	LOG	NG.	1213	RD.
	ACTI	ولواحدت فإن سي السري ميردام		
		N A.		
and the second	FILE			
	CAL AND GEO SESSMENT REP		CAL	
DEC 0 7 1990		ONI		
M.R. # \$	on the			
VANCOUVER, B.C. Kin 1	-6 Mineral			
	ch Lake Are a Mining Di			
	NTS 103 P/1	1		
Latitude: 55 ⁰ 4	1'N Longi	tude:	129 ⁰ 27	۳W
	For			
Adria	an Resources	Ltđ.		
11th Floor -	808 West Ha	sting	s Street	
Va	V6C 2X4	C. COG CSS	ICAL . MENT	B R A N C F R E P O R Y
Darius J. C	osiju ka ma . D		.A.	11
	source Manag		-	
	509 Granvill			
Va	ncouver, B.	c.		
	V7Y 1G5			
	October 1990	0		

TABLE OF CONTENTS

																				PI	AGE
INTRODUC	FION	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
LOCATION	AND	ACC	CES	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
PHYSIOGRA	АРНҮ	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
PROPERTY	AND	OWN	IER	SH	IP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
HISTORY A	AND	PREV	710	US	W	OR	K	•	•	•	•	•	•	•	•	•	•	•	•	•	4
REGIONAL	GEO	LOGY	(A)	ND	M	IN	ER	AI	ΊZ	AI	IC	N	•	•	•	•	•	•	•	•	6
MINERALI	ZATI	ои.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
PROPERTY	GEO	LOGY	ζ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 1	.2
PROPERTY	GEO	CHEN	1IS'	TR	Y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.1	L6
DISCUSSIO	о ис	FRI	ESU	LT	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•]	L7
REFERENCI	ES.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 1	.9

-

LIST OF APPENDICES

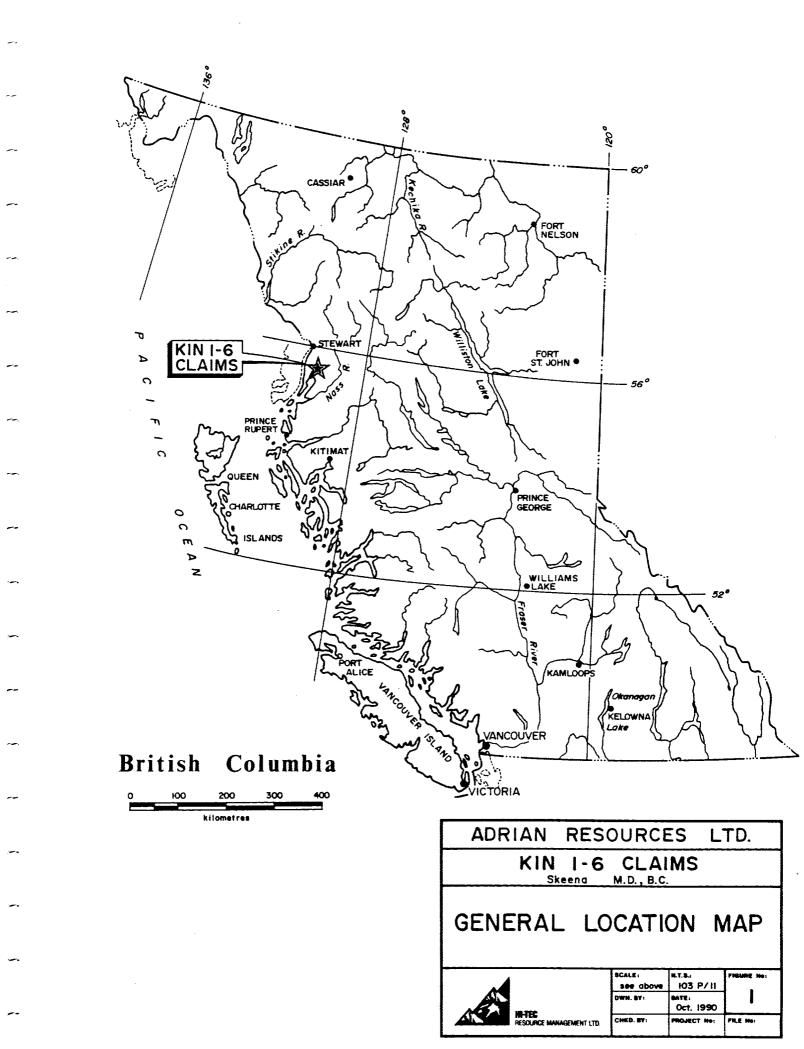
APPENDIX I	STATEMENT OF QUALIFICATIONS
APPENDIX II	SAMPLE DESCRIPTION
APPENDIX III	ANALYTICAL DATA
APPENDIX IV	STATEMENT OF COSTS

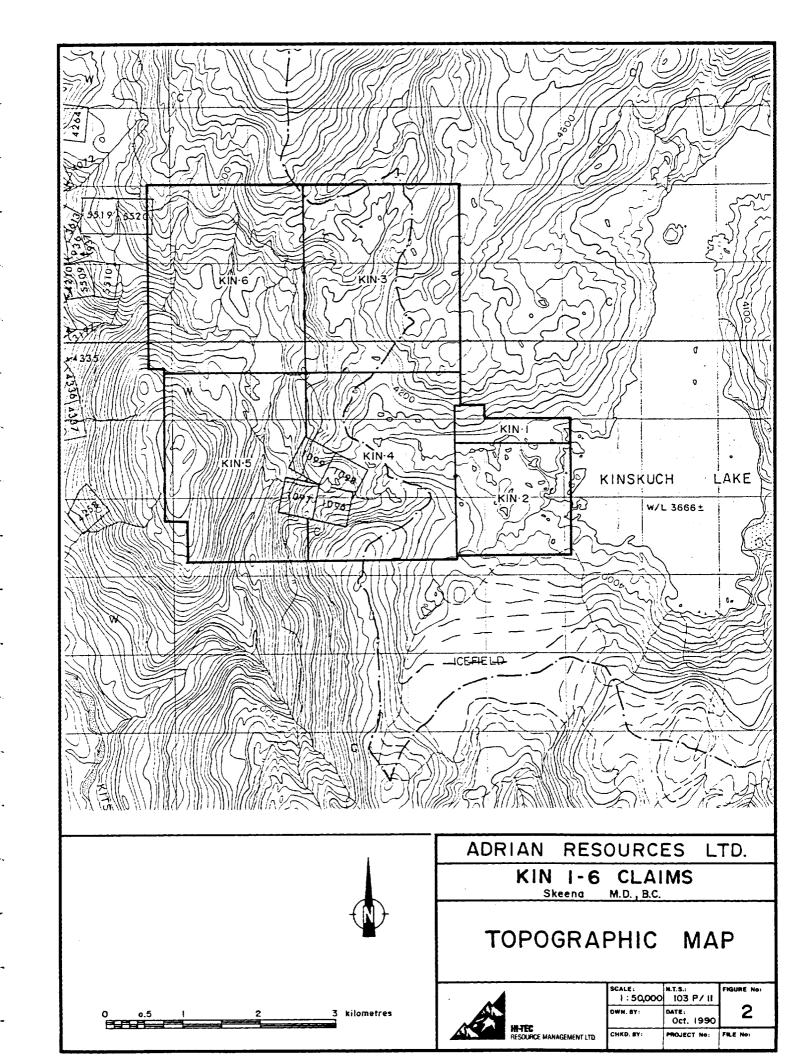
LIST OF FIGURES

AFTER PAGE

FIGURE 1	GENERAL LOCATION MAP 1
FIGURE 2	TOPOGRAPHIC MAP 1
FIGURE 3	KIN 1 TO 6 CLAIM MAP 3
FIGURE 4	REGIONAL GEOLOGY 5
FIGURE 5	MINERAL OCCURENCES BETWEEN KITSAULT
	RIVER AND KINSKUCH LAKE 5
FIGURE 6	PROPERTY GEOLOGY AND SAMPLE LOCATION
	WITH GOLD GEOCHEMISTRY IN POCKET

INTRODUCTION


This summary and evaluation of the Kin 1, 2, 3, 4, 5 and 6 claims has been completed at the request of the directors of Adrian Resources Ltd.


This report summarizes the results of a \$50,000 work program, including 1:10,000 scale geological mapping, prospecting, rock sampling and geochemical sampling, conducted by Hi-Tec Resource Management Ltd. The author worked on the property during August 1990.

LOCATION AND ACCESS

The Kin 1, 2, 3, 4, 5, and 6 claims are located between Kinskuch Lake and Kitsault River area, Skeena Mining Division, British Columbia, approximately 45 air kilometers southeast of Stewart, British Columbia (Fig 1).

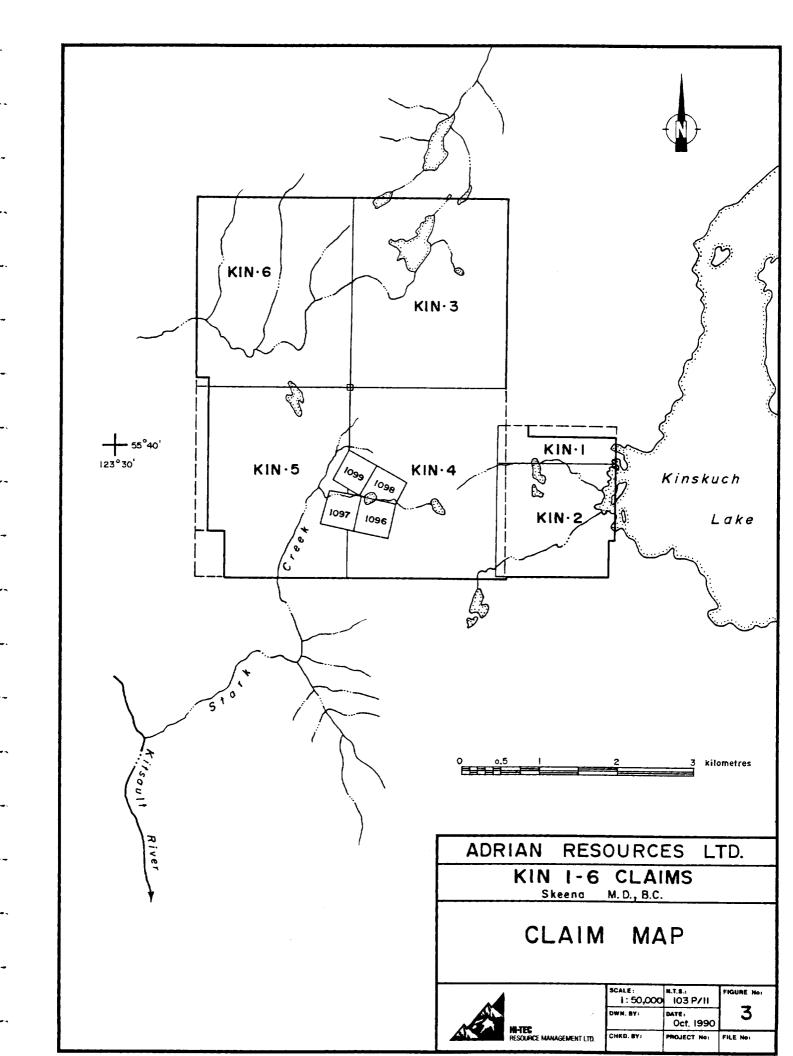
The easiest access to the subject property is via helicopter from Stewart airstrip or from Ellsworth Camp (20 km southeast of Meziadin Junction) on Cassiar Highway. At the present time, a 205 Helicopter is stationed at Ellsworth Camp and the claims can be reached by air, a distance of 40 air kilometers to the southwest. An alternate route is by boat along Alice Arm to Kitsault or by road to Kitsault from

a Cranberry Junction on the Cassiar Highway. The Kin claims lie within NTS-103 P/11 and are centered at latitude 55° 41'North and longitude 129° 27'West.

PHYSIOGRAPHY

Local topographic relief is moderate to very steep with elevations ranging from approximately 730 m (2,400 feet) on Kin 5 claim to 1,615 m (5,300 feet) above sea level at the southern part of the Kin 4 claim (fig. 2). Topography is typical of mountainous and glaciated terrain.

Lower slopes are covered by a dense growth of hemlock, spruce and fir with an undergrowth of willow, alder and devil's club. Above tree line which occurs generally between 915 m and 1,128 m (3,000 feet and 3,700 feet), the vegetation changes to sub-alpine and alpine type. Glaciers and snowfields occur throughout the area. Both summer and winter temperatures are moderate although annual rainfall is high and several meters of snow commonly fall at higher elevations.


PROPERTY AND OWNERSHIP

The property consists of six contiguous mineral claims totalling 92 units in the name of Adrian Resources Ltd. The claims are within the Skeena Mining Division of British Columbia. All of the claims were staked on December 10, 1989 and recorded the same day in Prince Rupert.

Four reverted Crown Granted Basin claims are located in the centre between Kin 4 and Kin 5. The Basin and Basin 1, 2 and 3 claim are owned by a different party. The claims are shown on Mineral Claim Map 103 P/11 W and on Figure 3 of the present report.

The property is recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:

CLAIM NAME	<u>RECORD_#</u>	<u>UNITS</u>	RECORD DATE
Kin 1	8261	3	December 10, 1989
Kin 2	8262	9	December 10, 1989
Kin 3	8263	20	December 10, 1989
Kin 4	8264	20	December 10, 1989
Kin 5	8265	20	December 10, 1989
Kin 6	8266	20	December 10, 1989

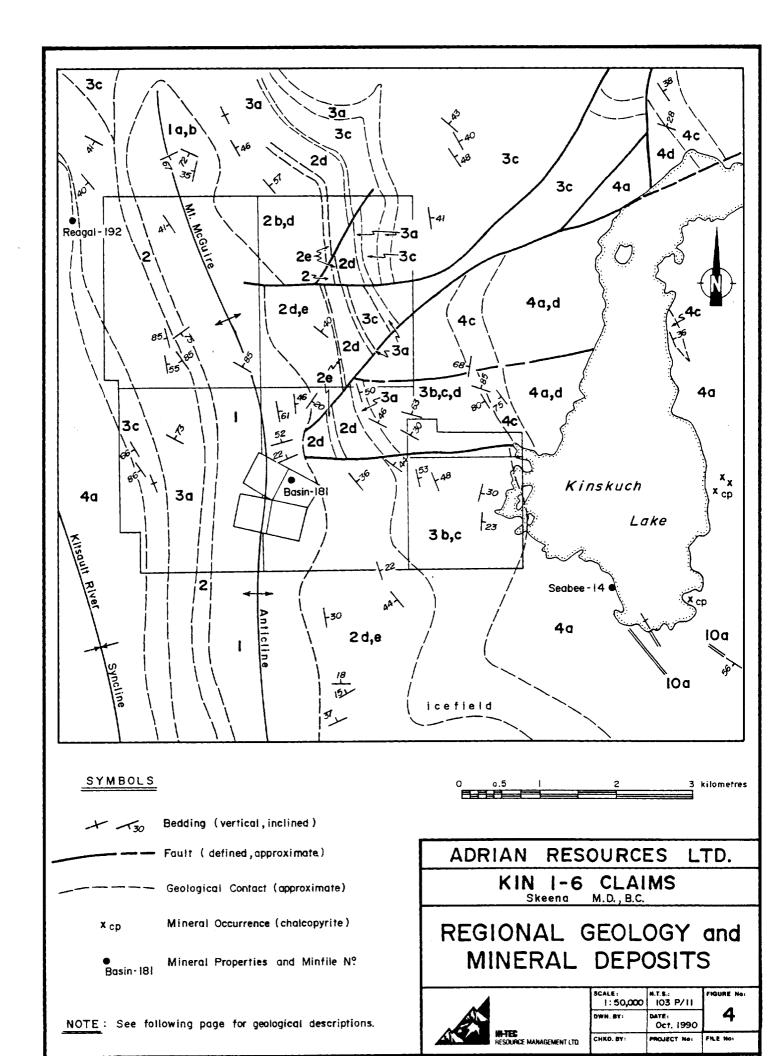
HISTORY AND PREVIOUS WORK

Exploration and prospecting in the Kitsault Valley started in the early 1900's as a result of discoveries at Anyox and in the Stewart region. By 1913 numerous claims had been staked, mainly on silver veins.

4

Mineralization in the Alice Arm - Kitsault Valley Camp is typically found in quartz veins containing high grade silver, lead and zinc. Similar mineralization occurs in barite-quartz volcanogenic exhalative depostis in the upper Kitsault Valley known as the Dolly Varden Camp (Fig. 5).

The Dolly Varden, Homestake, North Star and Torbrit properties were mined between 1915 and 1959. Total production was 1,284,882 tonnes grading 485 grams silver per tonne, 0.38 percent lead and 0.02 percent zinc. A mill to concentrate the ore was built in 1928 on the Torbrit property, located about 3 kilometers west of the Kin claims.


In 1946, a company controlled by the Mining Corporation of Canada acquired the Torbrit mine and started to build the road from Alice Arm up the Kitsault Valley. A new mill was constructed and production started in 1949.

The Basin property situated between the Kin 4 and Kin 5 mineral claims is located 3 kilometers west of Kinskuch Lake

and 20.5 kilometers north-northeast of Alice Arm. The Basin and Basin 1 claims were staked in September 1921 and the Basin 2 and 3 claims were staked in August 1922. Open cutting was done on several of the showings and a 4.0m long adit was driven on the flat-lying shear zone. Six adjoining claims, the Spring and Spring 1-5 together with Basin claims were transfered to Silver Basin Mines Ltd., which was incorporated in April 1928. No work was reported by the company and the option of the Basin claims was dropped.

The Basin claims (Lots 1096-1099) were Crown-granted in 1930. No further activity was reported on these claims until they were leased by J.P. McVittie in 1963, and turned over to Sirmac Mines Limited. The company carried out limited prospecting and geophysical surveying. The exploration work was not encouraging and the property was abandoned in 1967.

In 1982, Nor-Con Exploration Ltd. acquired the four reverted claims and in 1983 a prospecting program was carried out (Gledhill 1965 and Cavanagh 1983). Two additional claims, Botan 1 and 2 were staked for Nor-Con during this program. Detailed geochemical soil and rock sampling with VLF electromagnetic surveying of the showings and their surrounding areas was recommended. The showing on Basin property consists of several breccia/shear zones contained in an east dipping sequence of interbedded sediments and

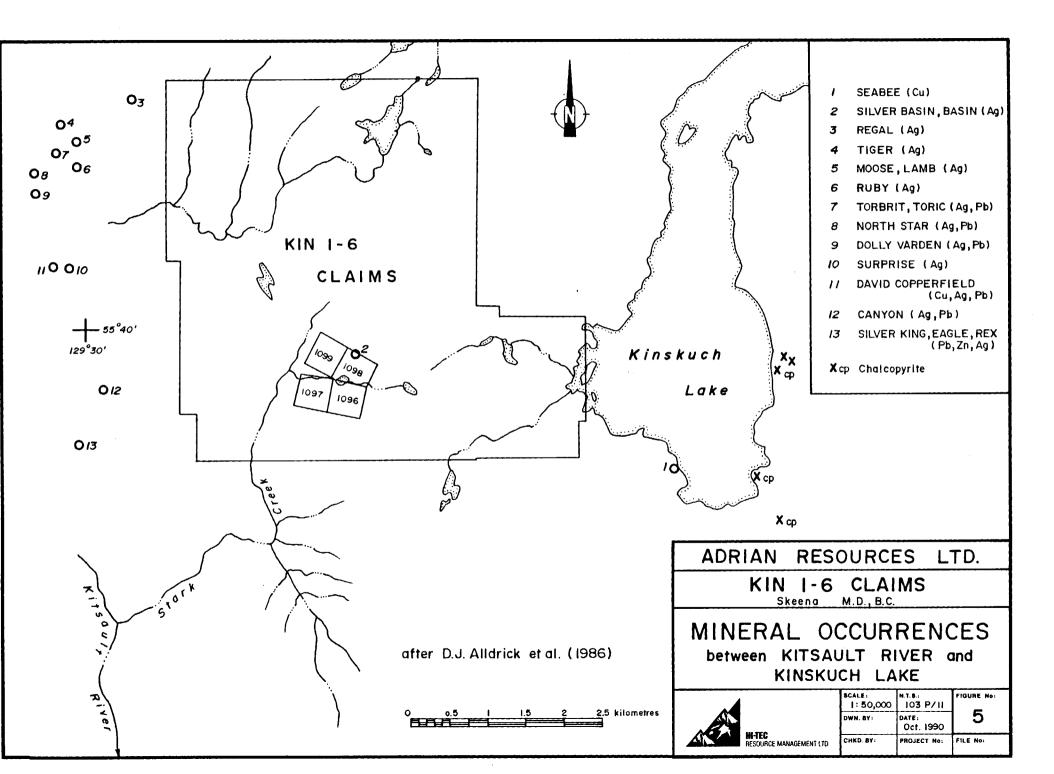
Regional Geology after Alldrick D.J., Dawson G.L., Bosher J.A., and Webster I.C.L. (1986) Geology of the Kitsault River Area, NTS 103P B.C. Ministry of Energy, Mines and Petroleum Resources. Open File Map 1986/2 (1:50,000)

LEGEND

INTRUSIVE ROCKS

TERTIARY

Eocene and Younger 10a - Dykes: diorite, microdiorite


VOLCANIC AND SEDIMENTARY ROCKS

MIDDLE TO UPPER JURASSIC

- 4 Intermediate Volcanic Unit: green and minor maroon andesite pyroclastic rocks (a); feldspar hornblende andesite porphyry (b); black siltstone (c); maroon siltstone, sandstone and conglomerate (d); limestone (e).
- 3 Middle Sedimentary Unit: black siltstone (a); limestone (b); green and purple volcanic breccia with minor siltstone, sandstone and conglomerate (c); interbedded siltstone, sandstone, wacke and polymictic pebble conglomerate (d).
- 2 Mafic Volcanic Unit: olivine porphyry basalt flows (a); augite porphyry basalt flows and pillowed flows (b); basaltic pyroclatic rocks (c); basaltic conglomerate (d); black siltstone, sandstone, wacke and limestone (e).
- 1 Lower Sedimentary Unit: black siltstone, argillite, shale (a); black wacke, sandstone, limestone(b).

volcanics of the Stuhini Group. Dolly Varden Minerals Inc. is so far the most active company working in the Kitsault Valley area. In 1989 the company introduced a new exploration program based on close similarities between the geology of the Dolly Varden and Eskay Creek properties. The results confirmed that the past silver mining was done within the silver-rich periphery of very extensive volcanicexhalative formations. This new focus in exploration has targeted a massive sulfide deposit which contain zinc, lead, silver and appreciable gold, copper and cadmium.

There is no record of systematic work previously performed on the subject claims. However, the Kinskuch Lake area is prospective and positive results obtained in the Kitsault Valley area by various companies provide incentive to conduct further exploration work on this property.

REGIONAL GEOLOGY AND MINERALIZATION

The property lies within the western margin of the Intermontane Tectonic Belt, close to its boundary with the Coastal Crystalline Tectonic Belt. The geology of this area (Fig. 4) has been studied by many geologists including Hanson (1921, 1928), Black (1951), Campbell (1959), Devlin and Godwin (1986), Dawson and Alldrick (1986), Alldrick et al. (1986), and Alldrick (1989).

The western portion of the Intermontane Belt is formed by the Stikine Terrain. During the Late Triassic this Terrain was the site of active volcanism which resulted in the deposition of calc-alkaline plagioclase rich andesitic sequences along with sediments, which collectively form the Upper Triassic Stuhini Group.

The Stuhini Group grades into Lower Jurassic Hazelton Group which underlies the Kin property. The Hazelton Group is comprised of four formations, namely, the Unuk River, Betty Creek, Mount Dilworth and Salmon River (Alldrick 1989, Anderson and Thorkelson 1990). The Lower Jurassic strata exposed along the western edge of the Bowser Basin has been named the Stewart Complex (Grove, 1986). The Stewart Complex is well known as the setting for the Iskut, Sulphurets, Stewart and Kitsault (Alice Arm) gold-silver mining camps.

The Kitsault Valley volcanic and sedimentary rocks from the Hazelton Group were deposited in an active volcanic environment. A sedimentary sequence of probable Middle Jurassic age overlies the volcanic-sedimentary assemblage. The entire Jurassic section has undergone greenschist facies metamorphism.

Lower sedimentary unit (Map unit 1 - Fig. 4) is a thick sedimentary formation consisting of interbedded, finely

laminated black siltstone, argillite and minor wacke. Rare sills or flows of porphyritic basalt and porphyritic andesite occur within the unit. The thick package of thinbedded clastic rocks represents a flysch type of depositional environment.

The mafic volcanic unit (map unit 2) is represented by a mixed sequence of porphyritic basalt flows, pillowed flows, basaltic pyroclastic rocks, volcanic breccias and epiclastic conglomerates with minor interbedded siltstone, argillite and limestone. These rocks represent a period of subaqueous basaltic volcanism followed by erosion and deposition of sediment derived from the basaltic flows and tuffs. The middle sedimentary unit (map unit 3) is a sequence of interbedded siltstone, sandstone and grit polymictic conglomerate (at the top).

The intermediate volcanic unit (map unit 4) consists dominantly of andesitic pyroclastics with flows or subvolcanic sills of similar composition. Minor interbeds formed by epiclastic sedimentary rocks, argillite, are limestone, sandstone, chert and barite. These sedimentary rocks represent brief periods of quiescence during andesitic activity pyroclastic in a predominantly subaqueous environment.

The Hazelton Group rocks of the Kitsault Valley are intruded by the Tertiary Coast Range Batholith, Alice Arm Intrusions (Early to Middle Eocene) and numerous microdiorite to lamprophyre dykes or sills. These dykes are the youngest intrusive rocks in the area (Eocene or younger). Northwest and northeast trending faults transect the area, with small displacements on a regional scale.

Three doubly plunging folds have been defined within the discussed area - the Varden Glacier anticline, the Kitsault River syncline and the Mount McGuire anticline.

MINERALIZATION

The majority of mineral deposits of the Stewart Gold Camp area can be classified under three deposit types:

- Alkalic copper-gold porphyry deposits, similar to Galore Creek Camp and containing significant gold content.

- Gold-silver vein and stockwork deposits. The high grade veins are within the Lower Jurassic Hazelton volcanics (i.e. Premier, Snip and Sulphurets)

- Gold-silver-zinc volcanic exhalative deposits

This type is found in the newly discovered, rich Eskay Creek deposit within the upper section of the Lower Jurassic volcanic-arc assemblage. To date, the only other volcanic exhalative deposits in the same stratigraphic setting are those of the upper Kitsault Valley (the Dolly Varden, North Star, Torbrit and Wolf deposits).

Most mineral occurences in the Kitsault Valley area are hosted within volcanic rocks and have been described as silver-rich quartz-barite mineralization and disseminated copper-gold mineralization (Dawson, Alldrick 1986).

Silver-rich quartz-barite-jasper sulphide zones occur along the axis and east limb of the Kitsault River syncline. Mineralization is represented by mesothermal to epithermal veins, deposited during folding in fractures and faults, developed parallel to the axial surfaces of the folds (Campbell 1959). These mineralized zones have economic importance and they include the Dolly Varden, North Star, Torbrit and Wolf mines.

Galena, sphalerite, pyrite, chalcopyrite, tetrahedrite, pyrargyrite and native silver occur as disseminations and pods within the zones.

Disseminated copper-gold mineralization occur within andesitic/dacitic pyroclastics along the upper contact of a

feldspar and/or hornblende porphyritic flow or subvolcanic sills. Showings within the "Copper Belt" are characterized by disseminations and stringers of pyrite and chalcopyrite with locally significant gold and silver values. Alteration is extensive along the contact and in the surrounding feldspar porphyry and pyroclastic rocks. Alteration consists of strong silicification, chloritization and sericitization. Veins are generally small, discontinuous and randomly oriented, without significant economic values.

There are two mineral showings on Basin group of claims. A shear zone from Basin 1 claim is 2 to 8 meters wide and has been traced by a series of trenches and pits for 200 meters. The zone strikes north-northeast, dips steeply east and is hosted in argillite, shale, siltstone and sandstone. The zone carries low grade mineralization represented by disseminations, blebs and veinlets of pyrite, chalcopyrite and tetrahedrite with sporadic malachite and azurite in a gangue of grey quartz and calcite.

About 600 m northeast (Basin 2 claim), a quartz-calcite breccia zone has been traced for 16.8 m in a trench and 4 m in an adit. This zone strikes northeast, dips gently northeast and is 1m wide. A sequence of feldspar volcanic porphyry, argillite and sandstone form the footwall. The breccia zone is mineralized with disseminated and veinlets of pyrite, chalcopyrite, tetrahedrite and arsenopyrite in

gangue of quartz, calcite and brecciated wall rock. A small lens (0.15 m \times 1.0 m) of massive tetrahedrite and arsenopyrite occurs on the top of the breccia.

PROPERTY GEOLOGY

The Kin 1-6 claims are underlain by a sequence of sediments and volcanics of Lower to Middle Jurassic age.

Prospecting and limited geological mapping of the Kin property was conducted during August 1990 by Hi-Tec Resource Management Ltd. The oldest rocks on the property occupy the core of Mt. McGuire anticline (Fig. 4,6). They are represented by a sequence of interbedded black siltstones and shales, argillites, with brown weathering grey arenites and minor limestones. Some of the shales are calcareous. Numerous, small scale, parallel bedded, quartz-carbonate filled shears, are exposed within the black siltstones. Well bedded, aphanitic to fine grained maroon or grey/green tuffaceous andesite and hornblende porphyritic andesite are present in the lithology. In places where the volcanics are crosscut by quartz veinlets or veins, disseminations and small blebs of pyrite are visible.

Below the tree line dense vegetation together with overburden and steep slopes makes it very difficult to

define the lithology of this formation. A mixed sequence of volcanic and epiclastic rocks form limbs on either side of the axis of the Mt. McGuire anticline. They conformably overlie the sedimentary formation and form the most abundant rock type in the property area.

The lithology is dominated by augite, feldspar and olivine porphyritic basaltic flows, maroon, dense to amygdaloidal olivine basalt, pyroclastics andesite lava and derived conglomerates. Basalt flows are grey-green with the augite phenocrysts up to 2cm in size and outcrops of green pillowed lava is exposed along the eastern side of the Basin claims (Cavanagh 1983).

Dark grey/green andesitic and basaltic conglomerate and breccia are typical for the unit. Clasts are rounded to subangular, matrix supported and dominated by porphyritic basalt and andesite with some black chert, feldspathic greywacke and felsic volcanic fragments. The matrix consists of black volcanic silt to sand-size grains.

Andesitic volcanics are commonly mineralized with up to 5% finely disseminated pyrite and occasional chalcopyrite (1-2%). Sulfide mineralization also occurs in quartz carbonate veins and breccia/shear zones and is represented by disseminations, small blebs and stringers of pyrite, chalcopyrite and malachite.

Major, structurally controlled quartz vein up to 3m wide strikes approximately 320⁰/85E and is situated at the southern part of Kin 4 claim area (samples 4019, 4020, 4022, 9017-18 to 9017-21). Anomalous Au values of 280 ppb (sample 9017-21) were recorded from a rock chip sample of a 0.5m quartz vein adjacent to the main vein (fig. 6).

A discontinuous, orange weathering, quartz-calcite breccia zone is outcroping in the northern part of the property, between Kin 3 and Kin 6. The total length of the zone is over 300 m striking about SW-NE. The zone is dipping 25° north and is bounded by basalt porphyry and basalt conglomerate. Weak mineralization was observed as disseminated pyrite (1-2%) and sporadic malachite stains. Values at 30 ppb Au (sample 4033), 370 ppm and 200 ppm Cu (samples 4036, 4037) were recorded in grab samples from the Small to medium size orange gossans are breccia zone. common and they show minor, but ubiquitous disseminated Alteration is extensive and consits of strong pyrite. silicification and chloritization.

The younger unit which forms east and west limbs of the Mt. McGuire anticline is a sedimentary and volcanic sequence of siltstone, wacke, pebble conglomerate and volcanic breccia. Grey and marcon massive volcanic breccia is the major component of the unit and can be seen in outcrops on the Kin property. Massive and poorly sorted pebble to boulder

volcanic conglomerate and breccia contain matrix supported grey, green and purple clasts of feldspar hornblende andesite and augite porphyritic basalt. Siltstones, sandstones and limestones are intercalated within the breccias. Lenses or larger individual flows of aphanitic to porphyry andesite and tuff andesite are common in the lithology.

Numerous minor faults, breccia zones and quartz veins were mapped in the unit. Disseminated pyrite with minor chalcopyrite and arsenopyrite is evident within the felsic volcanics and quartz veins over the area.

In the most western part of the Kin 5 claim outcroping rocks are represented by intermediate volcanics. These are grey/green andesitic pyroclastics and massive fine to medium-grained feldspar/hornblende porphyritic andesites. Siltstone, limestone, grey chert and barite form beds and lenses within the andesite sequence. Mineralization consists of weak disseminations and stringers of pyrite with traces of chalcopyrite and sphalerite. Strong silica and chlorite alteration is visible in many places.

The structural regime of the Kin area is dominated by a series of east-west, southwest-northeast and northwestsoutheast trending faults. The nature and magnitude of the displacements has not been ascertained.

PROPERTY GEOCHEMISTRY

The 1990 field program was conducted between August 10 and August 24, 1990. The work consisted of two contour soil sampling lines at approximately 4000 ft. (Fig. 6). Soil samples were taken at 25 meter intervals from the "B" horizon, where developed (generally from depths of 20-30 cm), and placed in numbered kraft paper bags. A total of 80 soil samples were taken from the property during the fieldwork. The bulk stream samples (11) and silt samples (14) were taken on the claims to sample the major drainages.

Rock samples were collected during the course of the geological mapping and prospecting program. A total of 83 rock samples were taken.

The sample description and analytical data are presented in Appendices II and III respectively.

DISCUSSION OF RESULTS

The highest Au value of 790 ppb was recorded in sample 9017-4 of a weathered limestone from a small gossanous zone adjacent to the major fault, striking NE-SW (about 600m north-east of the Basin claim group). Another grab sample from the same fault area yielded an anomalous gold value of 260 ppb (9017-5). Sample 9017-21 yielded a gold value of 280 ppb and was taken from a quartz vein oriented (NW-SE) about 100 m southeast of the Basin area. Eleven of the rock grab samples yielded gold values between 30 ppb and 170 ppb. Four of the rock samples yielded silver values exceeding A highly anomalous silver value of 270 ppm was 7ppm. recorded in sample 4045. This sample was taken from a quartz lens (30cm x 15cm) hosted in dark silicious andesitic rock. This sample is also highly anomalous in copper (14000 pm), arsenic (770 ppm) and antimony (2600 ppm). Seventeen samples yielded arsenic values exceeding 50 ppm. The highest value 1300 ppm, was recorded in sample 9017-5. This sample was also anomalous in gold and copper. Twenty nine samples yielded copper values exceeding 100 ppm. A very anomalous copper value of 14000 ppm was recorded in sample 4045. Twenty three samples yielded antimony values exceeding 20 ppm. The highest antimony value of 2600 ppm was recorded in sample 4045. Anomalous barium values are associated with quartz-carbonate-barite breccia zones and veins, hosted within volcanic rocks. The highest barium

value of 1300 ppm was recorded in sample 9017-17. Zinc values over 300 ppm were recorded in five samples. The highest value, 4000 ppm was obtained in sample 4001. Two samples yielded lead values exceeding 50 ppm - sample 4001 (65 ppm) and sample 9017-24 (400 ppm).

Four soil samples taken east and north of the Basin showings returned anomalous gold values over 20 ppb, with one 140 ppb. Anomalous stream sediment samples (four) were taken west of Kinskuch Lake and along the creek on Kin 6 claim. Anomalous copper values were recorded in 68 of the soil/silt samples. Highly anomalous value of 290 ppm was noted in sample KS101. The best copper value in silt samples yielded 85 ppm (SS.1).

Anomalous arsenic values were recorded in 42 of the soil/silt samples. The highest value 640 ppm was obtained in soil sample KS145. Eight soil samples and five stream sediment samples yielded zinc values exceeding 100 ppm. The highest value of 300 ppm was recorded in silt sample SS.1.

REFERENCES

- Alldrick D.J. (1989) Volcanic Centres in the Stewart Complex (103P and 104 A,B) B.C. Ministry of Energy, Mines and Petroleum Resources. Geological Field work 1988, Paper 1989-1 pp. 233-240.
- Alldrick D.J., Dawson G.L., Bosher J.A. and Webster I.C.L. (1986) - Geology of the Kitsault River Area NTS 103 P. Open File Map 1986/2 (1:50,000) B.C. Ministry of Energy, Mines and Petroleum Resources.
- Anderson R.G., Thorkelson D.J. (1990) Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia in: Current Research, Part E, Geological Survey of Canada, Paper 90-1F pp. 131-139.
- Black J.M. (1951) Geology and Mineral Occurences of the Upper Kitsault Valley. B.C. Ministry of Energy, Mines and Petroleum Resources Bull. 64
- Campbell F.A. (1959) The Geology of the Torbrit Silver Mine. Econ. Geol., vol. 54 pp. 1461-1495
- Cavanagh R. (1983) Prospecting Report on Basin Property. Basin 1,2,3, Botan 1 and 2 claims Skeena Mining Division 103P/11W Lat. 55° 40'N; Long. 129° 27'W Nor-Con Exploration Ltd. Private Report.
- Dawson G.L., Alldrick D.J. (1986) Geology and Mineral Deposits of the Kitsault Valley (103P/11,12) B.C. Ministry of Energy, Mines and Petroleum Resources. Geological Field work 1985, Paper 1986-1 pp. 327-330.
- Hanson G. (1921) Upper Kitsault Valley, British Columbia Geological Survey Canada, Summary Report Part A pp. 7-21.
- Hanson G. (1928) Mineral Deposits of Alice Arm District Geol. Survey Canada, Summary Report Part A p. 27.
- Gledhill T. (1965) Geophysical Report on Basin and Silver Basin Claim Groups 12 miles north of Alice Arm (103P/11W). Scope Mining and Exploration Consultants Ltd., Private Report.
- Grove E.W. (1986) Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area B.C. Ministry of Energy, Mines and Petroleum Resources, Bull. 63, 152 Pages.

APPENDIX I

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Darius J. Osijuk of the Province of British Columbia, hereby certify that:

- 1. I am a Geologist employed by Hi-Tec Resource Management Ltd. at 1500 - 609 Granville Street, Vancouver, B.C.
- 2. I graduated with a M.Sc. in Geology from the University of Warsaw, Poland (1964) and I hold a Ph.D. in sedimentary Geology (1975) from the same University.
- 3. I am a Fellow of Cordilleran Section Geological Association of Canada and of the Canadian Society of Petroleum Geologists.
- 4. I have been practising my profession as a Geologist in Europe, West Africa and Canada since 1964.
- 5. This report is based upon a thorough review of published and printed reports and maps on the subject property and the surrounding area. I have worked on the property personally.
- 6. I have no interest in the Kin 1,2,3,4,5 and 6 claims described herein, nor in securities of any company associated with the property, or in any property within a 10 km radius of the claims, nor I expect to receive any such interest.
- 7. I consent to the use of this report in a Prospectus of Statement of Material Facts for the purpose of private or public financing.

Dated in Vancouver, British Columbia, this 10th day of October, 1990

Darius J. Osijuk, Ph.D. F.C.S.P.G., F.G.A.C.

APPENDIX II

SAMPLE DESCRIPTIONS

<u>Kinskuch Project - 90BC017</u> For Adrian Resources

Description of samples taken by Darius Osijuk

4001 Grey, crystalline brecciated limestone, interbedded with black siltstone and ·. • carbonatized breccia. Minor andesitic volcanics. Shear zone with chlorite alteration along slickensides. Disseminated pyrite 1-2% with some sphalerite. Grab sample.

4002 Grey-greenish andesitic volcanic rock. Generally rusty weathering. Disseminated pyrite <2%. Grab sample.

4003 Black siltstone, horizontally laminated with graded bedding. Fine disseminated pyrite <1%. Strong rusty weathering. Float sample.

- 4004 Fine laminated black siltstone and brecciated andesitic volcanic. Siltstone forms intercalations within the breccia. Weak disseminated pyrite 1-2%. Float sample.
- 4005 White plastically deformed chert layer (up to 10 cm thick) within the greygreenish andesitic rock. Rusty weathering. Grab sample.
- 4006 Grey-greenish andesite pyroclastic rock strongly fractured. Some chlorite alteration. Disseminated pyrite 1%. Grab sample.

4007 Grey-purple volcanic breccia with minor irregular quartz veins (2-3cm thick). Strong rusty weathering throughout. Grab sample.

4008 Quartz vein (300⁰/58N) brecciated with hematitic stains hosted in purple massive volcanic breccia and greenish andesite volcanic rock. Grab sample.

4009	Grey-greenish andesitic pyroclastic rock with manganese and limonitic stains. Disseminated pyrite <1%. Gossan zone, fault controlled?
4010	Silicious andesitic volcanic rock within basaltic conglomerate. Irregular, brecciated quartz veins (up to 5-10cm thick). Disseminated pyrite 1%. Strong rusty weathering. Grab sample.
4011	Andesitic volcanic rock within basaltic conglomerate. Strong limonitic staining. Disseminated pyrite 1%. Grab sample.
4012	Silica altered andesitic rock and white, milky quartz vein (10cm thick). Weak disseminated pyrite <1%. Grab sample.
4013	Grey, fine grained to porphyrytic andesitic volcanic rock, hosted in basaltic conglomerate. Fractured, with quartz vein 350 ⁰ /90 up to 8cm thick, Fine disseminated pyrite 1-2%. Grab sample.
4014	Greenish, fine grained andesitic volcanic in basaltic conglomerate. Intense bleaching on the surface. Disseminated and small blebs of pyrite 5%. Strong hematitic staining. Grab sample.
4015	Grey-greenish andesitic volcanic, bleached on the surface with strong hematitic stains. Disseminated pyrite 5%. Grab sample.
4016	Grey-greenish andesitic volcanic flow, bleached on the surface. Strong hematitic stains throughout. Disseminated pyrite 5%. Grab sample.

.

Grey-greenish fine grained, andesitic 4017 flow within massive basaltic conglomerate. Outcrop bleached on the surface and display strong hematitic staining. Disseminated pyrite, chalcopyrite? 2-4%. Grab sample. Dark grey andesitic volcanic rock in 4018 basaltic conglomerate host rock. Disseminated pyrite, chalcopyrite (<4%) weak malachite stains. Rusty weathering throughout. Grab sample. Dark grey andesitic volcanic flow in 4019 basaltic conglomerate. Intense silification and quartz veining. Disseminated pyrite and chalcopyrite <5%. Generally rusty weathering. Grab sample. Quartz vein 320⁰/85E. 4020 Grey-purple feldspar, augite porphyry basalt flow. Strong silica alteration and quartz veins. Disseminated pyrite and chalcopyrite? <4%. Rusty weathering. Float sample. Strongly silicified andesitic volcanic 4021 in basaltic conglomerate. Disseminated pyrite <3%. Strong hematitic stains throughout. Grab sample. 4022 White brownish crystalline quartz vein Disseminated pyrite and (2-3m wide) chalcopyrite <2%. Fault controlled quartz vein 320°/90. Talus, float sample. 4023 Dark grey augite porphyry basalt. Augite phenocrysts set in a glassy groundmass. Strong silica alteration. Disseminated pyrite 3%. Rusty weathering. Grab sample. Light grey hornblende, porphyrytic 4024 andesite with weak disseminated pyrite Rusty weathering throughout. 1%. Grab sample.

4025 Aphanitic to porphyritic silica altered porphyry andesite. Small irregular veins. Dissemination quartz and veinlets of pyrite, chalcopyrite <5%. Rusty weathering. Grab sample. 4026 Grey andesitic volcanic rock, silicified with disseminated pyrite <1%. The outcrop rock is bleached with hematitic stains. The host rock is basaltic conglomerate (030/42E) Grab sample. 4027 Light grey porphyrytic andesite with fine disseminated pyrite <2%. Strong hematitic staining along the gossanous zone (80m long, 10m wide - strike, 135°). Grab sample. Brecciated 4028 quartz-carbonate black siltstone. Strong silica alteration calcite and quartz with veinlets. Disseminated pyrite 1%. Rusty weathering. Grab sample Grey carbonatized andesitic breccia with 4029 small clasts of black siltstone. Disseminated pyrite <1%. Generally rusty weathering. Grab sample. Light grey, cherty andesitic volcanic 4030 rock. Irregular guartz and calcite small veins. Disseminated pyrite <2%. Rusty weathering. Grab sample. Light grey silica altered andesitic 4031 volcanic along the fault contact with black siltstone. Weak disseminated pyrite <1%. Intense rusty weathering. Grab sample. Grey silica altered andesitic volcanic 4032 rock - fine grained and porphyritic in places. Irregularly disseminated pyrite 1%. Small quartz and calcite veinlets. Rusty weathering. Grab sample.

Quartz-calcite breccia zone. Weak blebs 4033 of pyrite <1%. Rusty weathering. Grab sample. 4034 Ouartz-calcite breccia zone. Weak disseminated pyrite <1%. Grab sample. 4035 Quartz-calcite breccia zone. Coarse crystalline quartz and microcrystalline variety - chalcedony. Rusty weathering throughout. Grab sample. 4036 Quartz-calcite breccia zone. Disseminated pyrite <1% and sporadic malachite stains. Grab sample. 4037 Quartz-calcite breccia zone. Weak disseminated pyrite <1%. Rusty weathering. Grab sample. The breccia zone is bounded by dark basalt porphyry and basaltic breccia. 4038 Silica altered grey basalt olivine porphyry. Irregular calcite and quartz veinlets. Disseminated pyrite and chalcopyrite? <1%. Strong hematitic staining. Grab sample. 4039 Brecciated quartz vein in andesitic volcanic. Weak disseminated pyrite <1%. Rusty weathering throughout. Grab sample. 4040 Grey silica altered, andesitic volcanic Weak disseminated pyrite <1%. rock. Generally rusty weathering. Grab sample. 4041 Grey andesitic volcanic rock with weak disseminated pyrite 1%. Strong silica alteration and irregular quartz veins. 4042 Grey-greenish porphyrytic or fine grained andesitic volcanic flow in horizontally laminated cherty, black siltstone and argillite. Disseminated pyrite 1%. Rusty weathering throughout. Grab sample.

4043 Brecciated quartz zone with andesitic and black argillite clasts - tectonic breccia? Small blebs and veinlets of pyrite (1%). Rusty weathering. Grab sample. 4044 Dark grey andesitic volcanic within silicified black siltstone/argillite. Strongly folded quartz viens. Disseminations and veinlets of pyrite and chalcopyrite (1-2%). Grab sample. 4045 Quartz lens (30cm x 15cm) in dark grey andesitic volcanic rock. Small blebs of pyrite, chalcopyrite and stains of malachite, azurite and sphalerite (?). Grab sample. 4046 Grey-greenish andesitic volcanic with weak disseminated pyrite <1%. Irregular quartz veins and rusty weathering. Grab sample. 4047 White grey quartz vein (18cm wide) - A-340°/dipping steeply E, in silicified andesitic volcanic. Sporadic small blebs of pyrite. Chip sample over 18cm. 4048 White grey quartz vein (36 cm wide) with small blebs and veinlets of pyrite. Strong malachite and azurite staining. Chip sample over 36 cm. Quartz vein - 15cm wide, slightly folded 4049 with andesitic volcanics. Mineralization as veinlets of pyrite (1%) and weak malachite staining. Chip sample over 15cm. 4050 Silicified light grey hornblend andesite porphyry with irregular quartz veins (0.5 - 2cm in size). Disseminated pyrite 1%. Grab sample. 4051 Grey andesitic volcanic flow within the black siltstone/shale unit. Quartzcarbonate veins up to 20cm in size. Disseminated pyrite <1%. General rusty weathering. Grab sample.

Light grey andesitic volcanic flow within black siltstone/argillite, folded unit. Disseminated pyrite <1%. Rusty weathering Grab sample.

4052

Description of Samples taken by Raul Verzosa

- 9017 1 Grey andesite tuff with minor quartz veinlets and fracture calcite fillings. Weak disseminated pyrite. Gossanous zone. Grab sample.
- 9017 2 Grey and rusty andesite tuff. No visible sulfides. Grab sample.
- 9017 3 Fine grained rusty weathering andesite. Disseminated pyrite <1%. Grab sample.
- 9017 4 Wheathered, soft and friable limestone. Strong limonitic alteration. No visible sulfides. Grab sample.
- 9017 5 Andesite tuff in gossan area. Chlorite alteration along fractures in shear zone, parallel to gully. Minor disseminated pyrite. Grab sample.
- 9017 6 Grey-greenish andesite flow, silica/chlorite alteration. Minor disseminated pyrite. Grab sample.
- 9017 7 Grey andesite volcanic with minor, irregular quartz veinlets. Weak, disseminated pyrite. Grab sample.
- 9017 8 White, milky quartz with traces of pyrite. Float sample.
- 9017 9 Grey-greenish andesite flow with disseminated pyrite <1%/ Grab sample.
- 9017 10 Rusty weathered andesite tuff (gossan) with intense limonitic stains and traces of pyrite. Grab sample.
- 9017 11 Rusty weathered andesite tuff in shear zone up to 2m wide. Weak, disseminated pyrite <1%. Grab sample.
- 9017 12 Rusty weathered andesite tuff in samll shear zone. Strong limonitic stains. Grab sample.

- 9017 13 Rusty weathered silicious andesite. Weak, disseminated pyrite <1%. Grab sample.
- 9017 14 Rusty weathered andesite from gossan (>200m x 20m). Minor irregular quartz veinlets and weak pyrite 1%. Grab sample.
- 9017 15 Grey, rusty weathered andesitic volcanic. Strong limonitic stains and disseminated pyrite 1%. Gossan zone. Grab sample.
- 9017 16 Grey-greenish andesitic volcanic, rusty weathered with weak pyrite <1%. Gossan zone. Grab sample.
- 9017 17 White quartz with traces of pyrite and rusty stains. Float sample.
- 9017 18 White, milky quartz vein (1.5m wide) hosted in dark grey andesitic volcanic flow. Strong limonitic/hematite staining. Fault controlled quartz vein 320⁰/85E. No visible sulfides. Grab sample.
- 9017 19 Quartz vein as above 20m downhill (NW). Intense limonitic stains, no visible sulfides. Grab sample.
- 9017 20 Quartz vein as above 60m downhill (NW). No visible sulfides. Grab sample.
- 9018 21 Smaller quartz vein (0.5m wide) parallel to the above. No visible sulfides. Chip sample over 0.8m.
- 9017 22 Heavily oxidized silicious andesite boulder. Disseminated and blebs of pyrite 40%. Float sample (talus).
- 9017 23 White quartz vein (up to 0.5m wide) hosted in silicious andesitic flow. No visible sulfides. Grab sample.

- 9017 24 Quartz vein in brecciated andesitic volcanics. Clasts of oxidized and calcareous volcanics cemented by silica. No visible sulfides. Grab sample.
- 9017 25 Strongly oxidized silicious andesite boulder. About 10% of pyrite as disseminations and veinlets. Float sample.
- 9017 26 Quartz vein (up to 10cm wide) in black carbonaceous argillite showing rust staining. Veining is parallel to bedding in sediments. No visible sulfides. Grab sample.
- 9017 27 Quartz vein (10cm wide) in black argillite. Intense rust staining in places, weak disseminated pyrite? Grab sample.
- 9017 28 Quartz vein (10cm wide) hosted in black argillite, parallel to the bedding. Rusty weathering, no visible sulfides. Grab sample.
- 9017 29 Quartz vein in black carbonaceous argillite. Vein is up to 1m wide and is brecciated with clasts of rusty argillite. Grab sample.
- 9017 30 Quartz vein (10cm wide) in black argillite/mudstone. Weak disseminated pyrite 1-2%. Grab sample.
- 9017 31 Quartz vein (30cm wide) in grey-black siltstone/argillite. Limonitic stains throughout, no visible sulfides. Grab sample.

APPENDIX III

ANALYTICAL DATA

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S1154

INVOICE #: 15894 P.O.:

SAMPLE(S) OF Bulk

D. Osijuk Project: 90-BC-017

Hi Tec Resources **REMARKS:**

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Oct 29/90

SIGNED _

1 of 1 Page

Oc	t. 29 ′90) 15	:10 0000 TS	L LABOR	RATORIES	306-242-	4717
- 175							
		LAR	ORATORIES				
Street P	, - .		2-302-48TH STR	ET SAGRATOON			
						57K 6A4	(
					6) 931 - 1033 06) 242 - 4717		
(gni)iter			I.C.A.P. PLASMA	TAN			
			1.U.H.F. FUHDRA (a-Rebia Digestion		
,erres					• •		
	PRIME EXPLORATI 10th Ficor Box						T No. : 5 - 1154 - 2
	808 West Hastin					T.S.L. File T.S.L. Invoice	No. : 8009MF No. : 15894
gaz nju.	Vancouver B.C.	V6C 2X6					
	ATTN: J. FOSTE	R	PROJECT: 90-BC-017	HI- TEC RES	JURCES	ALL RE	SULTS PPM
(1997)			7	8	9	11	12
	ELEMENT		·	-	,	14	12
peters.	Aluminum	[1]	E364	5/66	(700	5564	
	AIUMIRUM Iron	[A]] [Fe]	5800 21 <i>0</i> 00	2600 160000	6700 120000	2860 83009	4200 32000
	Calcium	(Ca)	2200	4300	5600	6000	3200
-	Magnesium		4100	1600	£100	2600	3400
	Sodium	[Na]	120	50	300	60	50
	Potassium	CK 1	230	210	640	160	150
	Titanium	ETi I	350	96	460	120	240
	Hanganese		280	370	470	280	260
	Phosphorus		310	1960	980	2460	860
20- 1 74	Barium	[Ba]	45	4	18	5	65
	Chromium	[[r]]	34	16	26	34	38
	Zirconium Copper	[Zrl (Cu)	4 47	15 450	2	4	3
and 201	Nickel	[Ni]	47 14	450 150	349 110	330 57	110 24
	Lead	(Pb)	7	80	46	26	
	Zinc	[[2n]	42	1100	770	700	14 61
	Vanadium	[V]	47	2	44	25	44
	Strontium	[Sr]	11	36	54	73	23
	Cobalt	[Ca]	Ģ	50	42	16	11
s.(genili	Molybdenum		< 2	26	8	10	2
	Silver	[Âg]	< 1	2	÷ 2	1	K 1
	Cadmium	[Cd]	< 1	10	8	7	< 1
-	•	[Be]	< 1 2 44	1	< 2		$\langle 1 \rangle$
		(B) [Sb]	< 10 ≺ 5	< 10 10	< 20	< 10 10	< 10
	•	[Y]	2	10	10 10	40 10	10 4
		(Sc)	4	2	4	3	4
1.00 m		E# 2	< 10	< 10	< 20	30	< 10
		[Nb]	. 10	< 10	< 20	< 10	< 10
		(Th)	< 10	70	160	40	č 10
-10-40		(As]	30	490	290	189	50
		[Bi]	< 5	75	< 10	C <u>5</u>	K 5
		{Sn}	: 10	< 10	< 20	< 10	20
- Andreco		ELi]	5	< 5 AD	< 10	< 5	< 5
	Holaiua	(Ho]	< 10	40	< 20	< 10	< 10

DATE : 001-11-1990

P. 5

P. 4

T S L LABORATORIES

-

2-302-48TH STREET, SASKATOON, SASKATCHEMAN S7K 6A4 TELEPHONE #:(306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASHA SCAN

Aqua-Regiz Digestion

808 West Hastin	gs St.			T.S.L. File No. : M - 8222 T.S.L. Invoice No. : 15894						
PRIME EXPLORATION LTD 10th Floor Box 10 BOB West Hastings St. Vancouver B.C. V6C 2) ATTN: J. FOSTER ELEMENT Aluminum [A1] Iron [Fe] Calcium [Ca] Magnesium [Mg] Sodium [Na] Potassium [Mg] Sodium [Na] Potassium [K] Titanium [Ti] Manganese [Mn] Phosphorus (P] Barium [Ba] Chromium [Cr] Zirconium [Cr] Zirconium [Cr] Zinc [Cn] Vanadium [V] Strontium [Sr] Cobalt [Co]		PROJECT 90-80-017	HI-TEC RESOL	RCES	ALL RESULTS PPM					
		1	2	3	4	5				
ELEMENT										
Aluminum	{A11	9100	6500	8100	7200	6800	41			
Iron	[Fe]	180000	20000	94000	730 00	76000	47(
Calcium	(Cal	12000	3900	10000	6600	3500	11			
Maonesium	[10]	6200	42(x)	5500	4600	3900	3			
		100	120	150	70	80				
Potassium	EK I	450	230	450	270	250				
		530	510	1500	726	770				
	[Mn]	1300	600	790	493	420	:			
		4600	9 70	3800	2400	780				
		170	61	330	66	58				
		70	34	85	40	32				
Zirconium	[77]	5	÷	5.0	á	6				
		490	99	140	120	150				
		50	24	53	43	24				
		270	21	93	29	21				
	EZn I	590	5G	210	ól	47				
		250	130	160	16Û	170				
		80	26	85	45	29				
Cobalt	(Co)	55	14	28	26	19				
Molvodenum		10	4	10		4				
Silver	(Ag)	e,	: 1	< 2.5	< 1	< 1	<			
Cadmium	[63]	< 5	< 1	2.5		< 1	•			
	(Be]	< 5	< 1	< 2.5	: 1	< 1	<			
-	[B]	< 50	< 10	(25	< 10	19	- È			
	(56)	< 25	: 5	13	10	5	•			
•	EY 1	20	6	19	11	5				
	(Sc)	Ę	4	5.0	7	4				
	[#]	: 50	× 16	< 25	< 10 -	< 10	<			
	EN63	< 50	< 10	< 25	< 10	< 10	ţ			
	£Th]	< 50 < 50	50	< 25	40	30	,			
	Ensi [As]	930 	4Ú	130	120	70	E			
	(Bi)	< 25	< 5	< 13	5	< 5	t (
	[E1]	× 25 350	10	25			``			
				25 < 13	< 10 < 5	< 10 < 5	<			
Lithium	(Li)	< 25	< 5	< 13	< J	1 v	· ·			

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S9816

INVOICE #: 15171 P.O.: R-2446

SAMPLE(S) OF ROCK

V. Kuran, D. Osijuk Project 90BC017

REMARKS: Hi-Tec Resource Management

	Au ppb
4001	10
4002	<5
4003	<5
4004	<5
4005	<5
4006	<5
4007	5
4008	10
4009	<5
4010	15
4011	<5
4012	5
4013	<5
4014	<5
4015	10
4016	5
4017	10
4018	5
4019	5
4020	10
COPIES TO: INVOICE TO:	-

Sep 05/90

Bernie SIGNED Page 1 of 5

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S9816

INVOICE #: 15171 P.O.: R-2446

SAMPLE(S) OF Rock

V. Kuran, D. Osijuk Project 90BC017

REMARKS: Hi-Tec Resource Management

	Au ppb		
4021 4022 4023 4024 4025	10 <5 35 10 5		
4026 4027 4028 4029 4030	15 <5 10 <5 <5		
4031 4032 4033 4034 4035	<5 <5 30 <5 <5		
4036 4037 4038 4039 4040	<5 <5 <5 <5 <5		
COPIES INVOICE		Idziszek, me – Vanco	

Sep 05/90

Bernie Or SIGNED 2 of 5 Page

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEVIAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

SAMPLE(S) OF Rock

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S9816

INVOICE #: 15171 P.O.: R-2446

V. Kuran, D. Osijuk Project 90BC017

REMARKS: Hi-Tec Resource Management

		Au ppb		
4041 4042 4043 4044 4045		<5 <5 <5 <5 30		
4046 4047 4048 4049 4050		<5 <5 <5 5 <5		
4051 4052 9017-1 9017-2 9017-3		<5 <5 50 25		
9017-4 9017-5 9017-6 9017-7 9017-8		790 260 10 10 5		
COPIES INVOICE	то: то:		[dziszek ne – Var	

Sep 05/90

SIGNED

Beinie a CTA Page 3 of 5

ſ

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

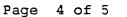
Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S9816

INVOICE #: 15171 P.O.: R-2446

SAMPLE(S) OF Rock

V. Kuran, D. Osijuk Project 90BC017


REMARKS: Hi-Tec Resource Management

	Au ppb
9017-9	5
9017-10	<5
9017-11	<5
9017-12	30
9017-13	35
9017-14	<5
9017-15	55
9017-16	10
9017-17	<5
9017-18	10
9017-19	5
9017-20	<5
9017-21	280
9017-22	15
9017-23	<5
9017-24	<5
9017-25	110
9017-26	15
9017-27	80
9017-28	20
COPIES TO	: C. Id

C. Idziszek, J. Foster COPIES TO: INVOICE TO: Prime - Vancouver

Sep 05/90

Burnie Our SIGNED

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 37K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S9816

INVOICE #: 15171 P.O.: R-2446

SAMPLE(S) OF Rock

V. Kuran, D. Osijuk Project 90BC017

REMARKS: Hi-Tec Resource Management

Au ppb 9017-29 50 9017-30 170 9017-31 10

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Sep 05/90

.

Reine Que SIGNED 5 of 5 Page

TSL LABORATORIES DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET. EAST SASKATOON. SASKATCHEWAN S7K 6A4 Ø (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St Vancouver, B. C. V6C 2X6

REPORT No. S9859

INVOICE #: 15277 P.O.: R-2447

SAMPLE(S) OF Silt

V. Kuren, D. Osijuk Project 90BC017

REMARKS: Hi - Tec Resources

			Au ppb	
KS KS KS	101 102 103 104 105		<5 10 <5 <5 <5	
KS KS KS	106 107 108 109 110		<5 <5 <5 <5 <5	
KS KS KS	111 112 113 114 115		5 <5 <5 <5 <5	
KS KS KS	116 117 118 119 120		<5 <5 5 <5 140	
COP	IES	TO:	J.	F

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 10/90

Bernie Ou SIGNED 1 of 5 Page

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St Vancouver, B. C. V6C 2X6

REPORT No. S9859

INVOICE #: 15277 P.O.: R-2447

SAMPLE(S) OF Silt

V. Kuren, D. Osijuk Project 90BC017

REMARKS: Hi - Tec Resources

	Au opb
KS 121	5
KS 122	<5
KS 123	<5
KS 124	20
KS 125	<5
KS 126	<5
KS 127	<5
KS 128	<5
KS 129	<5
KS 130	20
KS 131	<5
KS 132	<5
KS 133	<5
KS 134	<5
KS 135	<5
KS 136	<5
KS 137	<5
KS 138	<5
KS 139	<5
KS 140	<5
COPIES TO: INVOICE TO:	· •

Sep 10/90

SIGNED _____ Bernie Dunn

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET. EAST SASKATOON, SASKATCHEWAN S7K 6A4 30 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St Vancouver, B. C. V6C 2X6

REPORT No. S9859

INVOICE #: 15277 P.O.: R-2447

SAMPLE(S) OF Silt

V. Kuren, D. Osijuk Project 90BC017

REMARKS: Hi - Tec Resources

Au ppb KS 141 <5 KS 142 <5 KS 143 5 KS 144 <5 KS 145 15 KS 146 10 KS 147 <5 KS 148 <5 KS 149 10 KS 150 <5 KS 151 <5 KS 152 5 KS 153 <5 KS 154 <5 KS 155 <5 KS 156 <5 KS 157 10 KS 158 <5 KS 159 <5 10 KS 160 J. Foster, P. Lougheed COPIES TO: INVOICE TO: Prime - Vancouver

Sep 10/90

Bernie Uu SIGNED Page 3 of 5

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St Vancouver, B. C. V6C 2X6

REPORT No. S9859

INVOICE #: 15277 P.O.: R-2447

SAMPLE(S) OF Silt

V. Kuren, D. Osijuk Project 90BC017

REMARKS: Hi - Tec Resources

	Au ppb
KS 161	10
KS 162	5
KS 163	5
KS 164	10
KS 165	<5
KS 166	<5
KS 167	<5
KS 168	<5
KS 169	<5
KS 170	<5
KS 171	<5
KS 172	<5
KS 173	5
KS 174	5
KS 175	<5
KS 176	<5
KS 177	5
KS 178	<5
KS 179	<5
KS 180	25
COPIES TO:	J. Foster, P. Lougheed
INVOICE TO:	Prime - Vancouver
Sam 10/00	

Sep 10/90

SIGNED

Reinie Ou Page 4 of 5

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 30 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM P 1 V

Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St Vancouver, B. C. V6C 2X6

REPORT No. S9859

INVOICE #: 15277 P.O.: R-2447

SAMPLE(S) OF Silt

V. Kuren, D. Osijuk Project 90BC017

REMARKS: Hi - Tec Resources

		Au ppb
ss	1	20
SS	2	<5
SS	3	60
SS	4	<5
SS	5	<5
ss	6	<5
κЗ	1	<5
κз	2	5
кЗ	3	<5
кз	4	<5
кз	5	<5
кб	1	20
кб	2	25
K6	3	10

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 10/90

Fernie Di SIGNED . 5 of 5 Page

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Eox 10		T.S.L. REPORT No. : S - 9816 - 1
808 West Hastings St. Vancouver B.C. VAC 2XA		I.S.L. File No. : SE1190 T.S.L. Invoice No. : 154770
	HI-TEC RESOURCES R-2446	ALL RESULTS PPM

ELEMEN	ī	4001	4002	4003	4004	4005	4006	4007	4006	4009	4010
Aluminum	[A1]	9100	9400	23000	13000	97 00	10000				
Iroa	[Fe]	19000	39000	39000	29000	17000	18000 24000	4300	12060	23000	7200
Calcium	(Cal	62000	20000	3600	2700	10000	24000 20000	26000	33000	43000	53000
Magnesium	[Mo]	4500	6400	7400	4500	4100		34000	3100	47000	6000
Sodium	[Na]	180	310	170	250	130	6300	6500	3500	9600	4100
Potassium	CK 1	340	1400	1100	990	1200	240 700	210	110	190	390
Titanium	(Ti]	74	17	910	810	1200	780 5 40	2100	2100	1000	1200
Manganese	[Mn]	1000	2200	1200	1300	120 590	540	130	370	25	25
Phosphorus	: (P]	54 0	730	490	260	440	740	1300	340	1300	290
Barium	[Ba]	26	92	77	67	440 670	810	610	700	630	1460
Chromium	[Cr]	110	29	75	46	130	420	280	140	47	29
Zirconium	[Zr]	6		5	-3	120	46	25	61	130	26
Copper	[Cu]	62	110	55	30		7 20	7	5	15	7
Nickel	ENi 3	20	4	73	21	27 5		19	23	69	100
Lead	[25]	65	12	10	8		5	2	4	55	4
Zinc	[n]	4000	300	110	9 9	28 49	4 65	7	23	< 1	26
Vaaadium	CV 3	220	53	48	25		60 63	66	34	54	15
Strontium	[Sr]	79	54	13		28 67	60 190	52	57	93	84
Cobalt	[Co]	5	12	12	11	37		350	18	130	22
Molybdenum	(Mo)	22	< 2	< 2	< 2	4	11 < 2	12	23	28	17
Silver	(Ao)	1	< 1	$\langle 1$	$\langle 1$	< 1		< 2	< 2	< 2	30
Cadalum	[Cd]	15	1	< 1	$\langle 1$	× 1 3	-	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	$\langle 1$	$\langle 1$	$\langle 1 \\ \langle 1 \rangle$	< 1	< 1	< 1	< 1
Baren	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1
Antimony	[63]	< 5	10	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10
Yttrium	CY]	7	4	10	3	、 J 5	× 3 7	10	< 5	20	10
Scindium	(Sc)	4	3		4	3	4	14	à	10	6
Tungsten	EW 1	< 10	< 10	< 10	< 10	< 10	4 < 10	8	4	21	a
Nicbium	CN6]	< 10	< 10	< 10	< 10	< 10	< 10 < 10	< 10 < 10	< 10	< 10	< 10
Thorium	[Th]	< 10	30	30	20	< 10	× 10 40	< 10 50	< 10	< 10	< 10
Arsenic	[As]	75	30	< 5	< 5	< 5	++∪ < \$		20	30	40
Bismuth	[Bi]	20	10	10	< 5	< 5	∖ 5 10	< 5 15	170	5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10 < 10		< 5	30	< 5
Lithium	{Li]	< 5	< 5	30	< 5	< 5	< 10	< 10	< 10	< 10	< 10
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 5 < 10	< 5 < 10	15 < 10	< 5 < 10

DATE : SEF-14-1990

Dim Pilin SIGNED :

;;;;;

!

60¹⁰⁰⁰

2-302-46TH STREET, SASKATOON, SASKATCHEWAN 97K 6A4 TELEFHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V	l) 95 St.						T.S.L. T.S.L. T.S.L,	File	No. : 5 - No. : 5E1 No. : 154	IMC	
ATTN: J. FOSTEP		ROJECT: 9	PO 6C 017	HI-TEC RES	OURCES	R-2446		ALL RES	ULTS PPM		
ELEKENT		4011	4012	4013	4014	4015	4015	4017	4018	4019	402
Aluminum	(A1)	7600	15000	5500	17000	18000	27000	13000	31000	16000	830
Iron	[Fe]	33030	22000	32000	49000	47000	95 600	46000	64000	66000	65 00
Calcium	(Ca]	24000	67000	130008	12000	9500	7600	5400	6500	16000	2600
	[Mg]	6000	7300	7300	8500	7700	95 00	5500	7900	7400	4Z(
Socium	[Na]	140	70	50	350	390	250	320	200	67 0	14
Potassium		1100	540	870	300	360	270	2400	2400	850	79
	(Ti]	12	18	21	1200	1300	1600	1900	580	360	ŝ
Manganese		580	1000	1500	720	460	670	720	670	850	75
Phosohorus		470	420	350	950	760	1100	1600	1700	1300	87
Barium	(Bal	40	72	26	15	23	15	70	29	35	7
Chromium	(Cr)	85	72	46	36	38	64	19	10	34	
Zircanium		8	9	8	15	18	23	13	13	15	1
Copper	(Ca)	59	54	42	<u>50</u>	96	9 8	130	590	73	
Nickel	(Ni]	21	15	17	17	14	18	3	7	11	
Lead	(Pb]	< 1	< 1	< 1	11	10	11	18	5	4	1
Zinc	[Zn]	43	36	28	57	45	61	75	76	73	e J
Vanadium	[V]	53	99	38	130	120	140	100	180	190	-
Strontium	[Sr]	66	190	670	31	16	15	31	22	64	
Cobalt	[Ca]	19	15	11	22	19	17	8	34	25	
Malybdenum	[Ma]	< 2	< 2	< 2	< 2	< 2	< 2	4	< 2	< 2	<
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< :	< 1	< 1	< 1	<
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< i	< 1	< 1	<
Boron	EB 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	$\langle \cdot \rangle$
Antimony	[Sb]	5	- 5	15	5	5	Ş	5	< 5	5	<
Yttrium	EY 1	6	9	11	10	9	13	11	13	11	
Scandium	(Sc)	12	13	10	7	6	17	7	11	11	
Tunostan	EW 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<
Nicbium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	ζ.
Thorium	(Th]	< 10		50	50	40	60	40	70	60	
Arsenic	[As]	15	< 5	20	20	15	3	< 5	< 5	< 5	
Bismuth	[Bi]	15	30	40	15	10	20	< 5	15	20	
Tin	(3n]	< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10	$\langle \rangle$
Lithium	[Li]	< 5	5	< 5	15	10	20	< 5	15	15	<
Holmium	(Ho)	< 10		10	(10	< 10	< 10	< 10	< 10	< 10	<`1

Pilipick im SIGNED :

2-302-46TH STREET, BASKATOON, BASKATCHEWAN S7K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10	T.S.L. REFORT No. : 5 - 9814 - 3 T.S.L. File No. : FE11MC T.S.L. Involce No. : 15477	
808 West Hastings St. Vancouver B.C. V6C 2X6	1.5.2. invoice No. : 154777	
ATTN: J. FOSTER PROJECT: 90 EC 017 HI-TEC RESOURCES	R-2446 ALL RESULTS PPM	

ELEMENT		4021	4022	4023	4024	4025	4026	4027	4025	4029	4030
Aluminum	[A]]	15000	13000	3000	26000	26000	22000	10000	7/ 44		
Iron	(Fe]	51000	42000	3600	56000	46000	22000 5 8 000	18000 39000	3600	11000	4800
Calcium	(Cal	7300	-2000 9900	4600	34000	37000	56900 6900	37000 18000	33000	47000	47000
Magnesium	[Ma]	6800	8000	1300	9200	9500	8160	18000 5500	36000	49000	59000
Socium	(Na)	450	360	.300	290	180	a100 206		5600	8500	9200
Potassium	(K]	76 0	440	530 740	2100	160	200 860	950 2300	250	276	190
Fitanium	[Ti]	, o , 78	2100	55	75	21	1100		1700	1600	1500
Manganese	[Mn]	730	580	170	1100	930	6Z0	320 540	25	11	32
Phosphorus		1500	650	1100	600	460	620 1900		540 5 50	1100	850
Barium	(Bal	47	37	19	110	460	1700	940 80	6 50	760	680
Chromium	(Cr]	32	74	100		160	ат 24	50 25	63 49	78	92
Zircanium	{Zr]	10	18	5	19	18	17	20 9	47	38	85
Capper	Cul	120	100	160	110	90	130	87	a 61	18	20
Nickel	[Ni]		21	5	62	73	7	6	61 17	76 18	55
Lead	(Pb]	13	6	17	$\langle 1$	< 1	23	12	17	10	45
Zinc	(Znl	65	43	25	61	53	57	28 28	13 53	1 60	2 48
Vanadium	EV 3	160	150	31	110	90 91	270	20 67	25	100	+a 76
Strontium	(Sr)	33	18	21	140	92	45	85	140	160	7 a 350
Cobalt	[Co]	14	22	12	31	29	22	16	11	19	25
Molvodenum	(Mal	2	< 2	< 2	< 2	< 2	< 2	· < 2	14	< 2	< 2
Silver	[Ao]	< 1	< 1	2	$\langle 1$	< 1	< 1	$\langle 1$	< 1	< 1	< 1
Cadmium	(Cd)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	$\langle \cdot \cdot$	< 1	$\langle 1$
Beryllium	[Be]	< 1	× 1	1	< 1	< 1	< 1	$\langle 1$	$\langle 1$	$\langle 1$	< 1
Baron	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	15	10	35	10	10	15	< 5	40	25	20
Yttrium	[Y]	8	9	7	12	9	10	13	ą	12	10
Scandium	(Scl	8	8	5	26	27	15	12	5	24	25
Tungsten	EW 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[No]	< 10	< 10	< 10	< 10	< 16	< 16	< 10	< 10	< 10	< 10
Thorium	[Th]	70	40	< 10	50	30	60	50	40	70	40
Arsenic	[As]	20	< 5	410	5	10	210	5	150	5	10
8ismuth	[Bi]	10	10	< 5	30	25	15	10	15	25	30
Tia	[Sn]	< 10	(1 0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	< 5	20	15	< 5	< 5	< 5	< 5	< 5
Holmium	(Ha]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Dennis Pilipick

2-302-40TH STREET, SAGKATOON, SAGKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 ~ 1033 FAX #: (306) 242 ~ 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATI 10th Floor Box 808 West Hastin Vancouver B.C.	10 gs St. V&C 2%6						T.S.L. T.S.L. T.S.L.	File 1 Invoice 1		MC	
ATTN: J. FOSTE	r. ra	0JECT: 90	50 V17	HI-TEC REE	JUR125 R	-2446		ALL RESUL	.15 PPM		
ELEMENT		4031	4032	4033	4034	4035	4036	4037	4038	4039	4040
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium	(A11 (Fe) (Ca) (Mg) (Na) (K 1 - (Ti)	9800 46000 30000 6700 210 1500 8	11000 49000 20000 5000 260 2000 17	1200 8500 13000 3300 30 500 5	5400 15000 29000 5600 30 720 6	370 28000 130000 9500 30 80 < 1	1200 37000 130000 10000 130 500 < 1	1100 40000 130000 10000 90 340 < 1	25000 52000 27000 8000 266 610 2600	12000 54000 57000 9500 30 1400 130	13000 39000 57000 9000 30 690 22
Manganese Phosphorus Barium Chromium Zirconium Caoper	CP 1 (Ba] (Cr] (Zr] (Cu]	1100 740 110 21 11 45	820 1400 170 13 14 76	530 210 550 100 1 6	560 370 600 99 3 5	2000 < 2 28 28 2 2 2 2	1900 130 15 17 6 370	1500 < 2 12 19 5 200	1200 1200 40 39 27 160	1200 750 120 140 23 97	960 550 74 190 12 20
Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum	[Ni] [Pb] [Zn] [V] [Sr] [Co]	9 9 76 100 15 < 2	3 1 48 78 47 13 < 2	16 8 60 9 20 13 < 2	9 < 1 20 28 55 7 < 2	10 < 1 26 6 120 4 < 2	21 < 1 62 30 130 22 < 2	16 < 1 83 30 120 13 < 2	14 < 1 200 46 18 10	46 < 1 62 100 260 31 < 2	130 < 1 36 54 140 15 < 2
noiyosenum Silver Cadmium Beryllium Boron Antimony Yttrium	(Aq) (Cd) (Be) (B) (Sb) (Y)	<pre></pre>	$\begin{tabular}{ccc} & \times & 2 & & & \\ & < & 1 & & & \\ & < & 10 & & & \\ & & & 5 & & \\ & & & & 12 & & \\ \end{tabular}$	<pre>< 1 < 1 < 1 < 1 < 1 < 10 < 3 2</pre>	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	<pre>< 1 < 1 < 1 < 1 < 1 < 10 15 3</pre>	× 2 × 1 × 1 × 10 25 5	<pre> < 1 < 1 < 1 < 1 < 1 < 1 < 10 20 4</pre>	< 1 < 1 < 1 < 10 < 5 12	<pre>< 2 < 1 < 1 < 1 < 1 < 1 < 10 15 11</pre>	<pre>< 2 < 1 < 1 < 1 < 1 < 10 20 7</pre>
Scandium Tungsten Niobium Thorium Arsenic Bismuth Tin	(Sc] (W) (No] (Th] (As] (Bi] (Sn]	13 < 10 < 10 50 10 15 < 10	18 < 10 < 10 < 00 < 5 10 < 10	3 < 10 < 10 < 10 5 < 5 < 10	4 < 10 < 10 < 10 < 5 5 < 10	<pre></pre>	4 < 10 < 10 < 3 45 < 10	2 < 10 < 10 < 5 45 < 10	10 < 10 < 10 < 5 25 < 10	34 < 10 < 10 30 30 35 < 10	18 < 10 < 10 10 < 5 25 < 10
Lithium Holmium	[Li] [Ha]	< 5 < 10	< 5 < 10	< 5 < 10	< 5 < 10	< 5 10	< 5 < 10	< 5 < 10	< 5 < 10	15 < 10	< 5 < 10

DATE : SEP-14-1990

SIGNED : Dem Pilmink

e-an

*****54

T E L LAEGRATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEKAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X& ATTN: J. FOSTER PROJECT: 90 BC 017 HI-TEC RESOURCES R-2446 T.S.L. REFERT No. : S - 9816 - 5 T.S.L. File No. : 951100 T.S.L. Invoice No. : 15477

ALL REEULTS PPM

		4041	4042	4043	4044	4045	4046	4047	4046	4049	4050
ELEMENT											
Aluminum	[A]]	35000	21000	2400	23000	13000	14060	7100	3200	16000	13000
īran	[Fe]	59000	51000	32000	48000	30000	54000	20000	21000	33000	46000
Calcium	[E]]	33000	59000	110000	44000	34000	6 0000	62000	31000	72000	76600
Magnesium	(Mg)	9100	9500	5900	7100	7300	7600	3700	1800	6000	8E00
Sodiua	[Na]	130	110	30	140	80	50	30	80	40	50
Potassium	EK 1	1400	1500	740	960	680	1500	5 10	1100	1200	1100
Titanium	[Ti]	970	35	8	140	41	22	1	6	ά.	11
Manganese	[Mn]	1400	1100	1400	970	700	(100)	850	620	1200	1200
Phosonorus	EP 1	1300	940	220	860	440	760	44()	560	680	850
Barium	[Ba]	60	140	25	50	64	720	800	260	720	81
Chromium	[Cr]	23	160	45	190	120	59	64	75	90	95
Zirconium	[Zr]	21	19	9	16	8	19	7	8	9	19
Capper	[Cu]	160	110	32	110	14000	430	220	5900	3200	180
Nickel	[Ni]	16	74	28	61	430	40	65	73	52	36
Lead	[Pb]	1	< 1	< 1	4	3	< 1	1	2	1	< 1
Zinc	[Za]	62	50	12	63	600	72	24	320	82	56
Vanadium	EV 1	230	120	38	130	70	82	37	19	73	72
Strontium	[Sr]	120	230	140	140	250	140	120	56	120	370
Cobalt	[Ca]	27	32	13	26	140	38	21	37	27	23
Molybdenum		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	270	7	3	37	13	< 1
Cadmium	[[4]]	< 1	< 1	< 1	< 1	11	< 1	< 1	6	2	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baran	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[So]	10	20	10	15	2600	60	35	670	80	20
Yttrium	[Y]	12	11	6	10	6	10	7	6	8	11
Scandium	[Sc]	19	20	11	22	11	26	11	10	15	27
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10	< 10
Nicbium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	60	40	30	20	10	50	< 10	< 10	< 10	50
Arsenic	[As]	< 5	35	25	10	770	44)	45	90	25	30
Bismuth	[Bi]	20	35	30	30	20	30	20	5	25	30
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 13	<_10	< 10	< 10	<_10
Lithiua	[Li]	10	10	< 5	20	< 5	< 5	< 5	< 5	< 5	< 5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Donn Pilipiak

. .

2-302-49TH STREET, SASKATOON, SASKATCHENAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

4052

4051

Adua-Regia Digestion

9017-1 9017-2 9017-3 9017-4 9017-5 9017-6 9017-7 9017-3

 PRIME EXPLORATION LTD.
 T.S.L. REPORT No. : S - 9816 - 6

 10th Floor Sox 10
 T.S.L. File No. : SE11MC

 808 West Hastings St.
 T.S.L. Invoice No. : 15477

 Vancouver B.C. V6C 2X6
 ATTN: J. FOBTER

 ATTN: J. FOBTER
 PROJECT: 90 EC 017 HI-TEC RESOURCES

ELEMENT						,		,917 Q	1911 U	(941-1	20175
Aluminum	[A]]	1900	14000	12000	12000	8900	9900	2300	7300	1B000	24000
Iron	(Fe]	47000	59000	43000	59000	34000	48 000	37000	41000	54000	62000
Calcium	[Ca]	110000	50000	84000	3300	4600	1900	75600	55000	7600	47000
Magnesium	[Mo]	9500	8100	8000	4400	3100 -	4200	6400	7600	7600	8400
Sodium	[Na]	50	160	60	160	250	190	30	210	200	230
Potassium	EK 1	420	9 50	770	5100	3200	1300	1200	1600	420	380
Titanium	(Ti]	< 1	10	< 1	86	49	19	< 1	10	1960	390
Manganese	(Mn)	2400	1200	1700	240	160	350	1100	1000	470	660
Phosohorus		52	470	250	1200	2200	1100	760	870	940	710
Bartum	[Ba]	49	84	50	100	67	80	75	32	17	11
Chromium	80 - 1	19	26	29	22	10	55	26	70	58	71
Zircenium	£773	6	16	8	7	7	9	17	15	24	19
Copper	(Cu)	29	22	160	73	37	57	320	69	76	30
Nickel	[Ni]	6	11	37	3	2	7	20	20	19	35
Lead	(Pb]	< 1	< 1	< 1	26	34	25	< 1	< 1	12	4
Zinc	[Zn]	37	66	12	32	18	29	65	37	29	90
Vanadium	EV 1	10	110	37	75	67	00	28	76	140	220
Strontium	[Sr]	240	110	87	19	14	14	240	290	19	110
Cobalt	[Ca]	8	23	14	3	4	7	16	17	10	29
Molybdenum	[Mo]	< 2	< 2	< 2	8	6	6	< 2	< 2	4	$\langle 2$
Silver	[Ag]	< 1	< 1	< 1	< 1	2	< 1	< 1	< 1	< 1	< 1
Cadmium	[b3]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	(Be]	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Вагал	[B]	< 10	i < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[55]	20	10	10	< 5	< 5	40	95	15	5	10
Yttrium	[Y]	14	19	10	3	5	5	10	10	7	8
Scandium	[Sc]	4	25	3	5	8	11	25	24	12	22
Tungsten	EW]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	(Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	70	50	50	40	60	40	30	40	40	50
Arsenic	[As]	< 5	< 5	< 5	10	< 5	200	1300	65	10	10
Bismuth	[Bi]	40	30	30	5	< 5	< 5	25	25	10	35
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	20	< 5	< 5	< 5	< 5	< 5	< 5	5	5
Holmium	(Hal	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Den Pilink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEFHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

9017-9 9017-10 9017-11 9017-12 9017-13 9017-14 9017-15 9017-16 9017-17 9017-18

 PRIME EXPLORATION LTD.
 T.S.L. REFORT No.: 5 - 9816 - 7

 10th Floor Box 10
 T.S.L. File No.: 3E1100

 808 West Hastings St.
 T.S.L. Invoice No.: 15477

 Vancouver B.C. VAC 2X6
 ALTN: J. FOSTER PROJECT: 90 BC 017 HI-TEC RESOURCES R-2446

ELEMENT

Aluminum	[A1]	21000	4700	99 <u>0</u> 0	5400	8900	5200	8100	75 60	5500	2500
lron	[Fe]	45000	34000	32000	27000	34000	46000	47000	44000	48000	29000
Calcium	[Ca]	22000	130000	42000	47000	3700	41000	2000	14000	86660	43060
Maonesium	(Mg]	8400	8400	5100	3100	2100	67 00	3700	4000	92 00	4E 00
Sodium	[Na]	290	70	460	210	70	140	210	130	60	120
Potassium	CK 1	480	660	1200	1000	2:00	2100	2000	2100	1200	1100
Titanium	[Ti]	1600	28	46	21	7	4	10	5	3	7
Manganese	(Mn)	74()	1400	1100	1400	120	1400	230	1700	2000	1600
Phosonorus	(P]	920	230	920	480	700	1300	760	870	520	750
Barium	[Ba]	31	220	54	100	170	220	320	1200	1300	420
Chronium	[Cr]	51	22	24	100	45	23	67	31	38	66
Zirconium	[7]	21	7	10	4	5	11	5	ć	9	4
Capcer	(Cul	92	24	110	64	1100	170	42	ò	43	66
Nickel	[Ni]	23	16	9	5	7	9	4	5	6	3
Lead	(P5]	6	$\langle 1$	8	9	9	< 1	5	1	< 1	Ū.
Zinc	[Zn]	63	53	51	22	59	66	20	75	79	36
Vanadium	EV 1	190	55	79	42	23	40	65	43	57	51
Strontium	[Sr]	47	310	130	160	17	190	110	110	470	150
Cobalt	Cc3	16	9	14	10	ó	21	7	10	15	ş
Molybdenum	i [Mo]	< 2	< 2	< 2	< 2	4	< 2	8	< 2	< 2	< 2
Silver	[A]	< 1	< 1	< 1	1	2	< 1	< 1	< 1	< 1	< 1
Cadmium	[[6]]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< :
Beryllium	(Bel	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baren	(3]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb]	15	20	5	5	5	10	5	< 5	20	< 5
Yttrium	[Y]	10	8	11	7	3	12	2	9	8	3
Scandium	(Scl	10	6	ę	5	4	15	6	8	9	5
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nichium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	(10	< 10	< 10	< 10
Thorium	[Th]	60	50	20	< 10	10	50	20	20	60- 45	20
Arsenic	[As]	30	< 5	10	65	15	20	160	25	15 40	. 25 15
Bismuth	(Bi]	20	40	15	10	< 5	20	< 5	10		
Tin	(Sal	< 10	< 10	< 10	< 10	< 10	< 10	< 10 < 5	< 10 < 5	< 10 < 5	< 10 < 5
Lithium	[Li]	10	< 5	< 5	< 5	< 5	< 5		< 5 < 10	< 10	< 10
Holmium	(Ha]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	N 1V	\1V	1 10

SIGNED : Dom Pilipiak

DATE : SEF-14-1990

2-302-46TH STREET, SASKATOBN, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9816 - 8
10th Floor Box 10	T.S.L. File No. : SEIIMC
808 West Hastings St.	T.S.L. Invoice No. : 15477
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: 90 BC 017 HI-TEC RESOURCES	R-2446 ALL RESULTS PPM

9017-19 9017-20 9017-21 9017-22 9017-23 9017-24 9017-25 9017-2	6 9017-27 9017-25
ELEMENT	
Aluminum [All 2900 1700 3000 1300 2400 4100 4000 1100	1500 720
Iran [Fe] 20000 15000 52000 9000 30000 15000 29000 9600	23000 13000
Calcium [Ca] 3700 20000 3200 6200 87000 3600 26000 8800	33000 15000
Maanesium [Ma] 1500 2900 600 610 7800 3600 5500 1700	5900 3400
Sodium [Na] 70 100 430 30 30 40 60 30	50 40
Potassium [K] 610 330 1600 420 930 420 1100 550	640 580
Titanium [Ti] 7 4 5 6 (1 14 5 4	4 5
Mancanese [Mn] 650 670 170 270 690 400 850 270	560 300
Phospharus (P 1 280 210 1100 110 250 170 640 120	220 120
Bartism [Ba] 170 53 59 38 58 30 130 42	B6 100
Chromium [Cr.] 120 140 41 110 70 200 54 160	57 100
7 J T T T T T T T T T T T T T T T T T T	4 1
Cooper [Du] 28 29 31 16 170 160 62 33	33 64
Nickel [Ni] 5 4 3 B 20 17 6 9	14 10
Lead (Pb) 3 < 1 24 1 < 1 400 25 3	2 4
Zinc [In] 23 17 39 10 20 23 37 25	51 60
Vanadiua IV 1 24 13 25 7 17 24 31 5	8 4
Strontium [Sr] 20 40 51 12 370 22 90 34	
Cobalt [Co] 6 4 5 4 9 6 13 2	4 4
Malvadenua (Ma) 2 < 2 < 2 < 2 < 2 < 2 4 < 2 2	< 2 < 2
Silver [Ao] < 1 < 1 2 < 1 < 1 < 1 < 1 < 1	$\langle 1 \rangle \langle 1 \rangle$
Cadinium [Cd] $< 1 < 1 2 < 1 < 1 < 1 < 1$	
Beryllium [Be] \langle 1 \langle 1	
Baran [B] \langle 10	
- Antimony [55] くち くち ち ち 10 ろ 10 くち	
vttrium [Y] 4 4 4 2 6 3	-
Scandium [Sc] 4 3 5 2 8 3 9 2	
Tungstan [W] \langle 10	
Nichium [Nb] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$	
Thorium [Th] \langle 10 \langle 10 40 \langle 10 30 \langle 10 30 \langle 10	
Arsenic [As] 25 < 5 690 33 30 10 65 30	
Bismuth [Bi] < 5 < 5 < 5 < 5 30 < 5 10 < 5	
Tin [En] < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	
Lithium [Li] < 5 < 5 < 5 < 5 < 5 < 5 < 5	
Holmium [Hol \langle 10 {\langle} 10 {\langle) < 10 < 10

SIGNED : Dim Pilipich

2-302-48TH STREET, SAGKATOON, SAGKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Adua-Regia Digestion

 PRIME EXPLORATION LTD.
 T.S.L. REFORT No.: S = 9816 = 9

 10th Floor Box 10
 T.S.L. File No.: SEIIMC

 808 West Hastings St.
 T.S.L. Invoice No.: 15477

 Vancouver B.C. V6C 2X6
 ATTN: J. FOBTER PROJECT: 90 EC 017 HI-TEC RESOURCES R-2446
 ALL RESULTS PPM

9017-29 9017-30 9017-31

ELEMENT

Aluminum	[A]]	1500	1700	2300
Iroa	[Fe]	22000	25000	23000
Calcium	[Ca]	29000	22000	29000
Magnesium	[Ma]	4500	48 00	3600
Sadium	[Na]	40	50	30
Potassium	CK 1	750	650	620
Titanium	[Ti]	2	2	2
Manganese	EMn 3	580	500	500
Phosphorus	(P 1	260	400	170
Barium	[Ba]	65	54	64
Chroaiua	(Cr]	81	55	87
Zirconium	[Zrl	2	4	2
Cooper	Cu3	17	37	11
Nickel	[Ni]	15	20	8
Lead	[26]	Ð	9	< 1
Zinc	[Zn]	65	55	37
Vanadium	[V]	6	5	9
Stroatium	[Sr]	150	85	69
Cobalt	(Ca)	4	5	3
Molybdenum	[Mo]	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1
Beryilium	[Be]	< 1	< 1	< 1
Boron	(B]	< 10	< 10	< 10
Antimony	(Sb1	20	20	< 5
Yttrum	EY 3	6	6	6
Scandium	[Sc]	2	3	2
Tungstan	[₩]	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10
Thorium	[Th]	< 10	20	< 10
Arsenic	[As]	45	310	20
Bismuth	[Bi]	10	5	10
Tin	(Sn]	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	< 5
Holmium	[Ho]	< 10	< 10	< 10

Pilmin SIGNED :

DATE : SEF-14-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	West Hasting Duver B.C. \	/6C 2X	6								2	
ELEMENT Aluminum (Al.1) 33000 21000 22000 21000 22000 23000 34000 35000 44000 51000 Calcium (Cal 4600 28000 1000 860 34000 35500 44000 44000 51000 Calcium (Cal 4600 2800 1000 860 840 1300 3000 3300 4300 8500 5500 5500 570 1100 1100 1500 1500 1200 1300 1400 1300 1400 1300 1300 1400 1300 1500 1200 1300 1400 1300 1500 1200 1300 1400 1300 1300 1500 1200 1300 <td< th=""><th>: J. FOSTER</th><th></th><th>PROJECT: 90E</th><th>6017 -</th><th>HI-TEC R</th><th>ESOURCES</th><th>R 2447</th><th></th><th>ALL REBUL</th><th>TS PPM</th><th></th><th></th></td<>	: J. FOSTER		PROJECT: 90E	6017 -	HI-TEC R	ESOURCES	R 2447		ALL REBUL	TS PPM		
Aluminum [Al] 33000 21000 22000 21000 2500 24000 26000 27000 35000 Iron [Fe] 55000 36000 20000 33000 33600 33600 44000 44000 51000 Calcium [Ka] 8700 6600 5500 5600 6700 6600 8000 8100 8300 8100 8300 8100 8300 8100 8500 8100 8500 8100 8500 8100 8500 8100 8500 8100 8500 8100 8500 8100 8200 8100 8200 8100 8200 8100 8200 8100 8200	EI EMENT		KS 101	KS 102	KS 103	KS 104	KS 105	KS 106	KS 107	KS 108	KS 109	ł
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Magnesium[Maj870066005500550067006600800081008500Sodium(Nai6016012060707070150450150Potassium[Ki]2900480630430380570110011001900Titanium[Ti1]1200430950350640710110012001400Manganese(Mn)20001300100010001500120013001000Phospnorus[P]1120011006308108609009307601100Barium[Ba]27343137313650222222Chronium[Cri]274932414445425741Irconium[Cri]29012044635971110110100Nickei[Ni1]1644417462540291714Leao[P3]799130110100997Zinc[Zni]1408260917287847195Vanadum[V]16012011070130110160150210Strontium[Sri]25169789161627												
Sodium[Na]60160120607090150450130Potassium(K 12900460630430380570110011001900Titanium[Ti11200430950350640710110012001300Manganese[Mn]20001300100013001200130012001300Phosphorus[F]120011008308108609009307601100Barium[Ba]273431373136502222Chromium[Cr]274932414445425741Lirconium[Lr]11B3455969Copper[Cu]29012044635971110110100Nickei[Ni1]164417462540271714Leao[Pb]9913011010997Zinc[Zn]1408260917287847195Vanadium[V]16012011070130110166150210Strontuz[Sr]25169789161627Cobalt[Co]271613131											4300	
Potassium (K 129004806304303805701100110011001900Titanium (Til1200430950330640710110012001400Manganese (Mn3200013001000100013301200155012001300Phosphorus (P 1120011008308108609009307601100Barium (Eal273431373138502222Chroanum (Cr1)274932414445425741Lirconum (Cr1)274932414445425741Lirconum (Cr1)1183455969Copper10129012044635971110110100Nickei1N1164417462540271714Leao(Pb39913111010997Zinc[Zni1408260917287647195Vanadium (V 118012011070130110160150210Strontiua[Sr1]25169789161627Cobalt(Co3)2716131315162122 </td <td>-</td> <td>-</td> <td></td>	-	-										
TitaniunTit1200430950350640710110012001400ManganeseUMI200013001000100013001200150012001300PhospnorusIP 1120011006308108609009307601100BariunUBal273431373136502222ChromiunCP1274932414445425741LinconumIT111B3455969CopperCul29012044635971110110100NickeiIN11164417462540291714LeadCP5199913111010997ZincIZ111408260917257847195VanatiumIV18012011070130110160150210StrontuaGC1271613131516212221MolybdenunIM01 \leq 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 $<$ 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>150</td><td>450 f</td><td>150</td><td></td></t<>									150	450 f	150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								710	1100	1200	1400	
Barum[Ba]273431373136502222Chromium[Cr]274932414445425741Zirconum[Zr]11B3455969Copper[Cu]29012044635971110110100Nickel[Ni]164417462540291714Lead[Pb]9913111010997Zinc[Zn]18012011070130110160150210Strontum[V]18012011070130110160150210Strontum[V]18012011070130110160150210Strontum[Co]271613131516212221Molydenum[Mo] ≤ 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 $< $							1300		1500	1200	1300	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phosphorus	[P]		1100	630	S10		900	930	760	1100	
Lirconum Copper[Lir]11B3455969Copper[Cu]29012044635971110110100Nickei[Ni1]164417462540291714Lead[Pb]9913111010997Zinc[Zn1]1408260917287847195Vanadium[V]116012011070130110160150210Strontua[Sr1]25169789161627Cobalt[Co]271613131516212221Molybdenum[Mo] ≤ 2 ≤ 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Barium	[Ba]	27	34		37	31	36	50	22	22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chroaiua	[Cr]	27	49	32	41	44	45	42	57	41	
Nickei[Nii]164417462540291714Lead[Pb]9913111010997Zinc[Zni1408260917287847195Vanadium[V]18012011070130110160150210Strontium[Sri25169789161627Cobalt[Col271613131516212221Molybdenum[Mo]< 2	Zirconium	[Zr]	11	8	3	4	5	5	9	6	9	
Lead[Pb]9913111010997Zinc[Zni]1408260917287847195Vanadium[V]18012011070130110160150210Strontium[Sr]25169789161627Cobalt[Col]271613131516212221Molybdenum[Mo] < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <td< td=""><td>Copper</td><td>[Cu]</td><td>290</td><td>120</td><td>44</td><td>63</td><td>59</td><td>71</td><td>110</td><td>110</td><td>100</td><td></td></td<>	Copper	[Cu]	290	120	44	63	59	71	110	110	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nickel	[Ni]	16	44	17	46	25	40	29	17	14	
VanadiumIV 118012011070130110160150210StrontiuaISr325169789161627CobaltICo3271613131516212221MolybdenumMol < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <td< td=""><td>Lead</td><td>(Pb)</td><td>9</td><td>9</td><td>13</td><td>11</td><td>10</td><td>10</td><td>9</td><td>9</td><td>7</td><td></td></td<>	Lead	(Pb)	9	9	13	11	10	10	9	9	7	
Strontium[Sr]25169789161627Cobalt[Co)271613131516212221Molybdenum[Mo] < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Zinc	[Zn]	140	82	60	91	72	87	84	71	95	
Strontium[Sr]25169789161627Cobalt[Co]271613131516212221Molybdenum[Mo] < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Vanadium	EV 3	180	120	110	70	130	110	160	150	210	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strontium	[Sr]	25	16	9	7	8	9	16			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cobalt	[Ca]	27	15	13	13	15	16	21	22	21	
Silver $[A_0]$ $\langle 1$	Molvbdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				< 1	< 1	< 1		< 1		< 1	
Beryllium[Be] $\langle 1$	Casimum	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Boron[B] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$			< 1	< 1		< 1	< 1	< 1	< 1	< 1		
Antimony[Sb]5 $<$ 5 $<$ 5 $<$ 5555557Yttrum[Y]1011467810710Scandium[Sc]13834661089Tungsten[W]<				< 10	< 10	< 10	< 10	< 10	< 10		-	
Yttrum[Y]1011467810710Scandium[Sc]13834651089Tungsten[W]<					< 5	5	< 5	< 5				
Scandium[Sc]13834651089Tungsten[W] \langle 10 \langle <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						7					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6					
Niobium[Nb] $\langle 10 \rangle \langle 10$				-				-				
Thorium [Th] 60 30 30 30 40 30 40 50 50 Arsenic [As] 15 25 15 20 25 25 15 10 35 Bismuth [Bi] 15 < 5 < 5 < 5 < 5 10 10 10	-											
Arsenic [As] 15 25 15 20 25 25 15 10 35 Bismuth [Bi] 15 < 5 < 5 < 5 < 5 10 10 10												
Bismuth [Bi] 15 < 5 < 5 < 5 < 5 < 5 10 10 10												
	Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Lithium [Li] 30 35 10 25 20 25 30 35 30	Lithium Holmium	[Li] (Ho]	30 < 10	35 < 10	10 < 10	25 < 10	20 < 10	25 < 10	30 < 10	< 10	30 < 10	

SIGNED : Denn Pilgnik

DATE : SEP-12-1990

.

.

2-302-48TH STREET, SASKATODN, SASKATCHEWAN 87K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Reoia Digestion

STENED : Dom's Pilipick

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

) West Hasting Couver B.C. V		6					T.S.L.		lo. : SE12 lo. : 1543		
N: J. FOSTER		PROJECT: 90E	C017 -	HI-TEC	REEGURCES	R-2447		ALL RESUL	.TS PPM		
ELEMENT		KS 121	KS 122	KS 123	KS 124	KS :25	KS 126	KS 127	KS 128	KS 129	KS :
			_								
	(A1)	17000	20000	20000	15000	16000	25000	23000	27000	20000	2300
	[Fe]	42000	51000	44000	55000	70000	41000	33000	34000	6 0000	370
	(Ca)	3100	1900	3100	6000	1100	1500	1600	860	660	10
Magnesium -	-	6200	5600	5700	5500	2500	6200	4600	5500	47 00	61
	(Na)	80	40	40	60	20	140	66	110	80	
Potassium		590	920	930	1700	930	590	390	500	620	4
	(Ti]	45	53	16	61	13	780	1400	1100	200	4
Manganese		1100	1400	970	1500	2000	2100	220	550	1400	6
Phosphorus	(P]	960	1100	1100	2000	i 400	1200	820	890	1300	3
Bariua	[Ba]	87	76	140	230	110	74	26	43	64	
Chromium	[Cr]	67	51	62	52	54	120	70	80	73	
Zirconium	[Zr]	9	10	10	16	24	á	5	6	11	
Cooper	[Eu3]	130	150	110	190	140	66	30	68	110	
Nickel	[Ni]	48	35	39	21	59	60	19	43	47	
Lead	[Pb]	13	11	6	10	3	12	13	14	9	
Zinc	[In]	96	84	64	90	93	97	43	85	100	
Vanadium	£V]	130	74	60	130	3 8	140	150	110	100	
Strontium		12	7	9	39	7	10	6	6	11	
	[Co]	20	29	21	21	46	20	7	19	30	
Molybdenum		4	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<
	[Ag]	< 1	< 1	< 1	< 1	< 1	$\langle 1$	< 1	$\overline{\langle 1}$	$\langle 1$	Ś
Cadmium	[[6]]	1	< 1	< 1	1	1	< 1	< 1	< 1	< i	Ì
	[Be]	< 1	i	< 1	1	1	< 1	< 1	< 1	< 1	,
Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	``````````````````````````````````````
Antiaonv	(Sb)	15	10	5	5	< 5	< 10 < 5		(5	< 5	Ì
Antimuny Yttrium	[Y]	19	19	18	19	15	12	· · · · ·	10	20	۰,
		17	17	10 14	22	35		4	7	20 16	
Scandium	[9c]			(10	(10	< 10	< 10		< 10	10 < 10	<
Tungsten	EW 3	< 10	< 10	• • •				• ••		• • • •	
Niobium	[Nb]	< 10	< 10	< 10 70				< 10 20	< 10	< 10 70	ζ.
Thorium	[Th]	10	40 05	30	30 20	20 • 70	10 70		10 75	20 P0	
Arsenic	[As]	50	25	45	80	170	- 20	5 / E	35 / E	80	,
Bismuth	(Bi]	< 5	< 5	< 5	5	< 5	< 5 / *0	< 5	< 5	< 5	<
Tin	(5n]	< 10	< 10	< 10	< 10	< 10	< 10 75	< 10	< 10	< 10	<
Lithium	[Li]	20	25	20	15	10	25	10	20	20	<
Holaiua	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<

SIGNED : Demis Pilipink

DATE : SEP-12-1990

200 1

2-302-48TH STREET, SASKATCON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V	0 s St. 6C 2X6							File N Invoice N	o.: S - o.: SE12 o.: 1543	MA	
ATTN: J. FOSTER	PE	ROJECT: 90B	C017 -	HI-TEC	RESOURCE	E R-244	7	ALL RESUL	TS PPH		
ELEMENT		KS 131	KS 132	KS 133	KS 134	KS 135	KS 136	KS 137	KS 138	KS 139	KS 140
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Beryllium	(P] (Ba] (Cr] (Cr] (Cu] (Ni] (Pb) (Cn] (Ca] (Ca] (Ca] (Ca] (Ca] (Ca] (Ca] (Ca	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28000 37000 1100 7200 80 420 1200 880 900 26 84 8 51 36 11 60 120 6 16 4 4 11 60 120 6 16 4 120 120 120 120 120 120 120 120 120 120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19000 56000 200 4300 200 633 1200 110 96 111 99 46 7 53 120 9 27 < 2 < 1 < 1 < 1 < 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9900\\ 50000\\ 260\\ 1300\\ 20\\ 550\\ 25\\ 1700\\ 1300\\ 1000\\ 27\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 8\\ 120\\ 23\\ 12\\ 12\\ 29\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22000\\ 52000\\ 660\\ 5900\\ 60\\ 1300\\ 3900\\ 1600\\ 66\\ 41\\ 6\\ 41\\ 6\\ 47\\ 16\\ 13\\ 54\\ 160\\ 4\\ 35\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ \end{array}$	$ \begin{array}{c} 19000\\ 49000\\ 1100\\ 5200\\ 40\\ 1200\\ 120\\ 2100\\ 1100\\ 93\\ 25\\ 4\\ 120\\ 14\\ 16\\ 66\\ 100\\ 7\\ 27\\ < 2\\ < 1\\ < 1\\ < 1 \end{array} $
Boron Antimony Yttrium Scandium Tungsten Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	(B) (Sb) (Y) (Sc) (W) (Nb) (Nb) (Nb) (Nb) (Nb) (Nb) (Nb) (Nb	<pre>< 10 < 5 5 3 < 10 < 10 < 10 20 20 < 5 < 10 20 < 10 < 1</pre>	<pre>< 10</pre>	<pre>< 10 < 5 10 17 < 10 < 10 < 10 20 60 5 < 10 25 < 10</pre>	 10 10 26 20 10 10 30 55 10 10 40 10 10 10 10 	<pre>< 10 < 5 5 13 < 10 < 10 < 10 10 55 < 5 < 10 15 < 10</pre>	<pre>< 10 < 5 < 5 < 1 < 10 < 10 < 10 < 10 < 10 < 25 < 5 < 10 < 5 < 10 < 10</pre>	< 10 < 5 9 < 10 < 10 < 5 < 10 < 5 < 10 < 5 < 10	<pre>< 10 < 5 4 2 < 10 < 10 < 10 < 10 25 < 5 < 10 10 < 10 < 10</pre>	$\langle 10 \\ < 5 \\ 3 \\ 4 \\ < 10 \\ < 10 \\ 10 \\ 15 \\ < 5 \\ < 10 \\ 15 \\ < 10 \\ 15 \\ < 10 \\ 15 \\ < 10 \\ $	<pre>< 10 5 5 3 < 10 4 10 30 50 < 50 < 10 10 10 < 10</pre>

SIGNEL : Denn Pilpick

2-302-487H STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION 10th Floor Bax 10 808 West Hasting Vancouver B.C. Va	o s St.	·					T.S.L. T.B.L. T.S.L.). : S -). : SE121). : 1543/	1A	
ATTN: J. FOSTER		ROJECT: 90B	C017 -	HI-TEC RE	SOURCES	R-2447		ALL RESULT	ts ppm		
ELEMENT		KS 141	KS 142	KS 143	KS 144	KS 145	KS 146	KS 147	KS 148	KS 149	KS 150
Aluminum Iron Calcium Magnesium Sodium Potassium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium	(P] (Ba] (Cr) (Zr) (Cu) (Ni) (Pb) (Zn) (V] (Sr) (Co) (Mo) (Aq) (Cd)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 8100\\ 43000\\ 140\\ 880\\ 20\\ 570\\ 10\\ 760\\ 590\\ 32\\ 21\\ 9\\ 110\\ 35\\ 4\\ 42\\ 28\\ 1\\ 28\\ < 2\\ < 1\\ 28\\ < 1\\ 28\\ < 1\\ 28\\ < 1\\ 10\\ 5\\ 10\\ < 10\\ < 10\\ < 10\\ 20\\ 180\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9500 59000 220 1300 20 500 9 1400 550 73 25 14 120 55 4 71 50 3 8 < 2 < 1 2 < 1 50 3 8 < 2 < 1 2 < 1 0 55 3 8 < 2 < 1 2 < 1 0 55 3 8 3 8 < 2 < 1 1400 55 50 7 7 55 4 7 1400 55 55 4 7 1 50 7 7 55 4 7 1 50 7 7 55 7 7 5 5 7 5 7 5 7 5 5 7 7 5 5 7 7 5 5 7 5 7 5 5 7 5 7 5 5 5 7 7 5 5 7 7 5 5 5 7 7 5 5 7 5 7 5 5 7 5 5 5 7 5 5 7 5 5 5 5 7 5 5 5 5 7 5 5 5 7 5 5 5 5 7 5 5 5 5 5 5 5 5 7 5	$\begin{array}{c} 22000\\ 64000\\ 1300\\ 5200\\ 20\\ 730\\ 29\\ 3200\\ 1300\\ 71\\ 30\\ 14\\ 130\\ 31\\ 7\\ 44\\ 130\\ 31\\ 7\\ 44\\ 81\\ 6\\ 30\\ < 2\\ < 1\\ 1\\ 1\\ < 10\\ < 5\\ 23\\ 16\\ < 10\\ < 30\\ 70 \end{array}$	$\begin{array}{c} 27000\\ 68000\\ 580\\ 6200\\ 60\\ 45\\ 1700\\ 1300\\ 42\\ 110\\ 14\\ 160\\ 61\\ 9\\ 84\\ 100\\ 5\\ 41\\ < 2\\ < 1\\ 1\\ < 10\\ 5\\ 41\\ < 2\\ < 1\\ 1\\ < 10\\ 15\\ 13\\ 15\\ < 10\\ < 10\\ 20\\ 150 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bismuth Tin Lithium Holmium	[Bi] [Sn] [Li] [Ho]	<pre> < 5 < 10 15 < 10</pre>	<pre> < 5 < 10 < 5 < 10 < 10 < 10 </pre>	<pre>< 5 < 10 < 5 < 10 < 10</pre>	<pre>< 5 < 10 30 < 10</pre>	<pre> < 5 < 10 < 5 < 10 < 10 < 10 </pre>	5 < 10 25 < 10	< 5 < 10 20 < 10	< 5 < 10 25 < 10	<pre> < 5 < 10 15 < 10</pre>	< 5 < 10 40 < 10

Jum Pilmik SIGNED :

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Acua-Regia Bigestion

PRIME EXPLORATION LTD. T.S.L. REPORT No. : 5 - 9859 - 6 10th Flaor Bax 10 T.S.L. File No. : SE12MA 608 West Hastings St. T.S.L. Invoice No. : 15432 Vancouver B.C. V6C 2X6 PROJECT: 90BC017 - HI-TED REBOURCEB R-2447 ATTN: J. FOSTER ALL RESULTS PPM KS 151 KS 152 KS 153 KS 154 KS 155 KS 156 KS 157 KS 158 KS 159 KS 160 ELEMENT [A1] 18000 21000 34600 44600 32000 31000 23000 1E000 Aluminum 17000 23000 [Fe] 31000 39000 44000 34000 42000 41000 45000 52000 โกอก 45000 43000 Calcium [Ca] 460780 600 2700 520 2300 1900 2000 880 880 Magnesium [Mg] . 4300 5100 3600 3500 5000 4000 5300 5100 5160 3300 Sodiua [Na] 70 4Û 13050 60 110 40 50 50 -60 450 440 Potassium [K] 290 370 320320 760 660 670 560 Titanium [Ti] 480 640 440 420 170 950 92 92 210 55 Manganese (Mn) 460 1700 2900 510 1100 1000 1700 1500 13001900 Phosphorus (P] 400 1300 1900 1300 820 1100 1500 960 2000 1700 35 24 35 110 35 33 87 150 52 130 Barium (Bal Chromium [Cr] 38 47 42 88 79 34 23 58 40 31 9 9 Zirconium [Zr] -4 6 6 3 8 12 4 -5 [Cu] 26 38 58 38 55 67 170 110 81 130 Copper 35 23 34 25 Nickel [Ni] 27 19 10 11 48 14 12 9 ņ Lead (Pb) 10 10 15 10 15 -5 12 77 79 93 Zinc EZnī 63 86 98 98 54 68 63 96 70 130 130 110 83 140 89 Vanadium EV 3 57 66 7 5 24 5 12 11 12 5 Strontium [Sr] 4 6 7 27 14 10 17 26 Cobalt [Co] 5 12 16 21 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 Molybdenum (Mol < 1 < 1< 1 < 1 < 1 < 1 < 1 < 1 < 1 $\langle 1 \rangle$ Silver [Ag] $\langle 1 \rangle$ < 1 < 1 < 1 < 1 $\langle 1$ $\langle \cdot \rangle$ $\langle 1$ < 1< 1 Cadaiua [[23] 1 < 1 $\langle 1 \rangle$ $\langle 1$ \leq < 1 < 1 < 1 < 1 Bervllium [Be] < 1 1 1 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 Boron [B] < 5 \langle 5 < 5 < 5 < 5 < 5 < 5 Κ 5 < 5 15 [Sp] Antimony 37 17 15 20 4 5 15 6 11 7 Yttrium [Y] 4 2 4 2 14 14 3 4 2 3 Scandium [Sc] . < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 EW] < 10 Tunosten < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 Niobium [Nb] < 10 30 10 30 20 30 30 30 20 20 [Th] Thoriua 15 5 10 35 20 15 15 20 20 45 Arsenic [As] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 Bismuth [Bi] 10 < 10 < 10 < 10 < 10 10 < 10< < 10 < 10. < 10 Tin (Sa) < 20 20 10 20 25 25 10 20 10 10 [Li] Lithiua < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 Holaiua (Ha) < 10

Demis Vilinick SIGNED :

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I: J. FOSTER		5 PROJECT: 90E	F017 -	97_7F7 D	renkerse	R-2447		ALL SECU	TC 254		
ELEMENT Aluminum [A11] 10000 12000 17000 14000 19000 22000 13000 23000 20000 Calciun [Ca] 1100 900 346 440 320 340 2100 34000 32000 Calciun [Ca] 1100 900 346 440 320 340 2100 340 4200 Magnesiun [Na] 30 30 40 30 50 50 40 400 60 Patassiun [Ki] 480 433 435 470 470 560 440 470 Titanium [Ti] 10 12 13 83 37 22 32 120 54 Magnese [Tm] 1500 BE0 B00 1800 1900 770 55 62 280 53 136 136 Phospharus [2] 11<0	G VE FUBIER		10016611 705	6017 -	01-726 A	LOUUNLEO	n=2441		ALL ALSUL	.15 FFM		
Aluminum[All100001230017000140001900022000130002300020000Iran[Fs]560005000050000630004300032000470003400032000Calcim[Ca]11009603464403203404200Magnesium[Mg]160019002700200047003700310030004600Sodium[Na]303040335050404060Patassium[K]480430430470470560440470Titanium[Ti]1012138337223212054Manganese[Th]15008606001800190077014005203200Phosohorus [P]1200150020062100200015009301100Bartum[Ea]16917070725562280531360Chronium[Cr]11104741712Cooper[Cu]627270795747912650Mickel[Ni1]33302323232116342127Lad[Pb]677996778Zirconum[V]16660 </th <th></th> <th></th> <th>KS 161</th> <th>KS 162</th> <th>KS 163</th> <th>KS 164</th> <th>KS 165</th> <th>KS 166</th> <th>KS 167</th> <th>KS 168</th> <th>KS 169</th> <th>k</th>			KS 161	KS 162	KS 163	KS 164	KS 165	KS 166	KS 167	KS 168	KS 169	k
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ELENENI											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aluminum	[A]]	10000	12000	17000	14000	19000	22000	13000	23000	20000	1
Magnesium[Mo]160019002700200047003700310030004600Sodium[Na]30304030505050404060Potassium[K]480430430470470470560440470Titanium[Ti]1012138337223212054Manganese[Mn]1500850600180017007701400550320Phosonorus[P]112001500200621002000150012009301160Bartum[Ea]18019077092556228053136Chromium[Cr]242432183333253543Zirconium[Cr]242432183333253543Zirconium[Cr]827270795747912656Nickel[Ni]3330232321146342127Lead[Pb]6779747912656Nickel[Ni]3330232321146342127Lead[Pb]6779747912656Nickel[Ni]33 </td <td>Iran</td> <td></td> <td>58000</td> <td>50000</td> <td>50000</td> <td>63000</td> <td>43000</td> <td>32000</td> <td>47000</td> <td>34000</td> <td>32000</td> <td></td>	Iran		58000	50000	50000	63000	43000	32000	47 000	34000	32000	
Sodium(Nai)30304030505050404060Patassium[K]480430430470490470560440470Titanium(Ti)1012138337223212054Manganese(Mn)150088080019007701400520320Phosphorus(P)1200150020062106206012009301160Bartum(Ba)1801907092556228053136Chromium(Cr)242432183333253543Zirconium(Cr)11104741712Copper(Cu)827270795747912656Nickel(Ni)333023232116342127Lead(Pb)677797778Zinc(Zn)9897731108375897599Vanatium(V)666076569271485064Strontum(Sn)7833439420Cobalt(Col2114132222222	Calcium	[Ca]	1100	900	340	440	320	340	2100	340	4200	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Мадпестил	[Mo]	1600	1900	2700	2000	4700	3700	3100	3000	4600	
Titanium [Ti] 10 12 13 83 39 22 32 120 54 Manganese [Mn] 1500 850 800 1800 1906 770 1400 520 320 Phosonorus [P] 1200 1500 2006 2100 2006 1600 1200 930 1160 Bartum [Ba] 180 190 70 92 55 62 280 53 130 Chronium [Cr] 24 24 32 18 35 33 25 35 43 Zirconium [Cr] 11 10 4 7 4 1 7 1 2 Cooper (Cu) 62 72 70 79 57 47 91 26 50 Nickel [Ni] 33 30 23 23 21 16 34 21 27 Lead [Pb] 6 7 7 9 9 8 7 7 8 </td <td>Sodium</td> <td>[Na]</td> <td>30</td> <td>30</td> <td>40</td> <td>30</td> <td>50</td> <td>50</td> <td>40</td> <td>40</td> <td>60</td> <td></td>	Sodium	[Na]	30	30	40	30	50	50	40	40	60	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Potassium	EK 1	480	430	430	470	490	470	560	440	470	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Titanium	[Ti]	10	12	13	83	39	22	32	120	54	
Bartum(Ba)1907092556228053130Chromum(Cr)242432183333253543Zirconum(Zr)11104741712Copper(Cu)627270795747912650Nickel(Ni)333023232116342127Lead(Pb)677996778Zinc(Zn)7697731106375877597Vanatum[V]666076567271485064Strontum(Sr)7833439420Cobalt(Col211413222171856Malyodenum(Mo) < 2	Manoanese	[Ma]	1500	BE ()	600	1800	1900	770	1400	520	320	
Bartum[Ba]1901907092556228053130Chromum[Cr]242432183333253543Zirconum[Zr]11104741712Copper[Cu]627270795747912650Nickel[Ni1]333023232116342127Lead[Pb]677998778Zinc[Zn]9697731108375897597Vanatum[V]666076567271485064Strontum[Sr]7833439420Cobalt[Col]211413222191856Malyodenum(Mo] < 2	Phosohorus	CP - 1	1200	1500	2006	2100	2000	1600	1200	930	1100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			180	190	70	92	55	62	280		136	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chromium	[0]	24	24	32	18	35	33	25	35	43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zirconium	[Zr]	11	10	4	7	4	1	7	1	2	
Lead[Pb]677998778Zinc[Zni]9697731108375877599Vanadium[V]1666076567271485064Strontium[Sr]17833439420Cabalt[Col1211413222191856Malyadenum(Mo)< 2	Caoper	[Cu]	82	72	70	79	57	47	71	26		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nickel		33	30	23	23	21	16	34	21		
VanadiumIV 1666076569271485064Strontium[Sr]7833439420Cobalt[Col211413222191856Molybdenum(Mol < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <td< td=""><td>Lead</td><td>[Pb]</td><td>6</td><td>7</td><td>7</td><td>9</td><td>9</td><td>8</td><td>7</td><td>7</td><td>8</td><td></td></td<>	Lead	[Pb]	6	7	7	9	9	8	7	7	8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zinc	[Zn]	56	97	73	110	83	75	89	75	99	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vanadium	EV 1	66	50	76	56	92	71	48	50	64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strontium		7	8	3	3	4	3	9	4	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cobalt	[Co]	21	14	13	22	21	9	18	5	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Malvadenum		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
BoronLB 1< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10< 10				< 1		< 1	< 1	< 1	< 1	< 1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10	< 5	< 5	< 5	< 5	10	< 5	5	
	-								17	6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								< 1		< 1	1	
Niobium [Nb] < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 20 < 10 < 20 < 20 < 10 < 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 10</td> <td>< 10</td> <td></td> <td></td> <td></td>								< 10	< 10			
Thorium [Th] 10 20 20 40 30 30 20 40 20 Arsenic [Asi] 60 65 35 40 30 20 35 < 5 25 Bismuth [Bi] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	-								< 10	< 10	< 10	
Arsenic [Asi] 60 65 35 40 30 20 33 < 5 25 Bismuth [Bi] < 5	-											
Bismuth [Bi] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <		-							-	-		
												c.
	Tia	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
	Lithium Holmium	(Li) (Ho)	< 5 < 10	< 5 < 10	10 < 10	10 < 10	20 √ 10	20 < 10	15 < 10	10 < 10	30 ≺10	

SIGNED : Den Pilpin

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V ATTN: J. FOSTER	0 s St. 6C 2X6	OJECT: 90B	С017 — Н	I-TEC REED	urces r-	2447	T.S.L. T.S.L. T.S.L.	File N	o.: 1543	P.M	
ELEMENT		KS 171	KS 172	KS 173	KS 174	KS 175	KS 176	KS 177	KS 176	KS 179	KS 180
Aluminum Iron Calcium Magnesiüm Sodium Potassium Titanium Manganese Phosonorus Barium Chromium Zirconium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium	(Ba) (Cr) (Zr) (Cu) (Ni) (Pb) (Zn) (Cr) (Cr) (Cs) (Cs) (Cs) (Ag) (Cd)	9300 45000 2900 40 530 12 780 970 220 36 9 70 220 36 9 44 22 7 80 68 18 14 4 4 2 2 7 80 68 18 14 4 4 1 4 4 1	11000 33000 2700 3300 40 540 46 920 920 220 31 4 60 34 60 34 7 96 40 18 13 < 2 < 1 1	$\begin{array}{c} 9500\\ 40000\\ 2300\\ 3500\\ 40\\ 450\\ 58\\ 1300\\ 730\\ 110\\ 21\\ 6\\ 90\\ 42\\ 12\\ 71\\ 46\\ 11\\ 24\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ \end{array}$	$\begin{array}{c} 15000\\ 49000\\ 2500\\ 4500\\ 50\\ 570\\ 63\\ 1400\\ 1200\\ 140\\ 17\\ 10\\ 130\\ 17\\ 9\\ 9\\ 75\\ 16\\ 22\\ < 2\\ < 1\\ < 1\\ < 1 \end{array}$	110 770 230 1500 1200 80 78 7 65 58 11 88 71 12 15 < 2 < 1 < 1	31000 39000 6800 610 840 1500 700 47 33 10 78 34 13 120 150 5 19 < 2 < 1 1	$\begin{array}{c} 24000\\ 37000\\ 840\\ 5700\\ 70\\ 710\\ 340\\ 1200\\ 1200\\ 1200\\ 55\\ 97\\ 4\\ 76\\ 62\\ 14\\ 88\\ 56\\ 7\\ 17\\ < 2\\ < 1\\ < 1\\ < 1\\ \end{array}$	$\begin{array}{c} 20000\\ 31000\\ 700\\ 5600\\ 110\\ 560\\ 280\\ 1200\\ 820\\ 51\\ 130\\ 4\\ 61\\ 79\\ 11\\ 90\\ 68\\ 7\\ 15\\ < 2\\ < 1\\ < 1\\ < 1 \end{array}$	$\begin{array}{c} 25000\\ 37000\\ 1700\\ 5600\\ 160\\ 630\\ 420\\ 2200\\ 1100\\ 56\\ 180\\ 4\\ 64\\ 56\\ 15\\ 120\\ 61\\ 12\\ 19\\ < 2\\ < 1\\ < 1\\ < 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Beryllium Baron Antimony Yttrium Scandium Tungsten Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	[Be] [Sb] [Y] [Sc] [V] [V] [V] [Vb] [Nb] [Nb] [Nb] [Di] [Sn] [Li] [Ho]	$\begin{array}{cccc} < & 1 \\ < & 10 \\ & 15 \\ & 10 \\ < & 10 \\ < & 10 \\ < & 10 \\ < & 20 \\ & 95 \\ < & 5 \\ < & 10 \\ & 5 \\ < & 10 \end{array}$	$\langle 1 \\ \langle 10 \\ 5 \\ 14 \\ 4 \\ \langle 10 \\ \langle 10 \\ 30 \\ 75 \\ \langle 5 \\ \langle 10 \\ 10 \\ 10 \\ \langle 10$	<pre>< 1 < 10 10 14 3 < 10 < 10 < 10 20 40 < 5 < 10 10 10 < 10 < 10</pre>	< 1 < 10 < 5 17 11 < 10 < 10 < 25 < 5 < 10 15 < 10	<pre>< 1 < 10 < 5 8 6 < 10 < 10 < 10 30 20 < 5 < 10 25 < 10 25 < 10</pre>	< 1 < 10 < 5 30 14 < 10 < 10 < 10 < 5 < 10 < 40 < 10 < 5 < 10 < 10 < 5 < 10 < 10	<pre>< 1 < 10 < 5 12</pre>	< 1 < 10 < 5 < 10 < 10 < 10 < 10 < 10 < 5 < 10 < 20 < 10	< 1 < 10 < 5 7 3 < 10 < 10 < 10 < 5 < 10 20 < 10	< 1 < 10 < 5 16 < 10 < 10 30 35 < 5 < 10 25 < 10 25 < 10

SIGNED : Cim Pilipik

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE ***:** (306) 931 - 1033 FAX ***:** (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Ficor Box	ON LTD. 10						T.S.L. T.S.L.	REPORT No Fila N	5.: 9 - 5.: SE12		
808 West Hastin	os St.								o.: 1543		
Vancouver B.C.	-							invers n	1010	-	
ATTN: J. FOSTER		RDJECT: 90B	С017 – н	IT-TEC RESO	URCES R-	2447		ALL RESUL	TS PPM		
		SS t	SS 2	SS 3	SS 4	85 5	SS 6	K3 1	K3 2	K3 3	K3 4
ELEMENT											
Aluminum	[A1]	16000	15000	15000	15000	15000	530	18000	21000	27000	17000
Iron	{Fe]	37000	31000	37000	35000	38000	1300	24000	26000	42 000	27000
Calcium	{Ca]	3300	3600	3800	2500	3000	140	900	460	1200	646
Maonesium	(Mg]	6100	6000	5600	5600	5300	310	4700	4700	7300	5600
Sodium	[Na]	80	120	110	60	50	< 10	70	110	70	40
Potassium	[K]]	520	360	480	420	520	30	440	500	660	330
Titanium	(Ti]	91	180	110	130	76	4	120	290	1300	200
	[Ma]	1600	640	930	500	830	35	460	600	1200	730
Phosohorus		1100	1100	980	820	1000	36	550	870	980	630
Barium	(Ba]	200	94	710	87	110	5	110	61	24	30
Chromium	[Cr]	190	41	97	34	38	2	42	35	30	44
Zirconium	[Zr]	7	4	6			< 1	3	3	10	3
Copper	[Cu]	85	40	54	47	76	2	29	48	58	43 43
Nickel	[Ni]	89	27	56	31	32	2	40	34	23	48
Lead	[Pb]	23	12	16		8	$\langle \overline{1} \rangle$	9	13	7	8
Zinc	[Zn]	300	110	130	78	63	4	63	88	, 74	86
Vanadium	EV 3	97	66	82	85	77	3	55	58	140	58
Strontium	[Sr]	26	28	42	17	20	< 1	9	5	4	5
Cobalt	[Ca]	13		15	12	17	< 1	9	10	17	12
Molybdenus		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	$\langle 1$	(1	$\langle 1$	< 1	$\langle 1$	$\langle 1$	$\langle 1$	< 1
	(Cd]	2		$\langle 1$	< 1	< 1	< 1	$\langle 1$	< 1	$\langle 1$	$\langle 1$
Cadmium		< 1	$\langle 1$	$\langle 1 \rangle$	$\langle 1$	< 1	$\langle 1$		$\langle 1$	$\langle 1$	$\langle 1$
Beryllium		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Boron	[B]]			10	< 5	10	< 5	< 5	\ 10 5	< 5	< 5
Antiaony	(Sb)	10 7	5 8	10 10	× 3 7	- 5 1-3	< 1	× 5 4	15	∖ J Ç	× 0 • 6
Yttrium	[Y]]		5	10	6	8		4	10		4
Scandium	[Sc]	6					< 10	< 10		10 < 10	
Tungsten	(W]	< 10	< 10	< 10	(10						
Nicbium	(Nb)	< 10	< 10	< 10	< 10	< 10 20	< 10 < 10	< 10 20	< 10	< 10	< 10 30
Thorium	[Th]	< 10	20	10	20	20	< 10		10	40 • 5	
Arsenic	[As]	70	25	40	20	75 / E	< 5 / E	10	20	15	10
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	(10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	20	20	20	20	< 5	10	15	25	20
Holmium	(Ha]	< 10	< 10	< 10	< 10	(10	< 10	< 10	< 10	< 10	< 10

SIGNED : Um Pilmit

2-302-48TH STREET, SASKATEDN, SASKATEHNAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

K6 3

I.C.A.F. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver D.C. V&C 2X6 ATTN: J. FOSTER PROJECT: 90EC017 - HI-TEC RESOURCES R-2447

K6 1

K6 2

K3 5

T.S.L. REFORT No. : S - 9859 - 10 T.S.L. File No. : SE12MA T.S.L. Invoice No. : 15432

ALL RESULTS PPM

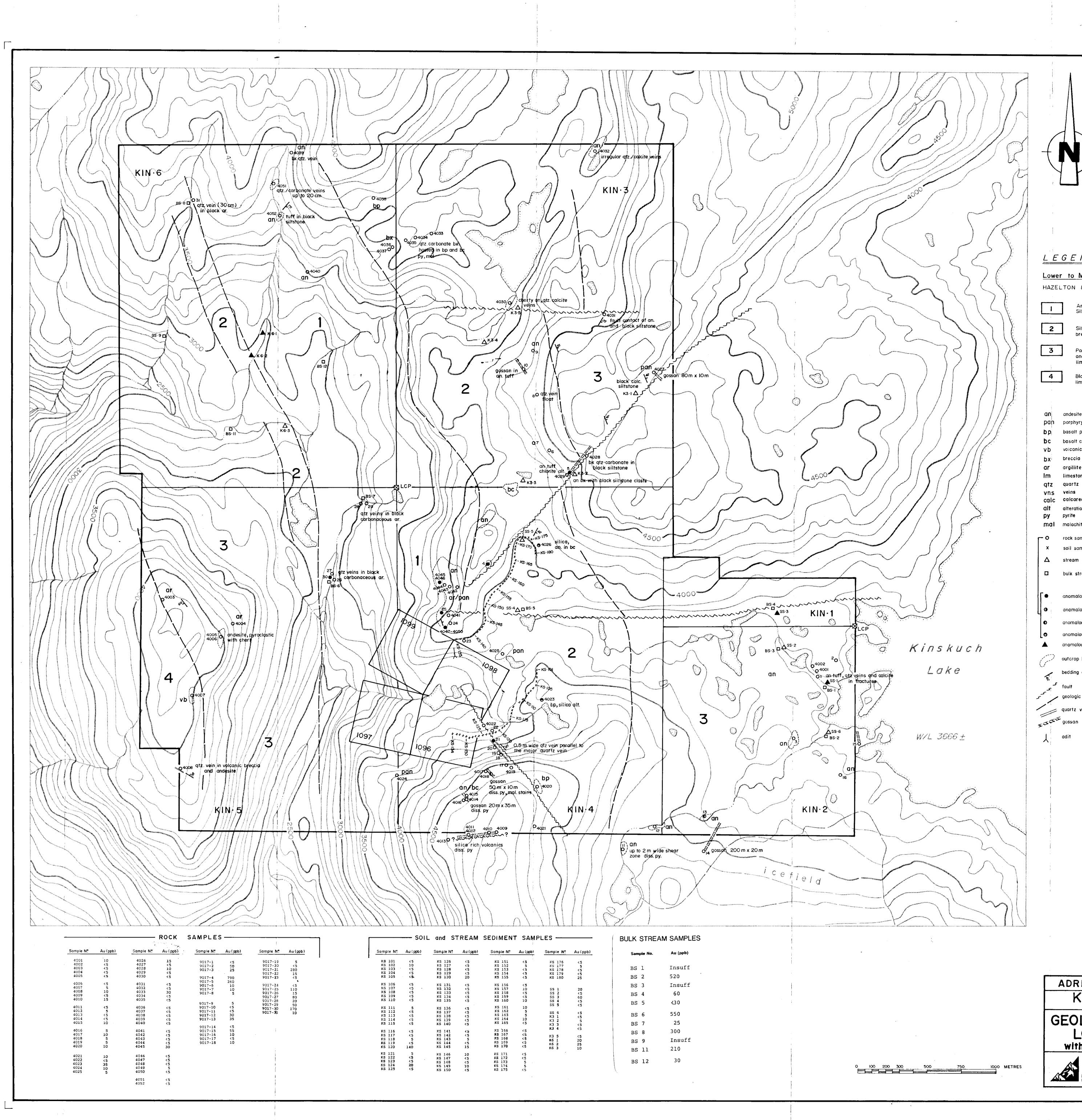
ELEMENT

Aluminum	EA13	19000	7100	B000	11000
Iron	[Fe]	39000	34000	37000	37000
Calcium	[Ca]	1100	4600	4300	3800
កើរល្អកទទាបរា	(Mg]	6400	3800	3600	5200
Sodium	[Na]	40	60	80	80
Potassium	CK 1	340	700	640	570
Titanium	[Ti]	430	38	77	110
Manganese	(Mal	1600	630	880	960
Phosphorus	(P]	810	940	690	9B0
Barium	[Ba]	77	190	190	160
Chronium	(Cr]	54	42	23	37
Zirconium	[Zr]	7	5	6	7
Copoer	(Cu3	75	87	94	77
Nickei	[Ni]	50	53	47	40
Lead	(Fb]	9	11	10	7
Zinc	[Zn]	90	120	120	88
Vanadium	[V]	66	34	36	67
Strontium	[Sr]	6	31	29	25
Cobalt	[Co]	25	19	17	20
Molybdenum	(ho)	< 2	Κ 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1
Cadmium	(Cd)	$\langle 1 \rangle$	2	i	< 1
Beryllium	[Be]	(1)	< 1	< 1	< 1
Boron	(B)	< 10	< 10	< 10	< 10
Antimony	(551	< 5	15	10	10
Yttrium	[Y]]	9	9	10	9
Scandium	[Sc]	10	7	6	9
Tungsten	[₩]	< 10	< 10	< 10	< 10
Niobium	[N6]	< 10	< 10	< 10	< 10
Thorium	[Th]	30	20	30	20
Arsenic	[As]	10	40	50	30
Bismuth	[Bi]	< 5	< 5	< 5	< 5
Tin	[5n]	< 10	< 10	< 10	< 10
Lithium	[Li]	20	10	5	15
Holmium	[Ha]	< 10	< 10	< 10	< 10

SIGNED : Dinn Pilipiak

APPENDIX IV

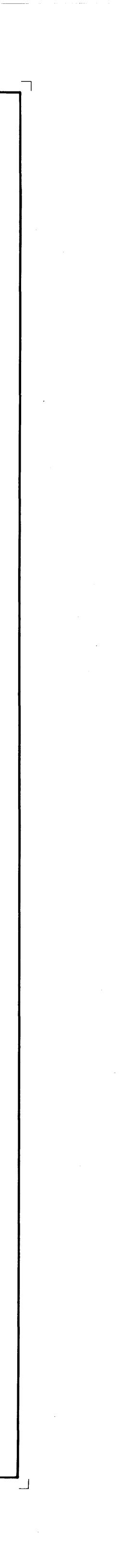
STATEMENT OF COSTS



STATEMENT OF COSTS	
ADRIAN RESOURCES LTD. JOB 90BC017 KINSKUCH PROJECT Pariod of Work: August 10 to August 22 1990	
Period of Work: August 10 to August 23, 1990	
<u>Salaries</u> D.Osijuk, Geologist, 14.00 days @ \$400/day \$ 5,600.00 R.Verzosa, Prospector, 14.00 days @ \$300/day <u>4,200.00</u>	9,800.00
Project Expense Project Preparation and Map Reproduction	4,578.42
Mobilization/Demobilization	4,540.00
Domicile 28.00 man days @ \$ 75/day	2,100.00
Geochemistry and Laboratory Service	
Soils 80 Sample Preparations @ \$1.00/sample \$ 80.00 80 Samples 30 element ICP/Au FA Geochem @ \$16.40/sample 1,312.00 Silts	
14Sample Preparations @ \$1.00/sample14.0014Samples 30 element ICP/Au FA Geochem @ \$16.40/sample229.60Bulk StreanStrean14.00	
11 Sample Preparations @ \$12.00/sample139.7011 Samples Heavy Mineral Pkg; Au440.00FA/AA Geochem @ \$40.00 /sample	
Rocks332.0083 Samples preparation @ \$4.00/sample332.0083 Samples;Au/FA geochem @ \$8.00/sample664.0083 Samples 30 element ICP/Au FA/AA Geochem @ \$8.40/sample697.20Freight charges121.05	
Helicopter Support Helicopter 14.40 hours @\$700.13/hour	10,081.83
Truck Rental & Fuel 14 days @ \$125.00/day	1,750.00.
Radio Rental .58 month @ \$250/month	145.00
Walkie Talkie Rental 28 days man days @\$5.00/unit/man/day	140.00
Field Supplies	920.63
Field Equipment Rental 28 man days @ \$25.00/day	700.00
Expediting	245.00
Page One (1) of Two (2) pages	

Accounting, Communications, and Freight	682.18
Report Preparation, drafting and compilation	4,300.00
15% Management Fees	6,616.89
TOTAL COSTS	\$ <u>50,729.50</u>

Page Two (2) of Two (2) pages



ı	
-	
ł	
LE	<u>GEND</u>
Lower	to Middle Jurassic
HAZEL	TON & STUHINI GROUPS
1	Andesite pyroclastics, andesite porphyry Siltstone, sandstone, limestone, conglomerate
2	Siltstone, limestone, volcanic breccia, breccia, polymictic, conglomerate
3	Porphyry basalt flows, basaltic pyroclastic and conglomerate, siltstone, sandstone, limestone
4	Black siltstone, argillite, shale, sandstone, limestone
an	andesite
pan	porphyry andesite
bp; bc	basalt porphyry basalt conglomerate
vb	volcanic breccia
bx	breccia
ar Im	argiliite/siltstone limestone
qtz	quartz
vns calc	veins calcareous
alt	alteration
py mal	pyrite malachite
mal	
-0 x	rock samples
Â	soil samples stream sediments
	bulk stream sediments
•	anomalous gold (>100 ppb)
0	anomalous silver (>5 ppm)
0	anomalous copper (>500 ppm)
lo	anomalous arsenic (>200 ppm)
	anomalous gold (>15 ppb) — silt
	outcrop boundary
1 m2	bedding attitude
کہ آبجہ	fault
/	geologic contact
	quartz vein
ESTE	gossan
X	adit
1	
į	

GEOLOGICAL BRANCH ASSESSMENT REPORT 20,611

ADRIAN RES	OURC	ES LI	۲D.
	N.D., B.C.	RTY	,
GEOLOGY d	and S	SAME	A IC
LOCATIC with GOLD G	DN	MAP)
LOCATIO	DN	MAP)
LOCATIO	DN EOCH	MAP EMIST	RY FIGURE No: 6

