil @ \$20/sample	
Silt @ \$20/sample	
Mob./Demob.	· · _
Office	\$9,000.00
Miscellaneous 1. Filling Fees	<u>\$1,460.00</u>
2. Travel	\$5,000.00
3. Land Survey	\$3,400.00
Subtotal	
Contingency	
TOTAL TO DATE	<u>\$90,533.00</u>
E. & O.E.	· · · · · · · · · · · · · · · ·

APPENDIX IV

n

r y

 ...

ROCK DESCRIPTIONS

		ROCK SAMPLE DESCRIP	TION RECO	RD				
Page:	<u></u>	Project: 6 (STORY)	Location	STORY	,	Operator	: INT'L K	ODIAK
Sample No.	Location	Description		An	alytica	l Results	s	
	· · · · · · · · · · · · · · · · · · ·		Au ppb	Ag ppm	Pb ppm	Zn ppm		er _{ppm}
GLGR354	ANDESITE UNIT – 5m SE OF GMMT201	GRAB - 3 cm QUARTZ, PYRITE CARBONATE VEIN WITH SPHALERITE AND CHALCOPYRITE, DISSEMINATIONS TO MASSIVE BANDS. 12m STRIKE LENGTH	2400	7.4	44	146		^{Sb} 226 Sb
GMMT201	ANDESITE	SAME AS ABOVE	1400	3.5	27	65	⁷⁷ 1776	109
GLGR 337	ANDESITE UNIT-15m SE OF GMMT203 IN SAME VEIN	GRAB - I5cm QUARTZ - PYRITE - CARBONATE - SPHALERITE VEIN. SULPHIDES LENSY TO MASSIVE LAYERS. 30-50m STRIKE LENGTH	1940	9.7	36	141	^{As} 2952	
GMMT203	ANDESITE UNIT	SAME AS ABOVE	590	20.8	90	1421	^{As} 1352	sb I
GMMR209	RHYOLITE GOSSAN	GRAB - YELLOW -STAINED, BLEACHED FELSIC LAPILLI TUFF WITH 5-10% DISSEMINATED PYRITE AND ARSENOPYRITE	35	129.7	73	489	^{H9} I3250	ррб

<u>. </u>		ROCK SAMPLE DESCRI	TION RECO	RD	<u>.</u>			
Page:		Project: 6 STORY	Location	story		Operator	C: INTL K	OD/AK
Sample No.	Location	Description		An	alytica	l Results	5	
			Au spb	Ag ppm	Pb pom	Zn _{//} /////	ppb Oth	er _{ppm}
GLGR342	RHYOLITE GOSSAN	GRAB - RUSTY WEATHERED RHYOLITE WITH PYRITE STRINGER AND DISSEMINATIONS	80 S	0.8	406	1987	^{Hg} 69750	^{sb} 271
GLGR352	RHYOLITE GOSSAN	2m CHIP - FAULT ZONE WITH QUARTZ AND CARBONATE VEIN	15 S	2.9	74	2051	^{Hg} 17875	-
GLGR353	RHYOLITE GOSSAN	GRAB - 10x 30cm POD OF MASSIV TO SEMI-MASSIVE SULPHIDES IN PYRITE CEMENTED QUARTZ VEIN BRECCIA	E 40	2.2	150	263	^{#9} 47500	
GLGR338	ANDESITE UNIT	GRAB - QUARTZ - CARBONATE - PYRITE VEIN WITH SPHALERITE AND CHALCOPYRITE. 15-25 cm THICK WITH 15m STRIKE LENGT	2100 H	14.1	46	2494	^{#9} 2245	^{\$6} 184
ggmt071	RHYOLITE GOSSAN	5m CHIP · CONTINUOUS OVER YELLOW TO MAROON STAINED PYRITIC RHYOLITE	10	1.0	61	633	^{H9} 108625	

<u> </u>		ROCK SAMPLE DESCRIPT	TION RECO					
Page:		Project: 6 STORY	Location	STOR	јаск У Стацек	Operator	KODA	к.
Sample No.	Location	Description		An	alytical	Results	3	
	<u></u>		Au fre	אס _{רבי} ק א	\mathbf{Pb}_{ppo}	Zn _{Pf} m	IT Ot	ner _{fl}
GMMR214	RHYOLITE GOSSAN	GRAB- RHYOLITE WITH QUARTZ STOCKWORK. 5% PYRITE AND ARSENOPYRITE	5	4.1	66	25728	н _д 114000	cd 188.8
GLGR345	ANDESITE UNIT	2m CHIP - QUARTZ VEIN AND BRECCIATED VOLCANIC IN FAULT ZONE, WITH DISSEMINATIONS AND CLOTS OF PYRITE AND SPHALERITE	40	21.8	34	392		

		ROCK SAMPLE DESCRIP					
Page:		Project: STORY (C)	Location	: JACK	CLACETZ	Operator	: KODIAK
Sample No.	Location	Description		Aı	nalytica	1 Results	pp:
	,		Au ppb	Ag	Pb	Zn	Other
GLGR 339	ιαιά είαιιος Guman .	Sem W.DE VEW OF PARIN + CARCITE + GENERATE + SPECKENDER P4 10 2 MASSIVE BANDS ICM WIDE ENCH, NOTAL EDED OF VEW, PRACETORE FOR DOM.	40	6.0	27	50	
G LGR 340	"	BANDED CARDOWAR (+ QUARTE + PARINE ± SPUMERINE) VETU OF TO BOCH WIRE, INCLUSES BRECCHARED MOST ROCK (APRILANDESINE	5	3.3	26	43	232 ppm 56
G-2.G R 341	-1	RUBBLY OUTLOS OF REP. 407000 (WEATTLETED SURFACE) & IGUT GREY KUYOUTE ADJACET TO SMALL FAULT DOVE. SOME	5	1.1	39	124	
6-26-R 342	¢	CUALLOUNT + PURINE PRAVANES. GREW RHYOLINE WITH DUSSEMINATED PURINE AND IN THIN FRANKES.	<i>30</i>	D,g	406	1987	

		ROCK SAMPLE DESCRIP	TION RECO	RD	<u></u>		
Page:		Project: STORY GROUP	Location	1		Operator:	KODIAK
Sample No.	Location	Description		A	nalytica	1 Results	op~
			Au ppb	Ag	Pb	Zn	Other
6ccR 337		Mytonitic stear zone in dk. 910. Vokaniz tuff/agglomerate	1	1. 6	45	101	
- (i.e. a. 105)		Grey rhyclitic Frags (5-10 mm) atz infilling, distinctive flow bands containing glossy frags (<1mm). py in dissemilations (
Gec R-338		trace opp. Chip(3m) - Rusty shear zone in siliceous green volc. py in stringers	5	0.7	29	9 ej	
6112-339		Chip(Im) - 5, miler parallel, shear zone as above in GCCR-338. Breachaited grey Volcanic tuff : py tr14 shear orientath: 172/78		1.5-	43	115-	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ROCK SAMPLE DESCRII	PTION RECO				
Sample No.LocationDescriptionAnalytical Results ppw $3LGT234$ JACK GLIGER GDSSAN $3m$ CHIR ACCON CONTRUE BURNOW REPORT AND ANDESING NULLOWER BURK ARCTURN AND RHOULT FRICEND TO DUST.Au pphAgPbZnOther $GLGT234$ JACK GLIGER GDSSAN $3m$ CHIR ACCON TO DUST. $AugestingReport Results Account AndRHOULT FRICEND TO DUST.3n1.5147.47.4GLGT235"Im CAIP ALLOS BLACK ARCTURE INTOIM/ ADJUENT FRIGT.150.92.611514GLGT234"Ma CHIR ALLOS BLACK ARCTURE INTOREMOUND CONTERT.101.6302.77GLGT237"GRAR OF LARCUI - BURKREFLICE W/ AMERICANREFLICE W/ AMERICANREFLICE W/ AMERICANREFLICE W/ AMERICANREFLICE W/ AMERICAN101.231126$	Page:		Project: STORY (G)	Location	i: JACK	CLACIENE EDSSAN	Operator:	KODIAK
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample No.	Location				Analytica	il Results	fpm
$ \begin{array}{c} CLGTLST \\ GDSSAN \\ BETWEEN RHADINE AND ANDENE \\ NULLIPINE BLACK ACCILITE AND \\ RUHOLINE FRIGHTUTE AND \\ M/ ADSLEWNT FRIGER \\ UN / ADSLEWNT FRIEND \\ UN / ADSLEWNT \\ UN / ADSL$			2 DE ALTON CONTACT	Au _{ppb}	Ag	Pb	Zn	Other
$GUCT 236 \qquad M/ ADSHEWT FAMET. 4m CHID ACRES ARCILLAR IND 10 1.6 30 277 MM CHID ACRES ARCILLAR IND 10 1.6 30 277 BRYOUR: LAP CLI -BLOCK METER GRAB OF LAPCLI -BLOCK 10 1.2 31 126 MFF/SAECLIA M/ ANGULAM 10 1.2 31 126$	GLGT234		BETWEEN RHYDLINE AND ANDESITE INCLUDING BLACK ARCTILLINE AND	5	1.5	14	74	
$ \begin{array}{c} \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \end{array} \right \begin{array}{c} \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \end{array} \right \begin{array}{c} \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{T}^{23\mathcal{L}} \end{array} \right \begin{array}{c} \mathcal{C}\mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L}\mathcal{L} \\ \mathcal{C}\mathcal{L} \\ \mathcal{C} \\ \mathcal{C}\mathcal{L} \\ \mathcal{C}\mathcal{L} \\ \mathcal{C}\mathcal{L} \\ \mathcal{C}\mathcal{L} \\ \mathcal{C} \\ \mathcal{C}\mathcal{L} \\ \mathcal{C} \\ \mathcal{C} \\ \mathcal{C} \\ \mathcal{C} \\ \mathcal{C} \\ \mathcal{C}\mathcal{C} \\ \mathcal{C} \\ $	6167 235			15	0,9	26	115	
GLGT237 " GRAB OF LANCUI-BLOOK 10 1.2 31 126 NFF/BRECLIA W/ ANGULAR 10 1.2 31 126 PRISIC VOLLANIC FRAGMENTS	GLCT 236			10	1.6	30	277	
PERSIC VULLANIC FRAGMENTS	GLG7237	4	GRAB OF LAPCUL - BLOCK	10	1,2	3 [126	
			PERSIC VALLANIC FRAGMENTS		* *			
				1				

		ROCK SAMPLE DESCRIPT	TION RECO)RD		<u> </u>	
Page:	1	Project: STORY (6)	Location	I: STURIC	îreek	Operator:	NODIAN
Sample No.	Location	Description	Analytical			Results	
	· · · · · · · · · · · · · · · · · · ·		Au frob	۲ Ag	Pb pom	Zn ppm	Other
GLG R 173	DRY CK.	RUSTY ARCILLER WITH PY DISSEMINATED.	5	(16	22	606	
6:6 R 17 5	STORIE CA.	JUNTED D'ADAL WITH PYRITE STRINGERS	10	29	ಶ	72	
0 LG R 176	TOPIL CAR	CARTY AND THE WITH ABOADDAT PORTO STRALLES & DESCRIPTION RITE HIV FAMOR TONS WITH WITH CAPPO LEANS	÷,	U I	ì		
BIGT ; BO G 1988	Siddie (nec) Nechelus	SEAR SAMPLE RERA SM IN LI. CREM APPLE. DET 10 TH PHRITHE DOS. AND STRACK. D S. SIMPLES 192-184 IN JACK EPCIN ARCHICL.	e for Narozen	0.2 1900 -	1 [*]) 224 - 4	THE PROVINCE	
G (G 7 163) 212-	Sebure Cm.	BRAS SALAL CREAY SA IN RUSTY REHOLITE IND OTHER PSA 200 DATES REF. PSA 200 DATES STORE	20		2 V Max.	104' max.	

Page:		Project: STORY GROUP	Location	1:		Operator	* KODIAK	
Sample No.	Location	Description		A	nalytica	al Results pp:~~		
	· · · · · · · · · · · · · · · · ·		Au pyb	Ag	Pb	Zn	Other	
GCCR - 163		Greenish andesite Lapilli tuff. Sample is from bleached shear, (sericite alt=). follat=: 076/75E	10	1.0	23	47		
GCCR-164		Float - s. liceous grey lapilli tuff . Rhyolite Fragments, pole white = caleite, dissen. py 1-3%.	ιυ	1.4	24	30		
G(LR-165		Dark gr undesite feldspar crystal tuff- fg py on fracture surfaces and in disseminations.	5	2.0	20	78		

ليتم الدوليات الدارية المراجع ومحتمد <u>من المراجع الأول</u>

		ROCK SAMPLE DESCRIP	TION RECO	ORD			
Page:		Project: STORY GROUP	Location	1:		Operator:	KODIAK
Sample No.	Location	Description		A	nalytica	al Results	PP
		· · ·	Au ppb	Ag	Pb	Zn	Other
6CCR - 349	27003, 0700E	Front - grey siliceous volc. tuff. white etz clasts containing stringers of py. in fractures · py 1-3% rusty iron oxide alth	10	0.7	13 7	83	
6.c.R.350	3+605,jd90E	Blue-grey lithic crystal tuff fairly siliceous containing occasional lapilli of vario description I calcite blebs and stringers of py 1% trace epg-	5	1.9	30	27	
6ccR-351	Jt00 5, 3+80 €	Float talus (in creek), gray lithic tuff siliceous, fractures like a rhydite, dxs. py. 1th	10	1.7	35	106	

Page:		Project: STORY GROUP	Location			Operator:	KODIAK
Sample No.	Location	Description		ΓĂ	alytica	l Results	ppm
	<u> </u>		Au 200	Ag	Pb	Zn	Other
6cc R ~ 178		Chip (6.0in) - Grey Rhyolite Fine grained, siliceais, jointing & bedding? 162/90 Att carboniste verits largest in o/c : 5-8 cm Fg. 033. pc and py verits :	-	0.7	JI	48	
6ccR-179		Chip (3.0m) - Caleite ven stakker in rhydiite hast.	rx 5	1.0	23	3.6	:
G (CR-180		Chip (7.0m) Rhydite - py stringers and gtz-carbonate reining (up to 8cm) trending 110-120°	5	0.18	30	99	

	·····	ROCK SAMPLE DESCRIPT	TION RECO	RD			
Page:		Project: STORY GROUP	Location	:		Operator	: KODIAN
Sample No.	Location	Description		Ar	nalytica	l Results	<u>۲</u> ۳۰۰
			Au ppb	Ag	Pb	Zn	Other
6ccR - 173		Fine grained grey sitileous volcanic for py. (2-406) contained mainly in dissemint kinomite and sericite alth minerals.	10	0.6	30	38	
6.ccR -174		Chip (10m) - mainty argillite and shale, well bedded (D) (6) occasional rare quarts sweets reddish hematite grams, t dissen. py.		0.9	í 8	48	
600R-175		Chip (10m)-same as above	5	0.9	1 B	50	
Geck- 176		chip(10m) - Saa.	5	0-8	14	56	
6(CR-177		(hip (10m) - sad.	10	0-7	16	53	

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: STORY GROUP	Location	1		Operator: KOD14K			
Sample No. Location		Description		pp-m					
			Au ppb	Ag	Pb	Zn	Other		
GCCR-170 GCCR-171	5 FUR 4	Floot - greyish felsic vok. rock Fine grained, silicified Altered clasts if quartz and cheft (white and grey), irregular stringers of py. throughout. Bleached Felsic volcomic (dacife?) grey siliceous	5	1.5 0.6	43 38	49 48			
6(CR-172		but sheared (fault?), irreg. veinlets of fg py (1-2mm) Daeite Fragmental tuff- corrying fg. py. in stringer and disseminations greenist color.	5	0.4	.24	84			

ROCK SAMPLE DESCRIPTION RECORD								
Page:		Project: STORY GROUP	Location:			Operator: KODAK		
Sample No.	Location	Description		Aı	nalytica	il Results pro-		
			Au _{FP} h	Ag	Pb	Zn	Other	
GCC R ~ 166	5-0124	Grab &-semi massive - massive sulphides (10-15% py) in host green andesite lapilli tuff green and rhydite clasts (1-2 cm). Shears along which py veins are originated: 076/6472		ΰ. Υ	27	20		
GCCR-167	Δ.	Quarte-corbinate breicia Vein (0.5 m max width) Same vein system and spatially close to 6(cR166	5	1.5	45	44		
611R-168	5	same as above (EqccR-167)	5	1.B	45	21		
GLCR-169	f_	Ficat boulder - felsic volc. breccia, angular qtz pebbles diss. py 1-2%.	5	1.2	29	25		

ROCK SAMPLE DESCRIPTION RECORD									
Page: Project: STORY			Location:			Operator: KODIA K			
Sample No. Location		Description		Ar	alytica	l Results	nrm		
			Au ppb	Ag	Pb	Zn	Other		
G-MMR210	57024	UT GREY NOFF, RUSPY WOARDORNO WITH ARSENU PARINE AND PARINE DISSEMINATIONS 5-60%	5	5,2	36	244			
GMMR211	5	TUFF IN FALLET ZONG WITH DISS- CMINATED AND FRACTURE-FILL	6	1,7	26	135			
GMM RZIZ	<i>.</i> .	SULPHIDES 23% SAME AS 211	5	U.6	30	47			
GMMR215	. u	BLACK LAPILLI NET OR BRECHA	10	0.4	31	482			
BMMR 216	4	BLENCHE RITHCHINE WITH FRACTUR FUL SHIPHIPUS 3%	5	0.5	50	416			
GMMR217	N	MASSIVE PURIT - ARSENUPARIT LENS IN RHADLIN 4CM x LISM	5	0.1	54	276			
G-MM T 218	1	2m CONTINUOUS CAIN ON RHULLIN:	10	0.6	31 26	15			
GAM F219	· ·	2m CHIP ON RHAULIR-	5	0.5	de	10			

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: Story	Location:			Operator:	Operator: KODIAK		
Sample No.	Location	Description	Analytica			1 Results	spm		
			Au fro	Ag	Pb	Zn	Other		
G MMR 199	うでんく	LT GREY -CREEN ANDESITE WITH CARBONATE FRACTURES + SOME SULPHINES,	10	0,7	9	66			
GAMR200	f.	ALTERED ITADES. RE WITH RARE DISSEMINATED PARITE SOME IN VEINCET.	5	2.0	17-	99			
5MM MT 202	X.	SAME AS 200	25	0-8	14	83			
GPAMT 204	ι.	SAME AS 200	5	1.9	13	151			
GMMT 205	`	4CM VEIN WITH WUMMA, CARB. UNATE AND SULPHINE-S.	95	2.0	35	64			
G-MM 7206	ų	SAME AS 200	15	1.4	10	93			
G-MM T 207	L.	UCM VEWOF QUARTE, CARDONATE AND SUCPHIDES -	70	2.4	27	324			
G MM RZUU		SNEMED ALHOUN GRECCIA OR LAPLLI NFF WITH NO VISIBLE SULPHIDES	5	0,6	30	134			

where we have been a series where a series and the series where the series where the series of the s		
--	--	--

Page:		Project: STORY	Locatio	n:		Operator	KODIAK		
Sample No.	Location	Description		1	nalytic		I Results Ppm		
			Au pps	Ag	Pb	Zn	Other		
GCMR076	STORY	MASSINE LERSUS TO DISSUMINATIONS OF PHILITE AND HUSCING PHILITE IN ANDESTRE UNIT							
G MMR 220	'1	SILICEOUS RAYOUR WITH 10-15 % BLEDSS AND FRACTURE - FICLING SULPHIPES.	10	0,5	20	33			
GMM R221	6	BLACK RAHOLING LAPICI FUTE OR BRECCA.	5	0.1	28	50			
-MMR222	e	GUSSANUNS LAPILLI TUFF WITH BLERSS AND DISSEMINATIONS UP PHRINE 1-2-15.	10	0.8	35	100			
5-MMR223		VEREY SILICOUS RITHOURS WEAKLY BRECCUARED W.M. 3-5% DISSEMINATE SULPHIDES.	,5	1.3	التن	43			
3-MMR224	4	GOSSANDUS RHYCHIE WIFU SUCPHIDES IN FUN FRACTURES ARSENDPURITE PROBABLE	10	0.9	39	2			
-MM R 225	6	GREN FELSIC ASM.	20	0.7	39	43			

		ROCK SAMPLE DESCRIPT	ION REC	DRD					
Page:		Project: STORY	Location	n: 570	RY	Operator	KOD /	41	
Sample No.	Location	Description	Analytical Results						
	,, ,		Au	Ag	Pb	Zn	Oth	er	
GAN TOBU -094	-S TOR Y	62m CHIP SAMPLEIN GOSSANDUS RHUDLING	20	0.4	13	44	maxı Val		
GPNT030 -036	t,	14m CHIP SAMPLE IN COSSANGUS RHHOLINE	5	1.8	32	100	u		
CPNT 099 -116	in	BOM CHIP SAMPLE IN COSSANCUS RHYOURE	10	1.2	12	38	۰,		
СММТ 21В - 213	La	4m CHIP SAMPLE IN COSSINUS R440LIPE	10 .5	0,6	31 26	15 10	1.		
GMBR 340 - 352	1.	65m Cullip SAMARIC, NORTH- SOUTH LINE FROM 3+355 39+506 65 m POTHE ADETH IN GODSANDUS RUYULITE Z DEF.	10	0.8	51	92	b .		

 \mathbf{c}

		ROCK SAMPLE DESCR	IPTION REC	CORD			·····
Page:		Project: STORY	Locatio	on: STOK	' Y	Operator	M. BROWN
Sample No.	Location	Description				l Results	;
+			Au	Ag	Pb	Zn	Other
GMBR 326 - 332	STORY	25m CHIP SAMPLE IN ANDESIDE UNIT.	70	8.0	37	216	maximum values
6-006 R 327 - 331		25m CHIP SAMPLE IN ANDES HEE AND RHYOLIR UNITS					
6-198 <u>R</u> 3-32-		RAYOUTE					
GMBR #33	1.	5m cuip sample in RH40LINE	5	0.3	24	45	4
umiaR 334	4	SAME AS 333	.5	0.8	29	61	"
			÷				
					-		
					·		

 \mathbf{c}

		ROCK SAMPLE DESCRIP	TION REC	ORD			
Page:		Project: STORY	Locatio	n: 570f	۲۲	Operator	: KODIAK
Sample No.	Location	Description		Ā	nalytica	l Results	. <u></u>
	. <u></u>		Au	Ag	Pb	Zn	Other
GGM T 047 - 063	STOR Y	140m HIP SHMPLE IN CUSSANDUS Rul401112	ÉO	13.6	1309	32074	maximum
GCM F064 -072	ſı	90m CHIP SAMPLE IN GOSSANOUS RHHOLINE	60	1.4	33	37	1,
G-DMR 045 - 104	t4	120m CAID SAMPLE (N GOSSANOUS RHYDLING	110	2.3	41	253	.,
GDMR 109 -119	"	55m CHIP SAMPLE IN GUSSANULS RHYDLIRE	40	2.0	84	149	a
GPN7 037 -061	44	SOM CHIP SAMPLE IN GOSSANDUS RHYOLITE	5	2.6	37	5829	14
GPNT062 - 067		12m CHIP SAMPLE IN GOSSANDIS RHADLINE	10	0.8	28	1960	, , , , , , , , , , , , , , , , , , ,

	<u></u>	ROCK SAMPLE DESCRIP	TION RECO	RD			
Page:		Project: STORY	Location	1: STUI	۶	Operator	KODIAK
Sample No.	Location	Description		A	nalytica	l Results	pp-
			Au pp 5	Ag	Pb	Zn	Other
GMMR226	STORY	GOSSANDIS ARGULITE HIGHLA CONCENTRATED DESEMINATED SUCHIAX 10-15% IN LENSY BANDS	5	3.0	140	560	
G-RW R 441	L	DALINE HUPHBASSHE INTELSON. PHILINE DISSEMINATED -	5	4.4	33	89	
GRWR442	f.,	SAME AS YYI WITH DISSEMINATE PHRINT ENNEDRI AND WORK FOLIATION	i 1	5.1	14	94	
6-RW R443	κ.	GLOMERO PORPHYRICIC DACINC ROCK WITH ABUNDANT DISSEMINATED PURINE 3%	5	4.2	30	93	
G-RW R 458	·	SULPHIDE - RICH LAVER WITHIN LITHE THE PARITE IN RANDS UP & SO'S , In WIDE ZONE. WITHIN	10	0.1	30	69	
GRW R 459	u.	SAME AS 454	5	Ü. 4	18	75	
GRW R 46 O		CRUSTAL LAPILLI DEF WITH PATCHY PURITE UP N SAM ALRUSS.	5	0.7	44	107	

.

Project: $STORY$ Location: $STORY 5$ Operator: $K GD/AK$ Sample No.LocationDescriptionAnalytical Results ppmAu pphAgPbZnOtherGRWR461STORY 5CR41.76 DISF WITH 10% UP1ULSTORY 6SnOtherGRWR461STORY 5CR41.76 DISF WITH 10% UP1ULSnOtherGRWR461STORY 5CR41.76 DISF WITH 10% UP1ULSnOtherGRWR462STORY 5CR41.76 DISF WITH 10% UP1ULSnOtherGRWR462STORY 5CR41.76 DISF WITH 5DIF DISFSnOtherGRWR462STORY 5CR41.76 DISF WITH 5DIF DISFSnOtherGRWR462STORY 5CR41.76 DISF WITH 5DIF DISFSnOtherGRWR462SnSnSnOtherSnSnSnSnSnGRWR462SnSnSnSnSnSnSn	Location		Location	n: Stor	24 5	Operator:	KODUK		
Sample No.NoticitienCRANTEL DIFF WITH 10% CAPILUIAu pphAgPbZnOtherGRWR461SFORYSCRANTED PHRITE SPRINCERS Are ener, with sour Dis- EMINATED PHRITESOUR Dis- EMINATED PHRITESOUR Dis- EMINATED PHRITESOUR Dis- EMINATED PHRITESOUR Dis- EMINATED PHRITEJO1.724107GRWR462"Rusta With Phytopense Sizicific DiseminateJO1.724107GRWR463"BASANT WITH PHYTOPENS SE FINE DISSEMINATED PHRITE AND ASS1.727207	Location	Description	· · · · · · · · · · · · · · · · · · ·			Operator: KODIAK			
GRWR461STORYSCR41.THL DIFF WITH 10% (APILLI) I-2mm PARITE SPRINCERS ARE RARE, WITH SOLE DIS- EMINATED PARITAu ppbAgPbZnOtherGRWR462"RUSTH WENTHERN OF SILICIFIC DIST TOFF WITH MINUR DISSLATINGTED PURITE 30 1.7 24 107 107 GRWR463"BASANT WITH PHTENES GE FINE DISSEMINATED PARITE 5 1.7 27 207		ocation Description	Analytical Results ppm						
GRWR462 " RUSTY WEATER SILICIFICION GRWR462 " RUSTY WEATER CO SILICIFICION TUFF WITH MINUNE DISSEMINATED PURITE GRWR463 " BASATT WITH PHTEMES GF FINE DISSEMINATED PURITE AND AS 5 1.7 27 207			Au pp 5	Ag	Pb	Zn	Other		
G-RWR463 "BASANT WITH PHTCHES GE FINE" DISSEMINATED PURITE AND AS 5 1.7 27 207	SFORY 5	1-2mm PHRITE STRINGERS ARE RARE, WITH SOULD DIS-	5	0.7	46	97			
DISSEMINATED PURITE AND AS 5 1.7 d1 aug	20	TUFF WITH MINUR DISSEMINATED	20	1.7	24	107			
	41	DISSEMINATED PURITE AND AS	5	1.7	27	207	-		
	4	DISSEMINATED PURITE AND AS	5	1.7	27	207			

		ROCK SAMPLE DESCRIPT	TION RECO				
Page:		Project: STORY (G)	Location	17 JACA 17 GC	K GLALICK DSSAN	Operator:	KODIAK
Sample No.	Location	Description	Description			l Results _{//}	2m
	<u> </u>		Au ppb	Ag	Pb	Zn	Other
GLGR 343	JACK CRALLER GOSSAN	RUSPY RHYOLINE WITH ABUNDANT PRACTURES A LITTLE PYRINE ALSO DISSEMINATED. MOST RUSPED A WAY.	20	O.Š	40	168	
GLER 344	c 4	RUSTY WEATHERING RHYOURS, ON PERMANS WAP - LI MITE, HOMENT TO ANYONNE BREECHA/	25	1.0	45	211	
G-LG- R346	14	DUFF. 20cm CARISONATE VEIN WITH DISSEMINATED AND STRINGER PARITE VEINT IS SLIGHTLY SILLEDUS, IN DARK CTURY APRIMENT ANDESITE	5	3.2	7	26	
GLCR347		2m PERSIL PARE (PORPHYRY) WITH WUMER AND PERDSPAR PRENOCRYSTS, PYRIN DISSEM.	5	1.7	2.2	468	
UG R 348	•7	(NATED AND PATCHY 2-3%) VERY RUSTY RED STAINED RAYONTE WITH MANY CARBONNE AND 2-4mm PYRINE VETWS NEWAR FAMOR CONTACT WITH ANDESITE	10	1.7	31	44	

<u></u>		ROCK SAMPLE DESCRIP					
Page:		Project: STORY (G)	Location	II JACK	CREEK REPA	Operator	KODIAK
Sample No.	Location	Description		A	nalytica	l Results	ppm
			Au ppb	Ag	Pb	Zn	Other
GUG R 349.		GREN SILPSPONE WITH THIN (3cm) BAND OF THICKLY DISSEMINIED PHRITE (UP TO 35% SUPPLIED)	20	ڻ، پ	<i>117</i>	20	
GLGR 350	-1	- SAMPLE PRON BESIDE GMMR 197, POLIATED PELSIE DYKE ? RUYOLITE	1 / 1	1.3	32	42	
		WITH PYRITE + ARTENUPYRITE IN STRINGERS UP TO bom THICK. STRINGERS SUB - PIMATURE POLATION (340/VERTICAL).	5	1.3	32	42	
GIGR 351		PERSIC (RHYOLINE) DYKE WITH (5-20% DISSUMINATED PURITE + ARSEND PURITE?	10	. I	31	103	

		ROCK SAMPLE DESCRIP	TION RECO	RD			_
Page:		Project: STORY (G)	Location	.:		Operator:	KODIAK
Sample No.	Location	Description		ррм			
			Au pp 5	Ag	Pb	Zn	Other
GMMR171	STORY	Lapilli TUFF WITH FINE DISS- EMINATED PYRITE 3-5%	5	1,5-	(1)	54	
GMMR172	4	LAPILLI TUFF WITH LOTS 10% DISSEMINATED PRAITE	5	0,1	3	25-	
GMMR17¥	۲.	ARGLLINE WITH CONCRETIONS, A LIMÉ DISSEMINATED PYRINE	10	0,2	16	47-	
6 MMR 175		FERSIC TUFF, RUST WEATHERED WITH DISSEMINATED PURITE.	5	0.1	14	42	ŗ
GMMR176	u	BLACK ARCILLINE WITH STRONG FOLIMION, NO VISIBLE SULPHIPES	10	2.4	26	43	
GMMR180	ι,	FINE GRAINED GRABBRO NO VISIBLE SULPHIPES -	10	2.5	9	43	
GMMR181	"	TAN DACITE WITH RARE PARIN	5	3.3	9	73	
G-MmR 182	*1	SILICEOUS MUDSIONE WITH DISS- EMINATED PARITE AND IN FINE FRACTURES - ACGO MENEMOPTRITE?	5	2,2	9	233	

Page:		Project: STORY	Location	5700	242	Operator	KODIAK
Sample No.	Location	Description		A	nalytica	1 Results	ppm
bampre net			Au pps	Ag	Pb	Zn	Other
GMMR19]	STORY 2	LAPILIE / BUCK TUPE WITH QUARTE CALLIE VEWS AND FINE PISSEMMENT	5	0.6	31	47	
GMMR 194	<i>•</i> ,	PURIAT. LAPILLI/ORUSIM MASS WITH DISSEMINATED AND PRACTURE FILLING PURIAT 2%	5	0.7	13	11.7	
GMM RIUS.	Ň	GOSSANOUS LAPILLI DIFF WITH 5-10% DESEMINATED PURITY	10	0.3	18	77	
GMM RIUG	۶.	SAME AS RIUS	5	0.1	20	58	
GMMR187		SAME AS 185 LESS PURGE	5	0,1	15	24	
G-MMR188	~	LAPILLI TUFF WITH FRAGMENTS 2-10mm, 2-3% DISSEMINATED PURITE	5	0,4	13	102	
GMMR190	ч	BRECHATED JUFF WITH QUARTE AND CAREBONATE VEINS. NO VISIBLE SULPHINES	5	0, 1	21	119	

		ROCK SAMPLE DESCRIP	TION RECO	JRD					
Page:		Project: STORY (G)	Location	Operator	rator: KODIAK				
Sample No.	Location	Description	Analytical Results ppm						
	···		Au pph	Ag	Pb	Zn	Other		
GMMR192	STORY 2	LAPILLI ASH NEP WITH NO VISIBLE SULPHINES	5	0,6	44	251			
G-MM R 193	•.	SILICEDUS RHYOLINE WITH ABONNANT QUARTE & PYRINE STRINGERS, YELLOW HSPY STAIN.	5	0,3	29	31			
G MMR 194	ć.	SILICEDUS, GESSANUIS RHUDLINE, PSHID AND AKSU NO PYRINE IN UEINEETS AND DISSEMINATED	5	0.7	26	22			
GMMR 145	<i>"</i> .	JAME AS 194.	5	0, 3	29	12			
GMMR196	к.	TAN ARGULLIN- WITH PURINE - QUARTE - CARBONATE VEINS . PERITI	10	1,3	29	58			
6-MMR197	.,	NUDULES , 5 TOLM IN DIAMETER PYCITIC ASH TUFF WITH PYRIFE DISSEMINATED 3% AND M MAIRLINE	5	0,9	35	98			
GMMRIGH	,.	FRACTURES 5%. CARBWARE - QUARTE VEIN IN ANDESITE	5	1, 8	3	13			

		ROCK SAMPLE DESCRIP	TION RECO)RD				
Pageı		Project: STORY	Location	STOR	У	Operator	B.CASE	
Sample No.	Location	Description	Analytical Results ppm					
			Au pph	Ag	Pb	Zn	Other	
BC-R-74	STORY	SILICIFIED GREEN TUSS MINOR PY IN FRACTS	5	3. Z	6	91		
BC-R-75	u	\mathcal{H}	10	0.6	23	86		
BC-R-76	13	SAME	5	0.1	27	3.9		
BC-R-77	71	SAME	5	0.1	21	20		
BC -R-78	41	MASSINE PY IN SILICIFIED TUFF	5).4	34	62	. 10 · ³ . 31 _	
BC-R-79	H.	DIGSEM PY IN LAPILLI TUFS	5	0.9	21	47		
BC-R-80	41	SAME	10	2.4	13	74		

.

		ROCK SAMPLE DESCRIP	TION RECO)RD				
Pageı		Project: STORY	Location	"510R	Υ.	Operator	B, CASE	
Sample No.	Location	Description	Analytical Results ppm					
			Au pph	Ag	Pb	Zn	Other	
BC-R-68	570RY	GREENISH GREY TUIF, LIGHT IRON STAIN	5	1.8	21	22		
BC-R-69	μ	GREY-WHITE TUFF, INTENSE STAINING, SMALL PODS OF PY	5	1.1	17	24		
BC-R-70	11	GREY-WHITE SILICIFIED TUFF PODT DISSEM PY, CHERT FRAGS.	5	0,4	22	340		
BC-R-71	Li.	GREEN TUST, STAINED W FRACT. FILLING PY	5	0,7	23	130		
BC-R-77	1) 1)	GREEN TUTS & CHERT FRAGS AND DISSEM PY	5	0.1	29	83		
BC-R-73	t.	BREY-WITITE TUTT TO DISSEM PY	5	0.5	27	201		

		ROCK SAMPLE DESCRIPT	TION RECO)RD			
Page:		Project: STORY	Location	"STOR	Y	Operator:	B.C.ASÉ
Sample No.	Location	Description	· · · · · ·			al Results	ppm
	· · · · · · · · · · · · · · · · · · ·		Au ppi	Ag	₽b	Zn	Other
BC-R-61	510R 4	LAPILLI TUFS W DISSEM AND FRACT. FILLING PY	5	0.9	36	44	
BC-R-62	L,	SAME, CARBONATE INFILLING FRACTS	5	1.0	26	52	
BC-R-63	li	LIGHTLY STAINED QTZ VEW	5	0.8	23	13	
BC - R-64	μ	GREEN TO GREY BASALT N DISSEM PY	5	0.3	11	131	. 19 1 - X. 19
BC-R-65	tt	LAPILLI TUSS WITH FRACT FILLING PY VEINS	5	0.5	33	31	
BC-R-66	10	GREENISH BASALT W SLIGHT FRACT FILLING PY	10	0.9	13	100	
BC-R-67	L _l	SAME, SLIGHT STAINING	5	2.2	9	115	

.

		ROCK SAMPLE DESCRIPT	<u>_</u>	<u> </u>	<u></u>	· · · · · · · · · · · · ·	
Page:		Project: STORY	Location	:: ЈАСК <i>е</i> г	ALIER Goss.	Operator	: KODIAK
Sample No.	Location	Description		Aı	nalytical	Results	ppm
			Au ppb	Ag	Pb	2n	Other
G GM TO41	STORY	IOM CHIP IN GOSSANDUS RHYOLIR					max imum values
6СМТ042- 046	t,	50m CHIN IN GOSSANOUS RHHOLIRE	5	1.7	30	15	4
G-CCR 174-177	S 1	40m CHIP IN GOSSANOUS RHYOUR	10	0.9	14	48	C.
GCCR 178 -179		15 M NORTH SOUTH CONTINUOUS CHIP ACROSS QUARTE-CARBONATE VEINS IN COSSANOUS RAYOUR	5 5	0.7 1-0	38 37	48 36	*
GMBR 335 — 339	••	25 m CHIP IN GUSSANOUS RHYOLINE	10	1.2	113	216	łz
G-DMR 120 -125	1.	30m CHIP IN GOSSANOUS IRMHOLINE	10	1.0	32	92	.,

[: هنگ أشيط # ¥ فلية نرية р э APPENDIX V . قرية ASSAY TECHNIQUES AND RESULTS 57 6.5 <u>ر م</u> . 63 U C C

.

-- -

 \bigcap

ۆ

ند ا

L Á

1

i, A

۳٦,

***** /

4

١.

Division of Assayers Corp. Ltd.

- 1

1.1.1.18

TANK TRACKS IN LOW AND

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

ŝ

.

فر.

1

.

¥. 1

1

1

Division of Assayers Corp. Ltd.

-

- 1

N. 16.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B. C., laboratory employing the following procedures:

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized on a ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

FICE AND LABORATORIES: 1.5 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 112

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067

Division of Assayers Corp. Ltd.

- 15 A 19.

MERCURY ANALYTICAL PROCEDURE FOR ASSESSMENT FILING _____ Samples are processed by Min-En Laboratories at 705 West 15th St., North Vancouver, B. C., employing the following procedures. After drying the samples @ 30 C, soil, and stream sediment 1 samples are screened by 80 mesh sieve to obtain the minus à 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer. 3 A 0.50 gram subsample is digested for 2 hours in an aqua regia mixture. After cooling samples are diluted to standard volume. Ŀ, Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable delutions made if necessary. ۰., à. 4 • • 11 67 振り 12 1 . . Ë. A

DESICE AND LABORATORIES: 'C. WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. DANADA V7M 112

Division of Assayers Corp. Ltd.

GOLD ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

- 1

Ξ

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

FICE AND LABORATORIES: THE WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

. سريا

17

ñ. .

'n,

L.

Ľ,

ŧ.

Å.

1.4

Division of Assayers Corp. Ltd.

AG, CU, PB, ZN, NI, AND CO ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

- 1

÷

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3 - KCL04 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

FFICE AND LABORATORIES: 505 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA - V7M 112

				AL ENVIRONMENTS	- 	NORTH VA TELEPHO: FAX (604E THUND TELEPHO: FAX (607) SMITHI	NE (604) 98 960-9621 NE (807) 62 623-5931 ERS LAB	B.C. CANADA V7M 1T2 0-5814 OR (604) 988-4524 LAB.: 2-8958
i . ×	.	Assay	<u>Certi</u>	ficate			0	S-0667-RA1
	Company: Project: Attn:	INTERNATIC	NAL KODIA	K		INTERNATIONAL INTERNATIONAL	KODIAK,	OCT-15-98 VANCOUVER, B.C. C/8 JAYCOX
F 1	submit	ted OCT-09-	-90 by RIC	owing Assay of K WALKER.		-		
	Sample Number	nin san an a	AU g/tonne	AU oz/ton	an a	n in formelie were der der		an a
F 1	6-L6-R-3	354	3.83	.112				
\$.#								
-								
ال ا	-				~~ ~ ~~~~~			
rra I I IIII								
٤.4								
÷ ≟⊋					G	RI		
* 1								
Å								
₹ N								
N								
<i>*</i> 1								
Ø-1								
				· _ · · <u></u> · ·		- · · ·	··· · - <u></u>	- ,
<u></u>								
						A		/
					//	Z.T.	in ll	
				Certified .	<i>бу[</i> 4	<u>CAN fr</u>	(Norff)	/
G						MIN-EN	LABOR	ATORIES

· · · · · · ·

Description OS-0603-RA2 Description Description Project UNDA Reserve certify the following Assay of 2 ROCK samples Schröle AU Noteer Offence Control 2.25 Action 2.25 Action 2.25 Action 2.26 Action 2.27 Action	¥) \ •	LABORAT IDIVISION OF ASSAVERS O SPECIAL	ORP) 😪		6	TELEPHONE FAX (607) 980 THUNDEI TELEPHONE FAX (807) 623 SMITHER	TH STREE OUVER, B. (604) 980-)-9621 R BAY L (807) 622- 3-5931 S LAB.	T C. CANADA V7M 1T2 5814 OR (604) 988-4524 AB.: 8958
Levens INTERNATIONAL KODIAK Protect: UNUK Rith PICK WALVER Att PICK WALVER He hereby certify the following Assay of 2 ROCK samples submitted SEP-29-90 by RICK WALKER. Secole AU AU N-Cor gitone oziton 30-R-335 2.58 .066 2 _0-R-335 2.58 .089 			·				(FAX (604)	847-3004
Protect: UNUM: Cory I. INTERNATIONAL KODIAL, MODIFIER, E.C. Stite: PICK WALKER 1. INTERNATIONAL KODIAL, MODIFIER, E.C. He horeby cortify the following Assay of 2 ROCK samples submitted SEP-29-90 by RICK WALKER. Earole AU Store g/tonne Gardie AU Store g/tonne Store 2.136 Store 2	Eospany:							
submitted SEP-29-90 by RICK WALKER. Sample RU AU Nonser g/tenne op/ten 36-8-333 2.25 .066 d5-R-3332 2.38 .369 	Project:	UNUK				Copy 1. INTERNATIONAL 2. INTERNATIONAL	KODIAK, Kodiak.	VANCOUVER, B.C. SMITHERS, B.C.
Ander g/tenne oz/ten 	<i>He her</i> submit	eby certify ted SEP-29	y the foll -90 by RIC	owing Assay K WALKER.	y of 2	ROCK samples		
certified by								
Certified by Burgan								
Certified by Burgand								
Certified by Burgan							•••••	
Certified by Burgan					1			
						21 T		/
						2a	. /	/
MIN-EN LABORATORIES				Certif	ied by	1 Str M	Var ff	
						MIN-EN	LABOR	ATORIES

.

		• • • •					•••			••••		
		L			STS IN MIN			-	705 WE NORTH TELEPH FAX (60 THUN TELEPH FAX (80 SMIT	ST 15TH ST VANCOUVEL IONE (604) (4) 980-9621 IDER BA IONE (807) (7) 623-5931 HERS LA	R, B.C. CANADA V7M 1T2 88Q-58 14 OR (604) 988-45; 1 Y LAB.: 522-6958	24
		Ð	553	4 0	ert:	ificat	- <u>-</u>			0:	S-0229-RA1	
	Empany: Project: Attn:	UNU		· .	L KODIA	лк	· ·			L KODIAK,	AUG-13-90 VANCOUVER, B.C. C/D JAYCOX	
<u>د</u> م						owing As: NICHOLSON		samples				
₹1 ¹⁰ 2	Sample Number				AU /tonne	AU oz/ton	ZN Z		an gan s	in an in sea	ма жалдан . 	
	5-PN-T G-MM-T G-GM-T	201 03 8	antia de la construcción de la cons		1.44	.042	.84 i.72	1979 - Frank Landin (7577-1746)	प्राय सः अभ्र ालेकः स्कूलग	reen markenskel	regen warder filleren di	Engliniseann -
71	G-GM-T	047					4.80					
25												
k. 4								6 R	Ч			
, - , , , , , , , , , , , , , , , , , ,												
,												
е т М.												
F												
.												
بر .												
	1							Ń		ſ		
						Certi	ified by	_ An	m	ãb.		_
		,							IN-EN	LABOR	ATORIES	

	MIN • ENVIRONMENTS LABORATORIES IDVISION OF ASSAVERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAVERS - ANALYSTS - GEOCHEMISTS		VANCOU 705 WEST NORTH VAN TELEPHON FAX (804) 9 THUNDI TELEPHON FAX (807),6 SMITHE TELEPHON	15TH STREE ICOUVER, B E (604) 980 180-9621 ER BAY I E (807) 622 123-5931 IRS LAB	ET I.C. CANADA V7M 1T2 -5814 OR (604) 968-4524 LAB.: -8958 :	
	<u>Assay Certificate</u>			05	S-0249-RA1	
	Company: INTERNATIONAL KODIAK Project: UNUK Atto: G.NICHOLSON		. INTERNATIONAL . INTERNATIONAL	KODIAK,		
ri Liy	He hereby certify the following Assay o submitted AUG-07-90 by M.BROWN.	f 1 ROCK	samples			
F1	Sample ZN Number %					
1	G-MM-R 214 3.08	ای برد در تو <mark>یی</mark> نه این از از از ا	Delas Trans de la secoladadore son dela facada	awa ng na ang ang a	Mark Ban ragese r - affikkester af 177	72 1
<u>.</u>						
				u		
i. Kar	,					
C.		6R	1			
<u>e</u>		OR	I			
F7					N	
44						
व ्यम् :						
			<u>.</u>			
1 4						
			R-	_ [
M	Certified	Б <u>у</u>	(Bu M	āb_		
i. Na			MIN-EN	LABOR	ATORIES	
						c

MIN • EN LABORATORIES (DIVISION OF ASSAYERS CORP.)	VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. GANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.:
SPECIALISTS IN MINERAL E	ENVIRONMENTS TELEPHONE (807) 622-8958 10 - 002010 Mores FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004
Assay Certin	ficate 0S-0603-RA1
Company: INTERNATIONAL KODIAK Project: UNUK Attn: RICK WALKER	Date: OCT-05-90 Copy 1. INTERNATIONAL KODIAK, VANCOUVER, B.C. 2. INTERNATIONAL KODIAK, SMITHERS, B.C.
submitted SEP-29-90 by RICK	wing Assay of 3 ROCK samples WALKER.
Sample CU Number %	
-K G-LG-R-323 1.360	
	L. K. B.
*	
• •	
× \$	
*	
-	\mathcal{A}
	Certified by Man Man
a di seconda	MIN-EN LABORATORIES

CONFE ENTERNATIONAL KODIAK

S. Hangen

NIN-EN LABS --- ICP REPORT

705 LEST 15TH ST., HORTH WARCOAVER, B.C. V7R 112 (504.5005-5814 (P) (404.5008-4554

FILE NO: 05-0667-RJ1+2

١.

DATE: 90/10/15

ATTHE RECK WALKER

ATTHE RECK WALKER			_				_					(604)	933-5	814 (DR (604	1968	4526										• •	IOCK *	(AC	1:631)
SANPLE NUMBER	AG PPM		AS PPH			ac PPH I		CA PPH	CD PPM	CD PPN		FE PPR		L1 PP#	NG PPM	PPH	NG 1 PPM PF	IA IKE 19 ppn	P PPH		\$8 PPH		FN U PM PPM		ZN PPM P		SN N PPM PPI	I CR H PPM	AU PPB	KG PP0
G-MB-R-335 G-M8-R-336 G-MB-R-337 G-MB-R-338	.9	4510 11040 4680	30 38 57	562	136 127 149	.1	1 10	6000 5700 520 5190	.1 1.1 .1	8 7 18 4	11 18 8	71040 36790	3010 3680 2830	4 8 3	2180 6340 1740	- 555	1 10 1 30 11 -	00 1 10 1		37 47 37	7 10 9 7	10 9 11 59		24.8 29.2 78.4	60 182 26	1 1 1	1	1 23 1 57 1 10 1 91 1 24	5 5 5 10	1670 1820 1730 980 3500
G-MB-R-339 G-MB-R-340 G-MB-R-341 G-MB-R-342 G-MB-R-343 G-MB-R-344	1.2 .8 .5 .7 .6	9470 5630 5590 4950 5760 15160	57 9 1 1 6 1	2 2 1 1	103 121 164 145 109 113	.1 .2 .1 .6 .5	1 12 1 14 1 12 1 8	100	.1 .1 .1 1.1 .1	11 12 17 17 17 14 20	16 15 20 18 15 21	49520 42040 57190 59210 53330 64450	3380 2930 2770 2410	1 1 1 2	12170 5600 7130 5420 3900 7600	1198 1624 1364 979	2 12 1 14 1 14 2 3 3 4	50 1 50 1 50 1	1760 1580 1380 1530 1380 1750	31 29 37 37	9 1 1 4 5 1	9 8 8 7 10		1 55.3 1 27.8 1 32.7 1 28.3 1 31.9 1 54.9	144 105 119 67	1	1 1 1 1	1 25 1 25 1 8 1 14 1 7 1 14	10 5 5 5 5	490 385 540 560 380
G-NB-R-345 G-KB-R-346 G-MB-R-347 G-HB-R-348 G-MB-R-348 G-MB-R-349	1.0	8790 11340 13640 13810 13630	1 40 26 14 9	1	149 113 132 130 239		1 4	710 320 390 640 400	.1 .1 .1 .1 .1	12 14 12 16 14	t3 18 15 18 18	53950 56700 54660 55560 55580	2690 2810 3250	8 10 9		719 648 1153		10 1 50 1 10 1	1570 1690 1370 1760 1770	33 38 49	8 4 5 5 14	9 9 8 8 10	1 1 1 1	1 36. 1 42. 1 48. 1 48. 1 45.	5 136 4 131 5 102	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 10 1 13 1 19 1 23 1 20	5 10 5 5 10	3120 835 1160 585 685
G-MB-R-350 G-MB-R-351 G-MB-R-352 G-CC-R-349 G-CC-R-350	.7 .8 .6 .7 1.9	5800 4630 3810 13590 3420	75 66 74 24 51	1 1 1	222 231 252 117 103	.12.21	1 2	490 960 820 720 200	.1 .1 .1 .1	2 2 3 14 21	289 109	7380 15070 13220 52090 35400	2550 1240	1 1 15	1010 1140 540 10840 4950	265 175 280	23		30 50 90 2910 3040	32 29 32	1 5 3 1 1	2 2 3 16 87		1 2. 1 3. 1 3. 1 119. 1 24.	5 83 0 71 1 83	1 1 2 1	1 1 2 1	1 135 1 101 1 128 1 28 1 30	10	635 810 585 375 415
G-CC-R-351 G-LG-R-349 G-LG-R-350 G-LG-R-351 G-LG-R-352	1,2 .1 1.3 1.1 2,9	10630 6090 5880 5730 1820	1 21 40 39	1	58 13 137 105 134	.1 .1 .2	1 3		-1 -1 -1 -1	15 45 14 23 13	13 12 8	84610	1420 2000 2940 1010	521	20090 2560 10770 1330 53180	20 809 380	2 2	50 1 20 1	1400 80 1750 1570 600	117 32 31 74	1 53 1 12 16	39 1 21 6 16		1 57. 1 11. 1 10. 1 24. 1 18.	5 20 7 42	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 5	1 14 1 1 1 5 1 16 1 8	10 15	17875
G-LG-R-353 G-LG-R-354 G-RW-R-458 G-RW-R-459 G-RW-R-459 G-RW-R-460	.4	1480 1470 13790 13940 26300	176 2483 1 1	6 3 2 1 1	26 23 71 102 24	.1	1 43	640 040 960 000 710	.1 44.2 .1 .1	16 16 19 17 14	10 15	170830 133070 129000 104260 71020	480 460 590	1 13 12	1130 24290 11420 11470 16790	4619 692 443		50 1	10 320 1460 2430 1570	44 30 18 44	42 226 1 1	1 3 8 16	1 1 1 1	1 5. 1 14. 1 128. 1 153. 1 91.	6 146 0 69 0 75	1121	34222	1 47 1 1 1 1 1 1 1 29	2400 10 5	47500 1600 655 520 235
G-RW-R-461 G-RW-R-462 G-RW-R-463	1.7	15720 17100 19730	10 1 1	17 10 8	86 59 199	.7 .1 .1		560 310 190	.1 .1 .1	16 19 18	98 187 34	56550 61040 62880	500	- 15	8610 11960 14040	958	1 20 1 40 1 71	00 1	2330 2450 2690	24	1 1 1	13 14 16	1 1 1	1 65.5 1 129.1 1 129.1	7 107	- <u>1</u> - <u>2</u> 1	1 2 1	1 9 2 9 1 17		495 515 315
	 							ć	; K		3			'	± '								'							
																														
······································								•												· <u>··</u> ·				* _ * _				- 		
																														
	-		· · ·																								· <u> </u>			
	•										·									·										

COMP:	INTERNATIONAL	KODTAK		
PROJ:	URUK			
ATTN:	G.NICHOLSON			

MIN-EN LABS --- ICP REPORT

705 WEST 1STH ST., NORTH VANCOUVER, 8.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: DS-0634-RJ1+2

DATE: 90/10/11

* ROCK * (ACT:F3')

											004170	50-56	14 04	((004)	700-4	+DZ4											•	ROCX *	(A	ÇT:F
SAMPLE NUMBER	AG PPM	AL PPM P	AS PM	8 PPM	BA PPM	SE PPM P		A CĐ H PPM	CD PPM		FE PPM		LI PPN	MG PPM	MH PPM	NO NA PPM PPM				SB PPM			U PM	V PPM	Z N PPM			W CR PM PPH		H PP
	2.6 4 2.2 8 1.2 3	80 10 50 70 1 70	43 1 50 53	33 17 9 5 3	101 59 95 44 32	1.3 .1 .1 .4 .7	1 1868 6 693 6 571 2 1961 3 993	0.1 0.1 03.2	17 19 10	113 233 135	42460 33620 44800 20510 31690	540 1870 2770 850 970	15 10 5	7320 3780 7310 4010 4080	606 122 161 281 122	6 620 2 830 3 670 33 330 14 820	24 14 13 78	460 620 670	33 11 19 23	6 1 1	8 10 7 6 7	1 1 1	1 1 1 1 2	16.2 95.2 88.5 12.8 38.8	70 19 18 202 259	1	2 1 1 1	1 82 1 96 1 113 1 231 1 338	55555	14 8 4 10
G-LG-R 342 G-LG-R 343 G-LG-R 344 G-LG-R 345 G-LG-R 346		20 40 60 1	30 17 42 50 1	5	179 136 116 262 1108	.3 .6 1.0 .4 .2	1 831 1 1502	0.1 04.8	12	10 7 16	33370 55380 50510 52200 42670	3560 3400	5 16 5	2060 2900 10700 3330 68620	196 359 690 749 6147	68 480 6 370 4 160 3 140 1 30	1 1 1	2230 2700 3200 2140 110	406 40 45	32 21 29	9 12 21 8 140	1 1 1	1 1 1 1 1	48.7 71.6 05.7 45.3 17.0		1 2	1 1 2 1 4	1 54 1 75 1 20 1 64 1 9	80 20 25 40 5	6975 662 775 500 33
G-LG-R 347 G-LG-R 348	1.7 23 1.7 12 1.4 39 1.4 3 2.5 34	50 180 190	41 26 25 43 18	3 6 3 1 2	320 250 243 338 297	.5 .5 .7 .6	1 3532 1 3507 1 3060 1 3531 1 7508	0.3 0.1 01.5	16	7 226 155	60190 47480 39610 20680 34890	4440 730	3 1 1	18010 17980	875 666	2 420 1 140 3 450 13 110 19 100	1 14	1890 2630 760 380 1210	26 27	8 1 4	40 26 30 15 47	1 1 1 1	1 1 1	34.6 39.3 96.9 66.7 99.8	468 44 61 98 101	2 1 1 2	32313	1 71 1 46 1 49 1 137 1 114	5 10 5 5 5	34
G-M8-R 327 G-M8-R 328 G-M8-R 329 G-M8-R 330 G-M8-R 331	1.0 230 1.1 238 1.9 194 8.0 198 3.7 200	60 40 90	19 10 53 53 28	32233	138 109 111 105 166	1.0 .8 .8 .9 .7	1 2191 1 2759 1 2817 1 2165 2 1607	0 .1 0 .1 0 .1	14 14	10 10 10	55640 54570 50910 52030 55290	1080 1580 2790	16 13 11	16780 21340 21460 16040 13170	1820 1300	1 620 2 660 1 340 4 340 2 400	1 1 1	2540 2510 2540 2710 2910	25 35 37	14	21 43 25 18 17	1 1 1 1	111	32.5 38.3 07.1 94.9 03.9	115 102 121 216 374	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23252	1 23 1 19 1 11 1 20 1 19		22379
G-M8-R 332 G-M8-R 333 G-M8-R 334 G-DM-R 100 G-DM-R 101	1:0 107 .3 143 .8 144 .7 55 .5 49	60 30 60	14 12 10 71 63	5	158 171 162 173 136	1.0 1.3 .8 .4 .4	1 1495 2 2698 1 866) .1	14	5 10 7	38820 50540 54350 18860 16610	6600 5970 3500	1		2318 1813 2554 498 377	1 60 1 50 1 50 3 50 2 90	1	1450 1510 2250 200 110	24 -29 -30	1 4 1 8	9 4 15 13 2	1 1 1 1	1	31.8 39.1 47.9 7.2 4.7	35 45 61 176 111	1 1 1 1 1	1 2 1 1	1 32 1 24 1 14 1 166 1 195	10 5 5 5 5	18 3 7 13 10
G-DM-R 102 G-DM-R 103 G-DM-R 104 G-DM-R 105 G-DM-R 106	1.0 58 1.4 85 .5 50	60 10 70	77 60 41 61 49	1 1 2 1	90 97 96 107 176	.4.7.6.6.4	1 1688 1 1559 1 3474 1 449 1 518) 1.4) .1) .1	2 6 14 3 2	13 28 7	12560 16410 30520 12010 10400	3100 3360 3130	1 5 1 1	9000 7360 20780 2040 3350	632 715 1606 436 338	3 50 2 60 1 100 3 50 3 40	4 12 31 4 5	80 230 700 90 110	27 24 27 27 26		7 26 3 4	1 1 1 1	1	5.3 15.0 37.4 5.6 4.3	62 51 235 54 43	1 1 1 1	1 2 1	1 133 1 98 1 115 1 155 1 139	10 5 5 5 5	6 4 20 3 3
G-DM-R 107 G-DN-R 108 G-DN-R 109 G-DN-R 110 G-DN-R 111	1.0 52 1.3 46 1.1 161 1.4 152 .6 149	40 50 00	49 26 1 1	7	288 209 132 151 118	.3 .5 .1 .5	1 339 1 58 1 2313 1 2075 1 2075 1 1637) .1) .1	3 15 13 15	6 10 8	13200 16230 53820 45490 54240	2980 3300 3760	5 15 10	2030 630 12750 10250 9600	1386	5 50 3 30 3 270 4 250 1 240	1	120 100 2710 2990 3110	21	6 3 2	5 22 18 14	1 1 1 1 1 1 1	1	3.7 2.3 75.0 69.9 71.7	58 95 96 99 74	1 1 1 1	1 2 2 2	5 184 4 143 1 19 1 30 1 22	5 10 5 5	6 13 3 5 4
G-DH-R 112 G-DM-R 113 G-DM-R 114 G-DN-R 115 G-DN-R 116	1.0 229 .8 172 2.4 65 2.0 63 1.7 54	90 10 20 2	1 55 12 47	5	153 161 151 176 134	.4 .3 .4 .4	1 1576 1 1946 1 3637 1 2177 1 3212) .1) .1) 3.4	16 15 9 8 5	8 14 13	57210 47690 37970 26860 23830	4590 3250 3510	10 1 1	16140 13250 24220 13210 23680	1287 2487 1277	2 380 3 240 1 40 2 40 1 40	1		84	13	15 17 14 8 16	1 1 1 1	1	12.8 69.4 24.4 15.7 10.6	99 60 171 149 70	2111	32322	1 10 1 46 1 8 1 52 1 50		2 3 11 11 11
G-DM-R 117 G-DM-R 118 G-DM-R 119 G-DM-R 120 G-DM-R 121	1.7 47 1.0 100 2.0 108 .7 166 1.0 179	00 90 40	56 24 28 1 1	6 7	150 372 226 95 107	.3 .6 .3 .3	1 29680 1 16030 1 22640 1 24290 1 24330		8 10 13 27 28	12 16 37	31410 41350 42460 64250 64860	5470 4440 4500	1 3 15	17690 6130 9900 14770 15410	1108 1953 1469	1 40 1 40 1 110 1 120 1 210	1 20	570 2550 2560 1220 1400	63 37 98 23 32	9	7 15 16 18 14	1 1 1 1	1	13.1 27.8 40.8 82.5 87.2	175 63 409 103 92	1 1 1 1	2 1 2 4 3	1 16 1 60 1 40 1 32 3 58	10 5 5 10	9 20 14 19
G-DM-R 122 G-DM-R 123 G-DM-R 124 G-DM-R 125	.5 132 .8 95 .8 90 .7 92	70 00	10 33 63 20	7	116 119 128 135	.4 .2 .1 .1	1 1187 1 1775 1 2098 1 1135	.1		11 11	40050 52770 58410 52440	4090 4860	1	7560 9190 10060 5290	1617	3 120 1 90 2 100 2 150	1	1630 1850 1860 2600	33 32 52 33	7 15 19 13	14 17 17 18	1	1 1	59.5 45.2 46.3 53.8	54 49 61 76	1 1 1	2 1 1 1	1 30 1 48 2 57 1 10	5 5 10 10	13 18 19 14
5 ⁵⁷⁴	ł											.' :-	•	•												-				

PROJ: UNUK

ATTN: G.NICHOLSON

E

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

רד. שני,

FILE NO: 05-0229-835+6

DATE: 90/08/13 * ROCK * (ACT:F31)

CANDLE			(004)700				* ROCK *	(ACT:F31)
SAMPLE NUMBER	PPM PPM PPM PPM PPM P	PM PPM PPM PPM PI		PPM PPM PPM	NC NA NI P PPM PPM PPM PPM	PB SB SR TH U V PPM PPM PPM PPM PPM PPM	ZN GA SN W CR PPM PPM PPM PPM PPM I	AU HG PPB PPB
G-LG-T 190 G-LG-T 191 G-LG-T 192 G-LG-T 193 G-LG-T 194	1.2 13000 1 3 163	.3 1 4290 .1	9 10 39300 1850 9 11 50640 2320 16 8 77630 620 12 17 47310 3400 11 12 44450 2690	34 2600 361 33 16720 956 14 4760 230	2 100 1 420 3 140 1 370 22 220 1 700 1 110 1 450 1 120 1 480	18 1 10 1 1 22.0 19 1 4 1 1 22.7 10 1 4 1 1 13.4 24 12 2 1 1 23.4 18 8 10 1 1 23.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 3495 10 4950 5 1830 5 820 5 1715
G-LG-T 195 G-LG-T 196 G-LG-T 197 G-LG-T 198 G-LG-T 199	.2 9800 1 4 94 .1 10120 27 6 90	5 1 3320 .1 5 1 23130 .1 1 1 3310 .1	13 11 65830 2020 9 10 51300 2930 15 9 85710 1600 12 7 140540 1400 13 7 46630 270) 37 5480 161) 27 4300 1775) 16 6790 73	1 160 1 370 1 130 1 550 30 90 1 800 23 280 1 1330 7 230 1 1000	18 1 6 1 1 47.7 15 12 5 1 1 31.6 17 4 2 1 63.5 11 15 4 1 191.1 20 5 70 1 74.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 3690 5 2720 5 8490 20 4230 5 630
G-LG-T 200 G-LG-T 201 G-LG-T 202 G-LG-T 203 G-LG-T 204	2.2 2740 41 1 27 1.5 11870 1 2 36 1.7 4290 28 4 49 .8 6880 52 3 40	1 2 102190 .1 3 1 81200 .1 1 1 81560 .1	15 4 55400 190 12 5 45130 190 16 6 50740 400 17 6 62130 980 22 12 80830 730	8 4040 1490 21 9650 1864 5 3610 1575	16 340 1 1020 14 210 1 710 5 280 1 1120 7 290 1 1210 2 710 1 1720	16 1 8 1 1 86.8 27 6 12 1 1 64.6 24 4 16 1 1 124.0 22 10 21 1 1 65.9 25 14 10 1 1 171.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ 2560 10 1020 \$ 880 10 1520 5 2680
G-LG-T 205 G-LG-T 206 G-LG-T 207 G-LG-T 208 G-LG-T 209	.6 8470 8 1 39 .5 7210 40 3 53 .5 7950 23 1 59	4 1 4280 .1 2 1 13190 .1 1 1 18590 .1 1 6680 .1	14 8 53180 530 11 8 54070 1630 16 7 53100 360 22 10 82110 910 19 7 49230 720	6 2440 144 14 6550 516 9 4480 837	5 850 1 980 6 640 1 990 2 680 1 1510 5 610 1 1720 2 660 1 1540	16 9 4 1 1 132.8 22 14 5 1 102.3 16 1 7 1 193.7 20 9 7 1 156.6 12 3 7 1 158.8	12 2 1 2 16 23 1 1 2 29 68 2 1 3 20 54 1 1 1 1 1 104 3 1 2 15	5 2010 10 3480 5 1825 10 4620 5 2220
G+LG+T 210 G+LG+T 211 G+LG+T 212 G+CC+R 163 G+CC+R 164	1.0 9250 22 2 246	1 1 17820 .1 1 2 1 13280 .1 1 4 1 15410 .1 1	18 6 68840 550 18 6 68980 580 18 9 61220 690 16 18 50870 4230 11 7 40410 2220	10 4640 662 6 2660 543 5 2230 565	1 550 1 1540 1 680 1 1530 1 920 1 1450 1 490 1 1290 1 250 1 2030	14 4 5 1 1 175.0 16 4 5 1 1 180.9 15 7 9 1 1 150.5 23 1 31 1 4 7.2 24 1 14 1 1 37.9	41 1 2 1 1 29 1 1 2 5 16 1 2 3 26 47 1 1 2 30 30 1 3 1 32	5 1890 5 1820 10 <u>1920</u> 10 265 10 530
G-CC-R 165 G-CC-R 166 G-CC-R 167 G-CC-R 168 G-CC-R 169	1.8 2950 197 2 36	1 1 28330 .1 1 6 1 35310 .1 1 1 1 80590 .1 1	29 29 86640 1290 15 13 126220 1600 14 16 46460 4060 15 14 61130 1410 13 8,47910 2580	2 2250 2178 4 3040 2326 1 2160 3642	181 550 1 1730 24 170 1 950 8 350 1 1870 10 180 1 1630 1 320 1 2040	20 1 5 1 1 203.6 27 30 32 1 1 24.0 45 1 106 1 36.3 45 6 111 1 18.5 29 1 1 1 34.6	78 1 2 3 22 20 1 1 1 1 44 1 1 28 21 1 2 1 1 25 1 3 1 23	5 1230 5 31375 5 2855 5 7000 5 1320
G-CC-R 170 G-CC-R 171 G-CC-R 172 G-CC-R 173 G-CC-R 173 G-CC-R 174	.6 7400 1 3 172 .4 16430 1 3 106 .6 8500 15 2 73	6 1 10640 .1 1 4 1 7160 .1 1	9 11 47270 2440 11 10 47250 4670 14 12 54150 3250 13 14 60250 2190 10 20 31380 1980	3 3280 1059 10 6640 899 5 2670 243	2 180 1 2280 2 260 1 2730 4 260 1 2440 1 460 1 2550 1 270 1 700	43 4 101 1 1 16.1 38 1 36 1 1 18.0 24 1 22 1 1 50.4 38 1 1 1 1 58.7 18 1 1 1 58.7 18 1 77 1 1 23.3	49 1 3 1 22 48 1 2 1 1 84 1 2 1 1 38 1 1 1 1 48 1 1 1 1	5 960 5 1360 5 670 10 7940 10 475
G-CC-R 175 G-CC-R 176 G-CC-R 177 G-CC-R 177 G-CC-R 178 G-CC-R 179	.8 16030 1 3 111 . .7 13570 1 2 95 .	6 1 25350 .1 1 7 1 21080 .1 3 1 51390 .1 1	13 25 36880 2030 11 20 41160 2130 9 23 35220 1640 12 6 55550 2340 12 6 63960 2160	22 12200 535 20 9870 505 6 24850 2476	1 260 1 630 1 300 1 700 1 210 1 730 1 140 1 1930 1 100 1 1630	18 1 87 1 1 25.5 14 1 69 1 1 30.2 16 1 60 1 1 22.6 21 2 38 1 1 29.4 23 8 37 1 1 26.7	59 1 2 1 19 56 1 2 1 10 53 1 1 2 2 48 1 3 1 1 36 1 5 1 1 1	5 450 5 325 10 220 5 1170 5 1750
G-CC-R 180 G-GM-T 027 G-GM-T 028 G-GM-T 029 G-GM-T 031	.6 10470 1 6 212 .9 14070 1 5 277	6 1 30460 .1 1 5 1 29380 .1 1 6 1 31640 .1 1	12 6 63760 2450 14 6 55040 3400 13 7 48870 3920 13 10 50790 4760 10 7 27710 5840	5 16210 1687 7 15590 1278 1 17800 1472	1 110 1 1880 1 350 1 2660 1 310 1 2610 1 220 1 2490 2 140 1 3080	30 8 60 1 1 32.9 23 1 48 1 1 38.7 26 1 35 1 1 42.9 43 1 23.1 1 36.6 24 1 51 1 1 35.9	99 1 4 1 1 89 1 4 1 10 61 1 2 1 1 93 1 3 1 26 60 1 1 1 12	5 3360 5 280 5 340 5 650 10 560
G-GM-T 032 G-GM-T 034 G-GN-T 035 G-GM-T 036 G-GM-T 037	1.3 6300 1 4 217 1.5 7720 2 4 227	2 1 45010 .1 1 5 1 46060 .1 1 4 1 45880 .1 1	12 8 61310 2800 11 8 56920 3000 12 6 41600 3380 12 7 42570 3130 15 7 54900 1880	1 29190 1739 4 28150 2110	1 120 1 1880 1 90 1 1860 1 110 1 2370 1 240 1 2360 1 630 1 2660	31 3 23 1 1 29.8 29 6 61 1 1 25.2 32 2 26 1 1 31.2 35 1 29 1 1 35.6 14 1 51 1 1 83.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1710 10 1460 5 1450 10 1810 5 280
G-GN-T 038 G-GM-T 039 G-GM-T 040 G-GM-T 042 G-GM-T 043	.5 15880 1 3 145 .6 16490 1 3 137 .8 7440 8 2 102 .7 3780 39 1 81	6 1 21930 .1 1 7 1 21690 .1 1 7 1 6030 .1 4 1 3360 .1	15 19 63280 2920 15 7 54280 2320 16 7 55400 2520 4 7 28350 2570 4 5 28340 1740	17 12660 1187 15 11810 972 6 2720 350 3 1620 443	1 150 1 1830 1 380 1 2740 1 320 1 2940 2 240 1 220 2 390 1 150	63 5 47 1 1 36.6 31 1 30 1 1 69.0 30 1 28 1 1 1.5 29 1 1 1 4.3 31 2 3 1 1 3.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 53125 10 1120 5 1040 5 1810 5 2080
G-GM-T 044 G-GM-T 045 G-GM-T 046 G-GM-T 047 G-GM-T 048	.9 2470 52 1 127 . 1.1 5920 13 2 75 . 13.6 2280 55 9 53 .	1 2 65490 152.7 1	3 5 17810 3040 2 5 20720 2440 10 6 39780 2280 14 29 83660 1470 12 7 49330 2680	1 270 57 5 7410 607 1 38260 2921	2 210 1 150 4 110 1 120 1 120 1 1650 2 20 1 330 2 220 1 2110	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 2 1 8 230 12 1 2 5 147 15 1 1 56 32079 1 8 1 1 1497 1 3 1 1	5 1050 5 1160 5 1040 60 681250 5 8830

MIN-EN LABS - ICP REPORT

PROJ: UNUK

ł

.....

1

Were the factor of the second states of the second

C) C3

ATTN: G.NICHOLSON

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0229-RJ7 DATE: 90/08/13

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG AI PPM PPI		8 PPM	BA PPM	BE B PPM PPI		CD PPM	CO PPM	CU PPM	FE PPM		LI		MN PPH	NO PPN P	NA N		P P PPN PP	8 SB	SR	TH PPM P	U	V PPM	ZN	GA	SN	N N N	CR PPN 1	AU	HG PPB
G-GH-T 049 G-GH-T 050 G-GH-T 051 G-GH-T 052 G-GH-T 053	1.2 6320 .8 4900 1.0 1670 .3 8480 .6 16230) 1) 15) 24) 1	5 5 1 5 5	81 63 118 147 150	.5	61400 59070 32440 24060 18940	1	11 11 4 15 17	12 9 6 10	43250 57200 23690 50920 59080	2580 2380 1320 3310	4 2 1 5	33940 27650 16610 11610 11390	2903 2915 1775 1652	1 24	40 40 40 50	1 20	010 4 750 3 180 4	7 4 9 5 0 4 7 7 5 1	9 14 13	1	1		1354 131 67 54 69	1 1 1 1	3 4 2 1	1 1 1 1	1 1 49 1	10 1	7500 3460 1400 1615 930
G-GN-T 054A G-GN-T 054B G-GN-T 055 G-GN-T 056 G-GN-T 057	.8 639 1.4 965 .9 672 .8 376 .9 339) 112) 39) 49	643 5 2	137 135 318 159 95	.3 .1 .4	1 21370 2 15840	.1	10 14 5 3 2	8 11 7	44520 54910 24160 13940 12950	3580 2530 2510	1 6 4	10700	1683 874 494 327	1 1 1 30 2 1 2	20 30 30 30	1 17 1 20 1 5 1 1	740 5 090 4 580 4	5 15 2 7 7 4 3 2 9 2	11 19 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	35.9 64.8 16.5 3.6 3.1	129 132 101 54 29	1 1 1 1	4 3 2 1	1 1 2 2 4	3 1 78 85 129	5	6730 7130 2160 1280 640
G-GM-T 058 G-GN-T 059 G-GH-T 060 G-GH-T 061 G-GH-T 062	.9 401 .9 560 1.0 388 1.4 416 1.0 302	0 45 0 36 0 46 0 9	4544	73 88 63 56 57	.5 .8 .5 .9	1 13160 9880 1 12260 1 32190 1 21830	.1 .1 .1	22232	6566	11140 9060 9720 13710	2710 3570 2580 2470	1	6430 4720 5860 25310 11360	364 232 326 1049	2 1 2 1 3 2 1 2	10 40 20 00	1 1 1	60 2 70 1 60 2 50 2	5 1 9 1 5 1 1 1	5 2 6		1	2.8 2.5 2.9 5.9 3.8	54 26 59 41 72	1 2 1	1 1 3 2	1131	74 65 97 71 108	5 5 5 5 5 5 5	680 550 615 430 445
G-GM-T 063	5.8 401		6	69		14110		6		64180					1 20			50 13			1	1	2.7	62	1	3	1		30	2320
													· ····														···			
																									 、					{
							~*** ** *** *			<u></u>																		1		
											<u> </u>							<u> </u>								·				
	·	<u> </u>																												
				· · ·																										
										· · · -					-								. —							
•												(•																	

COMP: INTERNATIONAL KODIAK		
	COMP: INTERNATIONAL	KODIAK

- PROJ: UXUK

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 1604 1080-5814 OP 1604 1088-4524

FILE NO: 0S-0249-RJ3

DATE: 90/08/17

.

ITN: G.NICHOLSON											705	NC3			•			:00ver)4)988	-			2										* RC	DCK *		90/02 ACT:1
SAMPLE NUMBER	AG PPN		AS PPM	8 PPN	8A PPM	BE PPM	B1 PPM	Ć PP		CÐ PP m	CO PPM		P	FE PM P	K PPM P	LI	MG PPM		no PPM I		N1 PM	P PPM I	PB PPM F	SB PM (SR PPN 1	TH PPM P	U PM	V PPM			SN		CR PPM F		H PF
-PN 144 -PN 145 -MM-R 220 -MM-R 221 -MM-R 222	1.3 1 .9 .5 .1 1		1 60	4		1.3	1	2258 2004 372 644 1662	0 0 0 0 0	.1 .1 .1 .1 .1	24 14 4 28 12	13 9 10 18 15	553 458 199 786 403	70 2 20 1 40 46 80 67 30 64	70 80 10 90	29 1 15 2 10 1	2980 6680 1180 4710 7160	911 572 88 498 1209	1 18 1 1	30 50 40 20 80	1 1 1 1 1 1 1 1 1 1	430 200 280 360 380	29 19 20 28 25	6 5 12 1	19 9 3 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		264.7 172.5 17.9 94.7 31.7	52 46 33 50 100	33312	2111	34511	3 34 104 1 17	5 10 10 5 10	100 129 190 242 7
S-MM-R 223 S-MM-R 224 S-MM-R 225 S-MM-R 226 G-MM-R 214	.9 .7 3.0 4.1	4190 4290 7860 2850 3000	16 99 64	44355	276	.9 .6 1.0 1.3 .9			0 0 0 0 18		3 4 8 12 9	8 7 12 25 31	470 888 319	30 29 30 33 30 24 30 14 10 25	80 90 10	1 5 1	3830 9780	2523	8	240 70 50	2 1	950 260 1530	66	16 1 46 21	6 1 3 3 11	1	1 1 1 1	5.9 4.1 8.6 13.4 23.6		3 2 1 1	1 25 4	3 2 1 1 9	29 31 53	5 1	65 372 27 2400 11400
G-MN-R 215 G-MM-R 216 G-MM-R 217 G-GM-R 073 G-GN-R 073 G-GN-T 064	1.7	8960 11220 6450 5470 18510	34 104 497 140 1	4 5 11 5 6	150 82 67 260 95	.9 1.2 1.1 .7 1.6	1	975 4328	0 0 0	1.3 .1 .1 .1 .1	12 10 16 11 12	<u> </u>		98 54	100	18 3	4110	2706	2 1 20 1	30 50 40	11	300 1490 1920	11	1 4 32 21 1	12 5 1 3 7	1 1 1 1	1 1 1	43.0 51.4 29.2 14.5 79.7	482 416 276 80 123	1 1 2 1	1 4 3 1 3	21131	!	30 5	28 575 675(15 18
G-GH-T 065 G-GH-T 066 G-GH-T 067 G-GH-T 068 G-GH-T 069	.8 1 .8 1.4 .7	12940 13990 8350 6470 7100	122	5444	129 274	1.3 1.3 .6 1.1	1	3787 1779 7090 1004 934	0 0 0	.1 .1 .1 .1	14 14 10 7 10	10 12 9 8 8	470 485 310 440	80 38 30 38 90 26 30 46 10 48	20 80 330	64 1 4	1789 1200 0440 3640 3160	4336 448 <u>592</u>	1 1	60 120		2730 2520 1730 160 2270	35 20 17 33 30	1 1 15 16	29 21 58 9 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	63.3 81.4 54.5 26.4 43.3	646 107 110 37 69 47	12 12 12 12	2 1 4 1 1	1	5 4 21 13	10 5 60 20	574 174 159 192 251 161
G-GM-T 070 G-GM-T 071 G-MM-T 218 G-MM-T 219 G-GM-T 041	1.0	4280 4390 3750 5490 10020	37 147 40 78 30	111-24	196 225 311 239 61	.5 .5 .5 .5 1.3	1	70 430 508 192 1648	0 0 0	.1	2 6 7 5 16	9 9 8 9 15	318 230 242 556	50 28 20 44 10 36 70 39 70 26	730	1	480 870 1050 490 7650	33 118 953 68 1262	1 10 2 5 3	50 70 50 40 340	1 1 5 1 2	170 1050 1400 650 2340	25 61 31 26 24	4 29 16 10 4	2 5 3 39	1	1 1 1 1	4.1 18.7 23.1 19.9 70.5	633 15 10 60	1 1 3 2	1 1 1 2	14332	75 80 45 63 17		1086 46 290 19
																				_															
														-																•					_
																																. <u>.</u>	-		
			<u>.</u>																					·											
· · · · ·																			 ,																
<i></i>										=												<u> </u>	<u> </u>	-										••	
				-	2	<u>(</u>												- 					· -												

MIN-EN LABS - ICP REPORT

FILE NO: 05-0267-RJ1+2 DATE: 90/08/18

ATTN: G.NICHOLSON

PROJ: UNUK

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 112 (604)980-5814 OR (604)988-4524

* ROCK * (ACT+E31)

ATTN: G.NECHOLSON									(604)98	0-5814	OR (60	04)988	-4524											* R	OCK *	(A(CT:F31)
SAMPLE NUMBER		AL AS PM PPM		8A BE PPM PPM			CO CO PM PPM	CU PPH	FE PPM	K PPN P			N MO N PPM	NA Ppn			PB S8 PM PPM			U PPN			GA PPH P		N CR M PPH	AU PPB	HG PPB
G-BC-R-061 G-BC-R-062 G-BC-R-063 G-BC-R-064 G-BC-R-065	1.0 79		4 3	70 1.0 58 1.0 57 .2 119 1.4 151 1.1	2	51980 54550 31550 18610 6830	.1 10 .1 10 .1 2 .1 13 .1 17	7 10 3 9	48580 43340 16740 50020 41580	3040 230 4650	2 229 5 237 1 33 9 81 6 28	90 252 50 200 50 93	3 1 8 1 3 1	270 190 30 610 290	1 15 1 15 4 1 28 1 22	90 2 90 2 20 1	6 1 26 1 23 2 1 1	35	1 1 1 2	1 1 1 1	39.3 44.5 7.1 100.6 49.4	48 52 13 131	1 1 2 2	5 5 5	1 22 1 26 6 169 1 20 3 94	5 5 5 5 5	500 590 230 200 830
G-BC-R-066 G-BC-R-067 G-BC-R-068 G-BC-R-069 G-BC-R-070	.9 262 2.2 296 1.8 48 1.1 129 .4 166	00 1 90 35 10 1	22143	1419 .9 206 .5 91 .5 136 1.0 111 1.3	1 1 2		.1 13 .1 23 .1 9 .1 9 .1 9	9 10 11 8 8	44570 77440 38940 58550 50040	650 2630 4430	15 196 11 248 1 20 4 25 6 79	80 114 30 26 00 23	6 1 4 8 3 1	370 620 540 540 330	1 15 1 30 1 12 1 30 1 21	40 2 80 1	13 1 9 1 21 5 17 1 22 1	11	1 1 1 1	1	80.8 172.6 26.9 71.3 47.0	115 22 24	1 1 2 1	1 1 1 1	1 69 1 1 3 119 1 1 1 52	10 5 5 5	215 210 4400 2695 3510
G-BC-R-071 G-BC-R-072 G-BC-R-073 G-BC-R-074 G-BC-R-075	.7 262 .1 133 .5 127 3.2 199 .6 218	50 1 20 1 10 1 100 1	25421	89 1.2 112 .5 171 .8 135 .1 99 .9	11	9430 31260 25970 19920 15260	.1 15 .1 12 .1 11 .1 20 .1 13	11 6 10 9 7	71100 78210 57410 59620 56380	2840 4690 790	15 1608 9 87 5 77 5 1509 14 175	10 346 70 218 90 117	6 1 2 1 0 1	480 230 530 610 730	1 30 1 34 1 53 1 22 1 28	70 20 60 70	23 29 27 6 23	16	1 1 1 1	1 1 1	121.9 41.9 40.3 83.4 119.8	83 201 91	1	1 2 1 1 2	1 1 1 2 1 12 1 14 1 1		9230 2020 5760 510 1050
G-BC-R-076 G-BC-R-077 G-BC-R-078 G-BC-R-079 G-BC-R-080	.1 93 .1 109 1.9 190 .9 183 2.4 213	90 1 80 1 40 1 90 1	33621	153 .5 111 .8 43 .1 124 .6 514 .3	6 3 8		.1 10 .1 12 .1 20 .1 13 .1 15	9 41 10 11	44300 55870 135010 60650 48460	4650 2890 3720	3 19 3 21 8 78 8 78 13 87	70 57 30 52 60 93	52 31 21	490 410 210 270 230	1 19 1 20 1 17 1 16 1 19	70 20 70	27 21 34 21 13	i 10	1 1 1 1	1 1 1	38.1 41.0 103.5 77.8 30.7	62 47	1 1 1 1	1 1 1 1	3 122 1 33 1 1 1 26 1 19	5 6	4490 5190 66625 14375 795
•	2.1 250 1.7 95 1.1 254 1.7 66 1.8 74	00 1 00 1 90 1 00 1	8 10 8 12	58 .4 43 .6 29 .7 83 .5 25 .6		32790 78570 80770	.1 24 .1 19 .1 24 .1 15 .1 15	133 63 106 49 77	53820 43290 49320 39380 45300	1630 1270 1170 1410	27 203 9 366 29 2629 6 3410 9 3800	30 262 20 114 40 154	1 1 7 1 5 1	430 210 550 200 290	24 17 17 3 37 7 9 3 3 10	50 1 20 1 70 1	6 4 9 18 26		1 1 1	1	209.9 105.8 156.9 117.6 93.5	118 160 262	1 1 1	14155	2 42 1 28 1 52 1 20 1 4	55555	360 345 575 285 245
í	1.0 95 1.4 36 1.1 197 2.4 279 1.8 287	90 1 80 1 20 1	20 24 2	77 .6 40 .5 43 .5 29 .1 38 .4	1 2 6	63280 80780 70710 29220 28200	.1 14 .1 14 .1 13 .1 25 .1 27	216 160 98 99 54	45170 40400 38380 46320 51050	1270 510 1140	6 25. 1 4422 20 153 30 2869 42 313	20 225 30 159 90 94	5 1 6 1 6 1	170 220 220 1190 340	11 9	50 1 40 2 60	18 1 11 1 6 1 6 1	94 3	1 1 1		87.5 98.0 88.7 157.2 151.0	106 54 54	1 1 1 1	2 6 1 1	1 13 1 25 1 26 1 38 1 89	5 10 5 5 5	190 165 225 175 155
G-SH-R-049		20 1	10	22 1.6 94 .1 80 1.0 107 .5 133 .7	10	8290 26300 2790 26630 33630	.7 30 .1 30 .1 16 .1 21 .4 9	11346 378 211 135 61	42080 59020 40570 55670 31690	360 1660 3350	22 1770 18 2338 39 3047 2 1100 1 1420	80 81 20 37 60 79	4 1 2 1 9 1	150 500 170 150 350	12 3 62 27 165 6 5 28 1 11	40 1 40 3	16 33 7 1 10 1 31 1 27 36	7 4 41 45	2 1 1 1		130.7 206.0 84.4 53.3 21.3	66 27	4 1 2.1	1 1 3 4	2 8 2 53 7 227 1 3 1 42	10 5 5 10	260 140 240 350 1430
G-SM-R-045 G-SM-R-046 G-SM-R-047	.1 27	80 1 80 1 90 1 130 1	11 8 2 2	80 .1 20 .1 78 .2 1024	1	13380 3 4390 1990 17500	.5 22 .1 34 .1 20 .1 12	25513 483 179 65	87660 181420 62360 36080	2430 2720	28 1602 1 89 1 36 1 16	90 7 60 5	5 11	450 120 200 380	1 8	70 11 60 60 1 40 2	1 11 18 18 23	2	1 1 1	1 1 1	136.3 13.3 8.9 15.5	25	1 1 1 1	17 1 1 1		5 5 5 5	2660 5510 2940 1185
																											·
-				. <u>.</u>																					· · ·		(
															-												

 $\mathbf{C} \subset \mathbf{C} \subset \mathbf{C}$

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

2

1

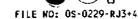
FILE NO: 05-0603-RJ1+2 DATE: 90/10/05

PROJ: UNUK ATTN: RICK WALKER

(604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

ATTN: RICK WALKED	ĸ										(604)9	80-581	4 OR	(604))988-4	4524										* 80	CK *	(ACT	:F31)
SAMPLE NUMBER	AG PPM	AL PPM	AS PPH	8 PPN	BA PPM -	BE PPH F		CA C Pm Pp	D CO M PPM	CU PPM	FE PPM	K PPH	L I PPM	MG PPM	NN PPM	MO PPN P	NA N Ph Ppi		P PB			TH 1 PM PPI	U V M PPM	ZN PPM	GA S PPM PP	N W N PPH		AU PPB I	HG PPB
G-RW-R-441 G-RW-R-442 G-RW-R-443 G-RW-R-444	2.0	36680 22920 21160 24830	1 1 26 1	20 16 9 7 11	67 94 193 382 118	.1.1.1.1	7 204 8 173 6 255 2 296 6 278	00 30 90	1 23 4 16 1 32	15 20 15 9	61370 114090 61080 48150 57810	550 2400 3080	20 24 20	11580 19590 13600 10100 26340	1824 1247 1742	1 1 1 2 5 1	60	1 235 1 265 1 244 1 233 1 151	0 18 0 20 0 31		14 16 10 12 46	1 1 1 1	1 103.8 1 183.5 1 77.6 1 27.0 1 179.4	89 94 93 93 208	2 3 2 2 2 2	2 1 1 3 1 1 3 3 1	28 1 10 22 6	5	265 310 485 625 55
	4.7 3.0 2.7 7.7	27340 16720 16400 18620	1	11 20 7 7 10	26 7 18 23 16		3 293 9 347 4 162 4 93 1 137	90. 30. 90.	1 27 1 27 1 31	308 199	54320 35910 65290 71290 56240		22 15	18530 16740 16130 16230 9450	1056 1866	13	00 20 90 60 10	1 170 2 135 1 101 1 109 1 252	0 25 0 47	1	13 179 15 15 53	1 1 1 1	1 104.6 1 160.2 1 206.9 1 228.1 1 92.1	986 101 163 161 560	1	3 1 1 3 1 3 2 1	1 28 15 27 4	20	350 5 35 50 380
G-MB-R-322 G-MB-R-323 G-MB-R-324	2.3 2.1 1.8	23100 18570 24070	41 4 17 1		10 7 85 74 150	.1.5.3.1	1 233 1 385 1 236 2 292 1 224	30 80 70 00	1 25 1 19 1 18 1 18	43 21	52800 44730 61300 53360 61850	860 1030	26 11 9	17900 23120 18190 18300 19290	1011 1420 1606	1 2 1 4 1 3 1 4	50 1 30 80 10	296 289 297	0 24 0 33 0 41 0 32		35 6 26 34 30		1 173.2 1 163.0 1 131.0 1 135.6 1 135.9	1168 100 120 76 93	2	33311	31 115 5 14 1	5	490 60 305 345 205
G-MB-R-325 G-MB-R-326 GrLG+R-320 G-LG-R-321 G-LG-R-322	.7 .7 .4	18260 4870 4810 4030	16 1 27 35 34	5431	165 437 75 81 47	151.52		20 . 90 . 70 . 80 .	1 18 1 17 3 4 3 3 1 2	13 7 19 19	8730 10110	870 2810 3800 3280		16360 19270 1720 880 700	1338 1297 471 190 44	34 14 13 33	30	1 298 1 274 1 44 2 54 1 33	0 38 0 19 0 14 0 13	1	31 34 5 2 7	1 1 1 1	1 122.8 1 119.5 1 7.6 1 6.1 1 5.3	86 93 20 13 14		3 1 3 1 1 1 1 1	13 1 45 61 77	15 15 55 55 55	215 175 35 60 35
G-LG-R-323	35.3 .7 3.1 2.5 1.5	6000 2220	36 53 79 49 73	32472	1700 143 46 224 81	.1	23 349 1 15 1 336 2 565 1 58	80 . 40 . 60 .	1 6 1 14 1 17	128	48630 30920 24560 58000 11940	1400 1040 2080	63 1 1	9600 5020 21760 6730 800	1590 151 598 1661 129	12	70 [·]	1 125 1 108 5 80 1 189 7 145	0 18 0 34 0 29	143	113 9 1 69 15	1 1 1 1	1 48.1 1 5.8 1 14.3 1 133.8 1 17.1	41 49 19 13 14	2 1 2 1	2 1 1 1 1 1 4 1 1 3	9 33 94 31 201	5	40 135 565 135 160
G-DH-R-085 G-DH-R-086	1.4 .9 1.3 1.2 1.0		55 29 12 58 36	22621	897 141 88 197 99	.1 .3 .1 .8 .7	1 143 1 50 1 229 1 102 1 7	00 . 30 . 50 .		293 29	9120 11680 73720 16000 8030	710 940 780 2120 2130	13911	6700 720 17410 3070 710	268 133 1682 596 197	2 34 12 2 11	60 50		0 25 0 21 0 36	13	22 15 12 1		1 12.6 1 18.4 1 236.2 1 6.5 1 5.1		1 2 1 1	1 1 1 1 5 1 1 1 1 1	113 113 20 108 106	5 (15 35 25 820 625
G-DN-R-087 G-DN-R-088 G-DM-R-089 G-DN-R-090 G-DN-R-091	.7 .8 1.9 1.3 1.0	8490 5040	34 33 95 59 37	18 11 10 7 6	118 233 158 148 208	ininin'	2 4 1 13 1 139 1 176 1 58	70 . 60 . 90 .	7 2 1 3 1 9 1 7 1 2	iê i	11640 27850 26230	4130	116624	1280 1570 6950 8340 3680	291 294 1042 1099 470	2 3		1 4 1 14 1 130 1 69 1 7	0 34 0 64 0 44	11	23053	1 1 1 1	1 3.0 1 6.5 1 20.8 1 15.9 1 3.7	308	1 1 1 1	$ \begin{array}{ccc} 1 & 1 \\ $	72 80 45 29 62	5 9 10 20 10 14	
G-DN-R-092 G-DM-R-093 G-DN-R-094 G-DN-R-095 G-DN-R-095 G-DN-R-096	2.0 2.3 1.2	8960 5000 4540	28 68 163 71 67	67644	416 215 153 107 219	.79852	1 48 1 284 1 165 1 167 1 22	70 6. 50 1. 30 .	1 4 3 11 0 11 1 3 1 3	9 8 12 4 8	19400 37950 36420 11150 13700	2790 3260 2910	37111	2240 16350 6930 5960 1390	937 565	1	70 90 40 20 20	1 111 1 145 1 128 1 11 1 11	0 36 0 47 0 35	7 17 3	10 18 14 1 2		1 18.0 1 31.1 1 19.6 1 4.0 1 2.9	1573 253		1 1 2 1 2 1 1 1 1 1		20 3 110 5	670 250 735 325 365
G-DH-R-097 G-DM-R-098 G-DM-R-099 G-LG-R-336 G-LG-R-337	1.4 1.2 .5 8.2 9.7	3260 630	50 79 76 87 2952	43467	195 106 139 277 34		1 164 1 146 1 12 1 779 1 221	80 . 20 .	1 3 7 3 1 9	56458	13280 13620 13820 53590 78460	2070 2310 160	1	7980 6490 760 61320 9480		4	30 30 30 30 20	4 7 1 7 1 9 1 17 1 34	0 35 0 36 0 23	6	5 2 123 5	1	1 3.7 1 3.6 1 2.0 1 16.7 1 9.0	31 129	1	1 1 1 1 5 1 2 1	77 94 107 19 68	5 5 90	270 225 185 275 350
G-LG-R-338 G-LG-R-339 G-LG-R-340 G-LG-R-341 G-CC-R-337	14.1 6.0 3.3 1.1 1.6	1990	1642 177 1 41 94	45464	243 12 157 113 447	31255	1 313 1 403 1 637 1 113 2 289	50 . 60 . 30 .	8 7 1 24 1 8 1 16 1 15	5	40040 217840 38430 59210 59920	150 520 4160	1 1 3	18530 29050 49790 4870 10310	2986 3166 987	11	20 30 40 90 70	1 12 1 3 1 51 1 286 1 188	0 27 0 26 0 38	21 9 17	7 24 232 19 74	1 1 1 1	1 6.9 1 11.8 1 30.7 1 51.3 1 72.3	50 43 124	1 1 1	2 1 3 1 3 1 2 1 2 1	112 1 18 1 16	40 4 5 5	245 565 335 330 310
G-CC-R-338 G-CC-R-339	3.6 3.8 2.9	16990 20720 21430 26020	161 1 1 1 19		270 294 69 159 34	24111	1 121 1 226 6 136 5 62 4 200	40 00 30 30	1 23 1 29 1 32 1 32 1 27	13 109 243 193	51940 54610 65390 71990 54400	3050 690 620 580	44 53		1342 1666 3514 2005	8 3 1 4 1 5 1 5	00 80 30	1 122 1 111	0 43 0 102 0 126 0 30		18 69 7 10 3	1 1 1 1	1 90.6 1 67.8 1 153.1 1 239.8 1 139.1	115 148 236 112	1 2 1 2 2	2 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	1 12	5 1 5 10 5	740 110 175 180 45
	3.2 1.6 2.7	6420	1 34 2308	8 6 10	33 26 36	.1 .8 .5	5 274 1 300 2 619	40 60 80 43	1 26 1 14 5 15	187	53420 47020 38770		- 4	27090 5790 12840	2302		30	1 98 1 115 5 53		1	5 1 24		1 147.3 1 149.7 1 37.8		2 1 2	221	17 7 24	5 10 5	55 70 105


4

118 : 27

() ()

PROJ: UNUK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

DATE: 90/08/13

PROJ: UNUK ATTN: GLNICHOLSON	(604)980-5814 OR (604)988-4524	* ROCK * (ACT:F31)
SAMPLE NUNBER		N GA SN W CR AU HG M PPM PPM PPM PPB PPB
G-PN-T 059 G-PN-T 060 G-PN-T 061 G-PN-T 062 G-PN-T 063	.1 5080 2 1 139 .7 1 1670 .1 1 4 5610 3300 1 560 210 1 60 1 40 17 1 1 2 1 1.2 3 .1 6220 1 1 121 .8 1 6190 .1 1 2 6330 4040 1 800 571 1 20 1 60 17 1 1 2 1 1.3 3 .1 5910 1 1 120 .8 1 4080 .1 1 4 6470 3890 1 620 561 1 20 3 50 16 1 1 2 1 1.6 4 .8 7730 1 5 186 .5 1 66490 3.4 10 7 46690 3370 2 33430 3995 1 80 1 1650 28 1 14 1 2 26.9 196 .6 14070 1 5 392 .6 1 27090 .1 14 7 51030 4210 7 16450 1968 1 180 1 2630 25 1 18 1 51.4 32	4 1 1 4 96 5 140 0 1 1 2 51 5 130 4 1 1 4 91 5 130 0 1 3 1 1 10 4330 13 1 1 1 5 745
G-PN-T 064 G-PN-T 065 G-PN-T 066 G-PN-T 067 G-PN-T 068	.7 3630 1 3 163 .5 1 79400 .1 6 3 35970 1730 1 44180 4730 1 50 1 440 15 1 33 1 17.9 12 .3 24520 1 4 289 .8 1 23360 .1 13 6 59790 2520 26 23660 1456 1 350 1 2710 16 1 25 1 94.1 11 .2 17880 1 4 91 .7 1 33050 .1 13 5 53890 2460 15 250 1 2440 19 1 15 1 84.1 40 .3 17620 1 4 76 .6 1 28320 .1 14 7 53920 2630 15 20200 1811 1 310 1 2420 24 1 9 1 81.7 10 .2 10640 1 5 175<	1 1 1 1 5 225 19 1 3 1 1 5 980 18 1 1 1 5 365 37 1 1 1 5 740
G-PN-T 069 G-PN-T 070 G-PN-T 071 G-PN-T 072 G-PN-T 073	1 9450 1 4 172 4 1 10510 1 9 7 38730 3740 3 4010 592 1 140 1 1570 27 3 5 1 1 27.4 8 2 10470 1 7 193 4 1 21570 1 14 10 52400 4810 2 8790 1594 1 200 1 2790 31 5 8 1 1 37.1 9 5 13920 1 6 129 5 1 22950 1 12 8 48490 3770 7 11380 1694 1 220 1 2960 24 1 9 1 1 53.9 4 9 9040 1 5 122 6 1 37720 1 12 7 49020 3740 2 21070 3195 1 90 1 2290 37 4 76 1 1 31.3 14	i7 1 1 1 5 540 i3 1 1 1 10 445 i6 1 1 1 5 820 i7 1 1 1 5 315 i9 1 3 1 1 5 i9 1 1 1 5 800
G-PN-T 074 G-PN-T 075 G-PN-T 076 G-PN-T 077 G-PN-T 078	.9 10380 1 6 236 5 1 28030 1 11 10 43210 4510 3 14840 2222 1 60 1 1760 44 7 15 1 1 28.2 17 7 10140 1 7 498 2 1 24640 1 11 7 41450 5380 1 10780 2990 1 70 1 2200 33 4 25 1 1 33.3 13 7 12720 1 5 260 3 1 35300 1 13 8 57760 3540 6 23350 2652 1 170 1 2310 31 1 28 1 1 52.5 19 7 10940 1 3 1747 4 1 79320 1 10 10 50920 2370 7 51200 5351 1 160 1 1270 12 1 36 1 1 42.4 11	36 1 1 1 1 10 715 93 1 6 1 1 5 1825 17 1 24 1 1 5 520
G-PN-T 079 G-PN-T 080 G-PN-T 081 G-PN-T 082 G-PN-T 083	.9 5030 1 5 88 5 1 79330 1 9 5 48160 1930 2 54800 5300 1 90 1 1050 13 1 35 1 1 24.4 4 7 16660 1 4 163 5 1 34480 1 14 6 56540 2740 12 26100 2689 1 270 1 2390 22 1 19 1 1 72.0 8 8 9950 1 5 243 1 2 29860 1 15 10 62250 3550 4 17620 2785 1 140 1 2080 31 6 14 1 1 61.0 7 9 7790 1 6 260 4 1 34720 1 15 13 45840 4220 1 21210 2591 1 130 1 2030 30 6 13 1 1 44.8 5	92 1 1 1 1 5 195 44 1 5 1 1 20 295 85 1 2 1 1 5 280 75 1 3 1 10 830 50 1 3 1 8 5
G-PN-T 084 G-PN-T 085 G-PN-T 086 G-PN-T 087 G-PN-T 088	.8 16450 1 5 98 .7 1 39630 .1 13 6 51440 2410 11 33590 2323 1 150 1 2440 16 1 20 1 1 77.7 5 1.2 8100 5 6 90 .4 1 46500 .1 15 12 68270 2860 3 28690 3050 1 140 1 2000 45 10 13 1 1 41.1 26 .9 11570 69 5 109 .5 1 22530 .1 16 8 59850 2720 7 15150 1495 1 190 1 2610 39 7 10 1 1 61.8 6 .5 17860 1 5 79 .7 1 20820 .1 12 4 42770 3280 12 16800 1325 1 240 1 2960 18 1 7 1 1 83.8 1	54 1 1 1 5 715 92 1 2 1 1 5 375 63 1 4 1 1 5 1280 66 1 2 1 1 0 820 70 1 1 1 1 5 305
G-PN-1 089 G-PN-1 090 G-PN-1 091 G-PN-1 092 G-PN-1 093	1.4 10850 1 </td <td>55 1 4 1 1 5 440 65 1 1 1 1 5 400 68 1 3 1 1 5 365 87 1 6 1 7 5 1180 83 1 2 1 1 10 265</td>	55 1 4 1 1 5 440 65 1 1 1 1 5 400 68 1 3 1 1 5 365 87 1 6 1 7 5 1180 83 1 2 1 1 10 265
G-PN-T 094 G-PN-T 095 G-PN-T 096 G-PN-T 097 G-PN-T 098	.4 27750 1 4 216 1.2 1 13040 .1 13 7 55960 1920 31 29090 407 1 330 1 2690 8 1 13 1 1 124.7 1.7 9470 1 3 71 .7 1 81580 .1 8 6 41960 640 8 60660 2355 1 200 1 1160 8 1 60 1 1 51.0 1.3 22210 1 4 116 .7 3 22630 .1 17 8 59310 1090 16 18080 1098 1 790 1 2710 11 1 27 1 141.3 1.4 9690 1 2 83 1.0 1 32960 .1 10 50 26280 2670 9 19240 547 1 60 11 1170 20 1 83 1 1 37.2 1.5 12270 1 3 56 .3 4 88470 .1 11 7 47620 500 8 27420 4596 1 340 1 1360 25 1 118 1 170.0	94 1 1. 1 5 360 42 1 5 1 5 200 93 1 1 1 10 220 75 1 1 7 5 130 49 1 3 1 5 200
G-MH-T 201 G-MH-T 202 G-MH-T 203 G-MH-T 204 G-MH-T 205	3.5 8230 1776 5 58 .5 1 29480 6.6 14 10 90410 1820 3 16660 1988 1 120 1 1730 27 109 6 1 44.7 .8 20740 4 3 77 .7 2 23440 .1 16 9 54810 970 10 15300 1265 1 660 1 2600 14 1 34 1 117.5 1 20.8 2400 1352 3 19 .2 1 67180 11.5 9 1374040 170 1 25860 4728 1 40 1 180 90 76 42 1 13.9 14 1.9 21600 1 5 156 .6 4 23360 .1 17 10 60490 110 1700 1300 1 1210 12 1200 13 147 1 135.8 11 2.0 89 2.050 35 17 <	51 1 2 2 13 5 310 64 1 2 2 32 95 420
G-HM-T 206 G-HM-T 207 G-LG-R 173 G-LG-R 175 G-LG-R 176	1.4 16660 1 4 237 .6 3 20710 .1 16 8 54390 1940 7 14210 1632 1 1270 1 2790 10 1 55 1 144.8 1 2.4 800 1 4 63 .1 1 79110 .1 8 51 76690 130 1 46770 4932 1 60 1 110 27 7 89 1 145 33 33 28 990 22 4 13 1 101.8 61 61 110 27 7 89 1 145 33 16.6 5430 15 3 675 .3 1 6012 2.4 7.6 47280 1750 3 1680 231 20 330 28 990 22 4 13 1 101.8 61 2.9 39820 1 5 4.5 1 101.8 61 2.4 101.1 1 139.2 1 1 13	98 1 1 2 2 15 300 24 1 5 1 1 70 1800 06 1 1 2 24 5 390 72 1 1 15 10 170 95 1 1 1 5 330
G-LG-T 180 G-LG-T 181 G-LG-T 182 G-LG-T 183 G-LG-T 183 G-LG-T 184	.7 22150 1 3 65 .5 1 62350 .1 21 6 78300 150 26 16590 1075 4 280 1 1190 17 1 11 1 1 222.6 .4 24310 1 3 176 1.2 1 7150 .1 13 10 53620 1900 32 18880 336 3 250 1 740 15 1 5 1 56.3 .1 20010 1 2 199 .8 1 1560 .1 7 11 37910 1870 25 13050 230 3 210 1 330 19 1 4 1 38.0 .2 26840 1 3 146 6 1 1040 .1 9 14 54310 1490 38 21920 403 1 200 1 310 17 1 3 1 58.2	71 2 2 1 1 15 630 65 1 1 1 5 2240 38 1 1 1 5 3880 45 1 1 1 5 3880 47 1 1 1 10 3710 26 1 1 2 1 5 2750
G-LG-T 185 G-LG-T 186 G-LG-T 187 G-LG-T 187 G-LG-T 188 G-LG-T 189	.2 30300 1 4 105 .7 1 11 15 17 9080 627 22 500 1 1130 17 6 9 1 1 230.7 .1 10440 396 2 65 .2 1 19100 .1 14 5 65430 290 17 9080 627 22 500 1 1130 17 6 9 1 1 230.7 .2 11980 20 3 102 .2 1 14790 .1 12 6 65300 260 19 9620 354 23 500 1 1610 15 1 4 1 178.0 .4 23170 1 4 189 .9 1 3390 .1 14 12 51800 2570 26 15060 301 2 320 1 1030 17 1 6 1 51.3 .1 213.7 .1 27190 1 5 134 .6	26 1 1 2 1 5 2750 13 4 1 1 1 5 3020 62 1 1 1 5 2730 79 1 1 1 5 2950 18 3 1 1 18 5 3080

OMP: INTERNATIO ROJ: UNUK TTN: G.NICHOLSO										at 151	й ST. ,	, NORT	H VAN	ICOLIVEI	RBP R, B.C 8-4524	. V7N											DATE:	-0299-R 90/08/ (ACT:F3
SAMPLE NUMBER	AG AL PPN PPN	PPM	₽PM	PPK	PPN	PPM	PPM	PPM	PPN	CU PPM	FE PPM	K PPN	LI	MG PPM	XN PPM	NO PPM	рри р	PM PP	N PPM	PPN	PPM PI	PM PPM	L PPN	РРМ Р	GA S	IN I	CR PPN P	
G-GM-T033	1.2 2530	13	4	71	.3	1	71970	.1	9	7	58270	860	3	44760	3600	1	190	1 76	0 36	7	55	1 1	1 21.4	142	1	2 1	5	10 4625
																											-	
				•																								
									<u></u>							· ·												
			.																									
						.	<u> </u>										·· -							``		··		
											• • • •															r* 		- -
																		<u> </u>										. <u></u>
																												
											_						_											
			;		19																							
													<u>_</u>			<u> </u>			•••					<u> </u>		<u> </u>		

MIN-EN LABS - ICP REPORT

PROJ: UNUK ATTN: G.NICHOLSON

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 05-0229-RJ1+2 DATE: 90/08/13

* ROCK * (ACT:F31)

្មា

												(001)			A 1004	1700	4324											-	RULK -	. 0	ACT:F31)
SAMPLE NUMBER	AG PPN	AL PPM	AS PPM pi	B PM	BA PPM F		B1 PM	CA PPM	CD PPM	00 PP H	CU PPH	FE PPM	K PPM	L! PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	Р РРМ	PB PPM			TH U PPM PPM					W CR		
G-MM-R- 171 G-MK-R- 172 G-MM-R- 174 G-MM-R- 175 G-MM-R- 176	1.5 .1 .2 .1 2.4	18000 15480 25460 21180 7130	1 99 1 1 31	24331	29 74 129 163 81	21432	2 1 1 2 2	90100 8460 4500 5880 15420	.1	17 12 9 11 4	6 7 10 6 7	49370 81570 56790 63620 15370	130 810 1430 1800 390	34	17470 12760 20940 15300 8690	852 182 373 264 1101	6 46 3 3 10	290 310 210 380 70	1 1 1 13	990 680 360 1690 660	19 9 16 14 26	1 1 1 2	18 3 7 27		156.9 106.1 61.9 131.1	> 54 25 > 47 42	4 2 1 1 7	4 1 1 3	1	5 5 10 5 10	420 3065 2905 2210
G-MM-R- 180 G-MM-R- 181 G-MM-R- 182 G-MM-R- 183 G-MM-R- 184	2.5 3.3 2.2 .6 .7	37310 38730 19010 6160 28280	1 1 1 1	2 3 1 4 2	32 23 15 63 222	.1 .1 .1 .3 .2	8 11 6 2 2	23670 15840 9460 42710 10610	.1	24 38 12 13 17		45120 72350 36790 50920 63980	220 240 170 2130 720	22	15060 45120 22580 15080 25310	503 879 441 2613 796	1 1 6 1 1	3660 750 580 240 470	6 1 15 1	390 360 600 1600 3000	9 9 31 13	1 1 1 1	8 1 10 9		102.8 288.9 124.7 42.7 146.7	73 233 47	1 1 1 1	1 3 2 3 2	1 3 79 3 64 1		100 175 305 385 345
G-MM-R- 185 G-MM-R- 186 G-MM-R- 187 G-MM-R- 188 G-DS-R- 094	.3 .1 .1 .4 .1	14620 20460 22860 20970	1 1 1 1	324	178 219 167 98 122	.2.3.65	1 1 1 1	9660 5150 5900 17620 9910	-1 -1 -1 -1	12 9 8 16 15	- 5	53920 73990 51530 57920 55630	960 1820 3230	13 21	14390 10100 15830 10460 8410	377 246 254 1355 1054	1 1 1	720 820 810 540 420	1	1920 3150 3040 2770 2500	18 20 15 13 30	1 1 1 1	11 12 9 31 22	1 1	128.1 142.0 155.4 119.0 72.	6 <u>84</u> 0 102	3 4 2 1 1	2 1 2 1	1	10 5 5 5 5	360 440 265 250 1330
G-MM-R- 190 G-MM-R- 192 G-MM-R- 193 G-MM-R- 194 G-MM-R- 195	.1 .6 .3 .7 .8	22530 7480 4210 9500 6170	1 301 23 35	_	189 75 72 82 159	.84.244	1 2 1 1	11580 71310 10540 15860 1870	.1	15 8 12 3	83253	53340 38540 42400 45120 24570	2070 2850 3010 3420	19 5 1 9 5	9640 18140 2600 6950 1170	1352 4689 383 544 78	1 5 1 4	210 140 250 270 220	1	1830 1020 1360 2640 260	21 44 29 26 29	1 43 1 3	15 47 8 20 3		57.0 37.0 19.1 19.1 164.1	2 34 1 22 6 12	3	13211	1 3 7 2 3 7	1 5 6 5 5 5	790 805
G-MM-R= 196 G-MM-R= 197 G-MM-R= 198 G-MM-R= 199 G-MM-R= 200	1.3 .9 1.8 .7 2.0		1	634	151 207 126 285 781	.6.2.2.7	1 1 1 6	37590 27890 93730 20900 23630	.1	14 14 16 19	27 10 3 4 7	39410 63370 46100 58570 61140	2950 3230 410 2410 1990	1 3 22	11830 14240 81070 27280 16120	1104	1 1 1 1	270 300 80 420 1040	1	1840 2210 280 2950 2790	29 35 9 17	1 1 1 1	60 32 40 11 57			3 98 9 19 3 66 7 99	2 1 1 1	43623	1 1/ 1 1 1	1 5 1 5 1 10 1 5	13750 285 305 195
G-MM-R- 208 G-MM-R- 209 G-MM-R- 210 G-MM-R- 211 G-MM-R- 212	.6 129.7 5.2 1.1 .6	6170 10090 13060	1 375 61 1	3 6 7	216 303 157 173 360	.8	1 1 1 1	9780 2440 17650 10780 9800	.1 2.5 .1 .1	10 4 14 15 20		37240 20390 45670 58540 60460	5680	10 1 1 4 3	6350 890 6810 8610 5490	449 100 1435 1878 1639	18 1 1 1	90 70 60 90 140	1	710 1100 2540 1370 1590	30 73 36 26 30	1 62 6 1	2 6 12 3 5		46. 22. 35. 39. 35.	2 489 0 244 3 185 2 47	1 1 1 1	21122	1 9	1 5	13250 1065 1310
G-MM-R- 213 G-PN-T 030 G-PN-T 031 G-PN-T 032 G-PN-T 033	.3 .1 .3	16770 9620 11420 10290 8760	1 1 1 89		103 195 131 1 117 163	.9 .7 1.2 .9	1111	15420 15820 4150 16120 25680	.1 .1 .1 .1	14 13 12 8	5 7 25 16 8	53480 54550 24890 53030 34700	6320 6080	18 1 1 1	10200 8220 2010 9410 13250	1261 1817 550 2015 1802	1 1 1 1	550 50 50 30 60	1	2440 2310 710 1620 1120	26 36 10 41 32	1 1 1 6	15 17 4 16 16		85.0 43. 31.0 26.0 29.	7 125 0 68		13122	•	1 10 2 5	860 540 1800
G-PN-T 034 G-PN-T 035 G-PN-T 036 G-PN-T 037 G-PN-T 038	.7 .3 .4 1.0	6100 5220 5030 3760 3970	8 6 15 1 52	122	113 351 316 166 149	55475	1111	10780 4650 4590 34950 9630		55564	94548	19510 19170 21680 29720 19980	3700	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4120 1420 1440 22300 3090	874 763 796 2096 527	233 31 2	30 20 20 20 20	1	510 400 400 500 260	25 21 24 27 33	1 2 3 6	43341	1 1 1 1	1 14. 4. 1 4. 12.0	2 104 1 112	1 1 1	1 1 3 2	1 50 1 40 1 40 1 20 1 51	9 5 6 5 0 5	745 750
G-PN-T 039 G-PN-T 040 G-PN-T 041 G-PN-T 042 G-PN-T 043	.6 .6 .5 .7	5270 4230 7330 3920 3360	28 29 22 39 32	23	205 234 443 158 129	647.33	1 1 1 1	9920 1540 930 5410 6050	.1 .1 .1 1.7	42333	64522	25230 14620 14540 20690 16920	3290	1 1 1 1	2180 520 690 1520 1900	877 94 137 315 367	4 5 1 1	30 20 30 30	•	310 170 210 80 120	33 24 15 30 25	1 1 2 2	1 2 1 1		2.	5 51 5 68 73	1 1 1 1	1	1 5/ 3 10/ 2 8/ 2 91 3 131	4 5 5 7 10	
G-PN-T 044 G-PN-T 045 G-PN-T 046 G-PN-T 047 G-PN-T 048	2.6 1.1 .8 1.0 1.0	2580 3150 2550	22	1 1 1 2	139 196 112 86 91	43.43.6		11090 11760 9180 19390 15540	23.7 4.7 .1 .1	33332	74312		2490	1 1 1 1	4800 5040 3570 9600 7270	536 650 430 1034 670	32123	40 30 40 30 30	1111	130 110 90 80 90	37 30 28 26 30	7 4 2 1 3	1 1 2 3		3.0 5.0 3.8 5.1) 1260 3 191 1 83 3 84	1 1 1 1	21223	2 122 1 93 4 122 2 86 3 112	555	380 430
G-PN-T 049 G-PN-T 050 G-PN-T 051 G-PN-T 052 G-PN-T 053	.9 .5 .7 .7 1.0	2970 2800 2850		1 1 1 1	95 124 94 89 100	21.554	1 1 1 1	9770 1340 9590 2290 13040	.1 .1 .3 .1	30000	22122	17320 13710 11940 12340 14380	2310	1 1 1 1	3340 460 2520 540 4250	605 157 419 216 452	1 2 1 1	30 30 20 20 40	1 1 1 1	120 100 80 80 90	24 23 23 24 29	32272	1 1 1 1		3.4	29 23 28 28 21	1 1 1	2 1 1 2	2 91 3 103 3 104 3 120 3 114	5	270 230 290 215 230
G-PN-T 054 G-PN-T 055 G-PN-T 056 G-PN-T 057 G-PN-T 058	.8 1.3 1.2 .7 .8	5040 2920 4220	37 30	1 2 1 1 2	109 116 84 94 134	.7 .7 .5 1.0	1 1 1 1	12270 15630 15300 6810 9720	.1 .1 .1 .1	23322	1 2 2 1 1	10180	3430 2100	1 1 1 2	4670 6640 7390 1760 2450	371 508 640 391 441	22323	150 50 130 160 80	1 1 1 2	70 120 60 60 50	23 23 33 21 25	1 1 1	1 1 1 1		3.2 5.0 2.1 2.4	17 29 5 25	1 2 1 1	23323	4 134 3 122 3 116 4 141	5	

COMP: INTERNATIONAL KODIAK RESOURCES

PROJ: UNUK

ATTN: G.NICHOLSON

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 (604)980-5814 OR (604)988-4524 DATE: 90/08/18

* ROCK * (ACT:F31)

••••••••			······
SAMPLE	AG AL AS B BA BE BI	CA CO CO CU FE K LI MG HN HO	O NA NI PPB SB SR THUV ZN GA SN W CR AU HG
NUMBER	PPN PPN PPN PPN PPN PPN PPN	<u>РРМ. РРМ. РРМ. РРМ. РРМ. РРМ. РРМ. РРМ.</u>	<u>н ррм ррм ррм ррм ррм ррм ррм ррм ррм рр</u>
G-PN-R-146	.7 26940 1 7 144 1.3 1 1	340 .1 16 131 40090 3460 34 16350 332 1	1 180 102 580 29 1 5 3 1 55.2 106 1 1 1 72 5 315
G-PN-R-147		410 .1 18 59 34340 1470 41 34940 272 1	1 1300 227 340 10 1 7 1 1 125.4 68 1 1 12 356 5 220
G-PN-R-148	.2 29330 1 6 151 1.0 1 2	170 .1 11 47 39810 3750 35 18610 <u>358</u> 1	1 170 109 1030 14 1 7 1 1 76.4 69 1 <u>2 2101 5 200</u>

COMP: INTERNATIONAL KODIAK

· FROJ: UNUK

MIN-EN LABS -- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0249-RJ1+2

DATE: 90/08/17

* ROCK * (ACT:F31)

ATTN: G.NICHOLSON

SANPLE NUMBER	AG AL PPM PPM		B PPM	8A PPM	BE PPM	BI CA PPM PPM	CD C PPM PF	O CU M PPM	FE PPM		LI PPM	MG PPM		MO NA P <u>PM P</u> PM I	N1 PPM			SB S PM PP	R TH M PPM				GA S PM PP		W CR	AU HG PP8 PP8
G-MB-R 090 G-MB-R 091 G-MB-R 092 G-MB-R 093 G-MB-R 094	3.6 16390 2.2 19050 2.5 16960 1.5 25020 .2 21400) 1) 1) 1	4 3 2 1 1	42 13 16 67 154	.4 .6 .3 1.1 1.4	9 11520 7 11830 8 19140 5 14220 1 2500	.1 .1 .1 .1	8 17 0 12 0 13 5 13 2 11	83330 84210 74060 65350 43960		23 11 20 10	4080 1	795 890 1206 1044 389	1 560 1 570 1 700 1 220 1 200		390 2 460 250 450 140	213 22 15 15 22	1 1 1 1	4 1 1 1 2 1 7 1 2 1		285.8 254.1	02 89 16 05 60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4	2 1 2 1 3 9 1 1 1 1	5 720 5 930 5 1140 5 445 5 275
G-MB-R 095 G-MB-R 096 G-MB-R 097 G-MB-R 098 G-MB-R 099	.2 14050 1.1 1160 .6 9780 1.1 8130 .9 20560) 40) 1) 7	1 6 1 3 2	30 24 18 149 87	.9 .8 .6 1.2 1.0	1530 171020 119470 18030 23850	.1 1	2 9 4 11 9 8 8 42 1 11	51190 130630 57320 39810 54230		1 39	7090 1420	320 5262 784 341 824	2 500 1 60 1 630 1 200 1 330	1 1 1 2	600 90 350 340 680	20 30 64 23 7	7 3 1 1 1 3	2 1 6 1 3 1 8 1	1	17.9 17.9 183.2 24.2 162.9	43 5 64 49 54	2 1 1: 2 1	1 1 3 1 1 1 1 1	1 4 1 1 1 3 1 4 1 1	10 680 5 3860 5 1400 10 510 5 310
G-MB-R 100 G-MB-R 101 G-MB-R 102 G-PN-T 099 G-PN-T 100	.5 14280 1.1 3940 .7 15070 .2 5890 .4 4590) 33) 1) 1) 22	2 2 2	90 71 87 132 173	1.2 1.1 1.0 .6	1 19290 1 8880 1 19070 1 6230 1 5370	.1	0 7 2 2 6 9 7 11 5 12	61950 8130 54740 32660 27320	2900 3850 3710	1 1 16 1 1 2	3550 1020 2400 1480	1383 324 922 770 477	1 300 2 40 1 370 2 30 9 30	1 1 2 1 1 1	700 90 2680 090 440	17 13 20 21 32	1 1 1	7 1 2 1 3 1 4 1 5 1	1 4 1 1 1	4.2	84 9 57 31 75	1 4 2 1 1 1		1 1 2 67 1 1 1 8 1 44	5 440 5 640 5 1640 10 885 5 1065
G-PN-T 101 G-PN-T 102 G-PN-T 103 G-PN-T 104 G-PN-T 105	.4 6490 .3 7940 1.2 6580 .5 13560 .8 17910) 1) 1) 1	35254	134 112 100 112 100	.9 1.5 1.0 1.6 1.7	1 7240 1 13230 1 23560 1 12040 1 23320	.1 .1 1 .1 1	8 11 7 <u>26</u> 4 14 6 9 7 18	34310 54400 19990 54760 56780	4130 4190 5030 4510	2 8 1 8 9 9 11 16	8020 9340 6240	786 1691 824 1190 1453	3 30 1 80 1 20 1 190 1 200	1 1 1 1 1 <u>1 1</u>	190 260 370 620 550	26 24 12 20 15	1 1 1 1	5 1 9 1 1 1 4 1 7 1	1 1 1 1	15.1 31.5 9.7 42.0 51.9	69 83 88 79 50	1 1 3 1 1		1 18 1 6 1 17 1 1 1 1	5 1000 5 895 10 755 5 3800 5 580
G-PN-T 106 G-PN-T 107 G-PN-T 108 G-PN-T 109 G-PN-T 110	.7 14000 .8 12500 .5 16860 .3 15660 .5 6200) 1) 1) 1	34421	88 123 120 181 190	1.4 1.6 1.8 2.0 1.2	1 21400 1 28010 1 28270 1 9450 1 2800	.1 1	9 17 1 21 9 18 2 13 8 17	48060	4230 4930 4160 3830	7 18 7 18 7 5	6190 8800 5670 1050	1542 1637 2341 838 539	1 160 1 160 1 170 1 80 1 30	1 1 1 1 3 1 2	540 430 390 370 480	18 21 16 14 19	1 1 1 1	4 1 6 1 3 1 1 1 1 1	1	-	56 54 52 66 53	1 1 1 2	1 1 1 1	22	5 940 10 1225 5 670 5 575 5 980
G-PN-T 111 G-PN-T 112 G-PN-T 113 G-PN-T 114 G-PN-T 115	.3 6690 .4 7640 .4 7160 .7 16890 .6 15710) 25) 76) 1	54423	96 174 173 97 118	1.3 .9 .9 1.3 1.4	1 12970 1 7540 1 7540 1 22580 2 17330	.1 1	5 10 0 7 2 10 5 8 5 7	66960 47890 60400 57020 57020	4240 3650 1810 2170	2 3 16 15 15	1790 1890 3440 1630	1528 607 316 1422 1537	1 150 1 180 1 280 1 340 1 410	1 2 1 2 1 2 1 2	600 990 760 820 780	49 37 48 18 25	4 7 1 1 2 1 2	8 1 9 1 1 1 9 1 9 1	1	90.0	25 47 36 04 72	3 1 1 1			5 2785 5 2735 10 3155 5 645 5 855
G-PN-T 116 G-PN-T 117 G-PN-T 118 G-PN-T 119 G-PN-T 120	.8 837(1.0 1452) .4 1273(.8 1325) 1.1 667() 1) 1) 1		156 124 122 139 114	1.5 1.3 1.3 1.1 1.0	1 13040 1 26200 1 13430 1 21190 1 58640	.1 .1 .1 .1	3 14 9 11 7 15 2 95 1 18	50920 36560 25190 35950 49130	2360 2350 2290 2050	15 16 11 9 12 14 4 22	2380	960 862 505 1040 1871	1 250 1 180 1 120 1 110 1 130	1 1 2 1	460 130 110 110 450	41 16 19 22 35	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$	7 3 5 1 2 2 4 1 9 1	1	15.0 15.0 22.3 15.0	09 38 28 25 14	1		19 1 5 1 3	5 1200 5 220 10 160 10 180 5 530
G-PN-T 121 G-PN-T 122 G-PN-T 123 G-PN-T 124 G-PN-T 125	1.2 6550 .3 6540 1.6 8820 1.6 3460 .5 15150) 6) 19) 137) 1	222	173 130 100 156 147	1.0 1.5 1.3 .9 1.3	1 33290 1 13130 1 16500 1 9160 1 19380	.1 .1 .1 .1 .1	0 38 8 33 4 19 4 12 3 16	32650 30660 40630 59330 61730	2520 2470 1870 2850	3 8 6 8 1 1 13 11	8030 8160 1210 1690	1342 982 1310 135 2458	1 120 1 100 1 130 1 80 1 140 1 70	1 11 11 11	590 170 290 100 680	51 1 40	1 8 10 1 2 1	8 1 2 2 7 1 4 1 4 1	1 1 1	16.7 58.0	42 81 71 15 37	1 1	2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	14 1 10 20 3 5 48	5 285 10 165 10 290 5 3060 5 585 5 1400
G-PN-T 126 G-PN 127 G-PN 128 G-PN 129A G-PN 1298	.5 6010 .1 10930 .1 12090 .9 10600 .7 27760) 1) 3) 5) 1	1	88 77 29 74 49	1.1 1.1 .9 .8 1.3	1 23000 1 4910 1 26320 2 31950 4 17910	.1 2	4 18 6 7 0 9 9 9 4 10	52270 56210 61920 35840 85940	420 250 900 470	10 6 13 6 10 5 26 14	6500 6800 5060 4970	2243 331 1206 1345 1399	1 770 1 500 1 440 1 460	11 11 11 11	760 360 360 520 380	22 16	1	4 7 5 7 6 1	1 2	24.6 51.9 16.6 73.9	08 50 58 67 93	5		40 1 5 50 1	10 495 5 680 5 410 5 470 5 970
G-PN 130 G-PN 131 G-PN 132 G-PN 133 G-PN 134	1.6 1347 2.1 1161 1.8 1688 1.8 2249 1.6 876	0 1 0 1 0 1 0 1	2211	43 21 37 112 46	.3 .1 .6 .9 .1	7 7930 8 10120 7 9720 7 12530 6 6110	.1 .1 .1 .1	2 12 9 10 7 14 6 12 8 10	81310 82010 86270 64120 65300	310 2070 450	10 5 19 10 23 9 8 3	6740 5960 0100 9830 3410	517 423 854 900 366	1 490 1 610 1 480 1 260 1 560	1 1 1 1 1 1 1 1	250 350 340 560 030	9 12 12 9	1 1 1 1		1 2	271.4 602.9 282.3 18.3 207.8	48 42 46 84 32				5 570 5 620 10 555 5 1265
G-PN 135 G-PN 136 G-PN 137 G-PN 138 G-PN 139	_1 3040 1.9 4060 .1 8150 .5 15110 1.4 24660	0 1 0 36 0 16 0 1	2 2 3 1	19 14 15 72 67	1.0 .2 1.1 1.5 1.5	1 5690 6 10980 1 11210 2 38350 2 68570	.1	4 9 6 13 8 9 7 13 5 5 6 9	106840 66050 78930 75210 41590	160	7 29 35 20	6030	234 440 509 1002 1220	54 580 4 610 3 580 1 30 1 310	1 1 1 1 1 1 	200 150 420 430 220	14 10 10 21 9	1 1 1 2 1 2		12	274,4 07.0 275.8 108.9 108.1	15 81 38 84 67	1 2 2 1			5 1160 5 1785 5 665 5 710 60 200 5 2020
G-PN 140 G-PN 141 G-PN 142 G-PN 143	1.0 251 .6 276 .1 1014 .1 1943	0 69 0 44	3	35 211 139 245	1.1 1.0 1.5 1.7	2 82400 1 63350 1 5430 1 5780	.1	6 9 10 8 15 16 4 23	91930 67120 80470 76190	550 260	5	3460 7010	1970 2 1306 255 257	272 30 22 370 9 220 1 240	11	500 100 710 2190	34 24 15 22	21	5 1 1 1 1 1 3 1		31.4 77.0 10.6 78.9	45 31 37 36				5 2020 5 1400 5 1530 5 765

Pre lossa	Sector Sector	* ******	* ******	e	5 7 ' ' ' ' '	.	.		-0-1					
افت . 🖌	ter and	ία	an_, ₂	Sec	1 46.000			5 0						: :

COMP: INTERNATIONAL KODIAK RESOURCES PROJ: UNUK ATTN: NIKE BROWN

÷

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0307-RJ3 DATE: 90/08/29

* ROCK * (ACT:F31) PAGE 1 OF 2

AMPLE UMBER	AG PPM		AS PPM	B PPM		BE PPM I		CA PPM	CD PPM	CO PPM	CU PPM	FE			MG PPM		MO PPM	NA PPM	NI PPM	P PPM	₽8 ₽₽₩	SB PPM		TH PPM (U PPM	V PPM	ZN			W PPM	CR PPM	
	3.5	7330 16920 20790 8420 6610	109	13 11 10 9 8	201 148 18 560 234	.1 .1 2.1 .1	1 9 1	14430 15580 11180 18370 34790	25.0 .1 3,5	30 7	182 197 114 303 55	53800 57160 68780 26000 44170	2880 2280 4580	17	16210 20040 4380	3126 3265 558 1299 1252	1115	370 540 910 620 180		940 870 810 890 690	1052 577 11 92 178	5 1 1 8 7	16 17 11 31 168	1 1 1 1 1	11121		248 296	1 2 2	1111	1 1 1 1	24 43 5 56 78	2
-LG-T-234 TRENCH -LG-T-235 TRENCH -LG-T-236 TRENCH -LG-T-237 TRENCH	1.5 .9 1.6	26360 16400 13060 7130 16160	17	11 5 8 6	1067	.1 .4 1.0 .5 .3	1	13370 38260 2590 21230 21220	.1 .1 .3 .1	11 12 8	187 12 50 22 28	40780	1190 3260 7180 4250 4420	10 1 1	21360 27030 1760 11210 11670	2306 682 1575	11284	480 100 70 60 60	11 7 2 4	020 120 610 410 580	6 14 26 30 31	1 2 27 11 4	8 14 9 14 1	1 1 1 1	1	209.6 49.1 25.1 15.4 20.6	74 115 277	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 18 1 76 23	5 15 10
	1.9	5950 23150 5630 10970 9320	993	19	- 86	.1	1	86400 9420 1370 39090 3410	.1	22 16 13 29	91 4554 48 46 108200	79660 85800 43300 204040		27 8 2 24	1810 1630	3643 146 1618 1907	11311	190 520 550 370 120	1 71 1	130 700 570 280 10		9 14 25 4 189	46 7 23 5 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	52.7 124.6 36.3 138.4 141.2	290 26 57 102	2	2 1 1 1	1 1 1 2	10 53 71 1	10
	2.8			11	56 48 79 151 177	.2 .1 .4 .1 .4	7 1 2	12540 5540 7680 24160 65190	.1 .1 .1 .1	23 14 19	401 394 540 74 45	71820 62270 51810 40480		19 66 23 11	5150 10560	680 2115 1344 1432	1 29 1 1	520 800 410 540 360	21		21 25 29 25 21	6 1 5 5	9 4 10 11 26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	158.0 575.9 90.3 80.5 102.5	126 149 89 49	1 3	1	1 2 1 1	3226542	1
	1.Z	9980 6740 22150 26310 39670	35	12 11 28 6 8	58	1.0	1 1 1	79540 12050 42450 18000 18180	.1	8 26 24 35	19 18 52 56 203	55010 96000	1520 2890 780 670	10 143 51 44	1150 9570 30330 29720	961 847 607 1980		50 700 240 1500 390	11	260 520 390 190	14 21 15 10 17	53111	10 12 20 37 9	1	1111	107.7 37.9 133.7 192.1 207.1	57 86 102	2 6 1	1	1	69 40 72 81 1	
	1.2	12330	1	16	200	.2	Ž	21530	.1	16	27	4494(3920	13	9000	1865	1	670	1 1	450	25	5	9	1	1	65.0	90	. 3	1	1	32	
								<u></u>																				-				
																														• .		,
												-											-								<u>.</u> ———	1
	 				<u>.</u>							<u> </u>																				
																			_													

_.....

COMP: INTERNATIONAL KODIAK RESOURCES PROJ: UNUK ATTN: MIKE BROWN

C 🔿

MIN-EN LABS - ICP REPORT

ĥ., ...

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0307-RJ3 DATE: 90/08/29 * ROCK * (ACT:F31) PAGE 2 OF 2

		(001)/00 3014 04 (004)/00 4324	- ROCK - (ACT:F3T) PAGE 2 OF
SAMPLE	HG		
NUMBER	PPB		
	3910		
	2505		
	210		
2	2505 210 370		
An at the second second	575		
· · · · · · · · · · · · · · · · · · ·			
	100		
G-LG-T-234 TRENCH	100 230		
G-1 G-1-235 TRENCH	520		
G-LG-T-235 TRENCH G-LG-T-236 TRENCH	000		
G-LG-1-230 IKENUN	900 430		
G-LG-T-237 TRENCH	4.50		
			· · · · · · · · · · · · · · · · · · ·

.

eter 🕻 i el di 👘

.

- INTERNATIONAL : UNUX : G.NICHOLSON		¢							n		EST 15T	K S	E., NORTH 980-5814 OR	VAN	Sec.R.			12										LE IK L	AT - 7	
IPLE BER	AG PPN	AL PPM	AS PPH I	8 9991	BA PPN	BÉ PPM	81 PPN	CA PPN	PPN		PPM	P	FE K L PPM PPM PP	Ħ	PPH F	NN NO PPK PPN	PPN	NI PPN		PPH	SÐ PPM	SR PPM	TH PPM I	PPN	V PPM	PPN	GA PPN	SN PPM	N CI PPH PPI	R A M PP
G-X8-R-103 G-M8-R-104 G-M8-R-105	.2	29700 21090 27430		17	152 129 114	.7	1	1440 4580 1290		12 12 15	845	83	44040 3680 29960 1950 40780 2770	36 27 39	18870 21170 17910	413 364 379	1 15 1 31 1 17	0 85 0 133 0 106	780 1030 680	16 12 14	1	12	1 1 1	1 1	2.0 8.5 4.8	86 64 95	1 1 1	i 1 1	80 2 271 1 82	5
C-MB-R-106 C-MB-R-107 G-MB-R-108	.2	23840 10160 26550	1	4	177 52 386	7	1	11330 5900 1360	_1	14 9 9	2	7	41650 2990 17600 1080 38350 2830	37	15000	1560 455 283	1 26 5 25 1 15	0 73 0 55 0 71	420 370 710	26 12 11	1	16 11 10	1 1	1	3.5 29.6 50.9	80 47 65	1 2	2	1 119 2 181 1 65	5
														·																
		·																												
								ţ.;																						
								•																						

2

Τĸ. I

harmon

3

ξ.

2

Ï.

. Ier

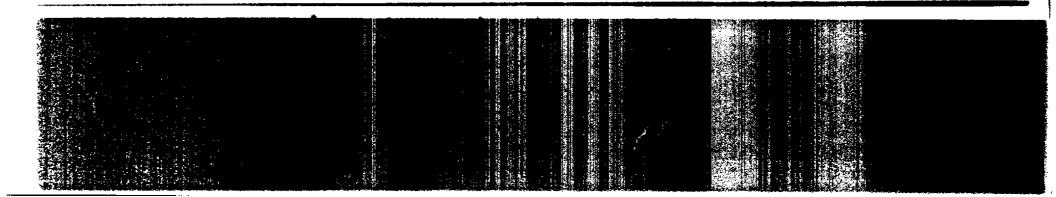
ie

C

C

7

: • • • .: #


10 🕻

ে ্য

ي ا

÷.

C

				r.		#10.9 ₩2.004	ور	period and the second sec	₩1 1 1% 1. ¥	с і м. Са							C 🗅
--	--	--	--	----	--	-----------------	----	--	-----------------	--------------	--	--	--	--	--	--	-----

COMP: INTERNATIONAU PROJ: ATTN: RICK WALKER	. KODI	AK								ÆST	15TH 8	ST., N	ORTH	- IC VANCOL (604)	WER,	8.C. V		2										DATE	: 90	67-SJ3 1/10/19 (1:F31)
SAMPLE NUMBER G-CC-M-352	AG PPM 1.3	PPM	AS PPM 1	PPM	PPM	PPM	PPM	PPM	PPN P	PM PP	M Pi	PM PP	M PPM	MG PPM 5710	PPM	PPM PP	M PPM	L PPH	PPM	PPM I	PPM PP	M PP!	1 PPM	PPM.	PPM (PPMP	PN PP	H	PP8	PP8
			<u> </u>											<u>-</u>																
																						<u> </u>								
																· - <u> </u>				·			·							
																													 1	
										•=, •••																				
												$\overline{\mathcal{U}}$																		F
												7	 																	
				• <u>-</u>																							-			
					• • •••																									

OMP: INTERNATIONAL KO	201AK		70	MIN-I	EN LABS	S DRTH VAN	ICP RE	PORT .c. V7N 112	!				FILE	ND: OS-025 DATE: 9
ROJ: UNUK TTN: G.NICHOLSON				(604)980-58	14 OR ((04)988-45	24	<u>. </u>					DIL * (A
SAMPLE	AG AL AS PPH PPH PPH	B BA BE B PPM PPM PPM PP		CO CU PPM PPM			NG MN PM PPM P	MO NA NI PM PPM PPM		B SB SF	TH U I PPN PPN			W CR AU
NUMBER L2+00S -30+00E L2+00S -30+50E L2+00S -31+50E L2+00S -32+00E	2.9 26010 1 1.8 31770 1 .9 33330 1 1.2 44600 1	2 36 1.0 2 35 1.1 1 36 .6 2 70 1.7	5 1320 .1 4 2720 .1 4 2410 .1 4 2700 .1 3 13760 .1	9 23 9 16 9 17 11 30	42580 1020 54380 720 49070 600 52800 1220 60900 910	8 2 7 2 8 2 18 4	00 175 240 170 00 209 210 291 310 278	1 1570 1 1670 1 2110 1 1580 1 860	740 720 1690	4 1 50 1 24 1 17 1 20 1 2	1 6 1 1 1 1	59.7 70 40.3 49 53.2 52 66.4 134 79.9 75	3 2 2 2 1 1 2 3	1 1 5 1 1 5 1 5 1 1 10 1 1 10
L2+00S -32+50E L2+00S -33+00E L2+00S -33+50E L2+00S -34+50E L2+00S -34+50E	.7 23730 1 1.8 28190 1 .4 29370 1 1.4 15830 1 1.2 22890 1 1.2 22890 1	1 48 .1 1 74 .6 1 69 .1 1 45 .1	7 3460 .1 1 1710 .1 4 3120 .1 5 3380 .1 4 1800 .1	12 33 10 39 8 16 10 19	58230 910 38010 1240 20400 1060 46920 910 48340 710	7 4 25 7 3 2 4 2	700 315 460 405 900 142 850 336 570 108	1 1290	9 560 3 870 1 1420	18 1	5 1 1	95.2 46 73.2 78 61.3 50 76.3 50 60.5 44	3 12 1 1 1 1 2 2 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
L2+005 -35+00E L2+005 -35+50E L2+005 -36+50E L2+005 -36+50E L2+005 -36+50E L2+005 -37+00E	.8 22680 1 3.7 44370 1 2.0 17560 1 .7 29220 1 1.1 24000	1 23 1.7	3 1320 .1 6 4400 .1 10 4910 .1 5 9290 .1 4 3610 .1	7 14 10 16 13 14 17 20	43230 1430 31350 750 32190 910 54930 850 36000 690	7 1 2 1 2 9 6	920 471 810 114 960 125 180 2875 260 193	1 1770	1 1160 1 1240 2 1390	13 1 16 1 1 10 1 1 20 1 2 21 1	0 1 1	12.5 69 62.2 52 66.9 59 73.1 140 71.0 71	2 1 1 2 1 12 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
L2+005 -37+50E L2+005 -38+00E L2+005 -38+50E L2+005 -39+00E L2+005 -39+50E L2+005 -39+50E	.4 27860 .1 32290 .1 27200 .4 20320 3.8 24050		7 3980 .1 2 4500 .1 1 2570 .1 3 7060 .1 12 15770 .1	25 25 35 37 20 53 26 56	65430 1750 94180 1350 49880 2310 51530 3240 58880 2720	21 6 36 9 14 9	130 5256 010 3336 250 1659 070 1928 380 605	1 440 1 1 6700	1 1250 1 4 980	57 28 31 1 28 1 1 4 1 5	9 1 1	85.7 171 115.8 979 85.7 574 94.2 154 110.3 54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
G-GM-D 074 G-GM-D 075 G-GM-D 076 G-GM-D 077 G-GM-D 078 G-GM-D 078	2.6 15680 2.0 14730 3.0 24310 2.2 12690 .5 26130	1 2 55 .1 1 89 .1 1 57 .1 1 57 .1 1 63 .1 1 72 .5	7 9050 .1 6 6750 .1 7 9550 .1 7 3040 .1 2 3040 .1	18 18 13 13 16 19 9 12	36650 1540 29210 1330 29860 1470 22310 580 37520 1170	1 5	930 308 690 244 620 264 430 41 490 298	1 1630 1 1640 1	1 1020 2 1360 1 980 9 750	7 1 20 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73.3 38 69.9 30 57.7 31 55.9 15 69.5 61	1 2 1 2 1 1 1 2 1 1	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
G-GN-D 079 G-GM-D 080 G-GM-D 081 G-GM-D 082 G-GM-D 083 G-GM-D 084	2.9 21000 1.4 22030 2.6 19240 1.5 16410 .9 10110		10 11780 .1 4 5630 .1 9 11650 .1 5 7450 .1 3 2110 .1	19 17 11 20 19 13 13 14	40750 1850 39640 1380 37630 1880 27730 1520 23220 720	15 6 4 10 4 7 1 4 7 1 1	450 302 180 284 780 337 330 246 110 56	1 5040 1 2770 1 1240	1 880 4 910 1 1020	12 1 2 12 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86.1 47 83.5 67 81.4 42 74.0 37 52.7 14 94.3 50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
G-GM-D 085 G-GM-D 086 G-GM-D 087 G-GM-D 087 G-GM-D 088 G-GM-D 089	1.8 23590 3.9 18380 3.6 23210 1.7 22160 1.4 32520		5 2590 .1 11 6960 .1 10 13340 .1 6 2470 .1 5 7210 .1	18 18 21 18 11 15	61460 93 46890 132 45480 189 60310 65 56470 193	5 5 5 5 4 10 5 3 1 5 10 5	590 119 030 573	1 1700 1 3370 1 5430 1 1470 1 2970	1 1010 1 1210 1 910 1 950	16 1 2 14 1 4 25 1 20 1 2		98.8 37 89.4 41 87.3 28 117.1 78	$1 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1 t 5 1 i 10 1 t 5 1 t 5 1 t 5 1 t 5
G-GM-D 090 G-GM-D 091 G-GM-D 092 G-GM-D 093 G-GM-D 093	1.0 22540 2.2 15570 .9 26330 1.0 19260 .8 17690	1 1 78 .1 1 1 53 .1 1 4 155 .9 1 2 134 .5 1 2 117 .5	4 6100 .1 6 8050 .1 5 10970 .1 5 11930 .1 5 10630 .1	23 47 20 48 17 52	37610 143 56830 258 47600 216 40640 216	0 1 1 0 15 1 0 13 1 0 12 1	7030 297 7390 343 1510 1480 3290 1366 2260 1816	1 2470 1 1020 1	3 900 1 1090 9 2070 8 1830 13 1740	14 1 1 20 1 18 1 14 1	9 1 1	106.9 47 79.4 43 108.3 128 114.8 104 116.0 77 127.3 63		$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \\ 5 \\ 1 \\ 1 \\ 6 \\ 10$
G-GH-D 095 G-GH-D 096 G-GH-D 097 G-GH-D 098 G-GH-D 098 G-GH-D 099	1.3 18790 .9 17500 .9 20850 1.1 18000 .6 19200	1 2 112 .5 1 1 122 .7 1 3 127 1.0 1 2 125 .6 1 4 159 .7	5 10920 .1 3 11490 .1 3 11770 .1 4 10860 .1 2 11420 .1	16 55 19 67 17 59	40460 233 38540 202 43410 236 39190 237 38320 258	0 14 1 0 18 1 0 15 1 0 23 1	2430 1052 5480 981 5630 1059 5500 788	1 650 1 810 1 1000 1 530	14 1700 15 1990 18 1650 35 1430	13 1 13 1 15 1 8 1	2 1 1	101.1 77 131.7 113 113.3 74 91.5 87		1 7 5 1 7 10 1 10 10 1 19 5 1 1 5
G-GN-D 100	1.0 15420	1 2 183 .4	3 16060 .*	1 15 48	3 35930 235	0 12 1	1170 611	1 960	0 1360	10 1 3	37 1	00 6.20		

		·			₩ - 4	yer orrest. Nga ang	a			and the second second	Note rectain
									-	-	
					 	 					A 44 -

ROJ: UNUK TTN: G.NICHOLSON											705	WEST					VANCOU (604)			V7M 1	12										*	SOIL		: 90 (AC	1709) 21:17
SAMPLE	A		AL	AS	B PPM	BA PPM	BE		CA PPM	CD PPM		CU PPM		FE PM 1	K PPM	LI PPM	MG PPM	MN PPM		NA PPM	NT PPM	P PPM	P8 PPN		SR PPM i	TH PPM J	U PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPN		AU PPB	PP
	1.0 1.0 1.	8 13 0 14	730 580 120 680	1 1 1 1	9 9 6 6	129 139 275 243 293	.34222	2221	7740 7800 14860 14880 10750	.1	18 19 16 16	93 51 55	450 388 391	10 1	940 020	22 17 18	10270 10620 9180 9110 9810	1530 1601 1003 956 1385	1	210 200 160 170 100	9999	1240 1300 1290 1310 1430	25 25 25 24 28	1 1 1 1	8 9 23 28 24	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.9 104.2 73.8 71.7 83.2	168 106 107	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 9 5 1	5 10 5 5	32 36 23 28 52
G-SH-S-042	1 1.	2 19 5 26	050	1		150 120		32	9940 4490		26	190 50		30 1. 30 1			14630 7980	2882 2514		120 280		1320 1450		1 1	8 10	1 1	1	133.7 66.8		1	1	1	1 16	5 5	55 32

· ·

:

.

ż

ĮĒ.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0603-SJ4 DATE: 90/10/05 * SOIL * (ACT:F31)

ATTN: RICK WALKER

PROJ: UNUK

COMP: INTERNATIONAL KODIAK

STORY GP

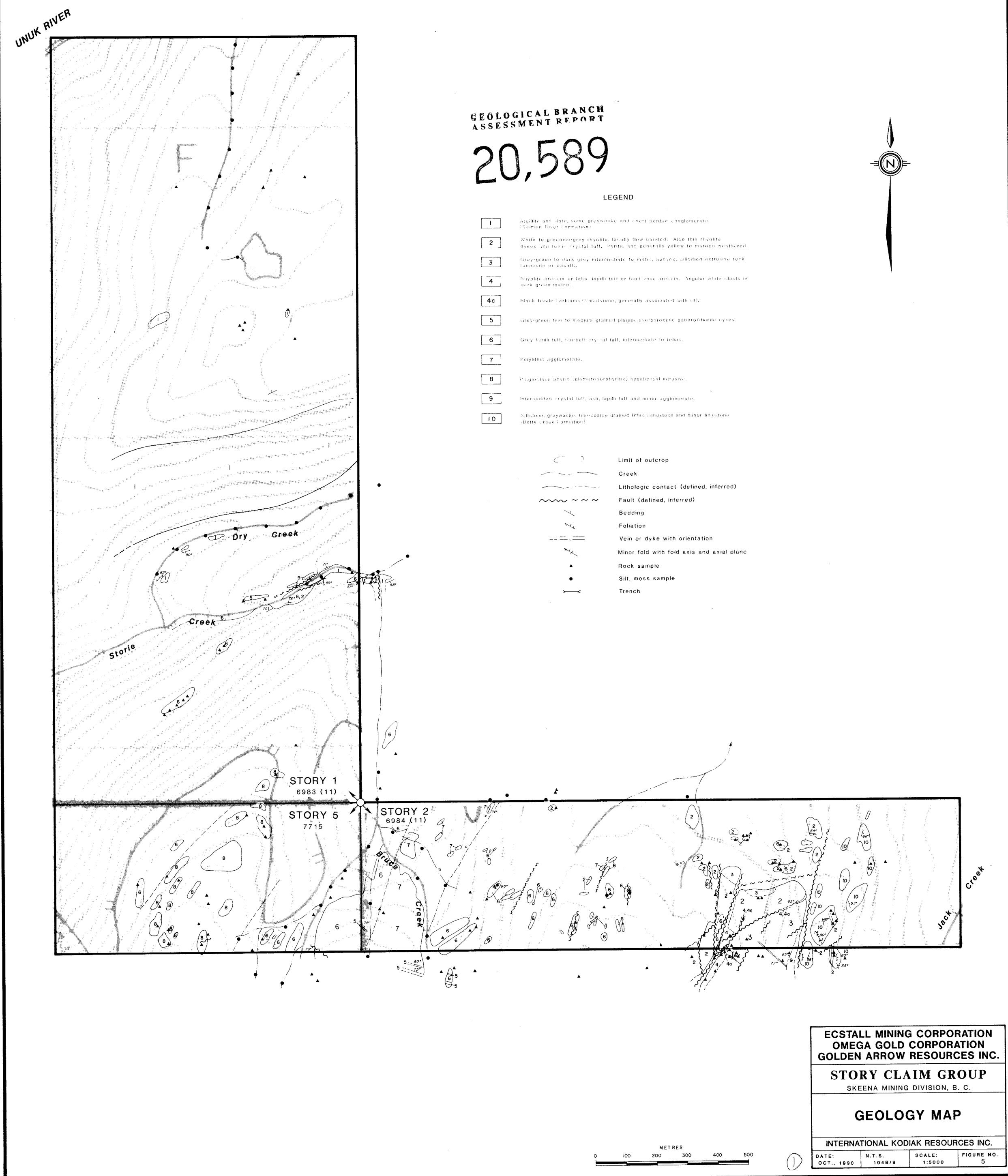
 Construction and the second secon second sec

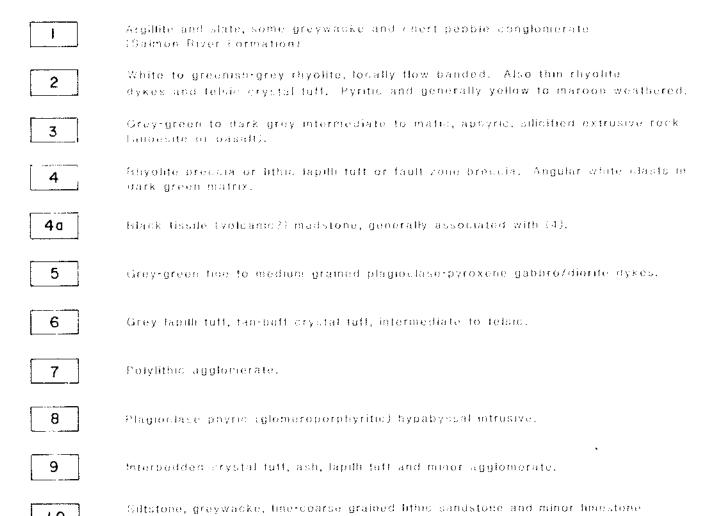
SAMPLE	AG AL	AS	8	BA	BE		A CD			FE		LI	MG	MN		NA		P	PB				U	V		GA	SN	¥	CR		HG
NUMBER 4+00S 0+00E	PPM PPM .8 21930	PPM	<u>PPM</u> 16	PPM 66	PPM .9	PPM PP 1 64		PPM 12	PPM 45	PPM	PPM 470	20	PPN 6600	PPM 517	<u>PPM</u> 3	PPM 60	PPM 18	<u>PPM</u> 580	31	<u>P9M F</u> 1	P <u>M P</u> 5	<u>PN Pi</u> 1	P <u>M</u>		<u>PPM</u> 86	<u>PPM</u> 1	2 PPM	PPM 1	17	5	PP8 190
4+00\$ 0+50E	1.5 14970 .7 18370	1	6	83	.1	3 218 2 56 3 118	0.1	8	12	26170	450 580	29 5 19	1800	262	- 4	410	1	810	24	i	8	i	1	79.4 84.5 73.3 80.7	86 37 57 86	1	1	1	6 17	10	180 205 150
4+00S 1+00E 4+00S 1+50E 4+00S 2+00E	.9 23390 1.1 24890	1	6 6 5 6	83 50 54 53	.1 .2 .2	3 118	0 .1	16	46	45860 26170 29080 40130 53570	700	22	1800 7370 7610 6490	416 999 569	1 3 1	100 220 240	22	510 1240 840	24 22 27 33	1	4777	i	1	89.7	86 106	1 2	Ź	Ì	15 10	10555	150 210
4+00\$ 2+50E	1.8 26950	1		21		3 74	0.1	7	11	61260	480		510 2370	77	1	790 70	1	810 800	27 26	1	356	1	1	39.7 92.6	28	42	3	1		10	180
4+00\$ 3+00E 4+00\$ 3+50E	.5 13770 .8 21050	1	33453	68 25 116 25	.2 .1 .1 .7	2 82	0.1	10	19	28060 71770 38160	240 1360	3	1120	245	6 1 4	370 170	1	918	- 37	1	6	į	į	78.3	- 34	4	-523	į	19	10 5 5 5 5	180 125 225 295 205
4+00\$ 4+00E 4+00\$ 4+50E	1.3 18050 1.5 28840	1			.4	2 290 1 36	0.1	- 8	15	54940	360	3	700	<u>190</u>	2	490		1450 830		1	11 3	<u>i</u>	1	34.4	- 26	2	3	1	1	5	205
4+00\$ 5+00E 4+00\$ 5+50E	3.1 18270 .8 21630 .1 24440		2 4 5	47 84 67	.1 .6 .3	5 284 2 253	0.1	11	15 28	27440 47460 78800	680 1510	15	3670 6880	2402	3 6 3	1380 370 89	3	1070 2020 1630	21 43 42		12 14 7		1	55.2 77.9	32 102 127	1		1	3	5	180
4+005 6+00E 4+005 6+50E	1.6 15670	1	534	67 63 167	.3 .1 .7	1 30 3 153 2 149	0 .1	13	19	78800 45650 44130	930	•	2940 3230	4525 738 1460	1	430 180	1	930	23 28	1	9 7	1	1	67.2 117.2 102.0	57 81	12	2321	1.	2.	Š	285 180 1565 110 125
4+005 7+00E 4+005 7+50E	1.4 21140 1.2 5940 1.3 17720				.1	3 243	0.1	. 8	16	14570	680	1	2440	126	1	950	2	660 1280	19	1	11 12 7	1	1	41.0	37	1	1	1	1	5	195
4+005 8+50E 4+005 9+00E	1.3 17720 .8 19640 2.1 14950	18	2443	110 98 34 82	1.0 .1 .3	1 392 1 30 3 837	0.1	24 12 17	27	45420 72210 36930	820 510	20	10890 3300 12660	271	25	100 50 1700	24 1 R	910 1640	48 28 30	21	7 22	1	1	74.9 100.3	271 50 61	4	42	į	23 1 12	5555	195 405 120 115
4+01\$ 0+00E	2.1 14950	1	2		••••••••••••••••••••••••••••••••••••••					30730	2010	_~	12000	037								•									
· · · · · · · · · · · · · · · · · · ·																				_											
																											_ ·				
																												•	•	۰ ۱	
								_,			· <u> </u>																				
																<u> </u>													 .	1	
																														1	
	<u> </u>		61	14	C						·					_ _			<u></u>						. 						
1			\mathcal{D}^{\dagger}	1	1																										
																···-	<u> </u>														<u> </u>
																														_	
	<u> </u>						·	<u> </u>																							
]																														
4	1																						_			_					

	en kongen i den som	C	يمت. اهد	C	°	C. 3	F		₽ 7 8%.		C	. н Т	C	-	p		.		₽ ኑ	3	₽. 1		۴ ۲;			<u>د.</u> ۹		ina tota a sector)	ра ^{на} — Кай (н. 199
COMP: INTERNATION PROJ: UNUK ATTN: G.NICHOLSON									15	TH ST.	, NOR	TH V/	ICP ANCOUVE (604)98	R, 8.	c. v		2										• SIL	TS *	E: 9 (A	0/08/ CT:F3
SAMPLE	AG AL PPM PPM		B PPM	BA PPM		BI CA PPN PPM	CC PPI) CC 1 PPM) CU I PPH	I PPI	I PPH	11 99M	PPM	PPH	MO PPM	NA PPM	NÎ PPM	P PPH	PB PPM F	SB PM S	SR PPM P	TH PPM PI	Ū PM	V PPM	ZN PPN	GA PPN [SNI PPM P	W C	R A M PP	U H BIPP
G-MH-S 173 G-MH-S 177 G-MH-S 178 G-MH-S 178 G-MH-S 179 G-MH-S 191	1.5 12630 1.3 10390 .9 11310 1.3 10600 2.6 30780		32114	82 72 57 79 122	.2 .3 .2 .1	5 22520 3 19930 2 20450 5 19870 27 17190		12 11 12 12	2 62 52 2 56 54	2903 2903 3159 2880	0 1610 0 1310 0 1230 0 1280 0 3290	12 9 11	11430 9580 10780 9810 22720	702 587 664 692	1 1 1	390 330 300 390 7190	9 1 8 1 10 1	1500 1420 1430 1520	34	1 1	43 38 39 38 66	1 1 1 1	1 1 1	75.1 62.6 66.0 65.3 18.5	62 58 51	1 1 1 1	1 1 1 2	111	1 1 1 1	5 24 5 30 5 21 0 20 5 17
G-LG-S 165 G-LG-S 166 G-LG-S 167 G-LG-S 167 G-LG-S 168 G-LG-S 169	.5 19070 .2 17960 .2 17410 .4 16690 .4 17030	1 1 1 1 18	44333	124 118 106 96 93	.8 .8 .6 .7	4 6790 1 7800 3 6560 3 6190 3 6270	2.1	3 21 5 20 7 20	i 61) 58) 57	1 51731	0 1510 0 1110 0 840 0 680 0 720	27	12510 11500 12020 12160 12170	1150	17 18 17 16	290 270 290	99 1 117 1 112 1 113 1 112 1	1180 1140 1140	29 32 29 30 31	1 1 1 1	14 13 12 11	1 1 1 1 1	1	73.4 69.8 69.0 63.9 66.0	541 536 529	1 1 1 1	12111	1 1	ō 5 8 1	5 59 5 60 5 57 0 58 5 54
G-LG-S 170 G-LG-S 171 G-LG-S 171 G-LG-S 172 G-LG-S 174 G-GM-S 020	.4 17920 .3 17500 .4 19030 .4 16920 1.3 12960	1 1 1 1 1 1	33343	125 116 100 131 82	.7 .7 .6 .3	2 5250 2 6100 2 5940 3 5800 5 22220	1.	2 19 1 21 6 19	1 54 7 56	4865 4626 4648	0 1180 3 980 0 1050 0 1290 0 1680	31 25	13990 13090 14520 11450 11800	851 957 715	3 11 8 12 1	158 260 340 280 430	148 119 116 98 10	940 1050 940 960 1550	33 27 27 32 23	1 1 1 1	13 13 15 15 43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	51.6 63.3 62.8 63.0 76.3	412 334 461 72	21111	11112	21212	1 9 7	5 19 5 49 5 32 5 50 5 23
G-GM-S 021 G-GM-S 022 G-GM-S 023 G-GM-S 023 G-GM-S 024 G-GM-S 025	1.4 11660 .9 12810 1.4 11470 1.2 15490 1.2 14570		22133	82 100 74 153 135	22233	5 21840 5 9390 5 21830 8 11340 6 11000		1 12 1 12 1 15	2 51 2 68 5 77	1 3271 3 3231 7 3759	0 1480 0 1840 0 1440 0 2260 0 2010	11 11 12	10610 9850 10660 11300 11070	664 704 652 765 760	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	440 550 360 820 650	12 8 12 8	1610 1710 1600	24 23 31 32 27	11111	41 17 41 24 23	1111	1 :	70.3 77.0 69.1 102.0 92.8	79 65 95	11211	11121	1 1 1	1	5 24 5 21 5 29 5 27 5 23
G-GH-S 026 G-GH-S 027 G-DS-S 078 G-DS-S 080	1.0 11070 1.2 10880 .1 19760 1.2 14110		1 1 3 2	65 65 139 121	.3 .2 .8 .3	3 19140 3 21560 4 11220 7 9180		1 11	1 58 1 36	3 2949 5 3285	0 1320 0 1260 0 870 0 1650	11 14	10220 10290 6710 10430	2248	1	380 380 1569 1340	67	1480 1510 1610 1670	22 24 33 25	1 1 1	33 40 48 23	1 1 1	t 1 1 1	65.8 64.3 40.4 76.2	57 143	1 1 2	1 1 1		1	5 22 5 32 5 34 10 30
							-																							
																												• .	1	
		_,			_																								l	! '
		<u> </u>							<u> </u>																					
																										_				
					<u>,</u>												_										. —			

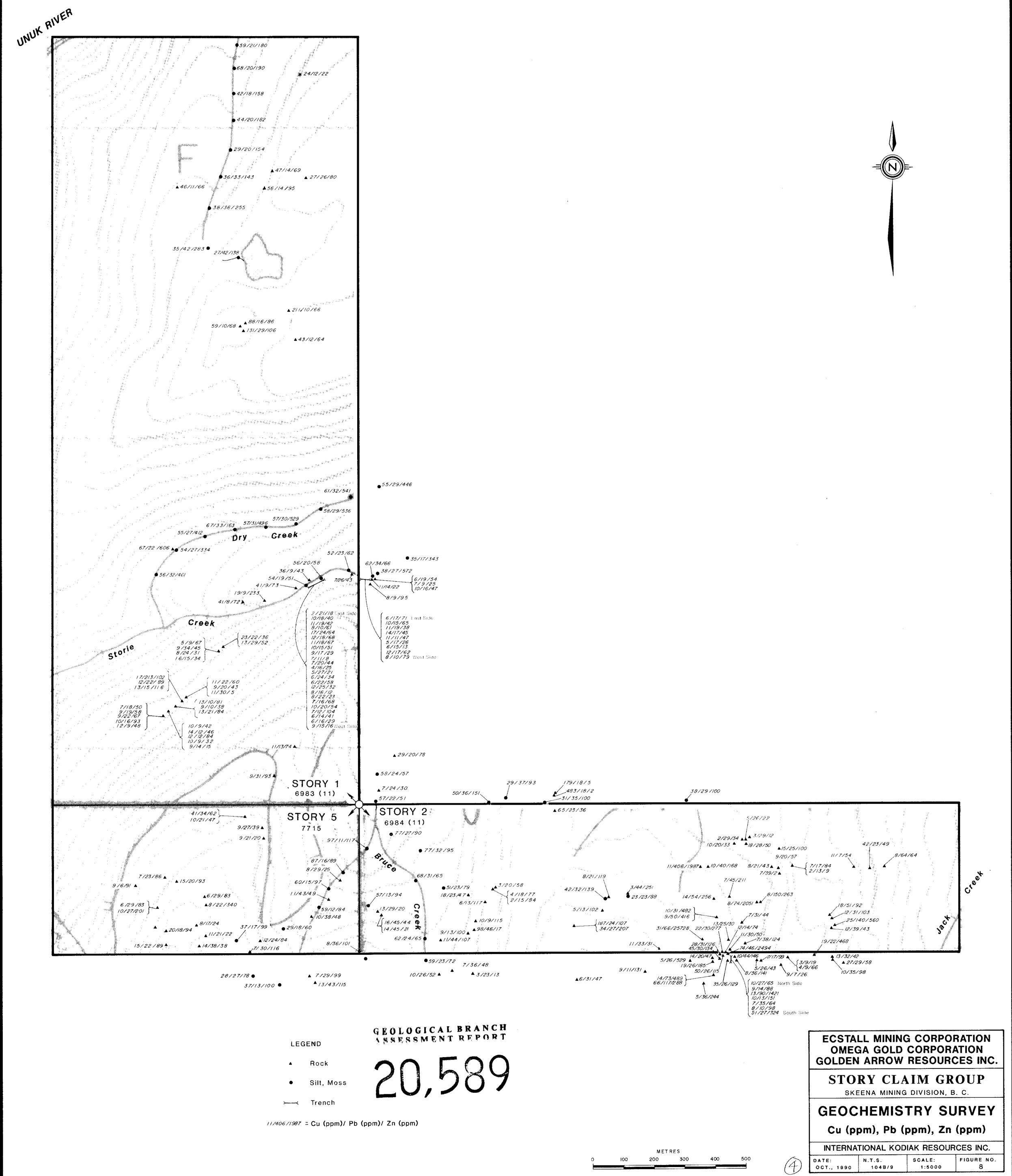
			3 6	20 5		£			٢	11 9, al	۲	nt. A		3	р. Б.	2	۴. ۳.		ا ر ال		Ę		č		3	gueser Ista ay	2:	18 10
COMP: INTERNATIONA PROJ: UNUK ATTN: G.NICHOLSON	L KODIAK						N→EN ST 15TH S (604)9		RTH	VANCOU	VER, B	.c.		T2												: OS ATE: *	90/	
SAMPLE NUMBER G-MM-N-189 G-DS-M-077	AG AL PPN PPN .8 14490 .1 21150	<u>PPH PPH PI</u> 1 7 (1 8 2)	A BE W PPN 24 1.1 52 1.1	PPM PPM 4 10550	PPN P	CO C PH PF 13 4 34 3	PM PPH	PPH	LI PPH 13	HG PPH 7860 4320	PPH 1247		NA PPH : 1310 580	PPH	PPN 6	PH P	<u>рн р</u> 1	27	TH PM PP 1	<u>*1</u> 15	PPN 1.7	ZH PPM P 139 255	GA PN P	SN PM P	W PH P	CR PN P	<u>PB</u>	KG PP8 640
G-DS-N-079 G-DS-N-080 G-DS-N-081 G-DS-N-082	.1 13680 .4 22060 .1 18990 .2 23780	1 6 14 1 6 14 1 8 14 1 10 23	92 .9 94 1.2 96 1.3 70 1.5	6 12400 3 13130 5 10540 3 11790 2 9690	.1	13 4 34 5 16 23 4 32 4 32 4 31 5	42 28660 38 34460 29 19920 44 32790 42 24810 48 45230 59 42230	3830 2550 2370 2480	29	4320 5000 9000 5480 10060	7690 2680 2256 3018 1675	1 1 1	470	22 3 97 2 54 2 97 1 78 2 117 1	480	32 36 20 20 18 20	1	68 77 56 67 53 39	i i 1 1	$\frac{1}{1}$ $\frac{2}{4}$	9.8 2.1 1.0 7.0 6.6	158 190	1	1 1 1		9 23 13 26		355 335 185 265 295
G-DS-N-083 G-DS-N-084 G-DS-N-085 G-DS-N-087	1 18860 1 21250 1 19170 1.3 18580	1 14 2 1 12 1 1 13 2	28 .1 15 .7	3 7820 7 12010 12 12530 10 11300	.1 .1 .1	42 3 51 2 21 5	35 35800 27 44010 57 44980	3360 2840 3450	26 7 29	10250 3830 5550 11640	11461 1841	1 1	810 2650 1110		670 700 290	20 21 42 42 13	1 1 1	63 61 32	1	1 4 1 2 1 4 1 10	4.0 7.0 7.5 1.2	180 283 138 94	1 1	1	1	26 23 1 1	5 10 5	295 195 220 450 330
G-DIS-M-088 G-DS-N-089 G-DS-N-090 G-DS-N-091 G-DS-N-092	1.5 18400 1.3 18540 1.3 20410 1.3 16440 .9 12810		»9 .r	10 12170 9 12230 8 11670 8 10750 4 10620	.1	10 6	97 41270 87 43280 60 46700 59 41700 29 29180	1200	10 10 11 8	11610 11890 11730 10510 6160	1200 1253 1294 950 725	1	990 710 580 770 1350	6 2 3 1 2 2	400 390 960 250 810	11 16 15 12 18	1	29 30 27 26 28	1 1 1 1 1	1 11 1 10 1 10 1 4	4.8 0.8 3.3 5.3 3.7	117 89 97 84 60	1112	1	22111	1111	55	315 465 580 640 675
G-05-N-093 G-05-N-095 G-05-N-096 G-LG-N-177 G-LG-N-178	1.4 23090 .7 16330 1.0 24280 .1 11880 .6 14630	1 11 13 1 10 9 1 9 18 1 12 16 1 10 13	12 .6 24 .8 30 1.3 24 .7 26 1.0	9 12350 4 9940 6 7600 3 12160 5 10898	.1 .1 22.2 5.1	20 1 12 2 15 1 17 1 19 3	37 46710 28 32670 37 40450 38 43450 35 46580	3120 9480 2740 5280 3390	15 13 23 8 7	10920 8660 9060 7300 6660	1397 843 628 4137 1652	1 1 10	1730 1500 790 540 670	16 1 20 1 19 1 91 2 32 2	440 300 160	17 27 13 27 17	1	37 24 17 20 19		1 6 1 7 1 5	4.6	100 572	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3	1111	1351	5 1 5 5 5 1 10 1	055
							<u></u>		·																•		<u> </u>	
																		· <u> </u>		*								
					<u></u>				<u> </u>		<u></u>																	
4				<u></u> .			···												·			<u>.</u>						
												_																
		· <u>-</u> ,		- ·-·	<u></u>		<u></u>				_																	
									. <u> </u>	- <u></u>																		
				<u> </u>			.		<u></u>									<u> </u>		-			<u> . </u>					
			2 Al	/					_																·· .	-		

×...<


;

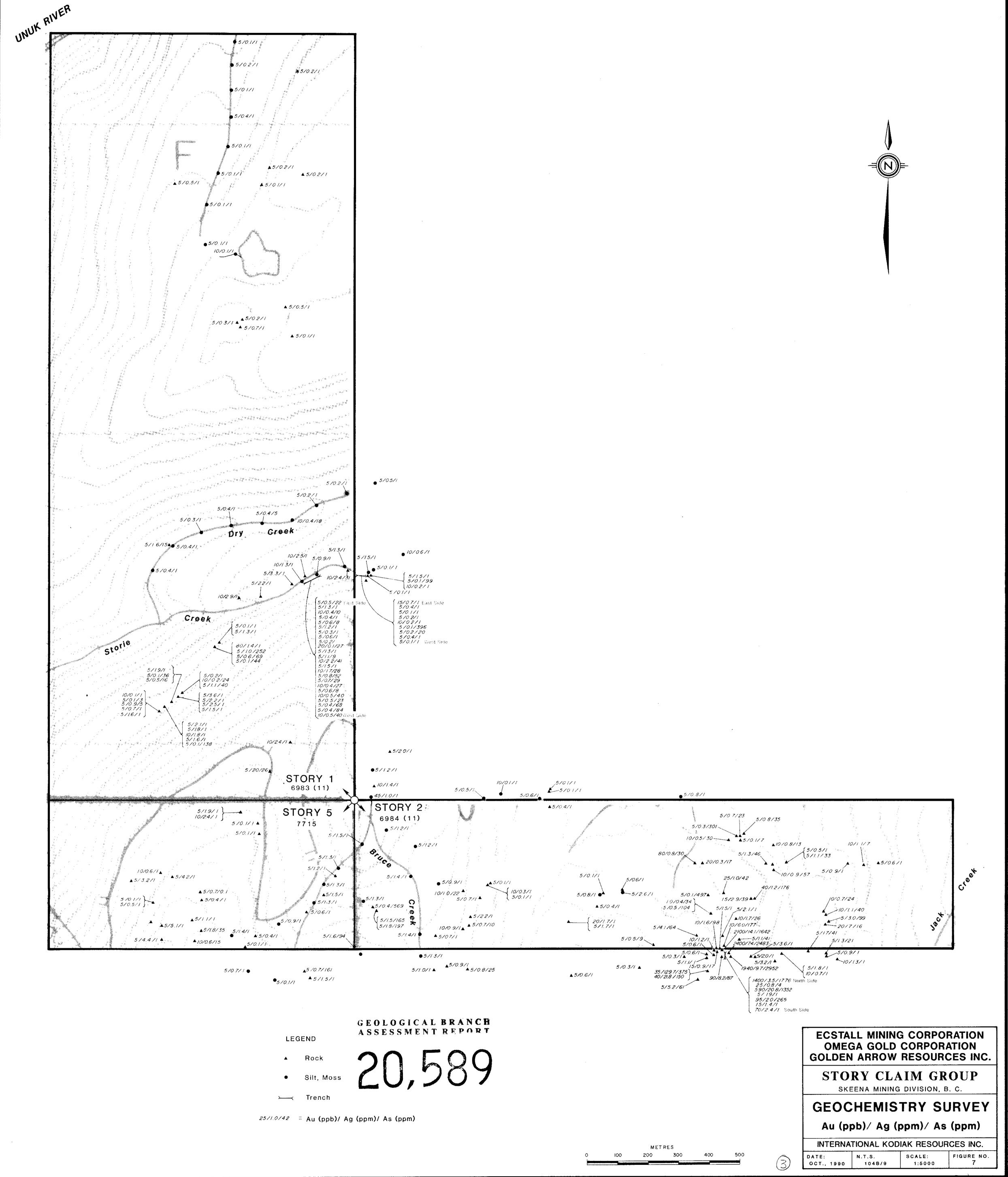

2

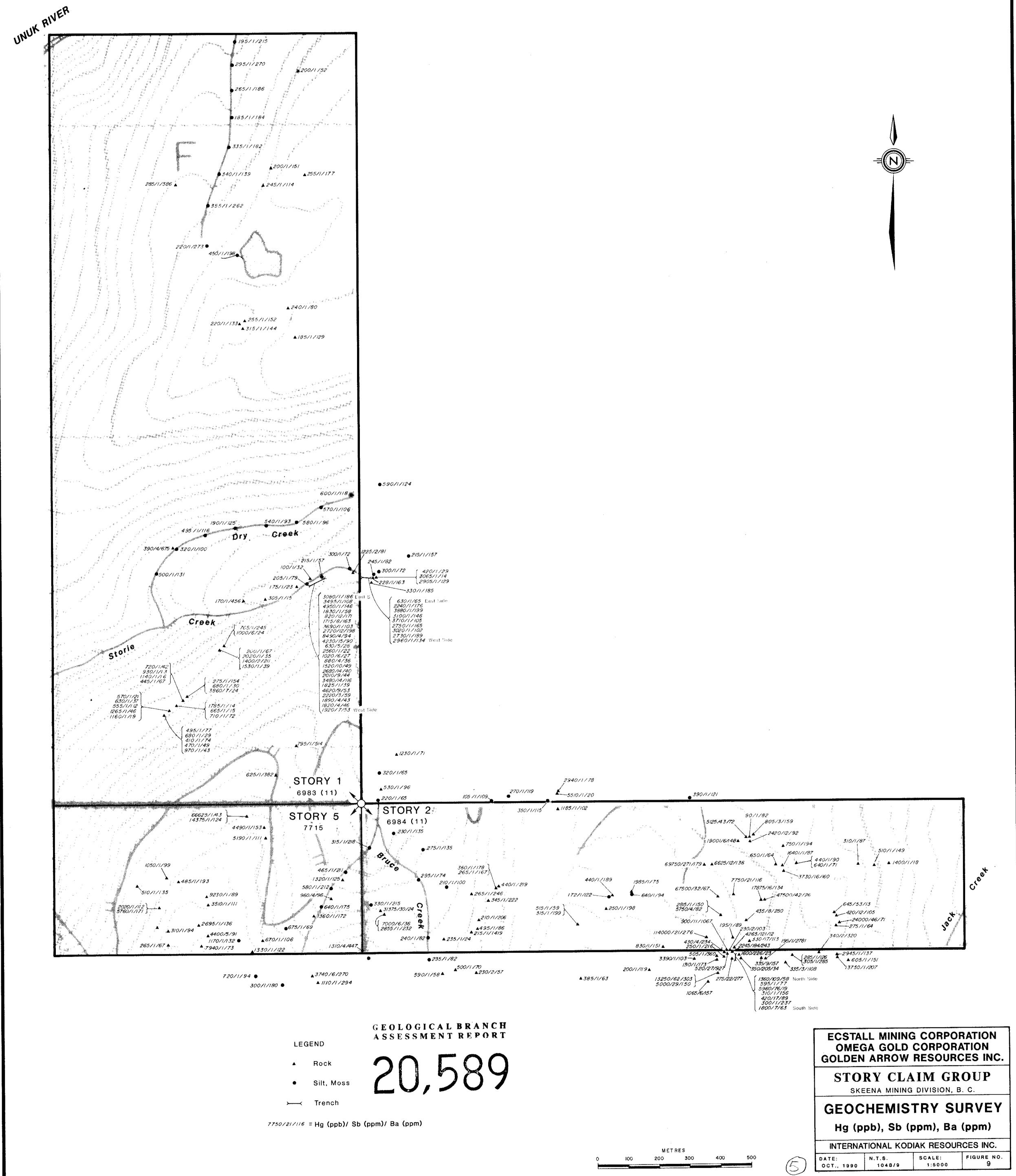
				Ţ		p	177 N		

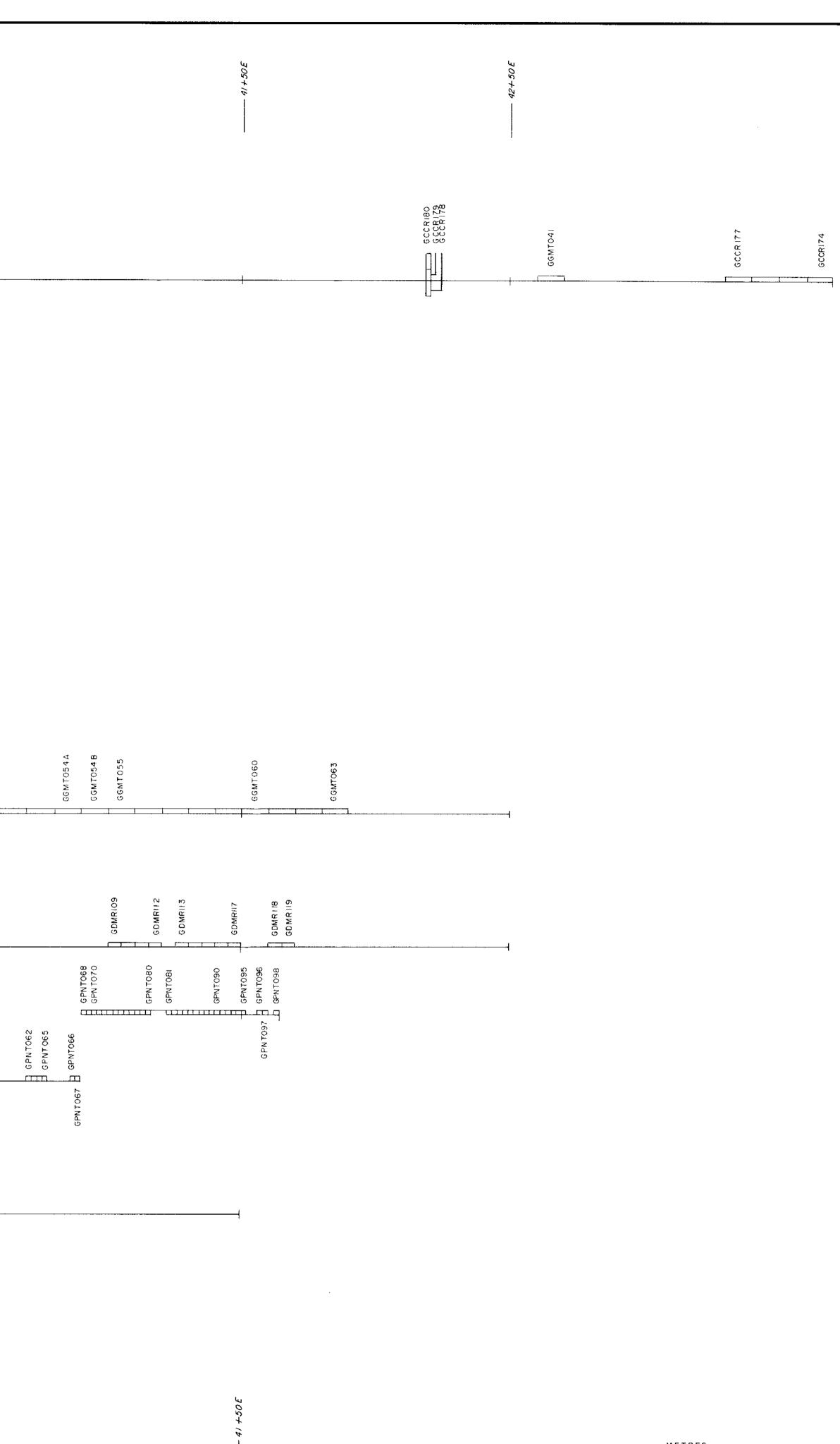

COMP: INTERNATIONAL KODIAK MIN-EN LABS - ICP REPORT FILE NO: 05-0268-031 PROJ: UNUK 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 112 DATE: 90/08/22 ATTN: G.NICHOLSON (604)980-5814 OR (604)988-4524 * MOSS * (ACT:F31) SAMPLE AG AL AS В BA BE 81 CA CD CO CU P PB SB SR TH U FE K LI MG MN MO NA NI V ZH GA SH W CR AU HG NUMBER PPH PPH PPH PPH PPH PPH PPH PPM PPM PPM PPM PPM PPM PPM PPN PPN PPN PPN PPN PPN PPB PPB 23 2 3 1.4 21370 121 .4 4 10790 .1 25 185 62890 2100 31 15380 2599 250 9 1180 49 10 161.4 216 1 5 485 39 29 34640 4870 15 31 38500 6230 13 38 34350 4030 G-SM-H-043 940 30 1300 960 20 1760 830 35 1410 .1 14220 119 8690 :1 .6 15 6150 3540 37 35 19 18 44.9 93 10 270 1 1 1 G-SM-M-044 .6 18260 115 .9 9450 7560 20 7840 1356 60.0 100 1 1 1 Ź 5 350 G-SH-H-048 .8 17210 ī 121 2 1.1 .1 20 9510 894 29 15 14 62.0 100 2 5 390 1 .5 19130 8 286 .9 .1 17 86 43510 3270 10700 24 10230 1514 1 310 9 1490 29 16 5 96.8 150 1 5 380 1 .3 21230 .2 20640 21 208 51060 4080 87 140 .9 2 9430 .1 29 12710 1877 370 11 1570 38 11 107.4 191 5 345 21 128 51810 4260 19 51 43420 4800 124 9290 29 12330 1936 39 .8 .7 .1 1 560 11 1490 -11 1 109.2 185 5 350 1 1 1.6 22800 .3 25770 .1 24750 60 11 22 42 35 103 14800 26 17970 830 1 710 28 2060 4 13 -1 1 114.5 77 24 5 255 1 172 .8 9120 29 246 61360 2350 27 13910 2966 8 1020 4 1170 İŌ .1 240 1 1 1 148.8 167 1 S 350 15 182 3 9830 .6 .1 31 252 65610 2270 31 17070 2785 1 170 10 179.8 125 1 5 330 1 ۰. 1 28 258 60570 2330 15 101 32510 4390 25 173 63210 2850 22 142 55300 4090 31 16710 2617 21 9430 1187 33 16520 3314 23 12540 2249 27 19360 911 26270 11 146 8 1300 13 1590 9690 :6 3 .1 210 37 9 174.6 165 5 315 .3 16500 5 17 12060 290 150 1.8 48 39 285 79.5 393 157.7 188 20 5 290 5 280 .1 23330 155 .4 22 9900 13 1270 .1 1 1 -1 12 83 152 9370 .5 .1 130 9 1440 49 115.6 225 123.2 80 1 10 305 ā 1.7 24170 93 15500 21 54 47200 3370 1 1060 33 2130 .6 .1 -14 21 -1 261 5 265 .5 21660 .8 21340 .7 23950 12 27 17 22 121 61460 3570 15 83 33130 8970 153 3 9360 2 16810 5 10360 .1 22 121 61460 3570 30 13740 1772 .1 15 83 33130 8970 24 15200 1046 .1 27 170 68050 3520 33 17530 3153 5 1400 24 2790 14 1560 190 10 .6 1 52 1 129.6 197 5 375 1 129 86.6 88 169.6 201 1.0 29 21 36 870 22 16 5 340 5 300 2 197 180 46 .6 1 1 1 LMAU Gm, _ · . 1 11 .

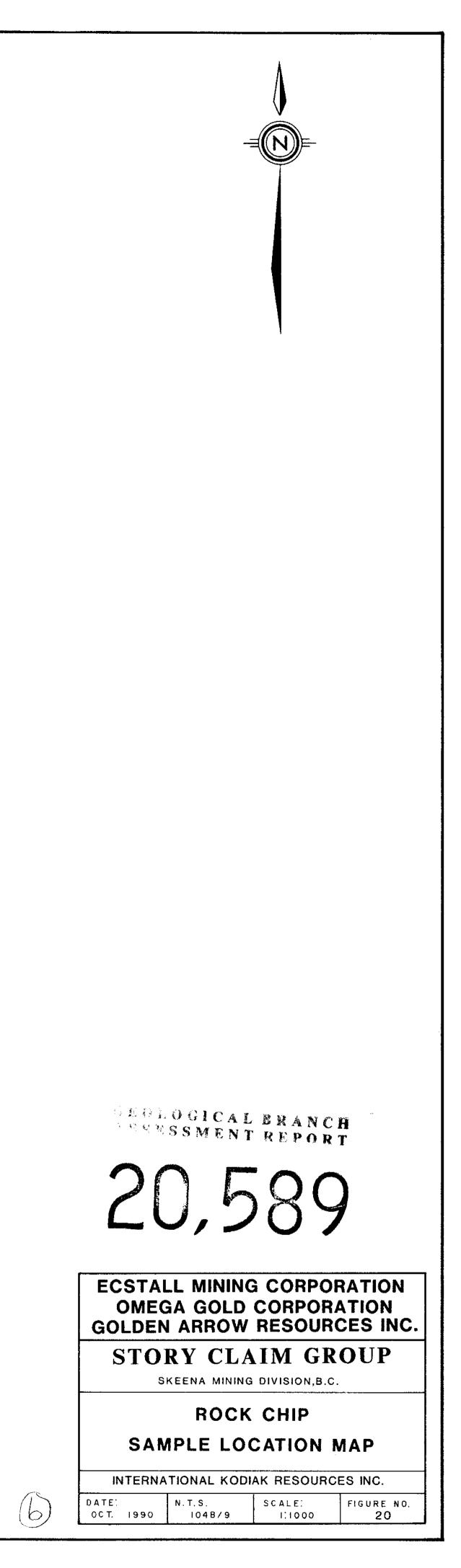
.





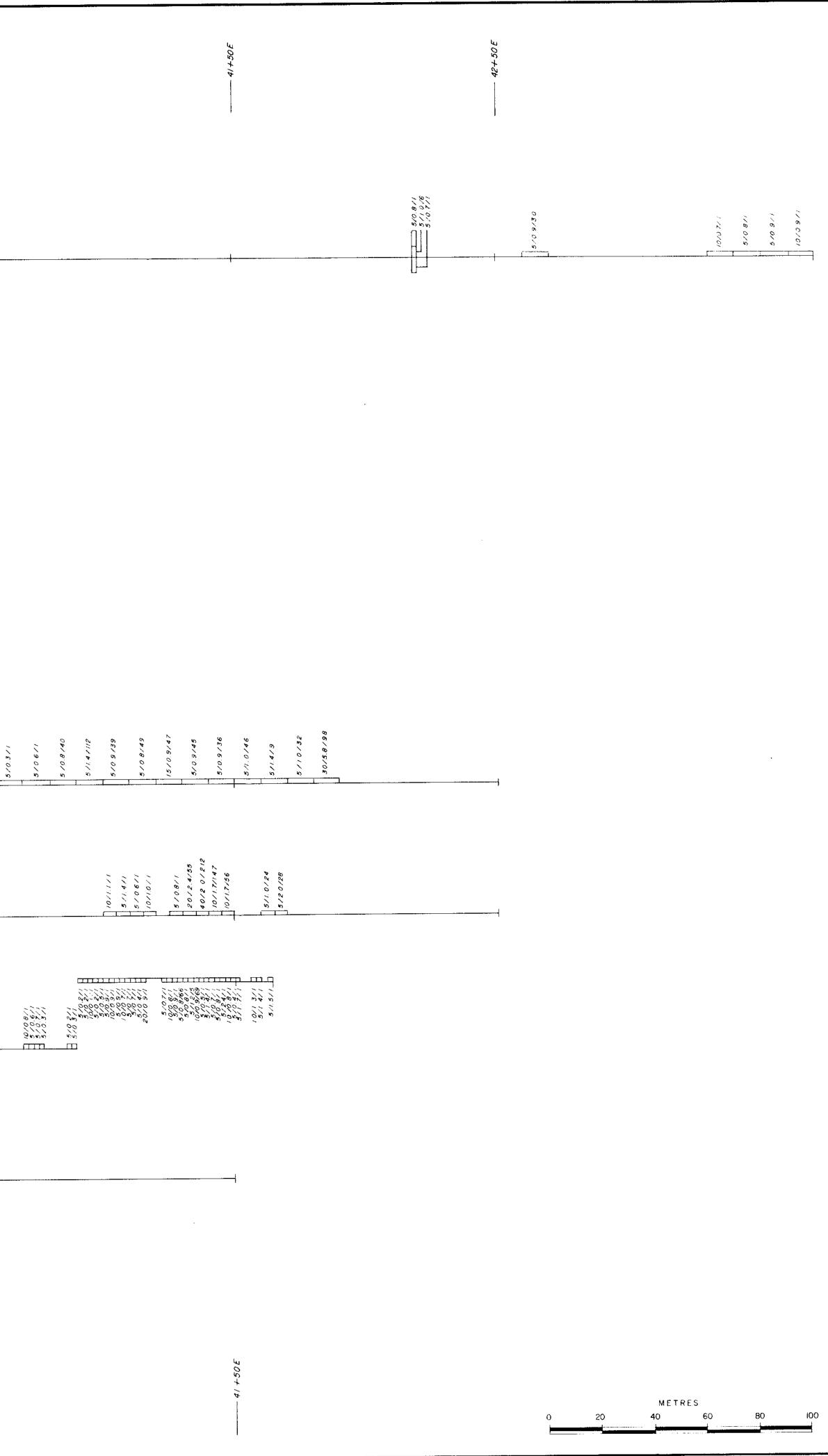


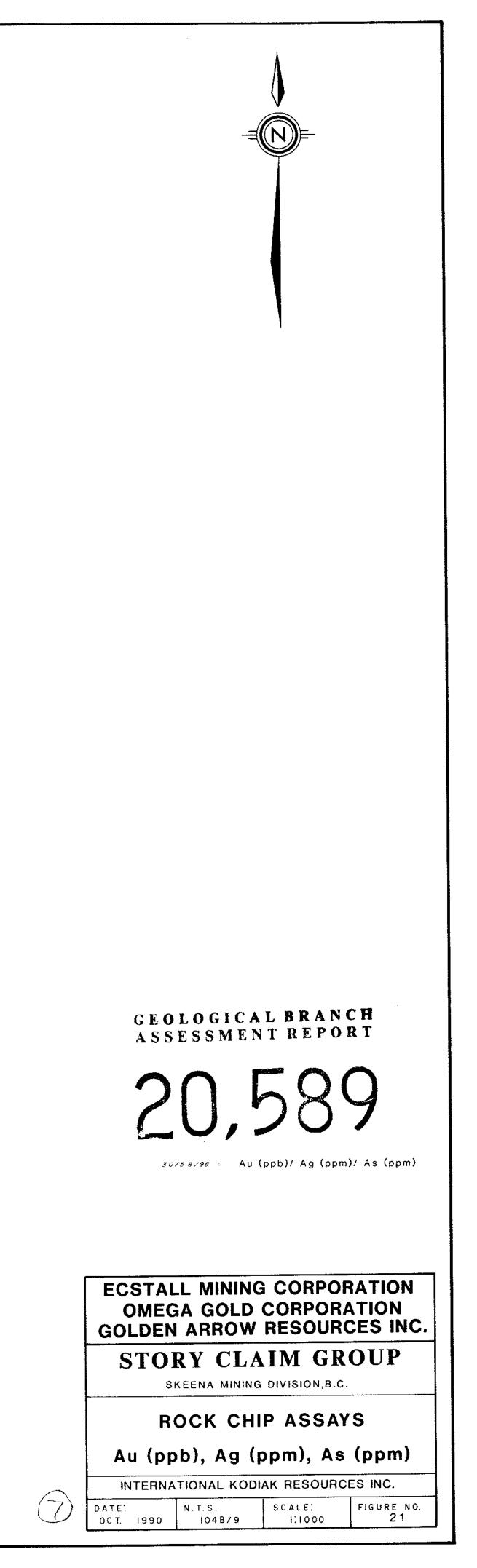



.

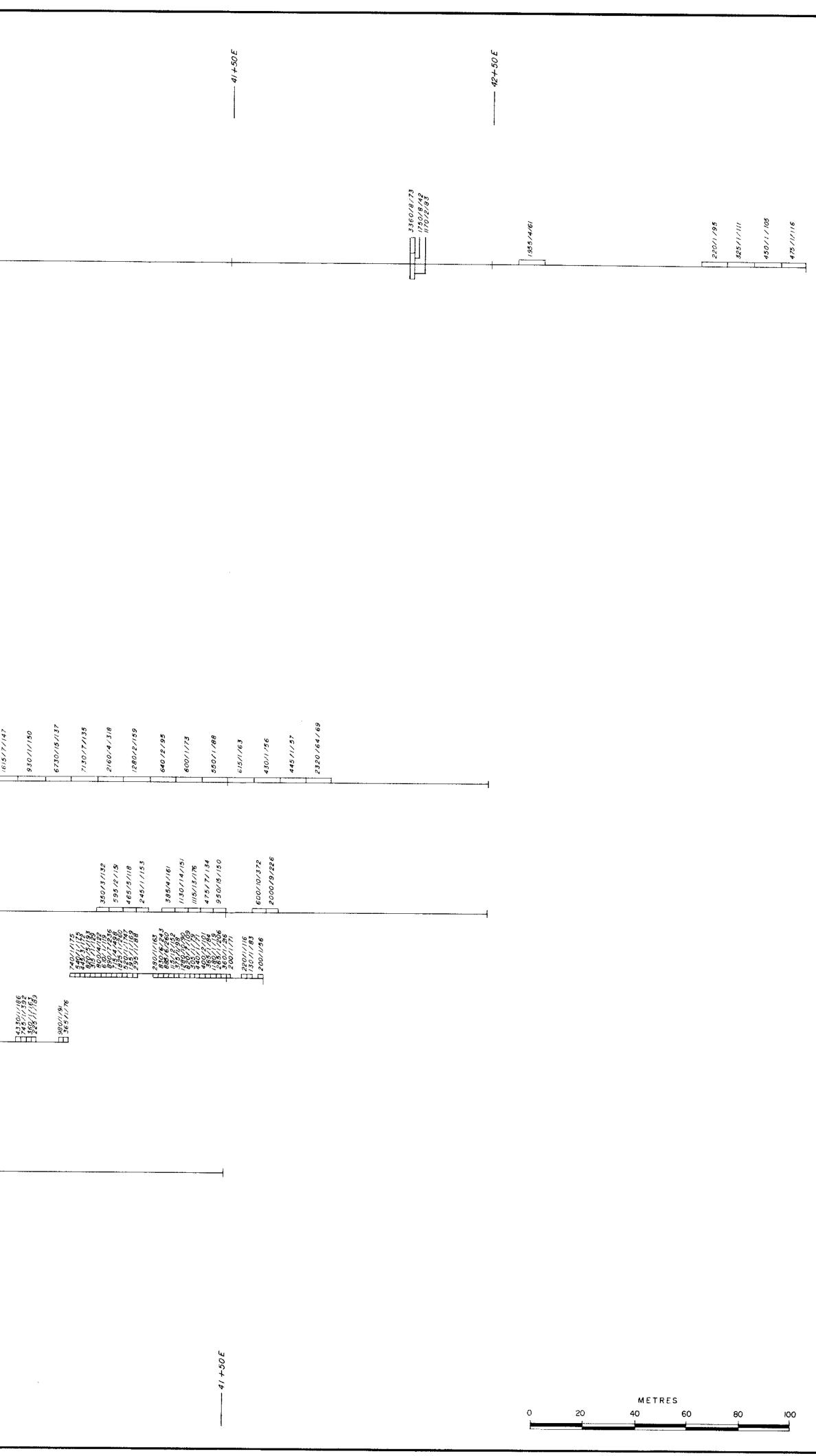
				39 + 50 E		40 + 30 E
L.0+005				GGMT046 GGMT045 GGMT045	GGMT044 GGMT043 GGMT042	L
L. 1+005					GMBR335 GMBR336 GMBR337	GMBR338 GMBR339 GMBR339
L. 1+50 S				GDMR120 GDMR121 GDMR122 GDMR123	GDMR124	
			_			0
L.2+35 S		GGMT072	385 66MT071 60MBR352		5 56MT065 66MT064 66MT064	0202 W 102 80
L.2+85 S			GMBR3A5 GDMR085		GDMR095	GDMRIO5 GDMRIO5 GDMRIO8
L. 3 + 35 S	GMMT219	GPNTI 6	GPNTIIO GPNTIO2 GPNTIO2 GPNTIO2			
τεταθΜ9 <i>L . 3 + 95 S</i> ⊢		6 MBR333	GMBR 332	GMBR 331	GMBR327	GMBR326 GMBR322 GMBR322
	38 + 50 E					40 + 50 E

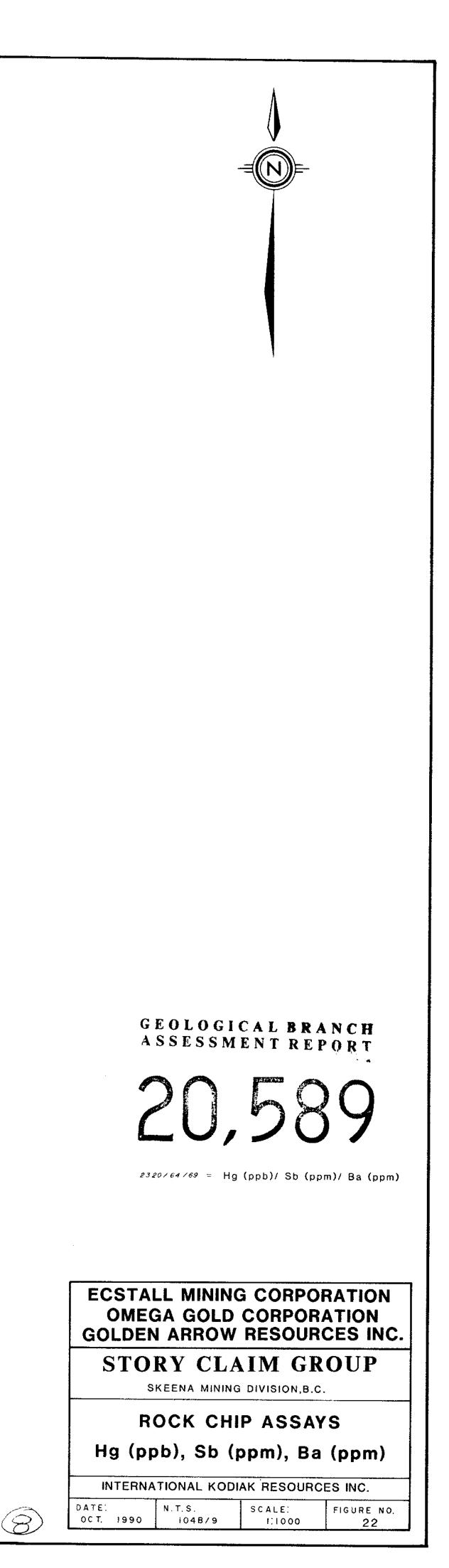
METRES 0 20 40 60 80

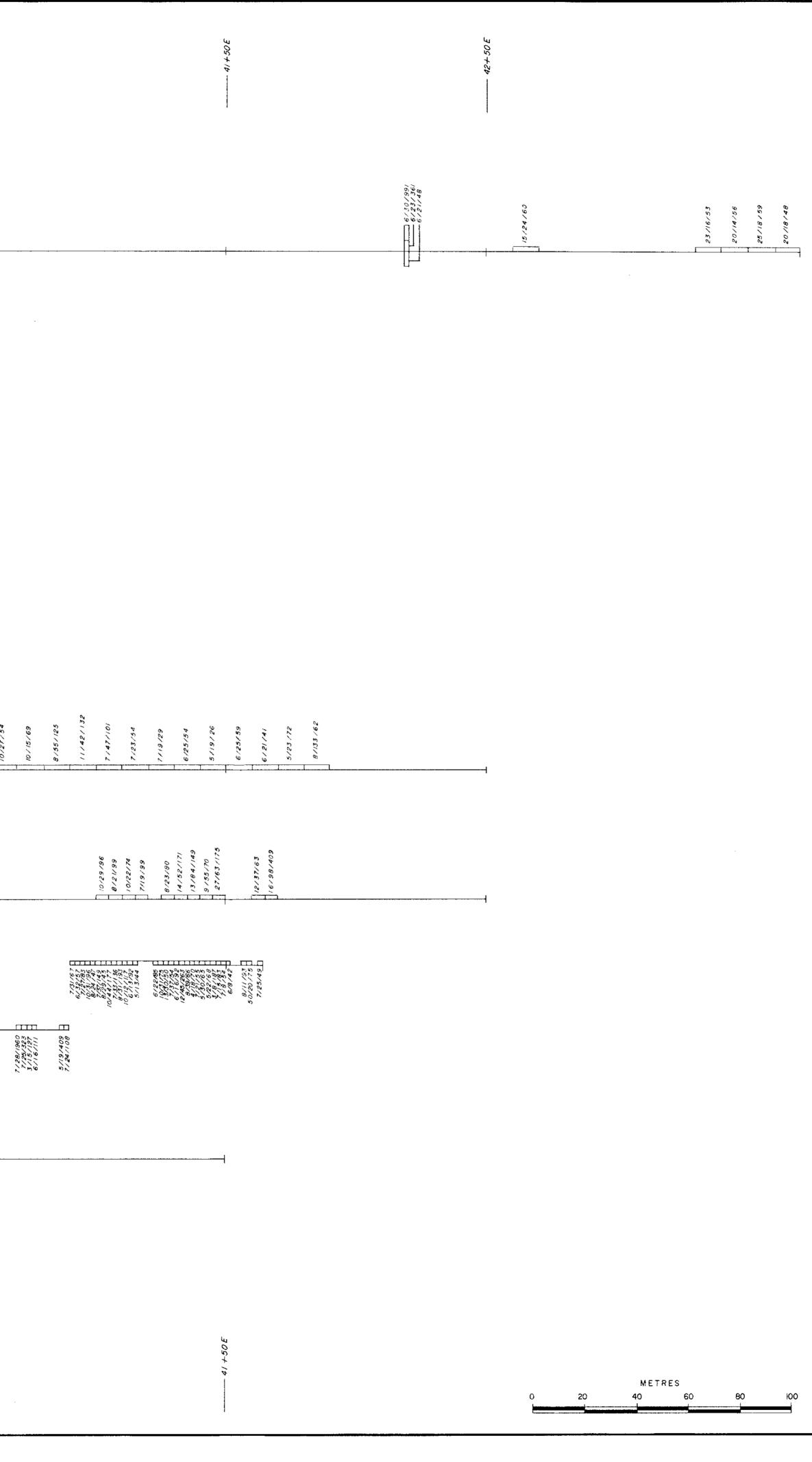

100

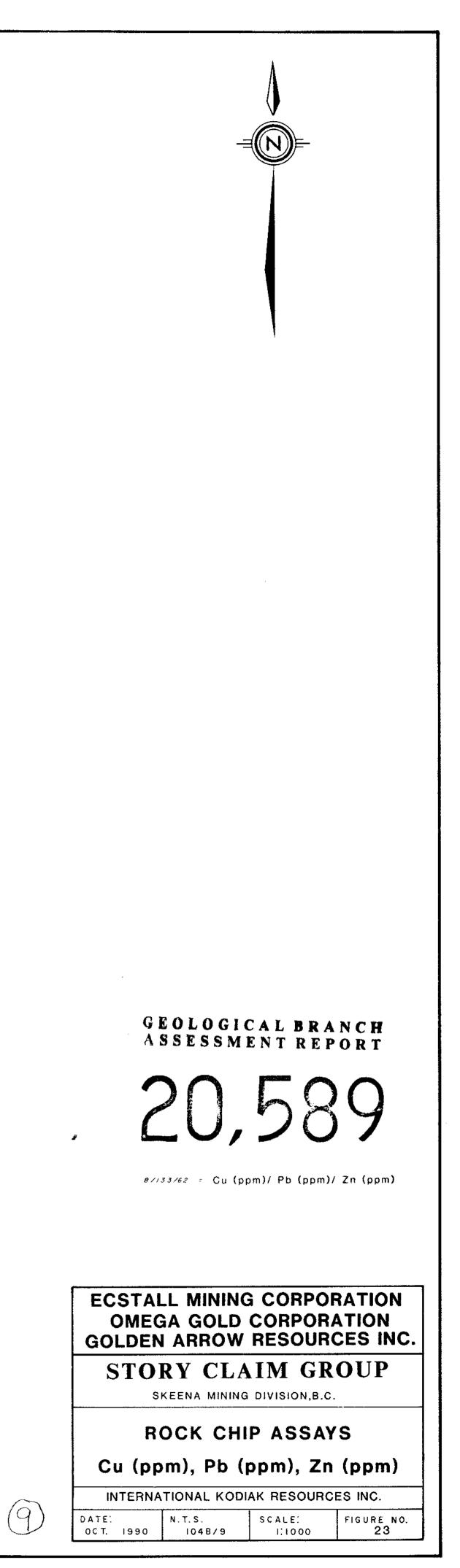


	38 + 50E	 39 + 50 E		40 + 50 E
L.0+005	<u>}</u>		5/0.7/39	8 8 9 9
L. 1+005			5/09/18	5/0.9/38
L. 1+50 S			5/0.7/1 5/0.8/33 10/08/63	
L.2+35 S	<u>↓</u>	10/1.0/147 5/0.7/137 20/0.7/122	60/1.4/119 5/0.8/1 10/08/1 5/04/1	60/13.6/55 5/1.1/1 5/08/15 5/03/1
L.2+85 S	<u>}</u>	8 5 m m m 8	10/19/95 10/13/95 5/10/37 5/10/37 5/10/37 5/10/37 5/12/71 5/12/70 5/12/70 5/12/70	5/0.5/63 5/1.0/60 5/1.0/60 5/0.5/61 5/0.149 5/1.3/26
L. 3+355	5/0.5/78	5/0.7/* 5/0.5/! 5/0.6/6 5/0.7/! 5/0.3/! 10/0.8/9		100000 10000000 1000000 1000000 10000000 100000000
L . 3 + 95 S	F	01.0119	10/1.0/19 5/1.1/10 10/1.0/19	5/2 2/1 5/2 2/16 5/2 . 1/17 5/2 3/4


18+50


l




			<i>3024 6</i> £		40 +50 E
L.0+005	J		1040/3/75 1160/7/127 1050/1/98	2080/2/8/	
L. 1 + 00 S			ţ	1670/7/128 1820/10/136 1730/9/127 980/7/149 3500/9/103	
L. 1+50 S			1480/10/195 1970/10/107 1340/7/116 1830/15/119 1925/19/128		
		Ş			
L.2+35 S	(.	- 625/29/225 - 625/2/97 - 625/2/99 - 565/3/118 - 985/3/233 - 985/3/233	1920/15/129 1595/1766 1740/1786 5745/17197 1830/1795	631250/61/53 8830/3/94	3460/5/63 1400/4/119 1615/7/147
L.2+85 S	J		2685/11/158 1455/15/148 1455/15/148 570/11/416 325/7/1215 325/3/107 355/9/219 225/6/106	(85/6/139 1330/8/173 1020/8/136 2000/11/96 355/6/107 355/6/107 655/8/288	1345/6/203
L. 3 + 35 S	2985/10/239	3120/8/149 380/1/113 560/5/109 540/4/145 385/1/164 490/1/121	7502////////////////////////////////////	230/1/198 230/1/198 230/1/198 230/1/198 230/1/198 230/1/198	
L.3+955]	390/1/171	920/9/166 785/14/105 320/6/111 210/1/109 290/3/138	175/1/437 215/1/165	205/1/74 345/1/74 305/1/85
20 T EV E	14 + 90 F	39 + 50 E			40 + 50 E

		· · · · · · · · ·												40 +50 E		
<i>L.0+005</i> +				 	6/30/15	5/39/12	5/23/32	1	7/31/97	7/29/134	1			+		
L. 1+005								F	13/37/50	18/47/182	8/37/26	16/113/216				
L. 1+50 S				31/23/103	12/33/54	67/25/48	7/33/76									
L.2+35 S	I	107		8/33/37	6/1/2/10	12/20/107	10/35/646	6/11/123		29/1309/32079	1/76/1497	12/47/1354	18//62/6	6/40/67	10/27/54	
L. 2+85 S +			18/52/19/ 9/29/71/ 8/32/83 9/29/99 18/5/92 8/49/102 15/38/13/	13/64/591	9/32/159	8/36/1573 12/47/253	8/35/98 B/35/98	5/35/67 6/35/67	4/36/31	6/34/111	13/24/51 28/27/235	7/27/54 6/26/43	6/36/58			
L. 3 + 35 S +	9/31/15 8/26/10	1. 2 1		+ + -		14/27/63 2/33/07 6/33/07 4/24/51 5/5/50								+		1/28/1960
L.3+955		19/24/45			_	10/35/1210	5					£6/8£/£/	16/36/86	4	224133/120	
tı.																
- 38 + 50 E				100 F00 F										- 40+50E		

