LOG NO:	12-05	RD.
ACTION:		

TTLE NO:

Geological and Geochemical Summary Report on the Story Claim Group Skeena Mining Division British Columbia

N.T.S. 104 B/9W

SUB-RECORDER
NOV 3 0 1990
M.R. #

Longitude: 130°36' West Latitude: 56°50: North

For

Golden Arrow Resources Ecstall Mining Corporation Omega Gold Corporation

October, 1990

Len Gal M.Sc.

.c:32098

>...

Ì.....

.....

5

1...

.

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUMMARY

5

See. .

The Story claim block is located in the Skeena Mining Division, east of the Unuk River in the Storie Creek area, on NTS map sheet 104 B/9E at longitude 130°36' West and latitude 56°50' North. The property is only 6 kilometers east of the Eskay Creek gold discovery of Stikine Resources and Calpine Resources.

The Story claim block consists of 20 units and is presently held by Ecstall Mining Corporation (50%) and Omega Gold Corporation (50%). Golden Arrow Resources presently holds an option on the property to earn up to 100% interest by making certain cash and share payments to Omega Gold Corp. and Ecstall Mining Corp., and by expending \$550,000 on the property. The Story claims were staked in 1988 to cover prominent gossans, a known mineral occurrence, and favourable Jurassic volcanic rocks that crop out on the property.

In 1990, a first-phase mapping and geochemical survey program was completed on the Story claim block at an expenditure of approximately \$91,000. Crews employed by International Kodiak Resources Inc. from August to October, 1990 geologically mapped and prospected the property, and a large gossan on the east end of the property (Jack Glacier gossan) was intensively sampled. Rock and soil samples were taken from throughout the property. Mercury anomalies up to 681250 ppb over a 5m continuous chip sample on a gossanous rhyolite were obtained north of Jack Glacier. Soil sampling on an established grid revealed coincident anomalies of Hg, Ag, Ba, Zn and to a lesser extent, Cu and Pb. Quartz-carbonate-sulphide veins within an aphyric andesite yield assay samples of up to 3.83g/tonne (.112 oz/ton) gold. The veins are relatively thin but traceable from 15

i

to 50m. One brecciated quartz vein / fault zone assayed 20.8 ppm Ag over 2m, with higher grade grab samples taken from the same zone.

[

٤.,

÷

÷...

έ.

. .

5

.....

TABLE OF CONTENTS

i.

~ `

`-

•

۲.

.

•

ы. -

, ,

~

Page
SUMMARY
LIST OF FIGURES
INTRODUCTION 1
LOCATION AND ACCESS
CLAIM STATUS
PHYSIOGRAPHY AND CLIMATE
HISTORY
REGIONAL GEOLOGY
LOCAL GEOLOGY
Betty Creek Formation
Salmon River Formation
MINERALIZATION
GEOCHEMICAL SURVEY RESULTS
SILT SAMPLING
CONCLUSIONS AND RECOMMENDATIONS
STATEMENTS OF QUALIFICATIONS 42
REFERENCES
APPENDIX I - COLOR PLATES
APPENDIX II - CLAIM RECORDS
APPENDIX III - STATEMENT OF WORK
APPENDIX IV - ROCK DESCRIPTIONS
APPENDIX V - ASSAY TECHNIQUES AND RESULTS

LIST OF FIGURES

<u>ر</u>

• • •

٠

. .

.

-

۰ م م

.

-

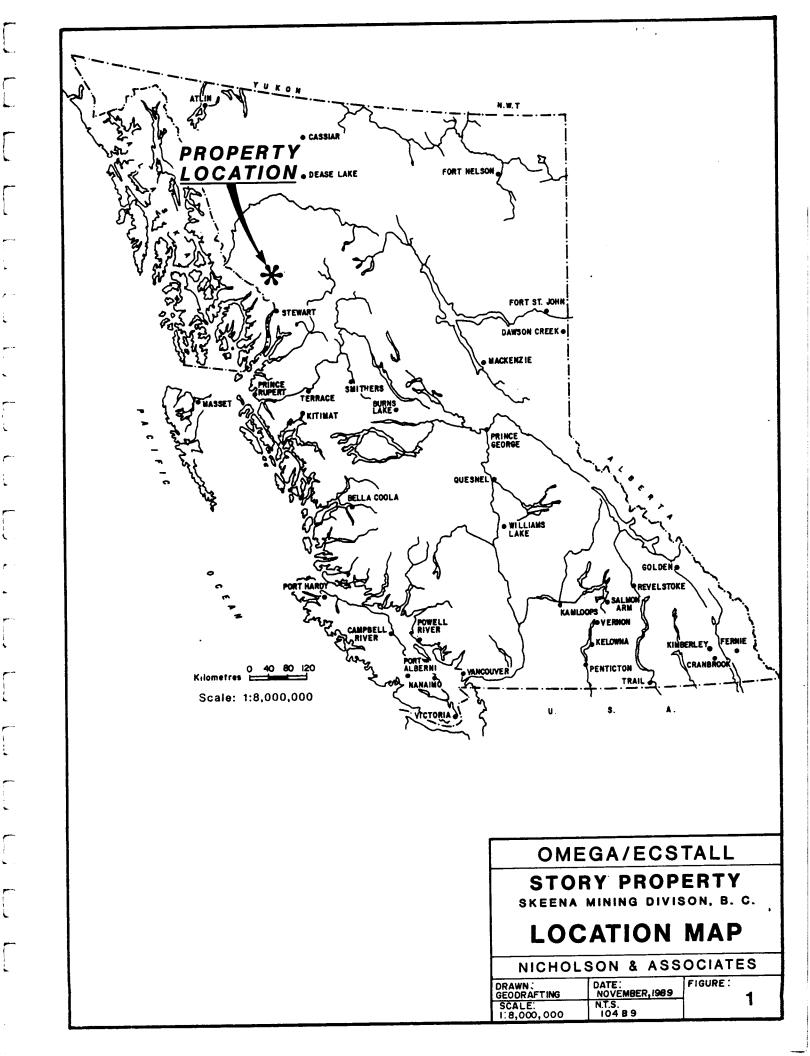
•

. ► .

	Page
1.	LOCATION MAP
2.	CLAIMS MAP
3.	REGIONAL GEOLOGY
4.	SCHEMATIC STRATIGRAPHY AND FACIES CHANGES IN TRIASSIC AND
	JURASSIC LITHOLOGIES
5.	GEOLOGY MAP
5a.	GEOLOGY OF THE STORIE FALLS AREA
6.	SAMPLE LOCATIONS MAP in back pocket
7.	GEOCHEMICAL SURVEY (Au, Ag, As) in back pocket
8.	GEOCHEMICAL SURVEY (Cu, Pb, Zn) in back pocket
9.	GEOCHEMICAL SURVEH (Hg, Sb, Ba) in back pocket
10.	SOIL GRID LOCATIONS 27
11.	SOIL GRID GEOCHEMISTRY (Au, Ag, As)
12.	SOIL GRID GEOCHEMISTRY (Cu, Pb, Zn)
13.	SOIL GRID GEOCHMISTRY (Hg, Sb, Ba)
14.	SOIL GEOCHEMISTRY Ag CONTOUR DIAGRAM
15.	SOIL GEOCHEMISTRY CU CONTOUR DIAGRAM
16.	SOIL GEOCHEMISTRY Pb CONTOUR DIAGRAM
17.	SOIL GEOCHEMISTRY Zn CONTOUR DIAGRAM
18.	SOIL GEOCHEMISTRY Hg CONTOUR DIAGRAM
19.	SOIL GEOCHIMISTRY Ba CONTOUR DIAGRAM
20.	GOSSAN CHIP SAMPLE LOCATIONS in back pocket
21.	GOSSAN CHIP SAMPLE GEOCHEMISTRY (Au, Ag, As) in back pocket

•

INTRODUCTION

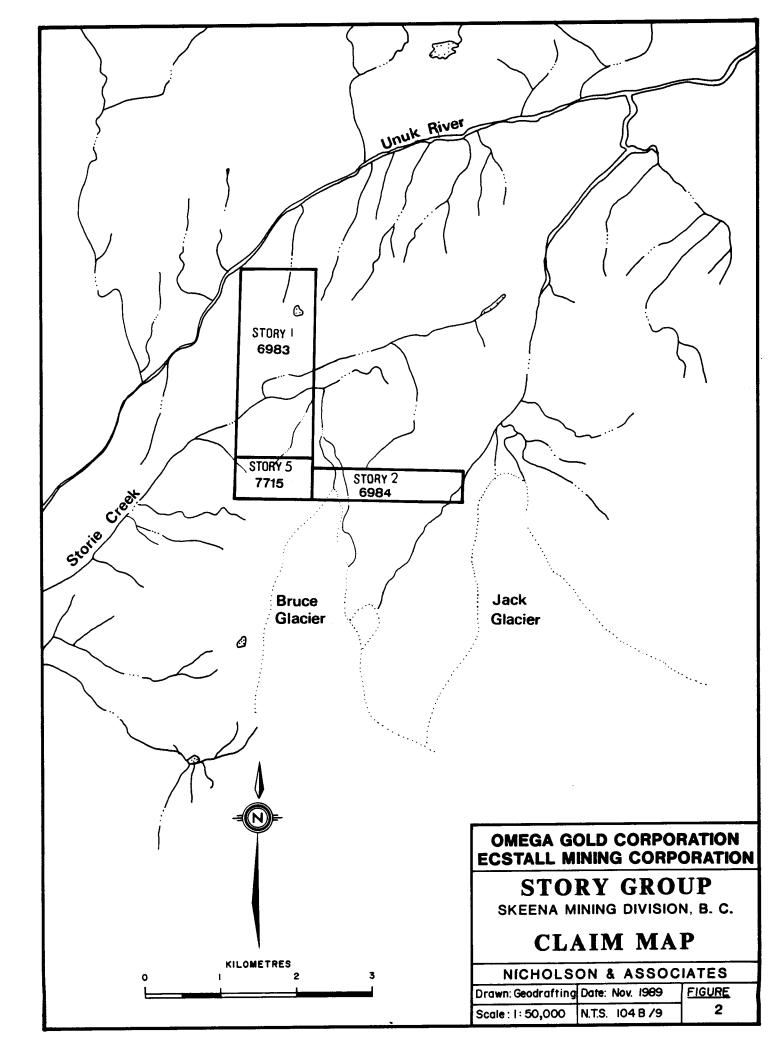

The Story property is in the Skeena Mining Division, in the Unuk River - Storie Creek area. The claim block comprises twenty claim units held jointly by Ecstall Mining Corp. and Omega Gold Corp. Golden Arrow Resources holds an option on the property.

In 1990, crews of International Kodiak Resources completed a soil sampling grid over the Story 2 claim block, collecting 91 samples. All steams were systematically sampled. Twenty-three silt and moss samples were collected. The property was geologically mapped, and 486 rock samples were taken from mineralogically promising outcrops. Several areas of mineralization were examined, most notable of which is the large gossan in the western part of the Story 2 block, north of the Jack Glacier. Large outcroppings of pyritic rhyolite had anomalous values in Zn, Hg and As. Adjacent intermediate extrusive rocks are cut by several quartz carbonate sulphide veins up to 25cm wide. Many of these are mineralized with precious metals, and returned Au assays of up to 3.83g/tonne (.112 oz/ton). These veins, although relatively thin, have strike lengths of 15-50m. These carbonate - quartz veins also occur in the rhyolite unit.

LOCATION AND ACCESS

The Story claim block is situated at longitude $130 \cdot 23$ ' West and latitude $56 \cdot 37$ ' North within the Skeena Mining Division (see Figure 1). The property is just southeast of the Unuk River, and bisected by Storie Creek. The Story property is only 6 kilometers east of Calpine Resources' - Stikine Resources' Eskay Creek gold property. The Bruce and Jack glaciers are located just south of the property.

Access to the property is by helicopter from the Kodiak Camp just east of the Iskut River, 27 kilometers north of the property. Initial construction has begun on an access road from Bob Quinn Lake into the Iskut - Unuk River area, and will pass within 100m of the Kodiak Camp.


CLAIM STATUS

The Story claim block originally consisted of the Story 1 and 2 claim blocks, staked in November of 1988 in accordance with the new modified grid system. The Story 5 claim block was added in June, 1989. The claims are owned jointly by Ecstall Mining Corp. and Omega Gold Corp. on a 50/50 basis. Golden Arrow Resources is earning an interest in the property.

The pertinent claim information is summarized below. See Figure 2 for an outline map of the claim group.

<u>Claim</u>	<u>Units</u>	Record #	Mining Division	Expiry Date*
Story 1	10	6983	Skeena	Nov. 12/2000*
Story 2	8	6984	Skeena	Nov. 12/2000*
Story 5	2	7715	Skeena	Jun. 30/2000*

* After filing the 1990 work for assessment purposes.

The Story claim block is situated in the Boundary Ranges of the Coast Mountains. The property's elevation varies from less than 600m (2000 ft.) above the Unuk River in the extreme northwest corner of the property to 1311m (4300 ft.) below the Bruce Glacier. The Unuk River and Storie Creek flow through steep canyons on the property. Below 1200m (4000') the slopes are heavily forested with stands of cedar, fir and spruce. Stream drainages are generally immature and contain only moderate amounts of detritus. Storie Creek is very fast flowing and little sediment can be collected. Water is plentiful in the form of creeks, small ponds and glacial meltwater.

The timberline stands at approximately 1200m (4000 ft.), above which rock exposures are very good. Alpine vegatation consists of scrub spruce and willow, heather, and lichens. The Bruce and Jack glaciers, just south of the property, have carved wide valleys leaving excellent rock exposure and some till cover.

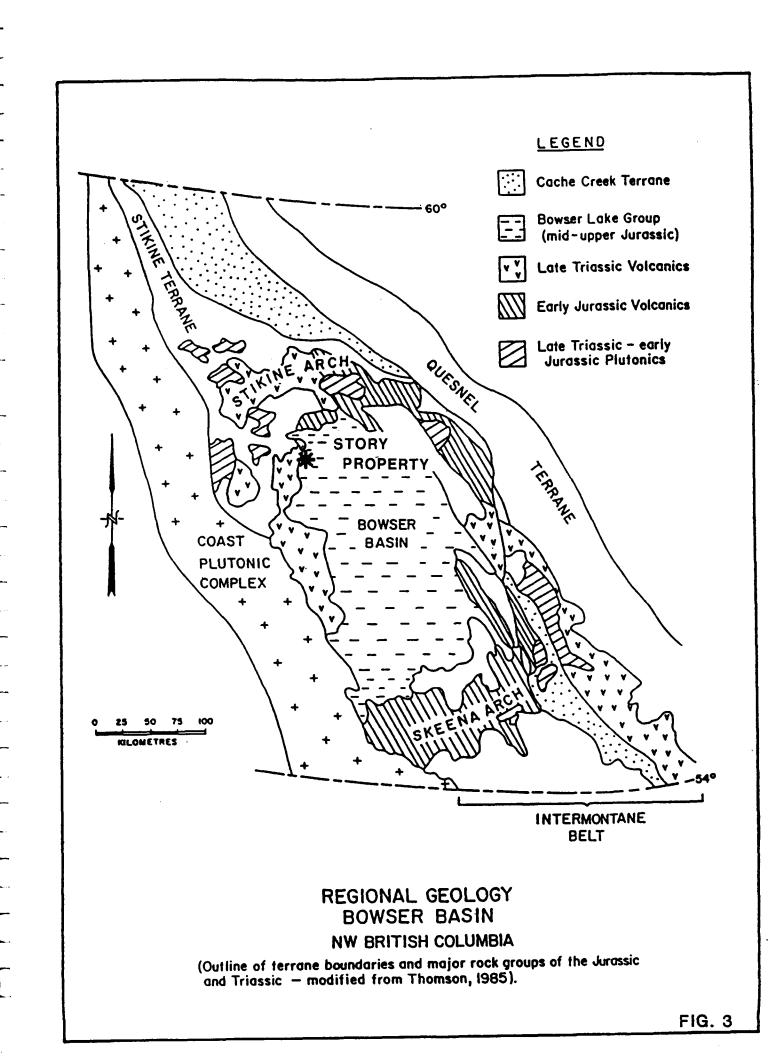
Climatically, the Story property is under the influence of coastal weather patterns. The summer weather varies from warm days to cool, wet conditions. Up to 12m of snow can accumulate during the winter months. Normally, the property is workable from June until late September.

HISTORY

The Iskut River - Unuk River area has, for the most part, seen sporadic mineral exploration activity until very recently. The first documented mineral discoveries occured around the turn of the twentieth century. Mineralization was discovered along the Iskut and Unuk Rivers, and in close proximity to the town of Stewart. Prior to World War II, small precious metal mines operated intermittently. The largest of these was the Silbak - Premier Mine which produced 41 million ounces of silver and 1.8 million ounces of gold between 1920 and 1985. After World War II, exploration was focussed on large tonnage base metal deposits. Although several deposits were defined, only the Granduc Mine reached commercial production, with published reserves of 10.9 million tons grading 1.79% copper. Exploration in the 1970's shifted toward precious metals and several deposits have since been discovered: including the Reg (Johnny Mountain Mine) of Skyline Gold Corp., with 740,000 tons grading 0.52 ounces/ton gold, 0.67 ounces/ton silver; Cominco/Prime's Snip deposit, with over 1 million tons of 0.875 ounces/ton gold, and the Eskay Creek deposit (Calpine/Stikine) with preliminary reserve estimates of 4.36 million tons grading 0.77 ounces /ton gold, 29.12 ounces/ton silver, at a cutoff grade of 0.10 oz. gold (Northern Miner, 6 Oct. 90). Several companies are presently exploring for base and precious metal deposits, and some are in the feasibility and pre-feasibility stages of production. i.e., the Sulphurets deposit (Newhawk/Granduc)with 715,000 tons of 0.431 ounces/ton gold, 19.7 ounces/ton silver, and the SB deposit (Tenajon) with 308,000 tons grading 0.51 ounces/ton gold.

The Storie Creek area has, for the most part, seen little exploration until recently. No historical record of work is present in government files.

The only report of any exploration comes from Jarl Whist (personal communication) who, in the 1950's, made note of a large gossanous zone along Storie Creek, below Storie Falls. The British Columbia Ministry of Energy, Mines and Petroleum Resources took some stream silt samples from the Story property in 1988 as part of their geochemical reconnaisance program. These samples were taken in conjunction with regional mapping in the Unuk River region, which also located gossanous zones on the property.


Crews of Nicholson and Associates mapped the property on a reconnaisance scale, ran three soil sampling lines and took several silt and rock samples from the property during the 1989 season. Their work was concentrated near Storie Falls and south of the Jack Glacier, where some grab samples of interest were collected, such as SCR-025, which assayed 111.13 oz/ton Ag (Nicholson et al., 1990).

REGIONAL GEOLOGY

The Story property is located near the boundary between the Intermontane Belt and the Coast Plutonic Complex (Figure 3). It is underlain by the Stikine Terrane, a mid-Paleozoic to Mesozoic island arc succession. Mesozoic rocks are represented by volcanic rocks of the Triassic Stuhini Group, and the volcanic and subordinate sedimentary lithologies of the Lower to Middle Jurassic Hazelton Group. This dominantly volcanic package is overlain by, and interfingers with successor basin clastics of the Bowser Basin.

An eastern facies and a western facies have been identified in the Upper Triassic Stuhini Group. The western facies can be traced from the Stikine River eastward at least to Snippaker Mountain. It is characterized by corraline limestone and polymict cobble conglomerate, overlain by breccia, felsic tuff, shale and micrite. Laminated mafic and felsic tuff with coarse pyroxene phenocrysts are present near the top. The eastern facies lacks the thick limestone and felsic tuff units. Orange and black weathering, thin bedded siltstone and fine grained feldspathic, locally calcareous greywacke distinguish this facies. Polymict pebble conglomerate and shale are subordinate. Intermediate to mafic volcanics, breccias and conglomerates are typical.

A gradational contact between the Stuhini Group and the Hazelton Group has been mapped near the headwaters of the Unuk River (Anderson and Thorkelson, 1990). Siltstone above the orange and black weathering siltstones and shales becomes increasingly siliceous, and greywackes and conglomerates appear more abundantly. This conglomerate is present as discontinuous lenses and consists of clast-

supported porphyritic andesite and dacite clasts. The uppermost strata in this transitional zone consists of laminated siliceous siltstone, fine grained greywacke, minor coarser grained greywacke and matrix to clast supported conglomerate.

Mineralization at the Snip deposit is hosted within the Stuhini Group and is believed to have occurred during the Upper Triassic. Several other deposits have been found in the Stuhini Group; including the Kerr, the Doc, the Inel and the Stonehouse (Figure 4).

The Hazelton Group has been divided into three heterogeneous formations: the Lower Jurassic Unuk River Formation and Betty Creek Formation, and the Lower to Middle Jurassic Salmon River Formation. In addition, a regional marker unit, the Mt. Dilworth formation, has been identified regionally between the Betty Creek and Salmon River Formations, and has come to gain informal status as a formation. Some workers (e.g., Grove, 1986) have identified a fourth and uppermost formation in the Hazelton Group, the Nass Formation. However, this package of rocks includes Bowser Basin rocks and should not be included in the Hazelton Group, which encompasses the Stikine Arch (Anderson and Thorkelson, 1990).

The volcanic sequences of the Unuk River Formation are characterized by basal pyroclastic flows that are progressively overlain by tuffs, argillites, local andesitic breccia, and finally conglomerates with interbedded tuffs, wackes and siltstones.

The Betty Creek Formation unconformably overlies the Unuk River Formation and is comprised of maroon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas and andesitic flows. The conglomerate / breccia unit consists of matrix supported pebble to boulder sized clasts of aphanitic to porphyritic andesite.

Overlying these rocks is the Mt. Dilworth formation (Britton et al., 1989; Anderson and Thorkelson, 1990), a regional marker unit consisting of tuff breccia, felsic tuff and dust tuff. These tuffs range from unwelded to welded, and aphyric to sparsely phyric.

The lower member of the Salmon River Formation varies along strike from a limey argillite to limey greywacke to a sandy limestone. In most localities it is too thin to map, but it thickens towards the north and northwest to at least 1500m of siltstones, greywackes and rare fossiliferous limestones south of Telegraph Creek.

The upper member of the Salmon River Formation consists of three distinct facies from east to west: the Snippaker Mountain facies, the Eskay Creek facies, and the Troy Ridge facies. The gold deposit presently being defined at Eskay Creek is stratabound in Eskay Creek facies rocks. This medial facies extends 50-60 kilometers north and south along strike from the deposit. The Eskay Creek facies comprises aphyric to augite phyric pillow basalts with interfingered siltstone, tuffaceous wacke and conglomerate. To the west, the Snippaker Mountain facies consists mainly of volcanic breccia. The eastern Troy Ridge facies comprises shales with interbedded tuffs and breccias (Anderson and Thorkelson, 1990, see Figure 4).

At the end of the Middle Jurassic, the volcanic complex was uplifted to produce the Stikine Arch, which shed detritus into the adjacent Bowser Basin. These sediments form the Middle and Late Jurassic Bowser Lake

Group sediments. Figure 4 summarizes the stratigraphy and lithology of Mesozoic rocks in the region.

The volcanic and sedimentary rocks were subsequently intruded by granitoid intrusions associated with the Coast Plutonic Complex. Intrusive activity is interpreted to have occurred from the Middle Cretaceous to the Early Tertiary. Late stage (Quaternary) basaltic volcanism resulted in widespread deposits of columnar basalt flows, ash and tephra, and scattered cinder cones. Much of these rocks were buried and / or eroded through glacial activity during the Pleistocene.

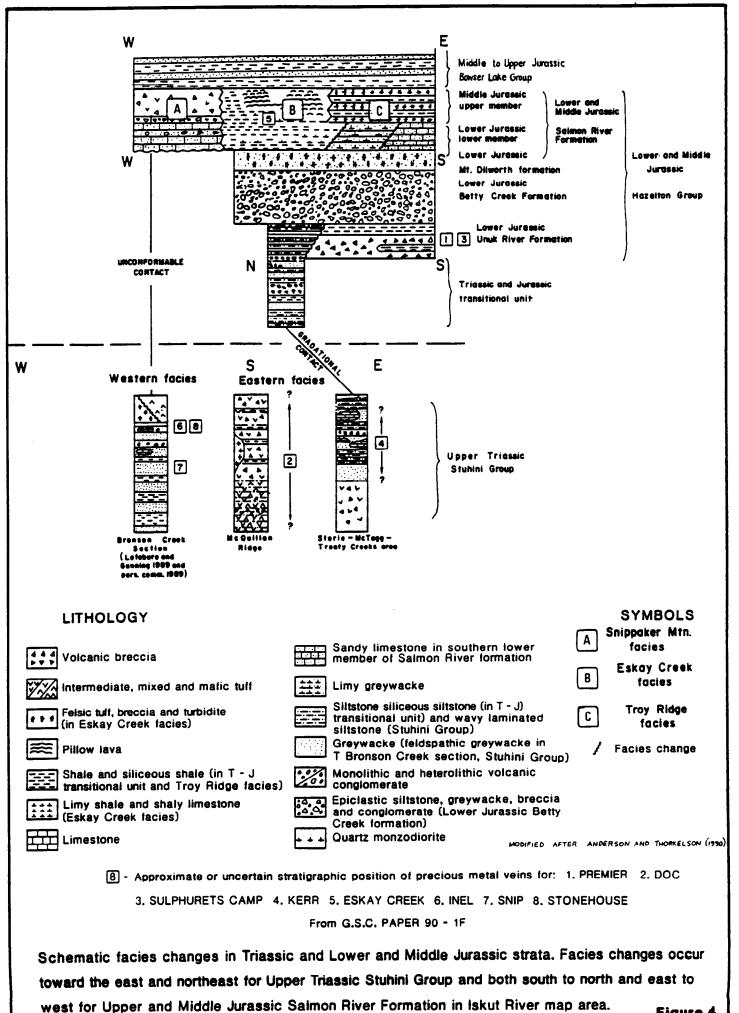


Figure 4

LOCAL GEOLOGY

The Story property was mapped at a scale of 1:5000. Both the Betty Creek Formation and the Salmon River Formations of the Hazelton Group outcrop on the Story property. In addition, the lower part of the Salmon River Formation is likely the Mt. Dilworth formation, based on comparison with lithological descriptions of published government maps (Unuk River map sheet).

Regional maps by the Geological Survey of Canada that cover the Storie Creek area show the series of Hazelton Group rocks striking NE across the property. Two northeast trending faults of unknown displacement are also shown to cut across the Story claims. Airphoto analysis reveals several strong lineaments on the property: west along Storie Creek, and strong north trending lineaments following Bruce Creek and Jack Creek. These structures are likely faults. Anderson (1990) mentions a reverse fault following the drainage of Bruce Creek. Several smaller faults are also present on the property which disrupt the otherwise uniform northeast strike and northwest dip of the units.

A description of the rock units mapped on the Story property follows below. The Story property geology map (Figure 5) can be found in the back pocket.

Betty Creek Formation

The Betty Creek Formation can be divided into two distinct units on the Story property: fine to medium grained clastics and felsic to mafic volcanic rocks which include tuffs, flows, and possibly hypabyssal intrusions. In the extreme eastern end of the Story 1 block, a series of east dipping sediments outcrop in the Jack Glacier valley (map unit 10). Their strike direction varies from NNW to NNE. Grain size grading and scour marks indicate that the sediments are right way up. Small folds occur, with steep northeast plunges and near vertical axial planes.

Dark grey, strongly foliated slates, siltstones with carbonate concretions, and fine to medium grained grey subarenites make up the bulk of this sedimentary package. The foliation in the slates and argillites strikes north, with a steep east dip. Some medium grained lithic sandstones have abundant pelecypod (?) shell fragments. A 5m thick conglomerate band was also observed, comprising subrounded chert and quartzite pebbles to cobbles in a sandy matrix. For the most part, the sediments lack the maroon colour the characterizes much of the Betty Creek Formation regionally. it is possible that these sediments are correlative with the upper part of the Unuk River Formation.

These sediments are intruded by two generations of felsic volcanics. A two meter wide quartz - feldspar porphyry dyke intrudes the sediments near the southern claim boundary. This dyke strikes just north of east and dips steeply south. An earlier generation of rhyolite dykes/sills strikes both east-west and north-south, and seem to be structurally disturbed. These bear a weak foliation that is parallel to the surrounding slates and siltstones. These older rhyolites bear a strong resemblance to the felsic phases of the Betty Creek volcanics to the immediate west and they are likely coeval.

The volcanic rocks of the Betty Creek Formation outcrop to the west of the sediments, separated by a north trending fault from the latter.

These volcanics underlie the central and west part of the Story 2 block, Story 5 and the southern part of the Story 1 claim blocks, in generally good alpine exposures. In the western part of the Story 2 claim block, these volcanics host a large gossan (Jack Glacier gossan).

Lithologies in the gossanous zone include white to grey -green rhyolite and/or felsic crystal tuff (map unit 2). These felsic rocks are strongly pyritic and weather yellow to maroon colour. Numerous faults cut these rocks, trending mostly north and northeast. Faulted contacts separate these felsic rocks from grey-green to dark green coloured fine grained aphyric intermediate or mafic extrusive or hypabyssal intrusions (map unit 3). It is likely that this rock is an aphyric andesite, but the massive nature and lack of diagnostic textures or phenocrysts make a positive identification impossible. This rock is quite strongly silicified. Several quartz-carbonate and carbonate veins cut the andesite, and some brecciate the host rock.

Adjacent to the faulted contact between the sediments and volcanics a 10m thick sequence of bedded tuffs, ashes and agglomerates (map unit 9) underlie the intermediate volcanics. The orientation of these beds is north-northeast, with a moderate west dip. Thus they dip opposite to the adjacent sediments, which is further evidence for a fault contact between the sediment and volcanic rocks of the Betty Creek Formation. The contact with the overlying andesites seems conformable, though this wedge of volcaniclastics is cut off to the north by a northeast trending fault. The lithologies in this 10m thick package include lapilli and ash tuffs, and agglomerate. Most beds display fining upward size grading.

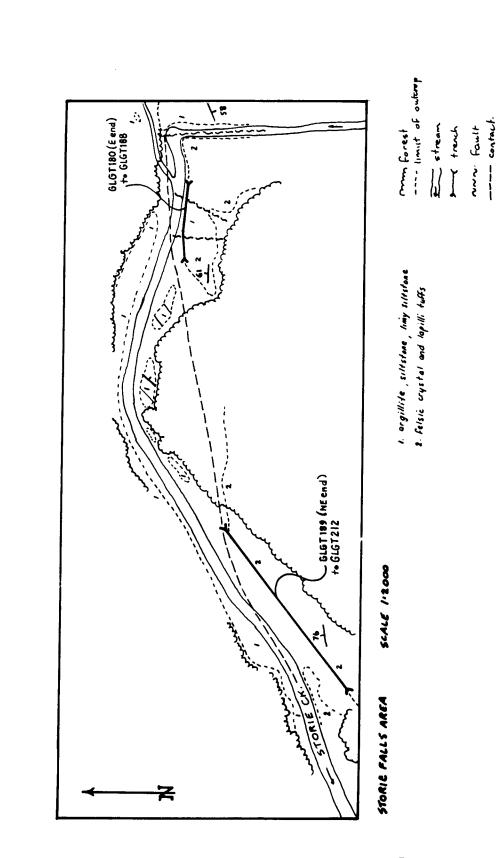
Along some of the fault zones between andesite and rhyolite, a volcanic breccia exists (Map unit 4). It is composed of white to buff, angular clasts, 2-8mm in size, that seem to be rhyolite or felsic ash. They are in a matrix of green - grey to dark green glassy to ash matrix. This rock may be a brecciated phase of the rhyolite, as it is often found in fault zones, or an ash supported lithic lapilli tuff. Closely associated with the breccia, at least in the northeast trending fault zone between the rhyolite and andesite units, is a black fissile mudstone, that may be volcanic in nature (Map unit 4a). It is also generally found in fault zones and it is uncertain whether this unit is of volcanosedimentary origin or associated with high strain and deformation in the fault zones. Locally, it displays sedimentary features such as bedding, with the same orientation as map unit 9. Thus it is likely part of the conformable sequence of rocks. However, the discontinuous nature of its outcroppings could indicate that it had been sheared and/or broken into discrete wedges along fault planes.

Also associated with the rhyolite in the western end of the property (map unit 2) is a plagioclase crystal tuff (Map unit 6). It is white to buff in colour, with abundant plagioclase crystals and a massive fabric. It seems to be concordant with the rhyolite, although its exposures are scattered and few.

West of the rhyolite - andesite units, the central portion of the Story 1 block is underlain by scattered outcrops of grey, tan and buff lapilli and crystal tuffs (Map unit 6). The tuffs are quite massive in nature, with no apparent bedding. A weak to moderate foliation fabric runs northeast, with a steep southeast dip. The strike of the foliation is parallel to several faults which follow gullies, and the fabric is probably related to fault strain.

At the west end of the Story 1 claim, within the lapilli tuffs, a band of volcanic agglomerate crops out. This distinctive unit (Map unit 7) features rounded blocks of polylithic felsic and intermediate flows and tuffs up to 30cm across, and rarer argillite clasts, in an ash matrix. Coarse lapilli tuffs are interbedded. This unit strikes NNE and dips steeply southeast.

In the central part of the Story 5 claim block, a crystal -rich flow or hypabyssal (?) intermediate to mafic intrusion trends parallel to the volcanic units (Map unit 8). This green grey, medium grained rock features plagioclase phenocrysts in a groundmass of pyroxene and plagioclase microphenocrysts. Intrusive crosscutting relations with the volcanic rocks were not observed, so the unit may be a concordant flow, as the map pattern would suggest. This unit probably corresponds to the dacite marker unit mapped by Anderson et al. (1990).


Salmon River Formation

The Salmon River Formation outcrops in the Story 2 block and the northwest part of the Story 5 block. The contact with the underlying Betty Creek Formation was not located with certainty. The Salmon River Formation consists of Mt. Dilworth felsic volcanics, and overlying sediments. Along the south side of Storie Creek, sediments of the Salmon River Formation (Map unit 1) are in faulted contact with the Mt. Dilworth formation (Map unit 2, 6). The Mt. Dilworth volcanics comprise light green to white rhyolites interbedded with felsic tuffs. The tuffs are generally massive with few bedding features, and silicified with sparse crystals and lapilli. Steep north trending faults cut this sequence, juxtaposing the felsic volcanics with weakly folded argillites and siltstones at Storie Falls (see Figure 5a).

North of Storie Creek, the Salmon River Formation consists of black slates, argillites, lithic wacke and some chert pebble conglomerate. This thick package of sediments continues uninterrupted to the Unuk River, striking northeast and dipping moderately to steeply northwest.

Thin gabbroic or diabase dykes cut through the tuffs and agglomerates of the Betty Creek Formation, striking west-northwest and dipping steeply northeast. A somewhat thicker dyke of similar composition intrudes sediments north of Storie Creek, striking northeast.

In summary, the Story property is underlain by sediments and volcanics that are probably correlative with the Salmon River and Betty Creek Formations. These units stike northeast across the property. The sediments are weakly folded, and both the finer grained sediments and some volcanic units display a variably developed northeast trending foliation. All units are cut by numerous northeast and north trending faults.

L _ _

.

Two large gossanous zones were examined during the 1990 season. In addition, a thorough examination of the property was undertaken to discover new mineralized zones. In the south part of the Story 1 block, felsic volcanics of the Mt. Dilworth formation are quite rusty weathered. This is likely the gossan described by Mr. Whist who visited the area in the 1950s. The felsic volcanics on the south side of Storie Creek form steep bluffs above the creek. The accessible rocks at creek level were systematically sampled every five meters along the length of the gossan, for a total length of 165m.

The mineralization consists of disseminations and stringers of pyrite and arsenopyrite, up to 5% rock volume. Quartz and carbonate stringers are common, with some in the north striking faults reaching up to 10cm in width, and hosting disseminated sulphides. In contrast to the Mt. Dilworth facies volcanics, the Salmon River Formation sediments are only weakly mineralized, with some disseminated pyrite in rustyweathering argillites.

At the west end of the Story 2 block, a long string of gossans are exposed along the west side and the toe of Jack Glacier, continuing north and south of the property. On the Story property, this gossanous zone measures about 200m by 250m. The host rocks are the rhyolites of the Betty Creek Formation. The rocks are stained yellow to deep maroon, indicating both limonite and scorodite staining. One pyritized rhyolite boulder examined just south of the property had pink erythrite staining indicating cobalt mineralization. Malachite and azurite were not observed at any outcrop. The rhyolite is cut by a stockwork of pyrite, arsenopyrite and quartz stringers. The stringers range in thickness from 1 to 50mm. Some of the veinlets seem to be associated with shears or small faults. The sulphides often exhibit a vuggy and encrusting texture. The orientation of the stringers is not systematic, and often they pinch out or are offset by fractures. However, they are very numerous, and as much as 15-20% of the rock volume may be made of sulphides. Disseminated pyrite, and blebs of pyrite + arsenopyrite +/- sphalerite also occur. Chalcopyrite was not observed, except in a few quartz + carbonate + sulphide veins. These veins are discussed below.

The andesite unit is separated from the rhyolite by a fault, and does not weather a rusty colour. It features very few disseminated sulphides and none of the abundant sulphide stringers found in the adjacent rhyolite. It is host to a series of mineralized quartzcarbonate veins. These veins range from 2-25cm in width and are traceable for many meters along strike. The veins appear to be fracture infillings, with very little shear evident. In fact they bear evidence for brittle deformation in that they often brecciate the host rock and angular fragments of andesite can be seen within several of these veins. The veins generally have straight margins with some pinching and swelling. There is little marginal alteration of the host rock, except for silicic alteration which pervades the entire rock. Some veins were observed to anastomose and pinch out. The veins generally strike northwest and dip moderately to steeply northeast and southwest. It is probable that they formed in a conjugate set of fractures. The comb texture apparent in the infilling minerals indicates periodic precipitation of carbonate, quartz and sulphides, followed by further dilation of the fracture and subsequent precipitation of minerals by hot fluids.

Sulphides are present in all veins, but are more common in those veins with quartz and carbonate as gangue minerals rather than carbonate alone. Sulphide minerals include pyrite, sphalerite, arsenopyrite, chalcopyrite and galena, in general order of decreasing abundance. Geochemical assays suggest the presence of rare stibnite in a few of the veins. The volume percentage of sulphides in the veins can reach 40%.

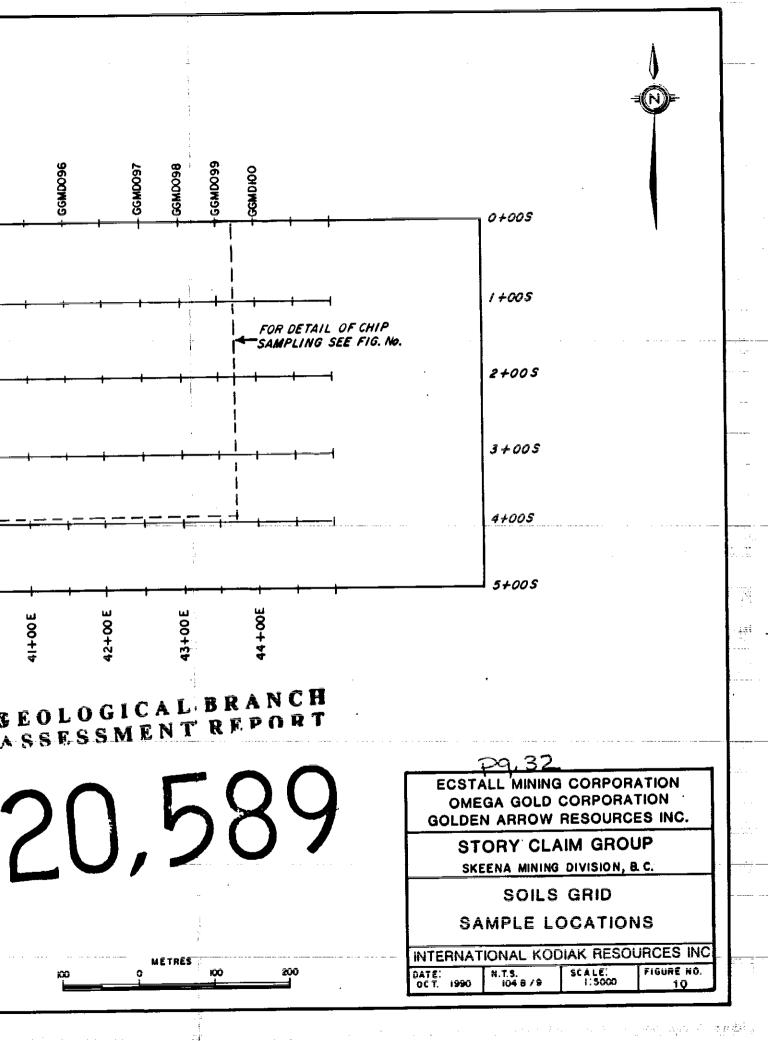
The veins can generally be traced for 30 to 50m or more. They are cut off by the fault separating rhyolite by andesite, but can be followed across minor faults within the andesite. They cross uninterrupted from the andesite unit into the underlying bedded tuffs, but are not found in the Betty Creek Formation sediments. Near the south end of the property, approximately one dozen veins occur over a 30m interval, and then decrease in abundance toward the south. At the eastern side of the andesite unit, carbonate veins predominate over the quartz + carbonate veins. They are quite common but weakly mineralized with pyrite, sphalerite and galena.

Near the base of the Bruce Glacier, a small mineralized shear zone returned anomalous arsenic, antimony and mercury values (sample GCCR166, 569ppm As, 30ppm Sb, 31375ppb Hg). There are a series of these small (0.5m) mineralized shear zones, striking west-northwest and dipping southwest. The zones are often occupied by quartz and sulphide veins.

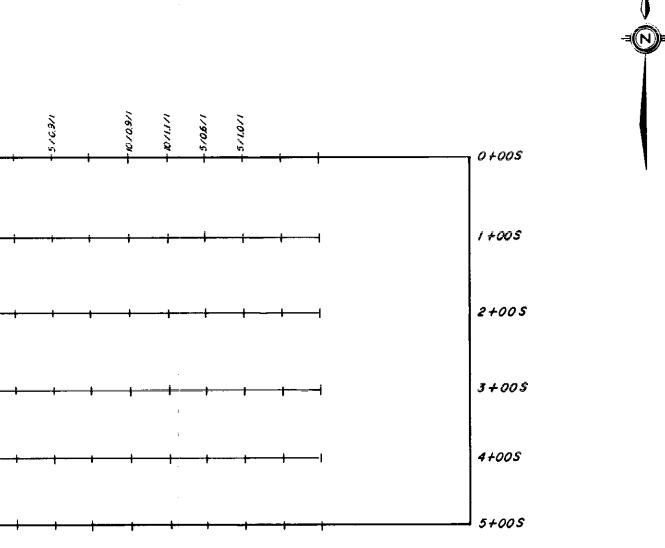
GEOCHEMICAL SURVEY RESULTS

Complete ICP and assay results for all samples can be found in Appendix 3. The map pocket holds sample location maps for regional grab samples, soils, silts, and continuous chip samples over the Jack Glacier gossan, as well as Au, Ag, As, Cu, Pb, Zn, Hg, Sb, and Ba geochemistry plotted for each sample.

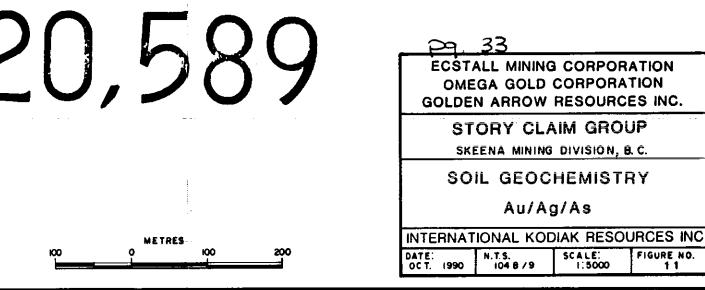
Soil samples were taken along flagged grid lines at 50m intervals. Samples were taken from the B horizon where possible. Samples were typically taken from depths from 15-40cm and placed in numbered kraft bags. Rock sample locations were marked with flagging and aluminum tags. Samples were placed in labelled plastic bags. Continuous rock chip sample sites were marked with fluorescent spray paint. Silt and moss sampling sites were marked with flagging, and the samples placed in labelled plastic bags. All samples were shipped to Min – En Labs in North Vancouver for analysis. Analytical techniques are summarized in Appendix 3. Soil, silt and chip sampling results are discussed below.

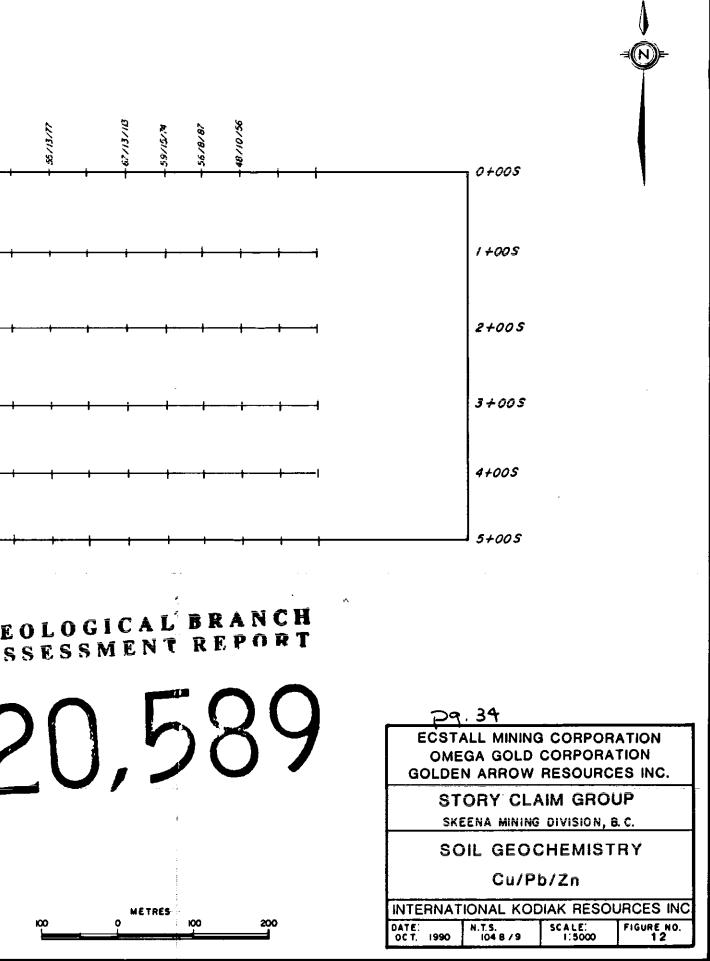

Soil survey: Three soil sampling lines were established in 1989, each approximately 1500m long, on the Story 1 claim block. These were sampled at 50m intervals, to test for westward extensions of the gossanous mineralized zone, where outcrop was covered. In 1990, three more lines were set up, to have line spacing every 100m. Unfortunately, some surveying errors resulted in lines from this season intersecting lines from last season.

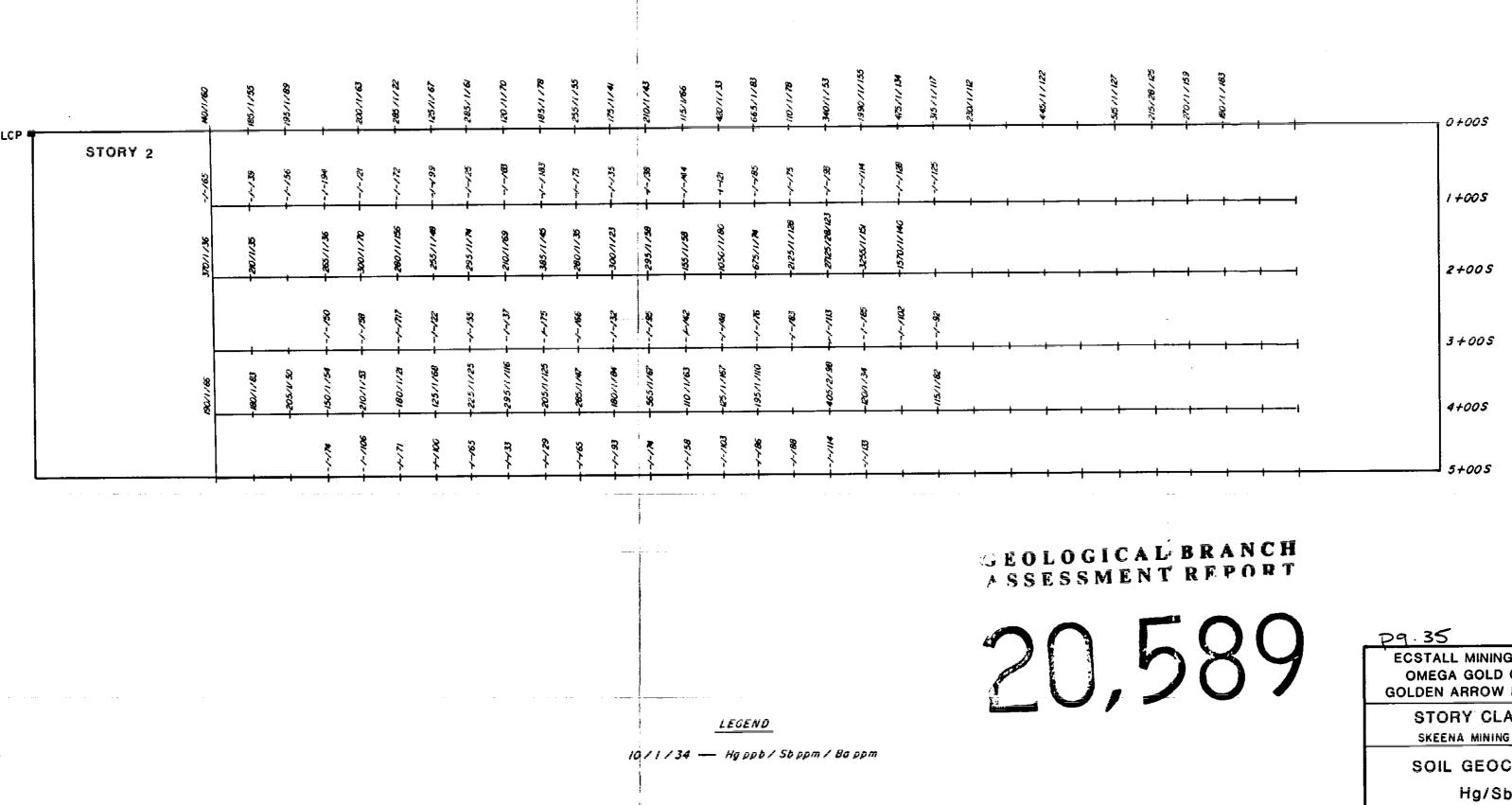
Lines 0+00S, 2+00S and 4+00S, established this season, all maintain a spacing of 200m between them. The intersecting lines do not diminish the value of the soil survey, nor invalidate any observations or recommendations based on the data obtained. Soil geochemistry data from 1989 and 1990 (Figures 14-19) are plotted based on perfectly parallel lines for clarity.


All 91 soil samples were analysed for 30 elements plus Au. Nine of the more important elements were plotted and results were contoured for Ag, Cu, Pb, Zn, Hg, and Ba (Figures 14-19). Each contour plot, with some deviations, reveal anomalies over the eastern part of the Story 2 claim block, coinciding with the gossanous outcrops. The Zn and Hg contour diagrams best reveal the nature of the anomalies. The rough correlation of the soil geochemistry diagrams reflect the mineralization apparent in the gossanous rhyolite and andesite units. Indications from the soil data are that the mineralized rocks extend for some distance eastward, under the soil cover, for up to 100m, thereby expanding the apparent volume of mineralized rock.

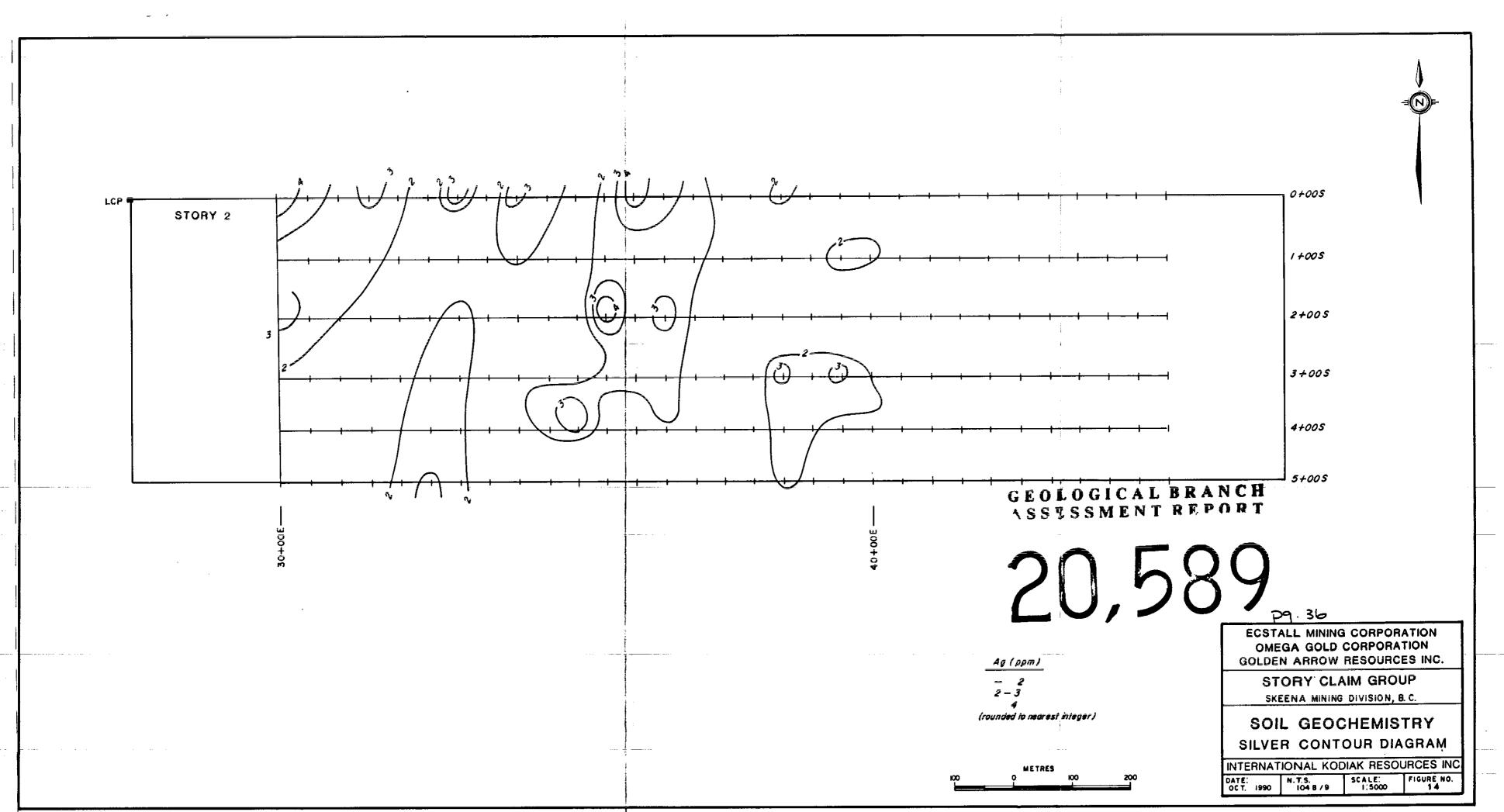
Mercury, which in one soil sample reached 27000 ppb, could indicate the upper levels of an epithermal system. Gold and arsenic values did not follow the pattern seen in the other elements, as they were generally not above background levels. Two slightly anomalous Au values (80 and 45 ppb) were obtained on line L3+00S.

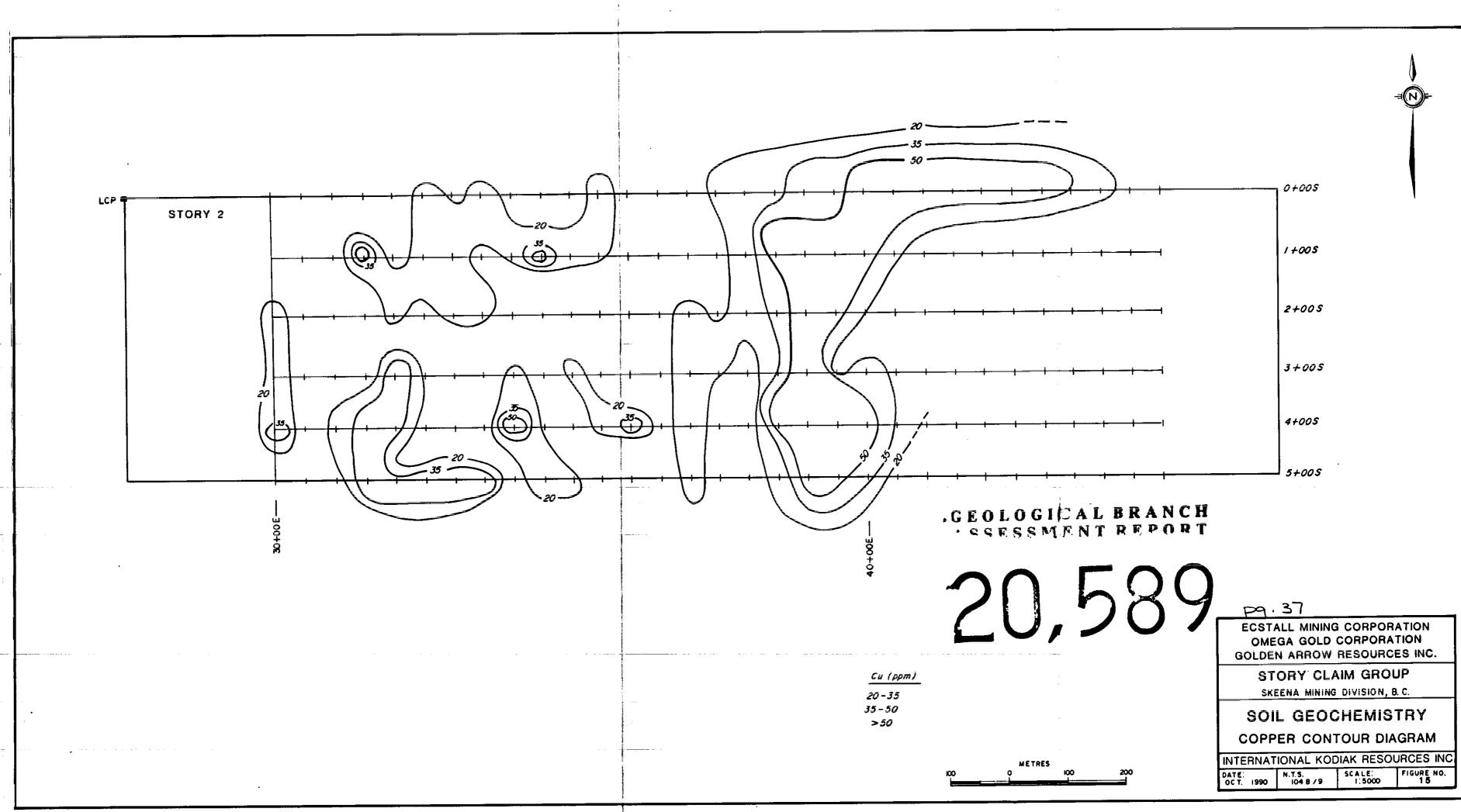

			.66MD074	-GGMD075	-66MD076	-GGMD077	CGMD078	66MD079	-GGMD080	-GGMDOBI	. GGMD082	- GGMDOB3	- GGMD084	-GGMD085	-GGMDOB6	- GGMDO87	- GGMDO88	6800 MDD-	66MD090	CGMD091	6GMD092	6GMD093	-6GMD094	GGM DO 95
		STORY 2			_	_ -	_ <u>i</u>	- 1 -	- 1	÷	-i	1	ſ		T		I		•		·			
				· · ·	f	+ 	_} .	.	_\ =	-+			+ -		} -		 	-+	_+		····· •	+		
			-	ŧ		- +	- †	- †	- +	. 				-+	 		 -			 		-+		<u>+</u>
				ł	ŧ		4			i				 	- -		i			 				<u> </u>
			+006	0 +50E	- + 00E	-1+50E -	2+00E	-2+50E -	3+00E	-3+50E	4 +00E	4 +50E	5+00E	5+50E	6+00E	6+506	7+00E	7+50E	·8+00E		9+00 E	9+50E	10+00E	,
				<u> </u>			<u>i</u>		i		+	· _	_	1					Ĩ					- •
	L.		30 + 00 E		31+00E		32:+00E	+	33+00E		34+00E		35+00E		36+00E	f	37+00E +	+	38+00 E		39+00 E	ŧ	40+00E	
·····			Γ,																				. <u>.</u>	j⊊ I
														•••										
																								(
·																								
		· · · · · · · · · · · · · · · · · · ·																						· · ··

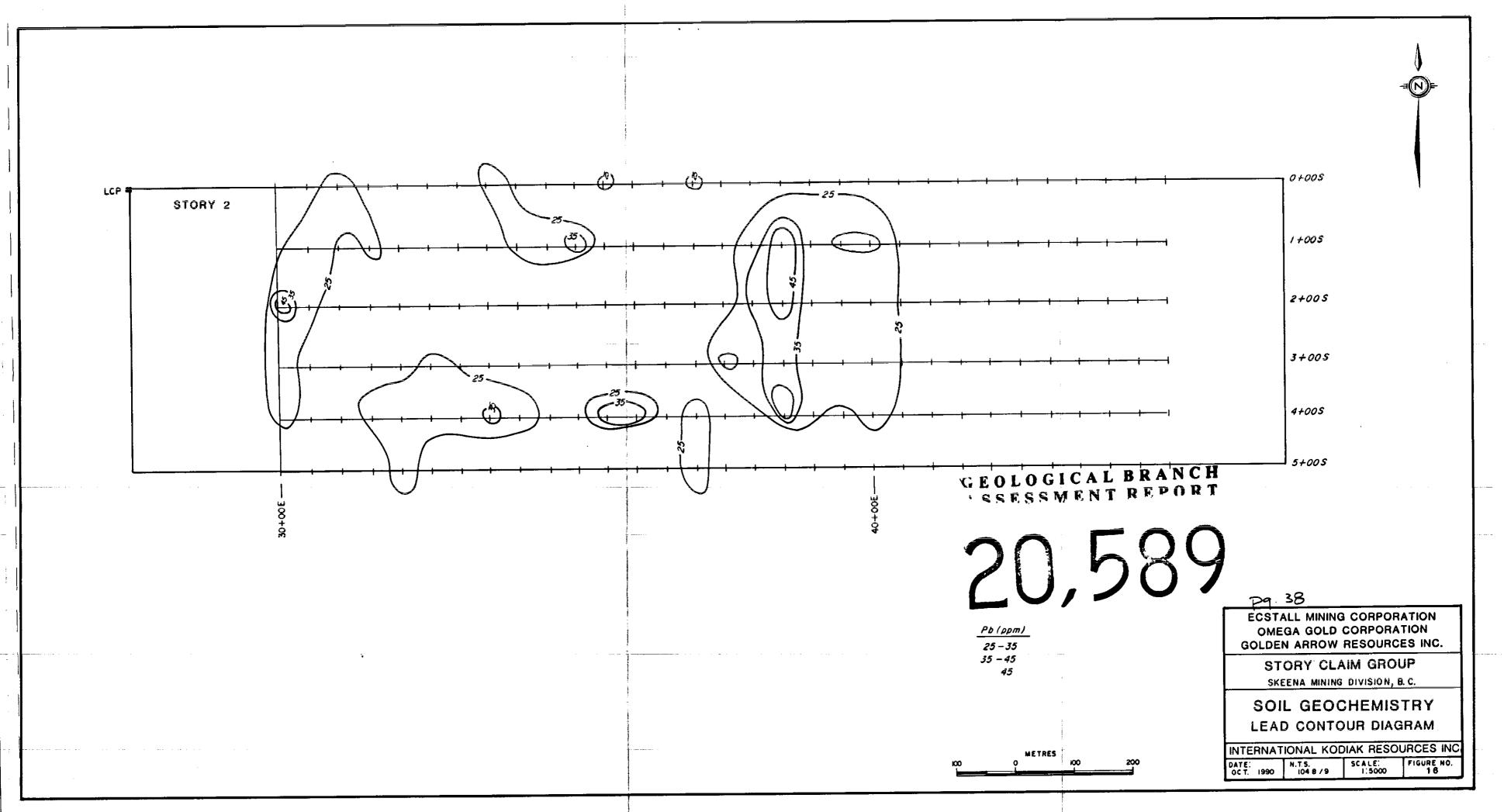

	1/82/5	5/2.6/1	5/2.0/1	5 /30/1	512.211	15/0.5/1	512.911	1141101	5/2.6/1	511.5/1	16013.	5/18/1	5/39/1	10/3.6/1	5/17/1	5/1.4/1	1/07/CV	5/22/1	-5/0.9/1	- 5/1.0/1	-5 /0,8/1	וובווטו
STORY 2	<u> </u>	-5.7	+	<u>,</u> +-		- <u>1</u> 2	-5-	2		-5	- S	ی بر	 -	2	"n +	<u>i</u>	- CV				5	
STURT 2	5/16/1	-5/21/20	5/211/4	1/67/5-	-511,211	52/5.0/2-	-5/0.6/22	-5/1.2/1	21/21/01	5.0B/H	-5/13/1	-5/1.8/1	5/15/5	- 512314	5/1.5/10	-5/08/1	5/06/3	1/20/01-	118115-	-5/1.6/1	12115-	
	5/2.9/1	5/1.8/1		5/29/1	1121101	10/01/1	5/18/1	5/0.4/1	1/\$1/9	511211	5 /08/1	1/12/5-	.5/2.0/1	10/26/1	5/07/1	-5/11/1	-5/04/1	-2/01/1	1/10/01-	-5/04/1		
		+	+	- 2/21/	5/LJ/5 -		512711 +	- 1/27/ 5	- 1/2//9	5/1.1/19	5/0.9/1	- 11/50/5-	5/16/1	10/21/1	5/08/1	510.5/24	siant -	12211	218013	13.2.000		*
	108/15	0/1.5/1	5/07/22 +	5.08/1 -5.	5/1.1/1 -5	Ki/1.8/1	5/2516 -5	5/0.8/1 -5	5.// 3 /3 + 5	5/15/1 -5	K/3.1/1 -5	5/08/1 9	10/01/1	5 /1.6/1 N	5/1411 -2	5/12/1 +9		5- BIVENS	5.70BU	Ţ	2/2/1/1	
	κ,		••• •	5/0.6/1	5/1.7/1 +:		5/1/11 +	SPORI +	5/08/1	-5/28/1 +5	-5/0.4/8 -1	-5.705VI +	- 2/1.2/6	12/08/1	-5/21/10 +		+ 1/E1/2-	-5/22/1 +:	-5/13/9	·	- .	+
	· 1		i		• • •			•	•	·· f		• }										1
																						1G A
		N																				
															L	EGEN	0					6
													5/1.0	0/10	,	Au ppl	⇒∕Ag	ppm /	As ppi	m		

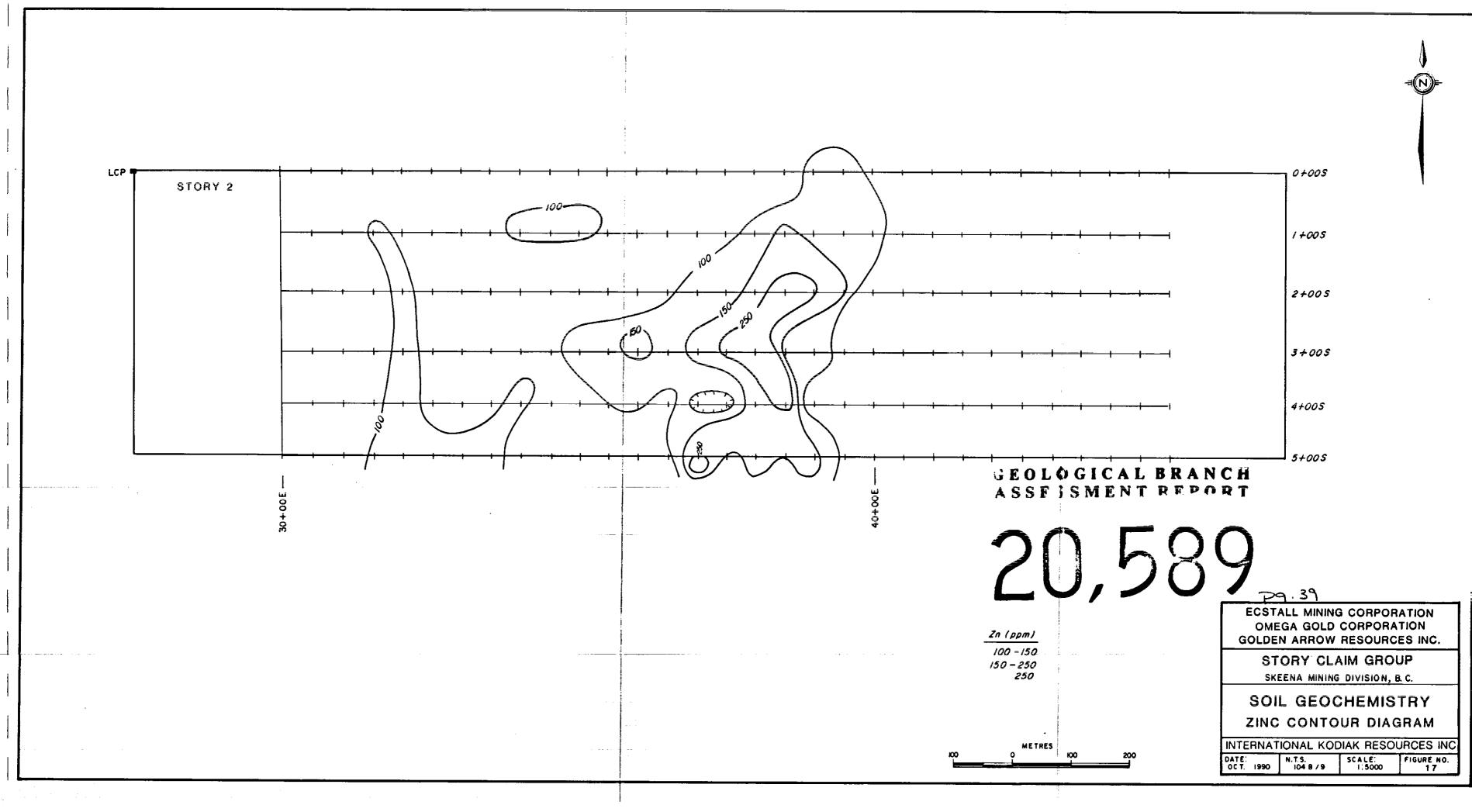

SESSMENT REPORT

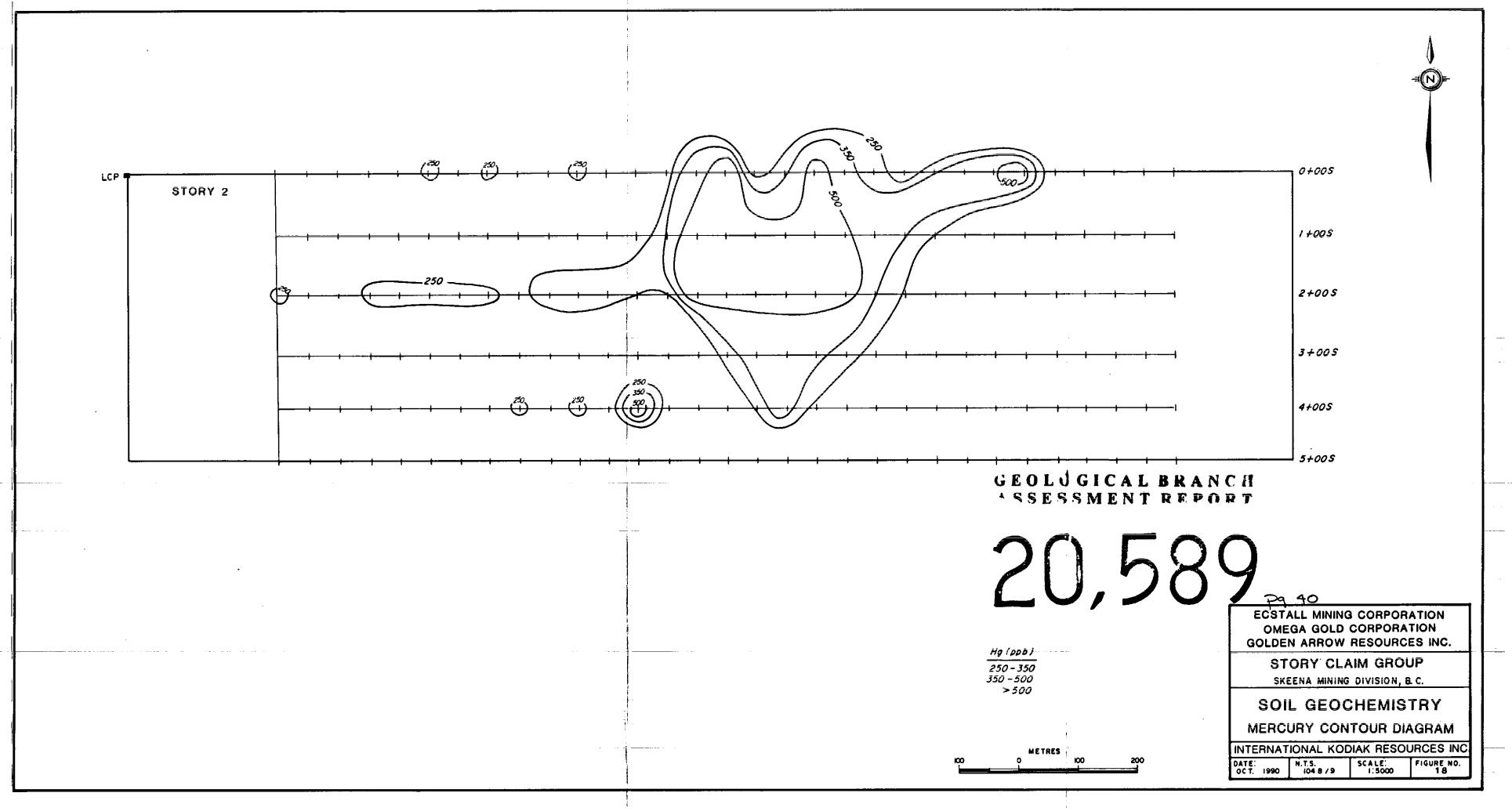
																				 1 1		 		;
LCP			18/18/36	-13/25/30	1E/11/61-	- 12/2/12	- 31/20/61	-17/2/47	- 50/22/62	29/21/21	14/15/37	N/7/7		+10/6/37	18/14/41	- 12/2/58	82/02/28	21/15/41	8/11/bi	821/02/18	NON / 81 / 89 -	111W/35-		-+
	STORY 2	8/4/38	- 10/21/66	+ (1/13/53	- 15 C. V. 34 V. 134	- 11/2 / 62	30/13/27	20/11/02	- Ne/20/69	-32/32/142	141 /BZ/09-	-30/36/148	58/\$/62	-18/0/98	- 13/15/69	W/12/14	1412115	- 237.347.426	57147146	321/E/193-	151/131	-613/41/122		+
		83.M4170	- 190/43		-17/24/52	- 961/21/08-	- 17/20/75	9#/6//EE	82/02/66-	- 16/18/50	. 05/81/6	8/11/44	4/13/69	- 16/16/52 -	- 14/10/59	20120110	. W/R/61-	-25/37/171	626729172	-53/31/57	1 51/82/95			
					-6/8/57 -	- 901/12/65-	- 13/26/79	69/4/8-			. 65/02/EV	.25/15/111	ESVOV/W-	- 65/161-	• E21/E1/6-	. KZ/SW/08-			0#1/68/141-	-221.307.155	-13/26/80	- 42/35/36		
		45/31/ 9 6	- 15/58/31	- 32/22/51 -	- 46/27/35	-35/33/106 -	- 11/2//28	- 121,26146	- 19/37/36	- 62/27/108	- 15/24/28	-12/5/125	- 28/10/102	35/42/127	- 25/82/61	- 10/92/CE-	- 12/61/91	•	- 72/48/27	- 05/82/12-		- 51/30/61	•	•
					- 35/23/96	41/31/149	44/10/121	+35/11/129	£/20/10	-13/2/67	- 24/2/96	16/21/10-	-15/10/64		-1/8/81	21/34/42	+ 16/13/105	+ 4/16/21I	-13/5/85	- 51/24/159				}-
																-				-			œ I	e (
																							ي ۸	59
													<u></u>											
														241.	3 <i>2 / 9</i> 4		GÉND Cuppm	-	ppm /	Zn ppn	ħ			

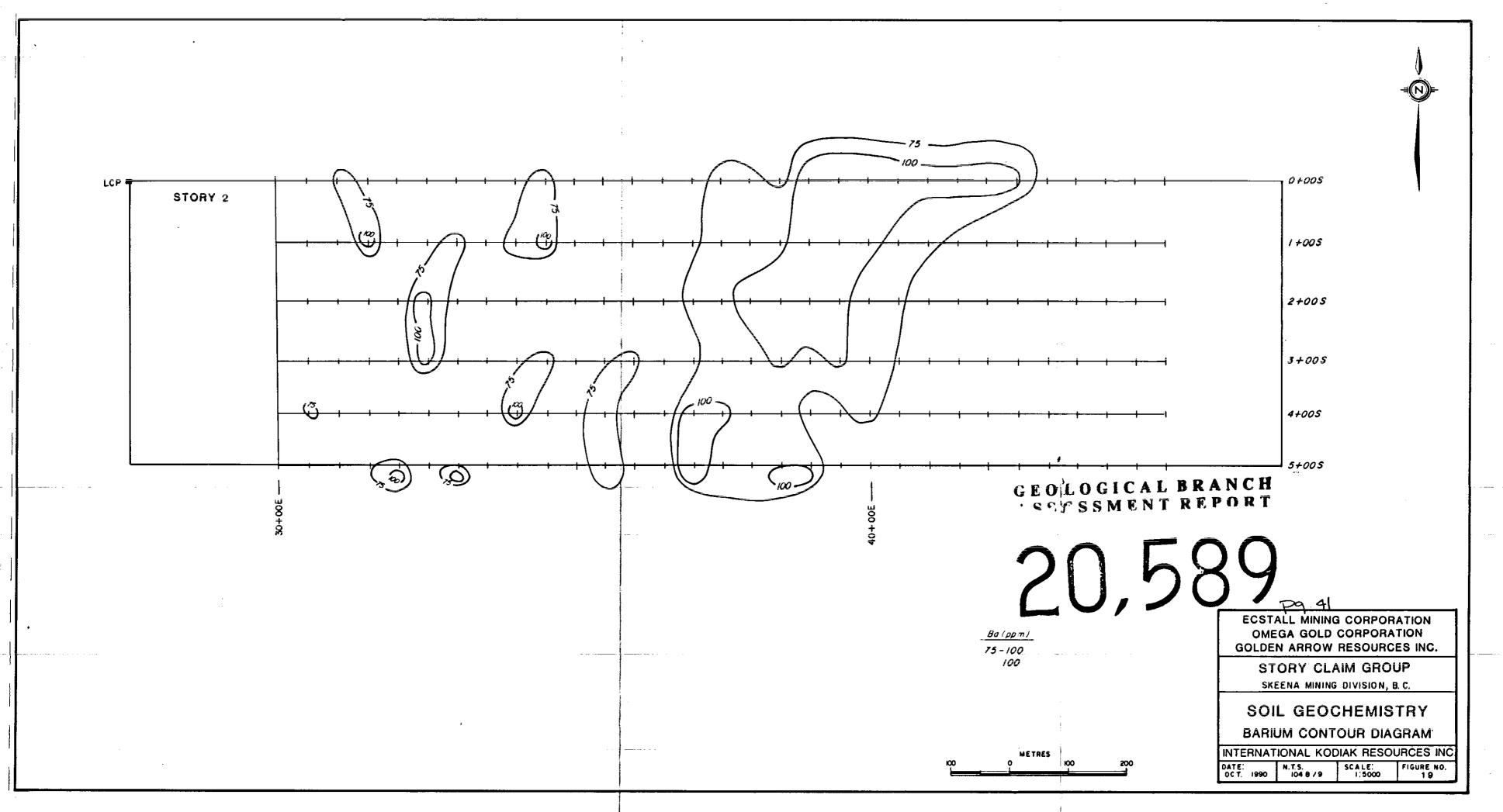



LCP 🖣




	47000
- + + + + + + + + +	5+005
· · · ·	
SESSMENT REPORT	
0.589	P9.35 ECSTALL MINING CORPORATION OMEGA GOLD CORPORATION GOLDEN ARROW RESOURCES INC.
	STORY CLAIM GROUP SKEENA MINING DIVISION, B.C.
	SOIL GEOCHEMISTRY
•••	Hg/Sb/Ba
	INTERNATIONAL KODIAK RESOURCES INC. DATE: N.T.S. SCALE: FIGURE NO. ICT. 1990 104 B / 9 1:5000 13


⊣®⊧



SILT SAMPLING

Twenty-three silt and moss samples were taken from streams running through the narrow property, although the catchment basins of many of these streams lie outside the property. However, silt and moss samples are useful in targetting anomalous zones where prospecting can be concentrated.

Results from stream samples have indicated a drainage ('Dry Creek'), with anomalous zinc, cadmium and mercury values, as well as nickel and chromium. Zinc values ranged from 400-600ppm, and values for other elements were an order of magnitude greater than values from other streams. Dry Creek is a tributary directly north of Storie Creek. It originates east of the property, but probably recieves considerable sediment from the argillites on its northern bank. A few rusty weathering zones were observed on the bluffs above this creek and, although only disseminated pyrite was found in talus from the base of these cliffs, a more detailed inspection to determine if these rocks host any mineralization is warranted. The remainder of creeks sampled returned only scattered zinc, mercury, chromium and nickel anomalies.

Assay results from the gossanous Mt. Dilworth formation along Storie Creek failed to yield precious or base metal anomalies. One anomalous value in As (398ppm, GLGT185) was obtained.

The Jack Glacier gossan on the eastern end of the Story 2 claim has been intensively sampled. East - west lines were run across the gossanous outcrops at roughly 50m intervals, and continuous chip samples were taken over intervals of 2-10m (see Map pocket). Despite the strong pyrite + arsenopyrite mineralization, precious metal anomalies were not obtained.

Anomalous values in arsenic, zinc and mercury were found at several locations. The arsenic and zinc anomalies are due to arsenopyrite and sphalerite in quartz-carbonate veins and sulphide stringers. The high mercury values are more enigmatic. In most instances, they are associated with high zinc and/or lead values, but there is no consistent pattern. No cinnibar or native mercury was observed in any samples. The presence of anomalous mercury may indicate the upper levels of an epithermal system (e.g., Panteleyev 1986). Thus, while no high gold values were found in the gossanous rhyolite unit, it may be an outcrop of an epithermal deposit with gold at depth.

The best precious metal values have been found from grab samples of the quartz-carbonate-sulphide veins that are found in the andesite unit adjacent to the rhyolite. Sample GMMT201 yielded 1.44 g/tonne (.042 oz/ton). Sample GLGR354 from the same vein, 5m to the east yielded 3.83 g/tonne (.112 oz/ton). These samples also contained high arsenic and antimony. Silver values were relatively low. The samples were taken from a thin (1-8cm) quartz + pyrite + carbonate vein. The vein runs somewhat obliquely to most of the other quartz - carbonate veins, and seems to be slightly offset by the more westerly trending thicker veins, some of which will be described below. This vein is traceable for approximately 12m; it pinches out to the east and is offset by a fault on the west end.

A few meters away, a similar vein was grab sampled at two locations 15m apart. The veins were generally thin, and alteration envelopes absent, so chip samples were not taken. Sample GMMR203 yielded .590 g/tonne Au (.019 oz/ton) and 20.8 g/tonne Ag. In the same vein, GLGR337 had 1.94 g/tonne Au (.062 oz/ton) and 9.7 g/tonne Ag. The vein minerals are principally quartz, pyrite, carbonate and sphalerite, with pyrite bands 1cm wide in a 15cm wide vein. The vein can be traced from a fault cutoff on its western end 30 to the southeast to a minor normal fault, across which the vein was offset about 2.5m. The vein continued to the southeast and off the property, for at least another 50m, somewhat anastomosing along it's course. Thus the veins are quite continuous, if thin, and the mineralization and precious metal content varies somewhat along their strike length. The locally anastomosing, brecciated and pinch-and-swell nature of these veins allows the possibility that they may merge or thicken at depth.

Some high silver values were taken from a thick quartz vein with brecciated rhyolite, interpreted to occupy a shear or fault zone, near the south line of the property. Similar veins are found elsewhere on the property. Grab samples from 1989 and 1990 (SCR025 and GMMR209, respectively) assayed 835.6g/tonne (29.95oz/ton) and 129.7g/tonne (4.65oz/ton) Ag. A 2m chip sample across the entire zone returned 21.8g/tonne Ag. Gold values were 40ppb across this southeast trending vein.

Grab samples from the rhyolite, although having low gold values, did have anomalously high zinc and mercury values. Sample GLGR342 yielded 1987ppm zinc and 69750ppb mercury, from a rusty weathering rhyolite with disseminated pyrite and pyrite (+sphalerite) in abundant fractures and stringers. In a fault zone occupied by numerous quartz and carbonate veins, a 2m chip sample GLGR352 yielded 17875ppb Hg and 2051ppm Zn. Nearby, a grab sample taken from a massive 10x30cm pod of pyrite + arsenopyrite within a brecciated quartz + sulphide vein returned 47500ppb

mercury and only 263ppm zinc. GGMT047 assayed 681250ppb Hg over 5m in the gossanous rhyolite. The mercury-zinc association is not found in all samples.

The general conclusions that can be reached from the geochemical survey are twofold:

- 1. The gossanous rhyolite is low in precious metals, but highly anomalous in mercury, which is likely associated with the abundant pyrite + quartz +/- arsenopyrite +/- sphalerite stringers which form a stockwork through the rock. The high mercury anomalies most likely indicate that the upper parts of an epithermal system are present and gold values may be higher lower down in that system.
- 2. Precious metal values of some significance are found in the thin quartz + carbonate + pyrite + sphalerite (+/-chalcopyrite, arsenopyrite, galena, stibnite) veins which cut the andesite unit, particularly the quartz rich northeast dipping veins. This is also true to some extent for the thicker, quartz breccia veins that probably follow faults. They may be related to the pyrite stringer stockwork in the rhyolite, as the quartz carbonate veins are not strictly confined to the andesite. It was not possible to tell if these thicker veins are a lower part in the same epithermal system.

CONCLUSIONS AND RECOMMENDATIONS

The mercury, arsenic and zinc anomalies in the gossanous rhyolite, associated with pyrite stringer - stockwork mineralization, are good evidence that an epithermal system has been active on the Story property. The abundance of fracture filling quartz + carbonate + sulphide veins is further evidence. Mercury anomalies are generally thought to occur in the upper levels of epithermal systems, and precious metals could occur at lower depths (e.g., Panteleyev, 1986). An epithermal system is considered to have been the mineralizing agent at the Eskay Creek deposit six kilometers to the west.

Several notable gold values (>1000ppb) occur in the quartz carbonate veins and, while these veins are relatively thin, the veins could merge or thicken at depth.

It is recommended that blast trenching be employed to expose a deeper level of these veins, to see if weathering or surface leaching has diminished precious metal values. Blast trenching could also be used to expose outcrop in the vicinity of soil anomalies to the west of the exposed gossan.

An induced polarization (IP) geophysical survey is also recommended. Granges Inc., the company that holds the adjacent property to the south, successfully used an IP survey to pick drill targets in gossanous ground in the same rock units and on the same trend as the Story property gossan. The geophysical survey would require the establishment of a picketed grid over the Story 1 claim block, and some linecutting.

Pending the identification of viable drill targets, a 450m (1500ft.) drill program could be initiated.

STATEMENTS OF QUALIFICATIONS

I, Leonard P. Gal, of 3373 West Seventh Avenue, Vancouver, British Columbia, V6R 1V9 do hereby certify that:

1/ I am a contract geologist in the employ of International Kodiak
Resources, Inc., with offices at 606, 675 West Hastings Street,
Vancouver, B.C.

2/ I am a graduate of the University of British Columbia (B.Sc. Geology) and the University of Calgary (M.Sc.Geology), and have worked in British Columbia and the Northwest Territories since 1986.

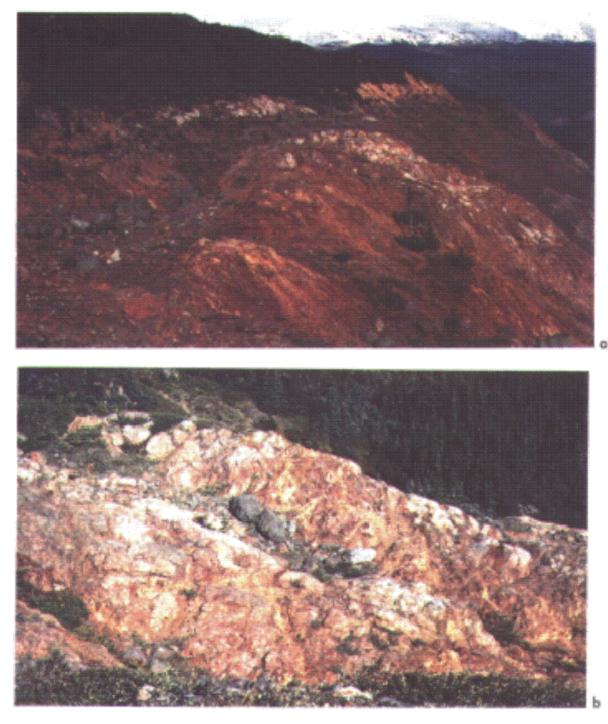
3/ I am the author of this report and my findings are based on work undertaken on the property between July 27 and October 3, 1990

4/ I have no interest, direct or indirect, in Golden Arrow Resources Inc. or Ecstall Mining Corp. or Omega Gold Corp., nor in any of their properties, nor do I expect to recieve any such interest.

5/ This report may be used by Golden Arrow Resources Inc. or Ecstall Mining Corp. or Omega Gold Corp., in whole or in part, as they so require.

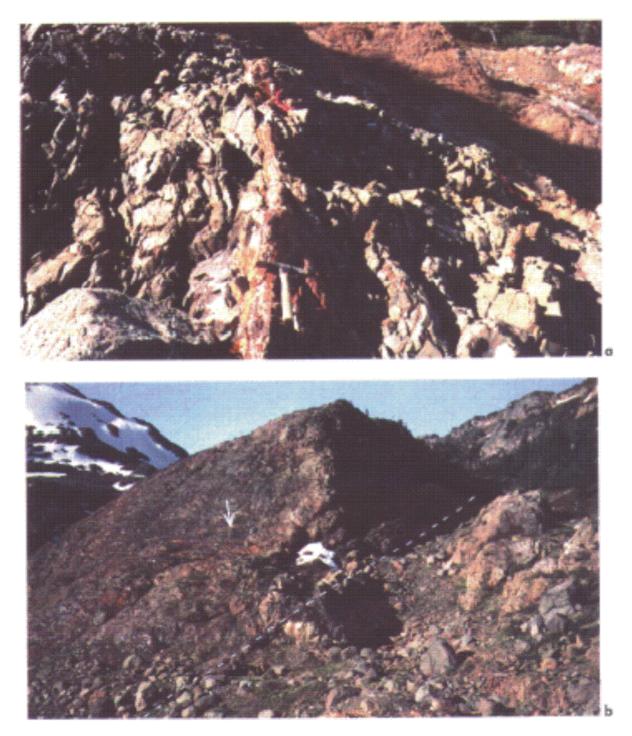
Dated at Vancouver, British Columbia this day of November 30, 1990

heonand gal

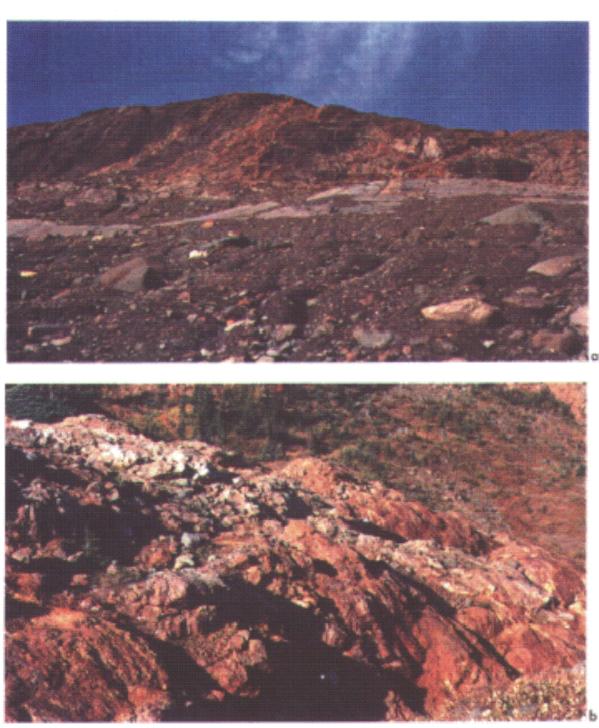

Leonard P. Gal, M.Sc.

REFERENCES

- Alldrick, D.J. (1988): Volcanic centres in the Stewart Complex. (103P and 104A,B). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 233-240.
- Anderson, R.G. (1989): A Stratigraphic, plutonic, and structural framework for the Iskut River Map Area,northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Anderson, R.G., Thorkelson, D.G. (1990): Mesozoic Stratigraphy and Setting For Some Mineral Deposits in Iskut River Map area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-IF, pages 131-139.
- Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., and Alldrick, D.J. (1988): Sulphurets Map Area (104A/05W, 12W,: 104B/08E, 09E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 199-209.
- Drobe, J.R., Koyanagi, V.M., and Logan, J.M. (1990): Geology of the Forrest - Kerr Creek Area, Northwestern British Columbia (104 B/15); in B.C. Ministry of Energy Mines and Petroleum Resources Geological Fieldwork 1989, Paper 1990-1, pages 127-139.
- Franklin, J.M., Lyndon, J.W. and Sangster, D.M. (1982): Volcanic-Associated Massive Sulphide Deposits; in Economic Geology Seventy-Fifth Anniversary Volume, pages 485-627.
- Grove, E.W. (1971): Geology and Mineral deposits of the Stewart Area, British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63. 152 pages.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River - Anyox Area. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63.
- Kerr, F.A. (1982): Lower Stikine and Western Iskut River Areas, British Columbia. Geological Survey of Canada Memoir 246, pages 31-34.
- Nicholson, J.A., Robb, W.A. and Sampson, C. (1990): Geochemical and Geological Report on the Story Claim Group, Skeena Mining Division, B.C. Assessment Report for Omega Gold Corp. and Ecstall Mining Corp.
- Panteleyev, A. (1986): A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits; reprinted in Ore Deposit Models, Geological Association of Canada Reprint Series 3, pages 31-44.

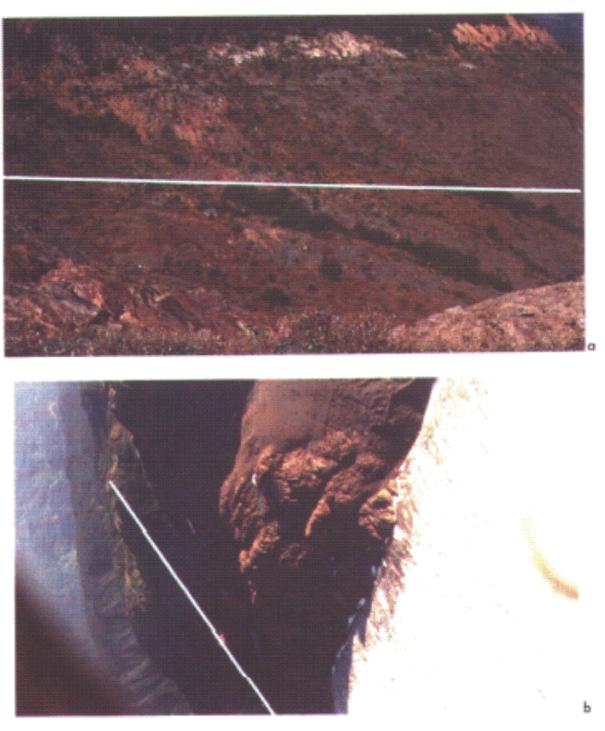

APPENDIX I

COLOUR PLATES



- Looking north from near the southern boundary of the Story 2 claim ā)
- block toward the gossanous rhyolite. The gossanous rhyolite and felsic tuffs in the eastern part of the Story 2 claim block. 63

Plate 1



- Quartz + carbonate + sulphide vein in aphyric silicified andesite (map unit 3; sample site GMMR203).
- b) Looking south from gossanous rhyolite unit across fault (dashed line) to aphyric andesite with rusty - weathering quartz - carbonate - sulphide veins (arrow).

- a) Looking west from Betty Creek Formation sediments (map unit 10) toward aphyric andesite (map unit 3) with rusty weathering quartzcarbonate veins.
- b) Gossanous rhyolite unit (map unit 2) near the east end of the Story 2 claim block.

Plate 3

- Looking toward the north edge of the Story 2 claim block (located approximately at the white line). Gossanous rhyolite in the foreground.
- b) Aerial view of tuffs and agglomerates at the toe of the Bruce Glacier, Story 2 claim block. The approximate location of the north edge of the Story 2 claims are indicated by the white line.

INTERNATIONAL KODIAK RESOURCES INC.

÷

Mineral Exploration Services

STATEMENT OF COSTS

PROJECT: STORY GROUP for GOLDEN ARROW RESOURCES

PERIOD: June to October 1990

Personnel

Γ

Γ

: مريد م

<u>24 3</u> man days @ \$275/day	<u>\$6,682.50</u>
<u>_8,5</u> man days @ \$240/day	\$2,040.00
<u>18.0</u> man days @ \$225/day	<u>\$4,050.00</u>
45.0 man days @ \$200/day	\$9,000.00
H elicopter 8 hours @ _{\$725} _/hour (fuel included)	\$20,300.0 0
Room and Board <u>93.</u> 8man days @ \$125/day	\$11,725.00
man days @ \$40/day (fly camp)	
Vehicle @ \$1,350/month	\$4,000.00
Field Supplies 93_8days @ \$20/man/day	\$1,876.00
Samples 600 Rock @ \$20/sample	\$12,000.00
Soil @ \$20/sample Silt @ \$20/sample	
Mob./Demob.	
Office	\$9,000.00
Miscellaneous 1. Filling Fees	\$1,460.00
2. Travel	\$5,000.00
3.Land Survey	\$3,400.00
Subtotal	
Contingency	<u></u>
TOTAL TO DATE	\$90.533.00
F & O.F.	

E. & O.E.

APPENDIX IV

ROCK DESCRIPTIONS

-

		ROCK SAMPLE DESCRIP	TION RECO	ORD						
Page:		Project: G (STORY)	Location: STORY Operator: INT'L KODIA							
Sample No.	Location	Description		Ar	alytica	l Result	3			
			Au ppb	Ag _{ppm}	Pb ppm	Zn _{ppm}	Ot	her _{PP} m		
GLGR354	ANDESITE UNIT - 5m SE OF GMMT201	GRAB - 3 cm QUARTZ, PYRITE CARBONATE VEIN WITH SPHALERITE AND CHALCOPYRITE, DISSEMINATIONS TO MASSIVE BANDS. 12m STRIKE LENGTH	2400	7.4	44	146	^{As} 2483	^{Sb} 226		
GMMT201	ANDESITE UNIT	SAME AS ABOVE	1400	3.5	27	65	as 1776	^{Sb} 109		
GLGR337	ANDESITE UNIT-15m SE OF GMMT2O3 IN SAME VEIN	GRAB - 15cm QUARTZ - PYRITE - CARBONATE - SPHALERITE VEIN. SULPHIDES LENSY TO MASSIVE LAYERS. 30-50m STRIKE LENGTH	1940	9.7	36	141	^{As} 2952	^{sb} 205		
GMMT203	ANDESITE UNIT	SAME AS ABOVE	590	20.8	90	1421	^{As} 1352	sd 1		
GMMR209	RHYOLITE GOSSAN	GRAB – YELLOW-STAINED, BLEACHED FELSIC LAPILLI TUFF WITH 5-10% DISSEMINATED PYRITE AND ARSENOPYRITE	35	129.7	73	489	^{H9} 13250	ррЬ		

.

		ROCK SAMPLE DESCRIP	PION RECO	ORD					
Page:		Project: 6 STURY	Location	1: STORY	/	Operator: INT'L KODIAK			
Sample No.	Location	Description		An	alytica	l Result	5		
			Au ppb	Ag ppm	РЬ _{рр} т	2n ppm	PP ^b Otl	her _{PPm}	
GLGR342	RHYOLITE GOSSAN	GRAB-RUSTY WEATHERED RHYOLITE WITH PYRITE STRINGERS AND DISSEMINATIONS	80	0.8	406	1987	^{нд} 69750	sþ 271	
GLGR352	RHYOLITE GOSSAN	2m CHIP - FAULT ZONE WITH QUARTZ AND CARBONATE VEINS	15	2.9	74	2051	^{Hg} 17875		
GLGR353	RHYOLITE GOSSAN	GRAB IOx 30cm POD OF MASSIVE TO SEMI MASSIVE SULPHIDES IN PYRITE CEMENTED QUARTZ VEIN BRECCIA	40	2.2	150	263	^{H9} 47500		
GLGR338	ANDESITE UNIT	GRAB - QUARTZ - CARBONÂTE - PYRITE VEIN WITH SPHALERITE AND CHALCOPYRITE 15-25 cm THICK WITH 15m STRIKE LENGTH	2100	14.1	46	2494	^{#9} 2245	^s • 184	
GGMT071	RHYOLITE GOSSAN	5m CHIP - CONTINUOUS OVER YELLOW TO MAROON STAINED PYRITIC RHYOLITE	10	1.0	61	633	^{Hg} 108625		

÷

ł

•

		ROCK SAMPLE DESCRIP	PION RECO	RD				
Page:		Project: G STORY	Location	c: KOD'A	к.			
Sample No.	Location	Description		An	alytical	Results	3	
			Au _{fP^b}	Ag $_{ff^m}$	РЬ _{???}	Zn _{ppm}	fT^b Otl	ner _{f/"}
GMMR214	RHYOLITE GOSSAN	GRAB- RHYOLITE WITH QUARTZ STOCKWORK. 5% PYRITE AND ARSENOPYRITE	5	4.1	66	25728	[#] 9 114000	ca 188.8
GLGR345	ANDESITE UNIT	2m CHIP - QUARTZ VEIN AND BRECCIATED VOLCANIC IN FAULT ZONE, WITH DISSEMINATIONS AND CLOTS OF PYRITE AND SPHALERITE	40	21.8		392		

L.

ROCK SAMPLE DESCRIPTION RECORD											
Page: Project: STORY (C)		Location: JACK CLACETE Operator: KOD									
Sample No.	Location	Description		А	nalytica	l Results	5 pp.m				
			Au pph	Ag	Pb	Zn	Other				
GLG-R 339	IACK ELALIER GODAN,	Sem W.De VEIN OF PURINE + CALCITE + QUINTE + SHEREMITE. P4 IN 2 MASSIVE BANDS REM WIDE ETHER, NETHER EDGE OF VOIN. FRACETHIC FOR 10M.	40	6.0	27	50					
G LGR 340	ų	BANDED CARDENATE (+ QUARTE + PARITE ± SPLANERITE) VETU IT TO BOCA WIRE, INCLUSES BRECCHATED	5	3.3	26	43	232 ppm 56				
G-2.G-R 341	,	MUST ROCK (APRILABIL ANDESIA OLIGE - BELLY IN LOUGAR). - RUDDLY OUTLOF OF PER-YELLOW (WOYALGROD SUFFALE) & IGHT GROY RELYOLIZE ADJALONE NO SMALL FAULT DUVE, SOME	5	1.)	૩ઌ	124					
6-LC-R 342		CHALCEDULT + PYRIA: PRACEMES. - BREM RHYOLINE WITH DUSCMILATED PYRIAE AND IN THIN FRACTURES.	30	D.g	406	1987					

÷

		ROCK SAMPLE DESCRIP	TION RECO	ORD				
Page:		Project: STORY GROUP	Location:			Operator: KODIAK		
Sample No.	Location	Description		A	nalytica	al Results	pp~	
			Au ppb	Ag	Pb	Zn	Other	
Geer 337		Mytonitic shear zone in dk. 91. Vokanic tuff/agglomerate. Grey rhyolitic Frags (5-10 mm) 9+2 mf: U.mg, distinctive flow	5	/. Б	45	10		
		bands containing glossy frags (<1mm). py in disseminations () +vale oply.						
Gec R-338		chip(3m) - Rusty shear zone in siliceous green volc- py in stringers	5	0,7	2-5	99		
6112-339		Chip(Im) - 5, milar, parallel, shear zone as obve in GCCR-338. Breeviaited grey Volcanic tuff : py tr196 shear orientath: 172/78		1.5-	43	11-5-		

		ROCK SAMPLE DESCRIP	TION RECO	DRD			
Page:		Project: STORY (G)	Location	1: JACK	GACIENE OSSAN	Operators	KODIAK
Sample No.	Location	Description		F	nalytic	al Results	pin
1105034	JACK GLADER	3m CHIP ALRON CONTACT	Au pph	Ag	Pb	Zn	Other
<i>⊎L</i> ©T234	6055A ~	BETWEEN RHHOLINE AND ANDESINE INCLUDING BLACK ARCTLLING AND RHHOLINE FRIGMENTING FUEL	5	1.5	14	74	
616 F 235	**	IM CHIP ACRUS BLACK ARGULINE IN/ ADJUENT EMULT.	15	0,9	26	115	
6267 236		4m CHIR ALRON AKCALLING INTO RMYOLING LAPICLI -BLOCK NOSE BRECLIN	10	1,6	30	277	
GLG7237	"	GRAR OF LARING - BLOCK REF / BRECLIA W/ ANGULAR RESSIC VOLCANIC FRAGMENTS IN DK GRN-BLACK MATRIX	10	1,2	3 (126	

.

,⁷

		ROCK SAMPLE DESCRIP	TION RECO	ORD			
Page:	1	Project: STORY (\mathcal{G})	Location	n: sturië	CREEK	Operator:	NODIAN
Sample No.	Location	ation Description		An	alytica	l Results	,, , , , , , , m
			Au pph Ag ppm		ppm Pb ppm	Zn ppm	Other
GLG R 173	DRY CK.	RUSTY ARGILLING WITH PY DISSEMINATED.	5	116	22	606	
626-R175	STORIE CA.	LIDNIED DAGAN WITH PERITE DIRINGERS	16	2-3	ಕ	72	
C 26 R 176	MOPUL CHI	CREVE AND TUTT WITH ABONDAN- PURITE STRUCTON + ARSENDITURITE IN PAULY DUNC WITH WIR CAPE LUNS	÷۲	() ()	11.2	
6267;80 6148	STOCIE FALLS ARCNEM	SEAR SAMPLE (2524 Sm 12 LT. CIECY LAPILE, 257 WITH PURITY PSS, AND STRUCTUR S. SIMDLES (32-124 N SALK CHECY MACHER.	1.2 1.2 x	0, 1 1900 - 10	19 1900 - A	N J Weix	
G C (G 7 193) 22 - 2132		GRANS SANALL CREMY SA IN RUSTY RUMOLITE IND OREY PSA IND SAME IN IST. PRANZ STATILLS ESS	20 	272 1992	2 Y	104 max.	

		ROCK SAMPLE DESCRIP	TION RECO	ORD				
Page:		Project: STORY GROUP	Location	1:		Operato	Dr: KODIAL	 K
Sample No.	Location	Description		A	nalytica	l Result		
			Au pyb		Pb	Zn	Othe	er
accR ~ 163		Erreenish andesite Lapili tuff. Sample is from bleached shear (sericite alt"). folgat: 026/75E	10	ت ₋ ر	23	47		
GCC R - 164		Float - s. liceous grey lapilli tuff Rhyolite Fragments, pole white = caleite, dissen. py 1-3%	ιU	1.4	24	30		
6(CR-165		Dark gr undesite feldspar crystal tuff- fg py on fracture surfaces and in disseminations.	5	2.0	20	48		

.

	ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: STORY GROUP L		n :		Operator: KODIAK				
Sample No.	Location	Description		А	nalytic	al Results	ዋስሙ			
			Au ppb	Ag	Pb	Zn	Other			
6CCR - 349	2+003, 0+00区	Front - grey siliceons volc tuff. white gtz clasts containing stringers of py in fractures. py 1-3% rusty iron oxide alth		0.7	33,2	83				
6.c.R-350	3+6°5,2490E	Blue-grey lithic crystal the fairly siliceous containing occasional lapilli of varia description = calcite blebs and stringers of py 1% trace epy-	5	1.9	30	27				
6-ccR-351		Float talus (in creek), gray lithic tuff siliceous fractures like a rhydite, diss py 1th	10	1.2	35	106				

÷

ROCK SAMPLE DESCRIP						·	
Page:	<u> </u>	Project: STORY GROUP	Location	n:		Operato	r: KODIÁK
Sample No.	Location	Description		A	nalytica	l Result	8 pp+∽
			Au ppb	Ag	Pb	Zn	Other
GCC R ~ 178		Chip (6.0in) - Grey Rhyolite Fine grained, siliceous, joint my & bedding? 162/90 att carboniste veins largest in o/c: 5-8 cm fg. 033. py and py veins		0.7	J1	48	
GCCR-179		Chip (3.0m) - Calcite ven staken in rhydite nost.	K 5	1.0	23	3.6	r
G (C R - 180		Chip (7.0m) Rhydute - py stringers and gtz-carbonate veining (up to 8cm) trending 110-1200.	5	0.6	30	99	

		ROCK SAMPLE DESCRIPT	FION RECO	DRD				
Page:		Project: STORY GROUP	Location:			Operator: KODIAK		
Sample No.	Location	Description		A	nalytica	al Results	PP	
			Au pph	λg	Pb	Zn	Other	
6ccR - 173		Fine grained grey siticeous volcanic. fg. py. (2-406) contained mainly in dissemints limonite and sericite alth minerals.	10	0.6	30	38	!	
61CCR -174		Chip (10m) ~ mainty argillite and shale, well bedded (spatter occasional rave quarter sweets reddish hematite grams, t dissen py.	5	0.9	18	48		
6.c.R- 175		Chip (10m)-same as above	6	o. 9	18	5¢	·	
Geck- 176		chip(10m) - Saa.	5	0-8	14	56		
6(CR-197		(hip (10m) - saa.	[0	0.7	16	53		

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: STORY GROUP	Location	<u>n</u> :		Operator: KOD14K			
Sample No.	Location	Flood - greyish felsic vok. rock, fine grained, silicified Altered clasts of quarts and cheft (white and grey), irregular stringers of py. throughout.	Analytical Results pp.m.						
			Au _{PP} Ag		Pb	Zn	Other		
GCCR-170 GCCR-171	5 ROR 4		5	1.5 0-6	43 38	49 48			
6CCR-172		veinlets of fg py 11-2mm) Daeite Fragmental tuff - corrying fg. py. in stringers and disseminations greenish color.		0.4	.24	84			

.

.

	ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: STORY GROUP	Location:			Operato	Operator: KODAK			
Sample No.	Location	Description		A	nalytica	l Result				
	-		Au Iph	Ag	Pb	Zn	Other			
GCCR~166	5,0,24	Grab &-semi massive - massive sulphides (10-15% py) in host green andes. te lapilli tuff green and rhydite clasts (1-2 cm). Shears along which py veins are orientated: 076/647E		υ. 4	27	20				
GCLR - 167	ι.	Quartz-corbinate breccia Vein (0.5 m max w.dth) Same vein system and spatially close to 6002-166	5	1-5	45	44				
GULR-168	4 .	same as above (GCR-167)	5	ı.B	45	21				
GUR-169	f.	Float boulder - felsic volc. breccia, angular ate pebbles diss. py 1-2%.	5	1.2	29	25				

•

.

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: STORY	Location:			Operator	KODIAK		
Sample No.	Location	Description		A	nalytica	l Results	pi'm		
			Au pr's	Ag	₽b	Zn	Other		
GMMR210	してつたい	UT GREY TUFF, RUSTY WOATLORING WITH ARSENS PARITE AND PARITE DISSEMINATIONS \$-00%	5	5,2	36	244			
GMMR211	:	TUFF IN FAULT ZONG WITH DISS- CMINATED AND FRACTURE-FRIC SULPHIDES 23%	6	1.,	26	185			
UMM RZIZ	۰.	SAME AS 211	5	U.6	30	47			
GMMR215	u	BLACK LAPILLI MER OR BRECCIA	10	0.4	3/	482			
3 M M R 216	٨	BLEACHER RHYCHIDE WITH FRACTION FRI SYCHIDUS 3%	5	0.5	50	416			
GMMR 217	'n	MASSING PURIT - ARSENUPARIT LENS IN RHACLING 4Cm x LISM	5	0.1	.54	776			
G-MM T 218	1.	2m CONTINUOUS CHIN ON RHHULIN	10	0.6	31	15			
5MM 1219	ć	2m CHIP ON RHYDLIR-	5	0.5	ac	10			

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: Droky	Locatio	n:		Operator: KODIAK			
Sample No.	Location	Description	Analytical Results						
			Au pp	Ag	Pb	Zn	Other		
G MMR 199	- ঈ रुदिर	LT GREY -CREEN ANDESINE WITH CARBUNAN FRACTURES + SOME SULPHINES,	10	0,7	9	66			
G-MM R 200	f,	ALDERED ITADES. RE WITH RARE DISSEMINATED PARIDE + SOME IN VEINCET.	5	2.0	17-	99			
GN4 MT 202	4	SAME AS 200	25	0-8	14	83			
MMT 204	i.	JAME AS 200	5	1.9	13	151			
GHAMT 205		400 VEIN WITH GUANTE, CARB. ONATE AND SULPHIRES.	95	20	35	64			
G-MM 7206	•	SAME AS 200	15	1.4	10	98			
- MM T 207		Yem VEWOF WUMME, CARBUMME AND SUCPHIDES-	70	2.4	27	324			
- MM R2.04	u.	SNEMLED AHYOUN BRECCIA OR LAPLLI TUFF WITH NO VISIBLE SULPHIDES	5	0,6	30	134			

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: STORY	Location	1:		Operator: KODIAK			
Sample No.	Location	Description	Analytical Results PP~~						
			Au _{// //թե}	Ag	Pb	Zn	Other		
GGMR076	5TORY	MASSINE LEWSUS DO DISSUMINATIONS OF PHILITE AND HILSUTING PHILITE IN ANDUSTIET UNIT							
G- MMR 220	"(BLEVSS AND FRACTURE - FILLING SULPHIDES.	/0	0,5	20	33			
GMMR221	4	BLACK RAYOUNE LAPILY FUEF OR BRECCIA.	5	0.1	78	50			
G-MMR222		GUSSANDAS LARILLI RUFF WITH BLEBS AND DISSEMINATIONS CHE PHRINE 1-2-75.	10	0.8	35	100			
G-MMR223		VERY SILICIOUS RITHOURS WEAKLY BRECCIARED WITH 3-5% DISSEMINATE SULPHIDES		1.3	ابح	43			
6-MM ^R 224	ĸ	GOSSANOUS RHYCLIFE WITH SUCPHIDES IN FUN FRACTURES. ARSENDPHEIR PROBABLE	10	0.9	39	2			
6 MM R 225	<i>Ci</i>	GREM FELSIC ASM.	20	0.7	39	43			

ROCK SAMPLE DESCRIPTION RECORD										
Page:		Project: STORY	Locatio	n: ⇒∂c	DRY	Operator: KOD AK				
Sample No.	Location	Description		А	al Result:	l Results				
			Au	Ag Pb		Zn	Other			
GAN TO 64 -094	JTUR Y	62m CHIP SAMPLE IN GOSSANUS RHYDLING	20	0.9	13	44	maxi mun Val ues			
G-PNT030 -036	٩,	14m CHIP SAMPLE IN COSSANCUS RHHOLINE	5	1.8	32	100	6			
GPNT 099 -116	"	BOM CHIP SAMPLE IN COSSANCUS RHYOLINE	10	1.2	12	\$8	12			
G-MMT 2168 - 213	ι,	4m CHIP SAMPLE IN COSSANUS RHHOLINE	10 .5	0,6	31 26	15 10	1.			
5-MBR340 - 352	١.	65m Culli SAMDLE, NORTH- SOUTH LINE FROM 3+355 39+50E 65 m RO ME NURTH IN GENERANSHS RUHULITE Z TUFF.	10	0.8	51	92	۸.			

		ROCK SAMPLE DESCRI	PTION RE	CORD					
Page:		Project: Story	Location: STORY			Operator: M. BROWN			
Sample No.	Location	Description				al Results			
			Au	Ag	Pb	Zn	Other		
GMBR 326 - 332	Si UR Y	25m cuin SAMPLE IN ANDESITE UNIT.	70	8.0	37	216	maximum values		
Gm& R 327 - 331		25 M CHIR SANALE IN ANDESTIFE AND RHYOLINE UNITS							
3-32-		Ringouni							
GMBR =33	ι.	5m UIP SAMPLE IN RHYOLINE	5	0.3	24	45	P		
y-mi8R 334	4	SAME AS 333	5	0.8	29	61	<i>u</i>		

Bacos			Location: STORY Operator: KODIAN						
Page:		Project: Story	Locati	on: איס.	Operator	KODIAK			
Sample No.	Location	Description	Analytical Results						
			Au	Ag	Pb	Zn	Other		
GGM T 047 - 063	Story	160m HIP SHMPLE IN COSSANOUS RU140LIIZ	60	13.6	1309	32074	maximum		
GGM5064 -072	ĥ	90m CHIP SAMPLE IN GOSSANOUS RAHOLINE	60	1.4	33	37	4,		
Б ДИК ОУ5 - 104	<i>t</i> ,	120m CAID SAMPLE IN GUSSANOUS RHYDLINE	110	2.3	41	253			
-119	r,	55m CHIP SAMPLE IN GUSSANUUS RAGOLINE	40	2.0	34	149	14		
FPN7 037 -061		50m CHIP SHARLE IN GOSSANOUS RHYOLITE	5	2.6	37	5824	۲ ۲		
GPNT062 - 067	<i>,</i> •	12m CHIP SAMPLE IN GUSSANCIIS RHAULITE	10	0.8	28	1960			

		ROCK SAMPLE DESCRIP	TION REC	ÔRD				
Page:		Project: 570RY	Locatio	n: STU	RY	Operator: KODIAK		
Sample No.	Location	Description		A	nalytica	l Results	ppm	
			Au pp 5	T	Pb	Zn	Other	
GMMR226	ኇኯዾቘኇ	GUSSANDIS ARGULITE HICHLU CUNCENTATED DISSEMINATED SUCALIAX 10-15 % IN LENSY IS AND S.	5	3.0	140	560		
G-RW R 441	L	PALINE DISSEMINATED -	5	4.4	22	89		
GRWR442	6	SAME AS YYI WITH DISSEMINMA PHRITE ENNEDRA AND WORK FOLLADON	4	5-1	14	94		
6-RW R443	г.	GLOMERO PORPHYRIAL DACIAL ROCK WITH ABUNNANT DISSEMINATED PHRIAE 3%	5	4.2	20	93		
G-RW R 459	۰.	"SULPHIDE - RICH LAYER WITHIN LITHIC TUFF. PYRITE IN RANDS UP TO SO'S FOR IN WIDE ZONET. WITHIN	10	0.1	30	69		
6-RW R 459	v	SAME AS 454	5	0.4	18	75		
GRW R460		CRASME LAPILLI TUFF WITH PATCHY PARINE UP TO SMM ACRUSS.	5	0.7	44	107		

-

	ROCK SAMPLE DESCRIPTION RECORD											
Page:		Project: STORY	Location: STORY 5 Operator: KODIAK									
Sample No.	Location	Description		ppm								
			Au pp 5	Au _{pp} , Ag Pb		Zn	Other					
GRWR461	STORT 5	CRASTAL DIFF WITH 10% LAPILLI 1-2mm PARINE STRINGERS ARE RARE, WITH SOLVE DIS- EMINATED PARITE	5	0.7	46	97						
G-RW R 462	.,	RUSTY WENTLERING SILICIFICES TUFF WITH MINUR DISSEMINATED PHRITE		1.7	24	107						
G RW R 463	11	BASANT WITH PHTCHES GE FING DISSEMINATED PURITE AND AS RINDS ON PUENUCRUSTS (25%)	5	1.7	27	207						

ROCK SAMPLE DESCRIPTION RECORD											
Page:	Page: Project: STORY (G)			Location: JACK QLALICK Operator: KODIAV							
Sample No.	Location	Description	Analytical Results								
			Au ppb	Ag	Pb	Zn	Other				
G-LG-R 343	ЈАШ СГАЦИН Съзна М	RUSTY RHYOLINE WITH ABUNDANT PRACTURES A LITTLE PYRINE ALSO DISSEMIVATED. MUST RUSTED AWAY	20	0.3	40	168					
GLGR 344	. 1	RUSTY WENTHERIVIE RHYOLING, ON PERMANS LAP-LI MITE, HOWENT TO MUYOMITE SMELLA/ TUFF,	25	1.0	45	211					
G-LG R346	u	20 cm CARISONATE VEIN WITH DISSEMINATE AND STRINGER PARITE VEINI 25 SCIENTLY SILICODUS IN DARK CRUY APOLYKIC ANDESITE	5	3,2	7	26					
GLGR 347	e 1	2m PERSIL PHAG (PORPHYRY) WITH WVART AND PERDSPHAR PHENOCRYSTS, PYRIT DISSEM- INATED AND PATCHY 2-3%	5	1, 7	2-2	46 8					
646 R 34 i	·1	VERY RUNTY ADD SMINGD RITYONN WITH MANY CARBURATE AND 2-4MM PURINE VERNS NORM FALLOT CONTACT LINTY ANDESING	iO	1.7	31	44					

_ _ _

POLIATED PELSIC DURC ? RUMULIAI WITH PURCHE + ARGENUPURITE IN STRINCERS UP TO 6mm THICK. STRINCERS SUB - PHATICE POLATION (340 / VEXTICAL).			ROCK SAMPLE DESCRIP	TION RECO	ORD				
GUGR 349.NETR JACK CR.GREY SILTERING WITH THIN (3cm) BAND OF THIGHLY DISSEMUMED PHALTE (OP TO 35% SUPPLIES)QUU.9II7QuGUGR 350"SAMPLE FROM BESIDE" GAMMA 197. POLIMED FESSE DAKE ? RHULTIC WITH PHELEE T AREFUL PARTE IN STRINGERS SUB - PHELEE TO AMONICAL STRINGERS SUB - PHELEE TOLATION (340 / WRETICIE).QUU.9II7QuGUGR 351"SAMPLE FROM BESIDE" GAMMA 197. POLIMED FESSE DAKE ? RHULTIC WITH PHELEE T AREFUL PARTE IN STRINGERS SUB - PHELEE TOLATION (340 / WRETICIE).SII.332Y2GUGR 351"STRINGERS SUB - PHELEE TOLATION (340 / WRETICIE).DAKE WITH 	Page:		Project: STORY (G)	Location: JACK CREEK			Operator: KODIAK		
GLG R 349. NEAR JACK CR. GREY SURFROWS WITH THIN (3cm) BAND OF THICKLY DISSEMUMED 20 U.Y 117 20 BAND OF THICKLY DISSEMUMED PHAITY (UP TO 35% SUPPLIES) 20 U.Y 117 20 GLG R 350 " SAMPLE PROM BESIDE GAMMA 197. 5 1.3 32 42 GLG R 350 " SAMPLE PROM BESIDE GAMMA 197. 5 1.3 32 42 GLG R 350 " SAMPLE PROM BESIDE GAMMA 197. 5 1.3 32 42 GLG R 350 " SAMPLE PROM BESIDE GAMMA 197. 5 1.3 32 42 GLG R 350 " SAMPLE PROM BESIDE GAMMA 197. 5 1.3 32 42 GLG R 3510 " SAMPLE PROM PARTY 10 Nom THICK. 5 1.3 32 42 STRINGERS SLB - PHINTLE TOLATION SI 1.3 32 42 GLG R 3511 FRESHE (RHUDURE) DYRE WITH 10 1.1 31 103	Sample No.	Location	Description		A	nalytica	l Results	ppm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Au ppb	Ag	Pb	Zn	Öther	
POLIATED PERSIC DYKE? HUMULAI WITH PYKITE + ARGENUPYRITE IN STRINGERS UP TO 6mm THUK. STRINGERS SUB - PHERCUR TOLATION (340 /VERTICAL). PERSIC (RHYDUITE) DYKE WITH (5-20% DISSEMENATED PYRITE + 10 1.1 31 103	GlGR 349.	NEAR JACK CK.	BAND OF THICKLY DISSEMINIED		ن. پ	117	20		
STRINCERS OF TO 6mm TRICK. STRINCERS SUB - PHENELE POLADON (340 /VERTICAL). PERSIC (RHADURE) DAKE WITH (5-20% DISSEMENTED PARIFE + 10 1.1 31 103	GLGR 3 50	"	POLIMED PELSIC DYKE ? RUYOLITIC	5	1.3	32	42		
10 1.1 SI 105 15-20% DISSUMINATED PURITE +			STRINGERS SUP TO 6mm THICK. STRINGERS SUB - PARTLER POLADON	5	1.3	32	42		
	526R351		15-20% DISSUMINATED PURITE +	סנ	1.1	31	103		

___. _

		ROCK SAMPLE DESCRIP	TION RECO)RD					
Page:		Project: STORY (G)	Location: Operator: KODIAK						
Sample No.	Location	Description	Analytical Results ppm						
			Auppb	Ag	Pb	Zn	Other		
GmMR171	510RY	lapilli tuff with FINE Diss - EMINATED PYRITE 3-5%	5	1,5-	(5)	54			
GMMR172	l,	LAPILLI TUFF WITH LOTS 10% DISSEM, NATED PRAITE.	5	0,1	9	.23-			
GMMR 17 🍹	۸,	ARGLLINE WITH CONCRETIONS, A LITTLE DISSEMINATED PYRINE	10	0.2	16	47			
6-MMR175	n.	FERSIC TUFF, RUSM NEWMERCO WITH DUSSEMINATED PURIT.	5	0,1	14	42			
GMMR176	4	BLACK ARCICLINE WITH STRONG FOLIMON, NO VISIBLE SULPHIPOS	10	2.4	26	43			
GmMR180	ι.	FINE GRAINED GABBRO NO VISIBLE SULPHIPES.	to.	2,5	9	43			
GMMR181	r	TAN DACITE WITH RAME PURIN	5	3, 3	೨	73			
GMMR 182	"	SILICEOUS MUDSIONE WITH DISS- EMINATED PARIAE AND IN FINE FRACTURES, MILO MIDEMOPTRIAE?	5	2,2	9	233			

		ROCK SAMPLE DESCRIP	TION REC	ORD					
Page:		Project: STORY	Location: STORY 2 Operator: KODIA						
Sample No.	Location	Description	Analytical Results prom						
			Au pph	Ag	Pb	Zn	Other		
(5MmR133	STORY 2	CAPILLI / BUCK TUPP WITH QUARTE CALCITE UEWS AND FINE POSSEMMENT PHEITE-	5	0.6	31	47			
GMMR 184	۲,	LAPILLI/ORHSTML TURE WITH DISSEMINA TET) AND PRACTURE FILLING PARINE 2%	5	0.7	13	117			
GMM R105.	N	GOSMNOUS LAPILLI DIFF WITH 5-10% DESEMINATED PHRIT	10	0.3	18	77			
GMM R146	۲.	SAME AS RIUS	5	0.1	20	59			
G- M M R187	×.,	SAME AS 185 LESS PHRID-	5	0,1	15	ર મ			
G-MMR188	~	LAPILL' I TUFF WITH FRAGMENTS 2-10mm, 2-3% DISSEMINATED PARING	5	0.4	13	102			
GMMR190	4	BRECHATED NEFF WITH QUARTE AND CARBONATE VEINS. NO VISIBLE SULPHIDES	5	0, 1	21	119			

.

ROCK SAMPLE DESCRIPTION RECORD Project: $< TOR U$ (c) Location: $< TOR U$ (c) Description: $< TOR U$ (c)												
Page: Project: STORY (G)				Location: STURY 2 Operator: KODIA								
Sample No.	Location	Description	Analytical Results Pfm									
			Au pph	Àg	Pb	Zn	Other					
GMMR192	STORY 2	LAPILLI ASH NEP WITH NO VISIBLE SULPHIRES	5	D,6	44	251						
G-MM R 193	ν,	SILICEOUS RHYOLDE WITH ABUNNANT QUARTZ & PYRINE STRINGERS, YELLOW HSPY STAIN	5	<i>0,3</i>	29	34						
G- MMR 194	"	SILICEDUS, GESSANUIS RUHOLIE, PSUR AND AKSE NO PYRITE IN VETNILETS AND DISSE MINATED	5	0,7	26	22						
GMMR 145	4.	JAME AS 194.	ŝ	0.3	29	12						
GMMR196	.	TAN ARGULLIZ- WITH PURINE- QUARTE - CARBONATE VEING , PYRITIC NUDULES , 5 TOCM IN DIAMETER	10	1,3	29	58						
GMMR197	••	PYCITIC ASH TUFF WITH PYRINE DISSEMINANES 3% AND IN MAIRLINE FRACTURES 5%.	5	0,9	35	98						
GMMRIGU	ť	CARBANATE - QUARTE VEIN IN ANDESITE	5	1.8	3	13						

Ĺ

		ROCK SAMPLE DESCRIP	TION RECO)RD				
Pagei		Project: STORY	Location: STORY			Operator: B, CASE		
Sample No.	Location	Description	Analytical Results ppm					
BC-R-74	STORY	Citter Clean Care - 1866	Au pph	Ag	Pb	Zn	Other	
00-8-19	570K9	SILICIFIED GREEN TUST MINOR PY IN FRACTS	5	3.2	6	91		
BC-R-75	41	11	10	0.6	23	86		
BC-R-76	61	SAME	5	0.1	27	3.9		
BC-R-77	1.	SAME	5	0.1	21	20		
BC -R- 7 8	41	MASSINE PY IN SILICIFIED TUFF	5)4	34	62	110 - N. 1934 <u>-</u> 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
BC - R - 79	Ħ	DISSEM PY IN LAPILLI TUFS	5	0,9	ai	47		
BC-R-80	41	SAME	10	2.4	13	74		

- · · ·

		ROCK SAMPLE DESCRIP	TION RECO)RD				
Page:		Project: STORY	Location	B.CASE				
Sample No.	Location	Description	Analytical Results ppm					
			Au pph	Аg	РЬ	Zn	Other	
BC-R-68	STORY	GREENISH GREY TUFF, LIGHT IRON STAIN	5	1.8	21	22		
BC-R-69	11	GREY-WHITE TUFF, INTENSE STAINING, SMALL PODS OF PY	5	1.1	17	24		
BC-R-70	11	GREY-WHITE SILICIFIED TUFF PODT DISSEM PY, CHERT FRAGS.	5	0.4	22	340		
BC-R-71	11	GREEN TUST, STAINED W FRACT, FILLING PY	5	0,7	23	120	. : (1) - X- : (1) 7	
BC-R-72	<i></i>	GREEN TUTS & CHERT FRAGS AND DISSEM PY	5	0.1	21	83		
BC-R-73	17	BREY-WITTE TUFF TO DISSEM PY	5	0.5	27	201		

		ROCK SAMPLE DESCRIP	TION RECO	ORD					
Page:		Project: STORY	Location: STORY			Operator: B. C.ASE			
Sample No.	Location	Description	Analytical Results ppm						
			Au ppb	Ag	Pb	Zn	Other		
BC-R-61	510R¥	LAPILLI TUFS W DISSEM AND FRACT. FILLING PY	5	0.9	36	44			
ВС- <i>К-</i> 62	L;	SAME, CARBONATE INFILLING FRACTS	5	1.0	26	52			
BC-R-63	h	LIGHTLY STAINED QTZ VEIN	5	0.8	23	13			
BC - R - 64	11	GREEN TOGREY BASALT N DISSEM PY	5	0.3	11	131			
BC-R-65	L l	LAPILLI TUSS WITH FRACT FILLING PY VEINS	5	0.5	33	31			
BC-R-66	Į¢.	GREENISH BASALT W SLIGHT FRACT FILLING PY	10	0.9	<i>j</i> 3	100			
BC-R-67	L	SAME, SLIGHT STAINING	5	2.2	9	115			

.

Project: STCRY Description	Location	· JACK CT			
tion Description		14 Griph of	ACIER Gost .	Operator	: KODIAK
LION DODOLLPTION		Ar	alytica	l Results	ppm
	Au _{ppb}	Ag	Pb	Zn	Other
URY IOM CHIP IN GOSSANOUS RHYOLIRE					max imum values
50m CHIP IN GOSSANOUS RHYOLINE	5	1.7	30	15	1.
40m CHIP IN GOSSANOUS RHYONN	10	0.9	14	48	4
15 M NORTH SOUTH CONTINUOUS CMID ACROSS QUARTE - CARBONANC VEINS IN COSSANOUS RAYOUR	5 5	0.7 1-0	38 37	48 36	N/
25 m CHIP IN GUSSANOUS RHYOLINE	10	1.2	113	216	47
30m CHIP IN GRESANOUS RH40LIPE	10	1.0	32	92	a
	RHYOLINE 30m CHIP IN GRESTNOWS	BOM CHIP IN ODESANOUS ID	BOM CHIR IN GRESSANOUS IN 10	SOM CHIP IN OFFSANOUS ID 10 10	30m CHIP IN 67551NOUS ID 10 10 20

.

APPENDIX V

52

.

[

ASSAY TECHNIQUES AND RESULTS

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

- |

.

ものわこうか ポンニング はっかい

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

in a successive and the successive in the successive success

a and a community of the

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B. C., laboratory employing the following procedures:

-1

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized on a ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

214 C 76 ST

-

MERCURY ANALYTICAL PROCEDURE FOR ASSESSMENT FILING

Samples are processed by Min-En Laboratories at 705 West 15th St., North Vancouver, B. C., employing the following procedures.

After drying the samples @ 30 C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for 2 hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable delutions made if necessary.

GOLD ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

AG, CU, PB, ZN, NI, AND CO ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3 - KCLO4 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

FFICE AND LABORATORIES: LJS WEST FIFTEENTH STREET, NORTH VANCOUVER, BC CANADA V7M 112 PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067

			SPECIALISTS IN MINER CHEMISTS - ASSAYERS - ANA		705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (804) 980-5814 OR (804) 988-4524 FAX (804) 280-9821 THUNDER BAY LAB.: TELEPHONE (807) 822-8958 FAX (807) 823-5831 SMITHERS LAB.: TELEPHONE/FAX (804) 847-3004
Ľ		<u>Ass</u>	ay Certi	ficate	0S-0667-RA1
[Coupany: Project: Attn:	INTERNA RICK WAL	ATIONAL KODIAN	:	Bate: OCT-15-90 Copy 1. INTERNATIONAL KODIAK, VANCOUVER, B.C. 2. INTERNATIONAL KODIAK, C/O JAYCOX
[. submit	ted OCT	-09-90 by RICK	WALKER.	1 ROCK samples
	Sample Number	9 9 - 199 - 199 - 199 - 199 199	AU g/tonne	AU oz/ton	nan an
	G-LG-R-	354	3183	.112	
L 					
			یہ ہو ہو اور اور اور اور اور اور اور اور اور او	بی ہو کہ کہ کہ کہ کہ کہ ایک میں ہو ہو کہ ایک میں ہو ہو کہ ایک میں ہو ہو ایک کہ ایک میں ہو ا	
Γ					
•					
					GRI
•					
-					
_					
			-		
-					
L					· · · · · · · · · · · · · · · · · · ·
				Certified b	MIN-EN LABORATORIES

[[-]		BORATORIES NOF ASSAVERS CORPY SPECIALISTS IN MINERA		VAINCOUVER OFFICE. 705 WEST 151H STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (607) 980-9621 THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX 1604) 847-3004 OS-0603-RA2	
	Company: INT Project: UNU Attn: RIC		ĸ	Date: OCT-05-90 Copy 1. INTERNATIONAL KODI4K, VANCOUVER, B.C. 2. INTERNATIONAL KODI4K, SMITHERS, B.C.	
L	<i>He hereby</i> submitted	certify the foll SEP-29-90 by RIC	owing Assay o: K WALKER.	f 2 ROCK samples	
E	Sample Notoer	AU g/tonne	AB aa/tan		
	36-500 36-500 36-575	1.25 2.38	.046 .069		-
					-
			<i>!</i>		
Ē					
Ĺ					

Burnay Certified by__

<u>د</u>___

	CHEMISTS - ASSAVERS -	ERAL ENVIRON			NCOUVER OFFICE: WEST 15TH STREET RTH VANCOUVER, B.C. CANADA V7M 1T2 LEPHONE (804) 980-5814 OR (604) 988-4524 (604) 980-9821 IUNDER BAY LAB.: LEPHONE (807) 622-8958 (1807) 623-5831 AITHERS LAB.: LEPHONE/FAX (604) 847-3004
Ass	ay Certi	ficat	<u>e</u>		0S-0229-RA1
Company: INTERN Project: UNUK Attn: G.NICHOL	ATIONAL KODIA	ĸ			Date: AUG-13-90 DNAL KODIAK, VANCOUVER, B.C. DNAL KODIAK, C/O JAYCOX
He hereby cer	tify the foll			samples	
submitted JUL		ICHOLSON,			
		AU Dz/ton	ZN %		a estate e constru
submitted JUL	-31-90 by G.N AU	LA	ZN %	बा १९ सम्बद्धाः स्वयं विद्या स्वयं विद्या	

Ē, v

[

[

/-!

1

1

Certified by Rh

MIN-EN LABORATORIES

		LA	OF ASSAVERS			AL ENVIRO	DNMENTS HEMISTS		705 WEST NORTH 49 TELEPHO FAX (804) THUNE TELEPHO FAX (807) SMITH	NE (604) 98 980-9621 DER BAY NE (807) 62 623-5931 ERS LAI	EET B.C. CANADA V7M 1T2 10-8814 OR (604) 988-4524 LAB.: 12-8958	
		<u>A:</u>	ssay	<u> </u>	<u>erti</u>	fic.	<u>ate</u>			0	S-0249-RA1	
	Company: Project: Attn:	UNUK	RNATI		KODIA	K	. '	Сору	1. INTERNATIONA 2. INTERNATIONA	L KODIAK,		
Ľ	submit	ted A	ertify VG-07-	y the -90 £	e folle by M.BI	owing . ROWN.	Assay o	f 1 ROCI	K samples			
	Sample Number	: ,-			ZN %							
	G-MM-R 2	214			3.08	talanı Trigan, 7.5*	2000 - 1995 2 4' 1997 - 1 997 - 199					W .
												
		·						6R	1			
								U V N				
											х Х	_
Γ												
Ĺ									A.C.	= [
-						Cer	rtified	by	MAN AM	(h)		-

MIN-EN LABORATORIES

ə ;

E I	MIN • EN LABORATORIES IDIVISION OF ASSAYERS CORP.	VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER. B.C. CANADA V7M 1T2 TELEPHONE (804) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.: TELEPHONE (807) 622-8958
/m	SPECIALISTS IN MINERAL ENVIRONMENTS	FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004
L.	<u>Assay Certificate</u>	05-0603-RA1
	Company: INTERNATIONAL KODIAK Project: UNUK Attm: RICK WALKER	Date: OCT-05-90 Copy 1. INTERNATIONAL KODIAK, VANCOUVER, B.C. 2. INTERNATIONAL KODIAK, SMITHERS, P.C.
	He hereby certify the following Assay submitted SEP-29-90 by RICK WALKER.	of 3 ROCK samples
Ľ	Sample CU Number %	
	G-LG-R-323 1.360	
		л. ²
ſ		
L ~		
[
F		
5		
L		
Ľ	_	Banman
*-	Certified	MIN-EN LABORATORIES

i

i

- AMALE -- ----

MIN-EN LABS - ICP REPORT

1.1

FILE NO: 08-0667-RJ1+2

INTERNATIONAL CODIAL **10**

705 WEST TSEN ST., MORTH WANCONNER, N.C. 47H 1T2

DATE: 90/10/15 + ROCK + (ACT:[3])

$ \begin{array}{c} \begin{array}{c} c+8e+3.3 \\ c+8e+3.4 $	ATTN: ATCC UNLEER												(604)		e1 4 (DR (60	. 1960	4524											•	ROCK	(*	(ACT	:131)
c-me - 135 -9 3770 16 6 6 28 2 70 1 950 37 7 0 1 2.4.6 50 1 1 2.5 5 1670 C-me - 1337 -9 11040 33 6 100 100 11 100 5 100 100 900 37 100 1 2.5 5 100 100 900 37 100 1 2.5 5 100 5 100 17 100 1 100 5 100																_																	
C +me - 340 8 5630 9 2 12 12 13 4200 1580 11 9 1 17.8 144 1 1 25 10 C +MB - 542 7 4950 1 1450 1 17 20 5710 270 1530 37 4 8 1 23.1 105 1 14 5 540 G +MB - 542 7 4950 1 14 5 5330 2410 1 30 1330 110 14 5 540 G +MB - 542 7 790 1 14 15 1330 2410 1370 1570 153 10 14 15 330 2410 330 2410 330 310 310 310 310 3130 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 31	G-MB-R-335 G-MB-R-336 G-MB-R-337 G-MB-R-338 G-MB-R-338	.9 .9 .9	3770 4510 11040 4680	18 30 38 57	8562	128 136 127 149	.3 .1 .1	1 40 1 37 1 105 1 31	00 00 20 90	-1 1.1 .1 .1	8 7 18 4	13 11 18 8	29400 71040 36790) 3010) 3680) 2830) L) 8 3	2160 6340 1740	320 883 555	1 ! 1 : 11	100 500 50		980 820 120	37 47 37	10 9 7	11		29.2 78.4 4.2	60 182 20	1 2 1 5 1	1	1	57 10 91	555	1820 1730 980
6::::::::::::::::::::::::::::::::::::	G-MB-R-340 G-MB-R-341 G-MB-R-342 G-MB-R-343	.8 .5 .7 .6	5630 5590 4950 5760	Í	1	145 109	.1 .1 .6	1 141 1 124 1 86	00 30 40	.1 .1 1.1	17 17 14	20 18 15	57190 59210 53330) 2930) 2770) 2410) 1) 1) 2	7130 5420 3500	1624 1364 979	1	140 130 310	11	380 530 1380	29 37 37	1 1 4 5 1	8 8 7		32.1 28.3 31.9 54.4	10 11 6 12	5 1 9 1 7 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111	8 14 7	555	385 540 560 380
G-HB-R-357 A <t< th=""><th>G-M8-R-345 G-X8-R-346 G-MB-R-347 G-M8-R-348 G-M8-R-348 G-M8-R-349</th><th>.5 .4 1.0</th><th>11340 13640 13810</th><th>26 14</th><th></th><th>113 132 130 239</th><th>.6 .4</th><th>1 43 1 33 1 306</th><th>20 90 40</th><th>.1 .1 .1</th><th>14 12 16</th><th>18 15 18</th><th>56700 54660 55560</th><th>) 2690) 2810) 3250</th><th>) 8) 10) 9</th><th>4300 5570 6830</th><th>719 648 1153</th><th>1 2 1</th><th>410 360 210</th><th>11</th><th>1690 1370 1760 1770</th><th>33 38 49</th><th>4 5 5</th><th>9 8 8</th><th></th><th>48.0 45.0 43.0</th><th>5 13 5 10 5 9</th><th>6 1 1 1 2 1</th><th>1 1 1 1</th><th>1 1 1 1</th><th>13 19 23 20</th><th>10 5 5 10</th><th>835 1160 585 685</th></t<>	G-M8-R-345 G-X8-R-346 G-MB-R-347 G-M8-R-348 G-M8-R-348 G-M8-R-349	.5 .4 1.0	11340 13640 13810	26 14		113 132 130 239	.6 .4	1 43 1 33 1 306	20 90 40	.1 .1 .1	14 12 16	18 15 18	56700 54660 55560) 2690) 2810) 3250) 8) 10) 9	4300 5570 6830	719 648 1153	1 2 1	410 360 210	11	1690 1370 1760 1770	33 38 49	4 5 5	9 8 8		48.0 45.0 43.0	5 13 5 10 5 9	6 1 1 1 2 1	1 1 1 1	1 1 1 1	13 19 23 20	10 5 5 10	835 1160 585 685
G-LG-R-350 1 1 0 1 1 0 1	G-MB-R-350 G-M8-R-351 G-M8-R-352 G-CC-R-349 G-CC-R-350	.6. 7.	4630 3810 13590	66 74 24	1	117 103	.1 .2 .2	1 29 1 8 1 97 <u>1 492</u>	60 20 20 00	-1	3 14	8 9 10	15070 13220 52090 35400	3180 2550 1240 1370) 1) 1) 15) 1	1140 540 10840 4950	265 175 280 2163	233	30 48 620 410	13	50 90 2910 5040	32 29 32 30		3 16 87	1 1 1 1	1 3.0 1 119. 1 24.4	D 7 1 8 4 2	3 1 13 2 17 1	2	1	101 128 28 30	5 5 10 5	810 585 375 415
G-RU-R-459 G-RU-R-450 G-RU-R-460 G-RU-R-460 G-RU-R-461 G-RU-R-461 G-RU-R-461 G-RU-R-461 G-RU-R-461 G-RU-R-461 G-RU-R-462 G-RU-R-462 G-RU-R-463 G-RU-R	G-CC+R+351 G-LG+R-349 G-LG-R-350 G-LG-R-351 G-LG-R-352	.1 1.3 1.1	6090 5880 5730		1	137 105 134	.1	1 37 1 223 1 59 1 591	70 10 90 80	.1 .1 .1 .1	45 14 23	39 13 12 6	235580 58140 63820 84610) 1420) 2000) 2940) 1010) 5) 2) 1	2560 10770 1330 53180	20 809 380 4255	1	50 220 70 50	111	80 1750 1570 600	117 32 31 74	12	1 21 6		11. 10. 124. 118.	5 2 7 4 9 10 9 205	0 1 2 1 3 1	1 2 1 5	1 1 1 1	1 5 16 8	20 5 10 15	645 2945 420 17875
G-RU-R-462 G-RU-R-463 G-RU-R-463 1.7 19730 1 8 199 1 4 21190 1 18 34 62880 890 14 14040 1259 1 710 1 2690 27 1 16 1 129.9 207 1 1 1 19 2 2 2 9 20 515 500 15 1960 958 1 400 1 2450 24 1 14 1 129.9 207 1 1 1 19730 1 8 199 207 1 1 1 1 1 7 5 315 1 7 1 1 1 19730 1 8 199 2 7 1 1 1 1 1 19 2 2 2 9 2 0 5 15 5 1 5 1 5 1 5 1 5 1 5 1 5	G+LG-R-353 G-LG-R-354 G-RW-R-458 G-RW-R-459 G-RW-R-459 G-RH-R-460	7_4 _1 _4	1470 13790 13940	176 2483 1	1	102 24	-1	1 430 1 49 1 50 1 177	40 4 60 00 10	4.2 _1 _1	16 19 17 14	10 15 10 11	133070 129000 104260 71020) 480) 460) 590) 400) 1) 13) 12) 14	24290 11420 11470 16790	4619 692 443 2393		20 410 550 140	11	320 1460 2430 1570	44 30 18 44	226	16	1	1 14, 1 128, 1 153, 1 91,	6 14 0 6 0 7 8 10	6 1 9 1 5 2 17 1	i 4	1	1 2 1 1 29	2400 10 5	1600 655 520 235
GR 2.",	G-RW-R-461 G-RU-R-462 G-RU-R-463	1.7	17100	1	17 10 8	86 59 199	.7 .1 .1	4 223	10	-1	19	187	61040	500) 15	11960	- 958	: 1	400	12	2450	24	1 1 1	14	1	1 129.	9 10)7 、2		1	9 17		515
						,			<u> </u>	i K		2	ر . ر																				
																		•											. <u> </u>				
																		.					-										
														4														· · · · · · · · · · · · · · · · · · ·		_			
																							· **										

сонр	INTERNATIONAL	KODIAK

F.

1

 \mathcal{V} . U

PROJ: UNUK

١,

.

MIN-EN LABS - ICP REPORT

 \frown

. *

 (\neg)

1

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 05-0634-RJ1+.

DATE: 90/10/11 OCK * (ACT:F31)

ATTN: G.NICHOLSON	· · · · · · · · · · · · · · · · · · ·	A 6	•	BA	BE BI			co	-	FE			(604) MG		MO N			P P	SR	SR	TH	U	٧	ZN G	A SP	1 1	I CR	(A) AU	
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	PPM	PPM	PPM PPM			PPH F	PPM	PPM	PPN I		PPN		PPM PP	M PPN	I PPM	PPM	PPH		PPH P	PH I	PPŃ	PPM PP			PPH		
	2.3 7680 2.6 4210 2.2 8650 1.2 3870 2.1 4970	1 150	33 17 9 5 3	101 59 95 44 32	1.3 1 .1 6 .1 6 .4 2 .7 3	5710 19610	.1 .1 3.2	19 Z 10 1	426 42 113 33 233 44 135 20 164 31	4800 2 0510	2770 850	32 15 10 5 3	7320 3780 7310 4010 4080	606 122 161 281 122	6 62 2 83 3 67 33 33 14 82	0 14 0 13 0 78	620 670	11 19 23	1	8 10 7 6 7	1 1 1 1	1 9 1 8 1 21 1 13	6.2 5.2 8.5 2.8 8.8	70 19 18 202 259	1 6 1 7 1 7 1 7	2 1 1 1 1 1 1 1	82 96 113 231 338	5 5 5 5 5 5 5	
G-LG-R 342 G-LG-R 343 G-LG-R 344 G-LG-R 345 G-LG-R 346	.8 4150 .3 9720 1.0 17240 21.8 11560 3.2 1060	42 150	4 5 5 5 3	179 136 116 262 1108	.3 1 .6 1 1.0 1 .4 1 .2 1	6880 8310 15020 4420 75860	.1 .1 4.8	12 13	16 52	5380 (0510 (2200 /	3560 3400	- 5	2060 2900 10700 3330 68620	749	68 48 6 37 4 16 3 14 1 3	70 50 10	2230 2700 3200 2140) 406) 40) 45) 34) 7	271 32 21 29 3	9 12 21 8 140	1 1 1 1	1 7 1 10 1 4	1.6	1987 168 211 392 26	1 2 1 1	1 1 2 1 4	1 54 1 75 1 20 1 64 1 9	80 20 25 40 5	ł
G-LG-R 347 G-LG-R 348	1.7 23710 1.7 12350 1.4 3980 1.4 3190 2.5 3460	41 26 25 43	3 6 3 1 2	320 250 243 338 297	.7 1	35320 35070 30600 35310 75080	.3	14 16 (19 60 7 47 226 39 155 20 68 34	7480 9610 0680	4440 730	3 1 1	13940 18010 17980 13110 24120	2253 875 666	2 42 1 14 3 49 13 11 19 10	40 50 10 1 20 1	1890 2630 760 380 7 1210) 22) 31) 26) 27) 25	28 1 4	26 30	1 1 1 1	1 3 1 9 1 6	4.6 9.3 6.9 6.7 9.8	468 44 61 98 101	2 1 1 2	3	1 71 1 46 1 49 1 137 1 114	5 10 5 5 5	
G-MB-R 327 G-MB-R 328 G-MB-R 329 G-MB-R 330 G-MB-R 331	1.0 23080 1.1 23860 1.9 19440 8.0 19890 3.7 20020	19 10 53 53	3223	138 109 111 105 166	1.0 .8 .8	21910 27590 28170 21650 216070	.1 .1 .1	16 15 14 14	10 5/	2030	1080 1580 2790	16 13 11 12	16780 21340 21460 16040 13170	1327 1820 1300 1539	1 62 2 66 1 34 4 34 2 40	20 50 40 40 40	1 254 1 251 1 254 1 254 1 271 1 291) 29	<u> </u>	43 25 18	1 1 1 1	1 13 1 10 1 9 1 10	4.9	115 102 121 216 374	222222	2 3 2 3 2	1 23 1 19 1 11 1 20 1 19	10 5 70 10	
G-MB-R 332 G-MB-R 333 G-MB-R 334 G-DM-R 100 G-DM-R 101	1:0 10790 .3 14360 .8 14430 .7 5560 .5 4930	12 10 71	4 4 5 1 13	158 171 162 173 136	1.3	2 16950 1 14950 2 26980 1 8660 1 4550		14	5 50 10 54 7 10	8820 0540 4350 8860 6610	6600 5970 3500	12311	8120 6160 14750 2470 2220	2554 498 377	1 1		1 145 1 151 1 225 1 20 3 11	24 29 29 20 30 34	1 4 1 8 8	4 15	1 1 1 1	1 3	1.8 9.1 7.9 7.2 4.7	35 45 61 176 111	1 1 1 1	1 1 2 1 1	1 32 1 24 1 14 1 166 1 195	10 5 5 5 5	
G-DH-R 102 G-DM-R 103 G-DM-R 104 G-DM-R 105 G-DM-R 105	.9 3480 1.0 5860 1.4 8510 .5 5070 .6 4000	60 41 61	2	90 97 96 107 176	.4 .7 .6 .4	1 16880 1 15590 1 34740 1 4490 1 6180	1.4	261432	13 10 28 30 7 12	2560 6410 0520 2010 0400	3100 3360 3130	1 1 5 1 1	9000 7360 20780 2040 3350	715 1606 436	2 0	50	4 8 2 23 1 70 4 9 5 11	0 24 0 27 0 27 0 26	6 11 6 7		1 1 1 1		5.3 5.0 7.4 5.6 4.3	62 51 235 54 43	1 1 1 1 1	1	1 133 1 98 1 115 1 155 1 139	10 5 5 5 5	
G-DM-R 107 G-DM-R 108 G-DM-R 109 G-DM-R 109 G-DM-R 110 G-DM-R 111	1.0 5280 1.3 4640 1.1 16150 1.4 15200 .6 14980	1 26 1 1 1 1	15 10 8 7 7	132 151	.5 .1	1 3390 1 580 1 23130 1 20750 1 16370	.1	13	6 1 10 5 8 4	3200 6230 3820 5490 4240	2980 3300 3760	10		469 1454 1386	5 3 3 4 2 2	70 50	1 12 1 10 1 271 1 299 1 311	0 24 0 29 0 21	863	2 22 18	1 1 1 1	1 1	3.7 2.3 75.0 59.9 71.7	58 95 96 99 74	1 1 1 1	1 2	5 184 4 143 1 19 1 30 1 22	5 10 5 5	,
G-DM-R 112 G-DM-R 113 G-DM-R 114 G-DM-R 115 G-DM-R 115 G-DN-R 116	1.0 22920 .8 17290 2.4 6510 2.0 6320 1.7 5470	1 1 55 212	5		.4	1 15760 1 19460 1 36370 1 21770 1 32120	1	15 9 8	84 143 132	7210 7690 7970 6860 3830	4590 3250 3510	10 1 1	16140 13250 24220 13210 23680	1287 2487 1277	2	40 40 40 40	1 278 1 273 1 87 1 68 1 31	0 21 0 52 0 84 0 59	5 4 2 14 5 13 5 7	14 8 16	1 1 1 1		12.8 59.4 24.4 15.7 10.6	99 80 171 149 70	2 1 1 1	3 2 3 2 2 2	1 10 1 46 1 8 1 52 1 50	5 20 40 10)))
G-DM-R 117 G-DM-R 118 G-DM-R 119 G-DM-R 120 G-DM-R 121	1.7 4700 1.0 10000 2.0 10899 .7 1664 1.0 1795) 56) 24) 28) 1	476		.6 .3 .3	1 29680 1 16030 1 22640 1 24290 1 24330) .1) .1) .1	1 3 27	12 4 16 4 37 6	1410 1350 2460 4250 4860	5470 4440 4500	1 3 15	17690 6130 9900 14770 15410	1108 1953 1469	1 1 1 1 1 1 2	20 2 10 1	1 57 1 255 1 256 0 122 6 140	0 37 0 98 0 27 0 37	7 10 8 9 3 10 2 10) 15) 16) 18) 14	1 1 1 1	1 1 1 1	13.1 27.8 40.8 52.5 57.2	175 63 409 103 92	1 1 1 1	2 1 2 4 3	1 16 1 60 1 40 1 32 3 58	5 5 10	,
G-DN-R 122 G-DM-R 123 G-DM-R 124 G-DM-R 125	.5 1325 .8 957 .8 900 .7 929	0 33 0 63	S		,2 .1	1 11870 1 17750 1 20980 1 11350) .1	12 12	11 5	0050 2770 8410 2440	4860	4	7560 9190 10060 5290	1249	31 1 21 21	90 00	1 163 1 185 1 186 1 260	0 31 0 51	2 19 2 19	i 17 17 17	1 1 1	1 1	59.5 45.2 46.3 53.8	54 49 61 76	1 1 1 1		1 30 1 48 2 57 1 10	5 10	

!

T

MIN-EN LABS - ICP REPORT

1 3

FILE NO: 0S-0229-RJ5+6

PROJ: UNUK

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

DATE: 90/08/13

PROJ: UNUK ATTN: G.NICHOLS	DN	(604)980-5814 OR (604)988-4524	* ROCK * (ACT:F31)
	AG AL AS B BA BE BI CA PPH PPH PPM PPM PPM PPM PPM	CD CO CU FE K LI MG MN MO NA NI P P8 SB SR TH U V PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM	ZN GA SN W CR AU HG PPN PPM PPM PPM PPB PPB
NUMBER G-LG-T 190 G-LG-T 191 G-LG-T 192 G-LG-T 193 G-LG-T 194	1.3 7310 1 3 108 .6 1 51570 .4 7800 10 3 146 .6 1 7100 .4 20130 1 3 58 .5 1 18400 .6 10750 8 3 171 1.3 1 4290 1.2 13000 1 3 163 .9 1 18570	.1 9 10 39300 1850 19 7800 1338 2 100 1 420 18 1 10 1 1 22.0 .1 9 11 50640 2320 34 2600 361 3 140 1 370 19 1 4 1 1 22.7 .1 16 8 77630 620 33 16720 956 22 220 1 700 10 1 4 1 1 13.4 .1 12 17 47310 3400 14 4760 230 1 110 1 450 24 12 2 1 123.4 .1 11 12 44450 2690 21 10970 605 1 120 1 480 18 8 10 1 1 28.9	40 1 1 1 5 3495 42 1 2 1 1 10 4950 61 1 1 1 1 5 1830 64 1 1 1 1 5 820 68 1 2 1 1 5 1715
G-LG-T 195 G-LG-T 196 G-LG-T 197 G-LG-T 198 G-LG-T 199	.3 19050 1 4 103 .7 1 10350 .6 13270 1 3 198 .5 1 3320 .2 9800 1 4 94 .5 1 23130 .1 10120 27 6 90 .1 1 3310 1.3 10150 1 1 28 .3 1 71670	.1 13 11 65830 2020 46 16170 501 1 160 1 370 18 1 6 1 1 47.7 .1 9 10 51300 2930 37 5480 161 1 130 1 550 15 12 5 1 1 31.6 .1 15 9 85710 1600 27 4300 1775 30 90 1 800 17 4 2 1 63.5 1 12 7 140540 1400 16 6790 73 23 280 1 1330 11 15 4 1 191.1 .1 13 7 46630 270 17 8250 1599 7 230 1 1000 20 5 70 1 74.3	29 1 1 1 5 8490 B 1 1 1 20 4230 44 2 2 35 5 630
G-LG-1 200 G-LG-T 201 G-LG-T 202 G-LG-T 203 G-LG-T 204	1.1 4060 9 2 22 .2 1 74230 2.2 2740 41 1 27 .1 2 102190 1.5 11870 1 2 36 .3 1 81200 1.7 4290 28 4 49 .1 1 81560 .8 6880 52 3 40 .1 1 25020	.1 15 4 55400 190 9 3440 1482 16 340 1 1020 16 1 8 1 1 86.8 .1 12 5 45130 190 8 4040 1490 14 210 1 710 27 6 12 1 1 64.6 .1 16 6 50740 400 21 9650 1864 5 280 1 1120 24 4 16 1 124.6 .1 17 6 62130 980 5 3610 1575 7 290 1 1210 22 10 21 1 65.5 .1 22 12 80830 730 8 6030 1088 2 710 1 1720 25 14 10 1 171.6 .1 28 80830 730 8 6020 202 5 850 1 980 16 9 4 1 132.6	21 6 4 1 1 10 1020 34 2 2 1 1 5 880 58 3 3 1 1 10 1520 32 1 2 1 1 5 2680
G-LG-T 205 G-LG-T 206 G-LG-T 207 G-LG-T 208 G-LG-T 209	.7 3680 29 1 44 .1 1 6460 .4 6560 27 2 116 .4 1 4280 .6 8470 8 1 39 .2 1 13190 .5 7210 40 3 53 .1 1 18590 .5 7950 23 1 59 .1 1 6680	1 14 8 54070 1350 6 2440 144 6 640 1 990 22 14 5 1 1 102. 1 16 7 53100 360 14 6550 516 2 680 1 1510 16 1 7 1 1 193. 1 22 10 82110 910 9 4480 837 5 610 1 1720 20 9 7 1 1 156. 1 19 7 49230 720 11 5250 318 2 660 1 1540 12 3 7 1 1 158.	23 1 2 29 10 3480 68 2 1 3 20 5 1825 5 54 1 1 1 10 4620 8 104 3 1 2 15 5 2200
G-LG-T 210 G-LG-T 211 G-LG-T 212 G-CC-R 163 G-CC-R 164	.4 6670 68 2 43 .1 1 15820 .4 6810 84 2 46 .1 1 17820 .5 5230 40 2 53 .2 1 13280 1.0 9250 22 2 246 .4 1 15410 1.4 2960 1 1 96 .5 1 33210	1 18 6 68980 580 10 4640 662 1 680 1 1530 16 4 5 1 1 180.5 1 18 9 61220 690 6 2660 543 1 920 1 1450 15 7 9 1 1 150.5 1 16 18 50870 4230 5 2230 565 1 490 1 1290 23 1 31 1 47.5 1 11 7 40410 2220 1 18470 1522 1 250 1 2030 24 1 14 1 1 37.5 1 10 1200 1200 1200 1200 1200 1200 1200	29 1 1 2 5 1820 5 16 1 2 3 26 10 1920 5 16 1 2 3 26 10 1920 2 47 1 1 2 30 10 265 9 30 1 3 1 32 10 530
G-CC-R 165 G-CC-R 166 G-CC-R 167 G-CC-R 168 G-CC-R 169	2.0 24750 1 5 71 .1 6 9680 .4 4060 569 5 24 .1 1 28330 1.5 9680 165 1 232 .6 1 35310 1.8 2950 197 2 36 .1 1 80590 1.2 3950 1 2 125 .6 1 30630	1 15 13 126220 1600 2 2250 2178 24 170 1 950 27 30 32 1 1 24. 1 14 16 46460 4060 4 3040 2326 8 350 1 1870 45 1 106 1 1 36. 1 15 14 61130 1410 1 2160 3642 10 180 1 1630 45 6 111 1 1 18. 1 13 8,47910 2580 1 12930 1863 1 320 1 2040 29 1 13 1 1 34.	0 20 1 1 1 1 5 31375 3 44 1 1 1 28 5 2855 5 21 1 2 1 1 5 7000 6 25 1 3 1 23 5 1320
G-CC-R 170 G-CC-R 171 G-CC-R 172 G-CC-R 173 G-CC-R 174	1.5 2870 1 4 96 .5 1 38090 .6 7400 1 3 172 .6 1 15530 .4 16430 1 3 106 .6 1 10640 .6 8500 15 2 73 .4 1 7160 .9 14340 1 3 116 .5 1 22450	1 10 47250 4670 3 3280 1059 2 260 1 2730 38 1 36 1 18. 1 14 12 54150 3250 10 6640 899 4 260 1 2440 24 1 22 1 50. 1 13 14 60250 2190 5 2670 243 1 460 1 2550 38 1 11 1 58. 1 10 20 31380 1980 19 8840 356 1 270 1 700 18 177 1 23.	0 48 1 2 1 1 5 1360 4 84 1 2 1 1 5 670 7 38 1 1 1 1 1 10 7940 3 48 1 1 1 40 10 475
G-CC-R 175 G-CC-R 176 G-CC-R 177 G-CC-R 178 G-CC-R 179	.9 13420 1 3 105 .5 1 27780 .8 16030 1 3 111 .6 1 25350 .7 13570 1 2 95 .7 1 21080 .7 7670 1 4 83 .3 1 51390 1.0 5870 6 5 42 .5 1 68720	.1 13 25 36880 2030 17 9810 439 1 260 1 630 18 1 87 1 1 25. .1 11 20 41160 2130 22 12200 535 1 300 1 700 14 1 69 1 30. .1 9 23 35220 1640 20 9870 505 1 210 1 730 16 1 60 1 1 22. .1 12 6 55550 2340 6 24850 2476 1 140 1 1930 21 2 38 1 29. .1 12 6 63960 2160 4 27510 2804 1 100 1 1630 23 8 37 1 26.	2 56 1 2 1 10 5 325 6 53 1 1 1 22 10 220 4 48 1 3 1 1 5 1170 7 36 1 5 1 1 5 1750
G-CC-R 180 G-GM-T 027 G-GM-T 028 G-GM-T 029 G-GM-T 031	.8 7770 1 4 73 .1 1 51750 .6 10470 1 6 212 .6 1 30460 .9 14070 1 5 277 .5 1 29380 1.5 10840 1 6 109 .6 1 31640 .8 14060 1 6 230 .5 1 15340	.1 12 6 63760 2450 5 28980 2464 1 110 1 1880 30 8 60 1 1 32. 1 14 6 55040 3400 5 16210 1687 1 350 1 2660 23 1 48 1 1 38. 1 13 7 48870 3920 7 15590 1278 1 310 1 2610 26 1 35 1 42. 1 31 0 50790 4760 1 17800 1472 1 220 1 2490 43 1 23 1 36. 1 10 7 27710 5840 2 5910 869 2 140 1 3080 24 1 51 1 1 35.	7 89 1 4 1 10 5 280 9 61 1 2 1 1 5 340 6 93 1 3 1 26 5 651 9 60 1 1 12 10 56 651 9 60 1 1 12 10 56 10 1
G-GH-T 032 G-GH-T 034 G-GH-T 035 G-GH-T 035 G-GH-T 037	1.1 5400 1 5 61 .1 1 40680 1.0 5590 1 5 119 .2 1 45010 1.3 6300 1 4 217 .5 1 46060 1.5 7720 2 4 227 .4 1 45886 .7 19180 1 3 181 .6 1 26220	1 12 8 61310 2800 1 27820 1527 1 120 1 1880 31 3 23 1 1 29 .1 11 8 56920 3000 1 26500 2739 1 90 1 1860 29 6 61 1 25 .1 12 6 41600 3380 1 29190 1739 1 110 1 2370 32 2 26 1 31 31 1 1 1 1 31 1 1 25 1	2 187 1 5 1 10 10 1464 2 141 1 4 1 3 5 1451 6 282 1 4 1 13 10 1814 2 99 1 1 1 1 5 284
G-GM-T 038 G-GM-T 039 G-GM-T 040 G-GM-T 042 G-GM-T 043	1.5 8930 1 6 175 .4 1 66770 .5 15880 1 3 145 .6 1 21930 .6 16490 1 3 137 .7 1 216930 .8 7440 8 2 102 .7 1 60330 .7 3780 39 1 81 .4 1 33644	1 15 7 54280 2320 17 12660 1187 1 380 1 2740 31 1 30 1 1 69 1 16 7 55400 2520 15 11810 972 1 320 1 2940 30 1 28 1 1 61 1 4 7 28350 2570 6 2720 350 2 240 1 220 29 1 14 1 1 44 1 4 5 28340 1740 3 1620 443 2 390 1 150 31 2 3 1 1 3	0 327 1 1 1 1 1 10 1120 5 230 1 2 1 1 5 1040 3 134 1 1 1 64 5 1810 0 97 1 1 6 176 5 2080
G-GM-T 044 G-GM-T 045 G-GM-T 046 G-GM-T 047 G-GM-T 048	.9 4440 28 2 88 .5 1 608i .9 2470 52 1 127 .2 1 98i 1.1 5920 13 2 75 .7 1 1686i 13.6 2280 55 9 53 .1 2 6549i 1.1 10560 1 4 94 .5 1 3047i	1 2 5 20720 2440 1 270 57 4 110 1 120 39 7 2 1 10 6 39780 2280 5 7410 607 1 120 1 1650 30 3 11 1 39 152.7 14 29 83660 1470 1 38260 2921 2 20 1 330 1309 61 5 1 13 152.7 14 29 83660 1470 1 38260 2921 2 20 1 330 1309 61 5 1 13	9 12 1 2 5 147 5 1160 4 15 1 1 1 56 5 1040 7 32079 1 8 1 1 60 681250

P: INTERNATIONAL J: UNUK N: G.NICHOLSON	KODIAI	C									t 15	TH S	T., M	IORTH	VANC		, в.С	:. V7		2						-				1	DATE	: 90,	29-RJ /08/13
ANPLE UNBER	AG PPN	AL PPN	AS PPM	8 PPM	BA PPN	BE PPM P	B1 PM G	CA PN P	CD C PM PP	0 (14 Pi	cu	FE PPN	*	514 C C L1 I PPH	M	4)988 G M	N MC	AH C		P PPN	PB PPM	S8 PPM 6			U	V	ŽN PPN	GA DDM 1	SN	V	CR	AU	T:F31) HG PP8
-GH-T 049 -GH-T 050 -GH-T 051 -GH-T 052 -GH-T 053	1.2 .8 1.0 .3		1 15 24 1	5 5 1 5 5	81 63 118 147 150	.5.2.5.4	1 614 1 590 1 324 1 240 2 189	00 70 40	.1 1 .1 1 .1 .1	1 ' 1 4 5	12 4 9 5 6 2 10 5	3250 7200 3690 0920	2580 2380 1320 3310 2700		3394 2765 1661 1161	0 290 0 291 0 177 0 165 0 117	355	1 240 1 140 5 40 1 230 1 440		2010 1750 180 2560 1940	47 39 40	4 5 4 7 1	9 14 13 15 18		1	37.3 29.0 8.2 44.6 02.2			3421	1	1	10 1 5 10	7500 3460 1400 1615 930
-GN-T 054A +GN-T 054B +GN-T 055 -GN-T 055 -GN-T 056 +GN-T 057	.8 1.4 .9	6390 9650 6720 3760 3390	40 112 39 49 47	64332	137 135 318 159 95	.1 .4 .3 .3	1 213 2 159 1 123 1 97	570 540 260		Ö	84 115 72 71	4520 4910 4160 3940	3580 2530 2510 2420 2220		1070 5 799	10 168 10 87 10 49 10 32	3 4 4 7	1 120 1 380 2 130 2 50 2 250	1	1740 2090 580 100 80	55 42 47 23	15 7 4 2 2	11 19 5 3	1 1 1 1	1	35.9 64.8 16.5 3.6 3.1	129 132 101 54 29	1	4321	2	3 1 78 85 29	5 5	6730 7130 2160 1280 640
-GH-T 058 -GH-T 059 -GH-T 060 -GH-T 061 -GH-T 062	.9 .9 1.0 1.4 1.0	4010 5600 3880 4160 3020	45 36 46 9 32	45442	73 88 63 56 57	.5 .8 .5 .9	1 13 1 9 1 12 1 32 1 21	190 -	.1	22232	5 6 6 1	9060 9720 3710	2710 3570 2580 2470 1800		1 2531	10 36 20 23 30 32 10 104 50 93	6 9 5	2 110 2 140 3 220 1 200 1 360	1	70	25 21 23	1111	52 6 19 13	11111	1 1 1 1 1	2.8 2.5 2.9 5.9 3.8	54 26 59 41 72	1 1 2 1 1	11132	1 3 1 3 1		55555	680 550 615 430 445
G-GN-T 063	5.8	4010	98	6	69	.5	1 14	110	.1	6	86	4180	2464	D .	1 700	0 54	1	1 200	1	50	133	64	5	1	1	2.7	62	1	3	1	28	30	2320
																																	-
····			<u> </u>						. <u> </u>					<u></u>																			
··																										<u></u>			<u> </u>				
-																			<u></u>									•.					
																															đ		
																						<u>, .</u>											
					••	15									<u> </u>						<u> </u>												
k							<u> </u>																										

: JNTERNATIONA ; UNUK ; G.NICHOLSON	L K00	IAK												I-EN T 15T (60	H ST	., N	ORTH		COUVE	R, 1	a.c.		172										·	FILE	DAT	E: 9	249-R 0/08/ Ct:F3
MPLE Imber	AG PPM	AL PPN			B		BE PPM	B1 PPM	C/ PPI		CD PPM F	CO PPN	CU PPH	F	E M Pi	K PM P		MG PPM	MI PPN		D N/ M PPI			P PI N PPI	S SI	B S M PP	R T M PP	H 1 M PP	U M	V PPM		GA PPN			CR PPH P		HĜ PP8
PN 144 PK 145 HM-R 220 HM-R 221 MM-R 222	1.3 .9 .5 .1	13690 7630 7130 17500 12540	61 3	1)) 7	4 2 4 1 8	24 29 48	1.3 1.1 .7 1.7	1	2258 2004 372 644 1662		.1 .1 .1 .1 .1	24 14 4 28 12	13 9 10 18 15	5537 4582 1994	0 2 0 1 0 46 0 67	70 80 10 790	29 15 2	12980 6680 1180 4710 7160	911 577 82 491	 2 1: 3	1 63(8 75(1 24(1 32(1 8(143 120 28 136 138	0 2 0 1 0 2 0 2	2 2 3 3 1	61	9 9 3 1 4	1	1 26 1 17 1 1 1 9	4.7 2.5 7.9 4.7	52 46 33 50 100	33312	21111	3451 1	104 1	5 10 10 5 10	1000 1295 1900 2420 750
MM-R 223 MM-R 224 MM-R 225 MM-R 226 MM-R 214	1.3 .9 .7 3.0 4.1	4190 4290 7860 2850 3000	4 5	6 7 6 9	4 4 1 3	64 60 64 71	.9 .6 1.0	1 1 1 1 1 1	2239 161 1953 1176	0 0 0 0	.1 .1 .1 .1 8.8	3 4 8 12 9	8 7 12 25 31	2333 3613 4708 8883	0 29	10 80 80 90	1	10250 560 9780 3830 9780	i 123	U 5	1 90 2 41 1 241 1 71 8 5	D ' D '	1 16 1 95 1 95 1 26 2 153	03 03 014	91 9 04		6 1 3 3	1 1 1 1	1	5.9 4.1 8.6 3.4 3.6	43 2 43 560 25728	3 2 1 1	1 1 2 5 4	321	65 47 29 31 53		650 3730 275 24000 14000
MH-R 215 MM-R 216 MM-R 217 GM-R 073 GM-T 064	.4 .5 .1 1.7	8960 11220) 3) 10) 49) 14	4 4 7	4 1 5 11	50 82 67 260	9 1.2 1.1 .7 1.6	1112	1310 3165 217 975 4328	0 0 0 0	1.3 .1 .1 .1 .1	12 10 16 11 12	10	3627 8149 14868 4391	70 44 20 21	30 10 240 520	1	4160 22020 850 2080 34110	93 367 1 53	6 5 2 3 2	2 34 1 3 1 3 0 5 1 14	0 0 0	1 251 1 60 1 30 1 149 1 192	05 05 03	0 4 3 4 2	1421	2 5 1 3 7	1 1 1 1 1	1 5 1 2 1 1	3.0 1.4 9.2 4.5 9.7	482 416 276 80 123	1	1 4 3 1 3	2 1 3 1	19 1 61 1	30 5	2815 5750 67500 1510 1830
-GM-T 065 -GM-T 066 -GM-T 067 -GM-T 068 -GM-T 069		12940 13990 8350 6470)))))))))		81 54 4	197 86	1.3	Z	3787 1779 7090 1004 934	0	.1 .1 .1 .1	14 14 10 7 10	10 12 9 8 8	470 4859 310	30 38 50 38 20 26 50 46 10 48	830 620 680	10	2178(1120(4044(364(316() 137) 433) 44	4 6 8	1 19 1 29 1 8 1 6 1 12	0 0 0	1 273 1 252 1 173 1 116 1 227	0 2	0 7 3 1 0 1	1 3	29 21 58 9 14	1 1 1 1	1 8	53.3 51.4 54.5 26.4 53.3	646 107 110 37 69	212	4	1	5 4 21 13	10 5 60 20	5749 1740 1599 1920 2570
-GH-T 070 -GH-T 071 -HH-T 218 -HH-T 219 -GH-T 041	.7 1.0 .6	428 439		7	1	196 225 511 239	.5 .5 1.3	1		0	.1	2 6 7 5 16	9 9 8 9 15	318 230 242	50 28 20 44 10 36 70 39 70 26	440 660 930	1 1 1 7	480 870 1050 490 7650) 11) 95	8 1 3 8	1 5 0 7 2 5 4 3 34	0 0 0	1 17 1 105 1 140 5 65 1 234	0 6		4 9 6 10 4	2 5 8 39	1 1 1 1		4.1 18.7 23.1 19.9 70.5	47 633 15 10 60	- 3	1	3 4 3 2	75 80 45 63 17	5 10 10 5 5	163 0862 465 298 195
																																•.					
<u> </u>																														<u>-</u>					·		
										<u> </u>	.																·										
			<u></u>		-																																
	+					_,																		<u>, </u>													
.						<u>Z</u>	<u>,</u>																														

MIN-EN LABS - ICP REPORT

FILE NO: 05-0267-RJ1+2

DATE: 90/08/18

 \square

PROJI UNUK ATTN: G.NICHOLSON

ε.

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

ATTN: D.MICHULSUN												(004)9	00,20	14 U	(604	1408-4	1724													ROCK "	0	CT:F31)
SAMPLE NUMBER	AG PPM		AS PPM	B PPM	BA PPM	BE PPH 1			CD PPM J	CO PPM	CU PPM	FE PPN	K PPM	LI PPM	MG PPM		MÖ PPH		N I PPM	P PPM		SB PPM			U PPM		ZN PPM					HG PPB
G-8C-R-061 G-8C-R-062 G-8C-R-063 G-8C-R-064 G-8C-R-065		720 22600 10930	1 25 1 9	4 3 1 4 3	58 57 119	1.0 1.0 .2 1.4 1.1	1 222	51980 54550 51550 18610 6330	.1 .1 .1	10 10 2 13 17	7 10 3 9 11	48580 43340 16740 50020 41580	3040 230 4650 4070	5	8150	2523 2008 933 129	1 1 1 7	270 190 30 610 290		1560 1590 90 2820 2250	36 26 23 11 33	1 1 2 1	3 5 54 35 11	1 1 1 2	1 1 1 1	39.3 44.5 7.1 100.6 49.4	48 52 13 131 31	1 1 2 2	5 5 1 1	1 22 1 26 6 169 1 20 3 94	555	500 590 230 200 830
G-8C-R-066 G-8C-R-067 G-8C-R-065 G-8C-R-069 G-8C-R-070	.4	4890 12910 16630	35 1	2 1 4 3	111		7	15990 16140 7860 6140 15410	.1 .1 .1 .1	13 23 9 12	9 10 11 8 8	44570 77440 38940 58550 50040	650 2630 4430 6550			1146 264 233 1397	1 8 1 1	370 620 540 540 330	1	1560 3010 1240 3080 2190	13 9 21 17 22	1 1 5 1	67 24 12 11 29	1 1 1 1 1	11111	80.8 172.6 26.9 71.3 47.0	115 22 24	1 1 2 1	1 1 1 1	1 69 1 1 3 119 1 52	5	215 210 4400 2695 3510
G-8C-R-071 G-8C-R-072 G-8C-R-073 G-8C-R-073 G-8C-R-075		13350 12720 19910 21800		25421	89 112 171 135 99	1.2 .5 .8 .1 .9	11	9430 31260 25970 19920 15260	.1 .1 .1	15 12 11 20 13	11 6 10 9 7	71100 78210 57410 59620 56380	2840 4690 790 760) 9) 5) 5) 14	7770 15090 17570	3466 2182 1170 859	1 1 1 1	480 230 530 610 730		3070 3420 5360 2270 2800	23 29 27 6 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 55 100 16 22	1 1 1	1	121.9 41.9 40.3 83.4 119.8	83 201 91 86	1 1 1 2	12112	1 1	10	1050
G-BC-R-076 G-BC-R-077 G-BC-R-078 G-BC-R-079 G-BC-R-080		10990 19080 18340 21390		33621	153 111 43 124 514	.5 .8 .1 .6 .3	8	9630 6280 7000 15730 32180	.1	10 12 20 13 15	9 9 41 10 11	44300 55870 135010 60650 48460	4650 2890 3720 3010) 3) 8) 8) 13	7860 8770	575 523 932 1644	13 2 1 1 1	490 410 210 270 230		1910 2070 1720 1670 1980	27 21 34 21 13	1 1 1 1	16 15 10 6	1	1 1 1 1	38.1 41.0 103.5 77.8 30.7	20 62 47 74	1 1 1 1	1 1 1	3 12 1 3 1 1 20 1 1	5 5 5 5 7 10	
	2.1 1.7 1.1 1.7 1.8	9500 25400 6690 7400		8 10 6 8 12	58 43 29 83 25	4.67.5.6	1 1 1	19100 86300 32790 78570 80770	.1	24 19 24 15 15	133 63 106 49 77	49320 39380 45300) 1630) 1270) 1170) 1410) 9) 29) 6) 9	34140 38020	2621 1147 1545 2234	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	430 210 550 200 290	17 37 9 3	720 370 1040	18 26	1 1 1 1	12 1 1 1	1 1 1 1 1	1 1 1 1	209.9 105.8 156.9 117.6 93.5	118 160 262 244	1 1 1 1	1 4 5 5	2 42	5 5 5	360 345 575 285 245
1	2.4			20 9 2 4 2	77 40 43 29 38	.6.5.5	1 2 6	63280 80780 70710 29220 28200	.1 .1 .1 .1	14 14 13 25 27	216 160 98 99 54	40400) 1140) 1) 20] 30	2530 44220 15330 28690 31310	946		170 220 220 1190 340	9 11 26	940	18 11 20 6 6	1	1 33 94 3 17	1 1 1 1	1111	87.5 98.0 88.7 157.2 151.0	106 54 54	1 1 1 1	2 6 1 1	1 1 1 2 1 2 1 3 1 8	5 10 5 5 3 5	190 165 225 175 155
C-SATR BOY	3.9) 1) 1) 114	10 11 3 10 16	- 94	1.6 .1 1.0 .5 .7	1	8290 26300 2790 26630 33630	.1	30 30 16 21 9	11346 378 211 135 61	55670		0 18 0 39 0 2	17700 23380 30420 11060 14260	814 372 799	1	150 500 170 150 350	62 165 5	2710 640		33 1 1 1 36	20 7 4 41 45	2 1 1 1	1	130.7 206.0 84.4 53.3 21.3	57 66 27	4	1 1 3 4	2 5	75 555	140 240 350
G-SN-R+045 G-SM-R+046 G-SM-R+047	3.5	368	0 1 0 1	11 8 2 2	80 20 78 102	.1	1 1 1 1	13380 4390 1990 17500	-1	22 34 20 12	25513 483 179 65	87660 181420 62360 36080		0101	360) 79) 55	11	450 120 200 380	1	770 860 560 2340	18 18	11 1 1	58 2 37	1 1 1	1	136.3 13.3 8.9 15.5	5 260 5 2 5 5	1	17 1 1	1 1 1 1 1 2	1 5 1 5 1 5 7 5	2940
										-													,									
	1														<u></u>													<u> </u>		<u> </u>		
				•		-																										
·L	<u> </u>										<u>.</u>																					

PROJ: UNUK

MIN-EN LABS - ICP REPORT

FILE NO: 05-0603-RJ1+2

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2

* ROCK * (ACT:F31)

DATE: 90/10/05

(604)980-5814 OR (604)988-4524 ATTN: RICK WALKER HG ZN GA SN Ψ. CR AU C0 CU FE K L1 MG MH MO NA NE P PB SB SR TH U AL. A\$ BA BE BI C.A. CD SAMPLE AG РРМ РРМ РРМ РРМ РРМ РРМ РРМ РРМ РРМ PPH PPM PPM PPM PPM PPM PPB PPB PPM PPM PPM PPN PPM PPM PPM PPM PPM PPM PPN PPH PPM PPM NUMBER PPM 103.8 18 11580 1314 1 300 G-RW-R-441 4.4 20350 183.5 20 114090 20 19590 1824 1 110 -1 5.1 .1 . 1 G-RU-R-442 Ż 77.6 6 25530 61080 2400 24 13600 1247 1 260 -1 4.2 22920 .1 .1 G-RW-R-443 1 2330 27.0 2.0 21160 .1 48150 3080 20 10100 1742 G-RV-R-444 2 29690 .4 -55 6 27810 57810 550 28 26340 2255 1 280 1 1510 179.4 - 6 4.1 24830 .1 104.6 1700 111 54320 3570 34 18530 1256 5.6 23620 .1 1.4 2 1350 160.2 15 ZŌ 22 16740 1056 1 320 ō - 25 -1 4.7 27340 .1 .1 15 16130 1866 1 490 1 1010 -47 206.9 3.0 16720 4 16230 .1 .1 Ż 16 16230 1845 228.1 2.7 16400 .1 92.1 56240 2020 - 3 1 13720 18 9450 930 15 310 1 2520 206 7.7 18620 1.7 173.2 3 1610 17900 1224 25 9.0 21120 1 123 4.6 163.0 26 23120 1011 1 250 17 950 ž Ś Š 1 430 131.0 11 18190 1420 2.3 23100 61300 1470 G-MB-R-322 .5 1 135.6 2 29270 18300 1606 53360 860 G-MB-R-323 2.1 18570 .3 Ā 1 135.9 -1 14 19290 1218 1 22400 61850 1030 1.8 24070 .1 - 1 G-MB-R-324 122.8 55070 1220 12 16360 .1 3 23250 G-M8-R-325 2.2 17160 14 19270 1297 3 470 119.5 54890 870 G-M8-R-326 75 2.2 18260 .5 15450 2810 7.6 .7 GeLGtR+320 i 350 8730 3800 6.1 .5 G-LG-R-321 .7 3 330 5.3 <u>.</u>2 Ż 10110 3280 . 1 G-LG-R-322 - 4 48.1 23 34980 48630 4860 -40 3 1700 35.3 18650 __1 . 1 G-LG-R-323 21760 5.8 598 -5 30920 1400 .1 - 7 14.3 24560 1040 6 460 26 800 3.1 .6 - 1 1 270 133.8 5. 73 58000 2080 -1 .1 2.5 17.1 13 380 1.2 17 1450 1.5 . 2 133 12.6 1.3 1.4 18.4 1 113 3 400 38 1250 ŽŶ ž .3 .9 ō 17410 1682 1 1730 236.2 1.3 12630 .1 .1 왍 16000 2120 6.5 G-DM-R-085 .8 .7 .4 5.1 8030 2130 1 110 . 1 G-DH-R-086 1.0 2 100 3.0 11030 2560 .5 G-DM-R-087 .7 11640 2880 13 6.5 .8 .5 .3 G-DM-R-088 10 2685 20.8 27850 4130 6950 1042 G-DM-R-089 1.9 . 1 15.9 8340 1099 26230 3010 .5 .2 G-DM-R-D90 1.3 - 1 3.7 14100 3560 . 1 -2 G-DM-R-091 1.0 18.0 19400 3540 .7 . 1 G-DN-R-092 .8 20 3250 37950 2790 16350 1539 31.1 1573 6.3 R .9 G-DN-R-093 2.0 19.6 36420 3260 з -14 1.0 2.3 .8 .5 G-DH-R-094 ī 4.0 11150 2910 . 1 - 3 G-DM-R-095 1.2 2.9 -5 .2 13700 2800 -1 G-DM-R-096 .8 ٤. . 1 S 3.7 ς 13280 2220 1.9 .2 1.4 G-DM-R-097 13620 2070 3.6 3260 :2 :2 .1 1.2 G-DH-R-098 13820 2310 36 23 - 1 . 7 G-DM-R-099 .5 61320 4561 16.7 .z G-LG-R-336 8.2 9480 1509 S 9.0 . 1 22150 60.8 G+LG-R+337 2100 2245 ¥84 6.9 31330 40.8 18530 2010 .3 G-LG-R-338 14.1 11 217840 150 ΞÓ 11.8 40 4565 29050 2986 -24 .1 G-LG-R-339 6.0 .1 330 .2 38430 520 49790 3166 38 9 232 30.7 -43 - 1 G-LG-R-340 3.3 . 1 51.3 59210 4160 4870 987 G-LG-R-341 1.1 .5 .1 45, 72.3 59920 1190 7 10310 3594 G-CC-R-337 .1 .6 1.6 90.6 51940 2970 4750 1769 §-CC-R-338 294 .2 3.0 23 5 1110 7570 1342 8 350 67.8 1.5 16990 54610 3050 G-CC-R-339 .4 .1 Ĵ 1380 102 153.1 3.6 20720 .1 40 17440 1666 .1 239.8 44 22950 3514 3.8 21430 .1 -1 .1 Š Ż Ž7 53 24700 2005 1 530 1 1110 139.1 .1 2.9 63 27090 2118 S 147.3 1 430 .1 .1 3.2 19040 149.7 1 530 47020 370 4 5790 2302 3 12840 2371 5790 2302 .8 .1 1.6 530 117 1 37.8 38770 2060 8 180 2 61980 43.5 15 2.7 5470 2308 .5

> 1. 1

ż

15

PRO.

10 220 5 130 5 200

15 300

70 1800 5 390 10 170 5 330

5 3080

1 1400 1360 13 25 595

13 25 595 26 590 5960 13 5 310 32 95 420

· · ·		Γ	Г	-)		ן נ		٢	-)	٢)	l.)				٦	1	1	1	Ĵ	Γ	7	Γ	.	\square	(J	P	,
	NTERNATION	AL KOD	IAK									-EN															FILE	NO: 0		9-RJ3- 07087	
PROJ: U Attn: G	INUK , N [C KOLSON									705	WE 31	15TH S (604)9	-			•			112								٠	ROCK		CT:F3	
		AG PPN	AL PPM	AS PPM PP	9 B/ M PPI	A BE	B1 PPN	CA PPH	CD PPM	CO PPM		FE PPM		LI PPM	MG PPM	MN PPM	MO PPM	NA PPH I	N I PPM			SB SI PM PPI		U PPM	V PPM	ZN GA PPM PPM		W CF PM PPF		PPB	
G-PN- G-PN- G-PN-	T 061	.1 .1 .8	5080 6220 5910 7730 14070	2	1 139 1 12 1 12 5 18 5 39	1 .8 0 .8 5 .5		1670 6190 4080 66490 27090	.1 .1 3.4 .1	1 1 10 14	42477	5610 6330 6470 46690 51030	3890 3370		560 800 620 33430 16450	210 571 561 3995 1968	1 1 1 1	60 20 20 80 180		40 60 50 650 630	17 17 16 28 25			1 1 1	1.2 1.3 1.6 26.9 51.4	34 1 30 1 44 1 1960 1 323 1	1 1 3 1	4 90 2 5 4 9 1	1	5 745	
G - PN - G - PN - G - PN - G - PN - G - PN -	T 064 T 065 T 065 T 066 T 067 T 068	.2	3630 24520 17880 17620 10640	1	3 16 4 28 4 9 4 7 5 17	9.8 1.7 6.6	1	79400 23360 33050 28320 20750	.1 .1 .1 .1	6 13 13 14 13	36577	35970 59790 53890 53920 51280	2520 2460 2630	26 15	44180 23660 25480 20200 9740	1456 2350 1811	1 1 1 1 1 1	50 350 250 310 270	12	440 2710 2440 2420 2960	15 16 19 24 31	1 3 1 2 1 1 1 1 1	51	1111	17.9 94.1 84.1 81.7 41.1	127 1 111 1 409 1 108 67	5	1 1 1 1		5 360 5 225 5 980 5 365 5 740	5
G-PN G-PN G-PN G-PN		.2	10840 9450 10470	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 11 4 17 7 19 6 12 5 12	5.5 2.4 3.4 9.5	1	15610 10510 21570 22950 37720	.1	10 9 14 12 12	6 7 10 8 7	38820 38730 52400 48490 49020	3740 4810 3770			1594 1694	1 1 1	260 140 200 220 90		2880 1570 2790 2960 2290	32 27 31 24 37	1 3 5 1 4 7	8 1 5 1 8 1 9 1 6 1		39.0 27.4 37.1 53.9 31.3	57 83 96 47 149		1 1 1 1	1 1 1 1 1	5 540 0 445 5 820 5 315 5 800	5 0 5 0
G-PN G-PN G-PN G-PN	-1 074 -1 075 -1 076 -1 077 -1 077 -1 078	.9 .9 .7 7	9050	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 11 6 23 7 49 5 26 3 174	9.5 6.5 8.2 0.3	1	70210 28030 24640 35300 79320	.1 .1 .1 .1	11 11 13 10	8 10 7 8 10	52940 43210 41450 57760 50920	4510 5380	3	35840 14840 10780 23350 51200	2222 2990 2652	1 1 1 1 1 1	110 60 70 170 160		1580 1760 2200 2310 1270	29 44 33 31 12	7 1 4 2 1 2	95586		29.8 28.2 33.3 52.5 42.4	45 177 136 193 117	1 4 1 2 1 1 1 6 1 24	1	7	0 610 5 890 0 71 5 182 5 520	550
G-PN G-PN G-PN G-PN	-T 079 -T 080 -T 081 -T 082 -T 083		23710 5030 16660	1	3 16 5 8 4 16 5 24 6 26	9.8 8.5 3.5 3.1	1 1 2	22640 79330 34480 29860 34720	.1 .1 .1 .1	14 9 14 15	6 5 6 10 13	48160		12	22960 54800 26100 17620 21210	5300 2689 2785	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	370 90 270 140 130		2570 1050 2390 2080 2080	13 13 22 31 30	1 1 1 6 1	7 5 4 3	1 1 1 1 1 1 1 1	105.1 24.4 72.0 61.0 44.8	92 44 85 75 50	1 1 1 5 1 2 1 3 1 3	1	1	5 199 0 299 5 280 0 830 5 880	5 0 5 5
G-PN G-PN G-PN G-PN	-T 084 -T 085 -T 085 -T 086 -T 087 -T 088	.8 .8 1.2	8360 16450 8100	66 1 5 69	5 15	2.3		23010 39630 46500 22530 20820	.1	14 13 15 16 12	8	51440 68270 59850	4110 2410 2860 2720 3280	11 13 13 13	12260 33590 28690 15150 16800	2323		90 150 140 190 240	1	2750 2440 2000 2610 2960	37 16 45 39 18	10	3 0 13 10 7	1 1 1 1 1 1 1 1	44.9 77.7 41.1 61.8 83.8	54 92 263 66 70	1 1 1 2 1 4 1 2 1 1	1 1 1	1 1 1 1 1	5 71 5 37 5 128 0 82 5 30	500
G-PN G-PN G-PN G-PN	-1 089 -1 090 -1 091 -1 092 -1 093	1.4 .7 .8 2.4	10660 12940 12570	1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1.0		66560 32370 48570 92720 21580	. 1	13 11 12 5 17	- 3	40630) 5) 6) 1) 29	39390 17420 29950 87790 34910) 2386) 3195) 1986) 1064		120 110 70 50 310	1	1960 2860 2280 10 2630	21 30 22 8 15	<u> </u>	21 11 9 41 17		47.5 44.6 38.9 12.8 117.5	55 65 68 187 83	1 4 1 1 1 3 1 6 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 7 1	5 44 5 40 5 36 5 118 10 26	10
G-PN G-PN	-1 094 -1 095 -1 096	1:7	27750	1	3 4 1	16 1.2 71 .7 16 .7	3	13040 81580 22630		13 8 1 17	68	41960) 1920) 640) 1090) 2670) 8 0 16	29090 60660 18080 19240) 2355) 1098		330 200 790 60	1	2890 1160 2710 1170	8 8 11 20		13 60 27 83		124.7 51.0 141.3 37.2	93	$ \begin{array}{cccc} 1 & 1 \\ 1 & 5 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	1	1 1 1 7	5 36 5 20 10 22 5 13)0

G-PN-T 096 G-PN-T 097 G-PN-T 098	1.4 9690 1 2	83 1.0 1 32960 1 10 50 26280 26 56 3 4 88470 1 11 7 47620 5	
G-HH-T 201 G-HH-T 202 G-HH-T 203 G-HH-T 203 G-HH-T 204 G-HH-T 205	3.5 8230 1776 5 .6 20740 4 3 20.8 2400 1352 3 1.9 21600 1 5 1	58 .5 1 29480 6.6 14 10 90410 18 77 .7 2 23440 .1 16 9 54810 9 19 .2 1 67180 11.5 9 13 74040 1 156 .6 4 23360 .1 17 10 60490 11	120 3 16660 1988 1 120 1 1730 27 109 6 1 1 44.7 65 1 3 170 10 15300 1265 1 660 1 2600 14 1 34 1 117.5 88 1 1 170 1 25860 6728 1 40 1 180 90 76 42 1 13.9 1421 1 4 10 10 7790 1330 1 1210 1 2700 13 1 477 1 135.8 151 1 2 30 3 12260 1989 1 10 1 2150 35 17 45 1 1 51.9 64 1 2
G-MM-T 206 G-MM-T 207 G-LG-R 173 G-LG-R 175 G-LG-R 176	1.4 16660 1 4 2 2.4 800 1 4 1.6 5430 15 3 6 2.9 39820 1 5 4	237 .6 3 20710 .1 16 8 54390 19 63 .1 1 79110 .1 8 51 76690 1 675 .3 1 6020 2.4 7 67 47280 17 456 .1 8 25780 .1 30 41 60040	7 14210 1082 1 1270 1 2790 10 1 55 1 144.8 98 1 1 130 1 46770 4932 1 60 1 110 27 7 89 1 1 44.5 324 1 5 50 3 1680 231 20 330 28 990 22 4 13 1 101.8 606 1 1 130 13 24550 768 1 290 1 350 8 1 1 1 139.2 72 1 1 130 13 24550 768 1 290 1 350 8 1 1 1 139.2 72 1 1 1 169.8 95 1 1
G-LG-T 180 G-LG-T 181 G-LG-T 182 G-LG-T 183 G-LG-T 184	.7 22150 1 3 .4 24310 1 3 .1 20010 1 2 .2 26840 1 3	65 .5 1 62350 .1 21 6 78300 1	490 38 21920 403 1 200 1 310 17 1 3 1 1 58.2 45 1 1 130 47 25250 503 1 190 1 260 11 1 4 1 1 69.3 47 1 1
G-LG-T 185 G-LG-T 186 G-LG-T 187 G-LG-T 188 G-LG-T 189	.1 10440 396 2 .2 11980 20 3 .4 23170 1 4 .1 27190 1 5	65 .2 1 19100 .1 14 5 65430 102 .2 1 14/790 .1 12 6 63300 189 .9 1 3390 .1 14 12 51800 22 134 .6 1 3490 .1 14 12 51800 22	290 17 9080 627 22 500 1 1130 17 6 9 1 1 230.7 26 1 1 260 19 9620 354 23 500 1 1610 15 1 4 1 1 178.0 13 4 1 570 26 15060 301 2 320 1 1030 17 1 6 1 5 1.3 62 1 1 240 45 27690 571 5 390 1 1740 10 1 5 1 2 1.3 62 1 1 240 45 27690 571 5 390 1 1740 10 1 5 1 2 1.2 2 9 18 3 1 000 8 2670 44 7 130 1 520 21 1 2 1 2 2 2 9 18 3 1 <

DMP: INTERNATION ROJ: UNUK ITN: G.NICHOLSON	IL KODIAK						IST 151	N LA.	NORTH	VANC	OUVER,	9.Ĉ.		12								DATI	05-0299-0 E: 90/08/ (ACT:FI
SAMPLE	AG AL AS PPN PPN PPN	1 B	BA BE		CA	CD CC							NO N	A NI M PPM	Р Р Ром Ро	B SB	SR T	N U M PPN	Y PPN	ZN GA PPM PPM	SN	V CR	
NUMBER G-GN-T033	1.2 2530 13	i 4	71 .3	3 1	71970	.1 9	7	58270	860	3 4	4760]	600	1 19	0 1	760 3	6 7	55	1 1	21.4	142 1	2	1 5	10 462
<u> </u>																							
						<u></u>																	
																					·		
·····								·····	<u> </u>							<u>-</u>							
																				••			
																			<u>=</u>			ı'	
						···-•										• •							
	<u> </u>			0									<u> </u>			-							
		i	, <u>У</u>	7																			

MIN-EN LABS - ICP REPORT

FILE NO: 05-0229-RJ1+2 DATE: 90/08/13

J. L. L

PROJ: UNUK ATTN: G.NICHOLSON 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

۱.

ATTN: G.NICHOLSON			(604))980-5814 OR (604)9	788-4524		* ROCK * (ACT:F31)
SAMPLE NUMBER	AG AL AS B PPN PPN PPM PPM	ВА ВЕ ВІ СА РРИ РРИ РРМ РРМ	CD CO CU FE PPM PPM PPN PPI		MN MO NA NI PPM PPM PPM PPM	P PB SB SR TH U V PPN PPN PPM PPM PPM PPM	ZN GA SN W CR AU HG PPN PPN PPN PPN PPB PPB
G-ИМ-R- 171 G-ИМ-R- 172 G-ИМ-R- 174 G-ИМ-R- 175 G-ИМ-R- 175 G-ИМ-R- 176	1.5 18000 1 2 .1 15480 99 4 .2 25460 1 3 .1 21180 1 3 2.4 7130 31 1	29 .2 2 90100 74 .1 1 8460 129 .4 1 4500 163 .3 1 5880 81 .2 2 115420	.1 17 6 49376 .1 12 7 81571 .1 9 10 56791 .1 11 6 6362 .1 4 7 15370	0 810 21 12760 0 1430 34 20940 0 1800 28 15300 0 390 12 8690 1	<u>101 10 70 13</u>	990 19 1 18 1 1 156.9 680 9 1 3 1 1 106.1 360 16 1 3 1 1 106.1 360 16 1 3 1 1 61.9 1690 14 1 7 1 1 131.1 660 26 2 27 1 3 42.9	54 4 1 1 5 420 25 2 1 1 1 5 3065 47 1 1 1 10 2905 42 1 1 1 5 2210 43 7 3 1 7 10 1225
G-MM-R- 180 G-MM-R- 181 G-MM-R- 182 G-MM-R- 183 G-MM-R- 184	2.5 37310 1 2 3.3 38730 1 3 2.2 19010 1 1 .6 6160 1 4 .7 28280 1 2	32 .1 8 23670 23 .1 11 15840 15 .1 6 9460 63 .3 2 42710 222 .2 2 10610	.1 24 36 4512 .1 38 41 7235 .1 12 19 3679 .1 13 6 5092 .1 17 6 6398	0 240 22 45120 4 0 170 9 22580 4 0 2130 5 15080 2 0 720 31 25310	796 1 470 1	390 9 1 8 1 1 102.8 360 9 1 1 1 1288.9 600 9 1 1 1 124.2 1600 31 1 10 1 124.2 3000 13 1 9 1 1 146.2	43 1 1 1 1 10 100 73 1 3 3 79 5 175 233 1 2 3 64 5 305 47 1 3 1 1 5 385 117 1 2 1 1 5 345
G-MM-R- 185 G+MM-R- 186 G-MM-R- 187 G-MM-R- 188 G-DS+R- 094	.3 15800 1 2 .1 14620 1 3 .1 20460 1 2 .4 22860 1 4 .1 20970 1 2	178 .2 1 9660 219 .2 1 5150 167 .3 1 5900 98 .6 1 17620 122 .5 1 9910	.1 12 4 5392 .1 9 3 7399 .1 8 2 5153 .1 16 5 5792 .1 15 7 5563	0 1320 13 10100 0 960 21 15830 0 1820 11 10460 1	246 1 820 1 254 1 810 1 355 1 540 1 054 1 420 1	1920 18 1 1 1 128.3 3150 20 1 12 1 142.8 3040 15 1 9 1 155.4 2770 13 1 1 1 10.0 2500 30 1 22 1 1 72.1	77 3 2 1 1 10 360 58 4 1 1 1 5 440 84 2 2 1 1 5 265 102 1 1 1 5 250 116 1 1 1 5 1330
G-MM-R- 190 G-MM-R- 192 G-MM-R- 193 G-MM-R- 194 G-MM-R- 195	.1 22530 1 4 .6 7480 1 2 .3 4210 301 3 .7 9500 23 4 .8 6170 35 3	82 .4 1 15860	1 8 2 4240 .1 12 5 4512	0 2070 5 18140 4 0 2850 1 2600		1830 21 1 15 1 1 57.0 1020 44 1 47 1 37.0 1360 29 43 8 1 19.2 2640 26 1 20 1 1 64.1 260 29 3 3 1 1 5.6	119 1 1 1 1 5 440 251 1 3 2 50 5 1985 34 1 2 3 71 5 5125 22 3 1 2 46 5 790 12 3 1 3 75 5 805
G+MM-R- 196 G-MM-R- 197 G-MM-R- 198 G-MM-R- 199 G-MM-R- 200	1.3 10400 1 5 .9 8000 1 8 1.8 4500 1 3 .7 29100 1 4 2.0 18440 1 5	126 .2 1 93730 285 .7 1 20900	.1 14 27 3941 .1 14 10 6337 .1 8 3 4610 .1 16 4 5857 .1 19 7 6114	0 3230 1 14240 1 0 410 3 81070 3 0 2410 22 27280 1	460 1 300 1 950 1 80 1 104 1 420 1	1840 29 1 60 1 1 24.8 2210 35 1 32 1 1 16.3 280 9 1 40 1 1 24.9 2950 9 1 11 1 1 1 1 2790 17 1 57 1 1 158.7	58 2 4 1 14 10 605 98 1 3 1 1 5 13750 19 1 6 1 1 5 285 66 1 2 1 1 10 305 99 1 3 1 1 5 195
G-MH-R- 208 G-MM-R- 209 G-MM-R- 210 G-MM-R- 211 G-MM-R- 212	.6 19890 1 7 129.7 6170 375 3 5.2 10090 61 6 1.1 13060 1 7 .6 10640 1 5	157 .4 1 17650	.1 14 5 4567	0 5090 1 890 0 5680 1 6810 1 0 6120 4 8610 1	878 1 90 1	710 30 1 2 1 1 46.3 1100 73 62 6 1 5 22.2 2540 36 6 12 1 1 35.2 1370 26 1 3 1 1 39.3 1590 30 1 5 1 1 35.2	134 1 2 1 1 5 250 489 1 1 4 93 35 13250 244 1 1 1 1 5 1065 185 1 2 1 3 5 1310 47 1 2 1 1 5 505
G-MM-R- 213 G-PN-T 030 G-PN-T 031 G-PN-T 032 G-PN-T 033	.3 16770 1 2 .1 9620 1 6 .1 11420 1 6 .3 10290 1 6 1.6 8760 89 4	195 7 1 15820 131 1.2 1 4150	.1 4 25 2489 .1 12 16 5303 .1 8 8 3470	0 5840 1 8220 1 20 6320 1 2010 30 6080 1 9410 2 30 4370 1 13250 1	261 1 550 1 817 1 50 1 550 1 50 1 1015 1 30 1 1802 1 60 1	2440 26 1 15 1 1 85.8 2310 36 1 17 1 1 43.7 710 10 1 4 1 31.0 16 1 1 13.1 0 1620 41 1 16 1 1 26.6 1120 32 6 16 1 1 29.7 7	529 1 1 1 1 5 3390 125 1 3 1 21 5 860 68 1 1 1 1 10 540 292 1 2 1 2 5 1800 100 1 2 1 25 5 815
G-PN+T 034 G-PN-T 035 G-PN-T 036 G-PN-T 037 G-PN-T 038	.7 6100 8 2 .3 5220 6 .4 5030 15 1.0 3760 1 .9 3970 52	351 .5 1 4650 2 316 .4 1 4590 2 166 .7 1 34950 2 149 .5 1 9630	1 3 411917 1 3 512168 1 6 14 2972 1 4 8 1998	30 2750 1 3090	874 2 30 1 763 3 20 1 796 3 20 1 2096 1 20 1 527 2 20 1	510 25 1 4 1 1 14.5 400 21 2 3 1 1 4.2 400 24 3 3 1 1 4.2 500 27 3 4 1 1 12.0 260 33 6 1 1 1 4.6	103 1 1 1 56 10 785 104 1 1 1 49 5 745 112 1 1 46 5 750 63 1 3 1 20 5 550 43 1 2 1 55 5 595
G-PN-T 039 G-PN-T 040 G-PN-T 041 G-PN-T 042 G-PN-T 043	.6 5270 28 .6 4230 29 .5 7330 22 .7 3920 39 .8 3360 32	5 205 .6 1 9920 2 234 .4 1 1540 3 443 .7 1 930 2 158 .3 1 5410 1 129 .3 1 6050	1 2 4 1462 1 1 3 5 1454 1 1 3 2 2065	40 4290 1 690 90 2950 1 1520 20 2480 1 1900	877 4 30 1 94 5 30 1 137 3 20 1 315 1 30 1 367 1 30 1	310 33 1 1 1 2.8 170 24 1 2 1 1 2.8 210 15 1 1 1 2.3 80 30 2 1 1 2.1 120 25 2 1 1 2.5	107 1 1 54 5 900 51 1 1 3 104 5 1060 68 1 2 88 5 550 73 1 2 97 10 510 514 1 3 131 \$ 2320
G-PN-T 044 G-PN-T 045 G-PN-T 046 G-PN-T 047 G-PN-T 048	2.6 2760 42 1.1 2580 34 .8 3150 35 1.0 2550 22 1.0 3300 35	1 139 .4 1 11090 1 196 .3 1 11760 1 112 .4 1 9180 1 86 .3 1 19390 2 91 .6 1 15540	4.7 3 4 1990 .1 3 3 184 .1 3 1 1710		536 3 40 1 650 2 30 1 430 1 40 1 1034 2 30 1 670 3 30 1	130 37 7 1 1 1 3.0 110 30 4 1 1 1 5.0 90 28 2 1 1 1 3.8 80 26 1 2 1 1 5.1 90 30 3 3 1 1 4.8	191 1 2 4 122 5 520 83 1 2 2 86 5 380 84 1 3 3 112 5 430
G-PM-T 049 G-PN-T 050 G-PN-T 051 G-PN-T 052 G-PN-T 053	.9 1980 29 .5 2970 34 .7 2800 24 .7 2850 32 1.0 2760 33	1 95 .2 1 977(1 124 .1 1 134(1 94 .3 1 959(1 89 .3 1 229(1 100 .4 1 1304(0 .1 2 2 137 0 .1 2 1 119 0 .3 2 2 123	10 2380 1 460 40 2310 1 2520 40 2320 1 540	605 1 30 1 157 2 30 1 419 2 20 1 216 1 20 1 452 1 40 1	120 24 3 1 1 1 3.4 100 23 2 1 1 1 2.3 80 23 2 1 1 1 2.6 80 23 2 1 1 1 2.6 80 24 7 1 1 1 1.5 90 29 2 1 1 1 3.0	28 1 1 3 120 5 215 21 1 2 3 114 5 230
G-PN-T 054 G-PN-T 055 G-PN-T 056 G-PN-T 057 G-PN-T 058	.8 3880 22 1.3 5040 31 1.2 2920 37 .7 4220 30 .8 7470 15	1 109 4 1 1227 2 116 7 1 15630 1 84 7 1 15300 1 94 5 1 6810 2 134 1.0 1 972	0 .1 3 2152 0 .1 3 2150 0 .1 2 1 101	20 3050 1 4670 10 3430 1 6640 90 2100 1 7390 80 2740 1 1760 20 4210 2 2450	371 2 150 1 508 2 50 1 640 3 130 1 391 2 160 1 441 3 80 2	70 23 1 1 1 3.2 120 23 1 1 1 1 5.0 60 33 1 3 1 4.0 60 21 1 1 1 2.3 50 25 1 1 1 2.4	29 1 3 3 116 5 190

CONP: INTERNATIONAL KODIAK RESOURCES

PROJ: UNUK

ATTN: G.NICHOLSON

.,

٠.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 112 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1106-RJ1+2 DATE: 90/08/12

* ROCK * (ACT:F31)

SAMPLE	AG AL AS 8 8A BE BI CA CD CO CU FE K LI MG MN MO NA NI P P8 SB SR TH U V ZN GA SN W CR AU HG
NUMBER	PPN PPM PPM PPM PPM PPM PPM PPM PPM PPM
G-PN-R-146 G-PN-R-147 G-PN-R-148	.7 26940 1 7 144 1.3 1 1340 .1 16 131 40090 3460 34 16350 332 1 180 102 580 29 1 5 3 1 55.2 106 1 1 72 5 315 .3 27630 1 2 133 1.0 1 1410 .1 18 59 34340 1470 41 34940 272 1 1300 227 340 10 1 7 1 1 12 356 5 220 2 2 2 1 1 1 7 1 1 12 356 5 220 2 2 2 330 1 6 151 1 1 12 356 5 200 2 2 1

..... TAD DEDODE

FILE NO: 05-0249-RJ1+2

-1

- 1

Ż

-1

Ż

-1

271.4 302.9

282.3

207.8

274.4

108.9

31.4 77.0 110.6

1 178.9

1 207.0

1 275.8

1 308.1

1 118.3

1 116.6

1 273.9

- 1

-1

¢.

-1

24 15

żź

-1

25

1 1150

1 1420

1 1430

1 1220

1 1100 1 710

1 2190

1 310

22 370 9 220

1 240

1 460

1 610

Ż

-1

-38

5 1265

ſ

74 49

1.0

.9

.8

.3

.6

.9

. 1

.2

1.1

1.5

1.5

1.1

1.0

1.5

1.7

1.3

ī

Ż

ž

16

1 12090

9 10600

7 27760

1.6 13470 2.1 11610

1.8 16880

1.8 22490

1.6 8760

. 1

1.9

1.0

4060

2760

.1 8150 .5 15110

1.4 24660

.6 2760 1 10140

1 19430

FROJ:

G-PN 127 G-PN 128

G-PN 129A

G-PN 1298

G-PN 130

G-PH 131

G-PN 132

G-PN 133

G-PH 134

G-PN 135

G-PN 136

G-PN 137

G-PN 138

G-PN 139

G-PN 141

G-PN 142

G-PN 143

G-PN

ATTN:

COMP: INTERNATIONAL	L KOD 17	ĸ										N LA															F.	ILE N			RJ1+2 /08/17
Roj: UXUK									705	WEST		TH ST., 04)980-						1 112										* R0			(:F31)
ATTN: G.NICHOLSON										~~		FE			MG		MON		t (P 98	SB	SR	TH	U	٧	ZN	GA :	SN	CR		HG
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	B1 PPM	PPM I	PPM P		PM	PPH	PPN	PPM	PPM	PPM	<u>PPM PF</u> 1 50	M PPI	M PPI	4 PPM 0 213	I PPM	PPM 4	PPH F		PPM 243.2		<u>PPM PI</u> 1	P <u>M PP</u> 1	<u>н ррм</u> 2 1	<u>PPB</u> 5	720
G-MB-R 090 G-MB-R 091 G-MB-R 092 G-MB-R 093 D-MB-R 093	2.5	16390 19050 16960 25020 21400	1 1	4 3 2 1	42 13 16 67 154	.4 .3 1.1 1.4	7	11520 11830 19140 14220 2500	.1	30	17 12 13 13 11	83330 84210 74060 65350 43960		23 20 24			1 57 1 70 1 20 1 20	70 ° 00 ° 20 °	1 146 1 125 1 145 1 145	0 22 0 15 0 15 0 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 7 2	1	1	285.8 254.1 131.1 40.0	89 116 105 60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	2 1 3 9 1 1 1 1	5	930 1140 445 275
G-MB-R 094 G-MB-R 095 G-MB-R 096 G-MB-R 097 G-MB-R 098 G-MB-R 099	.2 1.1 .6 1.1	14050 1160 9780 8130 20560	24 40 1 7	1 6 1 3 2	30 24 18 149 87	.9 .8 .6 1.2 1.0	1	1530 71020 19470 18030 23850	.1	12 14 19 18 21	9 11 8 42 11	51190 130630 57320 39810 54230	150 2930	10 5	8740 39530 7090 11420 22080		1 6	60 30 00	1 60 1 9 1 135 2 34 1 168	0 30 0 64 0 21	07 41	2 36 16 33 18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	151.7 17.9 183.2 24.2 162.9	43 5 64 49 54	2 1 2 1 1	1 13 1 1 1	$ \begin{array}{cccc} 1 & 4 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \\ 1 & 1 \\ $		680 3860 1400 510 310 440
G-MB-R 100 G-MB-R 101 G-MB-R 102 G-PN-T 099	.5	14280 3940 15070 5890 4590	1 33 1 1 22	42322	90 71 87 132 173	1.2 .4 1.1 1.0 .6	1	19290 8880 19070 6230 5370	.1 .1 .1 .1	20 2 16 7 5	7 2 9 11 12	61950 8130 54740 32660 27320	2570 2900 3850	16 16 1	14690 3550 11020 2400 1480	1383 324 922 770 477	2 13 2		1 170 1 9 1 268 1 109 1 44	0 13 10 21 10 2	3 1 0 1 1 1	17 2 13 4 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141	80.6 5.6 72.2 15.0 4.2	57 131 75	1 4 2 1	1 1 1 1	$ \begin{array}{cccc} 1 & 1 \\ 2 & 67 \\ 1 & 1 \\ 1 & 8 \\ 1 & 44 \\ \end{array} $	10 5	640 1640 885 1065
G-PN-T 100 G-PN-T 101 G-PN-T 102 G-PN-T 103 G-PN-T 104	.4 .3 1.2	6490 7940 6580 13560 17910	8 1 1		134 112 100 112 100	.9 1.5 1.0 1.6	1	7240 13230 23560 12040 23320	.1	8 17 4 16 17	11 26 14 9 18	54760	4130 4190 5030	2	2570 8790 8020 9340 16240	1691 824 1190			1 119 1 126 1 37 1 162 1 155	50 2 70 1 20 2	4 1	1 5 1 9 1 1 1 4 1 7		1 1 1 1	15.1 31.5 9.7 42.0 51.9	88 79 50	1 3 1 1	1 1 1		5 10	1000 895 755 3800 580
G-PN-T 105 G-PN-T 106 G-PN-T 107 G-PN-T 108 G-PN-T 109 C-PN-T 110	.7	14000	1	3442	88 123 120 181 190	1.4	1	21400 28010 28270 9450 2800		19 21 19 12 8	17 21 18 13 17	57080 52550 63080 48060	4230 4930 4160	777	13920 16190 18800 5670 1050	1637 2341 838		60 70 80 30	1 154 1 143 1 139 3 137 2 41	30 2 20 1 70 1 80 1	6 4 9	1 4 1 6 1 3 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44.0 46.5 50.8 35.4 10.4	54 52 66 153	1 1 2	1 2 1 1	1 2	5	940 1225 670 575 980 2785
G-PN-T 110 G-PN-T 111 G-PN-T 112 G-PN-T 113 G-PN-T 114 G-PN-T 115	.3	6690 7640 7160 16890	25 76	i 4	96 174 173	1.3 .9 .9	1	12970 7540 7540 22580 17330	.1 .1 .1	15 10 12 15 15	10 7 10 8 7	47890 60400 57020) 4240) 3650) 2 3 16	5180 1790 1890 13440 11630	607 316 1422		50 80 280 540 410	1 26 1 29 1 27 1 28 1 27	90 3 60 4 20 1 80 2	9 8 8 8 25	4 8 4 9 7 11 1 29 1 20) 1	1	39.9 39.4 44.2 94.2 90.0	47 36 104 72	1	1	1 1 1 1	1 10 1 5 1 5	2735 3155 645 855
G-PN-T 116 G-PN-T 117 G-PN-T 118 G-PN-T 119 G-PN-T 120	.8	8370 14520 12730 13250		1 5 1 3 1 1 1 2 8 3	156 124 122 139 114	1.3		13040 26200 13430 21190 58640		13 9 7 12 11	11 15 95	36560 25190 35950 49130) 3630) 2360) 2350) 2290) 2050) 15) 11) 12) 4	14630 22380	862 505 1040 1871	2 1 5 1 5 1 1 1	250 180 120 110 130	$ \begin{array}{c} 1 & 1 \\ 2 & 1 \\ 1 & 4 \end{array} $	30 1 10 1 10 2 50 3	16 19 22 35	$ \begin{array}{cccc} 2 & 17 \\ 1 & 19 \\ 1 & 1 \\ 1 & 1 \\ 1 & 29 \\ 1 & 29 \\ 1 & 29 \\ \end{array} $	5 1 2 2 4 1 7 1	1	45.6 15.0 15.0 22.3 15.0	38 28 25 14	1	1 1 4	1 1	1 5 5 10 1 10 3 5 4 5	220 160
G-PN-T 121 G-PN-T 122 G-PN-T 123 G-PN-T 124 G-PN-T 124	1.2	6550 6540 8820 3460) 1		173 130 100 156 147			33290 13130 16500 9160 19380) .1 } .1 } .1		33 19 12	3066 4063 5933 6173	0 237(0 252(0 247(0 187(0 187(0 285)		1210) 982) 1310) 135) 2458	2 1 0 1 5 1 8 1	120 100 130 80 140	1 1 1 12 1 11 1 16	70 2 90 8 00 8	51 1 40	1 24 1 5 0 4 1 5	2 2 7 1 4 1 4 1		1 10.8 1 24.8 1 16.7 1 58.0	81 71 115 137	1	1 2 3	1 2	1 10 0 10 0 5 <u>3 5</u> 8 5	165 290 3060 585
G-PN-T 126 G-PN 127	.5		04	0	2 88 1 77 1 29	7 1.1	1 '	1 23000 1 4910 1 26320).1	14 16 20	17	7 5621	0 159 0 42 0 25	Õ 1	5 11920 5 6500 5 6800) 331	ī <u>i</u>	70 770 500	1 13	60 60	38 18 19	2 1.	71 51		1 20.5	58	5	1 1 1	4 3	1 10 5 5 0 5	495 680

1970 272

10 5060 1345

26 14970 1399

40 14600

35 26030 1220

3460 1306 7010 255 14600 257

19 10100

Ż

29

78930

23 76190

64120 2070

75210 1190

230

19

19

26

15 .1

.1 14

ģ

.1

.1

. 1

.1

.1

.1

.1

.1

.1

.1

-15 Š

.1

.1

31950

1 11210

2 38350

2 68570

2 82400

5430

1 5780

4 17910

7 12530

: INTERNATIONAL K : UNUK : MIKE BROWN	ODIAK RESOURCES			MI 705 WE	ST 15TH	LABS - ST., NORTH 980-5814 (VANCOUN R (604)S	/ER, B.C 988-4524	. V7H				58 SR			V	(AC1	D/ ;;F31)	: OS-03 ATE: 90 PAGE W CR	/08/29 1 OF 1 AU
MPLE MBER		B BA BE PH PPM PPH 13 201 .1 11 148 .1	PPN PPM	CD CO PPM PPM 41.1 18 25.0 18	CU PPN 182 197	PPN PPI 53800 2540 57160 2880	PPH 1 13 9/ 17 16	210 326>	1 1	370 540	<u>M PPM</u> 1 1940	PPH P	<u>РИ РРИ</u> 5 16 1 17 1 17	1 1	1 4 1 5	PPN P 4.1 28 5.9 19	PN PP 14 87	1 PPM	1 24 1 43 1 5	ррв 5 5 5
	3.5 20790 1 1.3 8420 109 1.7 6610 182	10 18 .1 9 560 2.1 8 234 .1 11 49 .1	9 11180 1 18370 1 34790 9 13370	.1 30 3.5 7 <u>5.6 10</u> .1 35	114 303 55 187	68780 228 26000 458 44170 369 67930 119	29 20 1 4 1 1 2 1 1 2 29 21	040 558 380 1299 880 1252 360 2020	5	620 180 480	1 890 1 690 1 1020 1 1120	92 178 6 14	8 31 7 161 1 1 2 1/		1 1	8.5 a	248 296 134 74	$\frac{2}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	1 56 1 78 1 1	3 20 1 5 3 5
-LG-T-234 TRENCH -LG-T-235 TRENCH -LG-T-236 TRENCH -LG-T-237 TRENCH	3.4 26360 1 1.5 16400 1 .9 13060 17 1.6 7130 98 1.2 16160 1	5 103 .4 8 927 1.0 6 1067 .5 6 234 .3	1 38260 1 2590 1 21230 1 21220	.1 11 .1 12 .3 8 .1 13	12 50 22 28	47010 326 40780 718 36420 425 46650 442	0 1 1 0 1 11 0 9 11	030 2306 760 682 210 1575 670 1570	2 5 8 1 4	100 70 60 60 190	7 610 2 410 4 580	26	27 1 11 1 4			5.4 0.6 2.7	115 277 126 127	1 1 1 1 1 1 1 2	i 70 1 2 1 1	<u>3 10</u> 0 5
	1.5 5950 1 1.4 23150 1 1.9 5630 993 1.4 10970 1	19 86 .4	2 86400 1 9420 1 1370 2 39090 1 3410	4 12	48 46	52650 223 79660 197 85800 326 43300 598 204040 344	02715 08 021	0880 483 6490 364 610 14 1810 161 1630 190	5 1 6 3 8 1	520 550 370 120	1 1130 1 1700 1 570 7 1280 1 10	102 41 26 99	14 25 2 189 1	3 1 5 1 6 1	1 12 1 3 1 13 1 14	4.6 6.3 8.4 1.2	290 26 57 102	$ \begin{array}{cccc} 2 & 1 \\ 1 & 1 \\ 3 & 1 \\ 1 & 1 \\ $	15 17 2	1 5 3 5 1 5 1 10 3 5
	9.5 9320 1 1.0 23660 1 2.8 13880 1 .7 18410 1 1.2 9370 17	28 304 .1 9 56 .2 6 48 .1 34 79 .4 13 151 .1	1 12540 7 5540 1 7680	.1 23 .1 18 .1 23 .1 14	401 394 540 74	61720 156 71820 99 62270 45 51810 166	0 48 24 0 19 10 0 66 0	4780 327 8590 68 6910 211 5150 134 0560 143	0 1 0 29 5 1 4 1	520 800 410 540 360	1 1210 1 1150 1 1840 1 1400 21 1570	21 25 29 25 21	1 1 1 5 1		15	18.0 75.9 20.3 30.5 22.5	762 126 149 89 49	$\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{3}$ $\frac{1}{1}$	2 3 1 1 6 1 4	2 5 2 10 5 5 2 40
	1.6 8870 55 1.7 9980 47 .6 6740 35 1.5 22150 1	<u>11 177 .4</u> 12 86 .1 11 206 .3 28 124 .6	2 65190	.1 17	19 18 52	37030 8 31180 15 46160 28 55010 7	20 8 20 10 20 143 30 51 3	3280 92 1150 96 9570 84 0330 60	5 1 1 2 7 1 7 1	50 700 240 1500	31 1750 2 1260 91 2520 43 1390	14 21 15 10	3	0 1 2 1 0 1 7 1 9 1		07.7 37.9 33.7 92.1 07.1	49 113 57 86 102	4 1 2 1 6 1 1 1	14	9 5 0 5 12 5 1 5
	1.2 26310 1 1.4 39670 1 1.2 12330 1		1 1010	<u>35</u>	203		70 44 <u>2</u>	9720 198		<u>390</u> 670	<u>1 1190</u> 1 1450		5	9 1		65.0	90	3 1	1	52 5
	_									-					·				•	- ı
																				1
<u> </u>																				

URCES MIN-EN LABS - ICP REPORT

•.•

CONP: INTERNATIONAL KODIAK RESOURCES PROJ: UNUK ATTN: MIKE BROWN

705 WEST 15TH ST., NORTH VANCOUVER, 8.C. V7H 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 05-0307-RJ3 DATE: 90/08/29 * ROCK * (ACT:F31) PAGE 2 OF 2

SAMPLE NUMBER	HG PPB			 		
	3910 2505 210 370 575					
	2505					
	210					
	570					
la de la companya de		 				
	100					
G-LG-T-234 TRENCH	230					
G-LG-T-235 TRENCH	520					
G-LG-T-236 TRENCH	900					
G-LG-T-234 TRENCH G-LG-T-235 TRENCH G-LG-T-236 TRENCH G-LG-T-237 TRENCH	100 230 520 900 430	 		 	· · · · · · · · · · · · · · · · · · ·	
			······································			·

a 🕻 🖓

AS B BA BE B1 PPN PPN PPN PPN PPN 1 6 152 9 1 1 17 129 7 1 1 20 114 9 1	CA CD CO PPH PPH PPH 1440 .1 12 4580 .1 12 1290 .1 15	СУ FE K L РРМ РРМ РРМ РР 88 44040 3680	M PPH PPK PPH S	PPN PPN PPN P	PB SB SR TH U Y PH PPN PPN PPN PPN PPN	ZN GA SN W CR AU PPN PPN PPN PPN PPN PPS
	1440 .1 12	88 44040 3680				PPR PPR PPR PPR PPR PPR PPR
1 20 114 77 1	1290 .1 15	88 44040 3680 43 29960 1950 56 40780 2770	36 18870 413 1 27 21170 364 1 39 17910 379 1	150 85 780 310 133 1030 170 106 680		86 1 1 1 60 5 64 1 2 271 5 95 1 1 82 5
	11330 .1 14 5900 .1 9	27 41650 2990 24 17600 1080 46 38350 2830	37 15000 1560 1 20 6620 455 5 34 16910 283 1	260 73 420 250 55 370	26 1 16 1 1 53.5 12 1 11 1 1 29.6 11 1 10 1 1 60.9	80 1 1 1 119 5 47 1 2 2 181 5 66 2 1 1 65 5
,						
	1 -		· · · · · · · · · · · · · · · · · · ·			
	• • • • • • • • • • •					
-	1 5 586 .V 1		i š 386 .9 i 1360 .1 9 46 38350 2830			

OMP: INTERNATION/ ROJ: TTN: RICK WALKER									705	WES	it 15 (6	TH ST 04)98	., NO 0-581	rth \ 4 or	- IC /ANCOU (604)	VER, 988-4	B.C. 524	V7M 1											* :	501L *	(AC	D/10/ CT:F3
SAMPLE NUMBER	AG		AS	B PPM	BA	BE PPM	BI	CA PPM	CD PPN	CO PPM	CU	FE	K	LI	MG	NN PPM	MO PPM F	NA PPM PF	II PM P	P PM P	PB S PM PF	ib si M ppi	R TI M PPI	H I N PPI	U M P	V Z PM PP	IN G	A SN M PPH	I PPH	CR AI	J-WET PPB	HG PPB
G-CC-M-352	1.3	17910	1	21	130	1.4	2	9810	.1	19	33	47870	1630	25	5710	1632	1 \$	970	3 17	50	50	3 2	4	1	1 43	1.3 50)1 :	21	1	1	5	4750
																<u> </u>	<u></u>															
			<u> </u>																													<u> </u>
																				. <u></u>												
					<u></u>																	••										
																						<u></u>							-			
																													-		<u></u>	
																														· .	``	۱
		.						<u> </u>								-																
					·								$\overline{\mathcal{U}}$	J																		<u> 11 –</u>
																								<u>.</u>								:
				<u>. </u>	_						<u> </u>									<u></u>												

!

MP: INTERNATIONAL KO OJ: UNUK TN: G.NICHOLSON	ID FAK			(IN-EN) WEST 15TH S (604)9		VANCOUVE	R, B.C. \									NO: OS-O DATE: DIL *	
SAMPLE NUMBER	AG AL AS PPN PPN PPN	8 BA BE BI PPM PPM PPM PPM		CO CU FE PN PPN PPN	E KLI M PPN PPM	MĜ	MN MO PM PPM I	NA NI PPM PPM	PPN P	PB SB PM PPM F	SR TH PM PPM			M PPH		N CR A	
L2+00S -30+00E L2+00S -30+50E L2+00S -31+50E L2+00S -32+00E	2.9 26010 1 1.8 31770 1 .9 33330 1 1.2 44600 1 .7 23730 1	2 36 1.0 5 2 35 1.1 4 1 36 .6 4 2 70 1.7 4 2 156 .8 3	5 1320 .1 4 2720 .1 4 2410 .1 4 2700 .1 1	9 23 42580 9 16 54380 9 17 49070 11 30 52800 10 17 60900	0 600 8 0 1220 18	7 2240 1 3 2400 2 3 4210 2	70 1 1/ 09 1 2 91 1 1	580 1	740 720 1690	44 1 30 1 24 1 17 1 20 1	7 1 4 1 5 1 27 1	1 4 1 5	59.7 7 40.3 4 53.2 5 66.4 13 79.9 7	9 2	2 1 1 3	i i 1	5500
L2+00S -32+50E L2+00S -33+00E L2+00S -33+50E L2+00S -34+50E L2+00S -34+50E L2+00S -35+00E	1.8 28190 1 .4 29370 1 1.4 15830 1 1.2 22890 1 .8 22680 1	1 48 .1 1 74 .6 1 69 .1 1 45 .1 1 35 .1	7 3460 .1 1 1 1710 .1 1 4 3120 .1 5 3380 .1 1	12 33 58230 10 39 38010 8 16 20400 10 19 46920 8 18 48340	0 910 7 0 1240 25 0 1060 3 0 910 4	7 4700 3 5 7460 4 3 2900 1 4 2850 3	105 1 142 1 1 1336 1 1	230 1 880 19 680 3 290 1 090 1	560 870 1420	19 1 20 1 18 1 13 1 17 1	2 1 2 1 8 1 8 1 3 1	1 1	73.2 7 61.3 5 76.3 5	46 3 78 1 50 1 50 2 44 3	12 1 1 2 3		55555
L2+00S -35+50E L2+00S -35+50E L2+00S -36+50E L2+00S -36+50E L2+00S -37+50E L2+00S -37+50E	3.7 44370 1 2.0 17560 1 2.6 8330 1 .7 29220 1 1.1 24000 1	1 23 1.7 1 58 .1 1 58 .1 1	3 1320 .1 6 4400 .1 1 0 4910 .1 1	7 14 43230 10 16 31350 13 14 32190 17 20 54930 8 19 3600	0 1430 7 0 750 1 0 910 1 0 850 9	7 920 4 1 2810 1 1 2960 1 9 6180 28 5 2260 1	114 1 2 125 1 1 875 1 1 193 1 2	360 2	1240	13 1 16 1 10 1 20 1 21 1	1 3 12 1 10 1 20 1 5 1		62.2 5 66.9 5 73.1 14	69 2 52 1 59 1 40 1 71 1	1 2 12 1	ī 1.	55055
L2+005 -38+50E L2+005 -38+50E L2+005 -39+50E L2+005 -39+50E G-GM-D 074	.4 27860 1 .1 32290 1 .1 27200 1 .4 20320 1 3.8 24050 1	3 128 .5 4 123 1.2 4 151 1.5 4 140 1.2	7 3980 .1 2 4500 .1 1 2570 .1 3 7060 .1	25 25 6543 35 37 9418 20 53 4988 26 56 5153 31 18 5888	10 1750 5 30 1350 21 30 2310 36 30 3240 14	6 9250 16 4 9070 19	336 11 659 1 928 1	200 34 440 13	i 1250 1 980	37 1 57 28 31 1 28 1 4 1	8 1 8 1 5 1 11 1 59 1	1 1 1 1 1 1	Automation and an and a second	79 1 74 1 54 1 54 1	1 1 1 3	1 8 1 1 1	5 10 5 5
G-GH-D 075 G-GH-D 076 G-GH-D 076 G-GH-D 078 G-GH-D 078 G-GH-D 079	2.6 15680 1 2.0 14730 1 3.0 24310 1 2.2 12690 1 .5 26130 1	2 55 .1 1 89 .1 1 57 .1 1 63 .1	7 9050 .1 6 6750 .1 7 9550 .1 7 3040 .1	18 18 3665 13 13 2921 16 19 2986 9 12 2231	10 1330 1 50 1470 1 10 580 1	1 5690 2 1 8620 2 1 1430 9 7490 2	244 1 3 264 1 4 41 1 1 298 <u>1 1</u>	1630 1 1640 19		16 1 25 1 14 1 7 1 20 1	29 1 21 1 32 1 9 1 6 1	1	69.9 57.7 55.9 69.5	38 1 30 1 31 1 15 1 61 1	2212	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 9 \\ \hline 1 & 9 \\ \hline 1 & 9 \\ \hline 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 9 \\ \hline 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 9 \\ \hline 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1$	555515
G-GM-D 080 G-GM-D 081 G-GM-D 081 G-GM-D 083 G-GM-D 083 G-GM-D 084	2.9 21000 1 1.4 22030 1 2.6 19240 1 1.5 16410	1 1 67 .1 1 1 1 61 .4 1 1 70 .1	4 5630 .1 9 11650 .1	19 17 4075 11 20 3964 19 13 3763 13 14 2773 6 12 2322	30 1880 4 30 1520 4	5 6180 4 10780 4 7330 1 1110	284 1 2 337 1 5 246 1 2 56 1	5040 2770 1240	1 910 6 1090 1 880 4 910 1 1020	7 1 25 1 17 1 12 1 12 1	43 1 11 1 36 1 20 1 7 1		83.5 81.4 74.0 52.7	47 1 67 1 42 1 37 1 14 1	2 2 11	2 1 2 1 2 2 1 1	5 10 5 5 5
G-GN-D 085 G-GM-D 086 G-GM-D 086 G-GM-D 088 G-GM-D 088 G-GM-D 089	1.8 23590 3.9 18380 3.6 23210 1.7 22160 1.4 32520	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 6960 .1 10 13340 .1 6 2470 .1	13 23 6146 18 18 4689 21 18 4548 11 15 6031 17 33 5647	90 1320 5 80 1890 6 10 650 5	5 5850 4 10160 3 1590	217 1 3 333 1 9 119 1		1 1170 1 1010 1 1210 1 910 1 950	34 1 16 1 14 1 25 1 20 1	10 1 20 1 49 1 5 1 21 1		98.8 89.4 87.3 117.1	50 1 37 1 41 1 28 3 78 1	1 2 1 4 1 2 5 4 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 10 5 5
G-GH-D 090 G-GH-D 091 G-GH-D 092 G-GH-D 093 G-GH-D 094	1.0 22540 2.2 15570 .9 26330 1.0 19260 .8 17690	1 1 78 .1 1 53 .1 1 4 155 .9 1 2 134 .5 1 2 117 .5	6 8050 .1 5 10970 .1 5 11930 .1	16 14 376 23 47 568 20 48 476	10 1430 30 2580 1 00 2160 1		343 1 480 1 366 1	3330 1780 2470	3 900 1 1090 9 2070 8 1830 3 1740	12 1 14 1 20 1 18 1 14 1	16 1 25 1 30 1 26 1 19 1		79.4 108.3 1 114.8 1 116.0	28 1 04 1 77 1	1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105555
G-GN-D 095 G-GN-D 096 G-GN-D 097 G-GM-D 097 G-GM-D 098 G-GM-D 099	1.3 18790 .9 17500 .9 20850 1.1 18000 .6 19200	1 2 125 .6	2 11420 .1	16 55 3854 19 67 434 17 59 391 16 56 383	40 2020 1 10 2360 1 90 2370 1 320 2580 2	14 12430 1 18 15480 15 13630 1 23 13500	1052 1 981 1 1059 1 788 1	650 1 810 1 1000 1 530 3	8 1650 5 1430	15 1 8 1	20 22	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	101.1 131.7 1 113.3 91.5	74 1 87 -	1 1	1 7 1 17 1 10 1 19	5
G-GH-D 100	1.0 15420	1 2 183 .4	3 16060 .1	15 48 359	50 2350 1	2 11170	611 1	960	6 1360	10 1	37	1 1	82.3	56	13	1 1	5
		<u></u>	, <u>, , , , , , , , , , , , , , , ,</u>		. <u></u>	<u>-</u>						<u></u>					

COMP: INTERNATIONAL PROJ: UNUK	KODIAK										/EST	EN L 15th st (604)98	., NG	ORTH	VANCOU	VER, B	.0.		T2										FILE • :		DATE	; 90,	/09/0 T : F31
SAMPLE	AG	AL	AS	B PPM	BA PPM	BE		CA PPN			CU	FE PPM	ĸ	L I PPM	MG PPM	MN PPM	MO	NA PPM				S8 PPM	SR PPM	TH PPM P		_		GA PPN	SN PPM I	PPM		AU PP8	HG PPB 325
NUMBER	.8 1.0 1.1 1.0	13930 14580 12120 11680	1111	9 9 6 6	129 139 275 243	.2	2221	7740 7800 14860 14880	.1 .1 .1	18 19 16 16	94 93 51	43630 45010 38850 39120 47730	1450 940 1020	22 17 18		1530 1601 1003 956 1385	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	210 200 160 170 100	99	1240 1300 1290 1310 1430	25 25 25 24 28	1 1 1 1	8 9 23 28 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		04.2	168 106 107	1	1 1 2 1	1	9 5 1	51055	360 235 280 520
G-SM-S-042	.9		1 1	6 9			1 2 3 2		.1		55 91 190	39120 47730 59730 41130	1060	<u>19</u> 25	9810 14630		1	170 100 120 280	8		21	1 1 1	20 24 8 10	1	1		130 211	1	1	1	1 16	-	5 5 5

,

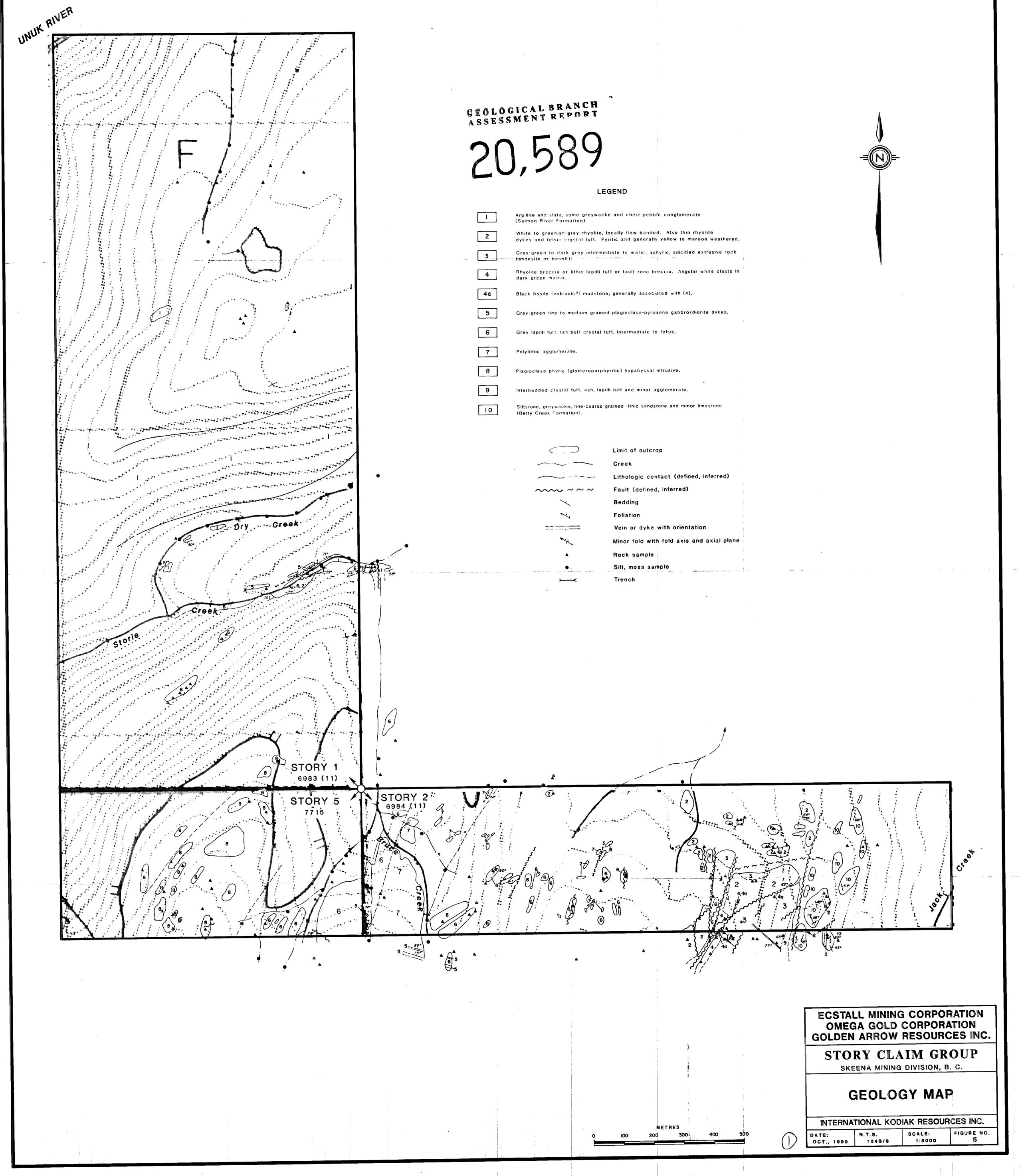
į,

11

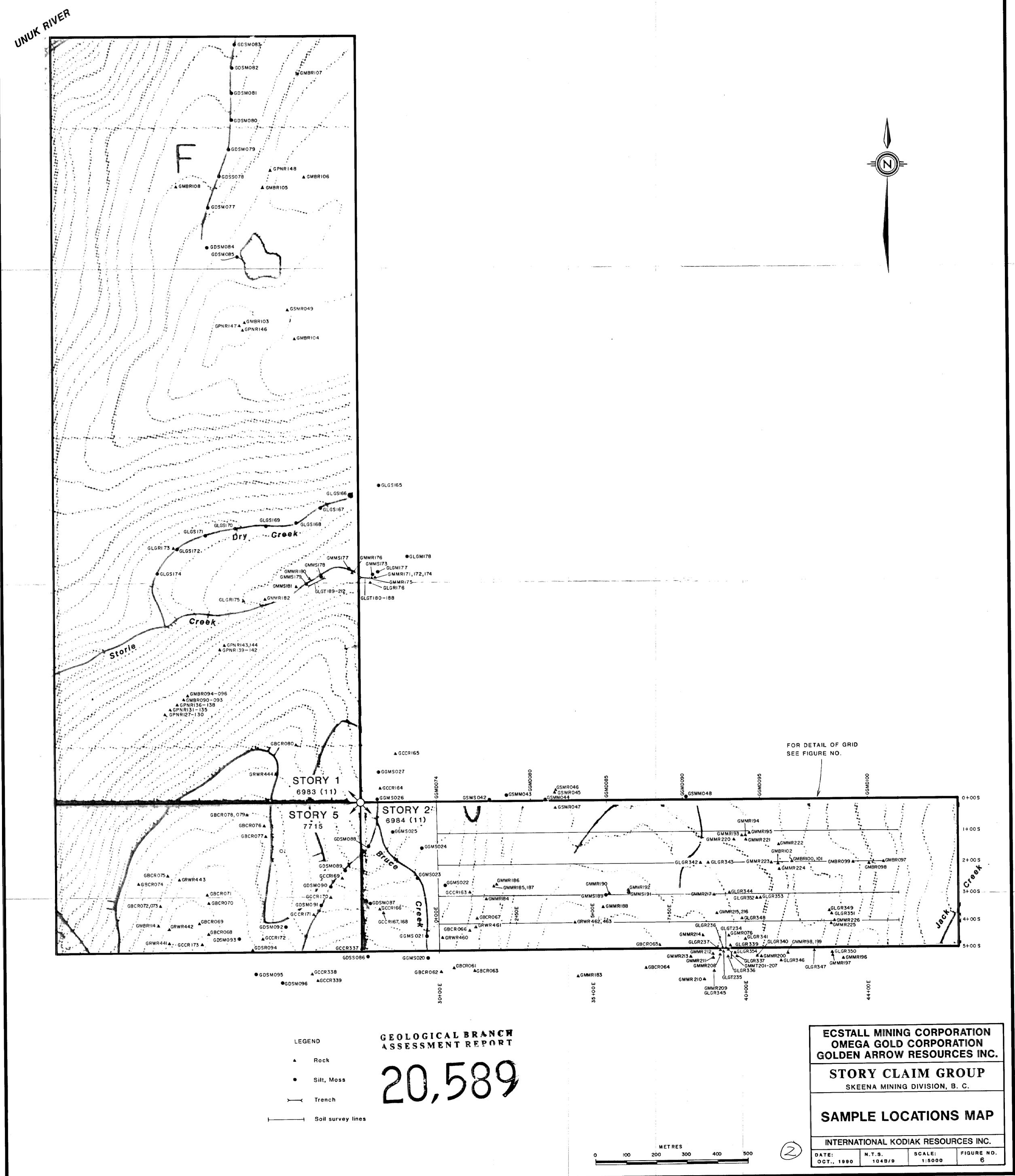
.

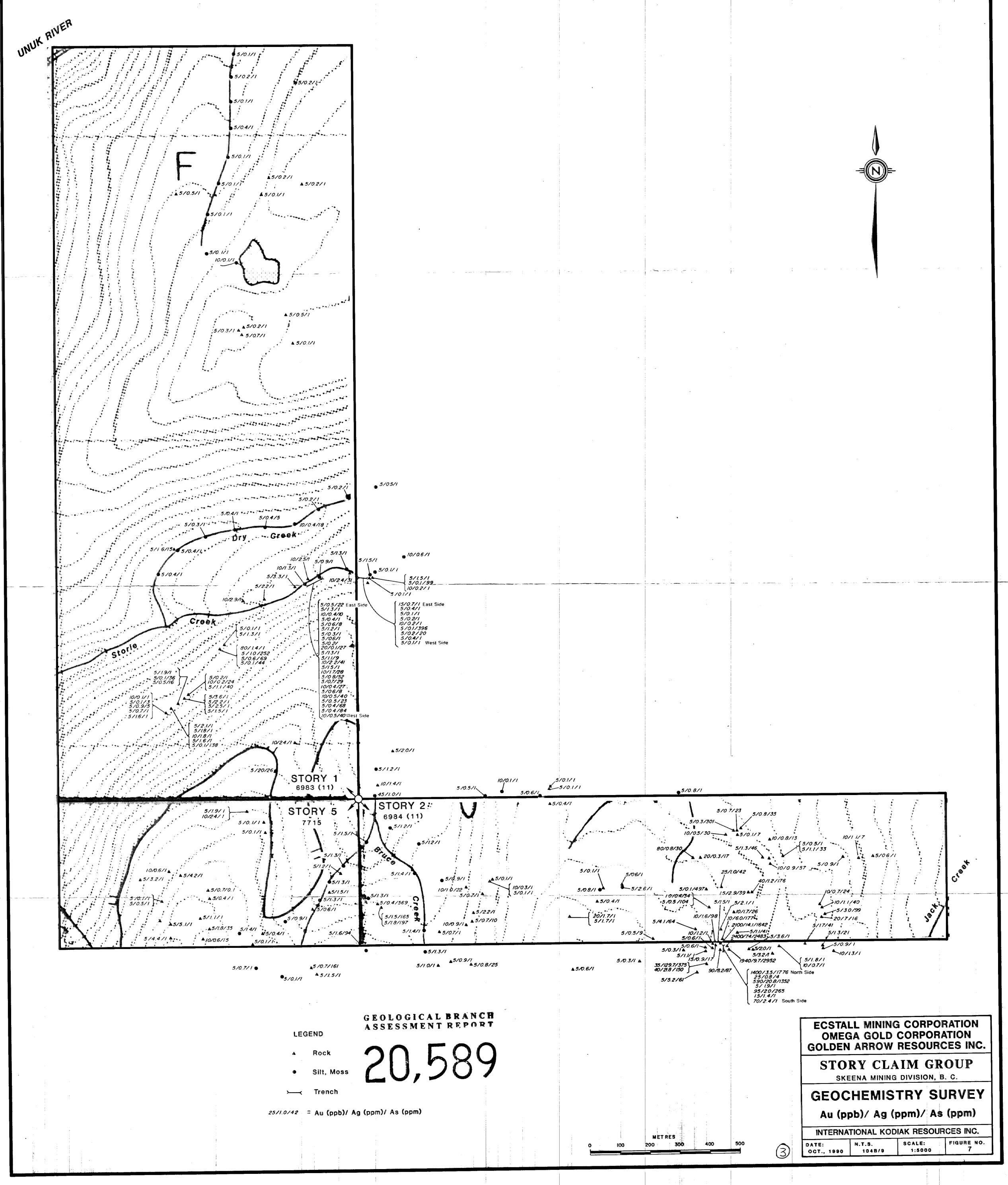
CTOPY GP FILE NO: 05-0603-5J4 MIN-EN LABS - ICP REPORT COMP: INTERNATIONAL KODIAK DATE: 90/10/05 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PROJ: UNUK (ACT:F31) * SOIL * (604)980-5814 OR (604)988-4524 ATTN: RICK WALKER v. ZN GA SN W CR AU HG MN MO NA NE P PB SB SR TH U CA CD CO CU MG FE κ μ BA 8É BI AG AL AS В SAMPLE PPM PPS PPB PPM PPM PPM PPH PPM PPM PPM PPM PPM PPN PPN PPM PPM PPM PPH NUMBER 5 190 79.4 2 17 580 -31 5 86 6600 517 60 18 45 45860 470 29 3 12 4+005 0+00E .8 21930 15 16 .9 640 .7 66 84.5 73.3 80.7 10 37 6 180 810 24 22 27 33 8 1800 410 1 1 1 83 50 54 12 26170 262 4 1 3 2180 2 560 3 1180 450 5 1.5 14970 .1.2.2.2.9 .1 8 17 15 205 4+005 0+50E 6 5 17 510 1 47 -57 1 100 1 ă 32 29080 -19 7370 416 1 580 .7 18370 22 6 5 .1 4+00\$ 1+00E 220 240 22 1240 7 840 86 1 22 999 3 1 22 7610 16 46 40130 700 .1 .9 23390 4+005 1+50E 71.3 10 5 210 106 2 1 1 6490 569 35 53570 710 53 1 3010 .1 14 4+005 2+00E 1.1 24890 6 27 26 10 180 1 810 5 800 1 910 39.7 28 3 1 11 41260 17 28060 77 790 70 356 42 480 510 1 7 453 125 225 295 205 .2 .1 740 .1 4+00S 2+50E 1.8 26950 33 21 3 92.6 48 78.3 34 76.5 108 5 5 1 68 25 116 25 2370 236 245 1 1323 .j 560 1 6 2 820 8 .5 13770 4+005 3+00E 6 5 - 37 1 4 1 19 71770 1120 1 370 1 10 240 4 5 3 520 .1 .8 21050 :7 4+005 3+50E 1 1 19 55 32 1450 1 830 170 27 24 11 1 1 62 38160 1360 21 9130 1029 42 17 1.3 18050 2 2900 .1 4+005 4+00E 3 26 2 1 490 3 34.4 700 190 1 360 15 54940 3 .4 1 360 .1 8 4+005 4+50E 1.5 28840 285 180 10 5 21 43 12 14 7 55.2 32 1 3670 143 3 1380 1 1070 1 680 4 47 2840 11 15 27440 24534 5 .6 4+00\$ 5+00E 3.1 18270 .1 77.9 102 23 3 1 6880 2402 6 370 3 2020 1 1 28 47460 1510 15 84 67 Ž 2530 15 .1 4+005 5+50E .8 21630 .6 .3 .1 67.2 127 117.2 57 1 10 1565 2940 4523 3230 738 42 1 80 1 1630 1 27 35 78800 1040 11 3 - 1 1 24440 300 .1 4+005 6+00E 1 Ž 110 5 23 28 9 7 1. 1 430 930 1 930 1 13 19 45650 6 3 1530 1.6 15670 63 .1 ż٩ 4+005 6+50E 125 102.0 81 2 1 2780 1460 4 180 1 **9**10 -14 167 35 30 44130 1150 .7 2 1490 .1 1.4 21140 4+005 7+00E 1 195 405 1 5555 16 14570 680 72 45420 820 27 72210 510 51 36930 2070 41.0 37 660 19 1 11 1 950 2 2440 126 1 24 8 110 .1 3 2430 .1 4+005 7+50E 1.2 5940 1 74.9 271 74.9 50 23 1 54 1280 Ź 12 1 1 48 1 3920 28 10890 1793 2 100 5 50 1 1 98 34 24 12 1.0 4+00\$ 8+50E 1.3 17720 18 120 4 910 28 30 4 1 1 1 1 8 3300 271 43 .8 19640 1 .1 Ż 4+005 9+00E 1 12 115 61 1 8 1640 1 22 1 1 100.3 12 12660 639 1 1700 82 17 .3 3 8370 .1 2.1 14950 1 4+01\$ 0+00E 1 · . 10 559

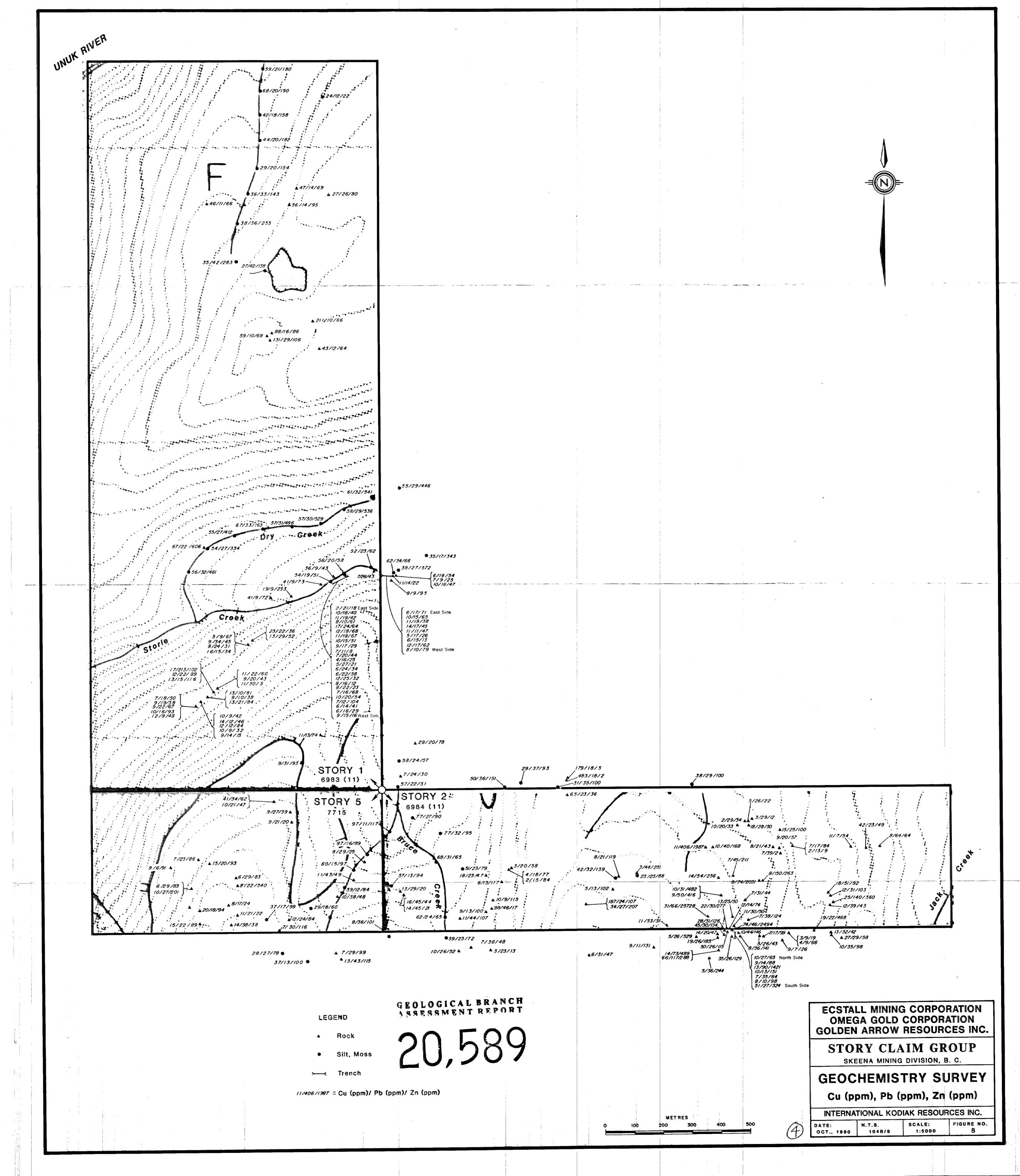
ł

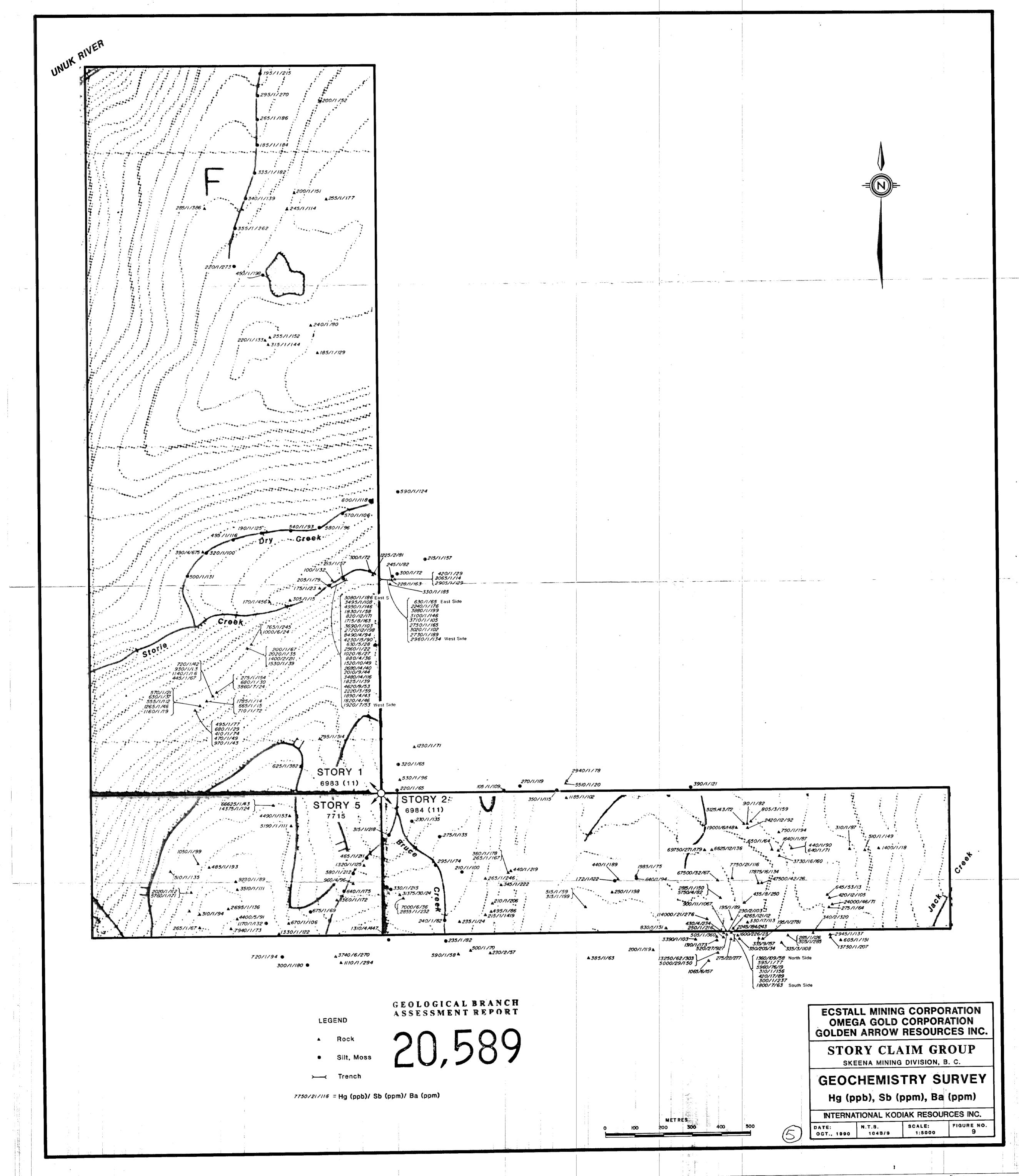

MP: INTERNATIONA	L KODIAK					M)	ÍN-	EN LABS)RT 1 1	12							(-fi		s-0230
OJ: UNUK TN: G.NICHOLSON						705 9	1631	(604)980-5814	OR (504)98	3-4524	•••••									LTS *	(ACT;
SAMPLE NUMBER	AG AL PPH PPH		B BA PM PPM		BI CA PPM PPM	CD PPM P	CO (LI PPM		MN M PPN PP	O NA N PPH		PPM I	PB SI PM PPI	SR I PPN F	TH U PM PPI	I PPM	PPH F	GA SN PM PPH	PPM PP	<u>I PPB P</u>
G-MM-S 173 G-MM-S 177 G-MM-S 178 G-MM-S 179	1.5 12630 1.3 10390 .9 11310 1.3 10600	1	3 82 2 72 1 57 1 79 4 122	.2	5 22520 3 19930 2 20450 5 19870 27 17190	.1 .1 .1 .1	12 11 12 11	62 33130 1610 52 29030 1310 56 31590 1230 54 28800 1280 23 71590 3290	11	11430 9580 10780 9810 22720	602	1 390 1 330 1 300 1 390 1 7190) 8) 10) 7	1420	34 23 20 19 23	43 38 39 38 38 66	1 1 1 1	1 75.1 1 62.6 1 66.0 1 65.3 1 118.5	62 58 51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 52 1 53 1 52 1 102 1 51
G-NM-S 191 G-LG-S 165 G-LG-S 166 G-LG-S 167 G-LG-S 168	2.6 30780 .5 19070 .2 17960 .2 17410 .4 16690 .4 16690	1 1 1 18 5	4 124 4 118 3 106 3 96 3 93	8. 8. 6.	4 6790 1 7800 3 6560 3 6190 3 6270	1.5 2.8 1.6 .9 1.4	20 21 20 20	55 49800 1510 61 51730 1110 58 53690 840 57 53060 680 57 52410 720	26 27 27 27 27	12510 11500 12020 12160	1126 1 1329 1 1150 1 1076 1	5 630 7 340 8 290 7 270		1030 1220 1180 1140	29 32 29 30 31	1 14 1 13 1 12 1 11 1 11	1 1 1 1	1 63.9	446 541 536 529 496	1 1 1 2 1 1 1 1	1 1	2 5 5 6 5 6 5 5 5 8 10 5 8 5 5
G-LG-S 169 G-LG-S 170 G-LG-S 171 G-LG-S 172 G-LG-S 174	.4 17030 .4 17920 .3 17500 .4 19030 .4 19030 .4 16920	1	3 129 3 110 3 100 4 131	.7	2 5250 2 6100 2 5940 3 5800 5 22220	.1 1.2 .1 2.4	23 19 21 19	67 42090 118 55 48650 98 54 46260 105 56 46480 129 59 34430 168) 26) 27) 31) 25	13990 13090 14520 11450 11800	685 881 851	3 150	0 148 0 119 0 116 0 98	940 1050	33 27 27 32 23	1 13 1 13 1 15 1 15 1 43	1 1 1	1 63.3 1 62.8	5 163 5 412 5 334 0 461 5 72	2 1 1 1 1 1 1 1 1 2	1 3 2 4 1 2	3 5 5 5 7 5 7 5 7 5 7 5
G-GM-S 020 G-GM-S 021 G-GM-S 022 G-GM-S 023 G-GM-S 024	1.3 12960 1.4 11660 .9 12810 1.4 11470 1.2 15490 1.2 15490	1 1 1 1	3 87 2 87 2 100 1 77 3 155 3 131	.2	5 21840 5 9390 5 21830 8 11340 6 11000	.1	13 12 12 15	62 32430 148 51 32710 184 68 32310 144 77 37590 226 77 36090 201	0 11 0 11 0 11 0 12	10610 9850 10660 11300 11070	664 704 652	1 440 1 550 1 360 1 820 1 650	0 12 0 8 0 12 0 8	1610 1710 1600 2190 2200	24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 70.1 1 77.0 1 69. 1 102.0 1 92.0	0 79 1 65 0 95		1 1 1 1	1 5 1 5 1 5 1 5 1 5
G-GM-S 025 G-GM-S 026 G-GM-S 027 G-DS-S 078 G-DS-S 080	1.2 14570 1.0 11070 1.2 10880 .1 19760 1.2 14110	1	1 6 1 6 3 13 2 12	5.3 5.2 7.8	3 19140 3 21560		11 11 21	57 30710 132 58 29490 126 36 32850 87 46 40610 165	D 10 D 11 D 14	10220 10290 6710 10430	625 631 2248	1 38 1 38 1 156 1 134	0 8 0 5 0 67	1480 1510 1610 1670	==	1 33 1 40 1 48 1 23	1 1 1 1	1 65. 1 64. 1 40. 1 76.	3 57 4 143	1 1		1 45 1 5 1 5 1 10
																					• .	١
						_		_														
																						11
																						,
					<u></u>										<u> </u>							
<u> </u>				<u></u>						· · · ·												

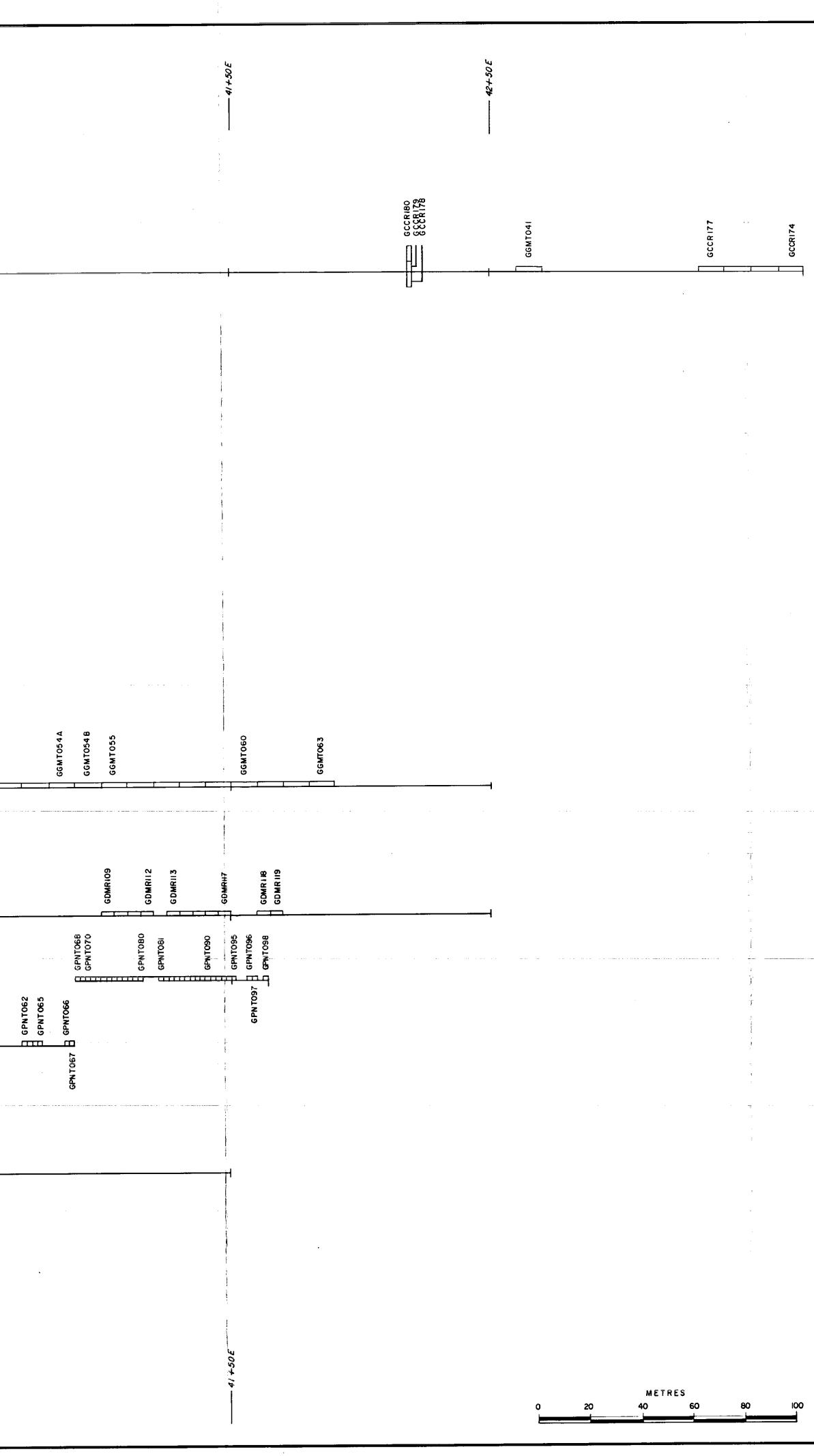

í


P: INTERNATIONAL J: UNUK	KOD L	AK.								7	M3 05 W	EN- Est	15TH S	T., N	ORTH	- IC VANCOU R (604)	VER, 8	.c. '	RT /71 1	T2										FILE	DATE	S-02; ; 90; (AC	/08/
N: G.NICHOLSON	AG	AL	AS	5	BĂ	BE	B 1	C	<u>A</u>	<u>co</u>	co	ຒ	FE	K	LI	MĞ	MN	HO	NA	HI		PB	\$B	SR	TH D	U	V	ZN G PPM PP		SN V PM PPM	CR	AU PP8	HG PPB
AMPLE UNBER	PPH	PPN	PPH	PP	I PPH	PPN	PPH	PP	<u>h P</u>	.1	PPN	PPH	i PPM	PPN 13340	PPH		1247	<u>PPM</u> 1	PPH 1310	22	<u>рри</u> 3110	32	1	27	1	1	51.7	139	1	1 1	4	5	640 355
NH-N-189 DS-N-077 DS-N-079 DS-N-080	:]	14490 21150 13680 22060 18990	1	i	262 5 182 5 184 5 184	1.1 1.1 .9 1.2		1240 1313 1054 1179	0 0 0		13 34 16 23 22	3829442	28660 34460 19920 32790 24810	3820 3830 2550 2370) 13) 9) 13) 13	9000 5480	7690 2680 2256 3018	1	850 450	78	3110 2700 2070 1650 2010	18	1 1 1	27 68 77 56 67	1	1	29.8 22.1 41.0 27.0	182 158	1		23	555	335 185 265
DS-H-081 DS-H-082 DS-H-083 DS-H-084 DS-H-085	.2	23780 18860 21250 19170			2 21 2 21 2 21 2 21 2 21 2 19 3 21	1.5	14	969 782 1201 1253	0	11111	32 31 42 51	6553525	45230 42230 35800 44010 44980	2480 1720 3360 2840 3450	23	10060 10250 3830 5550 11640	1675 1731 11996 11461 1841		470 520 810 2650 1110	117 111 108 73 8	1480 1360 2670 1700 2290	20 21 42 42 13	1	53 39 63 61 32	1		46.6 44.0 27.0 47.5 101.2	160 283 138 94			2 26 1 23 1 1 1 1 1 1	5 5 10 5	295 195 22(45(33(
-D\$-N-087 -D\$-N-088 -D\$-N-089 -D\$-N-089 -D\$-N-090 -D\$-N-091	1.3	18580 18400 18540 20410 16440		1 2 1	6 210 1 21 3 21 5 17 3 6		1	0 1217 9 1223 8 1167 8 1073	10 50 70 50	.1.	18 18 18 17	9865	7 41270 7 43280 0 46700 9 41700 9 29180	507 599 332 383 726	0 1 0 1 0 1	9 11610 9 11890 9 11730 9 11730 1 10510 8 6160	1200 1253 1294 950	1	990 710 580 770 1350	2	2400 2390 1960 2250 1810	11 16 15 12 18	1 1 1 1 1 1	29 30 27 26 28	1 1 1 1	1	114.8 110.8 103.3 105.3 43.7	89 97	1 1 1 2	1 1	2 1 2 1 1 1 1 1	55555	31: 46: 58: 64: 67:
-DS-H-092 -DS-H-093 -DS-H-095 -DS-H-096 -LG-H-177	<u>.9</u> 1.4 7 1.0	12810 23090 16330 24280 11880	1	1	1 13	2.0	5	4 1067 9 123: 4 99/ 6 76/ 3 121/ 5 108	50 60	.1 .1 .1 2.2	20 12 15	3233	7 46710 8 32670 7 40450 8 43450 5 46580	312 948 274 528	0 1 0 1 0 2 0	5 10920 3 8660 3 9060 8 7300	1397 843 628 4137	1	1730	16 20	1760 1440 1300 2160 2140	17 27 13 27	1	37 24 17 20 19	1	1 1 1	74.6 61.7 75.8 56.1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 1		5555	117 72 30 105 116
-LG-N-178		14630	1	1	2 16 0 12	6 1.	0	5 108	90	<u>5.1</u>	19	3	5 46580	339	0	7 6660	1022		010	<u> </u>	2140		<u> </u>		•								
																															<u></u>		
ţ																																	
					.														. <u> </u>														
																																	_
																	. <u></u>																
	+				n	יק	21																										

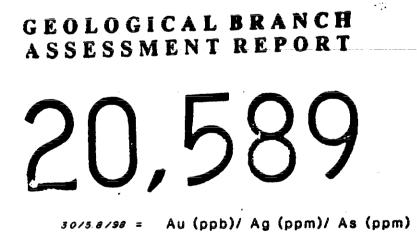


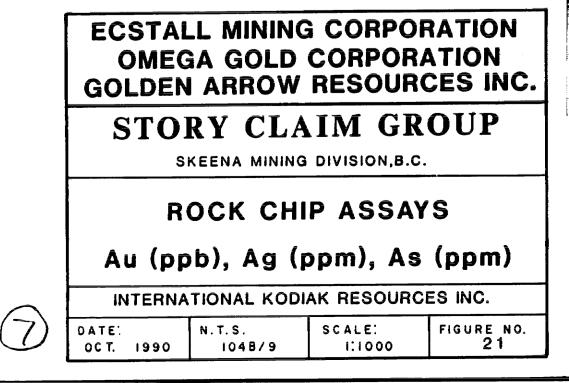

1 5 350 24 5 255 1 5 350 1 5 350 1 5 315 20 5 290 5 5 280 1 10 305
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 5 350 1 5 330 1 5 315 20 5 290 5 5 280 1, 10 305
20 5 290 5 5 280 1, 10 305
1 5 375 22 5 340 16 5 300
. ı
Į,

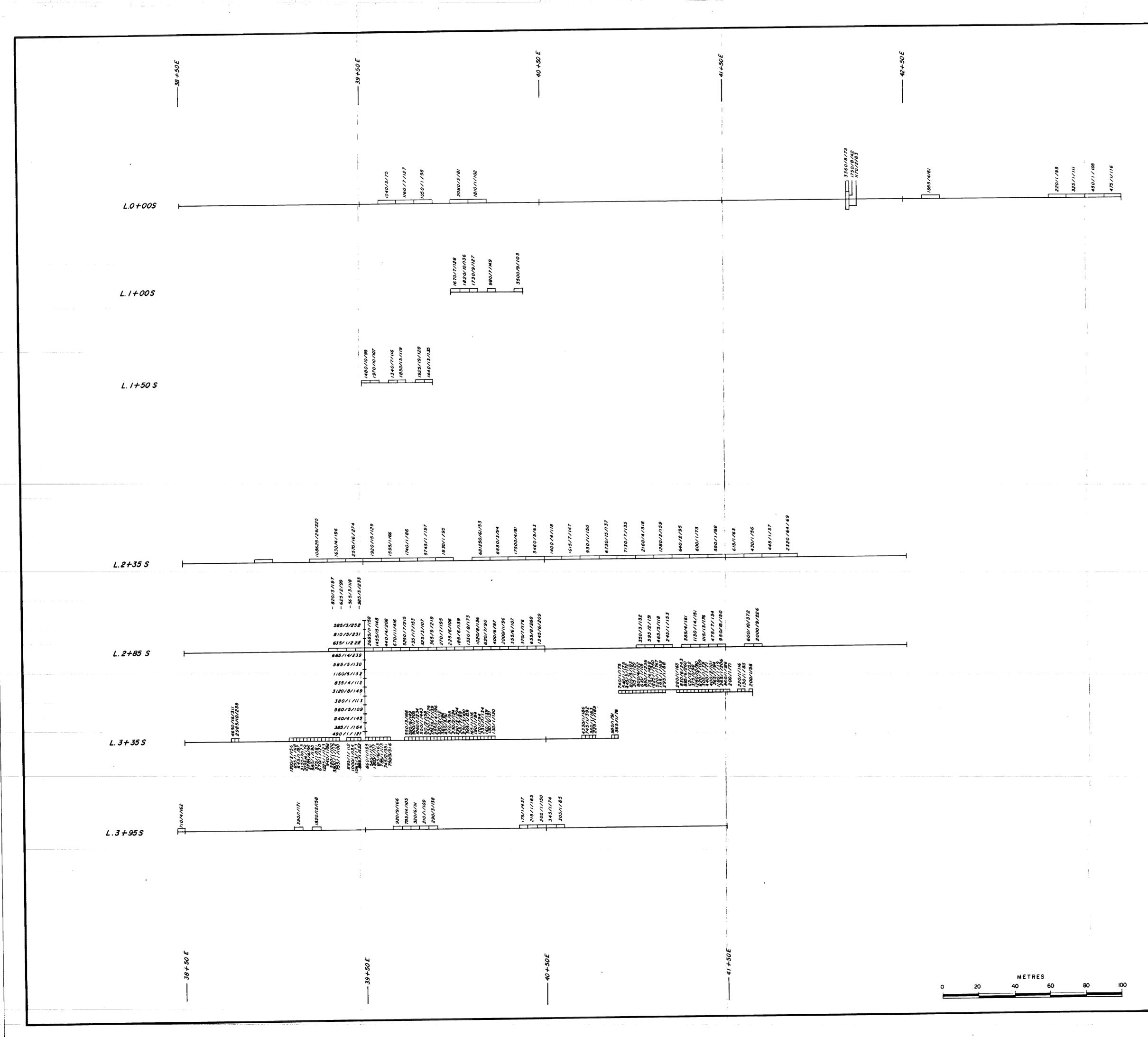


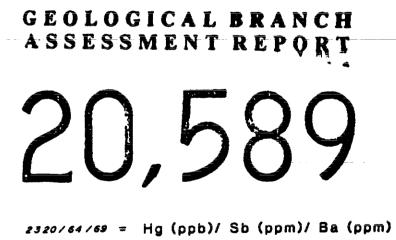


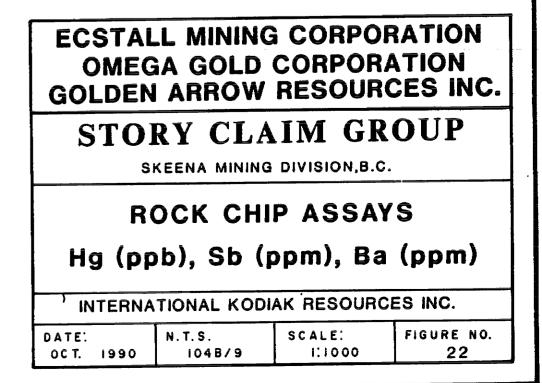
		· · · ·			— Fg.,		: .											
																	40 +50 E	
							- - - - - - - - - - - - - 											
									G GMT046	GGMT045	6GMT044		GGMT043	GGMT042				
	L.0+00\$	<u>}</u>						 <u></u>	[<u>-</u>		<u> </u>				<u></u>
• • • • • • • • • • • • • • • • • • • •	L. 1+005													GMBR337	GMBR338	GMBR339		
								DMRIZO	GDMR121	GDMR122 GDMR123	GDMR 124 GDMR 125							
	L. 1+50 \$									ی ی ــــــ	<u>ی</u> ی	7						
· · · · ·				GGMT072		66MT071					GGMT065	GGMT064		GGMT047			GGM TO50	
	L.2+35 S						85 6 ^{MBR3522}				<u> </u>				. <u>.</u>	î	+	
· · · · · · ·	L.2+85 S	 					6DMR0		GDMR090		GDMR095				<u> </u>	GDMR105	GDMRIOB	
			20			01	103 ۹۵۵ مردیست _{ه لا} ی			037			050		00			
•	L. 3 + 35 S	<u>}</u>	B GMMT219		GPNTII6	GPNTIIO		$\mathbf{n} \mathbf{T}$	036 036		en e		H GPTN050	<u></u>				
	·	م			33	32	GPNTIO2	GPNT099 GPNT030	6PNT036		GPNT040					çe Şe		52
	L.3+955	GMBR334] GMBR333	GMBR 332	<u> </u>	- - - - - - - - - - - - - - - - - - -		GMBR33I] GMBR326		GMBR322
		Q E						• • • •									نر	I
		38 + 50						39+50 £									40+50	


·····

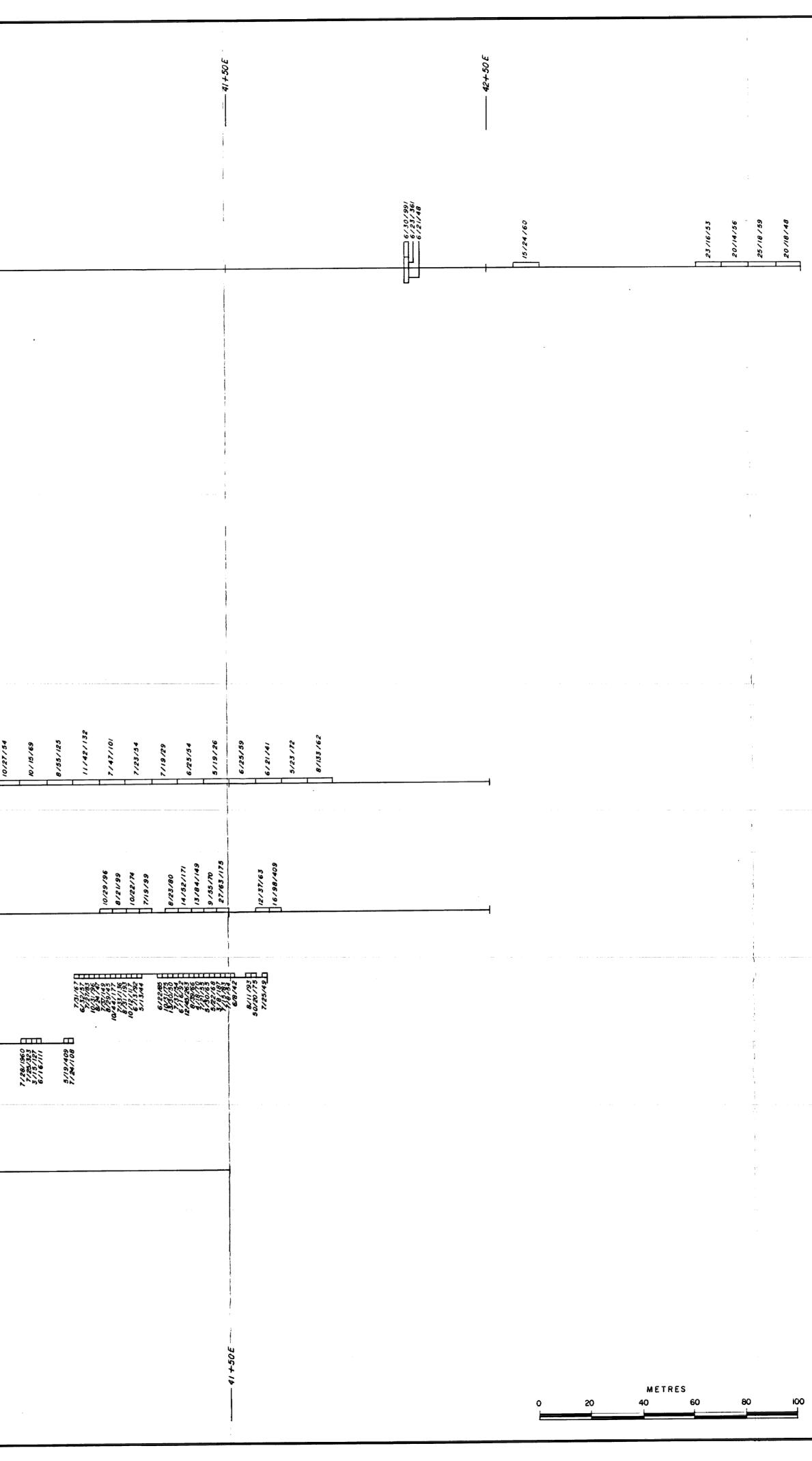

i di internetti internetti internetti internetti internetti internetti internetti internetti internetti interne

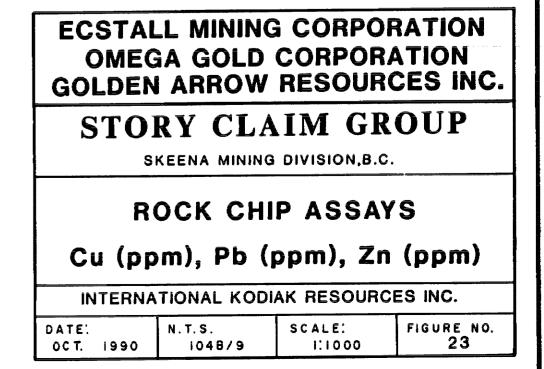



		39 + 50 E	41+505		42+50E	
L.0+005	• · · · · · · · · · · · · ·	5/0.9/28 5/0.9/28 5/0.8/8 5/0.8/8		5/0.8/1 5/0.8/1	0 E/S 0/S	1/6 0/01
<i>L.1+005</i>		5 /0.9/1.8 5 /0.9/38 5 /0.6/57			۰	
<i>L. 1+50 S</i>	· · · · · · · ·	5/0.7/1 5/0.8/33 10/0.8/63				
L.2+35 S		60/1.4/119 5/0.8/1 5/0.8/1 5/0.8/1 5/0.8/1 5/0.8/15 5/0.8/15 10/1.0/24	5/0.3// 5/0.6// 5/0.8/40 5/0.9/49 5/0.9/45 5/0.9/36	5/1.0/46 5/1.0/32 30/5.8/98		
	8 9 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0	*	10/1.1/1 5/1.4/1 5/1.4/1 5/0.6/1 5/0.8/1 5/0.8/1 5/0.2.4/55 40/2.0/212	5/1.0/28		
L. 3+35 S	10/0.8/4 5/0.7, 5/0.5 5/0.5 5/0.5 5/0.5 5/0.7 9.00 5/0.7 9.00 5/0.7 9.00 5/0.7 9.00 5/0.7 9.00 5/0.7 9.00 5/0.6 5/0.7 9.00 5/0.6 5/0.7 9.00 5/0.5 5/00	0 0 0 0 0 0 0 0 0 0 0 0 0 0	→ → → → → → → → → → → → → → → → → → →			
L.3+955	6//07/0/ 	10/1.0/19 5/2.2/1 5/2.2/1 5/2.2/1 5/2.2/1 5/2.2/1 5/2.2/1				
	38 + 50 E				0 20	METRES 40 60 80 100



.=




				40 +50 E
L.0+005	}		6/30/15 5/39/12 5/23/32 5/23/32	
L. 1+005			13/37/50 11/37/60 18/47/182	8/37/26] 16/113/216
L. 1+50 S			39/32/92 39/32/92 11/32/49 11/52/61	
• • • • •	. <u>.</u>			
L.2+35 S		8/6//633 9/25/47	76/35/64 12/20/107 10/35/64	7/76/1497 7/76/1497 12/47/13 6/40/67 10/27/54
L. 2+85 S	· · · · · · · · · · · · · · · · · · ·	£//!£/9 18/52/£ 9/29 8/32 9/29 18/5 18/49/ 15/38)	/83 /83 /99 /99 /99 /99 /99 /99 /99 /99 /15 /99 /99 /99 /15 /99 /99 /99 /15 /99 /99 /15 /99 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /99 /15 /15 /15 /15 /15 /15 /15 /15 /15 /15	5/27/62 13/24/51 28/27/235 5/26/43 6/26/95 6/24/95
L. 3+355	9/31/15	18/33/ 13/56/ 21/34/ 15/37/ 15/37/ 20/29/ 15/31/ 20/29/ 15/31/ 5/3	314 126 167 1119 1105	
1 3 LOE C	· · · · · · · · · · · · · · · · · · ·] 19/24/45] 5/30/35	15/29/374 10/37/216 10/35/121 10/25/02 13/28/115	13/38/93 16/36/96 21/32/93 43/41/76 43/41/76
L.3+955				
	38 + 50 E		39+50 E	40 + 50 E

.

GEOLOGICAL BRANCH ASSESSMENT REPORT 20,589

a//33/62 = Cu (ppm)/ Pb (ppm)/ Zn (ppm)

(9)

2

. 🐔