LOG NO: 12-11	RD.
ACTION:	
FTLE NO:	

A Geological, Geochemical and Geophysical Report

on the JAKE CLAIMS

Omineca Mining Division

N.T.S 94D/3W

Latitude 56° 12' N Longitude 127° 20' W

ć

Owner/Operator:

Authors:

Placer Dome Inc. Vancouver, B.C.

Gerald E. Linden Stephen M. Price Richard Cannon, P. Eng.

Date:

Oct 1, 1990

TABLE OF CONTENTS

		-
1.0	SUMMARY	1
2.0	INTRODUCTION	1
	2.1 Location and Access2.2 Topography and Vegetation2.3 Work History2.4 Summary of Work Done2.5 Claim Status	1 1 2 2 3
3.0	REGIONAL GEOLOGY	3
4.0	PROPERTY GEOLOGY	4
5.0	GEOCHEMISTRY	4
	5.1 Soil Samples 5.1.1 Results 5.1.2 Discussion 5.2 Rock Samples 5.2.1 Results 5.2.2 Discussion	4 5 6 6
6.0	GEOPHYSICS	7
	 6.1 Magnetometer Survey 6.1.1 Results 6.1.2 Discussion 6.2 VLF-EM Survey 6.2.1 Results 6.2.2 Discussion 	7 7 8 8 8 8 8
7.0	CONCLUSIONS	9
8.0	RECOMMENDATIONS	9

.

Page

APPENDICES

- I. Analytical Techniques and Detection Limits
- II. Soil Sample Analyses and Statistics
- III. Rock Sample Analyses and Descriptions
- IV. Statement of Costs
- V. Statements of Qualifications
- VI. References

FIGURES

1.	Location Map	after page 1
2.	Claim Map	after page 2
3.	Regional Geology Map	after page 3
4.	Geology and Sample Location Map	in pocket
5.	Au Soil Geochemistry	in pocket
6.	Ag Soil Geochemistry	in pocket
7.	As Soil Geochemistry	in pocket
8.	Cu Soil Geochemistry	in pocket
9 .	Mo Soil Geochemistry	in pocket
10.	Pb Soil Geochemistry	in pocket
11.	Zn Soil Geochemistry	in pocket
12.	Stacked Magnetic Profiles	in pocket
13.	Contoured Magnetic Data	in pocket
14.	Stacked VLF Profiles	in pocket

1.0 <u>SUMMARY</u>

A geochemical, geophysical and geological work program was conducted between the 19th and 27th of July, 1990 on the JAKE claims, 160 km north of Smithers, British Columbia. The program consisted of soil sampling, geophysical surveying and limited mapping, north of In creek.

The JAKE claims are underlain by rocks of the Bowser Lake Group which are intruded by Babine/Kastberg Intrusions.

Soil geochemistry results outlined an anomalous gold, silver and copper zone with isolated high lead values. Both zinc and arsenic are elevated peripheral to this zone. Recommendations for the JAKE property are 1) extension of the soil sampling and geophysics to the east and south in an attempt to further define the geochemical anomaly, and 2) trenching of the geochemically anomalous zone.

2.0 INTRODUCTION

The exploration program on the JAKE claims was performed in an attempt to find a northeasterly extension of a known Cu-Au soil geochemical anomaly. This anomaly is believed to be associated with a Cu porphyry system. Mapping and rock sampling was done to determine if the porphyry system is nearer to the surface on the north side of In creek.

2.1 Location and Access

The JAKE claims are located 160 km north of Smithers, British Columbia within the Omineca Mining Division, on N.T.S. map sheet 94D/3W (Figure 1). The centre of the claims is at latitude 56° 12'N and longitude 127° 20'W.

Access is by fixed-wing aircraft to an airstrip at Bear Lake, 28 km east of the claims and then by helicopter to the property.

2.2 Topography and Vegetation

The claims straddle two northeast trending valleys that drain into Jake Creek near its confluence with the Squingula River. Elevations on the property range from approximately 900 to 1790 m. Local relief is up to 900 m with treeline at approximately 1400 m. Upland areas are flat to gently rolling; however, some valleys are deeply incised with slopes up to 40 degrees.

Vegetation is mostly pine in forested areas with slide alder and devil's club along streams and in open areas.

2.3 Work History

Mineralization on the JAKE claims was discovered by Kennco Exploration (Western) Ltd. in 1965. Kennco conducted stream sediment and rock chip sampling, and diamond drilled two AX holes totalling 55.5 m. The claims were allowed to lapse.

Canadian Superior Exploration Limited staked the area of the JAKE claims in 1968 and conducted stream sediment and rock chip sampling. The claims were allowed to lapse.

Canadian Superior re-staked the area as the IN group, in 1971, after following up anomalous copper values from a large gossan located on the property. Initial results indicated up to 0.4% Cu in altered feldspar porphyry. The discovery stimulated large work programs by Canadian Superior in 1972, 1973 and 1976 which included soil and rock sampling, geological mapping, ground magnetic surveying, trenching, road building and diamond drilling. Drilling consisted of three X-ray holes totalling 94.5 m, two BQ holes totalling 305 m and seven NQ holes totalling 900.5 m.

Cities Service Minerals Corporation optioned the property in 1977. They conducted additional soil and rock sampling, geological mapping and 437 m of diamond drilling in two holes.

The Canadian Superior Exploration Limited's discovery zone returned 0.39% Cu and 27.43 g/t Ag across a surface exposure of 27.5m. The best drill intersection found by Canadian Superior Exploration Limited was similar in grade and width; the best intersection found by Cities Service Minerals Corporation was 0.19% Cu and 3.67 g/t Ag over 40m. Apparently only a few of the rock samples were assayed for Au; these generally returned less than 0.34 g/t, although a few were up to 0.69 g/t.

In 1986, Placer Development Limited conducted heavy mineral, rock and soil sampling throughout the area now covered by the JAKE claims. Placer Development Limited optioned the property to QPX Minerals in 1987. QPX conducted reconnaissance geological mapping, prospecting and rock, soil and stream sampling in selected areas covering the JAKE claims.

2.4 Summary of Work Done

Field work was conducted on the JAKE-4 claim from the 19th to 27th of July, 1990. A 10.9 km grid was established with a base line 1.1 km long and seven crosslines 1.4 km long. Line separation was 200 m for six of the lines and 100 m for the southern line. Lines were established with compass and

and 100 m for the southern line. Lines were established with compass and hipchain and slope corrected where necessary. Soil sampling, magnetometer and VLF-EM surveys were performed on the grid. Magnetometer and VLF-EM surveys were also performed on three roads north of In Creek. Geological mapping, prospecting and rock sampling were carried out along a portion of In Creek and on the roads on the north side of In Creek.

2.5 Claim Status

The JAKE property comprises eight mineral claims totalling 160 units. The claims are 100% owned by Placer Dome Inc., Vancouver, British Columbia. Claim information is as follows:

<u>Claim Name</u>	<u>Units</u>	Record No.	Expiry Date
Jake 1	20	7983	Oct 9, 1990
Jake 2	20	7984	Oct 9, 1990
Jake 3	20	7985	Oct 9, 1990
Jake 4	20	7986	Oct 9, 1990
Jake 5	20	8192	Mar 3, 1991
Jake 6	20	8193	Mar 3, 1991
Jake 7	20	8194	Mar 3, 1991
Jake 8	20	8195	Mar 3, 1991

3.0 **<u>REGIONAL GEOLOGY</u>**

The JAKE claims and the surrounding area are underlain primarily by sedimentary rocks of the Middle to upper Jurassic Bowser Lake Group which are intruded by Tertiary and Cretaceous plutonic rocks. East of the Squingula River and northwest of Motase Lake, sedimentary and volcanic rocks of the lower to Middle Jurassic Hazelton Group predominate. Sedimentary rocks of the lower Cretaceous Sustat Group are exposed further to the east.

Plutonic rocks in the area belong to the Cretaceous Bulkley and Tertiary Babine and Kastberg Intrusions. The Bulkley Intrusions comprise granodiorite and quartz diorite stocks. They outcrop southeast of the JAKE claims to Motase Lake and

southwest of Sicintine Lake. The Babine/Kastberg Intrusions comprise swarms of feldspar porphyry dykes. They occur on the northern portion of the JAKE claims, northwest of Motase Lake and near the mouth of Tommy Jack Creek.

4.0 **PROPERTY GEOLOGY**

The JAKE-4 claim is underlain by interbedded mudstone, siltstone, sandstone, wacke and minor conglomerate of the Ashman Formation of the Bowser Lake Group (Figure 4). Tuffaceous rocks on the property belong to the Hazelton Group. Siltstone which outcrops upstream along In creek at the break in slope is part of the Bowser Lake Group. This siltstone is light grey, fine grained and calcareous with 1% fine grained pyrite. Previous mapping indicates that the sedimentary rocks intruded by dyke swarms or adjacent to large intrusions are generally altered to hornfels (Sketchley, 1988)₁.

Intrusive rocks on the Jake-4 claim is comprised of two Tertiary plagioclase porphyries which can be distinguished by the presence or absence of biotite phenocrysts. The intrusive rocks outcrop extensively along the northern slope of In creek as a northeasterly trending dyke swarm.

The sedimentary rocks are gently dipping with at least one phase of folding (Sketchley, 1988)₁. The open folds trend north-northwest and have nearly vertical axial planes that plunge gently to the south-southeast. Fracture measurements taken during the 1990 work program confirm two steeply dipping joint sets that strike northeast and northwest.

Mineralization consists mainly of sulphidization associated with a large copper porphyry system. Examination of outcrop during the 1990 work program shows the mineralization of the plagioclase porphyry consists of chalcedonic and crystalline quartz veining with copper sulphides as blebs within the veins. Mineralization in the plagioclase-biotite porphyry is restricted to copper sulphides in fractures and microveins. Clay alteration is present in most outcrops with varying degrees of intensity.

5.0 **GEOCHEMISTRY**

5.1 Soil Samples

Soil sample pits were excavated using a mattock and samples placed in labelled Kraft paper bags. Soil samples were taken at 50 m stations on the baseline and at 40 m stations on the gridlines. A total of 261 samples were collected. All samples were geochemically analyzed for Au, Ag, As, Cu, Mo, Pb, and Zn. The extraction techniques and detection limits are listed in

Appendix 1.

Soil samples were collected from the B-horizon where possible. Notes on the nature of the soil material collected and on site conditions were recorded to aid interpretation of the geochemical results. The soils on the JAKE claims are well developed with a distinct B-horizon. The B-horizon is light orange-brown to red-brown in colour and has developed mainly from colluvial material. Colluvium is derived by down-slope movement of materials of various origins; within the property, these materials are dominantly bedrock.

5.1.1 Results

Analytical results are listed in Appendix II, and displayed in Figures 5 to 11. Concentrations ranges for the different metals are as follows:

	<u>Range</u>	<u>Mean</u>		
Ag	<0.2 - 17	ppm	1.7	ppm
As	<1 - 1600	ppm	64	ppm
Au	<5 - 290	ppb	14	ppb
Cu	<2 - 1760	ppm	90	ppm
Mo	<1 - 52	ppm	2	ppm
Pb	<2 - 3600	ppm	124	ppm
Zn	30 - 2500	ppm	233	ppm

Gold and Silver

Geochemical results show gold and silver to be anomalous at the south end of the grid in a crescent shaped zone narrowing at 5400 N, and 4000 E. Elevated values are concentrated along L5100 N and L5200 N between 3600 E and 4400 E. East of the baseline, anomalous silver values extend up to 5800 N.

<u>Copper</u>

A northeasterly trending broad zone of moderately anomalous copper values transects the southeastern section of the grid. A more pronounced zone approximately 150 metres wide between L5400 N, 4000 E and L5800 N, 4160 E lies within the larger zone and is defined by values greater than 500 ppm.

On the west side of the grid, on L5600 N from 3160 E to 3400 E five of the seven sample sites are anomalous with values above 200 ppm. At 3160 E and 3240 E the values are 950 and 510 ppm, respectively.

Zinc and Lead

Zinc values are elevated on the north and east sides of the gold and silver anomaly with values generally above 500 ppm. Lead values follow a similar pattern to zinc but with only weakly anomalous values. A few lead spot highs occur on or near the baseline below 5600 N with values between 1100 and 3600 ppm.

Molybdenum

The only significant anomalous area is on the east slope below the base camp. It is 100 metres wide extending in a northeasterly direction from 5100 N to 5200 N and is centred at 3300 E. This zone is coincident with part of the gold, silver and copper anomaly.

The two highest values for molybdenum occur on L5600 N at 3160 E and 3240 E. The values are 26 and 20 ppm, respectively and coincide with anomalous copper values.

<u>Arsenic</u>

Anomalous values for arsenic occur along lines 6000 N and 5800 N between 3580 E and 4280 E. Values are generally between 100 and 200 ppm with spot highs to 1600 ppm. A narrow northeasterly trending linear anomaly starts at 5400 N, 3300 E and joins the gold, silver and copper anomaly on line 5600 N at 3550 E.

5.1.2 Discussion

Results from the geochemical survey indicate the potential for Au-Ag-Cu mineralization related to a porphyry style system. Peripheral anomalous Zn and As values indicate epithermal fluids possibly associated with the porphyry system.

5.2 Rock Samples

A total of seven rock samples were taken on the JAKE property. All samples were geochemically analyzed for Au, Ag, As, Cu, Hg, Mo, Pb, Sb, and Zn. The extraction techniques and detection limits are listed in Appendix 1.

5.2.1 <u>Results</u>

Sample locations are shown on Figure 4. Analytical results are listed in Appendix III, along with brief sample descriptions. Rock sample

results show anomalous values for Cu, Ag and Hg, and to a lesser extent Au and Mo in the majority of the samples.

Samples that exhibit copper mineralization in the form of sulphides or oxides returned high values for both Cu and Ag. Pyritization is present in all the rock samples with a range of 1-5%.

Examination of the results shows a correlation between gold, silver, copper and molybdenum. Lead, mercury, and arsenic also appear to be associated.

5.2.2 Discussion

Analyses show weak mineralization of the porphyritic units. Mineralization associated with both vuggy white quartz and chalcedonic veins was probably controlled by epithermal fluids as anomalous samples were relatively high in arsenic and mercury. These epithermal fluids may be related to a deep seated porphyry system.

6.0 **GEOPHYSICS**

Magnetometer and VLF-EM surveys were conducted on seven northwestsoutheast gridlines. Three additional lines were surveyed along old drill roads designated Road 1, 2 and 3 (Figure 4) for a total of 13.1 km of geophysics. Magnetometer readings were taken at 10 metre stations while VLF-EM readings were taken at 20 metre stations.

Readings were dumped out to disk in a Toshiba laptop portable computer. The stored data was transferred to a Sun system computer for final processing and plotting.

6.1 Magnetometer Survey

The magnetometer survey was conducted using two Geometrics G-856 portable proton magnetometers. One was used in the field mode while the other was used in a base station mode. The internal clocks were synchronized before commencement of the survey. The data from the two magnetometers was merged and corrected for diurnal drift from an established base station value.

6.1.1 <u>Results</u>

The magnetometer survey results are plotted as plan maps of contoured data and stacked profiles (Figure 12 & 13). The majority of the

main grid is extremely flat. A small sized anomaly is located as follows on the southwest corner of the grid.

L5400N	3100-3650E
L5200N	3200-3900E
L5100N	3250-3900E

No significant anomalies are present on the three road lines.

6.1.2 Discussion

The magnetic anomaly in the southwest corner of the grid does not directly correspond with any geochemical anomalies. Elevated copper and molybdenum values from soil samples form a weak discontinuous halo around the small magnetic high but whether there is a correlation is questionable.

The cause of the magnetic anomaly is possibly a small intrusive body.

6.2 VLF-EM Survey

The VLF-EM survey employed a Geonics EM-16 which used the transmitting station at Lualualei, Hawaii (NPM, 23.4 kHz) along the northwest-southeast lines. Readings were taken facing 160 degrees azimuth. The Seattle, Washington transmitter (NLK, 24.8 kHz) was used for two and a half of the road lines as the Hawaii transmitter was off the air. Readings using Seattle transmitter were taken facing 145 degrees azimuth. Cross-overs are in the sense of positive to negative as one traverses southeast along the lines.

6.2.1 Results

The VLF-EM survey results are plotted as stacked In-Phase, Quadrature and Fraser Filter profiles (Figure 14). Positive values are plotted on the north side of the profile. The Fraser Filter data was calculated as per the method put forth by D.C. Fraser, 1969.₂

6.2.2 Discussion

Numerous north-northeast trending conductors were detected by the survey. These conductors trend in the same general direction as Tertiary intrusive dykes which outcrop to the southeast of the grid and along the roads. Correlating conductors from the grid to the roads is restricted by the fact that the roads could only be plotted as straight lines and are not representative of their true position.

The conductors could be reflecting major fracture directions which are known to strike in a northeast direction. Soil geochemical results do not indicate if these structures are mineralized. Northwest fractures were not reflected by the VLF results.

7.0 CONCLUSIONS

- 1. Geochemical results indicate an anomalous zone of copper, gold and silver with anomalous zinc and arsenic distal to the main zone along the north and east sides.
- 2. No large scale magnetic anomalies were detected indicating that no large intrusive body is present close to the surface.
- 3. VLF survey results indicate possible major northeast trending structures. The presence of mineralization along these structures is unknown. Geology and ground conditions from outcrops along drill roads support potential for precious and base metal mineralization.

8.0 **RECOMMENDATIONS**

Geochemical and geophysical results indicate that further work should be done on the JAKE claims. The sampling grid should be extended to the east and south to determine the extent of anomalous zones present in the southeast section of the grid. Geochemical and geophysical surveys should be carried out on the grid extensions.

Anomalous zones on L5600N and L5800N east of the baseline, below the base camp, and along the baseline from 5100N to 5600N should be trenched, mapped and sampled. Detailed mapping should be conducted over the area, especially the old drill roads that traverse the grid. Exposure of rock, by means of a bulldozer, is necessary before mapping can be efficiently done along the roads.

At present there are no viable drill targets.

APPENDIX I

Analytical Techniques and Detection Limits

ANALYTICAL TECHNIQUES AND DETECTION LIMITS

Placer Dome Inc's Vancouver Analytical Laboratory

	<u>Units</u>	<u>Wt(g)</u>	<u>Attack</u>	<u>Time</u>	<u>Range</u>	Method
Ag	ppm	0.5	HCLO4/HNO3	4 hrs	0.2-20	A.A. Background Correction
As	ppm	0.5	Aqua Regia	3 hrs	2-2000	DC Plasma
Au	ppb	10.0	Aqua Regia	3 hrs	5-4000	A.A. Solvent Extraction
Cu	ppm	0.5	HCLO4/HNO3	4 hrs	2-4000	Atomic Absorption
Hg	ppb	0.25	DIL HNO3/HCL	2 hrs	5-2000	A.A. Cold Vapor Gen.
Мо	ppm	0.5	HCLO4/HNO3	4 hrs	1-1000	Atomic Absorption
Pb	ppm	0.5	HCLO4/HNO3	4 hrs	2-3000	A.A. Background Correction
Sb	ppm	0.5	HCL/HNO3	3 hrs	2-2000	DC Plasma
Zn	ppm	0.5	HCLO4/HNO3	4 hrs	2-3000	Atomic Absorption

APPENDIX II

Soil Sample Analyses and Statistics

PDI GEOCHEM SYSTEM: Jake claims - Soil Sample Analyses

SAMPLE	AG	AS	AU1	CU	MO	PB	ZN
	PPM	PPM	PPB	PPM	PPM	PPM	PPM
5100N 312 5100N 320 5100N 340 5100N 340 5100N 340 5100N 340 5100N 340 5100N 360 5100N 400 5100N 400 5100N 400 5100N 420 5100N 420 5100N 420 5100N 420 5100N 420 5100N 420 5100N <td>PPM 20E 0.2 60E 0.2 20E 0.1 20E 0.1 20E 0.1 20E 0.1 20E 0.1 20E 0.2 30E 0.1 20E 0.2 30E 1.2 30E 1.7 30E 3.3 20E 0.7 50E 1.7 50E 2.8 40E 1.0 20E 1.5 50E 1.5 50E 2.8 40E 3.0 80E 0.6 20E 0.3 60E 0.4 80E 0.2 80E 0.2 80E 0.2 80E 0.2</td> <td>PPM 5 11 13 52 6 5 5 5 13 0 2 9 7 5 9 2 4 8 6 5 5 5 13 0 2 9 7 5 9 2 4 8 6 5 5 5 5 13 0 2 9 7 5 9 2 4 8 6 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>PPB 2.522.55555555555555555555555555555555</td> <td>PPM 17 16 18 13 17 14 13 14 13 14 15 21 38 53 244 162 145 38 53 244 162 145 38 53 244 162 145 38 53 244 162 17 145 15 21 145 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 31 166 31 185 35 37 20 185 37 23 31 36 37 37 36 37 37 36 37 37 37 37 37 37 37 37 37 37</td> <td>PPM 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>PPM 7 8 13 8 10 7 11 14 122 730 8 6 30 23 9 6 160 43 8 208 160 43 827 208 147 250 820 149 16 151 17 11 43 175 21 46</td> <td>PPM 53 51 70 37 51 38 30 42 57 43 65 140 37 58 52 1250 940 1920 317 370 300 760 2000 138 610 72 55 46 66 45 86 93 72</td>	PPM 20E 0.2 60E 0.2 20E 0.1 20E 0.1 20E 0.1 20E 0.1 20E 0.1 20E 0.2 30E 0.1 20E 0.2 30E 1.2 30E 1.7 30E 3.3 20E 0.7 50E 1.7 50E 2.8 40E 1.0 20E 1.5 50E 1.5 50E 2.8 40E 3.0 80E 0.6 20E 0.3 60E 0.4 80E 0.2 80E 0.2 80E 0.2 80E 0.2	PPM 5 11 13 52 6 5 5 5 13 0 2 9 7 5 9 2 4 8 6 5 5 5 13 0 2 9 7 5 9 2 4 8 6 5 5 5 5 13 0 2 9 7 5 9 2 4 8 6 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 5 10 2 9 7 5 9 2 4 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PPB 2.522.55555555555555555555555555555555	PPM 17 16 18 13 17 14 13 14 13 14 15 21 38 53 244 162 145 38 53 244 162 145 38 53 244 162 145 38 53 244 162 17 145 15 21 145 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 25 17 20 185 31 166 31 185 35 37 20 185 37 23 31 36 37 37 36 37 37 36 37 37 37 37 37 37 37 37 37 37	PPM 1 1 1 1 1 1 1 1 1 1 1 1 1	PPM 7 8 13 8 10 7 11 14 122 730 8 6 30 23 9 6 160 43 8 208 160 43 827 208 147 250 820 149 16 151 17 11 43 175 21 46	PPM 53 51 70 37 51 38 30 42 57 43 65 140 37 58 52 1250 940 1920 317 370 300 760 2000 138 610 72 55 46 66 45 86 93 72
5200N 352 5200N 356 5200N 366 5200N 366 5200N 366	20E 2.3	27	10	31	0.5	175	92
	60E 0.9	13	2.5	36	0.5	21	93
5200N 372 5200N 376 5200N 386 5200N 386 5200N 386 5200N 386 5200N 386 5200N 392 5200N 396 5200N 396 5200N 406 5200N 406	20E 10 50E 1.1 50E 0.6 40E 1.1 30E 0.5 20E 11 50E 3.4 50E 4.8 40E 9.0 30E 3.1	36 64 32 41 55 23 58 53 19 290 32 60	2.5 75 10 5 275 20 50 75 50 250 15 100	277 193 170 134 184 59 29 35 80 275 84 134	12 18 10 0.5 6 0.5 8 6 4 0.5	32 318 66 41 57 40 380 301 49 3600 142 670	110 85 78 130 170 153 95 66 70 71 83 171

52	200N	4160E	1.0	30	2.5	39	0.5	30	160
52	00N	4200E	1.6	22	2.5	16	0.5	34	161
52	00N	4240E	1.4	16	290	22	10	68	109
	00N	4280E	0.6	17	10	23	1	43	240
	00N	4320E	8.0	73	75	141	8	660	294
	00N	4360E	2.9	35	35	78	1	103	730
	00N	4400E	0.8	17		36	1	92	264
					2.5				
	00N	4440E	1.7	12	2.5	14	1	57	180
	00N	4480E	2.5	79	2.5	25	1	380	293
	00N	3120E	1.2	6	2.5	79	4	8	40
	00N	3160E	0.5	11	2.5	25	4	11	59
54	00N	3200E	0.4	12	2.5	35	1	7	48
54	00N	3240E	0.6	16	2.5	31	4	11	60
54	00N	3280E	0.8	18	2.5	219	6	20	54
54	00N	3320E	6.0	205	5	217	6	242	186
	00N	3360E	0.9	30	2.5	234	16	21	100
	00N	3400E	0.4	8	2.5	28	4	6	43
	00N	3440E	0.4	7	2.5	38	4	12	58
	00N	3480E	0.3	9	2.5	19	4	12	62
	00N	3520E	0.9		2.5				
				17		163	8	14	75
	00N	3560E	0.6	12	2.5	47	1	8	67
	00N	3600E	1.1	16	2.5	48	1	19	64
	00N	3640E	1.0	17	10	67	14	17	48
	00N	3680E	3.6	56	2.5	53	14	180	71
54	00N	3720E	2.1	31	2.5	31	8	197	68
54	00N	3760E	3.1	8	2.5	24	6	26	74
54	00N	3800E	1.2	27	2.5	105	4	98	73
	00N	3840E	2.9	42	2.5	78	1	37	81
	00N	3880E	0.8	17	2.5	31	2	28	61
	00N	3920E	1.9	12	2.5	18	2	16	67
	00N	3960E	2.7	24	2.5	27	2	114	102
			17						
	00N	4000E		149	190	363		2360	300
	00N	4040E	2.0	21	2.5	28	1	33	170
	00N	4080E	0.7	10	2.5	47	1	25	180
	00N	4120E	0.9	19	2.5	29	2	39	325
54	00N	4160E	8.0	25	2.5	104	1	50	180
54	00N	4200E	8.0	19	2.5	195	4	810	265
54	00N	4240E	4.1	32	60	121	6	60	270
	00N	4280E	0.5	33	100	78	0.5	56	460
	00N	4320E	1.5	31	2.5	33	0.5	138	235
	00N	4360E	1.4	58	2.5	66	4	234	400
	00N	4400E	1.4	50	20	134	4	291	500
	00N	4440E	1.9	66	25	58	1	345	410
	00N	4480E	3.1	78	20	90		1360	880
	00N	3120E	0.6	70	2.5	32	1	35	102
	00N	3160E	0.5	64	2.5	950	20	26	126
	00N	3200E	1.0	56	2.5	82	6	30	73
	00N	3240E	0.2	34	2.5	510	26	22	82
	00N	3280E	0.6	22	2.5	125	0.5	14	93
56	00N	3320E	0.2	160	2.5	326	4	62	204
56	00N	3360E	0.2	180	2.5	201	0.5	29	196
56	00N	3400E	0.5	72	2.5	234	1	40	205
	00N	3440E	8.0	240	2.5	100	6	215	212
	00N	3480E	0.6	260	2.5	182	6	78	302
	00N	3520E	0.9	64	2.5	92	4	38	132
						25		24	124
	00N	3560E	0.5	46	2.5		0.5		
	00N	3600E	1.5	114	30	224	2	101	335
	00N	3640E	1.1	46	2.5	16	0.5	122	73
	00N	3680E	1.6	64	10	114	2	186	235
	00N	3720E	1.0	42	2.5	97	1	21	106
56	00N	3760E	0.5	12	5	15	0.5	12	65
56	00N	3800E	1.1	26	5	129	0.5	13	107
	00N	3840E	0.7	26	2.5	30	1	40	81
	00N	3880E	11	240	125	270	14	1500	106
	00N	3920E	0.9	56	2.5	66	1	59	77
	00N	3960E	1.1	16	2.5	45	1	29	100
50	· · · ·								

5600N 4000E 2.5 68 2.5 510 0.5 41 127 5600N 4040E 2.5 24 20 1760 1 106 550 5600N 4120E 2.3 40 2.5 48 1 101 238 5600N 4200E 4.6 38 2.5 100 0.5 100 378 5600N 4240E 5.0 10 2.5 560 0.5 200 272 5600N 4260E 2.7 28 2.5 100 105 540 5600N 4400E 2.6 82 2.5 122 100 500 5600N 4400E 2.8 68 2.5 10 90 100 700 2100 5800N 3200E 0.2 2.5 32 0.5 10 90 5800N 3200E 0.4 12 2.5 13 112 106 550 100 340 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
5600N 4040E 3.3 44 2.5 390 1 32 110 5600N 4120E 2.3 40 2.5 48 1 101 238 5600N 4120E 2.3 40 2.5 52 0.5 110 238 5600N 4240E 5.0 10 2.5 50 0.5 200 372 5600N 4240E 5.0 10 2.5 50 0.5 200 272 5600N 4320E 0.7 36 2.5 56 1 125 544 5600N 4400E 3.6 32 2.5 32 4 350 500 5600N 4400E 3.1 58 15 117 2 700 2100 5800N 3120E 0.2 2.4 2.5 32 0.5 18 11 5800N 3240E 0.4 42 2.5 27 0.5 18 112 5800N 340E 0.4 2.5 2.7 0.5	5600N	4000E	2.5	68	2.5	510	0.5	41	127
5600N 4120E 2.3 40 2.5 48 1 101 238 5600N 4200E 4.6 38 2.5 118 1 125 550 5600N 4200E 5.0 10 2.5 50 0.5 200 272 5600N 4320E 0.7 36 2.5 56 1 105 540 5600N 4300E 3.6 32 2.5 56 1 125 346 5600N 4400E 3.6 32 2.5 32 1 500 500 5600N 4400E 3.6 32 2.5 32 0.5 10 90 5800N 3160E 0.2 20 2.5 32 0.5 10 90 5800N 3200E 0.4 42 2.5 32 0.5 18 171 5800N 3200E 0.4 42 2.5 20 5 18 171 5800N 3200E 0.4 42 2.5 35	5600N	4040E	3.3	44	2.5	390	1	32	110
5600N 4160E 4.6 38 2.5 52 0.5 110 208 5600N 4200E 5.0 10 2.5 610 0.5 100 378 5600N 4240E 2.7 28 2.5 50 0.5 200 272 5600N 4320E 0.7 36 2.5 56 1 105 540 5600N 4400E 2.8 68 2.5 152 1 500 2500 5600N 4400E 2.8 68 2.5 32 4 13 350 500 5600N 4400E 0.2 2.6 2.5 32 4 13 90 5800N 3200E 0.2 18 2.5 20 1 10 70 5800N 3200E 0.4 120 2.5 68 0.5 34 120 5800N 3400E 0.3 18 2.5 15 0.5 10 44 5800N 3400E 0.3 18 2.5	5600N	4080E	2.5	24	20	1760	1	106	560
5600N 4200E 4.6 38 2.5 118 1 125 55 5600N 4240E 5.0 10 2.5 50 0.5 200 378 5600N 4240E 2.7 28 2.5 50 0.5 200 272 5600N 4320E 0.7 36 2.5 58 1 105 540 5600N 4400E 3.6 32 2.5 152 1 500 2500 5600N 4400E 3.1 58 15 117 2 700 2100 5800N 3120E 0.2 2.0 1.5 32 0.5 10 90 5800N 3200E 0.4 42 2.5 225 0.5 18 171 5800N 3360E 0.4 18 2.5 22 0.5 15 69 5800N 3400E 0.4 18 2.5 20 0.5 14 82 5800N 3560E 1.1 460 2.5 27 <td>5600N</td> <td>4120E</td> <td>2.3</td> <td>40</td> <td>2.5</td> <td>48</td> <td>1</td> <td>101</td> <td>238</td>	5600N	4120E	2.3	40	2.5	48	1	101	238
5600N 4240E 5.0 10 2.5 610 0.5 100 378 5600N 4320E 0.7 36 2.5 56 1 105 540 5600N 4320E 0.7 36 2.5 56 1 105 540 5600N 4440E 2.8 68 2.5 40 1 350 550 5600N 4440E 2.8 68 2.5 32 4 13 90 5600N 3120E 0.2 20 2.5 32 4 13 90 5800N 320E 0.4 42 2.5 20 1 10 70 5800N 320E 0.4 42 2.5 275 0.5 18 171 5800N 340E 0.4 18 2.5 25 0.5 14 120 5800N 340E 0.4 18 2.5 15 0.5 10 440 5800N 350E 1.1 460 2.5 15 0.	5600N			46			0.5		
5600N 4280E 2.7 28 2.5 50 0.5 200 272 5600N 4360E 3.7 46 5 58 1 225 346 5600N 4400E 3.6 32 2.5 152 1 500 2500 5600N 4440E 3.1 58 1.5 117 2 700 2100 5800N 3120E 0.2 2.6 32 0.5 10 90 5800N 3200E 0.2 18 2.5 32 0.5 18 110 70 5800N 3200E 0.4 42 2.5 275 0.5 18 120 5800N 3200E 0.4 18 2.5 15 0.5 60 5 56 13 120 56 56 14 120 56 5800N 3400E 2.5 15 0.5 120 255 56 10 121 48 25 105 0.5 122 255 5800N 3400E 1.0 <t< td=""><td></td><td></td><td>4.6</td><td>38</td><td></td><td></td><td></td><td></td><td>550</td></t<>			4.6	38					550
5600N 4360E 0.7 36 2.5 56 1 105 546 5600N 4400E 3.6 32 2.5 152 1 500 2500 5600N 4440E 2.8 66 2.5 40 1 330 500 5600N 3120E 0.2 20 2.5 32 4 13 90 5800N 3120E 0.2 34 2.5 32 0.5 10 70 5800N 320E 0.4 42 2.5 22 0.5 18 117 12 106 5800N 320E 0.4 120 2.5 68 0.5 34 120 5800N 3400E 0.4 18 2.5 15 0.5 10 44 5800N 3400E 0.3 18 2.5 15 0.5 14 82 5800N 3400E 0.4 160 2.5 35 0.5 14 82 5800N 3600E 0.9 40 <	5600N			10					
5600N 4300E 3.6 32 2.5 152 1 500 2500 5600N 4400E 3.1 58 15 117 2 700 2100 5800N 3120E 0.2 20 2.5 32 4 13 90 5800N 3120E 0.2 2.6 32 2.5 32 0.5 10 90 5800N 3200E 0.2 34 2.5 32 0.5 10 90 5800N 3200E 0.4 42 2.5 225 0.5 18 171 5800N 3360E 0.4 18 2.5 15 0.5 10 44 5800N 3400E 0.3 18 2.5 20 0.5 14 82 5800N 3400E 0.4 2.5 27 0.5 34 130 5800N 360E 1.4 40 2.5 13 1 12 48 5800N 360E 1.4 40 2.5 27 <t< td=""><td>5600N</td><td></td><td></td><td></td><td></td><td></td><td>0.5</td><td></td><td></td></t<>	5600N						0.5		
5600N 4400E 3.6 32 2.5 152 1 500 2500 5600N 3120E 0.2 20 2.5 32 4 13 90 5800N 3120E 0.2 20 2.5 32 4 13 90 5800N 3200E 0.2 34 2.5 32 0.5 10 90 5800N 3200E 0.2 34 2.5 32 0.5 10 90 5800N 3200E 0.6 120 2.5 54 1 12 106 5800N 3320E 0.6 120 2.5 68 0.5 14 120 5800N 3400E 0.3 18 2.5 15 0.5 10 44 5800N 3500E 1.1 460 2.5 35 0.5 80 290 5800N 360E 1.1 460 2.5 13 1 12 48 5800N 360E 1.1 46 2.5 105 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
5600N 4400E 2.8 68 2.5 40 1 350 500 5600N 3120E 0.2 20 2.5 32 4 13 90 5800N 3120E 0.2 18 2.5 32 0.5 10 90 5800N 320E 0.2 14 2.5 20 1 10 700 5800N 3220E 0.4 42 2.5 75 0.5 18 171 5800N 3320E 0.6 120 2.5 68 0.5 34 120 5800N 340E 0.4 18 2.5 15 0.5 10 44 5800N 3440E 0.4 60 2.5 27 0.5 34 130 5800N 360E 1.1 460 2.5 210 0.5 14 82 5800N 360E 1.4 40 2.5 27 0.5 37 113 5800N 360E 1.4 40 2.5 27									
5600N 4480E 3.1 58 15 117 2 700 2100 5800N 3120E 0.2 20 2.5 32 4 13 90 5800N 3200E 0.2 34 2.5 32 0.5 10 90 5800N 3240E 0.4 42 2.5 32 0.5 14 10 70 5800N 3240E 0.4 42 2.5 275 0.5 18 171 5800N 3340E 0.4 18 2.5 22 0.5 10 44 5800N 3440E 0.4 60 2.5 35 0.5 80 290 5800N 350E 0.5 64 2.5 27 0.5 34 130 5800N 360E 0.9 40 2.5 13 1 12 48 5800N 360E 2.4 1.4 40 2.5 105 52 22 255 5800N 360E 2.2 1600 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
5800N 3120E 0.2 20 2.5 32 4 13 90 5800N 3200E 0.2 18 2.5 32 0.5 10 90 5800N 3200E 0.5 40 5 54 1 12 106 5800N 3280E 0.4 42 2.5 66 0.5 34 120 5800N 3320E 0.6 120 2.5 66 0.5 34 120 5800N 3400E 0.4 18 2.5 15 0.5 10 44 5800N 3440E 0.4 60 2.5 27 0.5 34 130 5800N 360E 1.1 460 2.5 45 0.5 22 285 5800N 360E 2.8 340 2.5 15 0.5 14 82 5800N 360E 2.8 340 2.5 120 133 33 5800N 360E 1.1 280 2.5 220 15 <									
SBOON 3160E 0.2 18 2.5 32 0.5 10 90 SBOON 3200E 0.2 34 2.5 20 1 10 70 SBOON 3240E 0.4 42 2.5 275 0.5 18 171 SBOON 3360E 0.4 42 2.5 227 0.5 18 120 SBOON 3360E 0.4 18 2.5 22 0.5 10 44 SBOON 3440E 2.8 280 2.5 35 0.5 80 290 SBOON 3520E 0.5 64 2.5 13 1 12 48 SBOON 3640E 1.4 40 2.5 105 0.5 120 287 SBOON 3600E 2.8 340 2.5 105 0.5 120 287 SBOON 3600E 2.8 340 2.5 280 1.1									
SB00N 3240E 0.2 34 2.5 20 1 10 70 S800N 3240E 0.5 40 5 54 1 12 106 S800N 3220E 0.6 120 2.5 68 0.5 34 120 S800N 3360E 0.4 18 2.5 15 0.5 10 44 S800N 3400E 0.4 60 2.5 27 0.5 34 130 S800N 3400E 0.4 60 2.5 20 0.5 14 82 S800N 3560E 1.1 460 2.5 13 1 12 48 S800N 3660E 2.8 340 2.5 13 1 122 134 S800N 360E 2.8 340 2.5 20 0.5 34 133 S800N 360E 1.2 342 2.5 20 0.5 34<									
5800N 3240E 0.5 40 5 54 1 12 106 5800N 3320E 0.4 42 2.5 275 0.5 18 171 5800N 3360E 0.4 18 2.5 22 0.5 15 69 5800N 3400E 0.3 18 2.5 15 0.5 34 130 5800N 3440E 2.8 280 2.5 35 0.5 80 290 5800N 3500E 1.1 460 2.5 13 1 12 48 5800N 3600E 0.9 40 2.5 105 0.5 120 287 5800N 3600E 1.8 340 2.5 105 0.5 34 133 5800N 3760E 1.1 84 2.5 29 0.5 34 133 5800N 3840E 1.1 280 2.5 240 1									
SBOON 3280E 0.4 42 2.5 275 0.5 18 171 SBOON 3320E 0.6 120 2.5 68 0.5 34 120 SBOON 33400E 0.4 18 2.5 15 0.5 10 44 SBOON 3440E 0.4 60 2.5 35 0.5 80 290 SBOON 3420E 0.5 64 2.5 20 0.5 14 82 SBOON 3560E 1.1 460 2.5 13 1 12 48 SBOON 3640E 1.4 40 2.5 105 0.5 34 133 SBOON 3640E 1.2 34 2.5 26 1 22 134 SBOON 3760E 1.1 84 2.5 29 0.5 32 255 SBOON 3800E 1.2 72 2.5 19 1 <									
S800N 3320E 0.6 120 2.5 68 0.5 34 120 S800N 3400E 0.4 18 2.5 15 0.5 10 44 S800N 3440E 0.4 60 2.5 27 0.5 34 130 S800N 3480E 2.8 280 2.5 35 0.5 80 290 S800N 3560E 1.1 460 2.5 45 0.5 22 255 S800N 3600E 1.4 40 2.5 13 1 12 48 S800N 3600E 2.8 340 2.5 105 0.5 34 133 S800N 3700E 1.1 84 2.5 39 0.5 34 133 S800N 3800E 1.2 2.5 19 1 20 84 S800N 3920E 1.1 50 2.5 49 1 38 <									
S800N 3360E 0.4 18 2.5 22 0.5 15 69 5800N 3440E 0.4 60 2.5 15 0.5 10 44 5800N 3480E 2.8 280 2.5 35 0.5 80 290 5800N 3520E 0.5 64 2.5 35 0.5 14 82 5800N 3560E 1.1 460 2.5 13 1 12 48 5800N 3600E 0.9 40 2.5 13 1 12 48 5800N 3600E 2.8 340 2.5 15 0.5 34 133 5800N 370E 1.2 34 2.5 22 0.5 32 255 5800N 380E 1.2 72 2.5 19 1 20 84 5800N 3960E 1.8 70 2.5 28 0.5 41 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
5800N 3400E 0.3 18 2.5 15 0.5 10 44 5800N 3440E 0.4 60 2.5 27 0.5 34 130 5800N 3520E 0.5 64 2.5 20 0.5 14 82 5800N 3560E 1.1 460 2.5 13 1 12 48 5800N 3600E 0.9 40 2.5 13 1 12 48 5800N 3640E 1.4 40 2.5 27 0.5 37 113 5800N 3640E 1.4 40 2.5 27 0.5 34 133 5800N 3760E 1.1 84 2.5 39 0.5 34 133 5800N 3840E 1.2 72 2.5 19 1 28 84 5800N 3840E 1.2 72 2.5 19 1 38 130 5800N 3920E 1.8 70 2.5 40 1									
5800N 3440E 0.4 60 2.5 27 0.5 34 130 5800N 3520E 0.5 64 2.5 35 0.5 80 290 5800N 3560E 1.1 460 2.5 45 0.5 22 255 5800N 3600E 0.9 40 2.5 13 1 12 48 5800N 3640E 1.4 40 2.5 105 0.5 120 287 5800N 3640E 1.2 34 2.5 26 1 22 134 5800N 3760E 1.1 84 2.5 39 0.5 34 133 5800N 3840E 1.1 280 2.5 46 1 170 330 5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 4002E 1.8 70 2.5 28 0.5 <									
5800N 3480E 2.8 280 2.5 35 0.5 80 290 5800N 3520E 0.5 64 2.5 20 0.5 14 82 5800N 3600E 0.9 40 2.5 13 1 12 48 5800N 3660E 2.8 340 2.5 105 0.5 120 287 5800N 3680E 2.8 340 2.5 26 1 22 134 5800N 3760E 1.1 84 2.5 39 0.5 34 133 5800N 3800E 1.2 72 2.5 19 1 28 84 5800N 3840E 1.2 72 2.5 19 1 38 130 5800N 3920E 1.1 50 2.5 28 1 51 240 5800N 4000E 1.3 100 2.5 28 1 51									
5800N 3520E 0.5 64 2.5 20 0.5 14 82 5800N 3560E 1.1 460 2.5 45 0.5 22 255 5800N 3640E 1.4 40 2.5 13 112 48 5800N 3640E 2.8 340 2.5 105 0.5 37 113 5800N 3760E 1.2 34 2.5 26 1 22 134 5800N 3800E 2.2 1600 25 46 1 170 330 5800N 3800E 1.2 72 2.5 19 1 20 84 5800N 3920E 1.1 50 2.5 28 0.5 41 360 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4040E 2.9 10 2.5 630 1 76									
5800N 3560E 1.1 460 2.5 45 0.5 22 255 5800N 3600E 0.9 40 2.5 13 1 12 48 5800N 3660E 2.8 340 2.5 105 0.5 120 287 5800N 3720E 1.2 34 2.5 26 1 22 134 5800N 3760E 1.1 84 2.5 39 0.5 34 133 5800N 3840E 1.1 280 2.5 22 0.5 32 255 5800N 3840E 1.2 72 2.5 19 1 38 130 5800N 3960E 1.8 70 2.5 28 0.5 41 360 5800N 4000E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 116 1									
5800N 3600E 0.9 40 2.5 13 1 12 48 5800N 3640E 1.4 40 2.5 27 0.5 37 113 5800N 3660E 2.8 340 2.5 105 0.5 120 287 5800N 3700E 1.2 34 2.5 26 1 22 134 5800N 3800E 1.2 34 2.5 39 0.5 34 133 5800N 3800E 1.2 72 2.5 19 1 20 84 5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 400E 1.3 100 2.5 28 0.5 41 360 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4100E 2.9 110 2.5 630 1 76 235 5800N 420E 2.4 100 2.5 314 <									
\$800N 3640E 1.4 40 2.5 27 0.5 37 113 \$800N 3680E 2.8 340 2.5 105 0.5 120 287 \$800N 3760E 1.1 84 2.5 26 1 22 134 \$800N 3800E 1.2 12 34 2.5 26 1 120 133 \$800N 3800E 1.1 280 2.5 22 0.5 32 255 \$800N 3840E 1.2 72 2.5 19 1 38 130 \$800N 3920E 1.1 50 2.5 49 1 38 130 \$800N 400E 1.6 86 2.5 47 1 85 430 \$800N 400E 2.1 40 2.5 470 1 71 450 \$800N 420E 2.9 110 2.5 116 1 71 400 \$800N 420E 2.4 100 2.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
\$800N 3680E 2.8 340 2.5 105 0.5 120 287 \$800N 3720E 1.2 34 2.5 26 1 22 134 \$800N 3800E 2.2 1600 25 46 1 170 330 \$800N 3840E 1.1 280 2.5 22 0.5 32 255 \$800N 3840E 1.2 72 2.5 19 1 20 84 \$800N 3960E 1.8 70 2.5 28 0.5 41 360 \$800N 400E 2.6 86 2.5 470 1 71 450 \$800N 4040E 2.6 86 2.5 477 1 81 30 \$800N 4120E 2.9 110 2.5 160 1 71 400 \$800N 420E 2.4 100 2.5 395 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
5800N 3720E 1.2 34 2.5 26 1 22 134 5800N 3760E 1.1 84 2.5 39 0.5 34 133 5800N 3800E 2.2 1600 25 46 1 170 330 5800N 3880E 1.2 72 2.5 19 1 20 84 5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 4900E 1.8 70 2.5 28 0.5 41 360 5800N 4000E 3.6 86 2.5 47 1 85 430 5800N 4040E 3.6 86 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 630 1 76 235 5800N 420E 2.0 52 35 1 74 530 5800N 420E 2.1 100 2.5 35 1 74 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
5800N 3760E 1.1 84 2.5 39 0.5 34 133 5800N 3800E 2.2 1600 25 46 1 170 330 5800N 3840E 1.1 280 2.5 22 0.5 32 255 5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 3920E 1.8 70 2.5 28 0.5 41 360 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4080E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 116 1 71 400 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 5 1 14 3									
5800N 3800E 2.2 1600 25 46 1 170 330 5800N 3840E 1.1 280 2.5 22 0.5 32 255 5800N 3880E 1.2 72 2.5 19 1 20 84 5800N 3960E 1.8 70 2.5 28 0.5 41 360 5800N 4000E 1.3 100 2.5 28 1 51 240 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4040E 2.6 870 1 71 450 5800N 4120E 2.9 110 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 395 1 74 530 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 420E 1.8 10 2.5 25 1 27 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
5800N 3840E 1.1 280 2.5 22 0.5 32 255 5800N 3880E 1.2 72 2.5 19 1 20 84 5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 3960E 1.8 70 2.5 28 0.5 41 360 5800N 4000E 1.3 100 2.5 28 1 51 240 5800N 4000E 3.6 86 2.5 47 1 85 430 5800N 4080E 2.1 40 2.5 470 1 71 400 5800N 4120E 2.9 110 2.5 314 1 97 240 5800N 4200E 2.4 100 2.5 70 1 114 342 5800N 420E 2.0 52 2.5 10 0.5 4 134 5800N 4320E 1.8 10 2.5 51 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
5800N 3880E 1.2 72 2.5 19 1 20 84 5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 3960E 1.8 70 2.5 28 0.5 41 360 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4080E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 116 1 71 400 5800N 4120E 2.9 110 2.5 314 1 97 240 5800N 420E 2.0 52 2.5 395 1 74 530 5800N 4240E 2.0 52 1.5 10 0.5 4 134 5800N 4360E 0.1 NSS 2.5 10 0.5 133 153 5800N 4400E 1.3 62 2.5 45 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
5800N 3920E 1.1 50 2.5 49 1 38 130 5800N 3960E 1.8 70 2.5 28 0.5 41 360 5800N 4000E 1.3 100 2.5 28 1 51 240 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4120E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4420E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 <									
5800N 3960E 1.8 70 2.5 28 0.5 41 360 5800N 4000E 1.3 100 2.5 28 1 51 240 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4080E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 116 1 71 400 5800N 420E 2.9 100 2.5 630 1 76 235 5800N 4240E 2.0 52 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 1 27 103 5800N 4280E 4.1 100 2.5 70 1 14 342 5800N 4320E 1.8 10 2.5 45 1 96 640 5800N 4400E 1.3 62 2.5 45 1 1									
5800N 4000E 1.3 100 2.5 28 1 51 240 5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4080E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4440E 1.3 62 2.5 45 1 104 560 6000N 3120E 0.5 92 2.5 83 <									
5800N 4040E 3.6 86 2.5 47 1 85 430 5800N 4080E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 116 1 71 400 5800N 4120E 2.9 110 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3160E 1.1 24 2.5 83									
5800N 4080E 2.1 40 2.5 470 1 71 450 5800N 4120E 2.9 110 2.5 116 1 71 400 5800N 4160E 7.0 90 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 92 2.5 45 1 18 132 6000N 320E 0.1 18 2.5 16									
5800N 4120E 2.9 110 2.5 116 1 71 400 5800N 4160E 7.0 90 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4320E 1.8 10 2.5 45 1 34 5800N 4360E 0.1 NSS 2.5 10 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 320E 0.1 18 2.5 49 0.5 <									
5800N 4160E 7.0 90 2.5 630 1 76 235 5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3240E 2.3 34 2.5 49 0.5 19 134 6000N 3240E 0.7 42 2.5 58									
5800N 4200E 2.4 100 2.5 314 1 97 240 5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3200E 0.1 18 2.5 16 0.5 10 52 6000N 320E 0.7 42 2.5 65 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
5800N 4240E 2.0 52 2.5 395 1 74 530 5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3200E 0.1 18 2.5 16 0.5 10 52 6000N 3200E 1.9 20 2.5 54 0.5 41 240 6000N 320E 0.7 42 2.5 65 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
5800N 4280E 4.1 100 2.5 70 1 114 342 5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3200E 0.1 18 2.5 16 0.5 19 134 6000N 3240E 2.3 34 2.5 54 0.5 41 240 6000N 3280E 1.9 20 2.5 54 0.5 41 240 6000N 3400E 0.5 34 2.5 58									
5800N 4320E 1.8 10 2.5 25 1 27 103 5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3160E 1.1 24 2.5 42 1 18 132 6000N 3200E 0.1 18 2.5 16 0.5 10 52 6000N 3200E 0.7 42 2.5 65 0.5 26 140 6000N 320E 0.7 42 2.5 58 1 23 184 6000N 3400E 1.0 74 2.5 58 1									
5800N 4360E 0.1 NSS 2.5 10 0.5 4 134 5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3160E 1.1 24 2.5 42 1 18 132 6000N 3200E 0.1 18 2.5 16 0.5 10 52 6000N 3240E 2.3 34 2.5 49 0.5 19 134 6000N 3280E 1.9 20 2.5 54 0.5 41 240 6000N 3360E 0.5 46 2.5 58 1 23 184 6000N 3440E 1.0 70 2.5 110 <	5800N								
5800N 4400E 2.1 50 35 104 0.5 133 153 5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3160E 1.1 24 2.5 42 1 18 132 6000N 3200E 0.1 18 2.5 16 0.5 10 52 6000N 3240E 2.3 34 2.5 49 0.5 19 134 6000N 3280E 1.9 20 2.5 54 0.5 41 240 6000N 3320E 0.7 42 2.5 65 0.5 26 140 6000N 3400E 1.0 74 2.5 110 1 40 124 6000N 3440E 0.5 34 2.5 30 <									
5800N 4440E 1.3 62 2.5 45 1 96 640 5800N 4480E 0.5 92 2.5 45 1 104 560 6000N 3120E 0.5 40 2.5 83 1 24 122 6000N 3160E 1.1 24 2.5 42 1 18 132 6000N 3200E 0.1 18 2.5 16 0.5 10 52 6000N 3240E 2.3 34 2.5 49 0.5 19 134 6000N 3280E 1.9 20 2.5 54 0.5 41 240 6000N 3320E 0.7 42 2.5 65 0.5 26 140 6000N 3400E 1.0 44 2.5 44 2 29 150 6000N 3440E 1.0 70 2.5 110 1 40 124 6000N 3480E 0.5 34 2.5 28									
6000N3120E0.5402.5831241226000N3160E1.1242.5421181326000N3200E0.1182.5160.510526000N3240E2.3342.5490.5191346000N3280E1.9202.5540.5412406000N3320E0.7422.5650.5261406000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3640E0.22402.5190.51157106000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	5800N	4440E	1.3	62	2.5	45	1	96	640
6000N3160E1.1242.5421181326000N3200E0.1182.5160.510526000N3240E2.3342.5490.5191346000N3280E1.9202.5540.5412406000N3320E0.7422.5650.5261406000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.5280.5381706000N3520E0.3402.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3640E0.22402.5190.51157106000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	5800N	4480E	0.5	92	2.5	45	1	104	560
6000N3200E0.1182.5160.510526000N3240E2.3342.5490.5191346000N3280E1.9202.5540.5412406000N3320E0.7422.5650.5261406000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3640E0.22402.5190.51157106000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	6000N	3120E	0.5	40	2.5	83	1	24	122
6000N3240E2.3342.5490.5191346000N3280E1.9202.5540.5412406000N3320E0.7422.5650.5261406000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	6000N	3160E	1.1	24		42	1	18	132
6000N3280E1.9202.5540.5412406000N3320E0.7422.5650.5261406000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	6000N	3200E		18		16			
6000N3320E0.7422.5650.5261406000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181								19	
6000N3360E0.5462.5581231846000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	6000N			20					
6000N3400E1.0442.5442291506000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181	6000N								
6000N3440E1.0702.51101401246000N3480E0.5342.530124726000N3520E0.3402.5280.5381706000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181		3360E		46					
6000N 3480E 0.5 34 2.5 30 1 24 72 6000N 3520E 0.3 40 2.5 28 0.5 38 170 6000N 3520E 0.3 40 2.5 28 0.5 38 170 6000N 3560E 0.3 46 2.5 26 2 21 120 6000N 3600E 0.2 86 2.5 27 2 44 174 6000N 3640E 0.2 240 2.5 48 4 117 540 6000N 3680E 2.1 130 2.5 50 1 680 1070 6000N 3720E 0.6 420 2.5 19 0.5 115 710 6000N 3760E 0.2 132 2.5 37 1 36 181									
6000N 3520E 0.3 40 2.5 28 0.5 38 170 6000N 3560E 0.3 46 2.5 26 2 21 120 6000N 3560E 0.2 86 2.5 27 2 44 174 6000N 3640E 0.2 240 2.5 48 4 117 540 6000N 3680E 2.1 130 2.5 50 1 680 1070 6000N 3720E 0.6 420 2.5 19 0.5 115 710 6000N 3760E 0.2 132 2.5 37 1 36 181									
6000N3560E0.3462.5262211206000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181									
6000N3600E0.2862.5272441746000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181									
6000N3640E0.22402.54841175406000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181									
6000N3680E2.11302.550168010706000N3720E0.64202.5190.51157106000N3760E0.21322.537136181									
6000N3720E0.64202.5190.51157106000N3760E0.21322.537136181									
6000N 3760E 0.2 132 2.5 37 1 36 181									
6000N 3800E 3.7 400 20 40 0.5 168 970									
	6000N	3800E	3.7	400	20	40	0.5	τøg	910

6000N	3840E	6.0	500	2.5	95	0.5	212	740
6000N	3880E	2.6	184	2.5	46	0.5	70	326
6000N	3920E	1.2	160	2.5	47	0.5	75	387
6000N	3960E	0.4	120	2.5	26	0.5	83	306
6000N	4000E	2.8	240	5	94	1	111	330
6000N	4040E	2.0	160	2.5	70	0.5	67	760
6000N	4040E	0.8	100	2.5	29	1	57	430
					37	2		450
6000N	4120E	1.4	220	2.5			151	
6000N	4160E	1.2	160	2.5	49	0.5	78	240
6000N	4200E	1.2	118	2.5	58	2	70	391
6000N	4240E	0.4	80	2.5	56	1	57	254
6000N	4280E	0.3	90	2.5	42	0.5	56	260
6000N	4 320E	0.7	80	2.5	78	1	51	360
6000N	4360E	0.9	88	2.5	280	0.5	53	490
6000N	4400E	0.2	44	2.5	59	0.5	26	340
6000N	4440E	0.8	76	2.5	318	0.5	55	570
6000N	4480E	0.6	32	2.5	48	0.5	21	120
6200N	3120E	0.5	22	2.5	53	0.5	26	180
6200N	3160E	0.2	26	2.5	32	0.5	14	101
6200N	3200E	0.3	20	2.5	25	0.5	15	85
6200N	3240E	0.6	38	2.5	31	2	24	126
6200N	3280E	0.2	34	2.5	20	0.5	58	124
6200N	3320E	0.3	50	2.5	31	2	37	91
6200N	3360E	0.2	20	2.5	26	0.5	18	83
6200N	3400E	0.6	46	2.5	82	2	31	171
6200N	3440E	0.6	22	2.5	18	0.5	22	85
6200N	3480E	0.7	64	2.5	38	0.5	39	153
6200N	3520E	1.0	72	10	60	2	53	174
6200N	3560E	0.3	40	2.5	16	1	29	103
6200N	3600E	0.3	34	2.5	11	0.5	13	68
6200N	3640E	0.8	36	2.5	7	0.5	11	88
6200N	3680E	0.1	34	NSS	, 1	0.5	1	75
6200N	3720E	0.2	54	2.5	12	0.5	11	144
6200N	3760E	1.1	70	2.5	38	0.5	58	160
6200N	3800E	1.5	50	2.5	70	1	52	370
6200N	3840E	0.1	42	2.5	15	1	11	111
6200N	3880E	0.1	42 50	10	14	1	22	228
6200N	3920E	0.2	36	2.5	21	1	28	132
6200N	3960E	0.4	18	NSS	18	3		68
6200N	4000E		66		25	0.5	11 34	200
		1.4		2.5				
6200N	4040E	0.1	10	2.5	24	0.5	9	60 57
6200N	4080E	0.2	16	2.5	8	1	1	57
6200N	4120E	0.5	12	2.5	16	0.5	6	47
6200N	4160E	0.2	16	2.5	14	1	45	156
6200N	4200E	1.1	14	2.5	35	2	33	320
6200N	4240E	0.2	12	2.5	24	0.5	16	90
6200N	4280E	1.3	36	2.5	48	1	40	351
6200N	4320E	0.4	18	2.5	24	4	15	105
6200N	4360E	0.3	24	2.5	31	2	20	162
6200N	4400E	0.2	10	2.5	20	2	15	110
6200N	4440E	0.3	10	2.5	27	2	16	103
6200N	4480E	0.4	16	2.5	42	3	25	260
5150N	4000E	3.3	76	120	135	2	275	130
5250N	4000E	0.8	1	50	19	3	31	60
5300N	4000E	0.7	1	35	22	2	22	102
5350N	4000E	0.7	40	2.5	53	5	50	330
5450N	4000E	8.0	1	150	550	7	1120	290
5500N	4000E	2.0	40	35	650	4	49	253
5550N	4000E	1.1	10	25	47	0.5	53	56
5650N	4000E	1.2	40	2.5	30	0.5	26	110
5700N	4000E	2.2	38	2.5	61	0.5	31	113
5750N	4000E	1.2	36	2.5	22	0.5	30	108
5850N	4000E	2.4	144	2.5	68	0.5	133	500
5900N	4000E	2.5	160	2.5	54	0.5	124	370
5950N	4000E	2.6	126	2.5	84	0.5	80	920
6000N	4000E	0.2	26	2.5	17	0.5	30	180
00001	****	J					- •	

6100N	4000E	0.4	34	2.5	18	2	26	134
6150N	4000E	2.7	60	2.5	120	2	84	610

•

ISTO	•		V267 JAKE RUN ON 90:11:09 AT 15:0)9:30		
il•:	soils		Field name: AU1 LOG = 1 REPVAL = 0.00100			
259	SAMPLES WI	TH AU1	MINIMUM: 2.50000 MAXIMUM: 290.000			
57	VALUES PLO	TTED: 2	02 NOT IN RANGE 5.00000 to 290.000			
¢	EOMETRIC M	DEAN :	31.5466 DISPERSION: 10.2067 97.5035			
sci	LE OF HIST	OGRAM IS	0.10 COUNTS /PRINT POSITION # = 5,50,95%			
N	MIDPOINT	PERCENT			9	10
7	E 0000	* 10.00	IIIIIII	1	1	1
	5.0000					
	5.5342	0.00				
	6.1255	0.00				
	6.7800	0.00				
	7.5043	0.00				
0	8.3061	0.00				
0	9.1936	0.00				
7	10.176		I*************************************			
0	11.263	0.00	-			
0	12.466	0.00				
0	13.798	0.00				
3	15.273		I************			
0	16.904	0.00				
0	18,710	0.00	I 20			
5	20.710		I*************************************			
0	22.922	0.00				
3	25.371		I**********			
0	28.082	0.00				
1	31.082	1.75	I*****			
8	34.403		I*************************************	****		
1	38.079		I*****			
0	42.147	0.00				
0	46.650	0.00				
4	51.635		I*************************************			
2	57.151		I************			
0	63.258	0.00				
0	70.016	0.00				
4	77.497 85.777		I*************************************			
1	85.777 94.941		I*****			
3	105.09	0.00	I 100			
1	116.31		I+####################################			
î	128.74		I******			
ō	142.49	0.00				
2			I****************			
	157.72					
0	193.22	0.00				
0	213.87 236.72	0.00				
2	236.72	0.00	I*************			
1	290.00		I*********			
	290.00	1./3				
			IIIIIII	T	1	1

HISTO:	V267 JAKE	RUN ON 90:11:09 AT 14:49:42
File: soils	Field name: AG LOG = 1 REPVAL = 0.00	00100
261 SAMPLES WITH AG	MINIMUM: 0.100000 MAXIMUM: 17.0000	
219 VALUES PLOTTED:	42 NOT IN RANGE 0.210000 to 17.0000	
GEOMETRIC MEAN:	1.31286 DISPERSION: 0.526366 3.2745	52
SCALE OF HISTOGRAM I	S 0.20 COUNTS /PRINT POSITION # = 5,50,95%	
n midpoint percen	r 0 2 4 6 8 1 IIIII	10 12 14 16 18 20
0 0.21000 0.0	0 I 1	
• • • • • • • • •		I
	0 I	ī
14 0.29197 # 6.3	∪ I 9 I******®******************************	
	0 I	I
		ī
	0 I 9 I****************	
		I
	0 I 5 I**********************************	—
		I
• • • • • • • • • • • •	0 I 5 I***************	
	5	
	/ _************************************	
• • • • • • • • • • • •	l l***********************************	Ī
• • • • • • • • •	5 I************************************	ī
	9	_
	9	
9 1.3590 4.3	0 1*****	Ĩ
		ī
• • • • • • • • •	17 It++++++++++++	Ĩ
6 1.8894 2.		
	·7 I************************************	Ĩ
	8 1****************	
		• • • • • • • • • • • • • • • • • • •
	۱۶	3
	;7 <u>1</u> +++++++++++++++++++++++++++++++++++	·** I
	28 <u>1************************************</u>	Ĩ
	33 1*************	Ĩ
	³³ I***********************************	Ĩ
		ī
		Ĩ
	37 I*********	Î.
1 7.0600 0.	16]*****	î
	74 1************************************	Ĩ
	91 1*******	Î
	¹⁶ I*****	Ĩ
	AT TAAAAAAAAAA	
	00 I	I
	DO I	-
	00 I	I
1 17.000 0.	4 6 I****	I
	IIIIIII	IIIIII
219		10 12 14 16 18 20

File:	: soils				Field name	ma: AS	LOG = 1	REPVAL =	0.00100					
260	SAMPLES WI	TH A	8	MINIMUM	1.00	000	MAXIMU	M: 1600.	00					
260	VALUES PLO	TTED	:	O NOT I	N RANGE	1.00000	to 16	00.00						
c	GEOMETRIC N	ILAN :		36.3	082	DISPE	RSION: 12.	6893	103.890					
SC1	ALE OF HIST	OGRA	M IS	0.40 0	COUNTS /P	RINT POSI	TION # =	5,50,95%						
n	MIDPOINT	PER			_4	8	12	16	20	24	28	32	36	
3	1.0000		1.15	I######		1		1	I	I	I	1	I	
ō	1.2025		0.00	-										
0	1.4461		0.00	I										
0	1.7390		0.00	I										
0	2.0913		0.00											
0	2.5149		0.00	I										
0	3.0243		0.00	I										
0	3.6368 4.3734		0.00	I										
6	4.3/34 5.2593				*******	*								
2	6.3246		0.77	I****										
4	7,6056				****									
14	9.1461	•	5.38			*******	*********	*						
11	10,999		4.23	-		*******	****							
4	13.226		1.54	I*****										
16	15,905		6.15	-			*********							
18 14	19.127 23.001		6.92 5.38	-			***********		**					
10	27.660		3,85	-		********		-						
28	33,263	# 1		-				********	*********	*******	*****			
22	40.000		8.46						*********			45		
20	48.102		7.69	I*****	******	*******	*********	********	*****			40		
15	57,845		5.77	-			*********							
22	69.561								*********					
12	83,651		4.62	-		*******	*******		- 100					
6 7	100. 59 120.97		2.31	-	********									
2	145.47		2.09	T#####										
8	174.94		3.08	-	******	*****								
2	210.37		0.77	1*****										
5	252.98				*****		200							
3	304.22		1.15	I*****	**		- 300							
2	365.84		0.77	I****										
2	439.95		0.77	I****										
1	529.06			I**										
0	636.22		0.00	I										
0	765.08		-	I										
-	920.05 1106.4		0.00	I										
	TTAA.4		J. UV	*										
0	1330.5		0.00	т										

259	SAMPLES WI						REPVAL =						
-		TH CU	MINIMO	M: 1.00	000	MAXIMUM	: 1760.0	00					
-	VALUES PLO	ንምምድርጉ	2 NOT	IN RANGE	5 00000	to 120	0 00						
G.													
	EOMETRIC N	-		0967		SION: 19.0		131.398					
SCA	LE OF HIST	COGRAM :	s 0.30	COUNTS /PI	RINT POSIT	10N # = 5	,50,95%						
N	MIDPOINT	PERCE		3	6 I	9 I	12 1	15 T	18	21	24	27	30
0	5.0000	0.	0 1	-	_	-	-		-	-	1	1	I
0	5.7342	0.	O I										1
1	6,5763		9 1***										
1	7.5420		9 I***										I
ō	8,6495	0.1											_
1	9,9197	- •	9 1***										1
2	11.376		7 1*****	**									I
3	13.047	1.3											1
17	14,963	8 6.1			********	*******	*******	*******	***				I
11	17,160	4.				******							I
12	19.680	4.				******							1
17	22,570	6.				******		********	***				1
16	25.884	6.				*******							I
20	29.685	7.1				*******			*********				I
14	34.044	5.				*******			********	***			I
14	34.044	5. 4.				********							I
16	44.777	1 6.				*******							I
18	51.352	# 0 6.:				*******							I
10	58,893	3.		********				******	*****				I
9	67.541	3.		********									I
9	77.460	3.		*******				- 75					I
8	88.834	3.	· -	********									I
8	101.88	3.		********									I
8	116.84	3.		********									I
8	134.00	3.		*********									I
4	153.67			*******			- 150						I
5	176.24	1.		********									I
3	202.12	1.											I
6	202.12	2.		********									I
5	265.84	2.		********									I
4	205.84	↓ 1. ↓ 1.		********									I
-													I
1	349.65	0.1											I
2	400.99	0.	• -										I
1	459,88	0.			50	00							I
3	527.41		6 I*****	*****									I
2	604.86	0.		. स. में									I
1	693,68		9 1***										I
0	795.55		0 I										I
1	912.37		9 I***										I
0	1046.3	0.											I
0	1200.0	0.											I
259			I 0	1 3	1 6	1 9	I 12	I 15	I	I	I	I	I

File :	; soils		73	eld name	: 140	LOG = 1	REPVAL =	0.00100					
261	SAMPLES WI	TH MO	MINIMOM:	0.50000	0	MAXIMUN	4: 52.000	0					
81	VALUES PLO	TTED: 1	80 NOT IN	RANGE	1.10000	to 52.	.0000						
	GEOMETRIC N	EAN :	4,5286	57	DISPERS	SION: 2.1:	3938 9	.58636					
sci	ALE OF HIST	OGRAM IS	0.30 cot	JNTS /PRI	NT POSITI	LON # = !	5,50,95%						
ท	MIDPOINT	PERCENT		3	6	9	12	15	18	21	24	27	30
•	1 1000	0 00		·I	I	I	I	I	I	I	I	I	
0	1.1000	0.00											
0	1.2113	0.00											
0	1.3339 1.4689	0.00 0.00											
-													
0	1.6175 1.7812	0.00 0.00											
-			T*******		********								
25 0	1,9615						******		*********	********	* * * * * * * * *		
-	2.1600	0.00											
0	2.3786 2.6193	0.00 0.00											
3	2.8843		T*******										
د 0	2.8843 3.1762	0.00											
0	3.1762	0.00											
21	3.8516		I*******	******	*******	*********							
0	4.2414	# 23.93 0.00						********	********	*****			
ŏ	4.6706	0.00				_							
ĩ	5.1432		 I***			- 5							
ō	5.6637	0.00											
10	6.2369			*******	*******	*******							
1	6.8680		_ I***										
ō	7.5631	0.00											
6	8.3284			*******	****								
ō	9.1713	0.00				10							
3	10,099		I******	***									
0	11,121	0.00											
2	12.247	2.47	I******										
3	13,486	3.70	1******	***									
0	14,851	0.00	I										
1	16.354	1.23	I***										
1	18,009	# 1.23											
2	19.831		I******			20							
0	21.838	0.00				2.7							
0	24.048	0.00											
1	26.482		1***										
0	29.162	0.00											
0	32.113	0.00											
0	35.362	0.00											
0	38.941	0.00											
0	42.882	0.00											
0	47.221	0.00											
1	52,000	1.23	I***										
81			0	I 3	I 6	1 9		I 15		I	1	Ĭ	1

	soils			r :	ield name		LOG = 1	REPVAL =	0,00100					
261	BAMPLES WI	TR	PB	MINIMUM:	1.0000	0	MAXIM	ли: 3600.0-)					
261	VALUES PLO	YTTE	D:	0 NOT IN	RANCE	1.00000	to 3	500.00						
G	EOMETRIC N	(EAN	:	46.62	45	DISPER	SION: 13	.1076 1	65.846					
SC.	LE OF HIST	OCR	AM IS	0.30 CO	ONTS /PRI	NT POSIT	ION # =	5,50,95%						
N	MIDPOINT	PE			э	6	9	12	15		21	24	27	30
2	1,0000			I		I	I	I	1	I	I	I	I	-
6	1.2272		0.00	_										
ŏ	1.5060		0.00											
ŏ	1.8461		0.00											
õ	2.2679		0.00											
ŏ	2.7832		0.00											
ō	3,4154		0.00											
1	4.1913			 I***										
0	5.1435		0.00											
2	6.3120		0.77	I******										
7	7.7460		2.68	I******	*******	******								
7	9.5057	#	2.68	I******										
15	11.665		5.75	_				********						
18	14.315		6,90	-				*********	********	****				
13	17.567		4.98	-				********						
16	21,558		6,13					***********						
20 19	26.456 32.466		7.66					**********						
23	39.842		5.20 8.81	_				*********			********	***		
13	48.893		4.98	-				******						
13	60,000		4.98	-				*******						
14	73.631		5.36		*******	*******	******	*******	***					
15	90.358		5,75	<u>1*****</u> **	*******	*******	*******	*******	*****					
15	110,89		5.75	I******	********	*******	*******	*********	*****					
7	136,08		2,68	-	********									
7	166.99		2.68		******			200						
	204,93		2.68		*******	******								
7			1.53	<u>_</u> ******* _*******										
4	251,48													
4	308.61		1.15	-										
4 3 4	308.61 378.72		1.53		*****	-								
4 3 4 2	308.61 378.72 464.76		1.53 0.77		*****	5(00							
4 3 4	308.61 378.72 464.76 570.34	*	1.53 0.77 0.38	I*** I*******	*****	-	00							
4 3 4 2 1	308.61 378.72 464.76 570.34 699.91	*	1.53 0.77 0.38 1.92		*****	*	••							
4 3 4 2 1 5	308.61 378.72 464.76 570.34		1.53 0.77 0.38		*****	*	••							
4 3 4 2 1 5 2	308.61 378.72 464.76 570.34 699.91 858.91	*	1.53 0.77 0.38 1.92 0.77	I******* I**** I**** I****	*****	*	••							
4 3 4 2 1 5 2 1	308.61 378.72 464.76 570.34 699.91 858.91 1054.0	•	1.53 0.77 0.38 1.92 0.77 0.38 0.38		*****	*	••							
4 3 4 2 1 5 2 1 1	308,61 378,72 464,76 570,34 699,91 858,91 1054.0 1293,5	•	1.53 0.77 0.38 1.92 0.77 0.38 0.38	 _	*****	*	••							
4 3 4 2 1 5 2 1 1 2 0 1	308,61 378,72 464,76 570,34 699,91 858,91 1054.0 1293,5 1587,3	•	1.53 0.77 0.38 1.92 0.77 0.38 0.38 0.38 0.77 0.00	 _	*****	*	••							
4 3 4 2 1 5 2 1 1 2 0	308,61 378,72 464,76 570,34 699,91 858,91 1054,0 1293,5 1587,3 1948,0	•	1.53 0.77 0.38 1.92 0.77 0.38 0.38 0.38 0.77 0.00 0.38 0.00		*****	*	••							

hi sto	:	ii.	V267 JARE				RUN	ON 90:11:	09 AT 14:	49:42		
rile:	soils		Field name:	ZN 1	LOG = 1	REPVAL =	0.00100					
261	SAMPLES WI	TH ZN	MINIMUM: 30.0000)	MAXIMUM	1: 2500.00)					
261	VALUES PLO	TTED:	0 NOT IN RANGE 3	0.0000	to 250	0.00						
G	ECMETRIC M	EAN :	157.618	DISPERSI	ON: 67.2	218 30	59.575					
SCA	LE OF HIST	OGRAM IS	0.20 COUNTS /PRIN	T POSITIO	N # = 5	, 50, 95%						
n	MIDPOINT	PERCENT	0 2 II	4	6	8 T	10	12	14 I	16 I	18 1	20 I
1	30.000	0.38	I****	- T		····	•	-	-			I
0	33.507	0.00										I
3	37.425		I********									I
5	41.801		I**************									I
7	46.688		I*********									I
8	52.146		I*************************************									I
11	58.243		I*************************************						•			I
13	65.053 72.658		I*************************************							*		Î
15 13	72.658 81.153		I*************************************									ī
10	90.641		I*************									ĩ
13	101.24		I*********					********	*			I
10	113.08											I
18	126.30	6,90		*******	*******	*******	*******	********	********	********	*****	I
8	141.06	# 3.07										I
9	157.55	3,45	I**********	********	*******	********	*					I
16	175.97	6.13		********	*******	********	*******	********	*******	*****		I
7	196.55	2.68		********	*******	<u></u>	2	00				I
5	219.53	1.92	I***********	*******			-	-	•			I
13	245.19		I**************				*******		*			I
8 10	273.86 305.88	3.07	-									I
13	341.64		I***************					********	*			ĩ
23	381.59		I*************									ī
5	426.20		I**********									I
5	476.03	1,92	-				500					I
7	531.68	2.68		********	******	*	500					I
3	593.85	1.15	I**********									I
1	663.28		I****									I
5	740.82	-	I***********	*******								I
1	827.44	0.38	<u>1</u> ****									I
4	924.18	1.53		** <u>**</u>		1000						I
2	1032.2	0.77	Ix*******									I
0	1152.9	0.00										I
1	1287.7		<u>I</u> ****									I
0	1438.3 1606.4	0.00	Ĩ									ī
0	1794.2	0.00	-									ī
1	2004.0		/ I I****									ī
0	2238.3) I									I
1	2500.0		1****									I
			II	I	1	I	I	I	I	I	I	I

PDI DATA ANALYSIS SYSTEM: Jake claims - Correlation matrix for Soil Samples

	AG	AS	AU1	CU	MO	PB	ZN
AG	1.000	0.365	0.423	0.543	0.157	0.755	0.448
AS	0.365	1.000	0.087	0.329	-0.092	0.499	0.555
AU1	0.423	0.087	1.000	0.339	0.266	0.544	0.127
CU	0.543	0.329	0.339	1.000	0.315	0.517	0.388
MO	0.157	-0.092	0.266	0.315	1.000	0.166	-0.196
PB	0.755	0.499	0.544	0.517	0.166	1.000	0.608
ZN	0.448	0.555	0.127	0.388	-0.196	0.608	1.000

END OF LISTING

- value of 1.000 indicates perfect correlation

APPENDIX III

Rock Sample Analyses and Descriptions

SAMPLE	Ag PPM	As PPM	Au1 PPB	Cu PPM	Hg PPB	Mo PPM	Pb PPM	Sb PPM	Zn PPM	
A4590	12	300	365	192	118	13	172	<2	197	
A4591	0.3	26	<5	32	20	1	11	2	190	
A4592	2.2	14	50	2370	12	12	6	<2	47	
A4593	0.4	36	<5	19	97	<1	86	<2	294	
A4594	4.5	18	115	2160	162	9	83	<2	140	
A4595	13	60	205	0.47%	320	39	8	<2	238	
A4596	18	220	155	760	>2000	45	306	6	27	
A4596*	18	240	160	740	>2000	45	302	6	27	

PDI GEOCHEM SYSTEM: Data From: Jake claims - Rock Sample Analyses

END OF LISTING - 11 RECORDS PRINTED

* - indicates repeat analysis

ROCK SAMPLE DESCRIPTIONS

<u>Sample</u>	Туре	<u>Description</u>
A4590	outcrop grab	fine grained light grey calcareous siltstone, 1% fine grained pyrite
A4591	outcrop grab	light grey plagioclase porphyry, 2% fine grained disseminated pyrite
A4592	outcrop grab	plagioclase-biotite porphyry, malachite staining on fractures, 0.5% chalcopyrite and trace molybdenite along a microvein
A4593	outcrop grab	plagioclase-biotite porphyry strongly clay altered with 1% weathered coarse euhedral pyrite
A4594	outcrop grab	plagioclase porphyry with chalcedonic quartz microveins, malachite staining on fracture surfaces near microveins, 2% pyrite as blebs in microveins and fine grained disseminations in wallrock, 0.5% chalcopyrite as fine grained blebs in microveins
A4595	outcrop grab	microfault zone 2-5 cm wide with strong iron and malachite/azurite staining, 5% fine grained disseminated pyrite in wallrock
A4596	outcrop grab	vuggy quartz vein 20 cm wide in sericitized plagioclase porphyry, strong limonite staining, 5% medium grained cubic pyrite, trace bornite and chalcopyrite as blebs within the vein

APPENDIX IV

Statement of Costs

STATEMENT OF COSTS

Labour (Salary and Benefits)

	 S. Price, Project Geologist, G. Linden, Geologist, C. Woolverton, Field Assistant, J. Gordon, Field Assistant, R. Cannon, Geophysicist, 		3,410.00 3,000.00 1,533.00 1,500.00 1,264.00
Site C	osts		
	Expediting Services Lodging & Meals (4 persons Mobile Radio Rental Equipment Purchases	for 2 days)	900.00 350.00 45.05 924.51
Freigh	t		
	Sample and Supplies Shipment	(Smithers to Vancouver)	413.50
Trans	portation		
	Aircraft (mob/demob) Truck Rental	· · · · · · · · · · · · · · · · · · ·	936.25 136.36
Helico	pter		
	4.3 hours @ \$635/hour Fuel (473 litres)		2,730.50 496.65
Analy	ses		
	7 Rock @ \$19.75/sample		138.25
	(Au,Ag,Mo,As,Cu,Pb,Zn,H 261 Soil @ \$12.90/sample (Au,Ag,Mo,As,Cu,Pb,Zn)	g,50)	3,366.90
Repor	t Preparation		
	Drafting Maps Computer Costs G. Linden S. M. Price	2 days @ \$200/day 6 days @ \$200/day 2.5 days @ \$220/day	400.00 134.29 108.43 1,200.00 550.00
		Total	23,537.69

APPENDIX V

Statements of Qualifications

STATEMENT OF QUALIFICATIONS

I, Gerald E. Linden, of the municipality of Surrey, British Columbia, do hereby certify that:

- 1. I am a graduate of the University of British Columbia where I received a B.Sc. in Geology in 1989.
- 2. I have practised my profession full-time since 1989.
- 3. I am currently employed by Placer Dome Inc.
- 4. I was involved in the exploration work on the Jake claims during 1990 and co-authored this report.

Josh.

Gerald E. Linden

STATEMENT OF QUALIFICATIONS

I, Stephen Price, of the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am a graduate of the University of British Columbia where I received a B.Sc. in Geology in May, 1987.
- 2. I have practised my profession since graduation, primarily in a variety of exploration projects in British Columbia and Saskatchewan.
- 3. I am an Associate of the Geological Association of Canada.
- 4. I am currently employed by Placer Dome Inc.
- 4. I supervised the work done on the Jake property, reviewed the data and co-authored this report.

Stephen M. Price

STATEMENT OF QUALIFICATIONS

I, Richard W. Cannon, of the City of Vancouver, Province of British Columbia, herby certify as follows:

- 1. I am a graduate of the University of British Columbia where I received a B.A.Sc. in Geological Engineering (Geophysics Option) in May, 1966.
- 2. I am a member of the Association of Professional Engineers of British Columbia and have been so since 1968. Registration No. 6742.
- 3. I am a member of the Canadian Institute of Mining and Metallurgy, Society of Exploration Geophysicists, and the B.C. Geophysical Society.
- 4. I have practised my profession since 1966.

APPENDIX VI

-

References

References

- 1. Sketchley. D.C., 1988. Jake Mineral Claims Geochemistry and Geology. QPX Minerals Inc., private report.
- 2. Fraser, D.C., 1969. Contouring of VLF-EM Data. Geophysics, vol. 34, p. 958-967.

J VA			
- and			
	a start and	10000	
		LEGEND	
	TERTIARY		
	Contraction of the local division of the loc	gioclase porphyry	
	PPFX Plagioclas	e porphyry	
	UPPER JURASSI	C - CRETACEOUS	
1 4	SILT Bowser G	roup: non-marine, deltaic sedime	ents - siltstone
1 1	UPPER JURASSI	c	1999
	TUFF Hazelton (Group: eugeosynclinal sequence	- tuff
5	Ser and		
		SYMBOLS	Section 1
	Rock Outc	ron	
1		Contact (defined, approximate,	assumed)
	1. S.	ned, approximate, assumed)	
	/ / Joint (incli	ned, vertical)	
J	/ Vein		
	 Rock Sample 	ple	
	Road		
	anophysi		
	done on	cs (magnetometer & VLF-EM) highlighted section of road	
	The Michael		1.1.1.1.1.1.1.1
/ / /			
111			
			1. 1. 1.
111			
/			
			No.
1	GEOLOC	ICAL BRANCH	
	ASSESSI	MENT REPORT	
2 20			
16 11	20	.607	
NY C	LU	,001	Shear
	0 100	250	500m
		metres	
166 /			-
			FIGURE 4
		CER DOME INC	and the second second
	JAKE	PROPE	RTY
/ []]	DRAWN BY: GEL	GEOLOGY AN	
$\langle \rangle / $	DATE: JUNE 90	SAMPLE LOCAT	ION
)///	SCALE: 1:5000 REVISED:	MAP FILE No. 267	94D/3
	ALTIGLU.	TILE NO. 201	

