A Geological, Geochemical and Geophysical Report

> on the JAKE CLAIMS

Omineca Mining Division

N.T.S 94D/3W

Latitude $56^{\circ} 12^{\prime} \mathrm{N}$ Longitude $127^{\circ} 20^{\circ} \mathrm{W}$

Owner/Operator:

Authors:
Placer Dome Inc.
Vancouver, B.C.
Gerald E. Linden
Stephen M. Price
Richard Cannon, P. Eng.
Date:

TABLE OF CONTENTS

Page1.0 SUMMARY 1
2.0 INTRODUCTION 1
2.1 Location and Access 1
2.2 Topography and Vegetation 1
2.3 Work History 2
2.4 Summary of Work Done 2
2.5 Claim Status 3
3.0 REGIONAL GEOLOGY 3
4.0 PROPERTY GEOLOGY 4
5.0 GEOCHEMISTRY 4
5.1 Soil Samples 4
5.1.1 Results 5
5.1.2 Discussion 6
5.2 Rock Samples 6
5.2.1 Results 6
5.2.2 Discussion
6.0 GEOPHYSICS 7
6.1 Magnetometer Survey 7
6.1.1 Results 7
6.1.2 Discussion 8
6.2 VLF-EM Survey 8
6.2.1 Results 8
6.2.2 Discussion 8
7.0 CONCLUSIONS 9
8.0 RECOMMENDATIONS 9

APPENDICES

I. Analytical Techniques and Detection Limits
II. Soil Sample Analyses and Statistics
III. Rock Sample Analyses and Descriptions
IV. Statement of Costs
V. Statements of Qualifications
VI. References
FIGURES

1. Location Map after page 1
2. Claim Map after page 2
3. Regional Geology Map4. Geology and Sample Location Mapin pocket
4. Au Soil Geochemistry in pocket
5. Ag Soil Geochemistry7. As Soil Geochemistry8. Cu Soil Geochemistryin pocket
6. Mo Soil Geochemistry in pocket
7. Pb Soil Geochemistry in pocket
8. Zn Soil Geochemistry in pocket
9. Stacked Magnetic Profiles in pocket
10. Contoured Magnetic Data in pocket
11. Stacked VLF Profiles in pocket

1.0

SUMMARY
A geochemical, geophysical and geological work program was conducted between the 19th and 27th of July, 1990 on the JAKE claims, 160 km north of Smithers, British Columbia. The program consisted of soil sampling, geophysical surveying and limited mapping, north of In creek.

The JAKE claims are underlain by rocks of the Bowser Lake Group which are intruded by Babine/Kastberg Intrusions.

Soil geochemistry results outlined an anomalous gold, silver and copper zone with isolated high lead values. Both zinc and arsenic are elevated peripheral to this zone. Recommendations for the JAKE property are 1) extension of the soil sampling and geophysics to the east and south in an attempt to further define the geochemical anomaly, and 2) trenching of the geochemically anomalous zone.

2.0 INTRODUCTION

The exploration program on the JAKE claims was performed in an attempt to find a northeasterly extension of a known Cu-Au soil geochemical anomaly. This anomaly is believed to be associated with a Cu porphyry system. Mapping and rock sampling was done to determine if the porphyry system is nearer to the surface on the north side of In creek.

2.1 Location and Access

The JAKE claims are located 160 km north of Smithers, British Columbia within the Omineca Mining Division, on N.T.S. map sheet 94D/3W (Figure 1). The centre of the claims is at latitude $56^{\circ} 12^{\prime} \mathrm{N}$ and longitude $127^{\circ} 20^{\prime} \mathrm{W}$.

Access is by fixed-wing aircraft to an airstrip at Bear Lake, 28 km east of the claims and then by helicopter to the property.

2.2 Topography and Vegetation

The claims straddle two northeast trending valleys that drain into Jake Creek near its confluence with the Squingula River. Elevations on the property range from approximately 900 to 1790 m . Local relief is up to 900 m with treeline at approximately 1400 m . Upland areas are flat to gently rolling; however, some valleys are deeply incised with slopes up to 40 degrees.

Vegetation is mostly pine in forested areas with slide alder and devil's club along streams and in open areas.

2.3 Work History

Mineralization on the JAKE claims was discovered by Kennco Exploration (Western) Ltd. in 1965. Kennco conducted stream sediment and rock chip sampling, and diamond drilled two $A X$ holes totalling 55.5 m . The claims were allowed to lapse.

Canadian Superior Exploration Limited staked the area of the JAKE claims in 1968 and conducted stream sediment and rock chip sampling. The claims were allowed to lapse.

Canadian Superior re-staked the area as the IN group, in 1971, after following up anomalous copper values from a large gossan located on the property. Initial results indicated up to $0.4 \% \mathrm{Cu}$ in altered feldspar porphyry. The discovery stimulated large work programs by Canadian Superior in 1972, 1973 and 1976 which included soil and rock sampling, geological mapping, ground magnetic surveying, trenching, road building and diamond drilling. Drilling consisted of three X-ray holes totalling 94.5 m , two BQ holes totalling 305 m and seven NQ holes totalling 900.5 m .

Cities Service Minerals Corporation optioned the property in 1977. They conducted additional soil and rock sampling, geological mapping and 437 m of diamond drilling in two holes.

The Canadian Superior Exploration Limited's discovery zone returned $0.39 \% \mathrm{Cu}$ and $27.43 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ across a surface exposure of 27.5 m . The best drill intersection found by Canadian Superior Exploration Limited was similar in grade and width; the best intersection found by Cities Service Minerals Corporation was $0.19 \% \mathrm{Cu}$ and $3.67 \mathrm{~g} / \mathrm{t}$ Ag over 40 m . Apparently only a few of the rock samples were assayed for Au ; these generally returned less than $0.34 \mathrm{~g} / \mathrm{t}$, although a few were up to $0.69 \mathrm{~g} / \mathrm{t}$.

In 1986, Placer Development Limited conducted heavy mineral, rock and soil sampling throughout the area now covered by the JAKE claims. Placer Development Limited optioned the property to QPX Minerals in 1987. QPX conducted reconnaissance geological mapping, prospecting and rock, soil and stream sampling in selected areas covering the JAKE claims.

2.4 Summary of Work Done

Field work was conducted on the JAKE-4 claim from the 19th to 27th of July, 1990. A 10.9 km grid was established with a base line 1.1 km long and seven crosslines 1.4 km long. Line separation was 200 m for six of the lines and 100 m for the southern line. Lines were established with compass and
and 100 m for the southern line. Lines were established with compass and hipchain and slope corrected where necessary. Soil sampling, magnetometer and VLF-EM surveys were performed on the grid. Magnetometer and VLF-EM surveys were also performed on three roads north of In Creek. Geological mapping, prospecting and rock sampling were carried out along a portion of in Creek and on the roads on the north side of In Creek.

2.5 Claim Status

The JAKE property comprises eight mineral claims totalling 160 units. The claims are 100% owned by Placer Dome Inc., Vancouver, British Columbia. Claim information is as follows:

Claim Name	Units	Record No.	Expiry Date
Jake 1	20	7983	Oct 9, 1990
Jake 2	20	7984	Oct 9, 1990
Jake 3	20	7985	Oct 9, 1990
Jake 4	20	7986	Oct 9, 1990
Jake 5	20	8192	Mar 3, 1991
Jake 6	20	8193	Mar 3, 1991
Jake 7	20	8194	Mar 3, 1991
Jake 8	20	8195	Mar 3, 1991

3.0 REGIONAL GEOLOGY

The JAKE claims and the surrounding area are underlain primarily by sedimentary rocks of the Middle to upper Jurassic Bowser Lake Group which are intruded by Tertiary and Cretaceous plutonic rocks. East of the Squingula River and northwest of Motase Lake, sedimentary and volcanic rocks of the lower to Middle Jurassic Hazelton Group predominate. Sedimentary rocks of the lower Cretaceous Sustat Group are exposed further to the east.

Plutonic rocks in the area belong to the Cretaceous Bulkley and Tertiary Babine and Kastberg Intrusions. The Bulkley Intrusions comprise granodiorite and quartz diorite stocks. They outcrop southeast of the JAKE claims to Motase Lake and

southwest of Sicintine Lake. The Babine/Kastberg Intrusions comprise swarms of feldspar porphyry dykes. They occur on the northern portion of the JAKE claims, northwest of Motase Lake and near the mouth of Tommy Jack Creek.

4.0 PROPERTY GEOLOGY

The JAKE-4 claim is underlain by interbedded mudstone, siltstone, sandstone, wacke and minor conglomerate of the Ashman Formation of the Bowser Lake Group (Figure 4). Tuffaceous rocks on the property belong to the Hazelton Group. Siltstone which outcrops upstream along In creek at the break in slope is part of the Bowser Lake Group. This siltstone is light grey, fine grained and calcareous with 1% fine grained pyrite. Previous mapping indicates that the sedimentary rocks intruded by dyke swarms or adjacent to large intrusions are generally altered to hornfels (Sketchley, 1988) ${ }_{1}$.

Intrusive rocks on the Jake-4 claim is comprised of two Tertiary plagioclase porphyries which can be distinguished by the presence or absence of biotite phenocrysts. The intrusive rocks outcrop extensively along the northern slope of In creek as a northeasterly trending dyke swarm.

The sedimentary rocks are gently dipping with at least one phase of folding (Sketchley, 1988). The open folds trend north-northwest and have nearly vertical axial planes that plunge gently to the south-southeast. Fracture measurements taken during the 1990 work program confirm two steeply dipping joint sets that strike northeast and northwest.

Mineralization consists mainly of sulphidization associated with a large copper porphyry system. Examination of outcrop during the 1990 work program shows the mineralization of the plagioclase porphyry consists of chalcedonic and crystalline quartz veining with copper sulphides as blebs within the veins. Mineralization in the plagioclase-biotite porphyry is restricted to copper sulphides in fractures and microveins. Clay alteration is present in most outcrops with varying degrees of intensity.

5.0 GEOCHEMISTRY

5.1 Soil Samples

Soil sample pits were excavated using a mattock and samples placed in labelled Kraft paper bags. Soil samples were taken at 50 m stations on the baseline and at 40 m stations on the gridlines. A total of 261 samples were collected. All samples were geochemically analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Mo}$, Pb , and Zn . The extraction techniques and detection limits are listed in

Appendix 1.
Soil samples were collected from the B-horizon where possible. Notes on the nature of the soil material collected and on site conditions were recorded to aid interpretation of the geochemical results. The soils on the JAKE claims are well developed with a distinct B-horizon. The B-horizon is light orange-brown to red-brown in colour and has developed mainly from colluvial material.
Colluvium is derived by down-slope movement of materials of various origins; within the property, these materials are dominantly bedrock.

5.1.1 Results

Analytical results are listed in Appendix II, and displayed in Figures 5 to 11. Concentrations ranges for the different metals are as follows:

	Range		Mean
Ag	$<0.2-17$	ppm	1.7 ppm
As	$<1-1600$	ppm	64 ppm
Au	$<5-290$	ppb	14 ppb
Cu	$<2-1760$	ppm	90 ppm
Mo	$<1-52$	ppm	2 ppm
Pb	$<2-3600$	ppm	124 ppm
Zn	$30-2500$	ppm	233 ppm

Gold and Silver

Geochemical results show gold and silver to be anomalous at the south end of the grid in a crescent shaped zone narrowing at 5400 N , and 4000 E . Elevated values are concentrated along L5100 N and L5200 N between 3600 E and 4400 E . East of the baseline, anomalous silver values extend up to 5800 N .

Copper

A northeasterly trending broad zone of moderately anomalous copper values transects the southeastern section of the grid. A more pronounced zone approximately 150 metres wide between L5400 N, 4000 E and L5800 N, 4160 E lies within the larger zone and is defined by values greater than 500 ppm.

On the west side of the grid, on L5600 N from 3160 E to 3400 E five of the seven sample sites are anomalous with values above 200 ppm . At 3160 E and 3240 E the values are 950 and 510 ppm , respectively.

Zinc and Lead

Zinc values are elevated on the north and east sides of the gold and silver anomaly with values generally above 500 ppm . Lead values follow a similar pattern to zinc but with only weakly anomalous values. A few lead spot highs occur on or near the baseline below 5600 N with values between 1100 and 3600 ppm.

Molybdenum

The only significant anomalous area is on the east slope below the base camp. It is 100 metres wide extending in a northeasterly direction from 5100 N to 5200 N and is centred at 3300 E . This zone is coincident with part of the gold, silver and copper anomaly.

The two highest values for molybdenum occur on L5600 N at 3160 E and 3240 E . The values are 26 and 20 ppm , respectively and coincide with anomalous copper values.

Arsenic

Anomalous values for arsenic occur along lines 6000 N and 5800 N between 3580 E and 4280 E . Values are generally between 100 and 200 ppm with spot highs to 1600 ppm. A narrow northeasterly trending linear anomaly starts at $5400 \mathrm{~N}, 3300 \mathrm{E}$ and joins the gold, silver and copper anomaly on line 5600 N at 3550 E .

5.1.2 Discussion

Results from the geochemical survey indicate the potential for Au-Ag-Cu mineralization related to a porphyry style system. Peripheral anomalous Zn and As values indicate epithermal fluids possibly associated with the porphyry system.

5.2 Rock Samples

A total of seven rock samples were taken on the JAKE property. All samples were geochemically analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Sb}$, and Zn . The extraction techniques and detection limits are listed in Appendix 1.

5.2.1 Results

Sample locations are shown on Figure 4. Analytical results are listed in Appendix III, along with brief sample descriptions. Rock sample
results show anomalous values for Cu, Ag and Hg , and to a lesser extent Au and Mo in the majority of the samples.

Samples that exhibit copper mineralization in the form of sulphides or oxides returned high values for both Cu and Ag . Pyritization is present in all the rock samples with a range of $1-5 \%$.

Examination of the results shows a correlation between gold, silver, copper and molybdenum. Lead, mercury, and arsenic also appear to be associated.

5.2.2 Discussion

Analyses show weak mineralization of the porphyritic units. Mineralization associated with both vuggy white quartz and chalcedonic veins was probably controlled by epithermal fluids as anomalous samples were relatively high in arsenic and mercury. These epithermal fluids may be related to a deep seated porphyry system.

6.0 GEOPHYSICS

Magnetometer and VLF-EM surveys were conducted on seven northwestsoutheast gridlines. Three additional lines were surveyed along old drill roads designated Road 1, 2 and 3 (Figure 4) for a total of 13.1 km of geophysics. Magnetometer readings were taken at 10 metre stations while VLF-EM readings were taken at 20 metre stations.

Readings were dumped out to disk in a Toshiba laptop portable computer. The stored data was transferred to a Sun system computer for final processing and plotting.

6.1 Magnetometer Survey

The magnetometer survey was conducted using two Geometrics G-856 portable proton magnetometers. One was used in the field mode while the other was used in a base station mode. The internal clocks were synchronized before commencement of the survey. The data from the two magnetometers was merged and corrected for diurnal drift from an established base station value.

6.1.1 Results

The magnetometer survey results are plotted as plan maps of contoured data and stacked profiles (Figure $12 \& 13$). The majority of the
main grid is extremely flat. A small sized anomaly is located as follows on the southwest corner of the grid.

L5400N	$3100-3650 \mathrm{E}$
L5200N	$3200-3900 \mathrm{E}$
L5100N	$3250-3900 \mathrm{E}$

No significant anomalies are present on the three road lines.

6.1.2 Discussion

The magnetic anomaly in the southwest corner of the grid does not directly correspond with any geochemical anomalies. Elevated copper and molybdenum values from soil samples form a weak discontinuous halo around the small magnetic high but whether there is a correlation is questionable.

The cause of the magnetic anomaly is possibly a small intrusive body.

6.2 VLF-EM Survey

The VLF-EM survey employed a Geonics EM-16 which used the transmitting station at Lualualei, Hawaii (NPM, 23.4 kHz) along the northwestsoutheast lines. Readings were taken facing 160 degrees azimuth. The Seattle, Washington transmitter (NLK, 24.8 kHz) was used for two and a half of the road lines as the Hawaii transmitter was off the air. Readings using Seattle transmitter were taken facing 145 degrees azimuth. Cross-overs are in the sense of positive to negative as one traverses southeast along the lines.

6.2.1 Results

The VLF-EM survey results are plotted as stacked In-Phase, Quadrature and Fraser Filter profiles (Figure 14). Positive values are plotted on the north side of the profile. The Fraser Filter data was calculated as per the method put forth by D.C. Fraser, 1969.2

6.2.2 Discussion

Numerous north-northeast trending conductors were detected by the survey. These conductors trend in the same general direction as Tertiary intrusive dykes which outcrop to the southeast of the grid and along the roads. Correlating conductors from the grid to the roads is restricted by the fact that the roads could only be plotted as straight lines and are not
representative of their true position.
The conductors could be reflecting major fracture directions which are known to strike in a northeast direction. Soil geochemical results do not indicate if these structures are mineralized. Northwest fractures were not reflected by the VLF results.

7.0 CONCLUSIONS

1. Geochemical results indicate an anomalous zone of copper, gold and silver with anomalous zinc and arsenic distal to the main zone along the north and east sides.
2. No large scale magnetic anomalies were detected indicating that no large intrusive body is present close to the surface.
3. VLF survey results indicate possible major northeast trending structures. The presence of mineralization along these structures is unknown. Geology and ground conditions from outcrops along drill roads support potential for precious and base metal mineralization.

8.0 RECOMMENDATIONS

Geochemical and geophysical results indicate that further work should be done on the JAKE claims. The sampling grid should be extended to the east and south to determine the extent of anomalous zones present in the southeast section of the grid. Geochemical and geophysical surveys should be carried out on the grid extensions.

Anomalous zones on L5600N and L5800N east of the baseline, below the base camp, and along the baseline from 5100 N to 5600 N should be trenched, mapped and sampled. Detailed mapping should be conducted over the area, especially the old drill roads that traverse the grid. Exposure of rock, by means of a bulldozer, is necessary before mapping can be efficiently done along the roads.

At present there are no viable drill targets.

APPENDIX I

Analytical Techniques and Detection Limits

ANALYTICAL TECHNIQUES AND DETECTION LIMITS

Placer Dome Inc's Vancouver Analytical Laboratory

| | Units | Wt(g) | Attack | Time | Range Method |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ag | ppm | 0.5 | HCLO4/HNO3 | 4 hrs | $0.2-20 \quad$A.A. Background
 Correction |
| As | ppm | 0.5 | Aqua Regia | 3 hrs | $2-2000$ DC Plasma |
| Au | ppb | 10.0 | Aqua Regia | 3 hrs | $5-4000$ A.A. Solvent |
| Extraction | | | | | |

APPENDIX II

Soil Sample Analyses and Statistics

PDI GEOCHEM SYSTEM: Jake claims - Soil Sample Analyses

SAMPLE		AG	AS	AU1	CU	MO	PB	2N
		PPM	PPM	PPB	PPM	PPM	PPM	PPM
5100 N	3120 E	0.2	5	2.5	17	1	7	53
5100N	3160 E	0.2	11	2.5	16	1	8	51
5100 N	3200E	0.2	13	2.5	18	0.5	13	70
5100 N	3240 E	0.2	5	2.5	13	0.5	8	37
5100 N	3280E	0.1	12	2.5	17	1	10	51
5100 N	3320 E	0.1	6	2.5	14	1	10	38
5100 N	3360 E	0.1	5	2.5	13	0.5	7	30
5100 N	3400E	0.2	5	2.5	14	1	11	42
5100 N	3440 E	0.2	5	2.5	15	1	11	57
5100N	3480E	0.2	13	2.5	21	0.5	14	43
5100 N	3520E	0.2	10	2.5	38	2	14	93
5100 N	3560E	1.2	32	2.5	53	8	122	65
5100 N	3600 E	4.1	91	100	244	20	730	140
5100 N	3640 E	1.7	73	35	162	0.5	84	210
5100 N	3680E	3.3	5	2.5	14	1	36	37
5100 N	3720 E	0.7	9	2.5	22	0.5	30	58
5100 N	3760 E	0.7	12	2.5	21	0.5	23	65
5100 N	3800 E	2.8	48	35	121	12	96	142
5100 N	3840 E	2.9	36	150	145	1	160	177
5100 N	3880E	1.0	15	2.5	36	0.5	46	225
5100 N	3920 E	1.5	59	2.5	84	0.5	82	1050
5100 N	3960 E	8.0	39	2.5	311	1	94	940
5100 N	4000 E	2.8	19	2.5	76	1	100	192
5100 N	4040 E	9.0	164	75	131	0.5	1720	360
5100 N	4080 E	4.8	47	2.5	100	0.5	440	317
5100 N	4120 E	6.0	20	2.5	29	0.5	43	373
5100 N	4160 E	1.5	34	2.5	22	0.5	82	400
5100 N	4200 E	0.8	23	2.5	28	0.5	37	300
5100 N	4240E	3.0	68	35	100	0.5	208	760
5100 N	4280E	0.6	51	35	34	0.5	147	560
5100 N	4320 E	2.6	62	60	126	1	250	200
5100 N	4360 E	3.4	41	40	185	1	560	800
5100 N	4400 E	0.8	31	2.5	35	0.5	98	1330
5100 N	4440 E	0.4	21	50	25	0.5	70	288
5100 N	4480 E	2.9	82	15	17	0.5	820	610
5200N	3120 E	0.3	10	2.5	20	0.5	14	72
5200 N	3160 E	0.1	18	2.5	18	1	19	51
5200 N	3200E	0.3	18	2.5	22	1	16	62
5200 N	3240 E	0.2	15	2.5	23	8	16	55
5200N	3280 E	0.2	17	2.5	23	1	15	54
5200 N	3320 E	0.2	7	2.5	23	4	11	66
5200 N	3360 E	0.4	17	2.5	43	4	17	46
5200 N	3400 E	0.1	10	2.5	14	1	11	45
5200N	3440 E	0.1	9	2.5	18	4	14	48
5200 N	3480 E	0.3	10	2.5	23	0.5	13	56
5200N	3520 E	2.3	27	10	31	0.5	175	92
5200 N	3560 E	0.9	13	2.5	36	0.5	21	93
5200N	3600 E	1.9	21	2.5	37	10	46	72
5200 N	3640 E	3.4	28	85	188	52	175	82
5200 N	3680 E	1.7	36	2.5	277	12	32	110
5200 N	3720E	10	64	75	193	18	318	85
5200N	3760 E	1.1	32	10	170	10	66	78
5200 N	3800 E	0.6	41	5	134	0.5	41	130
5200 N	3840 E	1.1	55	275	184	0.5	57	170
5200 N	3880 E	0.5	23	20	59	6	40	153
5200N	3920 E	11	58	50	29	0.5	380	95
5200 N	3960 E	3.4	53	75	35	8	301	66
5200 N	4000 E	4.8	19	50	80	6	49	70
5200 N	4040E	9.0	290	250	275	6	3600	71
5200 N	4080E	3.1	32	15	84	4	142	83
5200 N	4120E	4.3	60	100	134	0.5	670	171

5200N	4160 E	1.0	30	2.5	39	0.5	30	160
5200 N	4200 E	1.6	22	2.5	16	0.5	34	161
5200N	4240 E	1.4	16	290	22	10	68	109
5200 N	4280 E	0.6	17	10	23	1	43	240
5200 N	4320 E	8.0	73	75	141	8	660	294
5200 N	4360 E	2.9	35	35	78	1	103	730
5200 N	4400 E	0.8	17	2.5	36	1	92	264
5200 N	4440 E	1.7	12	2.5	14	1	57	180
5200 N	4480 E	2.5	79	2.5	25	1	380	293
5400 N	3120 E	1.2	6	2.5	79	4	8	40
5400 N	3160 E	0.5	11	2.5	25	4	11	59
5400 N	3200 E	0.4	12	2.5	35	1	7	48
5400 N	3240 E	0.6	16	2.5	31	4	11	60
5400 N	3280 E	0.8	18	2.5	219	6	20	54
5400 N	3320 E	6.0	205	5	217	6	242	186
5400 N	3360 E	0.9	30	2.5	234	16	21	100
5400 N	3400 E	0.4	8	2.5	28	4	6	43
5400 N	3440 E	0.4	7	2.5	38	4	12	58
5400 N	3480 E	0.3	9	2.5	19	4	12	62
5400 N	3520 E	0.9	17	2.5	163	8	14	75
5400 N	3560E	0.6	12	2.5	47	1	8	67
5400 N	3600 E	1.1	16	2.5	48	1	19	64
5400 N	3640 E	1.0	17	10	67	14	17	48
5400 N	3680 E	3.6	56	2.5	53	14	180	71
5400 N	3720 E	2.1	31	2.5	31	8	197	68
5400 N	3760 E	3.1	8	2.5	24	6	26	74
5400 N	3800 E	1.2	27	2.5	105	4	98	73
5400 N	3840 E	2.9	42	2.5	78	1	37	81
5400 N	3880 E	0.8	17	2.5	31	2	28	61
5400 N	3920 E	1.9	12	2.5	18	2	16	67
5400 N	3960 E	2.7	24	2.5	27	2	114	102
5400 N	4000 E	17	149	190	363	1	2360	300
5400 N	4040 E	2.0	21	2.5	28	1	33	170
5400 N	4080E	0.7	10	2.5	47	1	25	180
5400 N	4120 E	0.9	19	2.5	29	2	39	325
5400 N	4160 E	8.0	25	2.5	104	1	50	180
5400 N	4200E	8.0	19	2.5	195	4	810	265
5400 N	4240 E	4.1	32	60	121	6	60	270
5400 N	4280 E	0.5	33	100	78	0.5	56	460
5400 N	4320 E	1.5	31	2.5	33	0.5	138	235
5400 N	4360 E	1.4	58	2.5	66	4	234	400
5400 N	4400 E	1.4	50	20	134	4	291	500
5400 N	4440 E	1.9	66	25	58	1	345	410
5400 N	4480 E	3.1	78	20	90	4	1360	880
5600 N	3120 E	0.6	70	2.5	32	1	35	102
5600 N	3160 E	0.5	64	2.5	950	20	26	126
5600 N	3200 E	1.0	56	2.5	82	6	30	73
5600 N	3240 E	0.2	34	2.5	510	26	22	82
5600 N	3280 E	0.6	22	2.5	125	0.5	14	93
5600 N	3320 E	0.2	160	2.5	326	4	62	204
5600 N	3360 E	0.2	180	2.5	201	0.5	29	196
5600 N	3400 E	0.5	72	2.5	234	1	40	205
5600 N	3440 E	8.0	240	2.5	100	6	215	212
5600 N	3480 E	0.6	260	2.5	182	6	78	302
5600 N	3520E	0.9	64	2.5	92	4	38	132
5600 N	3560E	0.5	46	2.5	25	0.5	24	124
5600 N	3600E	1.5	114	30	224	2	101	335
5600 N	3640E	1.1	46	2.5	16	0.5	122	73
5600 N	3680 E	1.6	64	10	114	2	186	235
5600 N	3720 E	1.0	42	2.5	97	1	21	106
5600 N	3760 E	0.5	12	5	15	0.5	12	65
5600 N	3800 E	1.1	26	5	129	0.5	13	107
5600 N	3840 E	0.7	26	2.5	30	1	40	81
5600 N	3880 E	11	240	125	270	14	1500	106
5600 N	3920E	0.9	56	2.5	66	1	59	77
5600 N	3960E	1.1	16	2.5	45	1	29	100

5600 N	4000E	2.5	68	2.5	510	0.5	41	127
5600 N	4040 E	3.3	44	2.5	390	1	32	110
5600 N	4080E	2.5	24	20	1760	1	106	560
5600 N	4120E	2.3	40	2.5	48	1	101	238
5600N	4160 E	4.5	46	2.5	52	0.5	110	208
5600 N	4200 E	4.6	38	2.5	118	1	125	550
5600N	4240 E	5.0	10	2.5	610	0.5	100	378
5600 N	4280 E	2.7	28	2.5	50	0.5	200	272
5600 N	4320 E	0.7	36	2.5	56	1	105	540
5600 N	4360 E	3.7	46	5	58	1	225	346
5600 N	4400E	3.6	32	2.5	152	1	500	2500
5600 N	4440 E	2.8	68	2.5	40	1	350	500
5600 N	4480 E	3.1	58	15	117	2	700	2100
5800N	3120 E	0.2	20	2.5	32	4	13	90
5800 N	3160 E	0.2	18	2.5	32	0.5	10	90
5800 N	3200 E	0.2	34	2.5	20	1	10	70
5800N	3240 E	0.5	40	5	54	1	12	106
5800 N	3280 E	0.4	42	2.5	275	0.5	18	171
5800 N	3320 E	0.6	120	2.5	68	0.5	34	120
5800 N	3360 E	0.4	18	2.5	22	0.5	15	69
5800N	3400 E	0.3	18	2.5	15	0.5	10	44
5800 N	3440 E	0.4	60	2.5	27	0.5	34	130
5800 N	3480 E	2.8	280	2.5	35	0.5	80	290
5800 N	3520 E	0.5	64	2.5	20	0.5	14	82
5800N	3560 E	1.1	460	2.5	45	0.5	22	255
5800 N	3600 E	0.9	40	2.5	13	1	12	48
5800 N	3640 E	1.4	40	2.5	27	0.5	37	113
5800 N	3680 E	2.8	340	2.5	105	0.5	120	287
5800 N	3720 E	1.2	34	2.5	26	1	22	134
5800 N	3760 E	1.1	84	2.5	39	0.5	34	133
5800 N	3800 E	2.2	1600	25	46	1	170	330
5800 N	3840 E	1.1	280	2.5	22	0.5	32	255
5800 N	3880E	1.2	72	2.5	19	1	20	84
5800 N	3920E	1.1	50	2.5	49	1	38	130
5800 N	3960E	1.8	70	2.5	28	0.5	41	360
5800 N	4000 E	1.3	100	2.5	28	1	51	240
5800N	4040 E	3.6	86	2.5	47	1	85	430
5800 N	4080 E	2.1	40	2.5	470	1	71	450
5800 N	4120 E	2.9	110	2.5	116	1	71	400
5800 N	4160 E	7.0	90	2.5	630	1	76	235
5800 N	4200 E	2.4	100	2.5	314	1	97	240
5800 N	4240 E	2.0	52	2.5	395	1	74	530
5800 N	4280 E	4.1	100	2.5	70	1	114	342
5800 N	4320 E	1.8	10	2.5	25	1	27	103
5800 N	4360 E	0.1	NSS	2.5	10	0.5	4	134
5800 N	4400 E	2.1	50	35	104	0.5	133	153
5800 N	4440 E	1.3	62	2.5	45	1	96	640
5800 N	4480 E	0.5	92	2.5	45	1	104	560
6000 N	3120 E	0.5	40	2.5	83	1	24	122
6000 N	3160 E	1.1	24	2.5	42	1	18	132
6000 N	3200 E	0.1	18	2.5	16	0.5	10	52
6000 N	3240 E	2.3	34	2.5	49	0.5	19	134
6000 N	3280E	1.9	20	2.5	54	0.5	41	240
6000 N	3320 E	0.7	42	2.5	65	0.5	26	140
6000N	3360 E	0.5	46	2.5	58	1	23	184
6000 N	3400 E	1.0	44	2.5	44	2	29	150
6000 N	3440 E	1.0	70	2.5	110	1	40	124
6000N	3480 E	0.5	34	2.5	30	1	24	72
6000 N	3520 E	0.3	40	2.5	28	0.5	38	170
6000 N	3560E	0.3	46	2.5	26	2	21	120
6000 N	3600E	0.2	86	2.5	27	2	44	174
6000 N	3640 E	0.2	240	2.5	48	4	117	540
6000 N	3680 E	2.1	130	2.5	50	1	680	1070
6000 N	3720 E	0.6	420	2.5	19	0.5	115	710
6000 N	3760 E	0.2	132	2.5	37	1	36	181
6000 N	3800E	3.7	400	20	40	0.5	168	970

6000 N	3840E	6.0	500	2.5	95	0.5	212	740
6000 N	3880E	2.6	184	2.5	46	0.5	70	326
6000 N	3920 E	1.2	160	2.5	47	0.5	75	387
6000 N	3960E	0.4	120	2.5	26	0.5	83	306
6000 N	4000 E	2.8	240	5	94	1	111	330
6000 N	4040E	2.0	160	2.5	70	0.5	67	760
6000 N	4080 E	0.8	100	2.5	29	1	57	430
6000 N	4120E	1.4	220	2.5	37	2	151	450
6000 N	4160 E	1.2	160	2.5	49	0.5	78	240
6000 N	4200E	1.2	118	2.5	58	2	70	391
6000 N	4240 E	0.4	80	2.5	56	1	57	254
6000N	4280 E	0.3	90	2.5	42	0.5	56	260
6000 N	4320 E	0.7	80	2.5	78	1	51	360
6000 N	4360 E	0.9	88	2.5	280	0.5	53	490
6000 N	4400 E	0.2	44	2.5	59	0.5	26	340
6000 N	4440 E	0.8	76	2.5	318	0.5	55	570
6000 N	4480 E	0.6	32	2.5	48	0.5	21	120
6200 N	3120 E	0.5	22	2.5	53	0.5	26	180
6200N	3160 E	0.2	26	2.5	32	0.5	14	101
6200 N	3200 E	0.3	20	2.5	25	0.5	15	85
6200 N	3240 E	0.6	38	2.5	31	2	24	126
6200 N	3280E	0.2	34	2.5	20	0.5	58	124
6200 N	3320 E	0.3	50	2.5	31	2	37	91
6200 N	3360 E	0.2	20	2.5	26	0.5	18	83
6200 N	3400 E	0.6	46	2.5	82	2	31	171
6200 N	3440 E	0.6	22	2.5	18	0.5	22	85
6200 N	3480 E	0.7	64	2.5	38	0.5	39	153
6200 N	3520 E	1.0	72	10	60	2	53	174
6200 N	3560 E	0.3	40	2.5	16	1	29	103
6200 N	3600 E	0.3	34	2.5	11	0.5	13	68
6200 N	3640 E	0.8	36	2.5	7	0.5	11	88
6200 N	3680 E	0.1	34	NSS	1	0.5	1	75
6200 N	3720 E	0.2	54	2.5	12	0.5	11	144
6200 N	3760 E	1.1	70	2.5	38	0.5	58	160
6200 N	3800 E	1.5	50	2.5	70	1	52	370
6200 N	3840 E	0.1	42	2.5	15	1	11	111
6200 N	3880 E	0.2	50	10	14	1	22	228
6200 N	3920E	0.4	36	2.5	21	1	28	132
6200 N	3960 E	0.6	18	NSS	18	3	11	68
6200 N	4000 E	1.4	66	2.5	25	0.5	34	200
6200 N	4040 E	0.1	10	2.5	24	0.5	9	60
6200 N	4080E	0.2	16	2.5	8	1	1	57
6200 N	4120E	0.5	12	2.5	16	0.5	6	47
6200 N	4160 E	0.2	16	2.5	14	1	45	156
6200 N	4200E	1.1	14	2.5	35	2	33	320
6200 N	4240 E	0.2	12	2.5	24	0.5	16	90
6200 N	4280E	1.3	36	2.5	48	1	40	351
6200 N	4320 E	0.4	18	2.5	24	4	15	105
6200 N	4360 E	0.3	24	2.5	31	2	20	162
6200 N	4400 E	0.2	10	2.5	20	2	15	110
6200 N	4440 E	0.3	10	2.5	27	2	16	103
6200 N	4480 E	0.4	16	2.5	42	3	25	260
5150 N	4000E	3.3	76	120	135	2	275	130
5250 N	4000 E	0.8	1	50	19	3	31	60
5300 N	4000E	0.7	1	35	22	2	22	102
5350 N	4000 E	0.7	40	2.5	53	5	50	330
5450 N	4000 E	8.0	1	150	550	7	1120	290
5500 N	4000 E	2.0	40	35	650	4	49	253
5550N	4000E	1.1	10	25	47	0.5	53	56
5650 N	4000 E	1.2	40	2.5	30	0.5	26	110
5700 N	4000E	2.2	38	2.5	61	0.5	31	113
5750 N	4000 E	1.2	36	2.5	22	0.5	30	108
5850 N	4000 E	2.4	144	2.5	68	0.5	133	500
5900 N	4000 E	2.5	160	2.5	54	0.5	124	370
5950N	4000 E	2.6	126	2.5	84	0.5	80	920
6000 N	4000E	0.2	26	2.5	17	0.5	30	180


```
File: moila
260 BAMPLES WITH A
Fiold name: As
260 EMMPLES WITH \(\lambda\)
MINTMUM: 1.00000
LOG = 1 REPVAL \(=0.00100\)
260 values piotted:
0 Rot in range 1.00000
MaxIMOM: 1600.00
```


gecmetric mina

```
36.3082
1600.00
\(\begin{array}{llll}36.3082 & 12.6893 & 103.890\end{array}\)
```


GCALE OF HISTOGRAM IS 0.30 COONTS /PRINT POSITION $=5,50,95 \%$

	AG	AS	AU1	CU	MO	PB	ZN
	1.000	0.365	0.423	0.543	0.157	0.755	0.448
AG	0.365	1.000	0.087	0.329	-0.092	0.499	0.555
AS	0.423	0.087	1.000	0.339	0.266	0.544	0.127
AU1	0.543	0.329	0.339	1.000	0.315	0.517	0.388
CU	0.157	-0.092	0.266	0.315	1.000	0.166	-0.196
MO	0.755	0.499	0.544	0.517	0.166	1.000	0.608
PB	0.448	0.555	0.127	0.388	-0.196	0.608	1.000

END OF LISTING

- value of 1.000 indicates perfect correlation

APPENDIX III

Rock Sample Analyses and Descriptions


```
END OF LISTING - }11\mathrm{ RECORDS PRINTED
    * - indicates repeat analysis
```


ROCK SAMPLE DESCRIPTIONS

Sample	Type	Description
A4590	outcrop grab	fine grained light grey calcareous siltstone, 1% fine grained pyrite
A4591	outcrop grab	light grey plagioclase porphyry, 2% fine grained disseminated pyrite
A4592	outcrop grab	plagioclase-biotite porphyry, malachite staining on fractures, 0.5% chalcopyrite and trace molybdenite along a microvein
A4593	outcrop grab	plagioclase-biotite porphyry strongly clay altered with 1% weathered coarse euhedral pyrite
A4594	outcrop grab	plagioclase porphyry with chalcedonic quartz microveins, malachite staining on fracture surfaces near microveins, 2% pyrite as blebs in microveins and fine grained disseminations in wallrock, 0.5% chalcopyrite as fine grained blebs in microveins
A4595	outcrop grab	microfault zone 2-5 cm wide with strong iron and malachite/azurite staining, 5% fine grained disseminated pyrite in wallrock
A4596	outcrop grab	vuggy quartz vein 20 cm wide in sericitized plagioclase porphyry, strong limonite staining, 5% medium grained cubic pyrite, trace bornite and chalcopyrite as blebs within the vein

APPENDIX IV

Statement of Costs

STATEMENT OF COSTS

Labour (Salary and Benefits)

S. Price, Project Geologist,	15.5 days @ $\$ 220 /$ day	$3,410.00$
G. Linden, Geologist,	15 days @ $\$ 200 /$ day	$3,000.00$
C. Woolverton, Field Assistant, 10.5 days @ $\$ 146 /$ day	$1,533.00$	
J. Gordon, Field Assistant,	12.5 days @ $\$ 120 /$ day	$1,500.00$
R. Cannon, Geophysicist,	4 days @ $\$ 316 /$ day	$1,264.00$

Site Costs
Expediting Services 900.00
Lodging \& Meals (4 persons for 2 days) 350.00
Mobile Radio Rental 45.05
Equipment Purchases 924.51
Freight
Sample and Supplies Shipment (Smithers to Vancouver) 413.50
Transportation
Aircraft (mob/demob) 936.25
Truck Rental 136.36
Helicopter
4.3 hours @ \$635/hour 2,730.50
Fuel (473 litres) 496.65
Analyses
7 Rock @ \$19.75/sample 138.25
(Au, Ag, Mo, As, Cu, Pb, Zn, Hg, Sb)
261 Soil @ \$12.90/sample $3,366.90$
(Au,Ag,Mo,As,Cu, Pb,Zn)
Report Preparation

Drafting	2 days @ $\$ 200 /$ day	400.00
Maps		134.29
Computer Costs	6 days @ $\$ 200 /$ day	108.43
G. Linden	2.5 days @ $\$ 220 /$ day	550.00
S. M. Price		

APPENDIX V

Statements of Qualifications

STATEMENT OF QUALIFICATIONS

1, Gerald E. Linden, of the municipality of Surrey, British Columbia, do hereby certify that:

1. I am a graduate of the University of British Columbia where I received a B. Sc. in Geology in 1989.
2. I have practised my profession full-time since 1989.
3. I am currently employed by Placer Dome Inc.
4. I was involved in the exploration work on the Jake claims during 1990 and co-authored this report.

STATEMENT OF QUALIFICATIONS

1, Stephen Price, of the City of Vancouver, British Columbia, do hereby certify that:

1. I am a graduate of the University of British Columbia where I received a B. Sc. in Geology in May, 1987.
2. I have practised my profession since graduation, primarily in a variety of exploration projects in British Columbia and Saskatchewan.
3. I am an Associate of the Geological Association of Canada.
4. I am currently employed by Placer Dome Inc.
5. I supervised the work done on the Jake property, reviewed the data and co-authored this report.

 9
Fox. Stephen M. Price

STATEMENT OF QUALIFICATIONS

I, Richard W. Cannon, of the City of Vancouver, Province of British Columbia, herby certify as follows:

1. I am a graduate of the University of British Columbia where I received a B.A.Sc. in Geological Engineering (Geophysics Option) in May, 1966.
2. I am a member of the Association of Professional Engineers of British Columbia and have been so since 1968. Registration No. 6742.
3. I am a member of the Canadian Institute of Mining and Metallurgy, Society of Exploration Geophysicists, and the B.C. Geophysical Society.
4. I have practised my profession since 1966.

APPENDIX VI

References

References

1. Sketchley. D.C., 1988. Jake Mineral Claims - Geochemistry and Geology. QPX Minerals Inc., private report.
2. Fraser, D.C., 1969. Contouring of VLF-EM Data. Geophysics, vol. 34, p. 958967.

- 45-100 PPM AS
- $100-300$ PPM A
) 300 PPM AS

GEOLGGCALBRANCH
ASSESSMENT REDNRT
20,607
< 50 PPM CU
- 50 - 75 ppM cu
- 75 - 150 PPM CU
- 150 - 500 PPM CU
- 500 PPM CU

GEOLOGICALBRANCH
ISSESGMENTREORT
20,607
$\xrightarrow{\circ} \overbrace{\text { METRES }}^{200}$

