LOG NO: 12-07	RD.
ACTION:	
FILE NO:	

ASSESSMENT REPORT ON THE TREATY AND STAN CLAIM GROUPS STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION NTS 104B/9
LATITUDE 56°36'
LONGITUDE 130°04'

BY

E.R. Kruchkowski, B.Sc., P. Geol.

PREPARED FOR: CATEAR RESOURCES LTD.

#400, 255 - 17 Avenue SW

Calgary, Alberta

T2S 2T8

PREPARED BY:

E.R. KRUCHKOWSKI CONSULTING LTD.

23 Templeside Bay NE

Calgary, Alberta

T1Y 3L6

Calgary, Alberta September, 1990

FILE: TREATY90

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,603

GOVERNMENT AGENT PRINCE RUPERT

10:17 A.M.

TABLE OF CONTENTS

<u>P</u> ā	ge No
SUMMARY	. 1
INTRODUCTION	. 2
Location and Access	. 2
Physiography and Topography	. 2
Property Ownership	. 3
Personnel and Operations	. 4
Previous Work	. 5
GEOLOGICAL SURVEYS	. 8
Regional Geology	. 8
Local Geology	. 10
Economic Geology	. 12
GEOCHEMICAL SURVEYS	. 18
Rock Geochemistry	. 18
Silt Geochemistry	. 18
CONCLUSIONS	. 20
RECOMMENDATIONS	. 21
STATEMENT OF EXPENDITURES	. 22
REFERENCES	
CERTIFICATE	
ADDENDICES	

LIST OF FIGURES

		Following Page No.
Figure 1:	Regional Location Map	2
Figure 2a:	Claim Location Map: Treaty 3-7	2
Figure 2b:	Claim Location Map: Treaty 2 and Stan 1-4	2
Figure 3:	General Geology	11
Figure 4:	Table of Formations	11
Figure 5:	Stan 1-4, Treaty 2 Silt and Rock Geochemistry Map	rear pocket
Figure 6:	Treaty 3, 6 & 7 Silt and Rock Geochemistry Map	rear pocket
Figure 7:	Treaty 4 & 5 Silt and Rock Geochemistry Map	rear pocket
Figure 8:	Treaty 2-7, Stan 1-4 Silt and Rock Geochemistry Map	rear pocket
	LIST OF APPENDICES	
APPENDIX I	Analytical Data 1987 - 1988	
APPENDIX II	Analytical Data - 1990	

SUMMARY

The Treaty 2-7 and Stan 1-4 claims are located 90 air-kilometers north of Stewart, British Columbia, within the Skeena Mining Division. The property area is underlain by geologically favourable volcanics and sediments of the Hazelton Group in a belt of rocks referred to as B.C.'s "Golden Triangle". This "Triangle" encompasses the Iskut River Gold Camp to the west, the Galore Creek Camp to the north, the Unuk River Camp to the east and the Stewart Gold Belt to the south. Besides the recent Eskay Creek discovery, the "Triangle" has two producing gold mines and at least three more in the process. Numerous deposits, including base metal, gold-silver-base metal and silver-base metal deposits are present.

The 1990 exploration program consisted of analyzing the 1987 and 1988 rock and silt sample pulps for Cu, Pb, Zn, Sb, Hg and Ba. A total of 30 rock and silt samples were analyzed for Cu, Pb, Zn, Sb, Hg and Ba while a total of 338 rock and silt samples were analyzed for Cu, Sb, Hg and Ba. Anomalous samples were indicated for all elements tested. The survey indicated 0.11% and 0.12% Zn in several from the Treaty 5 claim silt samples. The samples were from an area that encompasses the Mt Dilworth formation overlain by black argillites of the Salmon River formation. Also the area of the exposed Mt Dilworth along steep slopes shows abundant white stain; possible indicating the presence of smithsonite. The source of the stain would be immediately above the Mt Dilworth formation.

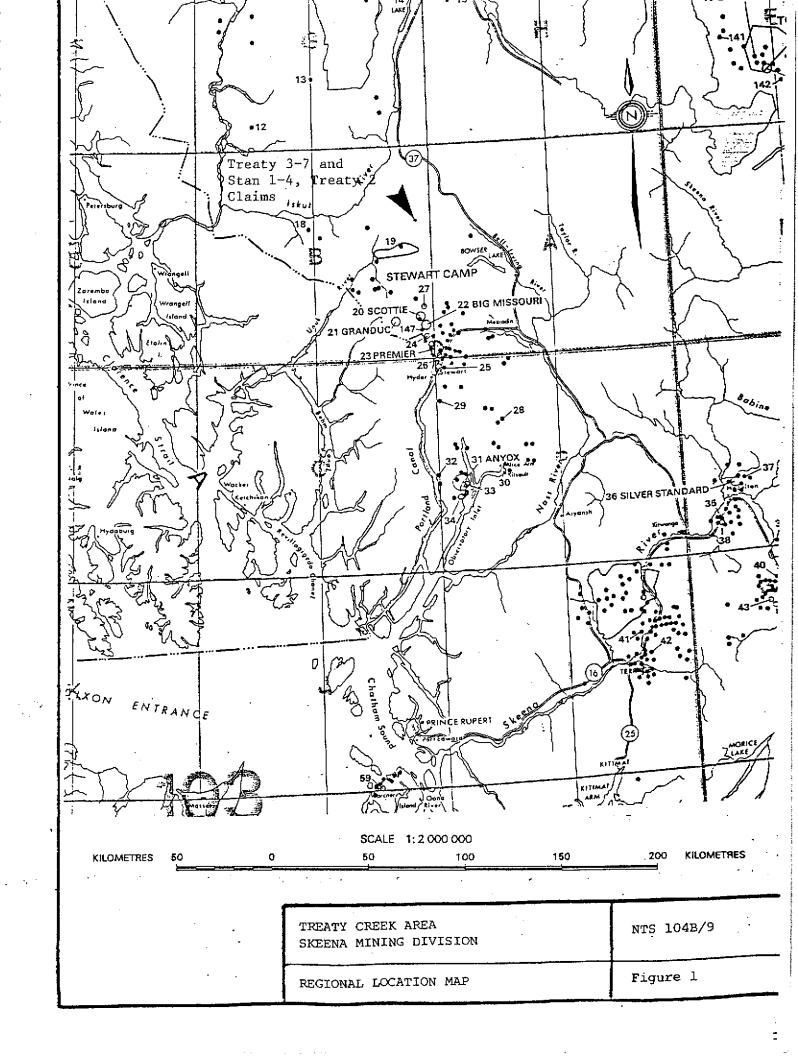
In addition the 1990 program included reconnaissance mapping, silt and rock sampling as well as prospecting. This work showed that the Mt Dilworth formation (host of the Eskay Creek deposit) is present on the Treaty 5 and Stan 2 claims.

A total of 108 rock and 44 silt samples were collected in the period June 18 - June 25, 1990 and analyzed for Au and Ag. Anomalous values were indicated for both elements. No anomalous gold values were indicated for the Mt Dilworth formation.

Further exploration is recommended to evaluate the economic potential of the Treaty property. A \$100,000 exploration program is recommended for 1991 consisting of mapping, detailed rock geochemistry and continued prospecting.

INTRODUCTION

Work conducted on the Treaty property commenced in May 1990 and was completed on June 25, 1990 by E.R. Kruchkowski Consulting Ltd. personnel. This report is based on data obtained from prospecting, silt and rock geochemical surveys. All analyses were performed by Loring Laboratories Ltd. in Calgary, Alberta.


Location and Access

The claims are located approximately 90 air-kilometers north of Stewart, British Columbia (Figure 1). Approximate longitude and latitude is 130°05' west and 56°38' north respectively. The property area is confined to map sheet NTS 104B/9 within the Skeena Mining Division.

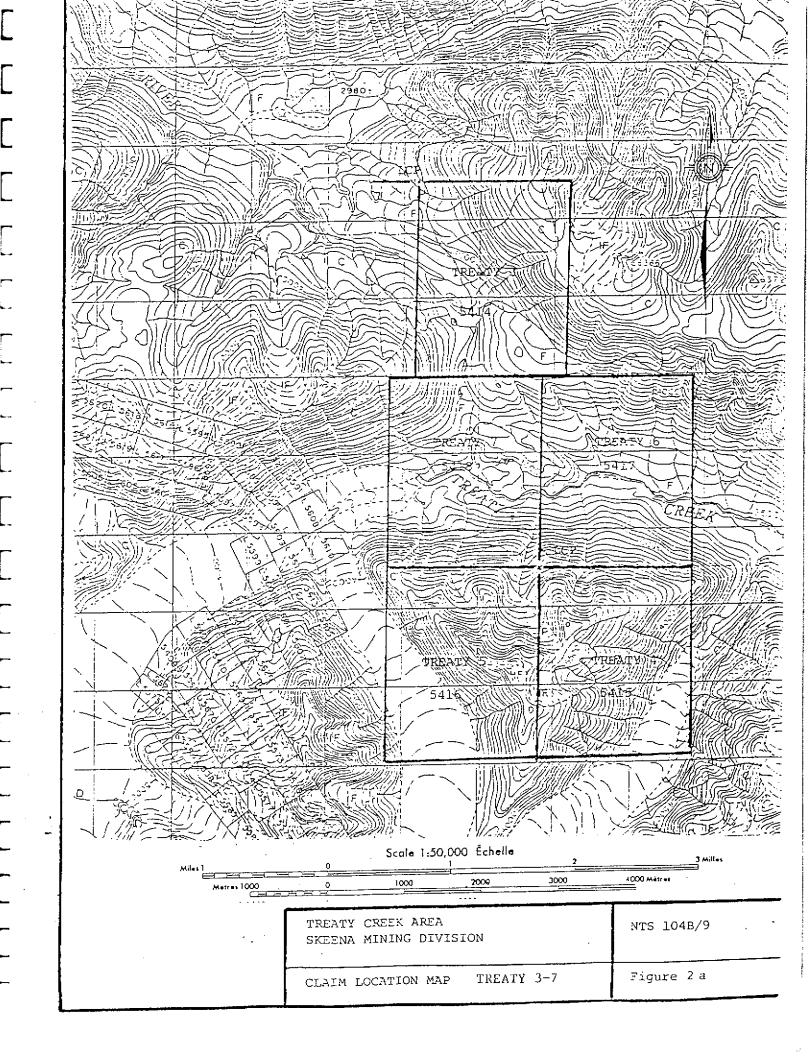
Access to the claim area may be gained utilizing helicopters based in Stewart or Bell II on Highway 37. Daily access to the claim area was accomplished by utilizing a helicopter based at Bell II located approximately 25 air-kilometers southwest of the above truck stop on Highway 37.

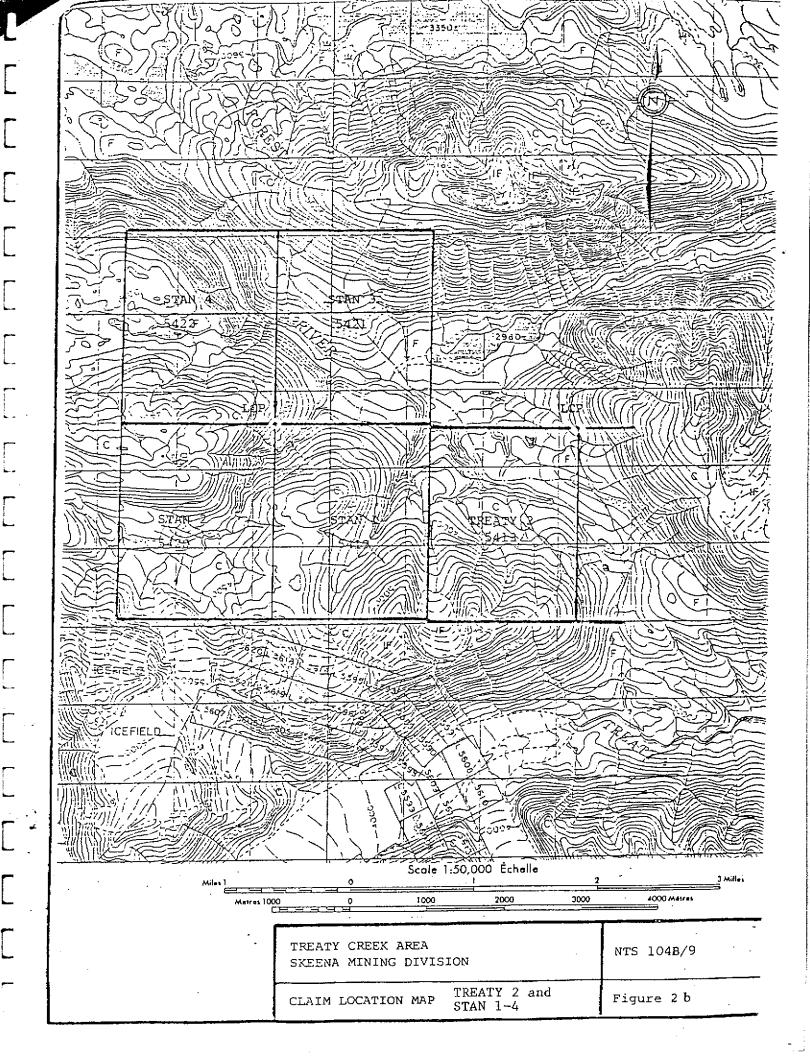
Physiography and Topography

The property area lies within the steep, rugged coastal mountain range with elevations varying from 2600 ft (792 m) to 6430 ft (1960 m) above sea level (Figures 2a and 2b). The area is drained by the Unuk River and Treaty Creek drainage systems. Many smaller, swift running streams generally flow year round as high level snow packs and icefields are common. The southern portion of the property

borders and encompasses parts of South Treaty and Drysdale Glaciers.

Treeline is located between 4000 - 4500 ft (1020 - 1372 m) and includes some dense alpine forest. Generally the steeper slopes host only tag alder and devils club well below the treeline. Above treeline, alpine mosses, grasses, flowers and lichen occur. Glacial till is thin and excessive overburden is confined to the Treaty Creek valley floor. Outcrop exposure is good as permanent snow and icefields only cover 10-15% of the area.


Summers can vary from hot and dry to very cold and wet. The prospecting-mapping-sampling field season is restricted to early June to late September, limited by snow accumulation and fierce winter weather.


Property Ownership

The property consists of 200 units divided into 2 groups.

The Treaty Claim Group consists of 100 units or five 20 unit claims as follows:

Claim	Record <u>Number</u>	Record <u>Date</u>	Number of Units
Treaty 3	5414	June 25, 1986	20
Treaty 4	5415	June 25, 1986	20
Treaty 5	5416	June 25, 1986	20
Treaty 6	5417	June 25, 1986	20
Treaty 7	5418	June 25, 1986	20

The Stan Claim Group consists of 100 units or five 20 unit claims as follows:

Claim Record Number		Record Date	Number of Units	
Stan 1 Stan 2 Stan 3 Stan 4	5419 5420 5421 5422	June 25, 1986 June 25, 1986 June 25, 1986 June 25, 1986	20 20 20 20	
Treaty 2	5413	June 25, 1986	20	

The claims were staked by E.R. Kruchkowski in 1986 and transferred to Catear Resources Ltd., May 1, 1987. The exact location of these claims would be subject to surveys (Figures 2a and 2b).

Personnel and Operations

E.R. Kruchkowski Consulting Ltd. personnel were utilized between June 18 to June 25, 1988. Personnel include the following:

Ed Kruchkowski	Geologist	10	days
Phil Van Angerum	Geologist	9	days
Howard Christensen	Assistant	9	days
Colin Christensen	Assistant	9	days
Jason Smith	Assistant	5	days
Bill Nielsen	Prospector	5	days
Corey Kruchkowski	Assistant	5	days

Accommodations were provided at a tent camp located at Bell II approximately 25 air-kilometers northeast of the property area. Daily access to the claims from the Bell II camp was gained utilizing a Northern Mountain Bell 206 helicopter based at the truck stop on Highway 37. Personnel and supplies were mobilized to the camp via truck from Calgary, Alberta.

The primary focus of the 1988 exploration program was a more detailed study of metal contents in previous sediment sampling programs. These samples were obtained in the 1987 and 1988 silt

sampling programs. Continued reconnaissance prospecting and outcrop chip sampling was conducted in 1990 as an extension to the 1987 and 1988 geochemical programs.

The stream sediment sampling was located in areas of little or no coverage from previous surveys. The samples were screened to a minus 1 mm mesh size and sufficient sample material was gathered to fill a standard kraft paper soil sample bag. All sites were flagged with pink-glo flagging tape with corresponding sample numbers. Rock geochemical samples were taken as grabs and were generally representative of the rocks.

Previous Work

Prior to being staked in 1986, the Treaty and Stan property had no previous work documented. In 1987, E.R. Kruchkowski Consulting personnel obtained significant gold values in silt samples taken. A total of 29 rock and 38 silt samples were collected while prospecting and mapping the area.

The adjacent area to the west of the claims has had an extensive work history for such a remote location. The area to the immediate north, south and east is unstaked.

An extensive gossanous outcrop has been a focus of exploration effort for several years on the adjoining western property. The gossan is located on the southeast valley wall of Treaty Glacier. These claims are solely owned by Teuton Resources and named the Treaty (not to be confused with the Treaty 2-7 claims) and TR1-7 claims.

During 1929 and 1930, a B.C.D.M. annual report documents that the extensive gossan extending over the Treaty, TR1-4, 6 and 7 claims was the focus of exploration efforts. The company, Consolidated Mining and Smelting Company of Canada Ltd., located 57 surveyed crown-granted claims and in 1931 exploration ended. The

exploration results were never published. The British Columbia Miner (1928) notes that prospectors Williams and Knipple obtained \$3.50 gold and silver values associated with heavy arsenic content.

In 1953, Williams and Knipple discovered a small silver-sulphide vein south of the Treaty claim, and large tetrahedrite boulders on the ice surface (location is unspecified). A geophysical survey identified a significant magnetic anomaly at the junction of Treaty and South Treaty Glaciers in 1967.

E & B Explorations Ltd. conducted a rock geochemistry and prospecting program in 1981 on the Treaty claim, but failed to outline any gold anomalies. Teuton Resources carried out a prospecting program in 1984 on the Treaty claim and surrounding Electrum claims (now restaked at the TR claims). They too were unsuccessful in identifying any gold anomalies in outcrop, however, anomalous gold values were obtained in float and silt samples.

In 1985, Teuton Resources carried out a heavy stream sediment sampling program and identified one highly anomalous gold value on the Treaty claim. Teuton Resources then executed a rock geochemistry sampling program in 1986 and isolated two random gold anomalies. Generally the program hosted poor results.

In 1987, E.R. Kruchkowski Consulting personnel carried out an extensive prospecting and rock geochemistry program on behalf of Teuton Resources Ltd. The result of the summer exploration effort yielded the discovery of an extremely high-grade gold-skarn deposit located on the north slope of the Treaty Glacier. Values as high as 28 opt gold across a four foot width were reported. The gold showings are known as the "Konkin Gold Zone" and the "Konkin North" occurrences.

Subsequent diamond drilling of the Konkin-North gold-skarn failed to encounter coarse native gold as observed on surface in the three holes drilled totalling 600.5 feet, however, 15 feet of .3 opt gold

was encountered in DDH-87-1. Unfortunately harsh winter elements in the late fall cut short the diamond drill program and the majority of the gold-skarn remains untested by diamond drilling.

During 1988, a detailed geochemical survey was undertaken on the property with significant gold and silver values obtained from silt and float specimens. The follow-up silt sampling program confirmed the presence of anomalous silver and gold values as high as 12.4 ppm silver and +1000 ppb gold (assayed to .220 opt gold). Unfortunately very few economically significant gold or silver values were obtained from chip sampling various sediments, volcanics and barren quartz veins. Yet, float samples of pyritic sediments and volcanics yielded gold and silver values of 0.92 opt gold and 13.7 ppm silver. The source of the anomalous float samples remains undetermined.

In the period in 1988-89, Tantalus has explored the adjoining Treaty Creek property of Teuton Resources. Drilling has indicated spotty but significant results. In 1990, a new base metal - precious metal zone in a quartz stock work system has been announced.

GEOLOGICAL SURVEYS

Regional Geology

The Treaty Creek property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic, Stuhini and Hazelton Group and have been intruded by plugs of both Cenozoic and Mesozoic age.

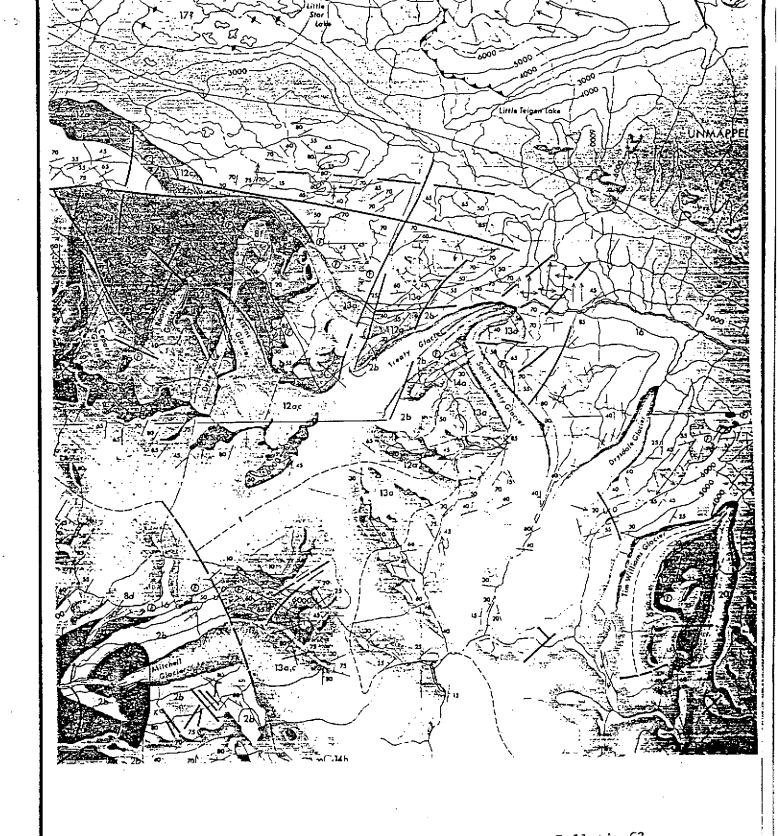
The base of the volcanic rocks appears to be triassic in age and consists of brown, black and grey, mixed sedimentary rocks interbedded with medium to dark green, mafic to intermediate volcanic and volcaniclastic rocks. The Stuhini Group appears to be conformably overlain by the Hazelton Group.

At the base of the Hazelton Group is the Lower Jurassic Marine (submergent) and non-marine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic dacitic lapilli tuff horizon (Mt Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of trough-

filling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone, and minor crystal and lithic tuffs, chert, limestone and lava.


The upper Lower Jurassic Mt Dilworth Formation consists of a thin sequence varying from black carbonous tuffs to siliceous massive airfall lapilli tuffs and felsic ash flows. Minor interbedded sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominately dark coloured, siltstone, greywacke, sandstone, intercalated calcarenite, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

Mr. Alldrick's work has shown several volcanic centres in the property area. Lower Jurassic volcanic centres in the Unuk River Formation are located in the Big Missouri Premier area, and in the Brucejack Lake area. Volcanic centres within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic; some are, likely, related late phase offshoots of the Coast plutonism, others are synvolcanic and tertiary. Double plunging, northerly-trending synclinal folds (Mitre syncline, Dilworth

FROM: Geology of the Unuk River-Salmon River-Anyox Map Area Bulletin 63. British Columbia Ministry of Mines & Petroleum Resources

	BIGHORN DEVELOPMENT CORPORATION	NTS 104B/9 1:100,000
ł	GENERAL GEOLOGY	FIGURE 3

	MIDDLE JURASSIC	
	SALMON RIVER FORMATION	
	SILTSTONE, GREYWACKE, SANDSTONE, SOME CALCARENITE, I LIMESTONE, ARGILLITE, CONLOMERATE, LITTORAL DEPOSITS	MINOR
	RHYOLITE, RHYOLITE BRECCIA; CRYSTAL AND LITHIC TUFF	
	BETTY CREEK FORMATION	
	PILLOW LAVA, BROKEN PILLOW BRECCIA (4); ANDESITIC AND ALTIC FLOWS (b)) BAS-
MESOZOIC -	GREEN, RED. PURPLE, AND BLACK VOLCANIC BRECCIA, COI GERATE, SANDSTONE, AND SILTSTONE (a); CRYSTAL AND L TUFF (b); SILTSTONE (c); MINOR CHERT AND LIMESTONE CLUDES SOME LAVA (+14) (d)	ITHIC
Σ 	LOWER JURASSIC	
	UNUK RIVER FORMATION	
	GREEN, RED, AND PURPLE VOLCANIC SRECCIA, CONGLOMES SANDSTONE, AND SILTSTONE (a): CRYSTAL AND LITHIC TUP SANDSTONE (c): CONGLOMERATE (d); LIMESTONE (a): CHER MINOR COAL (g)	f (b);
	PILLOW LAVA (4): VOLCANIC FLOWS (6)	
•	. SYMBOLS	
AC	υτ	
	TICLINE INORMAL, OVERTURNED	
вє	DOING HORIZONTAL, INCLINED, VERTICAL, CONTORTED + + 1	
	UNDARY MONUMENT	•
co	NTOURS (INTERVAL 1,000 FEET)	
FA	ULT (DEFINED, APPROXIMATE)	
FA	ULT (THRUST)	
FA	ULT MOVEMENT (APPARENT)	,
FO	LD AXES, MINERAL LINEATION HORIZONTAL, INCLINED A	
	SSIL LOCALITY ®	
GE	DLOGICAL CONTACT (DEFINED, APPROXIMATE)	
GL	ACIAL STRIAE	•
GR	AVEL, SAND, OR MUD	
	GHT IN FEET ABOVE MEAN SEA LEVEL	
	ERNATIONAL BOUNDARY	
	NT SYSTEM (INCLINED, VERTICAL)	
	RSH	
•	ING PROPERTY	
יוויא	ING PROPERLY	
	k River-Salmon River-Anyox Map Area Bulle Inistry of Mines & Petroleum Resources	etin 63,
	BIGHORN DEVELOPMENT	
•	CORPORATION	NTS 104B/9
	TABLE OF FORMATIONS	FIGURE 4

Syncline Spider anti-cline) of the Unuk River and Mt Dilworth Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units, and major northwest faults which turn beds. A large fault zone extending along Harrymel Creek south to the South Unuk River has been indicated by the government survey. Figure 3 shows the regional geology of the Treaty Creek property area (Grove).

Local Geology

The property area is mapped by E.W. Grove as being predominately underlain by Middle Jurassic Salmon River Formation. The sedimentary units include: siltstone, greywacke, sandstone, calcarenite, minor limestone, argillite, conglomerate and littoral deposits. Mapping and prospecting traverses confirm the presence of siltstone, greywacke and argillite. Some minor greywacke/lithic tuff is also noted. Grove also notes a Middle Jurassic, crystal and lithic tuff of the Betty Creek Formation in the southwest region of the Treaty 3-7 Claim Group. Based on 1987 and 1988 field observations, these rocks appear to be tightly folded into small anticlines and synclines. Due to the steep topographic nature of the structural occurrence, lithological confirmation is hindered.

The 1987 reconnaissance mapping crew notes dacitic porphyry (crystal tuff), dacitic-andesitic agglomerate, dark green-mauve andesite and feldsic/silicified lenses along the valley floor, bordering the South Treaty Glacier in the southwest portion of the Treaty 3-7 Claim Group. These rocks, according to Grove, dip 40° - 50° to the east. Work done in 1990 indicates that the dacitic rocks are part of the Mt Dilworth formation that strikes roughly east-west on Treaty 5 with a 40° - 50° dip to the north. As a result the formation forms a loop in the SW corner of Treaty 5 due to elevation difference from the ridge top to the valley floor. The Mt Dilworth is a thin, siliceous unit, weakly pyritic on the

Treaty 5. Total thickness appears to be 25 - 30 m and is underlain by purple to red Betty Creek volcanics and overlain by thinly bedded argillites and black volcanic pyroclastics.

The Mt Dilworth is also exposed on the Stan 2 claim where it trends NW - SE across the southwest corner. Here the unit appears more vertical with a dip of 85° to the NE.

The Mt Dilworth formation on the Stan 2 varies from a dense siliceous rock, possibly flows to a thinly banded crystal tuff. The formation has abundant pyrite in this area and weathers a distinct orange-brown. It is approximately 20 meters thick and is overlain by graphitic, pyritic argillites with minor limestone lenses. The argillite is approximately 50 meters thick and is overlain by a thick red felsic pyroclastic. Below the Mt Dilworth, red cherty volcanics of the Betty Creek formation were noted.

Also in the SW corner of the Stan 2 claim, a feldspar porphyry stock was noted. The rock consists of coarse euhedral to anhedral crystals of white feldspar up to 2 cm in a greenish groundmass. Crystals form up to 30% of the rock. A series of east-west quartz stockwork zones up to 3 m wide are present, peripheral to the intrusive margins. Abundant pyrite is associated along the walls of the quartz veinlets in the stockwork.

A traverse along the ridge tops in Treaty 4 and Treaty 5 indicated interbedded black argillite with coarse andesitic pyroclastics. The rocks trend east west and dip north.

Generally, north of the Treaty Creek, the sediments of the Salmon River Formation dip north between 45° - 70° and exhibit minor schistocity trending east-west and dip steeply to the south. The same sediments to the south of Treaty Creek generally dip 50° - 80° to the east. (Figure 3 and 4).

Economic Geology

The Treaty Property is in a belt of rocks referred to as B.C.'s "Golden Triangle". This "Triangle" encompasses the Iskut River Gold Camp to the west, the Galore Creek Camp to the north, the Unuk River Camp to the east and the Stewart Gold Belt to the south. Besides the recent Eskay Creek discovery, the "Triangle" has two producing gold mines and at least three more in the process. Numerous deposits, including base metal, gold-silver-base metal and silver-base metal deposits are present. The broad distribution of porphyry and mesothermal and epithermal style of mineralization supports the perception of the region as capable of yielding many more discoveries of both precious and base metals.

This "Triangle" hosts a number of gold discoveries and occurrences as follows:

- 1. Snip Deposit
 1.57 million tons of 0.64 oz/ton Au
 (Proven and Probable)
- Johnny Mountain Gold Mine 686,000 tons of 0.57 oz/ton Au (Drill indicated)
- 3. E & L Deposit
 3.2 million tons of 0.8% Ni & 0.6% Cu
 (Drill Indicated)
- 4. 21 Zone Discovery
 3-5 million ounces of Au
 (Indicated Potential)
- 5. Sulphurets Gold Zone
 20 million tons of 0.08 oz/ton Au
 (Indicated Potential)
- 6. Snowfield Gold Zone
 25 million tons of 0.08 oz/ton Au
 (Indicated Potential)
- 7. Brucejack Gold Deposit 854,072 tons of 0.354 oz/ton Au & 22.94 oz/ton Ag (Drill Indicated and Inferred)

- 8. Gold Wedge Deposit
 375,000 tons of 0.75 oz/ton Au & 1.0 oz/ton Ag
 (Proven and Probable)
- 9. Kerr Deposit 66 million tons of 0.86% Cu & 0.01 oz/ton Au (Drill Indicated)
- 10. Q22/17 Gold Zone 470,000 tons of 0.27 oz/ton Au & 1.31 oz/ton Ag (Probable)
- 11. S B Deposit
 308,000 tons of 0.505 oz/ton Au & 1.07 oz/ton Ag
 (Drill Indicated and Inferred)
- 12. Big Missouri Deposit
 1.86 million tons of 0.091 oz/ton Au & 0.67 oz/ton Ag
 (Drill Indicated and Inferred)
- 13. Silbak Premier Deposit
 6.1 million tons of 0.064 oz/ton Au & 2.39 oz/ton Ag
 (Drill Indicated & Inferred)
- 14. Prosperity Porter Idaho Deposit 911,000 tons of 19.5 oz/ton Ag & 5% Pb, Zn (Probable)
- 15. Georgia River Deposit 321,067 tons of 0.839 oz/ton Au & 0.656 oz/ton Ag (Drill Indicated and Inferred)
- 16. Dolly Warden Deposit 515,350 tons of 11.04 oz/ton Ag (Proven, Probable)

Currently several precious metal prospects in the Stewart area are being explored. The important developments in the area in recent years included the mining at the Granduc Mine, the start-up of the Scottie Gold Mines in 1981, the start of production on the Silbak-Premier and Big Missouri prospects by Westmin Mineral Resources and the exploration of the Sulphurets camp by Newhawk-Granduc and Catear Resources as well as the recent discovery at Eskay Creek and the Kerr copper gold deposit.

1. <u>Silbak-Premier</u> - During the period 1918 to 1968, 4,670,170 tons of ore were mined containing 1,804,318 ounces of gold, 40,863,280 ounces of silver, 4,083,635 pounds of copper, 54,628,047 pounds of lead and 17,468,730 pounds of zinc. The property is currently in production with Westmin Resources Ltd. as operator and majority owner.

The ore is restricted to several sulphide-rich shoots enclosed within essentially barren quartz-pyrite zones. Both the ore shoots and the surrounding barren quartz zones are enclosed by irregular zones of quartz-pyrite-sericite alteration. The ore shoots consist of sphalerite, galena, chalcopyrite, pyrrhotite, argentite, tetrahedrite, mercury and electrum within a gangue of quartz-calcite-barite.

Three types of ore occurred in the mine including: (1) stephanite native silver (2) "black sulphide" ore, and (3) lower grade siliceous ore. The surface bonanza ores (stephanite-native silver) and the black sulphide ores contained up to 5% mercury. Silver content within galena averaged 1 oz/ton but ranged up to 55 oz/ton.

In recent years, some geologists have interpreted the ore zones as volcanogenic exhalations.

2. <u>Big Missouri</u> - From 1927 to 1942 the Big Missouri Mine produced 847,615 tons of ore containing 58,384 ounces of gold, 52,677 ounces of silver, and 2,712 pounds of lead. The prospect is currently being explored by Westmin Resources; in 1983 this company published open pit reserves of 1.9 million tons averaging 0.1 oz/ton gold.

The ore body has been described as 200-foot fracture zone laced with quartz-calcite veinlets. The veinlets contain varying but generally small amounts of galena, sphalerite and chalcopyrite. The ore occurs within chloritic schists which have been sericitized, silicified, and pyritized. Silicification would appear to be the most persistent form of alteration. Recent talks by Harlan

Meade of Westmin Resources indicate the possibility that the Big Missouri might contain a number of small lenses of exhalative sulphides with associated alteration zones.

3. <u>Scottie Gold</u> - The Scottie Gold Mine began operation in 1981 at which time reserves were reported as 175,000 tons grading 0.75 oz/ton gold.

Mineralization is described as consisting of erratic, discontinuous masses of sulphide mineralization occurring within siliceous replacement bodies. Sulphides include pyrrhotite, pyrite, arsenopyrite and chalcopyrite with minor sphalerite and galena.

- 4. Granduc Mine The Granduc Mine was opened by Esso Minerals Ltd. in 1980 at which time the indicated reserves were 10,890,000 tons using a cut-off of 1.79% copper. The mine closed again in 1983.
- 5. Eskay Creek (Tom MacKay) This prospect is owned by Consolidated Stikine Silver Ltd. and Prime Resources Ltd. In 1973 the inferred reserves were reported as 107,200 tonnes using a 0.25 oz/ton gold cut-off.

Prior to 1988, the reported mineralization consisted of stockworks of quartz veins irregularly mineralized with pyrite, tetrahedrite, sphalerite, galena, chalcopyrite and arsenopyrite. These stockworks occur within prominent oxidized knolls or domes.

Subsequent to 1988, Consolidated Stikine Silver Ltd. and Prime Resources Ltd. discovered the Eskay Creek deposits (21B Zone). Gold and silver mineralization occurs as a stratabound sheet traced by drilling over 1000 metres and with a maximum thickness over 200 metres. Mineralization in the zone is hosted within variably sheared and schistose graphite mudstone, carbonaceous debris breccia and rhyolite breccia of the Mt Dilworth formation. The mineralization changes from one with massive to semi-massive

stibnite, realgar and orpimint in the south section to an increase of sulphides, especially pyrite and sphalerite with a relative absence of antimony and mercury-bearing minerals to the north. In addition, gold and silver values increase to the north. At present, reserves are quoted as being in excess of 4,000,000 ounces of gold equivalent.

6. Newhawk-Granduc - The deposits are as follows:

		Gra	ade
	Present Reserves	opt Au	opt Ag
Newhawk West (partially explored)	854,072	.354	22.94
Catear Goldwedge (partially explored)			
Golden Rocket Discovery	319,149 37,980	.80 .63	$\substack{1.12\\1.08}$

The above gold-silver discoveries are structurally controlled, epithermal-mesothermal veins occurring in areas of syenodiorite intrusions and associated with areas of intense sericite (quartz-pyrite) alteration.

Tantalus Resources Ltd. announced a discovery of a new zone of precious and base metals mineralization on the Treaty Creek Project, adjacent to the Treaty property. Systematic prospecting of altered and gossanous andesitic volcanics led to the discovery of the Mama Susu Zone. Within this zone, occurring over an area of approximately 500 metres x 800 metres, are a number of outcrops and numerous angular boulders of sulphide-bearing sheared andesitic volcanics and pyroclastics with quartz veins and stockworks. Although outcrop exposure is limited, shearing within the zone is trending to the northeast. Of the 43 samples collected from outcrop and boulder occurrences throughout the Mama Susu Zone, 31 returned in excess of 1.0 oz/ton silver. Assays from boulder occurrences have returned up to 0.401 oz/ton gold, 100.0 oz/ton silver, 28.6% lead, 15.5% zinc and 1.65% copper.

The close proximity of the property to known deposits, the presence of favourable geology and anomalous gold and silver in silts and rocks make the Treaty property an excellent exploration target.

GEOCHEMICAL SURVEYS

Rock Geochemistry

A total of 108 rock samples were collected during the prospecting and silt sampling program. Samples were sent to Loring Laboratories in Calgary where they were crushed, split and ground to -80 mesh. The samples were analyzed using standard geochemical methods for gold and silver. The 1987 and 1988 pulps from rock geochemistry programs were also analyzed for Cu, Pb, Zn, Sb, Hg and Ba. A total of 30 rock and silt samples were analyzed for Cu, Pb, Zn, Sb, Hg and Ba while a total of 338 rock and silt samples were analyzed for Cu, Sb, Hg and Ba. The rock geochemical survey concentrated on sampling the Mt Dilworth formation and overlying rocks. All samples of the above formation indicated no significant gold or silver values.

Sampling of the quartz stockwork zones near the feldspar porphyry indicated weakly elevated silver values compared to the rest of the rock geochemical survey.

Two float boulders yielded assays of .142 opt and .130 opt gold along the Treaty valley. It is speculated that the source is up valley on the adjoining property.

Silt Geochemistry

A total of 44 silt samples were collected from streams that had little or no previous sampling. The samples were collected and screened to -20 mesh in the field and then placed in appropriately numbered kraft sample bags. These samples were sent to Loring Laboratories in Calgary, Alberta where they were dried, screened to -80 mesh and analyzed for gold and silver using standard geochemical methods. A total of 30 rock and silt pulps from the 1987-88 program were analyzed for Cu, Pb, Zn, Sb, Hg and Ba while

a total of 338 rock and silt pulps were analyzed for Au, Sb, Hg and Ba.

The 1990 silt sampling indicated anomalous gold in stream sediments on the Treaty 7 and Stan 2 claim. This work verified previous anomalous gold in silt samples from the 1987 - 1988 surveys.

The analysis for the other elements outlined a potential zone of enriched zinc values in stream sediments. One sample from Treaty 7, one from Treaty 5 and a number from Treaty 4 indicate an increase in zinc. These samples T5-5 (.11% Zn) on Treaty 7, samples T5-1 (.12% Zn) and samples DL130-134 (421-341 ppm Zn from 1988 survey) on Treaty 4 are substantiated by abundant white stain along the contact of the Mt Dilworth formation and overlying argillites. It is speculated that this white stain is smithsonite caused by the oxidation of zinc minerals along this contact. Weakly anomalous Sb is indicated for samples T5-1 and T5-15. The geochemical analysis of pulps also showed a correlation between elevated Cu, Sb and Hg values.

Figures 4-8 show the metal distribution in rocks and silts.

CONCLUSIONS

- The property is underlain by Jurassic age volcanic and sedimentary rocks. These rocks host numerous gold-silver deposits in the Stewart-Sulphurets area.
- 2. The property is adjacent to the high-grade coarse native gold showings of Teuton Treaty and TR claims and the newly announced discovery by Tantalus.
- Numerous anomalous gold and silver silt samples have been indicated on the property.
- 4. Elevated zinc values in stream sediments in an area of possible smithsonite stain indicates the potential for zinc mineralization at the contact of Mt Dilworth rhyolite and overlying sediments.
- 5. The property presents a good potential as an exploration target for gold-silver mineralization. Further work consisting of mapping, detailed rock geochemistry and prospecting is recommended, particularly along the volcanic-sediment contact between the respective Betty Creek and Salmon River Formations.

RECOMMENDATIONS

The recommendations are as follows:

- 1. An orthophoto study should be initiated to give better survey control.
- Further prospecting and mapping in the area of elevated zinc in stream sediments.
- 3. A possible airborne VLF and magnetometer survey over the property area.

Cost of the program is estimated at \$150,000.

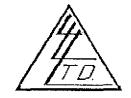
STATEMENT OF EXPENDITURES

Mobilization/demobilization	4,000.00
Personnel (wages)	12,850.00
Helicopter	6,342.92
Support	9,750.65
Consumables	287.00
Subsistence	1,025.00
Camp Rental	1,410.00
Report Writing	5,000.00
Typing and Drafting	400.00
Total	\$41,065.57

50% of total on Treaty 3-7 group and 50% on Stan 1-4 and Treaty 2 Claim Group.

REFERENCES

- GROVE, E.W. (1982)
 - Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- ANNUAL REPORTS, MINISTER OF MINES, B.C. 1929 -- p. C102; 1930 -- p.A110.
- BRITISH COLUMBIA MINER (1928)
 "Portland Canal Notes" by W.R. Hull, p.36, December 1, 1928.
- KRUCHKOWSKI, E.R. (1981)
 Geological Report Treaty Claim -- Bowser Unuk Project, NTS 104B/9E, for E & B Explorations Ltd.
- CREMONESE, P.ENG. (1984)
 Assessment Report on Prospecting Work on the Electrum 1 and Electrum 6 Claims, NTS 104B/9E. On File with the B.C.M.E.M.P.R.
- CREMONESE, P.ENG. (1985)
 Assessment Report on Geological and Geochemical Work on the Treaty Claim, NTS 104B/9E. On File with the B.C.M.E.M.P.R.
- HORNE, E. B.SC. (1987)
 Assessment Report on the Treaty 3 to 7 Claims, Treaty Creek Area, NTS 104B/9 Skeena Mining Division.
- HORNE, E. B.SC. (1987)
 Assessment Report on the Treaty 2 and Stan 1-4 Claims, Treaty
 Creek Area, NTS 104B/9 Skeena Mining Division.
- KONKIN, K.J. and KRUCHKOWSKI, E.R. (1988)
 Assessment Report on Treaty and Stan Claim Groups.
- KRUCHKOWSKI, E.R. and SINDEN, G.W. (1988)
 Report on Corey Claim Group, Stewart, B.C., NTS 104B/8W,
 Skeena Mining Division


CERTIFICATE

- I, EDWARD R. KRUCHKOWSKI, Geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:
- I received a Bachelor of Science degree in Geology from the 1. University of Alberta in 1972.
- I have been practising my profession continuously since 2. graduation.
- I am a member of the Association of Professional Engineers, 3. Geologists and Geophysicists of Alberta.
- I am a consulting geologist on behalf of Catear Resources Ltd. 4.
- This report is based on a review of reports, documents, maps 5. and other technical data on the property area and on my experience and knowledge of the area obtained during programs in 1974 - 1990.

E.R. Kruchkowski

APPENDIX I
ANALYTICAL DATA 1987 - 1988

To: CATEAR RESOURCES LTD.,
400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 2T8
ATTN: Jack Wyder

File No. <u>33458</u>

Date <u>June 4, 1990</u>

Samples <u>Soil/Silt/Rock</u>

Certificate of Assay LORING LABORATORIES LTD.

	Page # 1							
	SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Sb	PPB Hg	PPM Ba	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Geo	ochemical Analysis	;						
	18001	+1000	+1000	+1000	118.0	46000	123399	
	18002	+1000	+1000	+1000	235.0	21600	304404	
	18003	490	357	+1000	21.0	3300	25681	
	18004	95	104	725	3.5	4000	6468	
	18005	52	58	343	2.1	6600	2393	
-	18006	20	61	248	3,3	4100	714	
	18007	53	12	315	2533.0	6500	841	
-	18008	128	58	268	34.8	4300	32	
-	18009	63	19	176	16.5	4200	1010	
İ	18010	110	23	156	1.1	4000	971	
_	18011	83	18	165	1.6	1500	2006	
	18012	39	21	195	0.9	1800	746	
	18013	21	9	131	0.7	3200	1494	
	18014			-	12.0	5700	1643	
	18015	-	_	_	25.6	5200	1150	
	18016			•••	18.7	4300	5065	
	13017	-	_		62.1	17000	2678	
-	18018	-	_	_	4.0	1900	1704	
	18019		_	_	3.0	2500	3734	
1	18020		· —		1.8	4000	529	
L	18021			_	0.3	1700	759	
	18022	-	_	-	0.5	2300	1172	
	18023	-	_		0.9	2500	1946	
	18024	_	_	_	0.6	2400	1145	
	18025	-		_	1.8	5400	497	
5	18026	-	-	-	1.4	3600	1177	
	18027	-	-		0.5	2600	1659	
	18028		_	_	0.1	2500	537	
_	18029	-	_	-	1.1	4100	1463	
	18030	-	_		1.5	3600	1064	

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Pejects retained one month.

'ulps retained one month.

Inless specific arrangements

are made in advance.

Jan Joseph (

To: CATE	AR RESOUR	RCES_LTD.,	
400, 25	<u>5 - 17th</u>	Avenue S.W.	¥.
		T2S 2T8	

TD

File No. <u>33458</u>

Date <u>June 4, 1990</u>

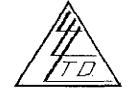
Samples <u>Soil/Silt/Rock</u>

ATTN: Jack Wyder

Certificate of Assay LORING LABORATORIES LTD.

Page # 2

-			, .	.gc L				
Γ_	SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Sb	899 PH	PPM Ba	
	18031	-	-	_	1.7	5000	1339	
	18032	_	-	_	0.2	2600	312	
· Security	18033	_	_	_	0.4	2000	591	
	18034	-		_	0.6	1300	1043	
_	18035	_		_	1_4	3600	1322	
1 1	18036	-	_		0.2	1300	257	
ljan i de	18037	_	_	_	0.6	680	399	
	18038	-	_	-	14.1	3500	17502	
	18039		_	_	1.0	1600	950	
-	18040	-		_	0.8	2000	1732	
	18041	_		-	0.4	500	1848	
	18042	_		_	2.5	950	254	
-	18043	-	-		1.2	620	218	
	18044	_		_	0.6	1100	166	
_	18045			-	3.9	2900	820	
	18046	_	_		0.6	410	243	
.	18047	***	_	-	2.0	1100	822	
_	18048	-	-	-	15.7	4300	4972	
	CGS-03	1	240	+1000	2.7	5400	236	
	CG-01	123	105	540	NSS	NSS	NSS	
	CG-02	NSS	NSS	NSS	NSS	NSS	NSS	
	CG-04	60	14	625	3.7	1600	769	
	CG-05	26	17	240	2.5	930	1179	
	CG-06	41	10	256	2.5	1200	1114	
_	CG-07	72	10	135	2.4	1500	1793	
	CG-08	35	35	685	11.6	2600	562	
	C-36-1	58	7	148	0.1	1300	1060	
_	C-38-GS-2	19	2	49	0.4	1900	1035	
	C-38-GS-3	27	2	87	0.4	1200	993	
	C-38-GS-4	21	1	67	0.2	800	1136	
_	C-39-GS-1	49	28	203	1.3	1500	1226	
	√S2-1	64	185	370	29.3	3600	2107	


I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.

Julps retained one month
Inless specific arrangements
are made in advance.

Joseph Joseph

To: CATEAR RESOU	RCES LTD.,
- <u>400, 255 - 17th</u>	Avenue S.W.,
- <u>Calgary, Alberta</u>	T2S 2T8
ATTN: Jack Wydei	r

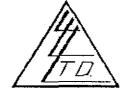
File No. 33458

Date June 4, 1990

Samples Soil/Silt/Rock

Certificate of Assay LORING LABORATORIES LTD.

Page # 3


SAMPLE NO. PPM PPM PPM PPM PPM PPM PB PPM PB PB	Page # 3							
\$2-3 30 17 190 3.5 3500 2968 \$3-01 25 13 200 1.9 1800 1680 \$3-02 24 6 134 0.7 2000 1618 \$3-03 21 6 107 0.8 1800 1699 \$3-04 31 7 137 0.9 1900 1031 \$3-05 27 7 146 1.2 2800 1322 \$3-05 19 4 176 0.5 1300 686 \$3-02 37 5 169 1.1 1700 802 \$4-03 49 6 206 1.1 1400 943 \$4-04 45 8 198 1.1 2200 751 \$3-01 8 8 8 66 0.2 3300 686 \$3-02 37 91 0.7 2800 1339 \$73-07 36 7 120 1.1 1500 1249 \$74-01 44 6 146 1.9 1100 988 \$74-02 47 10 173 1.8 2500 1581 \$74-05 38 15 135 1.4 1300 1178 \$75-01 85 10 +1000 11.8 1400 987 \$75-06 58 22 165 6.9 1600 2303 \$75-06 58 22 165 6.9 1600 2303 \$75-06 58 22 165 6.9 1600 2303 \$75-06 58 22 165 6.9 1600 2303 \$75-02 37 9 129 1.4 1900 2051	SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Sb	PPB Hg	PPM Ba	
\$3-01								
\$2-3 30 17 190 3.5 3500 2968 \$3-01 25 13 200 1.9 1800 1680 \$3-02 24 6 134 0.7 2000 1618 \$3-03 21 6 107 0.8 1800 1699 \$3-04 31 7 137 0.9 1900 1031 \$3-05 27 7 146 1.2 2800 1322 \$3-05 19 4 176 0.5 1300 686 \$3-02 37 5 169 1.1 1700 802 \$4-03 49 6 206 1.1 1400 943 \$4-04 45 8 198 1.1 2200 751 \$3-01 8 8 8 66 0.2 3300 686 \$3-02 37 91 0.7 2800 1339 \$73-07 36 7 120 1.1 1500 1249 \$74-01 44 6 146 1.9 1100 988 \$74-02 47 10 173 1.8 2500 1581 \$74-05 38 15 135 1.4 1300 1178 \$75-01 85 10 +1000 11.8 1400 987 \$75-06 58 22 165 6.9 1600 2303 \$75-06 58 22 165 6.9 1600 2303 \$75-06 58 22 165 6.9 1600 2303 \$75-06 58 22 165 6.9 1600 2303 \$75-02 37 9 129 1.4 1900 2051	152-2	64	36	180	11.1	5700	5298	
\$3-01	\$2- 3							
\$3-02								
S3-03								
#\$3-04								
\$3-05	√ S3−04							
\$3-06	√ 53−05							
\$4-02								
6 206 1.1 1400 943 84-04 45 8 196 1.1 1600 890 94-05 47 8 198 1.1 2200 751 72-01 23 7 91 0.7 2800 1339 73-01 8 8 66 0.2 3300 686 73-02 35 10 175 1.0 1900 886 73-03 20 6 112 0.5 1500 857 73-04 39 6 143 0.8 1300 1153 73-07 36 7 120 1.1 1500 1249 74-01 44 6 146 1.9 1100 988 74-02 47 10 173 1.8 2500 1581 74-03 36 8 126 1.2 1600 917 74-05 38 15 135 1.4 1300 1178 75-01 85 10 +1000								
84-04 45 8 196 1.1 1600 890 \$4-05 47 8 198 1.1 2200 751 \$72-01 23 7 91 0.7 2800 1339 \$73-01 8 8 66 0.2 3300 686 \$73-02 35 10 175 1.0 1900 886 \$73-03 20 6 112 0.5 1500 857 \$73-04 39 6 143 0.8 1300 1153 \$73-07 36 7 120 1.1 1500 1249 \$74-01 44 6 146 1.9 1100 988 \$74-02 47 10 173 1.8 2500 1581 \$74-03 36 8 126 1.2 1600 917 \$74-04 23 7 80 0.9 820 913 \$75-01 85 10 +1000 11.8 1400 1480 \$75-02								
S4-05								
72-01 23 7 91 0.7 2800 1339 73-01 8 8 66 0.2 3300 686 73-02 35 10 175 1.0 1900 886 73-03 20 6 112 0.5 1500 857 73-04 39 6 143 0.8 1300 1153 73-07 36 7 120 1.1 1500 1249 14-01 44 6 146 1.9 1100 988 14-02 47 10 173 1.8 2500 1581 14-03 36 8 126 1.2 1600 917 14-04 23 7 80 0.9 820 913 14-05 38 15 135 1.4 1300 1178 15-01 85 10 +1000 11.8 1400 1480 15-02								
13-01 8								
₹3-02 35 10 175 1.0 1900 886 ₹3-03 20 6 112 0.5 1500 857 ₹3-04 39 6 143 0.8 1300 1153 ₹3-07 36 7 120 1.1 1500 1249 ₹4-01 44 6 146 1.9 1100 988 ₹4-02 47 10 173 1.8 2500 1581 ₹4-03 36 8 126 1.2 1600 917 ₹4-04 23 7 80 0.9 820 913 ₹4-05 38 15 135 1.4 1300 1178 ₹5-01 85 10 +1000 11.8 1400 1480 ₹5-02 37 8 160 1.8 2000 1339 ₹5-03 27 6 163 2.0 2900 1418 ₹5-05 97 7 +1000 15.3 1300 1676 ₹5-06 5			8					
73-03 20 6 112 0.5 1500 857 73-04 39 6 143 0.8 1300 1153 73-07 36 7 120 1.1 1500 1249 74-01 44 6 146 1.9 1100 988 74-02 47 10 173 1.8 2500 1581 74-03 36 8 126 1.2 1600 917 74-04 23 7 80 0.9 820 913 75-01 85 10 +1000 11.8 1400 1480 75-02 37 8 160 1.8 2000 1339 75-03 27 6 163 2.0 2900 1418 75-04 25 6 130 1.8 950 1036 75-05 97 7 +1000 15.3 1300 1676 75-06 58 22 165 6.9 1600 2303 76-01 34<								
T3-04 39 6 143 0.8 1300 1153 T3-07 36 7 120 1.1 1500 1249 T4-01 44 6 146 1.9 1100 988 T4-02 47 10 173 1.8 2500 1581 T4-03 36 8 126 1.2 1600 917 D4-04 23 7 80 0.9 820 913 T5-01 85 10 +1000 11.8 1400 1480 T5-02 37 8 160 1.8 2000 1339 T5-03 27 6 163 2.0 2900 1418 T5-04 25 6 130 1.8 950 1036 T5-05 97 7 +1000 15.3 1300 1676 T5-06 58 22 165 6.9 1600 2303 T6-01 34 6 128 0.2 680 1287 T6-02 37<								
73-07 36 7 120 1.1 1500 1249 74-01 44 6 146 1.9 1100 988 74-02 47 10 173 1.8 2500 1581 74-03 36 8 126 1.2 1600 917 74-04 23 7 80 0.9 820 913 74-05 38 15 135 1.4 1300 1178 75-01 85 10 +1000 11.8 1400 1480 75-02 37 8 160 1.8 2000 1339 75-03 27 6 163 2.0 2900 1418 75-04 25 6 130 1.8 950 1036 75-05 97 7 +1000 15.3 1300 1676 75-06 58 22 165 6.9 1600 2303 76-01 34 6 128 0.2 680 1287 76-02 37 9 129 1.4 1900 2051								
74-01 44 6 146 1.9 1100 988 74-02 47 10 173 1.8 2500 1581 74-03 36 8 126 1.2 1600 917 74-04 23 7 80 0.9 820 913 74-05 38 15 135 1.4 1300 1178 75-01 85 10 +1000 11.8 1400 1480 75-02 37 8 160 1.8 2000 1339 75-03 27 6 163 2.0 2900 1418 75-04 25 6 130 1.8 950 1036 75-05 97 7 +1000 15.3 1300 1676 75-06 58 22 165 6.9 1600 2303 76-01 34 6 128 0.2 680 1287 75-02 37 9 129 1.4 1900 2051	- ✓3-07							
74-02 47 10 173 1.8 2500 1581 74-03 36 8 126 1.2 1600 917 74-04 23 7 80 0.9 820 913 74-05 38 15 135 1.4 1300 1178 75-01 85 10 +1000 11.8 1400 1480 75-02 37 8 160 1.8 2000 1339 75-03 27 6 163 2.0 2900 1418 75-04 25 6 130 1.8 950 1036 75-05 97 7 +1000 15.3 1300 1676 75-06 58 22 165 6.9 1600 2303 76-01 34 6 128 0.2 680 1287 76-02 37 9 129 1.4 1900 2051	√14-01							
7A-03 36 8 126 1.2 1600 917 7A-04 23 7 80 0.9 820 913 7A-05 38 15 135 1.4 1300 1178 75-01 85 10 +1000 11.8 1400 1480 75-02 37 8 160 1.8 2000 1339 75-03 27 6 163 2.0 2900 1418 75-04 25 6 130 1.8 950 1036 75-05 97 7 +1000 15.3 1300 1676 75-06 58 22 165 6.9 1600 2303 76-01 34 6 128 0.2 680 1287 76-02 37 9 129 1.4 1900 2051	74-02							
\$\sqrt{14} - 04\$ 23 7 80 0.9 820 913 \$\sqrt{14} - 05\$ 38 15 135 1.4 1300 1178 \$\sqrt{15} - 01\$ 85 10 +1000 11.8 1400 1480 \$15 - 02\$ 37 8 160 1.8 2000 1339 \$15 - 03\$ 27 6 163 2.0 2900 1418 \$15 - 04\$ 25 6 130 1.8 950 1036 \$15 - 05\$ 97 7 +1000 15.3 1300 1676 \$15 - 06\$ 58 22 165 6.9 1600 2303 \$16 - 01\$ 34 6 128 0.2 680 1287 \$16 - 02\$ 37 9 129 1.4 1900 2051								
74-05								
75-01 85 10 +1000 11.8 1400 1480 75-02 37 8 160 1.8 2000 1339 75-03 27 6 163 2.0 2900 1418 75-04 25 6 130 1.8 950 1036 75-05 97 7 +1000 15.3 1300 1676 75-06 58 22 165 6.9 1600 2303 76-01 34 6 128 0.2 680 1287 76-02 37 9 129 1.4 1900 2051		38	15					
T5-02 37 8 160 1.8 2000 1339 T5-03 27 6 163 2.0 2900 1418 T5-04 25 6 130 1.8 950 1036 A5-05 97 7 +1000 15.3 1300 1676 A5-06 58 22 165 6.9 1600 2303 A6-01 34 6 128 0.2 680 1287 J6-02 37 9 129 1.4 1900 2051	=							
T5-04 25 6 130 1.8 950 1036 グ5-05 97 7 +1000 15.3 1300 1676 グ5-06 58 22 165 6.9 1600 2303 グ6-01 34 6 128 0.2 680 1287 ブ6-02 37 9 129 1.4 1900 2051								
T5-04 25 6 130 1.8 950 1036 グ5-05 97 7 +1000 15.3 1300 1676 グ5-06 58 22 165 6.9 1600 2303 グ6-01 34 6 128 0.2 680 1287 ブ6-02 37 9 129 1.4 1900 2051	T5-03							
グ5-05 97 7 +1000 15.3 1300 1676 → 75-06 58 22 165 6.9 1600 2303 → 76-01 34 6 128 0.2 680 1287 → 76-02 37 9 129 1.4 1900 2051								
オ5-06								
プ6-01 34 6 128 0.2 680 1287 - プ6-02 37 9 129 1.4 1900 2051	,							
, J 76–02 37 9 129 1.4 1900 2051								
010-03 33 0 120 0.6 (200 (20)	76-03	33	8	120	0.8	1200	1261	

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one wonth.
Pulps retained one wonth.
unless specific arrangements
are made in advance.

Jan Lualy Assayor

-To: <u>C</u>	ATEAR	RESOU	RCES LT	D.,
- <u>400,</u>	255 -	17th	Avenue	S.W.,
Calga	ry, Al	berta	T2S	2T8
_ATTN:	Jack	Wydei	r	

Certificate of Assay LORING LABORATORIES LTD.

Page # 4

Į	Page # 4							
<u>-</u>	SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Sb	PPB Hg	PPM Ba	
	a f 6−04	33	8	122	0.9	1050	2276	
	√ _{T6-05}	38	8	139	0.9	1600	1668	
	√ 16−06	35	9	130	1.0	1800	988	
	√ 17-03	39	6	144	0.8	1500	1421	
_	J77-04	39	11	130	NSS	NSS	NSS	
:	T7-05	35	35	128	3.5	1600	1351	
<u>.</u>	VT7-06	41	9	112	1.3	1400	1490	
_	8T1-GS-05	35	10	133	1.3	1500	984	
	✓ST 1~GS-06	48	8	240	0.8	2100	924	
	√ST1-GS-07	21	6	122	0.5	2300	1606	
	KK-88-01∡	9	_	· 	0.4	200	1015	
	√KK-88-02	48	-	_	0.9	1200	1319	
	✓KK-88-03	47		_	1.1	1100	1185	
	✓KK-88-04	36		_	1.2	1300	893	
	✓KK-88-05	7	-	_	0.1	180	907	
	✓KK-88-06	6		_	0.2	160	683	
-	∠ KK-38-07	42		~	1.4	1700	1572	
_	√KK-88-08	9		_	0.3	160	332	
	.KK-88−09	18	-	_	1.3	220	454	
_	LKK-88-10	30	-	-	2.8	750	859	
	- ⊀K−88−11	24	_	-	1.4	410	825	
	4₹ K−88−12	14	_	-	0.1	230	2153	
	 KK−88−13	9		-	0.2	50	41	
	√KK-88-14	6	_		0.3	90	170	
	~KK-88-15	3	_		0.1	50	140	
	√ KK-88-16	8	_	-	0.2	120	263	
	ÆK-88-17	47	_		1.0	850	1012	
	XK-88-18	23	-	-	1.3	380	518	
	⊮K-88-19	8	-	-	0.1	90	210	
-	-KK-88-20	7		-	0.1	80	220	
_	√ K−88−21	10	-	-	0.1	300	204	
	KK-88-22	6	_	-	0.1	140	281	
Į.	÷ · · · · · · · · · · · · · · · · · · ·	•						

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
Pulps retained one month
unless specific arrangements
are made in advance.

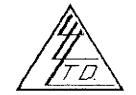
Jan Jualy ABBAYOR

_To: 9	CATEAR	RESOU	RCES L	ro.,
L ₄₀₀ ,	255 -	<u>17th</u>	Avenue	e S.W.,
				218
ATTN	: Jack	Wyder		

Date June 4, 1990
Samples Soil/Silt/Rock

Certificate of Assay LORING LABORATORIES LTD.

Page # 5


L	L Page # 5				
<u>-</u> Γ	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	PPM Ba
	√ KK-88-23	10	0.2	310	148
	K K−88−24	44	1.3	600	901
No. 100	∕ DL-88-40	69	10.1	460	2354
	№ DL-88-41	77	9.5	550	2551
-	∿ DL−88−42	57	6.8	570	2589
	∙∕DL-88-43	35	2.1	270	1557
-	<i>I</i> DL-88-44	40	6.9	320	1647
_	/DL-88-45	34	1.7	240	1618
	∕DL-88-46	28	2.4	230	1418
L .,	/ DL-88-47	35	25.2	220	1528
	√DL-88-48	32	1.3	260	1643
Ţ-	⊉ DL−88−49	28	2.2	200	1529
<u> </u>	₽L-88-50	29	2.7	180	1680
	∠DL-88-51	39	3.3	220	1571
	₽ L−88−52	31	2.7	230	1557
	∠ BL-88-53	30	3.4	180	1573
	∕ DL-88-54	29	2.8	210	1669
,- R		185	90.6	890	18
	₽ L−88−57	44	0.1	350	1638
	49 t−88−58	33	1.7	210	1393
,	4 DL-88-59	34	3.9	300	1388
	₽Ľ-88-60	36	3.6	480	1648
-	<i>-</i> ÐĹ−88−61	38	3.5	460	1319
	<i>∙</i> ØL−88−62	33	2.4	400	1461
1	4 0jL−88−63	60	3.0	270	1808
<u>.</u>	≁ 0L-88-64	31	1.8	220	1198
	∕ DL-88-65	37	2.7	480	1473
_ A	DL-88-66	44	2.7	270	2749
:67	DL-88-67	49 [,]	3.3	520	584
_KK2	DL-88-68	567	35.1	3800	214
_	√ DL-88-69	41	1.9	350	1480
	√DL-88-70	40	3.2	410	1631

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
Pulps retained one month,
unless specific arrangements
are made in advance.

Jan June

To: CATEAR RESOUR	RCES LTD.,
<u>400, 255 - 17th</u>	Avenue S.W.,
Calgary, Alberta	T2S 2T8
ATTN: Jack Wyder	

Certificate of Assay LORING LABORATORIES LTD.

Page # 6

1	Page # 6						
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	РРМ Ва		
	,						
	DL-88-71	38	2.8	460	1470		
	DL-88-72	100	4.3	680	3705		
	DL-88-73	14	2.3	310	3397		
	DL-88-74	26	4.0	10	341		
	∠DL-88-75	38	3.1	360	3862		
	∕DL-88-76	35	3.4	340	1358		
•	∕DL-88-77	43	3.4	500	1511		
	∕DL-88-78	47	3.2	330	1493		
	∕0L-88-79	38	2.0	460	1762		
.	∕DL-88-80	39	1.5	590	1243		
	∕DL-88-81	40	1.4	830	1449		
	∕0L-89-82	37	1.5	800	1211		
	∕DL-88-83	36	0.7	650	1408		
	∕DL-88-84	41	1.6	880	1252		
_	∕DL-88-85	40	1.4	820	1284		
	∕ DL-88-86	43	1.2	1500	1116		
-	∕ DL-88-87	43	2.1	1300	1536		
_	∕ DL-88-88	48	1.7	1200	1666		
	∙ ØL−88−89	42	1.5	1500	1689		
-	℃ L-88-90	45	1.9	830	1461		
	⊮0L−88−91	42	1.9	900	1615		
	•∕ნ∟-88-92	30	1.0	210	923		
	ねに-88-93	29	1.0	220	991		
	- めL-88-94	29	1.0	200	1011		
	√g∟~88~95	34	1.0	190	832		
	46 <u>L</u> −88−96	29	1.2	330	915		
	め L-88-97	30	1.0	360	892		
	⊅ ∟−88−98	31	1.1	350	953		
	ઇ L−88−99	34	0.1	150	919		
h	øL−88−100	43	2.2	350	1309		
_	.ØL−88−101	39	2.1	270	1191		
	√ÓL~88~102	39	1.8	200	1316		

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

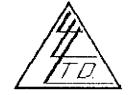
Rejects retained one month.
Pulps retained one month
unless specific arrangements
Tare made in advance.

ABSRYST P

To: CATEAR RESOURCES LTD.,
-400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 2T8
ATTN: Jack Wyder

Certificate of Assay LORING LABORATORIES LTD.

Page # 7


	Page # 7						
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	РРМ Ва		
	40L-88-103	41	2.1	230	1279		
	∕ 0L-88-104	42	2.3	160	1317		
	∕DL-88-105	42	2.1	220	1309		
	∕DL-88-106	39	2.2	240	1264		
	√ DL-88-107	43	2.3	330	1330		
	√ DL-88-108	43	2.2	200	1345		
-	∕ DL-88-109	42	2.1	220	1323		
-	∕ DL-88-110	47	2.2	290	1288		
	* DL-88-111	48	2.3	300	1314		
	DL-88-112	42	6.4	830	1849 _.		
	√ 0L−88−113	49	1.4	270	1197		
	∕ 0L-88-114	51	1.8	400	1291		
	√ 0L-88-115	47	1.5	300	1183		
	√ DL-88-116	40	1.5	290	1173		
	DL-88-117#	82	1.3	650	1032		
į	√0L-88-118	47	1.6	320	1135		
	√ DL-88-119	38	1.3	340	1150		
_	√DL-88-120	45	1.4	210	1186		
	⊅ L-88-121	56	1.4	240	1123		
	∽ 0L-88-122	51 ·	1.5	220	1118		
	∕ 0L-88-123	38	1.2	300	1167		
	√ DL-88-124	40	1.1	430	890		
Ĺ.	√ DL-88-125	41	1.2	320	859		
	√ DL−88−126	41	1.1	250	859		
	∕ 0L-88-127	42	1.1	220	896		
-	√ pL-88-128	41	1.1	340	845		
	√ DL-88-129	50	1.2	310	937		
	∕ 0L-88-130	86	2.2	400	1107		
1	⊅ 5L−88−131	88	2.1	430	1071		
•	√ DL-88-132	94	2.7	380	1111		
_	∕DL-88-133	97	2.4	480	1155		

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

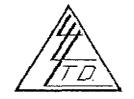
Rejects retained one month.
Pulps retained one month
unless specific arrangements
are made in advance.

Jan Jone J ABBRYOT

To: CATEAR RESOURCES LTD.,
400, 255 - 17th Avenue S.W.,
Calgary, Alberta T2S 2T8
ATTN: Jack Wyder

Certificate of Assay LORING LABORATORIES LTD.

Page # 8


-		ra(Ac * 0			
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	РР м Ва	
					·	
	✓DL-88-134	95	2.3	300	1075	
	DL −88−135	37	1.1	180	1097	
	DL-88-136	36	1.9	260	1139	
	DL-88-137	37	2.3	280	1275	
	ÆL-88-138	38	1.9	290	1295	
	.∕DL−88−139	36	2.0	340	1192	
•	ÆL−88−140	35	2.1	220	1116	
_	DL-88-141	35	2.1	250	1221	
	DL-88-142	38	1.9	240	1430	
	∕DL-88-143	36	1.9	300	1309	
	∕0L-88-144	37	1.7	330	1335	
	∕ DL-88-145	36	2.1	960	1280	
<u> </u>	~ 0L−88−146	39	1.9	720	1147	
	⊘ DL-88-147	38	1.9	600	1205	
	rvol-88-148	45	1.9	700	1132	
	^ル ・DL-88-149	39	1.9	610	1184	
	少 DL−88−150	39	1.7	600	1246	
	øbL−88−151	38	1.8	460	1074	
	∕0L-88-152	37	1.8	400	1151	
-	-ØL−88−153	39	1.9	450	1168	
_	ダ L-88-154	39	2.0	360	1228	
į	∕ÓL-88-155	38	1.6	800	1267	
-	∕0L-88-156	40	1.8	560	1238	
	ÆL-88-157	41	1.7	600	1213	
	∕0L-88-159	40	1.7	620	1109	
ļ.	∕ÖL−88−159	42	1.8	500	1149	
	∕0L-88-160	40	1.7	610	1094	
	∕0L-88-161	39	1.5	490	1075	
	ÆL-88-162	40	1.5	420	1173	
•	∕ÓL~88-163	40	1.7	620	1320	
_	∕DL-88-164	40	1.8	630	1227	
	∕DL-88-165	39	2.0	410	1097	

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

...Rejects retained one month.
Pulps retained one month.
_unless specific arrangements
_are made in advance.

Law valu

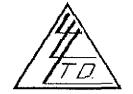
To: CATEAR RESOUR	RCES LTD.,
400, 255 - 17th	Avenue S.W.,
Calgary, Alberta	T2S 2T8
ATTN: Jack Wyder	

Certificate of Assay LORING LABORATORIES LTD.

Page # 9

b •		ıα	ge n J		
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	РРМ Ва
_	ØL-88-166	38	1.5	700	1133
	⊘ L−88−167	39	1.8	380	1065
L	∕DL-88-168	38	1.9	420	1365
	∕ DL-88-169	41	1.3	360	1605
	∕DL-88-170	39	1.6	400	1467
	∕DL-88-171	42	1.5	470	1467
	少 DL~88−172	44	1.4	960	1542
_	√AJ-88-01	55	1.4	430	1133
) L _	/ AJ-88-02	51	1.4	420	1072
L -	VAJ-88-03	59	1.2	560	1119
	∕ AJ-88-04	58	1.4	420	1147
i	√AJ-88-05	60	1.3	460	1040
	√ AJ-88-06	53	1.5	470	1042
	√ AJ-88-07	64	1.2	400	1013
	√ AJ-88-08	83	1.8	600	1163
	√AJ-88-09	81	1.6	540	1117
	√AJ-88-10	85	1.9	620	1148
	√AJ-88-11	77	1.8	830	1072
	/AJ-88-12	78	1.7	540	1102
b	∕0J-88 - 01	30	0.5	950	1522
	ADJ-88-02	38	0.9	930	2870
ĺ	£0-88-03	44	0.9	1100	1668
	∕DJ-88-04	38	0.9	1200	2300
	∕0J-88-05	40	1.0	1100	2493
	.∕DJ~88-06	35	0.8	760	2579
	∕DJ-88-07	40	0.8	1050	2950
	√DJ-88-08	39	0.8	1100	2669
	/DJ-88-09	38	0.9	820	2040
	✓DJ-88-10	35	1.1	1300	1651
****	2 3-88-11	38	0.9	1200	1248
	1 0J-88-12	47	0.7	1400	17177
•	ØJ-88-13	48	0.8	2300	2399

I Hereby Certify that the above results are those assays made by me upon the herein described samples....


Rejects retained one month.

Pulps retained one month.

Inless specific arrangements
are made in advance.

Han fooly Adsayor

To: CATEAR RESOURCES LTD.,				
-400, 255 - 17th Avenue S.W.,				
_Calgary, Alberta T2S 2T8				
· · · · · · · · · · · · · · · · · · ·				
ATTN: Jack Wyder				

File No. <u>33458</u>

Date <u>June 4, 1990</u>

Samples <u>Soil/Silt/Rock</u>

Certificate of Assay LORING LABORATORIES LTD.

Page # 10

Lage # 10					
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	PPM Ba
	41−88−لطر،	39	1.0	1100	3391
_	- DJ−88−15	41	0.9	1700	2509
-	16−88−16	37	1.2	780	4481
	DJ-88-17⊅	41	0.8	1200	1855
_	⊘ DJ−88−18	36	1.1	930	4075
	√ 0J−88~19	93	2.4	560	1347
Manager	<i>J</i> DJ−88−20	37	2.6	620	145 9
_	⊮ DJ−88−21	37	1.3	1050	2016
	√ 0J−88−22	36	1.4	820	2650
<u> </u>	√ JP-88-01	41	1.3	710	3392
	JP−88−02	41	1.3	600	1357
	√JP-88-03	35	2.0	490	1227
	∕JP-88-04	41	2.1	670	1246
	∠JP-88-05	36	2.3	660	1314
	∠IP-88-06	41	2.3	900	1423
	⊿P-88-07	36	2.2	730	1423
	∠1P-88-08	35	2.5	410	1279
	ØP−88-09	31	2.1	460	1507
	∕JP-88~10	32	1.3	400	1739
i	√ JP−88−11	31	2.0	730	1629
_	∕JP-88-12	- 34	2.3	640	1234
	- JP-88-13	34	2.5	1050	1323
L_	⊿P-88-14	35	2.5	650	1086
	⊿P-88-15	33	2.2	1100	1123
	✓P-88-16	36	2.2	1300	1215
	√ JP-88-17	36	2.4	1100	1077
	√ AH-88-01	40	4.1	440	2070
	∕ ∕ H−88−02	23	2.4	330	1337
	∠ AH−88−03	30	4.3	310	1865
-	- AH−88−04	28	3.3	330	2296
 -	∡ H−88−05	24	2.5	360	1593
	ÆH−88−06	25	2.6	300	1586

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

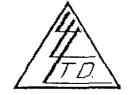
Rejects retained one month.
Pulps retained one month
unless specific arrangements
are made in advance.

Lang Lauley

To: CATEAR RESOURCES LTD.,				
- <u>400, 255 - 17th </u>	venue S.W.,			
_Calgary, Alberta	T2S 2T8			
ATTN: Jack Wyder				

Certificate of Assay LORING LABORATORIES LTD.

Page # 11


SAMPLE NO.				
	PPM Cu	PPM Sb	PPB Hg	PPM Ba
ÁH-88-07	24	2.6	240	1534
				1708
				1905
				1652
				1849
				1776
				1652
				1416
				NSS
				NSS
				1867
				1952
				1988
				2071
				2010
				1946
				2586
				2198
				3111
				3101
				1923
				2860
				2614
				1451
				1695
				1564
				1434
				2151
_				3096
				1748
				2451
				2606
	AH-88-07 AH-88-08 AH-88-09 AH-88-10 AH-88-11 AH-88-12 AH-88-13 AH-88-15 AH-88-16 AH-88-17 AH-88-18 AH-88-19 AH-88-20 AH-88-21 AH-88-21 AH-88-22 AH-88-25 IAH-88-25 IAH-88-25 IAH-88-25 IAH-88-30 IAH-88-30 IAH-88-31 IAH-88-31 IAH-88-31 IAH-88-35 IAH-88-36 IAH-88-36 IAH-88-38	AH-88-07 AH-88-08 AH-88-09 AH-88-10 AH-88-11 AH-88-12 AH-88-13 AH-88-14 AH-88-15 AH-88-16 AH-88-17 AH-88-18 AH-88-19 AH-88-20 AH-88-21 AH-88-21 AH-88-22 AH-88-23 AH-88-24 AH-88-25 AH-88-25 AH-88-27 AH-88-28 AH-88-30 AH-88-31 AH-88-32 AH-88-33 AH-88-35 AH-88-37 AH-88-37 AH-88-37 AH-88-38 60	AH-88-07 AH-88-08 AH-88-09 AH-88-10 AH-88-11 AH-88-12 AH-88-13 AH-88-14 AH-88-15 AH-88-16 AH-88-17 AH-88-18 AH-88-19 AH-88-20 AH-88-22 AH-88-23 AH-88-24 AH-88-25 AH-88-27 AH-88-28 AH-88-29 AH-88-30 AH-88-31 AH-88-33 AH-88-36 AH-88-37 AH-88-36 AH-88-37 AH-88-38 AH-88-37 AH-88-38 AH-88-37 AH-88-38 AH-88-37 AH-88-38 AH-88-37 AH-88-37 AH-88-38 AH-88-38 AH-88-38 AH-88-37 AH-88-38	AH-88-07 AH-88-08 AH-88-09 AH-88-10 AH-88-11 AH-88-11 AH-88-12 AH-88-13 AH-88-14 AH-88-15 AH-88-16 AH-88-17 AH-88-18 AH-88-19 AH-88-19 AH-88-20 AH-88-22 AH-88-22 AH-88-25 AH-88-25 AH-88-27 AH-88-28 AH-88-30 AH-88-31 AH-88-33 AH-88-31 AH-88-31 AH-88-31 AH-88-31 AH-88-31 AH-88-31 AH-88-31 AH-88-31 AH-88-31 AH-88-33 AH-88-34 AH-88-33 AH-88-34 AH-88-35 AH-88-36 AH-88-36 AH-88-37 AH-88-36 AH-88-37 AH-88-36 AH-88-37 AH-88-37 AH-88-37 AH-88-38 BO AH-88-37 AH-88-37 AH-88-37 AH-88-37 AH-88-38 BO AH-88-37 AH-88-37 AH-88-37 AH-88-38 BO AH-88-37 AH-88-38 BO

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
Pulps retained one month
unless specific arrangements
mare made in advance.

Jan Justier Assayer

To: CATEAR RESOURCES LTD.,				
<u> 400. 255 - 17th Avenue S.W.,</u>				
Calgary, Alberta T2S 2T8				
ATTN: Jack Wyder				

File No. <u>33458</u>

Date <u>June 4, 1990</u>

Samples <u>Soil/Silt/Rock</u>

Certificate of Assay LORING LABORATORIES LTD.

Page # 12

	Page # 12				
<u>-</u>	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	PPM Ba
	∕AH-88-39	54	8.7	450	2304
_	✓AH-88-40	61	7.8	470	2448
	∠AH-88-41	32	1.8	340	1381
L	AH-88-42	23	1.5	250	1408
p	∕AH-88-43	26	1.8	210	1359
	∕AH-88-44	25	NSS	NSS	NSS
	∕AH-88-45	28	2.3	350	1481
	∕AH-88-46	24	1.8	270	1286
	∕AH-88-47	26	NSS	NSS	NSS
	AH-88-48	23	1.8	220	1111
	AH-88-49	26	NSS	NSS	NSS
	AH-88-50	NSS	NSS	NSS	NSS
	AH-88-51	35	1.8	350	1435
•	-∕AH-88-52	32	1.5	250	1484
	✓AH-88-53	29	1.8	300	1430
į	√AH-88-54	24	1.5	320	1411
-	/AH-88-55	28	1.5	340	1572
_	AH-88-56	26	1.9	360	1465
	AH-88-57	26	1.3	300	1387
-	AH-88-58	32	1.7	510	979
	AH-88-59	36	1.3	220	996
	AH-88-60	31	2.0	580	2475
	~AH-88-61	30	2.1	770	2028
	- A H-88-62	32	3.1	540	3049
_	ÆH-88-63	33	2.7	760	3165
į	4 H−88−64	34	3.1	5000	3312
T	A H−88−65	27	2.2	560	2136
	∡ H−88−66	33	2.5	540	1841
	_AfI-88-67	28	2.3	1100	2054
· · ·	-AH-88-68	28	2.1	800	2004
_	√ AH-88-69	32	2.1	520	1681
	-AH-88-70	30	2.3	670	1738
i-					

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month, unless specific arrangements are made in advance. My Justy

To: CATEAR RESOUR	CES LTD.,
<u>400, 255 - 17th</u>	Avenue S.W.,
Calgary, Alberta	T2S 2T8
ATTN: Jack Wyder	

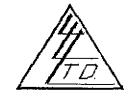
File No. <u>33458</u>

Date <u>June 4, 1990</u>

Samples <u>Soil/Silt/Rock</u>

Certificate of Assay LORING LABORATORIES LTD.

Page # 13


<u> </u>					
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	PPM Ba
	∕AH-88-71	36	2.8	1100	4678
	∕ AH−88−72	33	2.3	1500	2254
	∕AH−88−73	29	2.5	780	2108
	∕ AH−88−74	28	1.9	470	1707
	∕ AH-88-75	30	1.6	560	1294
i Name	∕AH-88-76	33	2.3	690	1817
1.2	√AH-88-77	30	2.3	490	1479
,	∠AH-88-78	30	2.5	950	2002
1	✓AH-88-79	32	1.8	550	2981
L-	∕ #H−88−80	31	2.9	13400	3961,
_	∕ ⊀ H−88−81	29	3.0	1400	2629
	∡H-88-82	31	2.9	660	2478
	ÆH-88-83	29	2.7	650	2512
	- ∕⁄H−88−84	29	3.2	740	2528
	. ∡ H−88−85	29	3.4	680	3017
	- #H−88−86	30	1.0	330	873
	-∕AH-88-87	33	3.3	670	3394
_	- 4H−88−88	24	0.8	210	900
	∕AH-88-89	25	2.6	560	2384
b	- 4H−88−90 ·	31	2.9	640	2769
_	∽ AH-88-91	30	2.8	480	2995
ĺ	AH-88-92	32	2.5	550	3772
	- АН−88−93	30	2.8	650	4302
	-∕AH-88 - 94	33	3.1	570	2293
	- 4∬−88−95	33	4.1	620	3423
<u></u>	∕AH-88-96	30	3.3	670	2718
	∕AH-88~97	34	2.7	430	2459
	ч А́H-88-98	34	3.6	760	3451
	∕ AH−88 − 99	30	1.0	350	1000
The sort	- 4∯−88−100	32	2.7	750	3210
	∕AH-88-101	37	1.1	300	1128
į	- 4 H−88−102	44	1.1	260	863

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
ulps retained one month.
inless specific arrangements
are made in advance.

Jacq Jachy Assayer

To: CATEAR RESOUR	RCES LTD.,
400, 255 - 17th	Avenue S.W.,
Calgary, Alberta	T2S 2T8
ATTN: Jack Wyder	~

Certificate of Assay LORING LABORATORIES LTD.

Page # 14

	Page # 14				
	SAMPLE NO.	PPM Cu	PPM Sb	PPB Hg	PPM Ba
	-AH-88-103	30	2.5	500	2012
	- AH~88−104	32	3.2	730	1914
ļ b	∽ AH-88-105	31	2.0	550	1734
	-AH-88-106	33	2.6	590	2136
_	<i>⊾</i> H-88-107	36	2.2	750	2958
	AH~88~108	37	2.8	1300	3301
	№ 4H-88-109	33	1.0	300	1020
-	4AH−88−110	34	1.1	400	1052
1	44H-88-111	30	0.9	610	878
-	4 AH−88−112	26	1.0	330	1067
_	 ≉H−88−113	26	1.0	580	1524
	∠AH−88−114	27	1.1	140	1042
	AH−88−115	26	1.0	160	1138
	<i>A</i> H−88−116	26	1.0	150	1099
	≪ H−88−117	28	1.0	170	1126
	₩ H-88-118	30	1.1	230	1028
_	ഗ H−88−119	26	1.0	200	1084
_	⊬H−88−120	25	1.0	210	1043
	4∕1 H~88−121	34	1.3	190	953
	<i>U</i> XH−88−122	43	1.7	230	1275
_	A H−88−123	46	1.9	220	1318
ĺ	4 H−88−124	45	1.7	260	1296
	.AH-88-125	48	2.0	270	1321
	√ H−88−126	47	1.8	360	1290
	<i>√</i> AH-88-127	48	1.8	340	1358
	√AH-88-128	48	1.9	410	1541
	√AH-88-129	49	1.9	150	1421
_	AH-88-130	50	1.8	260	1251

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
'ulps retained one month .
inless specific arrangements
are made in advance.

Lay frely ABBRYGER

To: CATEAR RESOURCES LTD
-400, 255 - 17th Avenue S.W.,
<u>-Calgary, Alberta</u>
_T2S_2T8
Attn: Jack Wyder

File No. <u>33458</u>

Date <u>June 4, 1990</u>

Samples <u>Soil/Rock</u>

Certificate of Assay LORING LABORATORIES LTD.

Page # 15

No. of	, 3 - 1 - 1	,g		
SAMPLE NO.	% Cu	% Pb	% Zn	
<u>L</u>				
Γ				
No.				
"ASSAY ANALYSIS"				
18001	.52	2.20	34.36	
18002	.78	. 56	4.36	
18003		-	.34	
CGS -03	-	-	.19	
T5 - 01		-	.11	
T5 - 05	_	-	.12	
•				

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month unless specific arrangements Tare made in advance. May hooley or

APPENDIX II ANALYTICAL DATA - 1990

To: E.R. KRUCHKOWSKI CONSULT 400, 255 - 17th Avenue S.W. Calgary, Alberta T2S 2T8 ATTN: Ed Kruchkowski Cert LORING		File No. 33476 Date July 9, 1990 Samples Rock RECEIVED JUL 1 7 1990 ASSAY IES LTD.
-	Page # 1	
SAMPLE NO.	OZ./TON GOLD	OZ./TON SILVER
"Assay Analysis"		
ERK-18	0.142	5.70
PVAR-13	0.130	_
I Hereby Certif	y that the above res me upon the herein o	sults are those described samples
Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.	J	Assayor)

_		•
To: E.R. KRUCHKOWSKI CONSUL	TING LTD.,	File No. <u>33476</u>
400, 255 - 17th Avenue S.W		Date <u>July 9, 1990</u>
	··	
Calgary, Alberta T2S 2T8	/ // /	Samples <u>Soil</u>
	/ / \	
ATTN: Ed Kruchkowski	110	
_		
		
- Cert	ificate of LABORATOR	Assav
LORING	LABORATOR	RIES LTD.
LOITING	LABORATOR	TEO LID.
-		
-	Page # 2	
- SAMPLE NO.	PPB	PPM
	Au	
-		
-Geochemical Analysis		
·		
BNSS- 1	40	0.1
_ 2	NIL	0.1
3	325	NIL
- 4	NIL	0.1
5	20	NIL
6	165	0.1
<u>, 7</u>	NIL	0.1
8	NIL	NIL .
9	NIL	0.1 0.1
10	NIL NIL	NIL
11 12	NIL	NIL.
13	NIL	NIL
- 14	40	0.1
15	NIL	0.1
16	50	NIL
, <u>, , 3</u> 0	NIL	NIL
.8 <u>.</u> 1	NIL	NIL
. Z2	NIL	NIL
33	NIL	NIL
HCS- V	NIL	0.1
No.	NIL.	0.2
` \ {	NIL.	NIL
. 4	25	NIL
32 33 HCS- 1/ 2 3 4 5	140	0.2
6	70	NIL
. 7	20	NIL
. 8	NIL	NIL
· ERKS- A,	NIL	0.5
V2	NIL	0.5

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month. unless specific arrangements are made in advance.

To:	E.R.	KRU	JCHKO)	VSKI	CO	<u>NSULTI</u> NG	LTD.
						S.W.,	

Calgary, Alberta T2S 2T8

ATTN: Ed Kruchkowski

<u> </u>

File No. <u>33476</u>

Date <u>July 9, 1990</u>

Samples <u>Soil</u>

Certificate of Assay LORING LABORATORIES LTD.

Page # 3

ALL ALL PAPER	SAMPLE NO.	PPB Au	PPM Ag
-	ERKS-03	NIL	0.4
:	24	NIL	NIL
	⁄ 5	NIL	0.1
	is	NIL	NIL
:	27	NIL	NIL
L.	8	NIL	NIL

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. - Pulps retained one month unless specific arrangements are made in advance. Alle Masseyer

CONCUETTIV	2 170	File No. <u>33476</u>	
To: E.R. KRUCHKOWSKI CONSULTING	a LID.,	File No. 33470	
400, 255 - 17th Avenue S.W.,	٨	Date July 9, 1990	
•		Samples Rock	
Calgary, Alberta T2S 2T8	/77\	Samples <u>Rock</u>	
	/ 4		
	<i>[[TD</i> .]		
ATTN: Ed Kruchkowski			

Certificate of Assay LORING LABORATORIES LTD.

Page # 4 PPM **PPB** SAMPLE NO. Αg Au -Geochemical Analysis 0.1 NIL BNR-/1 1/2 NIL NIL **√**3 NIL NIL /5 /6 /1 NIL NIL NIL NIL NIL NIL 8 0.1 NIL NIL **/**9 NIL NIL NIL 10 NIL 41 NIL NIL NIL **√**2 NIL NIL 13 NIL NIL 14 NIL 15 NIL NIL NIL 17 0.2 NIL CCR-1 0.1 NIL /2 0.1 14 NIL NIL NIL 16/1/8/9 NIL NIL NIL NIL NIL NIL NIL NIL NIL ИO NIL 11 NIL NIL NIL NIL 1/2 13 NIL NIL

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

NIL

NIL NIL

Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

14

1/5 1/6

Assayer

NIL

NIL

NIL

	To: E.R. KRUCHKOWSKI CONSULTING LTD.,	File No. <u>3</u>
_	400, 255 - 17th Avenue S.W.,	Date <u>July</u>
	Calgary, Alberta T2S 2T8	Samples <u>Ro</u>

Ed Kruchkowski

ATTN:

File	No. <u>334</u>	76
Date	July 9,	1990
Sampl	es <u>Rock</u>	

Certificate of Assay LORING LABORATORIES LTD.

Page # 5 PPM PPB SAMPLE NO. Au 0.2 CCR-17 NIL NIL 18 NIL NIL 15 13 NIL ,20 10 0.2 127 NIL NIL ERK-NIL 11 2345 NIL NIL NIL NIL NIL NIL NIL NIL 16/8 10 111 NIL 12 13 14 15 16 NIL +30.0 118 +1000 1.4 25 19 2.2 35 20 6.6 120 21 3.0 60 22 2.3 25 23 0.8 24 NIL 3.5 **~**25 NIL NIL 26 30 0.3 NIL 27 NIL 50 28

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
Pulps retained one month
unless specific arrangements
are made in advance.

Han Joly Assayer

	To: E.R. KRUCHKOWSKI CONSULTING	LTD.,	File No. <u>33476</u>
<u>_</u>	400, 255 - 17th Avenue S.W.,	A	Date <u>July 9, 1990</u>
	Calgary, Alberta T2S 2T8	/#>	Samples Rock
		/ //// \	
_	ATTN: Ed Kruchkowski	/ <u>/ D.</u>	

Certificate of Assay LORING LABORATORIES LTD.

Page # 6

	SAMPLE NO.	PPB Au	PPM Ag
_	ERK- 29	NIL	0.8
	30	NIL	NIL
	⊘ 31	NIL	NIL
	<i>u</i> 32	NIL	3.0
	33	NIL	0.1
	34	NIL	1.0
	35	NIL	2.8
_	36	NIL	0.9
	37	NIL	2.3
<u> </u>	√38 √39 √49	NIL	NIL
_	√ 39	10	NIL
	A 0	5	0.2
	PVAR-1/1	NIL	NIL
	12	10	NIL
	2	NIL	NIL
	, A	NIL	NIL
	5	NIL	NIL
, -	~ნ	NIL	NIL
1	Ī	NIL	NIL
	Æ	NIL	NIL
	√Š ·	NIL	NIL
	120	NIL	NIL
	11	NIL	NIL
	12	NIL	NIL
	13	+1000	11.0
	14	20	NIL
B	15	15	NIL
	16	NIL	NIL
1	17	15	1.5
<u></u>	18	40	0.2
	19	30	NIL
	20	NIL	NIL
	T. Hamakaa A		

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
Pulps retained one month
unless specific arrangements
are made in advance.

Assayer

To: E.R. KRUCHKOWSKI CONSULTING LTD.,

400, 255 - 17th Avenue S.W.,

Calgary, Alberta T2S 2T8

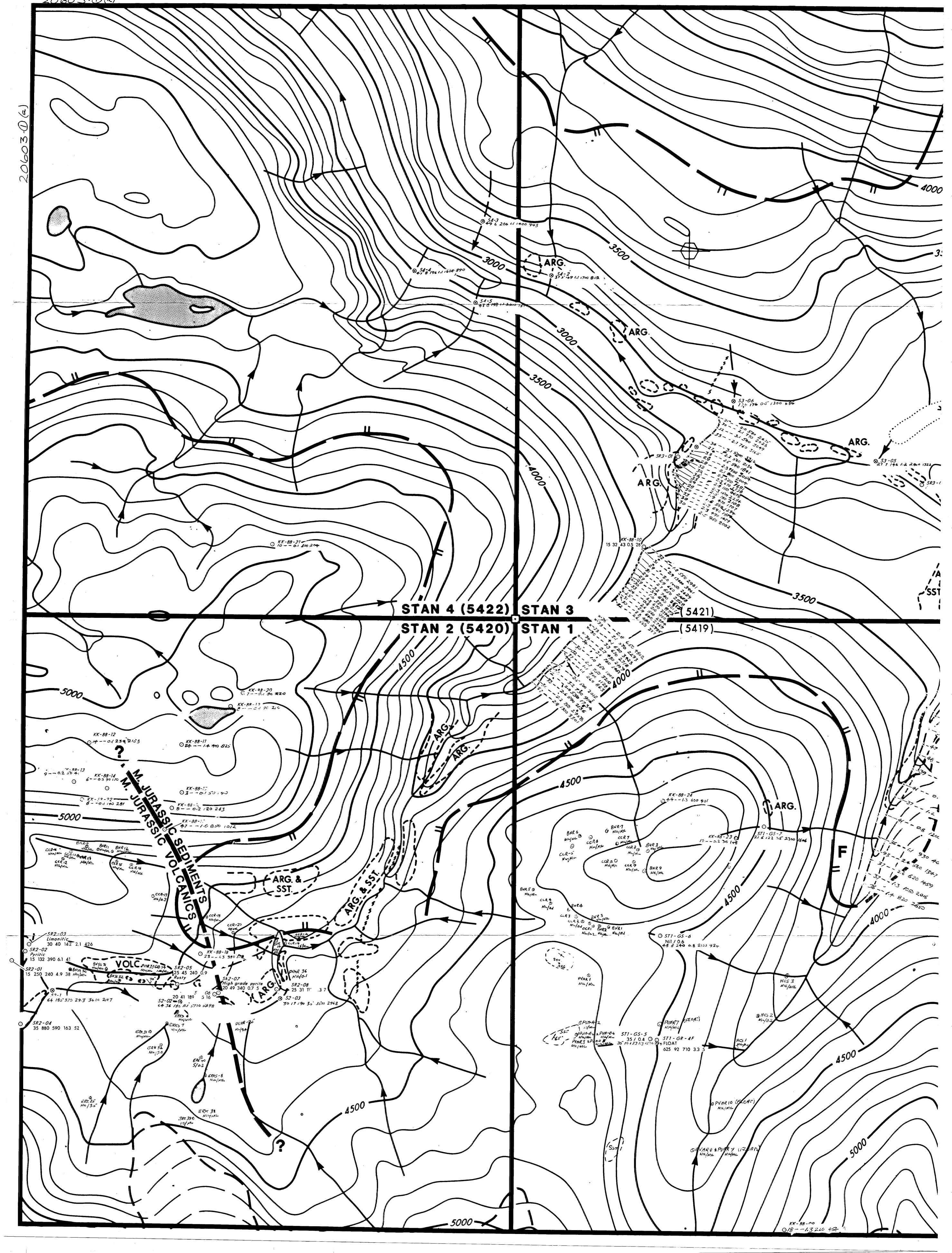
ATTN: Ed Kruchkowski

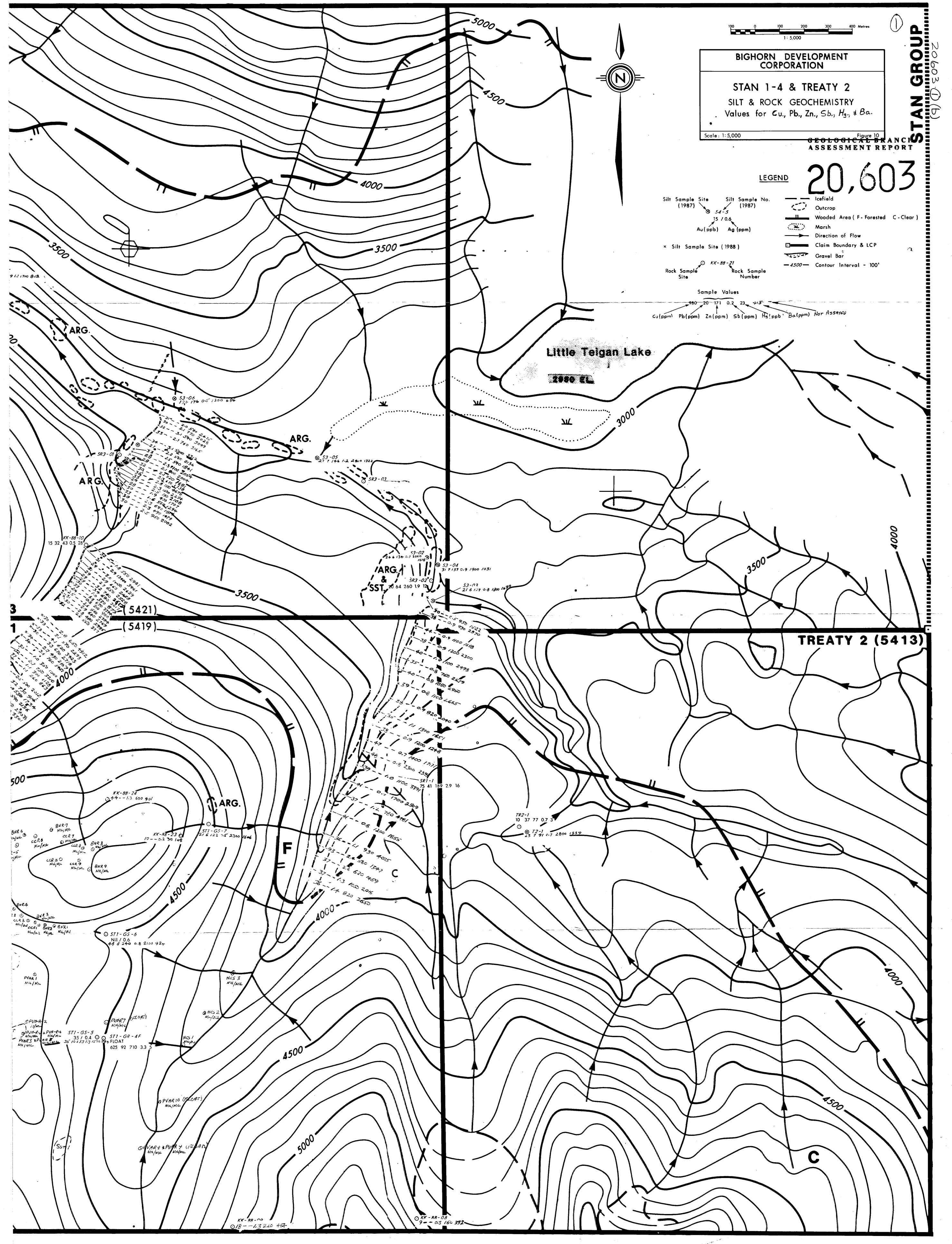
File No. 33476

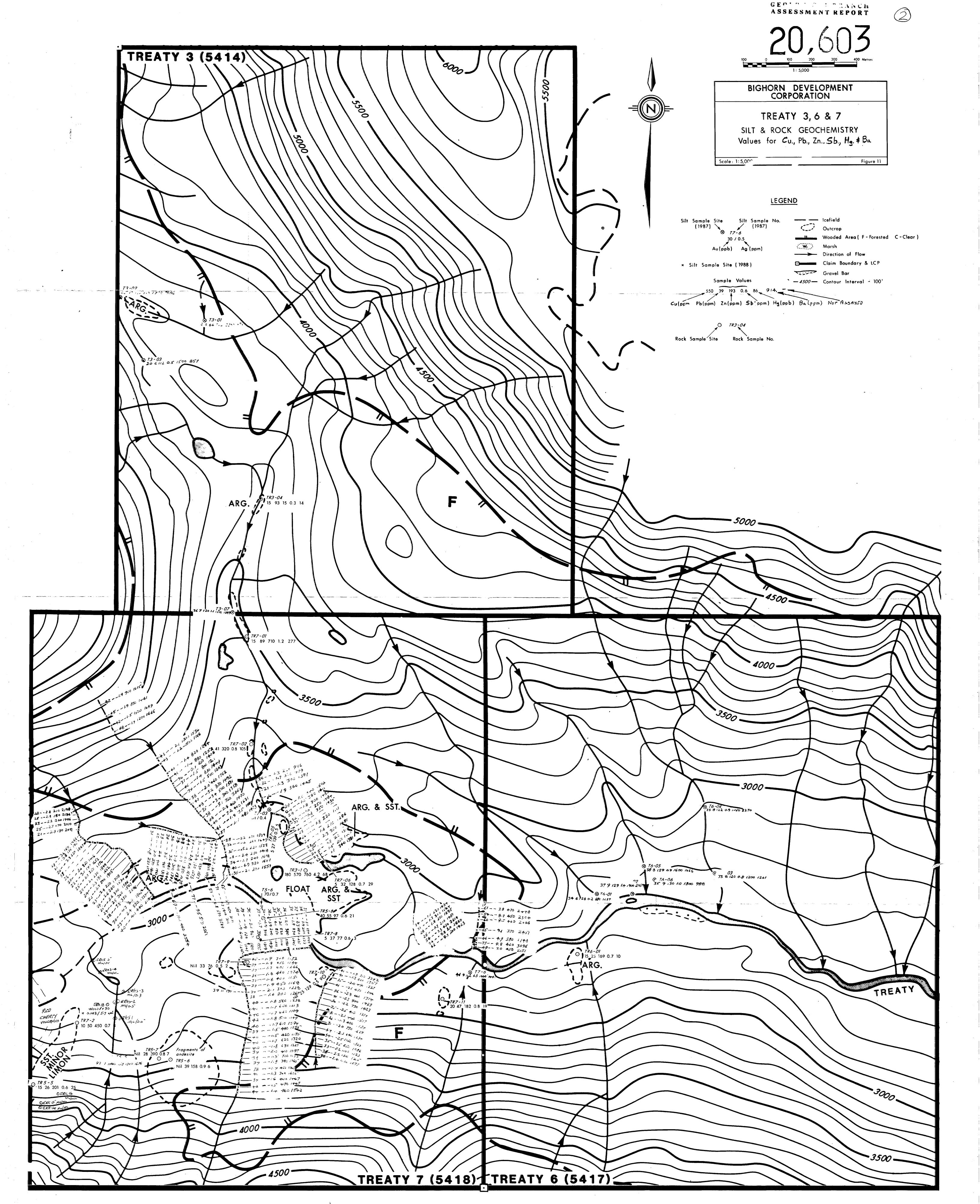
Date July 9, 1990

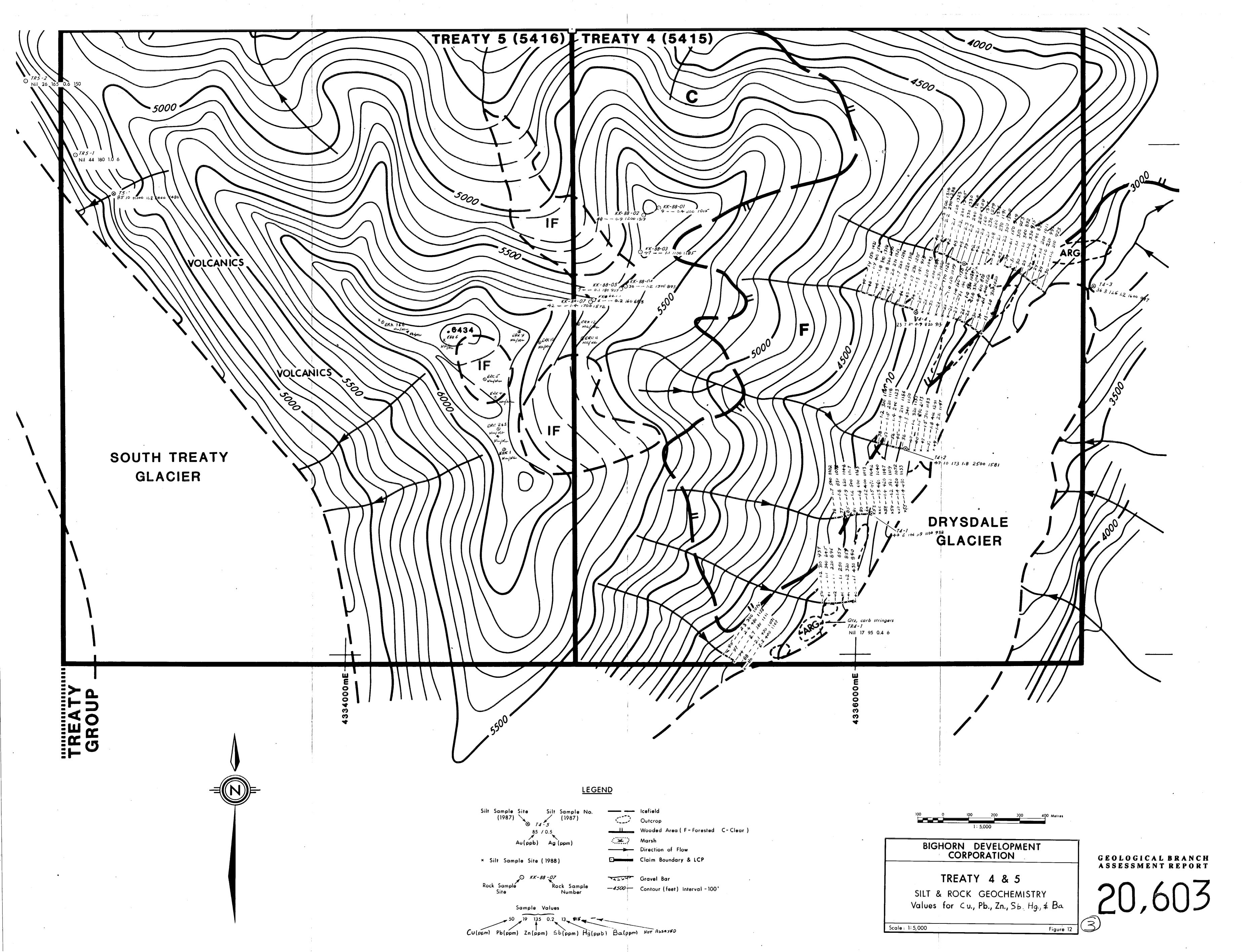
Samples Rock

Certificate of Assay LORING LABORATORIES LTD.


Page # 7


Γ	SAMPLE NO.	PPB Au	PPM Ag	
1_				
	PVAR-21	20	NIL	
1	22	15	NIL	
L _	23	NIL	0.2	
_	24	NIL	NIL	
	25	NIL	NIL	
: New	26	NIL	NIL	
	27	NIL	NIL	
	28	NIL	NIL	
	29	NIL	NIL	•
I	30	NIL	NIL .	
-	31	NIL	NIL	
	32	NIL	0.2	
.	≠ 3	NIL	NIL	
	<i>p</i> 84	NIL	NIL	
	18 5	NIL	9.4	
	<i>v</i> 36	NIL	0.1	
	UNKNOWN # 1	NIL	NIL	
	# 2	NIL	0.2	


I Hereby Certify that the above results are those assays made by me upon the herein described samples....


Rejects retained one month.
_Pulps retained one month
unless specific arrangements

Chang fwaley

