LOG NO:	1213	RD.
ACTION:		
FILE NO:	اجتنب ويتجاره والتجريب والمحد	

GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

PARADIGM PROPERTY

PARADIGM 2 and MIKHAIL 2 Mineral Claims

Skeena Mining Division, British Columbia

SULPECCOLLE $\mathbf{F}_{i} = [1, \dots, 1]$

TE: 10 bou

VANCOUVER, B.C.

N.R. #

Ş....

N.T.S. 104-B/10E Latitude 56°34' North Longitude 130°33' West

on behalf of .

LOKI GOLD CORPORATION Vancouver, B.C.

by

A.M. (Sandy) Gibson, B.Sc. **KEEWATIN ENGINEERING INC.** #800, 900 West Hastings Street Vancouver, B.C. V6C 1E5

٩

12 02

じ く

November 8, 1990

SUMMARY	1
INTRODUCTION	2
Physiography and Climate	2 2 3
PREVIOUS EXPLORATION	3
1989 Exploration Program	4
GEOLOGY	5
Property Geology North Grid/Paradigm 2 Geology Mikhail 2 Claim Geology Structure Alteration	5 6 7 8 8 8 8
GEOCHEMISTRY	9
Soil Geochemistry - Paradigm 2 Claim Stream Silt Geochemistry - Mikhail 2 Claim Stream Silt Geochemistry - Paradigm 2 Claim Lithogeochemistry - Mikhail 2 Claim	9 9 11 11 11
CONCLUSIONS 1	13
RECOMMENDATIONS 1	14
REFERENCES 1	15
CERTIFICATE 1	16

TABLE OF CONTENTS

.

.....

ъ.

. .

.

. -

.

.

. .

.

Page No.

LIST OF APPENDICES

- APPENDIX I Itemized Cost Statement
- APPENDIX II Summary of Personnel
- APPENDIX III Laboratory Techniques
- APPENDIX IV Rock Sample Geochemical Results
- APPENDIX V Rock Sample Descriptions
- APPENDIX VI Stream Silt and Soil Geochemical Results
- APPENDIX VII Stream Silt and Soil Sample Histograms and Summary Statistics (Au, Ag, As, Cu, Pb, Zn, Sb, Hg)
- APPENDIX VIII Stream Silt and Soil Sample Descriptions

LIST OF TABLES

Page No.

Table 1.	Claim Status	2
Table 2.	Mikhail Claim Anomalous Soil Geochemical Results	9
Table 3.	L16+50N Gossan Chip Sample Results	12
Table 4.	Follow-up Rock Grab Samples - Paradigm 2 Claim	13

LIST OF FIGURES

Following Page No.

Figure 1.	Property Location Map 2
Figure 2.	Paradigm Claim Map 2
Figure 3.	Regional Geology - Bowser Basin 5
Figure 4.	Property Geology
Figure 5a.	Mikhail 2 Claim Compilation 9
Figure 5b.	Paradigm 2 Claim Compilation 9

LIST OF PLATES

Map 1a.	Geology and Anomalous Rock Sample Locations,	
-	Paradigm 2 Claim	in pocket
Map 1b.	Geology and Anomalous Rock Sample Locations,	
-	Mikhail 2 Claim	in pocket
Map 2a.	Geochemical Sample Locations, Paradigm 2 Claim	in pocket
Map 2b.	Geocheimcal Sample Locations, Mikhail 2 Claim	
Map 3a.	Au, Ag, As Geochemical Sample Results,	
-	Paradigm 2 Claim	in pocket
Map 3b.	Au, Ag, As Geochemical Sample Results,	
-	Mikhail 2 Claim	in pocket
Map 4a.	Cu, Pb, Zn Geochemical Sample Results,	
-	Paradigm 2 Claim	in pocket
Map 4b.	Cu, Pb, Zn Geochemical Sample Results,	
	Mikhail 2 Claim	in pocket

SUMMARY

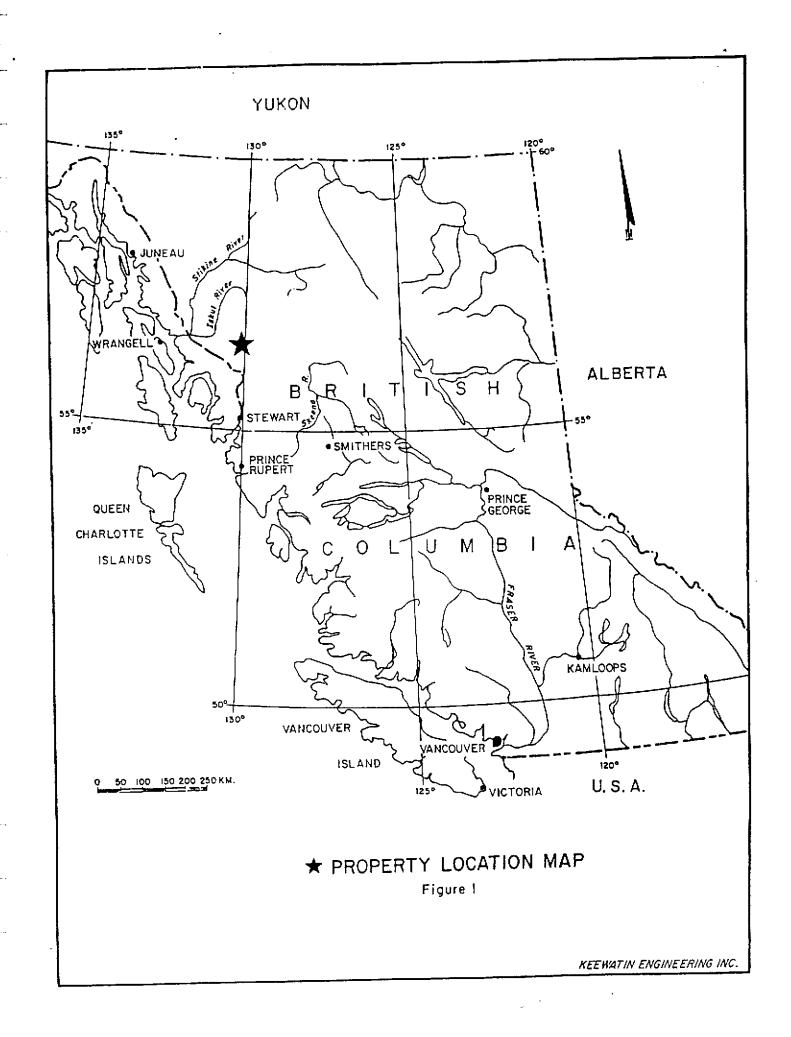
Keewatin Engineering Inc. was commissioned by Loki Gold Corporation of Vancouver, B.C. to conduct a field exploration program on the Paradigm property located in the Unuk River area of northern British Columbia. The program's objective was to follow-up anomalous areas outlined in the 1989 field season as well as to investigate unexplored areas through prospecting, geological mapping and geochemical sampling. Geochemical sampling consisted of lithogeochemical, stream silt and both contour and grid controlled soil sampling.

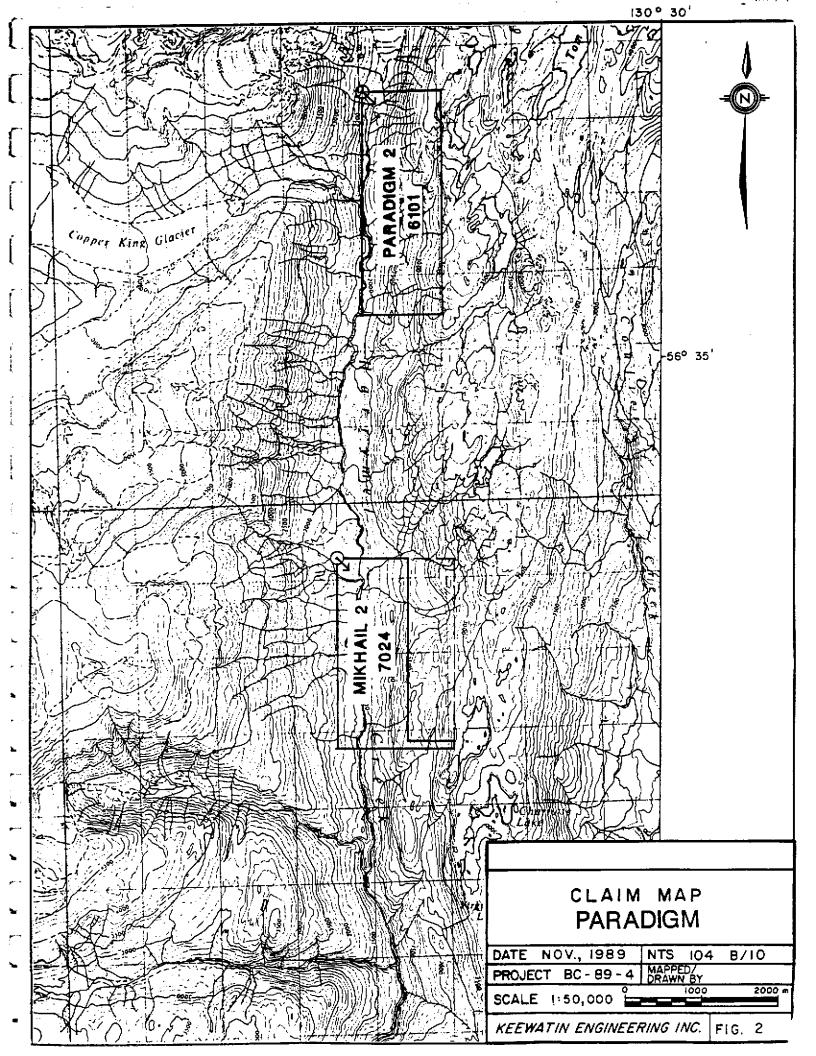
The exploration program was undertaken in July and August, 1990. A total of 62 rock samples, 493 soil samples (366 contour and 127 grid controlled), and 61 stream silt samples were collected. Geological mapping determined the property to be underlain by thin alternating bands of intermediate volcanics, sheared argillite and siltstone, and pyritic felsic "fragmental" tuff/breccia.

Results from the geochemical sampling over the property defined two zones of coincident anomalous gold, silver and base metal values (Pb, Zn, Cu). The first zone (line 16+50N) is related to mineralization within a pyritic felsic fragmental band. The second zone comprised 8 successive anomalous gold-in-soil samples collected at 25 m intervals over 200 metres along a contour line. Further prospecting, geological mapping and geochemical detailing is recommended in order to evaluate these anomalies. Loki Gold Corporation of Vancouver commissioned Keewatin Engineering Inc. to conduct a field exploration program on the Paradigm property located in the Unuk River area of northern British Columbia.

The objective of this program was to evaluate the property's potential for hosting economic precious metals deposits. Exploration consisted of prospecting, geological mapping, and geochemical sampling. The geochemical component comprised lithogeochemical, stream silt and soil sampling. An attempt was made to follow-up on areas up-slope from anomalous sediment samples taken during the 1989 field exploration program.

Location and Access


The Paradigm property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1) and approximately 5 km west of the Eskay Creek Deposit. The claims are situated within N.T.S. map-sheet 104-B/10E and centred about 56°34' North latitude and 130°33' West longitude. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property. The claims can also be directly accessed by helicopter from Stewart.


At some future date, road access to the area from the Stewart-Cassiar Highway could be obtained via the Upper Unuk River and Tiegen Creek valleys.

Property Status and Ownership

The Paradigm property (Figure 2) consists of two modified-grid claims totalling 30 units, located within the Skeena Mining Division. An attempt was made to locate the legal claim posts for both claims but the search was unsuccessful. Relevant claims data are tabulated below:

TABLE 1 - Claim Status							
Claim Name	Record Number	No. of Units	Date of Record	Expiry Date			
Paradigm 2 Mikhail 2	6101 7024	12 18	April 28, 1987 December 5, 1988	1992 1997			

These claims are apparently the subject of an agreement between the claim holders (Teuton Resources Inc.) and Winslow Gold Corp., which has recently optioned the property to Loki Gold Corporation. The claim map shows that part of the Paradigm 2 claim was subsequently overstaked by a series of two-post claims along Harrymel Creek.

Physiography and Climate

The Paradigm property is situated within the Coast Range Physiographic Division and is characterized by northern rain forests and sub-alpine plateaux. The north-south trending U-shaped Harrymel Creek valley occurs along the western boundary of the two claims. Elevations range from 455-610 m in the valley of Harrymel Creek to 1065 m in the eastern part of the property (Figure 2).

A transitional treeline, characterized by dense sub-alpine scrub, meanders through the property at approximately the 915 m elevation. Terrain above treeline is typified by intermontane alpine flora. Conifers up to 30 m tall are common below treeline, especially in stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claim area.

Precipitation is heavy, exceeding 200 cm per annum, with short mild summers but very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

PREVIOUS EXPLORATION

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig, and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Explorations Ltd. The Johnny Mountain deposit was brought into production in mid-1988, and the adjacent SNIP property is slated for production in early 1991.

The mineralization at Eskay Creek was discovered in 1932, and active prospecting has continued sporadically since then. Two adits are the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the '21 Zone' (Northern Miner, November 7, 1988). A number of excellent diamond drill intersections have been obtained to date, including drill hole CA-88-06 which encountered 96 feet of 0.752 oz/ton gold and 1.13 oz/ton silver. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological ore reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver has been calculated for the '21 Zone' (Consolidated Stikine Silver Ltd. - 1989 Annual Report).

The Unuk River area was covered by regional geological mapping in 1988 as part of the Iskut-Sulphurets project carried out by B.C. Ministry of Energy, Mines and Petroleum Resources (Britton, et al., 1989). The whole of N.T.S. 104-B is currently being mapped by R. G. Anderson of the Geological Survey of Canada (Anderson, 1989).

The results of a regional stream sediment sampling program conducted over this area were released in July 1988 (National Geochemical Reconnaissance, 1988). Britton (et al.) report that almost every known precious metal prospect in the Unuk River area is associated with high stream sediment gold values. Known gold deposits are also associated with high but variable values for such pathfinder elements as silver, arsenic, antimony, and barium. One stream sediment sample (#871300) was collected from a stream draining the property, and yielded elevated to anomalous values in arsenic (590 ppm) and antimony (20.0 ppm).

A review of all available information indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962 which led to the discovery of the Harrymel Creek copper showing which is reportedly located on the Mikhail 2 claim. Field investigations did not locate any mineralization in this area.

An airborne electromagnetic and magnetic survey was conducted over the Paradigm 2 claim in 1988. Interpretation of the data confirmed the regional geological mapping but indicated further faulting, hydrothermal alteration, and potential sulphide mineralization (Shensha, 1989). In August 1989, a reconnaissance stream silt sampling program was completed on the Paradigm 2 claim. Samples collected from the central portion of the claim yielded weakly elevated As and Ag values.

1989 Exploration Program

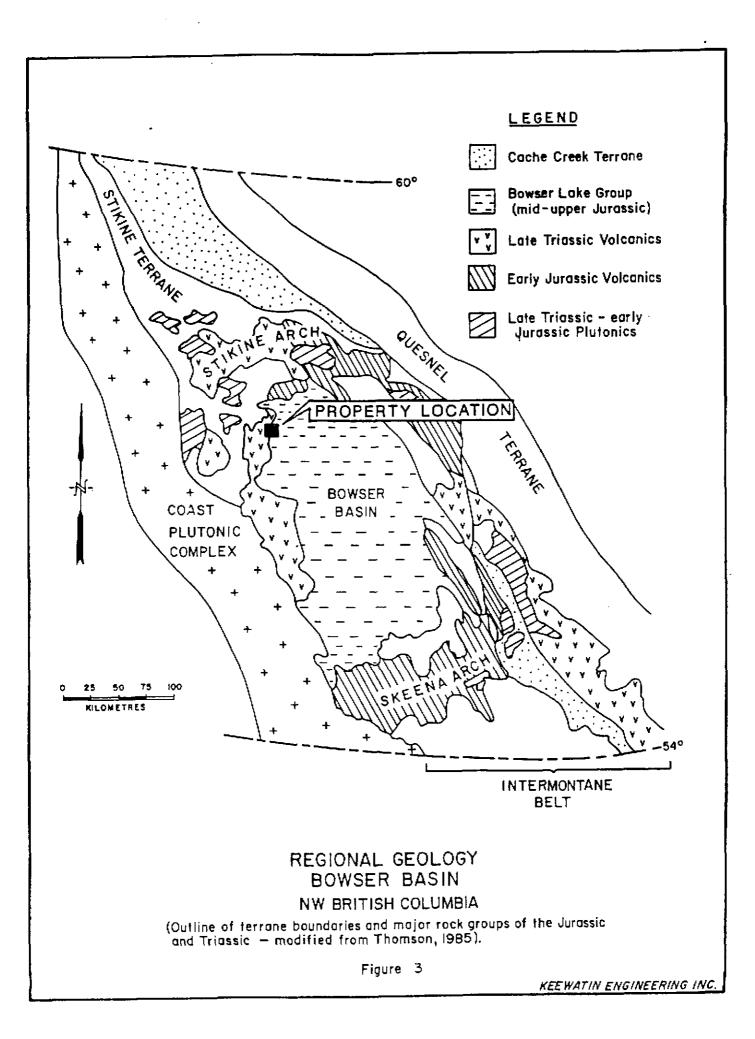
The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling with the objective of evaluating the property's

•

potential for hosting economic precious metals deposits. This work was concentrated in the upland areas and in the drainage courses where rock exposures were most abundant.

Reconnaissance prospecting and lithogeochemical/stream silt sampling were completed over selected parts of the Mikhail 2 claim, but did not yield any anomalous precious or base metals values. One heavy mineral sample, from a creek in the northern part of the claim, yielded an anomalous gold value of 2238 ppb. However, this creek originates beyond the property boundary, consequently, this elevated gold value may be due to mineralization located adjacent to the property area.

Extensive stream silt sampling combined with reconnaissance prospecting and lithogeochemical sampling was completed along the numerous drainage courses which cut across the Paradigm 2 claim and in the upland areas. A number of lithogeochemical samples yielded elevated to anomalous Au, Ag, and/or As values, and several stream silt samples yielded elevated Ag or As values. Heavy mineral samples collected from creeks draining the southern half of the claim yielded elevated Ag, As, Cu, or Zn values, with one sample containing a gold value of 540 ppb.

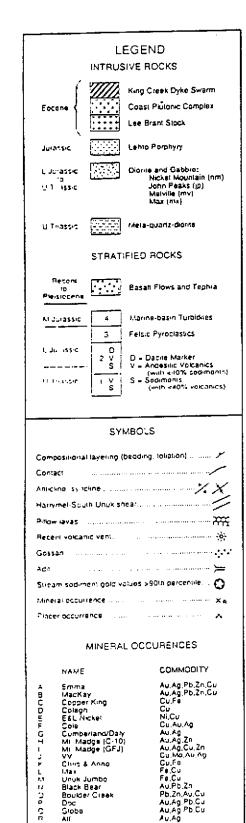

GEOLOGY

<u>Regional Geology</u>

The property lies within the Intermontane Tectono-Stratigraphic Belt, one of five parallel northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The Paradigm property occurs near the contact between the Stikine Terrane, which makes up most of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

The Unuk River area (Figure 4) is underlain by a thick succession of Upper Triassic to Lower Jurassic volcano-sedimentary arc complex lithologies capped by Middle Jurassic marine basin lithologies. This package has been intruded by a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, dyke swarms, isolated dykes and sills, as well as batholiths belonging to the Coast Plutonic Complex.

The stratigraphic sequence has been folded, faulted, and weakly metamorphosed during Cretaceous time, but some Triassic strata are polydeformed and may record an earlier deformational event. Remnants of Pleistocene to Recent basaltic flows and tephra are preserved locally.


h.....

١.

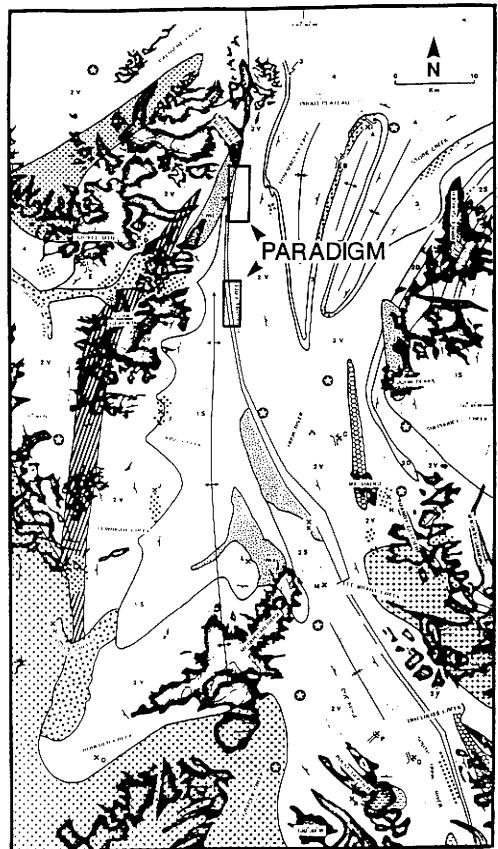
ь.

. .

×. .

h. .

. . . .


;

5

NOTE: Not to scale

°b.Cu

Au,i

Geology and mineral deposits, Unuk map area. Modified after Britton et. al. (1989)

PROPERTY GEOLOGY

-

Regional geological mapping by Britton et al.(1989) shows that the claims are underlain predominantly by Lower Jurassic supracrustal rocks (Figure 4). The north-south trending Harrymel-South Unuk shear zone transects the western property boundary and separates the Upper Triassic rocks occurring directly west of the property from the Lower Jurassic rocks underlying the property. The distribution of map-units suggests that the rocks to the west of the major shear zone dip shallowly to the west. Units in the eastern part of the property were observed to display a moderate westerly dip.

<u>Upper Triassic Stuhini Group</u> (Unit 1)

The Stuhini Group rocks occupy the nose of a north-plunging anticline, and occur as a wedge between the Harrymel-Unuk shear zone and the overlying Unuk River Formation. These rocks underlie the area immediately west of the claims. Geological mapping completed during the 1989 exploration program indicates that this unit probably underlies the western half of the Mikhail 2 claim. The Stuhini Group rocks consist of thin bedded siltstones, immature fine-grained wackes, chert, impure limestones, and andesitic tuffs that locally attain a considerable thickness. Andesitic tuffs may be laminated to massive, aphanitic to hornblende-feldspathic. Limestones occur as thin beds or discontinuous lenses which show extensive recrystallization and highly disrupted internal structure. Fossil evidence led Britton et al.(1989) to ascribe a Carnian to Norian age to these rocks.

<u>Upper Triassic to Lower Jurassic Unuk River Formation</u> (Unit 2)

These Norian to Sinemurian age rocks of the Unuk River Formation constitute the lowermost unit of the Hazelton Group. Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of fine-grained immature sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (± hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green thinly bedded tuffaceous siltstone and fine-grained wacke. The basal contact with Triassic strata appears to lie near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks the lower contact. This unit is not mapped on the property but is incorporated in the report for the sake of completeness.

Lower Jurassic Betty Creek Formation (Unit 3)

A Pleinsbachian to Toarcian age is assigned to this unit by Britton et al.(1989). This pyroclastic-epiclastic sequence is comprises of a sequence of westward facing but locally overturned interbedded volcanics and lesser sediments, underlying most of the property. The volcanics are dominantly grey and green, massive to poorly bedded units, and range in composition from basaltic andesite to dacite. Pillow lavas, breccias, and felsic pyroclastics, are all included in the Betty Creek Formation Volanics. The sedimentary rocks are, on the whole, less abundant than the volcanic rocks, and consist of black thinly bedded siltstone, shale, and argillite. Limestones are rare or absent in the Lower Jurassic section.

North Grid/Paradigm 2 Geology

The North Grid area was established in the northwestern part of the claim in order to provide geological and soil grid geochemical control. The base line, oriented north-south is 1.65 km in length with 500 m east-west cross lines. Geological mapping determined that the bedrock in the grid area is composed of a series of intermediate to andesitic volcanics and sheared argillite bands with several thin occasional discontinuous felsic fragmental bands.

One of the sheared argillite bands hosts discontinuous, boudin-like, carbonate altered, silicified, mafic sills (listwanite). This chromium bearing alteration product is commonly associated with quartz-carbonate lode gold deposits (Ash, 1990).

Two variably sulphide rich felsic fragmental bands up to 20 m wide were mapped in the grid area. These bands follow the general trend of the stratigraphy which strikes north-northeast. Based on rare bedding and lithological contacts, the package is interpreted as dipping moderately westward. Detailed follow-up mapping of the creek to the west of the felsic band on line 16+50N identified two additional felsic fragmental bands, one of which has been interpreted as correlating with the felsic fragmental/gossan in the northwestern corner of the grid area.

Two silt sample/geological traverses along east-west trending creeks to the south of the grid area failed to locate the continuation of these felsic fragmental bands.

7

Mikhail 2 Claim Geology

Geological mapping of the Mikhail 2 claim showed that the property is underlain by alternating chloritized intermediate volcanics, tuff and argillite bands. Argillite bands range from one to two metres up to a maximum of more than 100 m in thickness of argillite and siltstones along the Unuk-Harrymel shear zone. These observations support the government mapping (Alldrick, 1989) which shows the area to be underlain by the Betty Creek Formation pyroclastic-epiclastic sequence.

Structure

The main structural feature on the Paradigm property area is the Unuk-Harrymel shear zone, a major fault zone which parallels Harrymel Creek and transects the western portion of both the north and south Paradigm claims. Britton et al. (1989) interpreted this structure as a major easterly dipping shear zone with normal offset. Shearing within the less competent argillite bands in likely related to the shearing along the Harrymel. Observed folding and faulting is also likely related to this major structure. Stratigraphy was observed to trend north-northeast with moderate but variable dips to the west.

Alteration

Most volcanic rocks of intermediate composition are generally chloritized. In the south eastern part of the Mikhail 2 claim these rocks grade into erratically distributed zones of intense quartz carbonate alteration. The listwanite identified in the North Grid area is also a product of quartz-carbonate alteration, possibly associated with the shearing along the host argillite band (see Appendix V, samples R4137, 38, 41, 51).

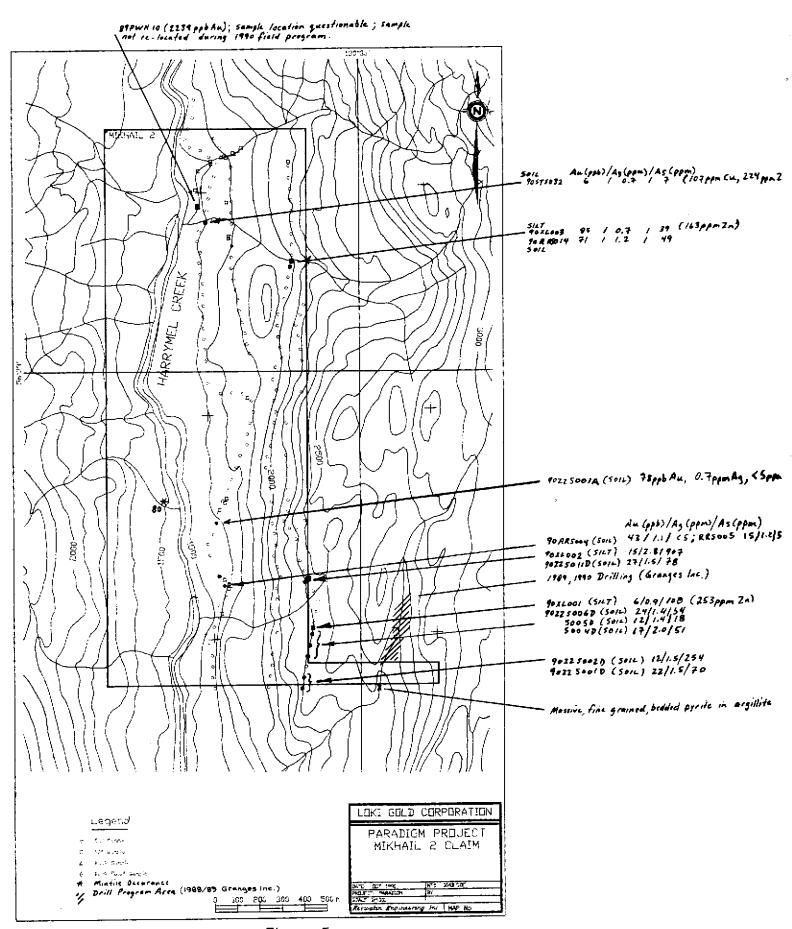
Mineralization

Fine grained disseminated pyrite and arsenopyrite comprise the only observed mineralization on the Paradigm property. Massive fine grained pyrite in concentrations of up to 20% comprise the matrix of the felsic fragmental/breccia which was determined to be anomalous in gold, silver and arsenic (see Table 3, Appendix IV and Appendix V).

GEOCHEMISTRY

Soil Geochemistry - Mikhail 2 Claim

No strong base or precious metal element anomalous zones were identified on the three contour soil lines established in the Mikhail 2 claim area. Six samples in the southwestern corner of the property, in close proximity to the 1989-1990 Granges Inc. drilling sites, were weakly anomalous in gold, silver and arsenic (Figure 5a, Plate 3b). The anomalous soil geochemical results are tabulated below:


TABLE 2							
Mikhail Claim Anomalous Soil Geochemical Results							
Sample No.	Au ppb	Ag ppm	As ppm				
90 ZZ \$004Y?	17	2.0	51				
90 ZZ S002D	12	1.5	254				
90 ZZ S001D	22	1.5	70				
90 ZZ S001A	78	0.7	<				
90 RR S004	43	1.1	<				
90 RR S005	15	1.2	539				

A total of 157 contour soil samples were taken on the Mikhail 2 claim.

Soil Geochemistry - Paradigm 2 Claim

A total of 89 contour soil and 127 grid soil samples were taken on the Paradigm 2 claim. The soil geochemical grid (North Grid), was established over an area in the northeastern corner of the claim which returned favourable lithogeochemical and stream silt geochemical values during the 1989 field season.

Two areas of note were outlined by the soil geochemistry. The first is in the southeastern portion of the claim where eight out of ten consecutive samples returned elevated precious and base metal values. Sample locations and Au, Ag, As and Zn values are shown on Figure 5b and plotted on Plates 3a and 4a).

ba. -

P -

Figure 5a Property Compilation, Mikhail 2 Claim

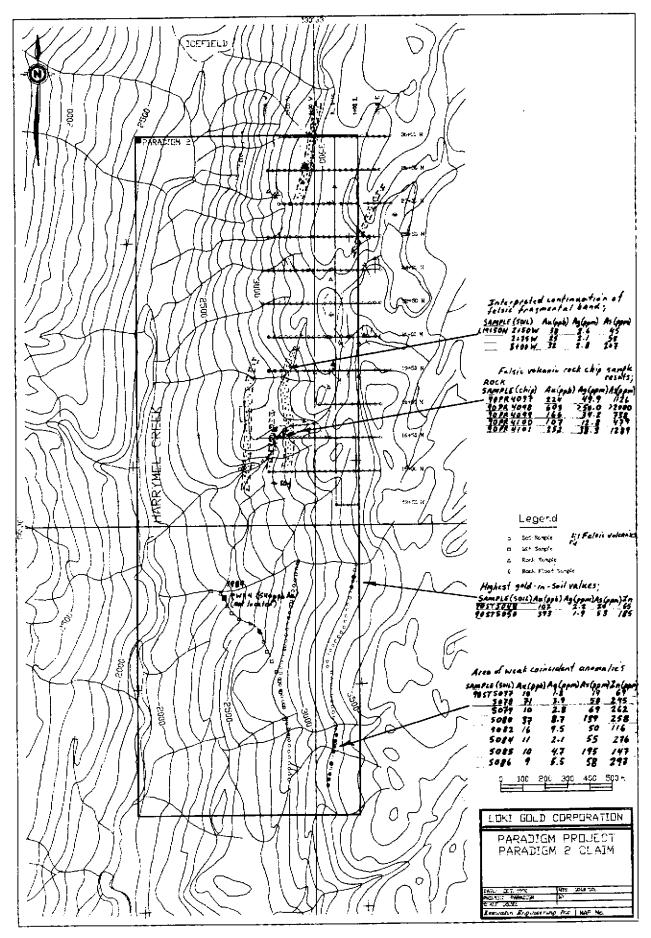


Figure 5b Property Compilation, Paradigm 2 Claim

Although the anomalous values in this zone are not extremely high, the extent of the anomaly (over 250 m), coincident with base and precious metal element anomalies identifies it as a promising exploration target area. Spot geochemical high values include two samples to the north on this same contour line:

Sample No.	Au ppb	Ag ppm	Zn ppm
90 PST S048	102	2.2	65
90 PST S050	393	1.9	185

The origin of these anomalies along this 3,200 foot contour line has yet to be determined. They are likely related to one or more enriched stratiform argillite horizons which parallel the contour line itself, that is north-northeast.

The second anomalous zone has a known bedrock source and is located on lines 16+50N and 19+50N on the extreme western ends of the lines. Here, a sulphide rich felsic fragmental unit, which returned values up to 600 ppb Au in chip samples, is interpreted as being the source for the anomaly. On line 16+50N the grid line passes 25 m to the south along strike from the chip sample locations. On line 19+50N (300 m to the north, along strike), the soil samples returned similar geochemical values (coincident Au, Ag, As, Cu, Sb, Mo anomalies). Based on the geochemical signature of the most easterly three samples on line 19+50N, the felsic fragmental band is interpreted as continuing through this area.

A second, less obvious trend, is outlined by slightly anomalous gold, copper and antimony values. This trend is related to an argillite unit which trends from just east of the highly anomalous zone on L16+50N to the far northeastern corner of the grid.

More detailed soil sampling in the area between and on either side of lines 16+50N and 19+50N, where possible, would help delineate the multi-element anomaly in that area.

A small detailed (10 m spacing) soil geochemical grid in the southeastern portion of the Paradigm 2 claim, as well as prospecting and mapping, would help identify and ascertain the extent of the mineralization.

Stream Silt Geochemistry - Mikhail 2 Claim

Stream silt samples were taken in conjunction with the contour soil sample lines where drainages were crossed. Results were similar to the soil samples, with no highly anomalous results. The best results were returned from a stream in the north-central part of the claim. Eight samples were collected during a stream silt/mapping traverse up this creek. The highest value, 129 ppb Au, was returned from sample 90XL010. None of the silt samples in this area returned anomalous silver or arsenic values, but zinc values up to 306 ppm were recorded. The 1989 geochemical program produced a heavy mineral sample with 2,239 ppb Au from this same stream.

Stream Silt Geochemistry - Paradigm 2 Claim

A total of twenty-four stream silt samples were taken in the course of contour and grid soil sampling on the Paradigm 2 claim. No highly anomalous results of economic or pathfinder elements were detected. Slightly elevated gold values were returned from samples 90STL304 (24 ppm Au) and 90STL309 (22 ppm Au). These samples were taken from upstream of sample 89PWH4, a heavy mineral concentrate sampled in last year's field program which returned a value of 540 ppb Au.

Lithogeochemistry - Mikhail 2 Claim

Prospecting and geological mapping was conducted along drainages, and along Granges Inc. grid-cut lines in the southeastern corner of the Mikhail 2 claim. A total of ten rock samples were collected on the Mikhail 2 claim. Five rock grab samples (PR4077-4081) were all taken from carbonate altered, massive, intermediate volcanic outcrop exposures in creek beds. None of these rock samples returned any significantly anomalous values in economic or pathfinder elements. All of the lithogeochemical sample results are incorporated in Appendix IV and plotted on Maps 3b, 4b).

Lithogeochemistry - Paradigm 2 Claim

- -

The majority of rock samples collected on the Paradigm project were taken from the Paradigm 2 claim. Of the 52 samples taken, 47 were grab samples and five were 1.5 m chip samples.

The five chip samples were taken from a highly oxidized felsic fragmental outcrop previously unmapped and unsampled. Results were anomalous in gold, silver, arsenic and antimony as listed below:

TABLE 3 L16+50N Gossan Chip Sample Results						
Sample No.	Au ppb	Ag ppm	As ppm	Sb ppm		
90 PR 4097	224	49.9	1,126	47		
90 PR 4098	603	>50.0	>2,000	173		
90 PR 4099	166	34.2	738	46		
90 PR 4100	107	12.8	479	39		
90 PR 4101	252	38.8	1,289	67		

Note:	These	are	sequential	one metre	chip sample	èS.

Two additional sulphide rich grab samples from a second felsic fragmental band to the west returned similarly elevated values in gold, silver, arsenic and antimony.

Sample No.	Au ppb	Ag ppm	As ppm	Sb ppm
90 PR 4213	126	19.7	1,238	53
90 PR 4214	122	21.5	1,551	50

The highest gold value returned from any sample (5,901 ppb or 0.169 oz/ton), was from a float block (90 PR 4153). This block comprised quartz stringers in a fine grained, silicified intermediate volcanic rock. The bedrock source of this float material was not identified.

Follow-up prospecting on a lithogeochemical high (89 PPR4; 678 ppb Au) resulted in samples 90XR 1823, 1824, 1825 being taken in the same vicinity and samples 90 PR 4143 and 4144 being taken along strike. These grab samples were also collected from a lomonite/jarosite stained intermediate to felsic band intercalated within argillite bands.

TABLE 4							
Follow-up R	Follow-up Rock Grab Samples - Paradigm 2 Claim						
Rock Sample No.	Au ppb	Ag ppm	As ppm	Sb ppm			
90 XR 1823	112	3.5	248	6			
90 XR 1824	185	30.9	141	11			
90 XR 1825	44	10.2	111	9			
90 PR 4143	61	9.6	179	9			
90 PR 4144	101	32.4	370	20			

This felsic band is interpreted to be a more westerly unit than the band sampled on L16+50N (see Map 1a, Figure 4b). At least two felsic fragmental bands have been identified on the North Grid area, both of which are anomalous in gold. More detailed mapping, particularly in the steep drainages to the west of the North Grid area would help to delineate the extent and economic potential of these units.

CONCLUSIONS

The Paradigm property is underlain by a north-northeast trending package of chloritized, intermediate, massive to tuffaceous volcanics and argillites. On the Paradigm 2 claim, at least three narrow felsic fragmental bands have been mapped. These felsic layers returned anomalous values in Au, Ag, As and Sb across a series of five contiguous 1.5 m chip samples.

Prospecting, geochemical soil and silt contour lines and geological mapping failed to identify any obvious exploration targets on the Mikhail 2 claim beyond weak Au, Ag, As and Zn soil geochemical anomalies in the southwestern corner which may bear further investigation. An area of weak coincident gold, silver, arsenic, copper, lead and zinc anomalies in soil was identified in the southeastern corner of the Paradigm 2 claim. These anomalous values may be related to mineralization within one or more of the argillite bands mapped to the south.

RECOMMENDATIONS

Further detailed soil geochemical sampling, prospecting and mapping in the areas north and south of the anomalous felsic volcanic band on L16+50N of the North Grid is recommended. Grid line spacing in this area should be decreased from the present 150 metres to 75 m.

Establishment of a small grid to provide control for soil geochemical sampling (10 m sample intervals on 25 m line spacings), geological mapping and prospecting is also recommended for the anomalous area in the southeastern corner of the Paradigm 2 claim.

Trenching of any anomalous areas outlined by the proposed detailed geochemical soil sampling program would then be recommended. If sufficiently mineralized bedrock is discovered, a phase II drill program should be contemplated.

Respectfully submitted,

KEEWATIN ENGINEERING INC.

Amh. 55-

A.M. (Sandy) Gibson, B.Sc.

REFERENCES

- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (1989): Iskut-Sulphurets Gold; in The Northern Miner Magazine, January 1989.
- Ash, C.H.; Arksey, R.L. (1990): The Listwanite Lode Gold Association in British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1.
- Aussant, C.H. and DuPre, D.G., Geological Prospecting, and Geochemical Report on the Paradigm Property, Unpublished report for Loki Gold Corporation and Rocky Mountain Energy Corporation.
- Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E,8W,9W,10E); in B.C. Energy Mines & Petroleum Resources, Geological Field Work 1988, Paper 1989-1, pp. 241-250.

Consolidated Stikine Silver Ltd.: - 1989 Annual Report

Υ.

۴

ſ

E

- DuPré, D.G. (Sept. 6, 1989): Geological Report on the Paradigm Property, Skeena Mining Division; for Loki Gold Corporation and Rocky Mountain Energy Corp.; private company report.
- Geological Survey of Canada, Open File 1645 (1988): National Geochemical Reconnaissance; Iskut River.
- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C. Energy Mines & Petroleum Resources, Bulletin 58.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C. Energy Mines & Petroleum Resources, Bulletin 63.
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C. Energy Mines & Petroleum Resources, Assessment Report 10474.

Northern Miner: - November 7, 1989.

- Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; for BP Resources Canada Limited, private company report.
- Shensha Consultants Limited (Oct.1989): Report on Mineral Potential Evaluation of the Iliad (South) Claim Block; for Ross Resources Ltd., private company report.
- Woods, D.V.; Hermary, R.G. (July 18, 1988): Geophysical Report on an Airborne Magnetic and VLF-EM Survey on the PARADIGM 1 and 2 Claims, Skeena Mining Division; for Dino M. Cremonese, private report.

CERTIFICATE

I, ALEXANDER M. GIBSON, of 555 E. St. James Road in the District of North Vancouver in the Province of British Columbia, do hereby certify that:

- 1) I am a graduate of the University of British Columbia, B.Sc. Geology (1988) and have practised my profession continuously since graduation.
- 2) I am a member of the Geological Association of Canada.
- 3) I am presently employed on contract with the firm of Keewatin Engineering Inc., with offices at Suite 800 - 900 West Hastings Street, Vancouver, British Columbia.
- 4) During the period of August 10 August 15, 1990, I managed and carried out the exploration program on the Paradigm Property on behalf of Loki Gold Corporation.
- 5) I am the author of the report entitled "Geological and Geochemical Report on the Paradigm Property, Paradigm 2 and Mikhail 2 Mineral Claims, Skeena Mining Division, British Columbia", dated November 8, 1990.
- 6) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Loki Gold Corporation in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this 9th day of November, 1990.

Respectfully submitted,

AMG. 65-

Alexander M. Gibson, B.Sc.

APPENDIX I

•

÷...

-

. .

κ.

. .

• ••

н .

~ .

`

.

•

•

•

.

Itemized Cost Statement

ITEMIZED COST STATEMENT

.

.

,

•

۳ د

•

.

.

•

•

.

.

`

•

.

.

PARADIGM October 24, 1990	
Domicile	\$ 9,750.00
Wages	33,770.00
Helicopter	20,646.72
Mobilization	6,548.87
Shipping	1,000.00
Post Season Est.	7,500.00
Miscellaneous & Equipment Rental	7,425.64
Assays: Soils and Silts - 554	7,823.31
Assays: Rocks - 62	1,060.35
TOTAL:	\$ 95,524.89

APPENDIX II

٣

.

.

ċ

.

.

ς.

.

•

.

. -

•

е - к .

Summary of Personnel

-

Keewatin Engineering Inc.

-

SUMMARY OF PERSONNEL

•

.

.

.

.

`

•

.

.

.

.

.

.

,

•

.

*

.

.....

.

٢

、 ⁻

Employee	Days	Day Rate	Total \$
Anderson, Colin	9	\$250.00	\$ 2,250.00
Bertrand, Norm	5	\$250.00	1,250.00
Birkeland, Eric	18	\$300.00	5,400.00
Gaboury, Roland	14	\$190.00	2,660.00
Gibson, Sandy	18	\$325.00	5,850.00
McIntyre, Brian	16	\$300.00	4,800.00
Murphy, Bob	5	\$190.00	950.00
Thompson, Scott	17	\$250.00	4,250.00
Wood, Lesley	17	\$240.00	4,080.00
Whittam, Heath	11	\$190.00	2,090.00
Wardwell, Aaron	1	\$190.00	190.00
TOTAL:			\$33,770.00

APPENDIX III

-

Δ.

ъ.,

#** **

•

÷ -

•

-

-

1

. .

٠

•

- -

•

• •

•

.

. .

.

•

, . .

 .

-

Laboratory Techniques

Keewatin Engineering Inc.

.

•

۰.

- -

. .

-

.

- -

.

-

.

p --

~

11111

.

Hondar-Ciegg & Company Ltd. 130 Pemberton Ave North Vancouver, B.C. V7F 2R5 (RFI) 985-(K81 Telex 04-352667

Keewatin Gold + 8 Analytical Methods

Geochemical Analysis:

Gold is determined on a test sample of 30g using Fire Assay Lead Collection pre-concentration. The bead is dissolved in nitric acid and hydrochloric acid and run by Atomic Absorption.

Mercury is determined on a test sample of 0.6g. The sample is digested by aqua regia and bulked to 12ml. The solution is then run by Cold Vapor Atomic Absorption.

All other elements are determined on a test sample of 0.6g. The sample is digested by aqua regia and bulked to 12ml. The solution is then run by ICP.

APPENDIX IV

he -

-

ha e

÷ .

•

•

• ·

1

- -

•

ь р. -

•

.

-

r ~

Υ.

-م د آ

.

ы.

Rock Sample Geochemical Results

b...

-

Geochemical Lab Report

RE	REPORT: V9U-II364D.0 SAMPLE EI.EMENT Au NUMBER UNITS R2 90P082R4077 R2 90P082R4078 R2 90P082R4077 R2 90P082R4077 R2 90P082R4077 R2 90P082R4078 R2 90P082R4078 R2 90P082R4080 R2 90P082R4081 R2 90P082R4081 R2 90P082R4083 R2 90P082R4083 R2 90P082R4085 R2 90P082R4085 R2 90P082R4085 R2 90P082R4086							OJFCT: PA	<u>d: 18-aug</u> Radign		PAGE 1A		
			Au 30g PPR	Ag PPh	Cu PPN	Pb PPI1	Zn PPN	ño PPN	Ni PPN	Co PPN	Cd PPti	Bi PPN	A: PPt
	90008284077		<u>(</u> 5	0.7	9	9	14	2	3	10	<u> </u>	5	1
			6	0.4	7	6	31	4	2	8	4	<5	<
			Ś	0.9	8	4	67	6	15	18	<t< td=""><td>6</td><td>11</td></t<>	6	11
			6	A. 6	5	5	37	2	4	11	<1	s	<
			7	0.8	4	3	36	7	5	8	4		3
82	90P082R41182			1.8	7		63	4	6	14	d	<5	3
			6	0,7	38	0	65	<1	. 59	19	<1	S	
			8	0.9	42	11	148	21	34	4	4	<5	
			9	0.8	23	8	45	3	7	13	4	6	:
			6	0.8	10	4	13	4	2	3	<1	9	
R	2 90P082R4087			0.6	77	14	95	<i< td=""><td>15</td><td>11</td><td><1</td><td>6</td><td></td></i<>	15	11	<1	6	
	90P082R4(888		20	0.8	29	25	72	11	6	4	<1	ও	1
	2 90X082R001		14	<0.2	29	30	72	<1	8	13	<1	20	
	2 90X082R1820		<5	0.2	5	16	15	- 4	3	d	4	<5	20
	Z 90X082R1821		9	6.8	31	9	143	2	16		<1	<5	
	2 90X082R1822		18	1.0	44	9	126	<1	10	17	<1	3	

<u>ا</u>

-

}

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

								117. PA101C	<u>N: TO-HAA</u>				
 REPORT: V9D-U16				PROJECT: PARADIGM			PAGE 18						
 SAMPLE NUMBER	ELENENT	Sb PP11	Fe PC1	iin PCT	Te PPN	Ba PPN	Cr PPN	V PPH	Sn PPH	N PPti	La PPN	AI PCT	
 R2 90P082R4877		45	3.94	0.10	<10	133	22	14	<20	<10	7	0.77	
R2 90P082R4078		Ś	3.49	0.10	<10	221	15	15	<20	<18	10	0.98	
R2 90P082R4079		Ś	6.41	0.17	13	224	18	45	<20	<10	3	0,91	
R2 90PD82R4080		<5	5.17	0.30	11	486	17	19	<20	<10	6	0.07	
R2 90P082R481		<5	3.38	0,04	<10	61	21	6	<20	<19	4	0.83	
 R2 90PD82R4082		6	6.05		14	117	27	44	<20	<10	3	0.7	
R2 90P082R4083		\$	6.17	0.09	13	87	9 B	113	<20	<10	6	3.8	
R2 90P082R4(84		Ğ	7.48	0.01	<10	221	68	90	<20	<10	4	1.8	
R2 90PD82R4085		9	6.17	0.05	12	35	25	33	<20	<18	4	1.6	
R2 90P082R4086		<5	1.09	8.27	<10	141	24	17	<20	<10	6	0.3	
 R2 90P082R4087		<5	4.37	0.10	<1.0	258	 3N		<20	<10	9	1.7	
R2 90P082R4087		9	5.19	0.02	<10	564	45	28	<20	<10	1	1,4	
R2 90X082R001		, 9	2.59	0.23	<10	22	23	150	<20	<10	3	5.2	
R2 90X082R1820		17	2.58	<0.0	<10	61	102	2	<20	<10	14	0.4	
R2 90X082R1821		45	5.95	0.14	10	22	39	52	<20	<10		1.9	
 K2 90X082R1877		10	7.93	(1.12	11	15	24	63	<20	<10	6	2.0	

i.

1

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES
DATE PRINTED: 18-AUG-97

								U	ALE PRIMIED: 15-AUG-7	PAGE 1C	
<u> </u>	REPORT: V90-016	40.0						Р	ROJECT: PARADIGH	PAGE	10
	SAMPLE NUMBER	ELEMENT UNITS	H g PC1	Ca PCT	Na PCT	K PCT	Sr PPN	Y PPH			
-	R2 90P082R4077		0.59	3.14	<0.85	0.41	51	ii			
	R2 90P082R4078		0.44	4.10	<0.115	0.49	50	13			
	R2 90P082R4079		0,77	2.64	<9.05	0.47	44	10			
-	R2 90P082R4(180		0.59	2.85	<11.05	0.47	33	9			
	82 90P082R4081		0.11	0.38	<0.05	0.41	13		. <u> </u>		
-	R2 90P082R4082		1,29	6.77	<0.05	0.39		9			
	R2 90P082R4083		3.43	5.86	<0,05	0.09	297	10			
	R2 90P082R41184		0.65	6.21	<0,05	0,30	21	5			
	R2 90P082R4085		N,78	2.47	<0.05	0.36	172	10			
-	R2 90P082R41186		0.25	3.76	<0.05	0.09	>2000	20			
	R2 90PD82R41187		1.15	8.15	<0.05	0.35	454	13		· · ·	
•	R2 90P082R41188		11.22	0,13	<0.45	0.49	18	6			
	R2 90X082R001		1.88	1.15	<0.05	<0. 05	31	14			
	R2 90X082R1820		<0.45	<0.05	<0.05	N, 38	5	2			
1.	R2 90X082R1821		1.49	5.02	<11.05	0,35	261	13			· · · -
	K2 911X1182R1822		1,64	3,34	<0.05	0.36	138	12			

-١.,

.

-

Fib-: Paradigm Geochemical 008-2-4,1 Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING S	ERVICES

					ON OF INCH			0A	<u>IE PRIME</u>		-90	PAGE 1A	
	REPORT: V90-	-01703.0							OJECT: PA			PN6E 1M	
*	SAMPLE Number	ELEMENT Units	Au 30g PPB	Ag PPM	Cu PPM	РЬ РРМ	Zn PPM	No PPN	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM
	R2 90 P0 82	R-4138	<5	0.6	60	8	31	<1	362	33	<1	<5	366
	R2 90 P0 82		51	1.8	55	49	404	5	16	9	1	<5	461
	R2 90 P0 82		58	1.5	17	31	20	5	5	5	<1	<5 -5	422
	R2 90 P0 82		< <u>s</u>	0.6	39	4	35	<1	372	30 <1	থ ব	<5 <5	416 74
	R2 90 P0 82	R-4142	<5	0.5	13	14	15	36	2	<u></u>			
	R2 90 P0 82	R-4143	61	9.6	6	19	5	2	3	<1	<1	<5	179
	R2 90 P0 82		101	32.4	4	47	15	11	5	<1	<1	<5 - (5	370
	R2 90 P0 82	R-4145	20	4.4	27	33	57	9	26	16	< <u>1</u>	<u>۲</u>	208 139
	R2 90 P0 82		21	1.7	18	16	58	2 6	17 21	9 14	$\frac{4}{4}$	<5 <5	9
	R2 90 PD 82	R-4147	7	0.7	49	14	106	0			· · ·		
	R2 90 P0 82	R-4148	54	4.5	19	104	119	7	12	7	<1	<5	213
	R2 90 X0 82		112	3.5	12	16	33	4	2	1	<1	<5 2	248
	R2 90 XG 82		185	30.9	22	37	56	3	3	< <u>1</u>	< <u>1</u>	<5 <5	141 111
	R2 90 X0 82		44	10.2	33	35	68 23	13 2	8 2	2	ণ ব	<5	53
	R2 90 X0 82	R-1826	<5	1.2	5	9			2	. <u> </u>	······		
	R2 90 X0 82	R-1827	<5	1.1	4	21	23	66	1	1	<1	<5	118
	R2 90 X0 82		7	0.9	98	14	140	<1	590	55	<1	<5	700
				· · · · · ·									
		· <u>-</u>		·									
			· · · • • • • •				• • • • • • • • • • • • • • • • • • •						

-

<u>.</u>

Γ

Geochemical Lab Report

.

)	REPORT: V90	-01703.0]				PROJECT: PA			PAGE 18	
, ↓.	SAMPLE NUMBER	ELENENT UNITS	Sb PPN	Fe PCT	Mn PCT	Te PPN	8a PPM	Cr PPN	V PPM	Sn PPN	W PPM	La PPN	A1 PCT
	R2 90 P0 82	P-4138	10	5.68	0.14	<10	176	390	67	<20	<10	2	1.41
	R2 90 P0 82		74	4.11	<0.01	<10	63	37	30	<20	<10	8	1.01
I	R2 90 P0 82		51	5.08	0.01	<10	48	87	14	<20	<10	2	0.75
<u>ا</u>	R2 90 P0 82		106	5.30	0.13	<10	1192	286	63	<20	<10	1	0.92
	R2 90 P0 82		<5	1.42	<0.01	<10	379	37	2	<20	<10	28	0.98
	R2 90 P0 82	0_11/2	9	1.62	<0.01	<18	381	124	1	<20	<10	22	0.43
1.	R2 90 P0 82		20	1.77	<0.01	<10	181	102	1	<20	<10	20	0.36
	RZ 90 PO 82 R2 90 PO 82		10	4.89	0.04	<10	32	58	23	<20	<10	9	1.02
	R2 90 PC 82 R2 90 PC 82		<5	4.05	0.29	<10	96	31	22	<20	<10	9	0.79
1	R2 90 P0 82 R2 90 P0 82		10	5.78	0.06	<10	110	28		<20	<10	11	2.54
	R2 90 P0 82	D_4149	18	3.62	0.02	<10	64	64	21	<20	<10	14	0.71
	R2 90 P0 82 R2 90 X0 82		6	1.81	<0.01	<10	124	31	2	<20	<10	23	0.88
	R2 90 X0 82		11	1.49	<0.01	<10	190	103		<20	<10	5	0.53
t			9	3.33	0.02	<10	176	57		<20	<10	13	1.46
	R2 90 X0 82		~\$	1.18	0.09	<10	168	76		<20	<10	14	0.47
¥- •	R2 90 X0 82	2 8-1020		1,10	0.07		744						· · · · · · · · · · · · · · · · · · ·
,	R2 90 X0 82	2 R-1827	6	1.47	<0.01	<10	853	40		<20	<10	32	0.99
	R2 90 XC 87		14	6.09	0.14	<10	145	548	71	<20	<10	3	1.50

١.

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES	
DATE PRINTED:	23- <u>AUG-90</u>

	REPORT: V90	-01703.0]			[PROJECT: PARADIGN	PAGE 10	
	SAMPLE NUMBER	ELEMENT UNITS	Ng PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPN			
-	R2 90 P0 82	R-4138	5.31	>10.00	<0.05	0.17	857	7			
	R2 90 P0 82		<0.05	0.13	<0.05	0.43	13	12			
	R2 90 P0 82		0.08	0.61	<0.05	0.31	43	4			
••	R2 90 P0 82	R-4141	6.10	1.97	<0.05	0.20	1335	10			
	R2 90 P0 82	R-4142	0.10	<0.05	<0.05	0.49	9	3	· ·		
	R2 90 P0 82	R-4143	<0.05	<0.05	<0.05	0.29	8	2	,,,,,		
	R2 90 PC 82		0.05	0.11	<0.05	0.36	35	2			
	R2 90 P0 82		0.21	1.15	<0.05	0.54	41	8			
	R2 90 P0 82		2.77	9.09	<0.05	0.42	190	9			
~	R2 90 P0 82	R-4147	0.98	3.04	<0.05	0.45	122	13			
	R2 90 P0 82	R-4148	0.14	0.47	<0.05	0.46	21	5			
• •	R2 90 XC 82		0.08	<0.05	<0.05	0.44	4	3			
	R2 90 XC 82		<0.05	<0.05	<0.05	0.26	5	2			
•	R2 90 X0 82		0.17	<0.05	<0.05	0.51	3	8			
	R2 90 X0 82		0.63	6.48	<0.05	0.26	392	10		· · · · · · · · · · · · · · · · · · ·	. <u> </u>
	R2 90 X0 82	R-1827	0.08	<0.05	<0.05	0.47	14	3			
	R2 90 XO 82		3,56	7.36	<0.05	0.18	506	8			

-

۶

. .

-

. .)

Geochemical Lab Report

				A DIVISIO	IN OF INCHO	TAPE INSPEC	TION & TE	STING SERVI	CES T <u>e printe</u>	<u>d: 30-al</u>	6-90	<u> </u>
	REPORT: V90	-01737.0						PR	OJECT: 08	2		PAGE 1
	SANPLE NUMBER	ELENENT UNITS	Au 30g PPB	Ag PPN	Cu PPN	Pb PPM	Zn PPM	As PPN	Sb PPM	No PPN	Hg PPM	
	R2 90 P 082	R4149	<5	0.4	5	7	7	6	<5	<1	0.015	
	R2 90 P 082	2 R4150	20	0.4	7	26	2	342	24	3 <1	1.055 0.246	
	R2 90 P 082 R2 90 P 082		45 84	0.5 1.7	27 169	26 51	106 527	204 466	8 29	2	0.240	
	R2 90 P 082		5901	19.5	14	129	50	>2000	170	1	5.005	
	R2 90 P 08	2 R4154	19	0.4	13	34	21	106	5	7	0.599	
												······
			<u></u>									
	<u> </u>											
		<u> </u>										
-												
		. <u></u> .	<u> </u>									
			<u></u> ,						<u> </u>			· · · _ ·
- <u></u>						, ,						

• Bondar-Clegg & Company Ltd. B0 Pemberton Ave. North Vancouver, B.C.

•••• 1

b., ,

p ----

ы.,

V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

				A DIVISIC	N OF INCHO	CAPE INSPE	CTION & TE	STING SERVI	CES I <mark>te printe</mark>	: 0• 10≖00	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
<u>*</u>	REPORT: V90	-02221.0	··· ·						OJECT: 08			PASE 1	· · ·
	SAMPLE Number	ELENENT UNITS	Au 30g PPB	Ag PPH	Cu PPM	Pb PPN	Zn PPM	As PPN	SD PPM	No PPN	Hg PPM		
•	R2 90 X 082 R2 90 X 082		<5 24	1.0 <0.2	77 5	<2 6	93 13	16 26	<5 <5	2	0.025		
•	R2 90 A 082 R2 90 P 082 R2 90 P 083	2 R-4211	39 25	1.4	9 8 4	13 8	109 83	16 6	্র ব্য	2 1	0.041 0.055		
	R2 90 P 082		126	19.7	15	40	60	1238	53	22	1.244		
-	R2 90 P 082 R2 90 P 082		122 22	21.5 0,4	11 7	43 7	67 67	1551 26	50 6	27 2	1.067 0.165		
	R2 90 P 082 R2 90 P 082	2 R-4216	11 <5	9.1 9,4	6 6	41 33	25 35	355 386	28 28	39 12	0.794 1.148		
	·····											·	
		<u></u>											
•		• W • • • • •									· ·		
-													
								<u> </u>					
-													
4											<u>.</u>		
-													
	· ···· ···												
~													

•

Ĺ

P

Geochemical Lab Report

			A DIVE	SION OF INCI	10 APE INSPE	CHON & TE:	STING SERVICE DATE	PRINTED: 7-SEP	-90	
REPORT: V90-0168	6.0		•					ECT: 082	PAGE	30
 SANPLE NUNBER	ELEMENT Units	Ng PCT	Ca PCT	Na PCT	K PCT	Sr PPN	Y PPM			
										,
R2 90 P 082 (PREF	191									
R2 R-4091	101	1.27	7.61	0.06	0.21	264	10			
R2 R-4092		<0.05	<0.05	<0.05	0.11	5	1			
R2 R-4093		<0.05	<0.05	<0.05	0.31	12	2			
R2 R-4094		0.13	0.50	<0.05	0.39	32	7			
R2 R-4095		1.30	6.58	<0.05	0.29	299	10			
R2 R-4096 R2 R-4097		0.13 <0.05	1.11 0.08	<0.05 <0.05	0.07 0.32	71 14	6 4			
R2 R-4098		<0.05	<0.05	<0.05	0.38	14	3			
07 D_4000		<0.05	<0.05	ረበ በ⊑	0.35	13	3			, . <u> </u>
R2 R-4099 R2 R-4100		<0.05 <0.05	<0.05	<0.05 <0.05	0.35	4				
R2 R-4101		<0.05	<0.05	<0.05	0.38	6	2			
R2 R-4102		<0.05 <0.05	0.06	<0.05 <0.05	0.20 0.30	11 19	3 2			
R2 R-4136		\U.U ⊅	0.13	<0.05	0.30	13	4			

.

.

, ł

Ł

.

Geochemical Lab Report

4

 REPORT: V90-01686.0	<u></u>						ATE PRINI ROJECT: C	<u>ED: 7-se</u> 82	P-90	PAGE 3	B
 SAMPLE ELEMEI Number uni		b Fe M PCT		Te PPM	Ba PPM	Cr PPN	Y PPM	Sn PPN	N PPM	La PPN	A] PCT
									<u>. </u>		
											-
R2 90 P 082 (PREFIX)	-	****	** = -	R 7		••					
R2 R-4091 R2 R-4092	<5 16		0.12 <0.01	<10 <10	148 52	59 6	59 6	<20 <20	<10 <10	10 <1	1.06 0.21
R2 R-4093	56		<0.01	<10	64	11	11	<20	<10	2	0.57
 R2 R-4094	90		<0.01	11	13	44	44	<20	15	1	1.16
53 5 JOAL	12		0.09 0.06	<10 <10	251 57	34 17	34 17	<20 <20	<10 <10	6 <1	1.06 0.49
R2 R-4095 R2 R-4096	<5				144	<1	<1	<20	<10	21	0.44
R2 R-4096 R2 R-4097	<5 47	5.05	<0.01 <0.01	<10 12							
 R2 R-4096 R2 R-4097 R2 R-4098	<5 47 173	5.05 9.40	<0.01	12	33		<1	<20	<10	20	0.39
 R2 R-4096 R2 R-4097 R2 R-4098 R2 R-4098 R2 R-4099 R2 R-4100	<5 47 173 	5.05 9.40 2.46 2.10	<0.01 0.01 <0.01	12 <10 <10	33 141 161	<1 <1 <1	<1 <1 <1	<20 <20 <20	<10 <10 <10	20 26 	0.39 0.52 0.37
 R2 R-4096 R2 R-4097 R2 R-4098 R2 R-4099	<5 47 173 	5.05 9.40 2.46 2.10 3.39	<0.01 	12 <10	33	<1 	4 	<20 <20	<10 <10	20	0.39

P***

Ъ.

-

,

٠ · . .

. .

*

•

Geochemical Lab Report

.

REPORT: V90	-01686.0							OJECT: O			PAGE 3A		
SAMPLE NUNBER	ELEMENT Units	Au 30g PPB	Ag PPM	Cu PPN	Pb Ppn	Zn PPN	Ио PPN	Ni PPN	Co PPH	Cd PPM	Bi PPM	Ás Ppn	

~	R2 90 P 082 (PREFIX)									-		7.0
	R2 R-4091	<5	0.8	181	7	51	1	18	14	<1	<5	28
	R2 R-4092	25	0.5	11	14	4	5	4	3	<1	<5	159
	R2 R-4093	16	0.7	31	20	6	2	5	5	<1	<5	1481
<u>-</u>	R2 R-4094	10	1.3	87	27	45	<1	13	27	3	<5	>2000
	R2 R-4095	14	0.8	69	38	243	2	55	18	<1	<5	103
	R2 R-4096	<5	0.3	4	3	60	<1	4	4	4	<5	7
	R2 R-4097	224	49.9	10	35	153	3	2	1	1	<5	1126
	R2 R-4098	603	>50.0	19	89	42	4	3	1	4	<5	>2000
	R2 R-4099	166	34.2	6	38	36	1	3	1	1	<5	738
	R2 R-4100	107	12.8	5	35	38	3	1	4	<1	<5	479
	R2 R-4101	257	38.3	5	53	69	4	3	1	<1	<5	1289
	R2 R-4102	8	0.6	10	24	21	8	3	1	<1	<5	69
	R2 R-4136	11	0.8	11	11	5	5	2	2	4	<5	106

Bondar-Clegg & Com 130 Pemberton Ave. North Vancouver, B.C V7P 2R5 (604) 985-0681 Telex 0	2.		х Х_	B	B INDAR	CLEGG		1			ochemi ab Rep	
***			A DIVISIO	ON OF INCH	CAPE INSPE	CTION & TES	TING SERVI	CES	N. 7.000			
REPORT: V	90-01686.0	••••					PR	OJECT: 08	10: 7-sep 12	-90	PAGE 4A	<u>-</u>
SANPLE NUNBER	ELEMENT	Au 30g PPB	Âg PPN	Cu PPN	РЬ РРМ	Zn PPN	No PPN	N1 PPN	Co PPM	Cd PPN	8i PPM	As PPN
R2 R-4137		<5	0.9	55	14	44	<1	336	36	4	<5	287
t												
												· • • • • •
I												
-												
					····						-	
r												
		-										
μητώς.												
										•		
_												
_												
·····			<u> </u>				. <u> </u>			<u> </u>		
<u> </u>									. ==			
-												

•	Bondar-Clegg & Company Ltd.
	130 Pemberton Ave.
-	North Vancouver, B.C.
	V7P 2R5
	(604) 985-0681 Telex 04-352667

r-

r

*

;

۰.

Geochemical Lab Report

REPORT: V90-	01686.0						PR	OJECT: OR	12: 7-SEF		PAGE 4B	
SANPLE Number	ELEMENT UNITS	Sb PPM	Fe PCT	Nn PCT	Te PPN	8a PPN	Cr PPN	V PPN	Sn PPN	N PPN	La PPN	P
R2 R-4137		10	6.79	0.24	10	98	61	61	<20	<10	2	1.
			· · · · · · · · · · · · · · · · · · ·									
							· · ·					
·			· · · · · · · · · · · · · · · · · · ·								· · · ·	
										· .		
• • • • • • • • • • • • • • • • • • •												

Bondar-Clegg & Compan 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-3				B	DNDAR	CLEGG		:		Geochemical Lab Report
			A DIVIS	ION OF INCH	ICAPE INSPE	CTION & TES	DA	<u>te printed:</u>	7-SEP-90	
REPORT: V90-							··	OJECT: 082		PAGE 4C
SANPLE NUMBER	ELEMENT Units	Ng PCT	Ca PCT	Na Pct	K Pct	Sr PPN	Y PPN			
R2 R-4137		5.51	>10.00	<0.05	0.12	734	6			
		<u>.</u>	<u> </u>			· ·				
						· · · · · · · · · · · · · · · · · · ·				
			<u></u>	<u> </u>					<u>.</u>	

	Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667		BONDA		INTED: 3-SEP-90-	Certificate of Analysis
<u> </u>	REPORT: V90-01737.6			PROJECT	: UBZ	PAGE 1
L	SAMPLE ELEN Number un	ENT AU Its opt	. <u></u>			
.	R2 90 P 082 R4153	0.169				
].						
<u> </u>		· _ · · · ·		· · ·		
1.						
]						
ן =	· · · · · · · · · · · · · · · · · · ·					
ļ						
]						
l 						
Ļ						
L						
•						
Ĺ					·····	
—						
ì						
		<u> </u>			· ····	
_						
l						
L,	· · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·	- An	-//
					1. Ale	~~~~~~
				Registere		e of British Columbia

APPENDIX V

. .

Δ.

ъ.,

.....

.

•

•

• •

.

.

-

χ.

.

٠

<u>،</u>

.

٠

-

.

• •••

٠

Rock Sample Descriptions

Keewatin Engineering Inc.

Project:	PARADIGM				- -			INGINEERI SAMPLES	Results Plotted By:	
Area (Grid):_				.,	-				Map: <u>Geology</u> NTS:	<u> </u>
Collectors -					~				Date: <u>July 1990</u> Surface Undergro	und_
		REP.	SAM	PLE .	TYPE	(LEN	GTH)	BOOK		
SAMPLE NUMBER	LOCATION NOTES	SAMPLE NUMBER	GRAB	CHIP	CHANNEL	CORE	FLOAT	TYPE	SAMPLE DESCRIPTION	MAP SHEE
90PC82R4077	BL 55 1+025W		レ					Interned Volu	Grey fragmental - massive talk? with fig dissem]
				ļ			1		pyrite cubes throughout. Possible maribasite bled	5
90P082R4078	BL55 1+028W		V					Intermed vale		
				ł					of alk brown vitreous mininal (spalinite) <11, dissen	
90 P082R 4079	BL35 / +175W		~					Carbonate alt.	Grey-dk grey Massive Enchanak alloud volcanic with	
								Volcanic.	possible mariposite hicks.	
90/082R4080	RL35 1+150W		V					p.	Same as above 4079 ~ 5m to N. of L35	
40P082R4081	BL35 1+480W		\checkmark					Carbalt volc.	Same as above 4079 - 5m to Nº of 635	
908082R4082	BL35 1+185W		V					Carbalt volc.		·
									to zen, dissen fg. crystelline pyrite.	
90P082R408	Mikhail 2 claim ~1686'	-	~					Fragmental		
		1							cut by Imm at stringers. Unit hosted within acguilte	
901042R4085	Mikhail 2 claim	1		İ	1			Interned. Volu	Well carbonak, propylitic attered intermediate volcanic	
		1							(andesity ?) with 5-10% fig diss pyrite in fault zone	
70/082R4086	Mikhail 2 claim		V				Γ	Carbinate	Carbonate / callite coating of fault wall surface	
				[[-	with 1-2mm wide band massine pyrite, beside 4085	•
40P082R4087	Paradigm, Mikhail 2	-	~					Argillik	Well Foliated graphitic argillite between volcanic	
									bands, width is 2-3m. Oxidized <td></td>	
90P082R4091	Paradiam 2 claim		\checkmark					Int - felsic vole	Wella Hered inkomediate - felsie volcanie tuff with	
		1							chrobonate, propylitic att. Cut by mus at2/cub sts.	
90P082R4092	Paradism & claim		~					Silver front vole	Black appanitic silicous volcenic cut by 1-2 mm	
								,	etz stringers which accasionally form a bras text	
90,PC82,R4093	Paradigm 2 Mar 89PZR09						V	Takamediak	Intermediate medium grey Vokanic with +2011. f.g.	
				ł					dissem - massive pyrite stoned.	
908182R4094	Paradigm 2 @ 12R 009		~						Park grey intermed. intrusive with up to	
									pit pyrite along fractures.	
90 P082 R4095	Paradign 2		7						Lens of pycitic intermediate (?) Volcanic.	
-						1	1	1		

Project:	Paradign			KE	EW-				Results Plotted By: AM Gub 5	
Ar ea (Grid): _ Coll ectors:					-				Map: <u>Greatozy</u> NTS: Date: <u>Aug 3/90</u> Surface Undergrou	
		REP.	SAM	PLE 1	TYPE	(LENG	TH)			<u>ma</u>
SAMPLE NUMBER <u>90 P 082</u>	LOCATION NOTES	SAMPLE	GRAB	CHIP	CHANNEL	CORE	FLOAT	ROCK TYPE		MAP SHEET
R4096	N. Grid 20+25pl		V					quarte-	Quarte carbinate breccia stringer zon	
	(~70m to E of Sta)							carbonate	within fine grained intermediate vokenic.	
R4097	N/ C 11 minil of 1				<u> </u>	ļ		braccio	F.g. to M.g. ghartz crystals intilling Yugs.	
<u>K4077</u>	N. Grid Jarosite stained			<u>1:5</u>				Felsic	Fire grained Silicous felsic Volcanie; messive	
								Fragmental		
R4098	N. Grid			1.5				Felsic	Pyrik up to 20% as massive f.g. blebs - matrix	مر مند ال
								Fragmental	as above	
										Printer and a state
R4099	N. Grid			1.5				Felsic		
<u></u>								fragmental	as above	
R4101	N. Grid			10						
151107	11: 57.10	<u> </u>		1.5				Felsic		
				1.5				fragmental	as above	
R4102	N.Grid					<u> </u>		Felsic		
······								Fragmenta	as above	
Q. HARL										
R 4136	NGrid BL 27+75N	ļ	~					Internedia	4 Up to 10% fin grained pyrite (diss - massive	5
					 	<u> </u>		dyte	and blue coloration new purite Well	<u> </u>
R4137	N. Grid	ļ	<u> </u>	 		<u> </u>			Oxidized, yellow exidization on tractures.	
<u>r= (:)7</u>	(2m from 89PPR6)	}			· · ·		<u> </u>	Listwanite	Bright arcen, black and while subcified	
	Leve fram errendy_						l ·		curbonate attered matic sills / dykes? with distinctive	
R4138	N. Brid BL 19+75N					1		Lostwanite	texture and prance oxide weathering. Dosen fa py 2	<u>17 _</u>
								and streaming	Bright green (bleds) Margossik in silicous sill / Ayle listmagik Modstone in contact with	
									the provided listmanite. 1-21. F.g. py dissen.	

	PARADIGM			KE	.EW.			NGINEERII SAMPLES		1.	
roject: rea (Grid):.	Paradian 2 Claim				-				Results Plotted By: AMG. Map: Geology NTS:		
ollectors: _	A.M. Esibson							•	Date: 8/93	Surface 📈 Undergro	ound_
SAMPLE NUMBER	LOCATION NOTES	REP. SAMPLE NUMBER	SAM By B	CHIP CHIP	TYPE	LENG	FLOAT (H	ROCK Type	SAMPLE DESC	RIPTION	MAP
90P092			Ü	Ū	8	8	F				
<u>R 4139</u>	N. Grid LAUFOON, ~1+95 N		 		 			Argillite	Shear pyritic argillite contact area. Pyrite ;	linkrædiak intensiv to 5% as f.g. dissem.	
R4140	N. Grid LZITSON		V	•				Sulphide	Pyritic / Sulphide lens		
	-0+50W	<u> </u>						lens	Sheared argillite. Len	sis approx locm	
R4141	Paradign 2		~					Listmanite		ite with 1-2%	
	*****			<u> </u>					fine grained dissem p	<u>Y.</u>	-
1.111.7				<u> </u>	Ļ			-		<u> </u>	
R4142	Paradign 2 Claim							Intermed	Contact of selliment + +		<u> </u>
				1	1				black f.g. dissim goes	S. Anny MITCICLY	+
R4143	Paradian 2 Claim		V					Intermedia	k. Jamsik Stained p		
	Nelarid		 					dyke	~11. diss f.g. py.		<u> </u>
R4144	Paradian 2 Claim							Intermediate	Jacosik stained inter	medicke d. ti	<u> </u>
	N. Grid 626+75N-1+30W	,	1					dyke	Fragmental texture w		+
					1			1 /	Fine grainiel pyrite/		1
R4145	N. Grid		V					Internedisk		enmediak - felsic	1
	L26+901/~2+50W							felsic			
Aunde		_	ļ		1			fragmente	fragmental with u disseminated pyrite		
R4146	N. Grid			Į	ļ	ļ	<u> </u>	Informed.	1-21 Find articed	ovrite Within	
	L26+95N~2+55W		-	_	-	_	<u> </u>	dyke	mariposik?	The blobs light green	<u> </u>
R4147	112:1			<u> </u>		1	ļ	1	mariposite -	· · · · · · · · · · · · · · · · · · ·	4
<u>p // 777</u>	N. Grid LANS~3000'			╋	+	+		Argillit	Argulite i f.g. dissi contact with the im	em pyrik at	
	beside 89PZR005	1	\mathbf{t}	\vdash		+			dyle.	made intrusive	
			+	\mathbf{t}		+	╂───	1		······································	-

Project:	PARADIGM					- -			NGINEERI samples	Results Plotted By: A.M. C. bso~	
Area (Grid):.						_				Map: GEOLOCIT NTS:	
oliectors:_	A.M.Gibs	<u>0</u> -				_	. <u>.</u>		•	Date: <u>Ang 10/70</u> Surface <u>Undergra</u>	ound
			REP.	SAM	PLE 1	TYPE	LENG	тн)	D 0.044		T
SAMPLE NUMBER 90/082	LOCATION	NOTES	SAMPLE	GRAB	CHIP	HANNEL	CORE	FLOAT	ROCK TYPE	SAMPLE DESCRIPTION	MAP SHEET
R 4148	Paradian 2	Falls area	1	V			╏──┨		Intermediat	& Jacosik stained cut by silicous stringers	
	above 89P	2R005	1			<u> </u>			intrusive.	Weathering to boxwork texture (<td><u> </u></td>	<u> </u>
			1		1	1				Occasion bright green Marinsik? blebs	+
K4149	Paradiam 2	N. Grid			[,]			レ	Curbonak	Carbonate + batik vein in subcrop	<u> </u>
	L 18+00N								Vein	220cm width. White cream with Frag!	1
										breccia texture	1
R4160	Paradian 2								Intermedia	& Buck grey fin grained, pyritic with	1
	~ 30m upstree	m R4149	4						intrasive		
PILICI	12 1 2				 	ļ	┞──┤				
<u>R4151</u>	Paradign 2	Terris Co.		~	 	<u> </u>			Listmanik		
	Non Not	K9/50			l					intermediate dyla / sill 51- py. Light	∔
R4152	Paradigm 2									green Manposik? specs	<u> </u>
	L 17+55N	ALUCHI		-				<u> </u>	Intermed	Pyke Sill cut by fire < 3mm Silicons	┫────
<u>• • = • • •</u>		01 15.0	1		 				Intrusin	stringers, discontinuous. Up to 5% py.	
R4153	Paradiam 2	Claim	1					V	Quartz	Stringen zone,~5% pyrik, marposite	
	N. Grid									& blebs, weak fragmental textured first	A
	L21+00N	1+30E							float.	with boxwork within stringers. Host fine arrain a	1
										silicified intermediate volcanic?	1
MICH	- the start	AL 7 . I	ļ		 	<u> </u>					
N IIJ4	Paradigm 2 NW corner	N. Urid		<u> </u>	<u> </u>	<u> </u>		~	Felic	Febric forgenental precise crossent by	
·····	1 NO COTIL								l'cognetal	40 to 3min allerte stringer. Up to	
										201. Fin praised diss py in matrix.	4
		<u> </u>		+	+					· · · · · · · · · · · · · · · · · · ·	<u> </u>
			<u> </u>		+	+					
					+	+		<u> </u>	<u> </u>		4
					4						1

	· · · · · · · · · · · · · · · · · · ·			KE	EW			ENGINEERI	ING INC.
Project: Area (Grid): Collectors: _		08 Vorth IE	<u>2.</u> Gri	d.	- - -	1	ROCK	SAMPLES	Results Plotted By:NTS:NTS:NTS:NTS:NTS:NTGCEUnderground
SAMPLE NUMBER 90x082	LOCATION NOTES	REP. SAMPLE NUMBER	AB	PLE	CHANNEL	(LEN)	FLOAT (H	ROCK TYPE	SAMPLE: DESCRIPTION MAI SHEE
<u>R 1823</u>	L28+50N × 1+15 W same location as 89 PPR 4 south side		~					arqillite	sheared argill at contact with perphyry dike - contains 72% Py.
R 1824	L 28+50N X 1+15 W Same location and RX as 89 PPR4		V					int volc.	int. qiey/qieen feldspar(:) posphyry dike or plag <1% Py wisps and blebs.
<u>R1825</u>								argillite	sheared argill of Inatact of porphyry dike - > 270 PY.
R1826	L28+50NX /+02 W		V		· · · · · · · · · · · · · · · · · · ·			mt. v.de	on strike and presumed save pacety of dyke as 1824.
<i>R</i> 1821	L28+55N× 0+95W		r					jat. Volc.	R 1824 but would intersect at ablque R 1824 but would intersect at ablque Ragle - Separate atracture (?)
R 1828	L 22+50 N X 1+50 E						/	int. volc.	Sough angular float in gossanous soil pit Highly altered (listmanite?) perphyritit with 10% mariposite 7 2% Py, Heavy Fe stained.
		1							
					· · · ·				

· •		r 1	•	KE	:EW				NG INC.	7
Project: Area (Grid):	PARADIGM MIKHAIL I - B. MCENTYRE					1	ROCK	SAMPLES	Results Plotted By: Map: NTS: <u>104 B/10</u> Date: <u>Aug 1990</u> Surface <u>Undergrou</u>	
Collectors:	D. PT LNTYRK				-				Date: Undergrou	una
SAMPLE NUMBER 90X082	LOCATION NOTES	REP. SAMPLE NUMBER	BA	CHIP	CHANNEL A	(LEN(FLOAT (H	ROCK TYPE	SAMPLE DESCRIPTION	MAP SHEET
	MIKHALL 1. CLAIR									
R 1820	An must northerly Cole Wheat - flowing to Harryme/ 15M from 89 MWH 03, 0+00	(felsic	1 M counded Stoat weathered out borns Breccipted, 75% fine dissen PY.	
R 1821	4+30m upstream of R1820. South side,							int. volc.	interbedded intermed volc, poss bleached andesite at contact with sheared acgill. Variable 5-10% fine dissen Py.	
R1822	4+30m vostreem of R1820. North side							int. Volc.	US ebove - Jame contact.	
	Panaorom 2 CLAIM.									
P3221	2560 mid claim upper source to crke with 89 PWH 4							ist. volc	duk grey Accreated pyraclastic w frags to ICM - some charty trags. < 17. Py	
R3222.	2560' mid claim see R 3221		~		·			int. Volc		
· · · · · · · · · · · · · · · · · · ·										
· · · · · · · · · · · · · · · · · · ·										
		J	I				ل	L		_

KEEWATIN	ENGINEERING	INC.
----------	-------------	------

Project:	PARADIGM				EW			NG INC. Results Plotted By: <u>A.M. G. 650-</u>
Area (Grid):. Collectors:	laradiam 2 Follow-up	pelos	w L	•	_			Map:NTS: Date:Surface_VUnderground
SAMPLE NUMBER <i>4cPoF2</i>	LOCATION NOTES	REP. SAMPLE NUMBER	8	CHIP	CHANNEL	FLOAT (H15	ROCK Type	SAMPLE DESCRIPTION SAMPLE DESCRIPTION
R4211	Paradign 2 Claim LIG+50 N Creek		レ				Felsic debr Flom	C Felsic Volcanic debris flow/ Fragmental with rounded clasts felsic volcanic with scheified place prophytic fractive continess. Grav-brown weather
K4217	Paradigm 2 Claim LIGTSON Creek			•			Fetsic clast	Clast (10cm) of felsic debris flow with fine black silicified fracture contings -possible graphite, possible Ma contings.
<u>R4213</u>	Paradigm 2 Claim LIGtSON Creek		~				Fekin fragment	Swiphide matrix fotsic fragmental with up to Boil fine grained pyrik. Sample taken
R4214	Paradis 2 Claim 2m to west of R4213						Febric Fragmental	As above R4213
R4215	Paradigna Claim LIGHSON CLAIM		-				Felsic Tragmental	Bright green Stained Felsic fragmental
R.4216	Paradiga 2 Clam LIGHSON clain		r				Felsic Fragmente	Re-Sample of sulphide rich flont in crick pelow filse cliff. 10-201.
K4817	(@ 89 PER 12) Paradign & Clain LIGTSON Clain						Felsic Fragment	As above (R4216) but located
						· · ·		

APPENDIX VI

.

-

ь.

-

٠

.

.

.

.

,

.

F

.

٠

•

•

.

- -

.

•

•

-

.

P - -

•

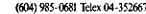
Stream Silt and Soil Geochemical Results

Keewatin Engineering Inc.

.

F ***

.



Geochemical Lab Report

				A DIVISIO	ON OF INCH	CAPE INSPE	CTION & TES		CES Vie print e	D: 16-00	<u> 90 - T</u>		
	REPORT: V90-	-02272.0							ROJECT: DE			PAGE 1	
	SAMPLE Number	ELEMENT UNITS	Au 30g PP8	Ag PPN	Cu PPN	Pb PPN	Zn PPN	As PPN	Sb PPM	Mo PPN	Hg PPN		
	S1 90 AN 082	? S-001	9	0.7	60	21	176	43	<5	8	0.498		
	S1 90 AN 082		<5	3.3	78	19	250	91	<5	18	0.765		
	S1 90 AW 082		<5	0.7	45	17	198	30	<5	7	0.356		
	S1 90 AN 082		6	8.5	70	77	134	137	7	- 14	0.848		
	T1 90 AW 082	(E-001	6	0.8	40	18	177	36	<5	6	0.329		
	T1 90 AW 082		10	1.1	45	24	184	53	<5	7	0.406		
	T1 90 ST 082		<5	1.3	39	22	255	23	<5	11	0.143		
	T1 90 ST 082		<5	0.8	21	13	105	8	<5	2	0.096		
	T1 90 ST 082		<5 (5	0.8	31	12	157	13	<5 (5	2	0.097		
	T1 90 ST 082	(L-303	<5	0.7	49	15	204	27	<5	3	0.113		
	T1 90 ST 082		<5	1.0	47	14	179	22	<5	3	0.103		
	T1 90 ST 082		<5	0.9	45	16	204	33	<5	4	0.143		
	T1 90 ST 082		7	2.0	51	16	264	39	<5	5	0.194		
	T1 90 ST 082		<5 <5	1.2	36	22 21	174 169	51 47	9 11	6 7	0.137		
· . ·	T1 90 ST 082	L-308		1.0	37	21	109	4/	11	ſ	0.193		
	T1 90 ST 082		22	0.8	38	15	207	47	<5		0.211		
	T1 90 ST 082	L-310	<5	0.6	32	9	178	30	<5	3	0.161		
												· · · · · · · · · · · · · · · · · · ·	
				-									
					·····								

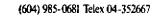
e.

.....

Geochemical Lab Report

١

 REPORT: 090-01704.0						ON & LESTIN	DA	<u>TF PRINTE</u> OJECJ: PA	D: 29-406 Rolligh		PAGE 6A	
SAMPLE ELEM Number un	IFNT NITS	Au 30g PPB	Ag PPN	Cu PPN	РЬ РРМ	Zn PPM	flo PPN	N i PPM	Co PPM	Cd PPM	Bi PPN	Ae PP1
S1 90 EB 082 S21N 1+	751	<5	0.6	12	23	48	5	8	3	<1		11
\$1 90 E8 082 S21N 1+	+5NN	<5	0.7	12	18	59	5	7	2	<1	<5	C
S1 90 EB 082 S21N 1+	+25W	<s< td=""><td>0.9</td><td>19</td><td>10</td><td>71</td><td>1</td><td>18</td><td>8</td><td><i< td=""><td><5</td><td>13</td></i<></td></s<>	0.9	19	10	71	1	18	8	<i< td=""><td><5</td><td>13</td></i<>	<5	13
S1 90 EB 082 S21N 1+	+004	<5	0.4	19	13	69	1	26	6	<1	<5	I
S1 90 EB 082 S21N 0+	F75₩	<5	i. D	19	16	56	4	10	5	<1	<5	I
S1 90 EB 082 S21N 0+	+รถม	<5	1.0	2[]	13	54	3	12	5	<1	<5	<
\$1 90 E8 082 1.21N O+	354	<5	0.7	38	15	119	2	24	18	<1	<5	2
S1 90 E8 082 S21N 0+	+25¥	17	1.0	8 3	26	181	3	68	27	d	<5	- 4
S1 90 E8 082 121N G+	658	6	0.8	57	25	132	2	30	22	<1	<5	3
S1 90 EB 062 S21N D+	+NUE	8	1.B	37	17	88	3	19	22	<1	<5	1
 S1 90 EB 082 S21N N+	25F	<5	1.0	25	16	90	3	21	20	<1	<5	3
\$1 90 E8 D&2 S21N A+	-50E	15	0.8	88	22	189	3	9 9	3N	<1	<5	3
\$1.90 EB 082 S21N A+	·75E	13	1.2	61	26	112	2	19	33	<1	<5	2
\$1 90 E8 082 S21N 1+	FULLE	<5	រា.8	20	18	37	4	8	3	<1	<5	1
 S1 90 FB 082 S21N 1+	·25E	<5	Π.9	23	15	95	5	17	22	<1	<5	<
 S1 98 E8 B82 L71N 1+	38(6	0,8	49	24	138	3	31	27	<1	<5	2
S1 90 E8 082 S21N 1+	586	<5	0.9	84	16	182	3	90	53	<1	<5	1
St 90 ER 082 S21N 1+	+75F	<5	1.2	21	15	88	6	11	10	4	<5	1
S1 90 EB 082 S21N 2+	001	13	1.2	29	21	94	6	16	7	<1	<5	11
S1 90 JJ 082 (PREFIX	()								,			
\$1 \$19+50N 3+004		32	2.8	48	16	129	7	29	23	<1	<5	201
S1 S19+50N 2+750		25	2.1	126	21	151	5	50	45	<1	<5	5
\$1 \$19+50N 2+50N		38	2.6	115	24	146	14	37	49	2	<5	45
S1 S19+50N 2+25W		<5	1.1	20	12	52	5	10	7	<1	<5	6
\$1 \$19+50N 2+1/0N		ও	1.3	14	16	59	9	4	1	4	2>	3
S1 S19+50N 1+75W		12	0.5	25	1 5	126	4	3 5	25	4	<5	
\$1 \$19+50N 1+50N		<5	0.5	28	15	100	3	27	12	<1	<5	<
S1 S19+5DN 1+25W		8	Q.8	19	13	61	4	10	8	<1	<5	1
S1 S19+50N 1+DD4		<5	1.4	18	14	58	6	9	6	<1	<5	-
St S19+50N 0+75W		<5	0.7	17	14	43	3	1 0	6	<1	<5	
 \$1 \$19+50N 0+50W		<5	0.7	27	16	97	3	32	13	<1	<5	29
S1 S19+50N 0+25W		35	2.0	101	53	238	4	48	29	<1	5	24
S1 S19+50N 0+00F		<5	0.6	26	26	127	4	17	10	<1	<5	21
S1 S19+50N 0+25E		<5	[] 8	30	17	125	3	24	17	<1	<5	19
\$1 \$19+50N \$+50E		<5	0.9	12	13	108	4	10	10	<i< td=""><td><5</td><td>6</td></i<>	<5	6
St S19+50X 8+750		(5	(1.7	10	9	86	1	6	11	<1	<5	1
\$1 \$19+50N 1+00F		<5	N,9	17	14	48	4	9	5	<1	<5	13
S1 S19+50N 1+25E		<5	٤١, ৪	13	16	55	5	8	7	<1	<5	10
S1_S19+50N_1+75E		<5	ព.8	13	14	65	6	7	5	<1	<5	11
ST S19+50N 2+80F		<5	Π.9	22	12	62	4	12	14	<1	<5	7


b. ... Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 **b.** .

.1

.....

-

•

ł

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-90

 REPORT: V90-	01704.0]	NOF INCIDE?			D4	I <u>TE PRINTE</u> OJECT: PA			PAGE 68	
SANPLE NUNBER	ELEMENT UNITS	SID PPM	Fe PCT	Mn PCT	Te PPM	Ba PPM	Cr PPH	V PPĦ	Sn PPH	H PPM	La PPM	A I PCT
 S1 90 EB 082	\$21N 1+75W	<5	6.46	0.62	<10	57	28	96	<20	<10	15	1.99
S1 90 EB 082	\$21N 1+50W	5	9.11	0.04	<1B	32	31	71	<2B	<10	29	4.3
S1 90 F8 D82	S21N 1+25W	7	6.49	0.05	<10	88	30	91	<20	<10	9	4.1
S1 90 EB 082	S21N 1+DAW	7	4.98	0.03	<10	64	48	70	<20	<10	15	3.8
 \$1.90 EH 082	\$21N 0+75W	9	9.61	0.03	10	21	34	92	<20	<10	22	4.83
 S1 90 EB 082	\$21N 0+50N	<5	8.38	0.02	<11	54	30	100	<21	<10	9	3.5
S1 90 ER 082	121N D+35W	5	8.20	0.24	<10	205	21	40	<20	<10	8	1.7
S1 90 EB 08 2	\$21N ∏+25₩	9	7.74	0.14	12	86	46	38	<20	<1 D	12	2.1
S1 90 FB 082		<5	7.60	0,16	<10	176	22	38	<20	<10	7	1.6
 S1 90 ER 082	S21N (I+6BE	7	8.82	0.19	16	55	43	97	<29	0 t>	35	4.0
S1 90 EB 082		<5	9.37	0.10	<10	64	42	100	<20	<10	16	3.9
S1 90 EB 082		14	7.38	0.13	<1 D	133	73	48	<20	<10	11	2.4
\$1 90 E8 08 2		10	9.57	0.36	15	134	21	43	<20	ា	5	2.73
\$1 90 E8 G8?		6	6.82	0.02	<10	38	32	112	<20	<1fl	13	3.3
 S1 9D E8 D82	S21N 1+25E	6	9.54	0.13	14	58	40	104	<20	<10	21	4.6
S1 90 EB 082		7	7.56	0.19	11	153	20	38	<20	<10	8	1.5
S1 90 EB 082		7	>10.UR	D.23	12	142	101	134	<20	<10	25	2.7
S1 9D FB 882		6	>10.00	0.10	17	26	3 8	114	<20	<10	24	4.7
S1 90 EB 082		10	>10.00	0.06	13	65	39	101	<20	10	17	3.09
 \$1 90 JJ 082	(PREFJX)											
 S1 819+50N 3-		25	6.15	0.11	<10	169	23	49	1]</td <td><10</td> <td>16</td> <td>1.76</td>	<10	16	1.76
SI S19+50N 2		38	9,71	C.21	16	159	35	71	<20	<10	24	2.3
S1 S19+50N 2-		14	5,13	0.16	<10	98	15	32	<20	<10	18	6.02
S1 S19+50N 2		9	8.38	0.03	11	81	25	107	<20	<10	15	3.43
\$1 \$19(50N 2)	+[]])W	7	>10.00	0.03	16	12	28	57	<20	10	21	3.27
 S1 S19+50N 1		<5	7.53	0.12	<10	82	73	98	<20	<10	22	4.2
S1 S19+50N 1-		<5		0.08	<10	66	35	8D	<20	<10	15	3,41
S1 S19+50N 1		8	9,52	D.09	11	43	45	118	<20	<10	16	4.13
\$1 \$19+50N 1-		8	>10.00	0.06	13	45	34	118	<20	<10	22	3.38
 S1 S19+50N 0	+754	6	7.89	0.02	<10	36	29	98	<20	<10	12	3.35
 \$1 \$19+50N B-		<5	9.16	0.07	<10	60	48	68	<20	i 1	14	3.1
S1 S19+50H D		211	>10.00	0.21	18	125	43	47	<20	<18	13	1.5
S1 S19+50N A-		<5	5.42	0.11	<10	157	25	62	<20	<10	15	2.61
S1 S19+5DN 0		8	6.60	0.17	10	177	28	58	<21	<10	14	2.73
 S1 S19+50N D-	150F	7	7.14	0.16	10	66	21	49	<20	<10	27	3.68
 51 S19+50N D		<5	6.8ግ	D.09	12	167	17	119	<21	<10	7	3.52
S1 S19+5UN 1+		8	9.64	0.07	<10	51	38	116	<2₽	<10	16	3.88
S1 S19+50N 1		6	>10.00	0,07	10	43	33	178	<20	<10	13	3.06
S1 S19+50N 1+		10	8,04	0.07	<10	51	22	87	<2ป	<18	14	3,33
S1 S19+50N 2-	LUU(<5	8.98	0.06	<jr< td=""><td>41</td><td>34</td><td>113</td><td><20</td><td><10</td><td>21</td><td>4.70</td></jr<>	41	34	113	<20	<10	21	4.70

.

h. .

F

F~~

.

I.

Geochemical Lab Report

<u> </u>	REPORT: V90-01704.0							F PRINTED: 29-AUG-2 WECT: PARADIGM	PAGE 6C
 	SAMPLE ELEMENT NUMBER UNITS	fig PCT	Ca PCT	Na PCT	K PCT	Sr . PPN	Y PPN		
L	S1 90 EB 082 S21N 1+75W	0.20	<0.05	<0.05	0.09	6	4	·····	
	\$1 90 E8 082 \$21N 1+50#	0,20	0.09	<0.05	D.06	7	15		
	S1 90 EB 082 S21N 1+25W	0.52	0.18	<0.05	0.05	16	6		
	S1 90 EB 082 S21N 1+00W	0.51	0.10	<0.05	0.07	9	9		
	S1 90 EB 082 S21N B+75W	0.27	0.11	<0.115	<0.05	10	14		
							* '	· · ·	
.,	S1 90 E8 082 S21N 0+50W	N,35	0.16	<0.05	<0.05	17	6		· · · · · · · · · · · · · · · · · · ·
	ST 90 F8 082 L21N 0+35W	0.61	D.56	0.08	0.11	55	11		
	S1 90 FB 082 S21N 0+254	0.82	0.09	<0,05	Ð, 11	7	19		
	S1. 90 EB 082 L21N 0+65E	D.66	0.51	0.07	0.12	49	11		
~	\$1 90 FB 082 S21N 0+800	D.49	0.23	<0.05	0.06	19	- 29		
	S1 90 EB 082 S21N 0+25E	0.44	0.18	0.05	0.07	17	15		
	S1 90 E8 D82 S21N 0+50E	1.26	8.20	<0.05	0.14	18	15		
	S1 90 E8 082 S21N 0+75E	0,50	0.07	<0.05	0,09	10	13		
	SI 90 E8 082 S21N 1+00F	0,36	0,11	<0.05	<0.05	-			
	S1 90 EB D82 S21N 1+25E	0.39	0.19	0.07	0.07	11 17	6 17		
		0.07	0.17	0.07	0.07	11	1)		
	S1 90 EB 082 L21N 1+38E	0.59	0.52	0.07	0,13	51	12		
	S1 90 EB 082 S21N 1+50E	1.60	0.34	<0.05	0.11	17	16		
-	\$3 90 ER 082 \$21N 1+75E	[],24	0.10	0.06	0.07	8	16		
	SI 90 EB 082 S21N 2+00E	0.25	0.07	<0.05	0.06	9	12		
	ST 90 JJ 082 (PREFIX)								
~	S1 S19+50N 3+06W	0.84	0.62	0.08	0.20	49	15		
	51 S19+50N 2+75W	1.01	0.32	<0.05	0.18	12	27		
-	ST S19+50N 2+50W	0.57	0.14	<0.05	0.10	14	33		
-	S1 S19+50N 2+25W	0.27	0.07	<0.95	0.12	8			
	13 S19+50N 2+000	0.27 D.14	0.10	R.09	0.07	7	6 16		
•			0.10	11,07	0.01	,			
	S1 S19+50N 1+75H	0.81	0.18	<0.05	0.10	16	20		
	S1 S19+50N 1+50N	0.83	П.35	0.13	0.10	34	13		
:	S1 S19+50N 1+254	0.42	0.12	<n,n5< td=""><td><0.05</td><td>9</td><td>15</td><td></td><td></td></n,n5<>	<0.05	9	15		
	\$1 \$19+50N 1+00W	0.25	0.07	<0.05	<0.05	8	1 5		
•	S1 S19+50N 0+75W	0.38	0.14	<0.05	0.05	13	7		
	\$1 \$19+50N 0+50W	0.51	0.07	<0.05	0.06	7			
	S1 S19+50N 0+254	0,30	0.07	<0.05	0.06 0.10	22	11 15		
	S1 S19+50N 0+00F	0.30 0.46	0.24	<0.05	0.09		15 16		
	SI S19+50N 0+25E	0.40 0.51	0.14 0.16	<0.05	0.07 0.08	13			
	S1 S19+50N R+50E	0.31 0.24	0.18 0.13	0.07	0.08 0.08	14 9	19 19		
	or garage reach	0.24	U.I.I		0.00	7	17		
	S1 S19+50N 0+75E	0.48	0.12	<0.05	0.08	11	6		
	\$1 \$19+50N 1+DBF	0.27	0.06	<0.05	<0.05	6	10		
	S1 S19+50N 1+25F	B.2 3	0.10	<0.05	<0.05	9	10		
	\$1 \$19+50N 1+75E	0.33	<0.05	<0.05	<0.05	5	8		
	S1 S19+508 2+00E	N 43	0.26	B.89	0.07	22	17		

•

_

-

-

¢

ţ

Geochemical Lab Report

	REPORT: V90-01	1704.0							TF PRINTE OJECT: PA			PAGE 7A	
- -	SAMPLE Number	EI FIIFNT UNITS	Au 30g PPB	Ag PPN	Cu PPH	Pb PPM	Zn PPM	110 PPN	N i PPM	Co PPN	Cd PF'M	Bi PPN	As PPN
•	S1 S19+50N 2+2	25F	7	0.5	26	19	87	8	14	17	<1	<5	<5
	S1 S19+50N 2+5	SNE	<5	0.4	21	15	55	4	8	15	<1	<5	45
	S1 90 X 082 (F							-		47		<u>ر</u> د	<u>ر ب</u>
-	S1 L18+00N 0+7		11	0.6	30	11	105	3	11	17	<1	<s <5</s 	<5 12
	SI L18+00N 0+5	50U 	<5	1.1	22	16	64	4	10	9	<1		12
	\$1 L18+00N 0+6	JOE	<5	0.6	25	15	112	3	10	13	<1	<5	22
	S1 L18+00N 0+3	25E	<5	0.5	36	28	117	3	10	17	<1	<5	<5
	S1 L18+00N 0+7	75F	<5	I].4	14	4	39	2	11	6	<1	<5	8
	S\$ 1.18+00N 1+0	ONE	6	1.6	21	15	71	2	19	6	<1	< <u>s</u>	14
	S1 118+00N 1+2	25E	<5	D.8	19	14	42	6	5	2	<1	<5	11
	S1 L 18+00× 1+1	50E	<5	0.3	22	3	50	1	14	8	<1	<5	ও
	S1 18+8CN 1+1	15E	6	Π.7	10	19	77	5	5	2	<1	<5	<5
~	S1 L18+DDN 2+	UUE	<5	0.7	26	14	78	4	13	18	<1	<5	<5
	S1 90 S1 882 0	(PREFIX)											
	S1_S16+50N_3+5	50 µ	13	2.4	52	31	143	7	21	20	4	<5	46
	S1_S16+50N_3+	2514	24	11.0	20	35	67	- 14	17		<1	<5	80
	\$1 \$16+50N 3+0	4 00	8	1.8	32	13	79	2	48	8	<1	<5	27
	S1 S16+5DN 2+	75U	23	6.5	48	32	80	8	10	5	<1	<5	73
	S1 S16+50N 2+5	504	16	1.5	39	25	107	13	11	10	<1	<5	50
	S1_S16+50N_2+	25¥	<5	2.0	24	7	37	5	9	4	<1	<5	- 6
	S1 S16+50N 2+0		8	6.5	19	11	52	2	12	6	<1	<5	<5
	ST S16+50N 1+		45	0.8	18	10	46	3	10	5	<1	<5	8
	S1 \$16+50N 1+5	500	14	1.1	48	26	96	4	17	25	<1	<5	34
	S1 516+50N 1+	250	22	1.0	44	42	99	3	24	16	<1	<5	52
	\$1 \$16+508 1+i	lill e	6	Ŋ.9	22	19	69	3	13	8	<1	<u>(</u> 5	15
	\$1 \$16+50N B+	754	<5	0.7	27	7	71	3	16	19	<1	<5	<5
	\$1 \$16+50N D+5		<5	0.6	20	16	51	4	10	6	<1	< 5	C.
	S1 S16+50N 0+		<5	0.5	26	8	66	3	19	9	< i	<5	¢
	S1 S16+50N 0+3		<5	1.5	18	9	66	2	13	7	<1	<5	15
	S1 S16+50N 1+	NUE	<5	0.3	17	6	49	1	12	5	4	<5	<
	S1 \$16+50N 1+3	25E	<5	0.6	23	15	87	3	13	10	<1	<5	14
	S1 S16+50N 1+		7	0.5	23	15	69	3	10	21	<1	<5	<5
	S1 S16+50N 1+		<5	0.8	20	14	61	5	19	12	<1	<5	<5
	S1 S16+5DN 2+		<5	0.4	20	11	67	2	45	13	<1	<5	15

Ł

-

h.....

7

.....

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-90

REPORT: V90	-01704.0							<u>TF PRINTFI</u> OJECT: PA			PAGE 7B	
SAMPLE NUMBER	ELEMENT UNITS	Sb PPM	Fe PC1	Ma PCT	Te PPM	Ba PPM	Cr PPN	ų PPM	Sn PPH	u PP11	la PPM	P
									-00			2.
S1 S19+50N	2+25F	11	7.85	0.15	<10	62	22	53	<20	<10	20	
S1 S19+50N	2+5DE	<5	6.77	0.10	10	45	27	100	<20	<10	12	Э.
S1 90 X 082	(PREFIX)											-
Si L18+00N	D+75W	<5	8.78	0.15	13	101	25	98	<20	<10	15	3.
S1 L18+00N	ถ+รถผ	<5	8.50	0.13	11	48	37		<2①	<10	24	4.
S1 L18+00N	0+00F	6	6.44	0.11	<10	132	19	90	<20	<10	15	2.
ST 1.18+00N		8	5.27	D.35	<10	399	12	53	<20	<10	30	2
S1 L18+00N		<5	7.09	0.02	<10	24	25	126	<20	<10	14	3.
S1 L18+00N		9	9,27	0.06	<10	57	42	122	<20	<10	16	3.
S1 L18+00N		6	9.91	0.02	11	12	32	67	<20	<10	28	5.
S1 L18+00M	1+500		8.29	0.04	<18	40	29	106	<21	<10	11	5
S1 L18+00N		7	9.21	0.06	12	20	23	34	<20	<10	32	3.
S1 118+00N		7	7.49	0.20	<10	60	27	110	<20	<10	16	4
S1 98 ST 08												
S1 516+50N		11	5.69	6.17	<10	127	ោ	31	<20	<10	12	1
S1 S16+50N	31258	26	7.14	B.02	<11	92	13	47	<20	<10	20	0
S1 S16+50N		11	7.42	0.03	11	111	64	70	<20	<10	6	2
S1 S16+50N			8,19	ຄ.03	< <u>1</u> N	129	16	63	<29	<)0	13	1
S1 S16+50N		14	5,67	II 04	<10	97	12	43	<20	<10	14	· 2
S1 S16+50N		9	6.28	0.01	<1B	42	21	92	<20	<10	13	5
S1 516+58N	2:00	11	7.91	0.03	<10	43	32	124	<20	<10	13	3
S1 S16+50N		<5	8.38	D.03	12	29	29	114	<21	<11	16	3
S1 S16+50N		11	8.32	0.28	11	70	31	75	<20	<10	11	3
ST 516+50N		1?	7,94	0.15	<11	61	4(1	74	<20	<10	11	2
ST 816+50N		5	5.79	0.05	<10	77	30	104	<20	<10	10	3
S1 S16+50×	fi+75U	6	8.32	0.16	<1B	38	37	112	<21	<10	24	4
S1 S16+50N		8	9.52	0.05	12	33	41	110	<20	<10	19	3
S1 S16+50N		11	6.58	0.05	<10	138	27	94	<20	<10	13	3
S1 S16+50N		5	6,66	0.04	<10	46	36	76	<20	<10	18	3
S1 S16+50N		6	6.03	0.02	<10	36	29	109	<20	<10	9	3
\$1 \$16+50N	41955	9	>10.00	0.09	<u> </u>	75	25	44	<20	<10	14	2
		, (2	6.65	0.22	<10	46	26	94	<20	<10	11	3
S1 S16+50N		 8 	8.34	0.22	<10	28	40	96	<20	<10	9	2
S1 S16+50N			5,59	0.05	<10 <10	41	50	67	<20	<10	11	2
SI S16+50N	2+1110	B	J,J7	0.03	210	41 1		¥,				

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

- (604) 985-0681 Telex 04-352667

•

-

1

Geochemical Lab Report

 REPORT: V90	017114.(1						PRO	IJECT: PARADIGN	PAGE	70
 SAMPLE	EI FMENT	Ng	Ca	Na	K	Sr	Y			
 NUMBER	UNITS	PC1	PC1	PCT	PCT	PPN	PPN			
 \$1 \$19+50N 2	+25E	0.46	0.09	<0.05	0.08	9	15			
S1 S19+50N 3	+50E	0.48	0.29	0.08	0.08	24	9			
S1 90 X 082										
S1 L18+DDN (0.48	0.25	0.06	0.09	22	15			
S1 L18+00N	1+500	8.21	0.08	<0.05	0.06	8	16			
 S1 L18+00N 0	+BIJF	0.48	0.42	<0.05	0.10	30	16	- · · · · · · · · · · · · · · · · · · ·		
S1 L18+00N (I+25E	0.56	1.01	<0.05	0.11	60	41			
51 L18+00N C	+75F	0.73	0.31	0.07	<8.05	21	11			
S5 118+00N (0,37	0.09	<0.05	<0.05	10	9			
\$1 L18+00N 1	+25E	0.08	0.05	0.05	<0.05	3	23			,
 S1 L18+00N (+50E	0.61	(), 78	0.10	0.07	32	12			
\$1 L18+DDN 1	+75E	80.0	0.06	0.07	0.07	3	16			
S\$ L18+DAN (B 64	0.33	η,Π8	0.06	26	16			
S1 90 ST 082										
 St \$16+50N 3	+51W	0.11	0.12	<0.05	0.12	8	17			
 S1 S16+50N 3	+25V	0.07	0.10	<0.05	0.07	13	4			
S1 516+50N 3	+{]]]]	0.76	<0.05	<0.05	0.07	13	3			
S1 S16+SNN 2	+75W	0.15	0.05	<0,05	0.11	11	5			
S1 S16+50N 2	+504	0.47	0.28	0.08	0.12	29	7			
51 516+50N 2	+25#	N.36	0.19	<0.05	<0.05	17	- 6			
 S1 S16+S9N 2	+[j[])IJ	Q.45	0.16	<0.05	0.06	14	9			
\$1 \$16+50N 1	+75W	0.51	0.20 ·	0.06	0.06	17	11			
\$1 \$16+50k 1	+ 5(3J	0,50	0.08	<0.05	0.09	9	9			
S1 S16+50N 1	+25W	0,37	0.09	<0.05	0.09	10	8			
 \$1 \$16+50K 1	+()I)U 	N.34	0.17	<0.05	0.08	18	5			<u> </u>
 \$1 \$16+50N (+75µ	0.68	0.29	0.07	0,07	24	26			
S1 S16+50N 0		0.26	0.09	<0.05	<0.05	8	<u>1</u> 4			
S1 S16+50N (0.72	D.36	0.06	0.06	31	15			
St S16+50N 0	+75E	0.43	0.13	<0.05	0.05	10	13			
S1 S16+50N 1	+00E	0.51	0.28	0.07	0.06	24	8			
S1 S16+50N 1	+25E	0.19	0.05	<0.05	D.06	6	7			
S1 S16+50N 1	+5418	0.39	0.18	<0.05	0.09	16	10			
\$1 \$16+50N 1	+75E	0.41	0.11	<0.05	0.07	12	5			
\$1 \$16+50N 2	+00E	0.78	0.10	<0.05	0.06	11	7			

-

•

٠...

-

Geochemical Lab Report

}

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES	
NATE DETATED.	7_060_00

								TE PRINTE			PAGE 1A	
REPORT: V90-016	686.0						PK	OJECT: 08			PADE IA	
SANPLE NUMBER	ELEMENT Units	Au 30g PPB	Ag PPN	Cu PPN	Pb PPM	Zn PPN	No PPN	Ni PPN	Co PPN	Cd PPN	Bi PPN	As PPN
 S1 90 ST 082-S	(PREFIX)					<u> </u>						
S1 1600F 001		5	2.0	58	18	99	5	24	43	<1	<5	127
S1 1600F 002		<5	0.7	35	9	63	5	17	24	<1	<5	< <u>5</u>
SI 1600F 003		8	0.8	23	19	66	- 4	28	28	<1	6	<5
S1 1600F 004		23	0.5	28	7	88	12	12	12	<1	<5	<5
 S1 1600F 005		14	0.5	22	24	67	9	13	18	4	<5	<5
S1 1600F 006		<5	0.8	18	9	38	8	10	11	4	<5	7
S1 1800F 100		<5	0.8	19	12	51	4	9	7	4	<5	<5
S1 1800F 101		<5	0.7	16	7	49	3	11	7	<1	<5	<5
 S1 1800F 102		<5	0.6	19	11	45	3	10	6	4	<5	<5
 S1 023 1900F 11	L+50N	<5	0.9	30	21	97	4	35	17	<1	<5	8
S1 022 1900F 11		<5	0.4	16	12	38	3	17	8	<1	<5	<5
S1 021 1900F 10		<5	0.5	20	15	39	6	11	4	4	<5	<5
S1 020 1900F 10		5	0.4	14	10	38	3	10	4	4	<5	<5
 S1 019 1900F 9	+50N	<5	1.1	31	9	43	2	11	4	4	<5	<5
 \$1 018 1900F 9	+00N	<5	1.0	20	25	78	19	14	5	4	<5	<5
S1 017 1900F 8		6	1.1	21	24	65	15	19	6	<1	<5	8
\$1 016 1900F 8		6	1.2	49	20	87	10	15	13	<1	<5	15
S1 015 1900F 7		<5	1.3	20	13	38	4	19	4	4	<5	<5
 \$1 014 1900F 74		<5	0.7	24	17	44	4	12	9	4	< 5	26
 \$1 013 1900F 6-	+50N	<5	1.4	27	29	39	9	7	7	4	<5	40
S1 012 1900F 6		<5	0.8	37	15	48	3	21	13	<1	<5	< <u>s</u>
S1 011 1900F 5		<5	1.3	13	20	73	8	6	2	<1	<5	13
S1 90 ST 082 (PREFIX)								<i></i>	_	_	
 S1 S-017		9	0.8	41	16	196	3	66	24	4	<5	13
 S1 S-018		- 6	0.7	20	18	120	12	11	13	4	<5	<5
S1 S-019		<5	1.4	20	15	50	3	9	10	<1	<5	19
\$1 S-020		<5	1.6	26	22	85	8	14	5	4	<5	11
\$1 S-021		6	1.6	23	20	75	8	21	9	4	<5	<5
 \$1 S-022		<5	1.5	20	16	70	11	20	8	4	<5	<5
 \$1 S-023		<5	0.9	31	15	151	3	41	12	4	<5	15
S1 S-024		ৎ	0.9	17	12	48	7	14	3	4	<5	13
S1 S-025		<5	0.5	20	11	36	5	8	4	4	<5	<5 <5
S1 S-026		<5	0.9	19	18	54	8	22	6	4	<5	<5
 \$1 \$-027		<5	1.4	30	9	60	5	21	11	4	<5	<5
 		<5	1.3	27	12	70	7	16	7	4	<5	9
S1 S-D29		<5	1.1	18	17	61	11	15	4	<1	<5	ব
S1 S-030		Ś	0.6	15	22	59	7	16	3	<1	<5	ও ও ও
S1 S-031		<5	1.0	44	18	8 5	7	54	5 52	<1	<5 <5	<5 7
91 9-091						224	6	115		4		

[

٢

-

Geochemical Lab Report

ł

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 7-SEP-90

								DA	TE PRINTE		-90		
Ĭ	REPORT: V90-01	1686.0						PR	OJECT: 08	2		PAGE 1B	<u></u>
L	CANDI C	ELEMENT	Sb	Fe		Te	ва	Cr	¥	Sn	#	La	A1
1-	SANPLE NUMBER	UNITS	PPM	PCT	PCT	PPN	PPN	PPN	PPN	PPN	PPN	PPN	PCT
 		(DDCETV)											
	S1 90 ST 082-5 S1 1600F 001	D (MKELIA)	13	7.67	0.51	10	121	51	71	<20	<10	31	5.58
l.	S1 1600F 002		11	9.22	0.37	<10	151	36	119	<20	<10	19	4.87
	S1 1600F 003		<5	8.56	0.54	13	316	60	90	<20	12	17	3.34
	S1 1600F 004		<5	4.07	0.24	<10	329	14	50	<20	<10	23	3.75
	S1 1600F 005		9	7.26	0.30	<10	200	29	76	<20	<10	21	4.71
1.	S1 1600F 006		8	8.62	0.11	11	127	22	104	<20	<10	12	2.37
. .	S1 1800F 100		6	9.93	0.03	10	56	29	150	<20	10	7	4.36
	SI 1800F 101		<5	7.09	0.04	<10	64	32	112	<20	<10	15	5.09
ـل	S1 1800F 102		<\$	7.08	0.02	<10	157	27	127	<20	<10	6	3.11
<u></u> ۱	\$1 023 1900F	11+50N	<5	7.36	0.11	<10	79	51	98	<20	<10	13	3.91
	S1 023 1900F 1		<5	5,44	0.03	<10	162	32	106	<20	<10	10	2.18
	\$1 021 1900F		<5	6.18	0.01	<10	80	34	252	<20	<10	10	1.44
• -	S1 020 1900F 1		<5	7.22	0.01	<10	66	23	149	<20	<10	5	1.15
	S1 019 1900F		5	9.41	0.02	<10	166	25	152	<20	<10	6	3.62
	S1 018 1900F	0±00N	<5	>10.00	0.06	22	27	39	72	<20	13	27	3.61
]	S1 017 1900F		7	>10.00	0.05	19	30	47	67	<20	18	21	4.20
Ţ	S1 016 1900F		8	>10.00	0.06	15	57	35	129	<20	<10	14	2.12
	S1 015 1900F		Ś	6.53	0.02	<10	47	38	79	<20	<10	10	1.65
1	S1 014 1900F		<5	6.35	0.04	<10	114	24	140	<20	<10	7	1.81
<u> </u>	\$1 013 1900F	6+50N	11	10.00	0.04	12	39	31	230	<20	12	13	2.27
.	S1 012 1900F		8	6.66	0.08	<10	68	33	130	<20	<10	6	1.89
]	S1 011 1900F		<5	10.00	0.05	11	31	29	54	<20	<10	25	3.59
L	\$1.90 ST 082		-										
- 1	\$1 S-017		8	5.19	0.14	<10	127	59	54	<20	<10	13	2.74
 	\$1 S-018	·	<5	6.85	0.06	<10	90	24	134	<20	<10	17	1.18
	S1 S-018 S1 S-019		<5	9.73	0.05	11	61	23	145	<20	10	6	2.98
'n	S1 S-020		ĝ	>10.00	0.04	16	38	48	96	<20	- 14	24	3.52
Ī	S1 S-021		6	>10.00	0.04	18	56	52	147	<20	13	14	2.43
-	S1 S-022		9	>10.00	0.04	19	29	57	136	<20	14	13	2.51
	S1 S-023	······	6	8.82	0.08	15	118	74	79	<20	<10	17	4.46
<u></u>	S1 S-023		6	7.51	0,03	<10	73	24	142	<20	<10	8	1.03
	S1 S-025		<5	4.48	0.03	<10	70	23	95	<20	<10	6	0.63
ľ	S1 S-026		<5	8.45	0.03	12	51	39	186	<20	<10	9	1.43
Ţ	\$1 S-027		12	>10.00	0.04	22	66	65	265	<20	16	5	3.77
	\$1 S-028	· · · · · · · · · · · · · · · · · · ·	9	>10.00	0.03	15	31	63	207	<20	13	14	5.01
ł	\$1 S-028		<5	9.70	0.02	10	39	50	141	<20	<10	15	2,46
4	\$1 S-030		6	7.68	0.02	<10	98	39	88	<20	<10	18	1.92
-	S1 S-031		5	>10.00	0.02	10	95	71	105	<20	10	26	4.84
	\$1 S-032		<Ś	9.38	0.10	12	232	106	105	<20	11	20	5.21
, L <u></u>													

-

-

s. .

Geochemical Lab Report

-				A DIVIS	ION OF INC	ICAPE INSPE	CTION & TES	STING SERVICE	S PRINIED: 7-SEP-	90	
1	REPORT: V90-0	1686.0]				ECT: 082	PAGE	10
r	SANPLE NUMBER	ELEMENT Units	Ng PCT	Ca PCT	Na PCT	K Pct	Sr PPN	Y PPN	, <u>******</u> ·	· · · · · · · · · · · · · · · · · · ·	
	\$1 90 ST 082-	S (PREFIX)									
۴.	S1 1600F 001		0.32	0.16	<0.05	<0.05	13	28			
	S1 1600F 002		0.68	0.25	<0.05	0.06	21	16			
1	S1 1600F 003		0.55	0.62	<0.05	0.06	35	13			
• <u>•</u> •••••••	\$1 1600F 004		0.38	1.86	0.10	0.07	97	21			
	\$1 1600F 005		0.47	0.38	<0.05	0.06	28	22		<u> </u>	
- 4	S1 1600F 006		0.23	0.12	<0.05	0.08	13	7			
: •}	S1 1800F 100		0.57	0.19	0.07	<0.05	23	7			
	S1 1800F 101		0.46	0.23	<0.05	<0.05	23	9			
	\$1 1800 F 102		0.28	0.22	<0.05	<0.05	37	5			
٦	\$1 023 1900F	11+50N	0.73	0.19	<0.05	0.07	17	9			
-	S1 022 1900F		0.50	0.31	0.09	0.07	51	8			
	S1 021 1900F		0.13	0.19	<0.05	<0.05	28	4			
•	S1 020 1900F	10+00N	0.16	0.13	<0.05	<0.05	29	3			
]	S1 019 1900F	9+50N	0.19	0.07	<0.05	<0.05	28	6		<u> </u>	
	S1 018 1900F	9+00N	0.17	0.14	<0.05	<0.05	10	13		. <u> </u>	
	S1 017 1900F		0.24	0.17	<0.05	<0.05	13	14			
-	S1 016 1900F		0,16	0.13	<0.05	0.06	13	8			
	S1 015 1900F		0.24	0.19	<0.05	0.05	14	5			
` `	S1 014 1900F	7+00N	0.44	0.47	0.06	0.06	41	6			- <u>-</u>
	\$1 013 1900F	6+50N	0.67	<0.05	<0.05	0.06	4	6	- ·····		
	S1 012 1900F		0.43	0.32	<0.05	0.06	27	5			
	S1 011 1900F		0.09	0.06	0.06	0.06	5	14			
<u>م</u> ام	S1 90 ST 082	(PREFIX)									
•r ·	S1 S-017		1.09	0.40	<0.05	0.08	34	11			······
	S1 S-018		0.14	0.29	<0.05	<0.05	17	6		<u></u>	
	S1 S-019		0.26	0.14	<0.05	<0.05	19	5			
* E'	\$1 S-020		0.23	0.11	<0.05	<0.05	10	23			
1	S1 S-021		0.42	0.23	<0.05	<0.05	18	9			
	S1 S-022		0.50	0.11	<0.05	<0.05	11	7			
`	\$1 S-023		0.67	0.20	<0.05	<0.05	17	22			· <u>·····</u> ·····
1	S1 S-024		0.12	0.42	<0.05	<0.05	39	3			
	S1 S-025		0.16	0.33	<0.05	<0.05	28	3			
1	S1 S-026		0.34	0.17	<0.05	<0.05	19	4			
L_	\$1 S-027		0.48	0.08	<0.05	<0.05	18	6			
•	S1 S-028		0.32	0.05	<0.05	<0.05	5	17	<u> </u>		······
	S1 S-029		0.23	<0.05	<0.05	<0.05	7	6			
ي. مارم	S1 S-030		0.29	0.36	<0.05	0.05	27	7			
•	S1 S-031		0.91	<0.05	<0.05	0.08	6	4			
1	S1 S-032		2.09	0.07	<0.05	0.11	9	11			
L											

• -

Geochemical Lab Report

1

 REPORT: V90-01686.0								TE PRINTE OJECT: 08		-90	PAGE 2A	
 								_			8 j	As
	MENT Nets	Au 30g PPB	Ag PPN	Cu PPM	Pb PPM	Zn PPM	No PPN	Ni PPN	Co PPN	PPN	PPN	PPN
\$1 S-033		<5	<0.2	18	30	58	13	11	4	4	12	<5
S1 S-034		<5	0.9	17	16	80	16	17	5	4	<5	<5
S1 S-035		<5	1.5	30	21	88	12	19	4	ব	<5	14
S1 S-036		<5	0.6	24	20	60	1	45	5	4	<5	6
 <u>\$1 \$-037</u>		9	1.6	25	25	61	- 1	21	6	4	<5	17
 \$1 S-038		<5	0.7	20	9	121	3	10	7	<1	<5	11
S1 S-039		10	2.4	39	5	36	3	18	4	4	<5 15	22
S1 S-040		<5	1.4	20	16	89	6	12	5	<1	<5 (5	<5
S1 S-041		<5	1.2	36	16	70	11	20	/	4	<5 (5	6 <5
 S1 S-042		<5	1.4	21	27	83	17	5	2	<1	<5	< 2
 \$1 S-043		16	0.8	19	14	162	1	23	15	4	<5	<5
S1 S-044		<5	0.7	18	9	57		17	16	<1	<5	<5 -5
S1 S-045		<5	0.5	19	14	86	14	10	4	4	<5 /5	<5 /5
S1 S-103		<5	1.1	22	6	63	3	12	20	4	<5 <5	<5 8
\$1 \$-104		7	1.4	37	22	89	7	13	12	4	NO	
 \$1 \$-105		<5	1.4	42	13	46	5	14	7	ব	<5	26
S1 S-106		<5	0.8	19	11	59	3	19	6	4	<5	<5
S1 S-107		<5	1.1	25	15	99	4	57	9	<1	<5 .5	11
S1 S-108		<5	0.7	11	3	71	1	14	13	4	<5 (5	<u>ح</u>
\$1 S-109		<5	0.5	14	9	102 ·	3	15	17	4	<5	<u> </u>
 S1 S-110		9	0.7	35	22	127	5	32	21	1	4	23
S1 S-1 11		9	1.2	36	20	118	4	45	8	4	<5	24
S1 S-112		<5	1.0	8	9	47	4	4	2	4	<5 (5	17
S1 S-113		<5	1.0	25	18	92	14	12	6	<1	<5 <5	13 19
 S1 S-114			0.8	19	13	70	3	11	8	4	10	19
\$1 S-115		<5	2.2	24	18	74	9	16	4	4	<5	11
S1 S-116		<5	2.0	22	10	42	2	11	4	4	<5	8
S1 S-117		<5	1.0	23	15	72	12	19	6	4	<5 (5	15
S1 S-118		6	1.4	28	20	85 05	8	33	1	থ ব	<5 <5	14 <5
\$1 S-119		10	0.9	27	25	95	14	9	3	<u> </u>		
 \$1 S-120		<5	1.0	31	12	55	3	23	8	<1	<5	4
S1 90 X 082 (PREFIX	()	-	_				-					
S1 S-001		13	0.7	77	14	124	3	80 62	40	4	<5	18
S1 S-002		12	0.6	76	17	116	4	52	31	<1 (1	<5 <5	<5 14
 S1 S-003		13	0.9	79	16	117	3	54	28	<1	د،	P1
 S1 S-004		13	0.8	72	13	123	2	58	34	4	<5	13
S1 S-005		15	0.7	73	18	119	4	49	34	<1	<5	10
T1 90 P 082 (PREFIX	()	_	. .		-	0.55	~			.4		-5
T1 L-001		<5	0.4	17	8	205	3	38	22	<1	<5	<5
T1 90 ST 082 (PREFI	X) (X											

65

-

b.

۴

Geochemical Lab Report

}

REPORT: V90-016							PR	OJECT: 08	Ĺ		PAGE 28		
							_						
NUMBER	ELEMENT Units	Sb PPN	Fe PCT	Nn PCT	Te PPN	Ba PPN	Cr PPN	V PPN	Sn PPN	# PPN	La PPN	A1 PCT	
\$1 S-033		11	1.91	0.02	<10	44	52	135	<20	<10	9	2.63	
		6	>10.00	0.04	12	43	50	176	<20				
S1 S-035		б	>10.00	0.03	24								
S1 S-036		<5											
S1 S-037		11	>10.00	0.03	18	84	67	120	<20	12	6	3.02	
51 S-038		5	1.66	0.02	<10	83	31	82	<20	<10	16	4.00	
\$1 S-039		8	1.73	0.02	<10								
S1 S-040		<5											
S1 S-041													
\$1 \$-042		7	>10.00	0.11	24	11	45	45	<20			1.44	
\$1 \$-043		5	6.43	0.13	<10	41	41	46	<20	<10	31	4.64	
S1 S-044		7	9.29	0.05	<10	81	31	179	<20		7		
S1 S-045		<5	8.68	0.04	12								
S1 S-103													
S1 S-104		<5	>10.00	0.11			49	143	<20	11	15	2.00	
S1 S-105		<5	9.79	0.03		90	37	123	<20	11	9	4.80	
			8.73	0.02	11	61	46	148	<20	<10	7		
		8	>10.00	0.04	15	83	94	76	<20	12			
\$1 S-108		<5	3.28	0.02	<10	87							
\$1 S-109		<5	5.25	0.16	<10	160	35	84	<20	<10	20	3.78	
<u>\$1 5-110</u>		9	6.35	0.12	<10	204	30	65	<20	<10	14	2.15	
				0.03	<10	76	59	52	<20	<10	8	4,15	
		<5	4.56	<0.01	<10	98	13	53			4		
\$1 S-113		10	8.37	0.05	<10	50							
s1 s-114		7	7.43	0.02	11	114	30	95	<20	<10	5	2.31	
\$1.5-115		7	>10.00	0.03	21	27	61	88	<20	19	11	3.00	
						57	24	140	<20	<10	6		
		<5	8.32	0.03	<10	51	38	142	<20	11	15	1.64	
S1 S-118		7	>10.00	0.04	14	63	75	107					
S1 S-119		8	>10.00	0.05	11	65	27	112	<20	<10	39	1.32	
<u>\$1 5-120</u>		6	9.36	0.13	<10	64	37	159	<20	<10	6	1.42	
	(EFIX)	·				-							
		7	8.34	0.15	12	122	94	109	<20	<10	14	3.17	
\$1 S-002		<5	6.91	0.11	10	140	67	92	<20				
S1 S-003		<5	6.90	0.11	<10	144	71	95	<20	<10	11	2.84	
S1 S-004		5	6.73	0.14	<10	115	95	95	<20	<10	14	2.89	_ <u></u>
		7	8.73	0.20	13	106	110	110	<20	<10	17	3.62	
	(EFIX)	•											
T1 L-001	-	<5	6.13	0.09	<10	186	84	84	<20	<10	13	2.33	
	PREFIX)												:
	S1 S-034 S1 S-035 S1 S-036 S1 S-037 S1 S-038 S1 S-039 S1 S-040 S1 S-041 S1 S-042 S1 S-042 S1 S-043 S1 S-044 S1 S-045 S1 S-103 S1 S-104 S1 S-105 S1 S-106 S1 S-107 S1 S-108 S1 S-108 S1 S-108 S1 S-109 S1 S-110 S1 S-110 S1 S-111 S1 S-112 S1 S-114 S1 S-115 S1 S-116 S1 S-117 S1 S-116 S1 S-117 S1 S-118 S1 S-117 S1 S-118 S1 S-119 S1 S-001 S1 S-002 S1 S-003 S1 S-004 S1 S-004 S1 S-005 T1 90 P 082 (PF	S1 S-034 S1 S-035 S1 S-036 S1 S-037 S1 S-038 S1 S-039 S1 S-040 S1 S-041 S1 S-042 S1 S-043 S1 S-044 S1 S-045 S1 S-104 S1 S-104 S1 S-105 S1 S-106 S1 S-106 S1 S-107 S1 S-108 S1 S-108 S1 S-110 S1 S-110 S1 S-110 S1 S-111 S1 S-112 S1 S-114 S1 S-115 S1 S-114 S1 S-115 S1 S-116 S1 S-117 S1 S-118 S1 S-119 S1 S-120 S1 S-001 S1 S-002 S1 S-003 S1 S-005 T1 90 P 082 (PREFIX)	S1 S-034 6 S1 S-035 6 S1 S-036 <5	S1S-0346>10.00S1S-0356>10.00S1S-036 $\langle 5$ 7.55S1S-03711>10.00S1S-03851.66S1S-03981.73S1S-040 $\langle 5$ 7.40S1S-041 $\langle 5$ 8.98S1S-0427>10.00S1S-04356.43S1S-04479.29S1S-045 $\langle 5$ 8.68S1S-103 $\langle 5$ 9.94S1S-104 $\langle 5$ >10.00S1S-105 $\langle 5$ 9.79S1S-106 $\langle 5$ 8.73S1S-1078>10.00S1S-108 $\langle 5$ 3.28S1S-109 $\langle 5$ 5.25S1S-11096.35S1S-111 $\langle 5$ 7.26S1S-112 $\langle 5$ 4.56S1S-113108.37S1S-11477.43S1S-1157>10.00S1S-1187>10.00S1S-1198>10.00S1S-00178.34S1S-002 $\langle 5$ 6.91S1S-003 $\langle 5$ 6.90S1S-00456.73S1S-00578.73S1S-00456.91S1S-00578.73S1S-00	Si S-034 6 >10.00 0.04 Si S-035 6 >10.00 0.03 Si S-036 < 5 7.55 0.02 Si S-037 11 >10.00 0.03 Si S-038 S 1.66 0.02 Si S-039 8 1.73 0.02 Si S-040 < 5 7.40 0.04 Si S-040 < 5 8.98 0.04 Si S-041 < 5 8.98 0.04 Si S-042 7 >10.00 0.11 Si S-042 7 >10.00 0.11 Si S-043 S 6.43 0.13 Si S-103 < 5 8.98 0.04 Si S-103 < 5 9.94 0.14 Si S-103 < 5 9.94 0.14 Si S-106 < 5 8.73 0.02 Si S-110 9 6.35 0.12 Si <t< td=""><td>Si S-034 6 >10.00 0.04 12 Si S-035 6 >10.00 0.03 24 Si S-036 C5 7.55 0.02 (10 Si S-036 C5 7.55 0.02 (10 Si S-037 11 >10.00 0.03 18 Si S-036 5 1.66 0.02 (10 Si S-037 11 >10.00 0.03 18 Si S-039 8 1.73 0.02 (10 Si S-040 <5 7.40 0.04 (10 Si S-041 <5 8.98 0.04 (10 Si S-043 5 6.43 0.13 (10 Si S-043 5 6.43 0.13 (10 Si S-044 7 9.29 0.05 (10 Si S-103 <5 8.68 0.04 (12 Si S-104 <5 9.59 0</td><td>S1 S-034 6 >10.00 0.04 12 43 S1 S-035 6 >10.00 0.03 24 99 S1 S-036 C5 7.55 0.02 <10 56 S1 S-037 11 >10.00 0.03 18 84 S1 S-039 8 1.73 0.02 <10 63 S1 S-039 8 1.73 0.02 <10 25 S1 S-040 <5 7.40 0.04 <10 27 S1 S-041 <5 8.98 0.04 <10 27 S1 S-043 5 6.43 0.13 <10 21 S1 S-043 5 6.43 0.13 <10 21 S1 S-043 5 6.43 0.13 <10 23 S1 S-043 5 6.43 0.13 <10 23 S1 S-103 5 9.79 0.03 11 90 S1 S-103</td><td>S1 S-034 6 >10.00 0.04 12 43 50 S1 S-035 6 >10.00 0.03 24 99 58 S1 S-036 C5 7.55 0.02 Cl0 56 62 S1 S-037 11 >10.00 0.03 18 84 67 S1 S-038 5 1.66 0.02 <10 83 31 S1 S-039 8 1.73 0.02 <10 25 33 S1 S-040 <5 7.40 0.04 <10 25 34 S1 S-041 <5 8.98 0.04 <10 27 38 S1 S-042 7 >10.00 0.11 24 11 46 S1 S-043 5 6.43 0.13 <10 41 41 S1 S-044 7 9.29 0.05 <10 81 31 S1 S-010 0.11 11 77 49 31 51</td></t<> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Si S-034 6 >10.00 0.04 12 Si S-035 6 >10.00 0.03 24 Si S-036 C5 7.55 0.02 (10 Si S-036 C5 7.55 0.02 (10 Si S-037 11 >10.00 0.03 18 Si S-036 5 1.66 0.02 (10 Si S-037 11 >10.00 0.03 18 Si S-039 8 1.73 0.02 (10 Si S-040 <5 7.40 0.04 (10 Si S-041 <5 8.98 0.04 (10 Si S-043 5 6.43 0.13 (10 Si S-043 5 6.43 0.13 (10 Si S-044 7 9.29 0.05 (10 Si S-103 <5 8.68 0.04 (12 Si S-104 <5 9.59 0	S1 S-034 6 >10.00 0.04 12 43 S1 S-035 6 >10.00 0.03 24 99 S1 S-036 C5 7.55 0.02 <10 56 S1 S-037 11 >10.00 0.03 18 84 S1 S-039 8 1.73 0.02 <10 63 S1 S-039 8 1.73 0.02 <10 25 S1 S-040 <5 7.40 0.04 <10 27 S1 S-041 <5 8.98 0.04 <10 27 S1 S-043 5 6.43 0.13 <10 21 S1 S-043 5 6.43 0.13 <10 21 S1 S-043 5 6.43 0.13 <10 23 S1 S-043 5 6.43 0.13 <10 23 S1 S-103 5 9.79 0.03 11 90 S1 S-103	S1 S-034 6 >10.00 0.04 12 43 50 S1 S-035 6 >10.00 0.03 24 99 58 S1 S-036 C5 7.55 0.02 Cl0 56 62 S1 S-037 11 >10.00 0.03 18 84 67 S1 S-038 5 1.66 0.02 <10 83 31 S1 S-039 8 1.73 0.02 <10 25 33 S1 S-040 <5 7.40 0.04 <10 25 34 S1 S-041 <5 8.98 0.04 <10 27 38 S1 S-042 7 >10.00 0.11 24 11 46 S1 S-043 5 6.43 0.13 <10 41 41 S1 S-044 7 9.29 0.05 <10 81 31 S1 S-010 0.11 11 77 49 31 51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

b. ...

4...

Geochemical Lab Report

)

REPORT: V90-0168	6.0	1.1.]				PRINTED: 7-SE CT: 082	PAGE	20
SAMPLE NUMBER	ELEMENT Mg Units Pct	Ca PCT	Na PCT	K PCT	Sr PPN	ү Рри			
\$1 S-033	0.13	0.09	<0.05	<0.05	15	4	·		
S1 S-034	0.24	0.05	<0.05	<0.05	10	5			
S1 S-035	0.27	0.06	<0.05	<0.05	13	5			
S1 S-036	0.69	<0.05	<0.05	0.06	8	7			
S1 S-037	0.41	0.09	<0.05	<0.05	16	4		,	
S1 S-038	0.31	0.36	0.07	0.08	33	12	u		
S1 S-039	0.22	<0.05	<0.05	<0.05	3	33			
S1 S-040	0.20	0.13	<0.05	0.07	15	12			
S1 S-041	0.18	0.11	<0.05	0.05	12	6			
\$1 S-042	0.07	0.07	<0.05	0.06	3	14			
S1 S-043	0.22	0.15	<0.05	0.06	13	31			
S1 S-044	0.76	0.32	0.06	0.06	36	6			
S1 S-045	0.16	0.08	<0.05	<0.05	11	6			
\$1 S-103	0.60	0.25	0.05	<0.05	24	8			
S1 S-104	0.38	0.22	<0.05	0.06	13	8			
\$1 S-105	0,34	0.07	<0.05	<0.05	18	б			
S1 S-106	0.51	0.11	<0.05	<0.05	17	4			
\$1 S-107	0.88	<0.05	<0.05	0.06	8	5			
\$1 S-108	0.86	2.78	0.23	0.11	153	6			
\$1 \$-109	0.39	0.86	0.08	0.08	59	14			
\$1 S-110	1.00	0.67	0.18	D.14	62	12			
\$1 S-111	0.74	0.05	<0.05	0.06	10	4			
\$1 S-112	0.11	1.80	<0.05	<0.05	104	3			
\$1 S-113	0.14	0.30	<0.05	0.06	19	11			
\$1 S-114	0.40	0.26	<0.05	0.07	31				
S1 S-115	0.19	<0.05	0.07	<0.05	5	6			
S1 S-116	0.26	0.24	<0.05	<0.05	38	5			
\$1 S-117	0.20	<0.05	0.08	<0.05	9	5			
S1 S-118	0.46	<0.05	<0.05	<0.05	9	12			
\$1 \$-119	0.10	0.05	<0.05	0.05	¥				
\$1 S-120	0.34	0.19	<0.05	<0.05	26	4			
S1 90 X 082 (PRE									
S1 S-001	2.36	0.60	<0.05	0.09	24	18			
\$1 S-002	2.04	0.59	<0.05	0.10	22	15			
S1 S-003	2.16	0.71	<0.05	0.10	28	14		<u> </u>	
\$1 S-004	2.06	0.57	<0.05	0.09	22	18			
S1 S-005	1.90	0.40	<0.05	0.11	16	23			
T1 90 P 082 (PRE			<u> </u>		4.64	15			
T1 L-001	1.69	1.31	0.43	0.20	121	15			
T1 90 ST 082 (PP	(EF1X)								

.

.

Geochemical Lab Report

 REPORT: VOD-1	REPORT: V90-01686.0						DATE PRINTED: 7-SEP PROJECT: 082			PAGE 3A		
SAMPLE Number	ELEMENT Units	Au 309 PPB	Ag PPN	Cu PPM	Pb PPN	Zn PPN	No PPN	Ni PPM	Co PPN	Cd PPN	Bi PPN	As PPN
T1 L-001 160	DF X 22+70N	12	0.8	41	16	164	3	32	18	4	<5	32
T1 L-001 190		<5	0.7	34	14	150	3	26	15	2	<5	18
T1 L-002 190		<Ś	14.1	31	12	125	4	37	45	4	<5	21
T1 L-004 205		9	0.9	49	23	256	4	51	19	<1	<5	32
T1 90 ST 082		_										
 T1 L-002		9	1.5	24	14	321	10	70	55	3	6	42
T1 L-003		9	0.8	26	14	282	6	47	21	<1	<5	19
T1 L-004		14	0.6	51	19	265	4	61	19	4	<5	16
T1 L-100		10	0.5	46	16	172	3	38	17	4	<5	15
T1 NOSS NAT I	L-100M	14	0.7	43	19	160	3	36	16	<1	<5	17
 T1 L-102		6	0.7	37	16	472	4	51	22	<1	<5	30
T1 L-103		21	0.8	42	23	306	11	33	22	<1	<5	35
T1 L-105		60	1.0	73	34	242	5	45	20	<1	<5	28
T1 90 X 082	(PREF1X)											
T1 L-001		6	0.9	48	15	253	3	37	21	4	<5	108
T1 L-002		15	2.8	26	16	190	9	32	43	2	<5	907
T1 L-003		85	0.7	49	21	163	3	34	20	<1	<5	39
T1 L-004		<5	0.6	46	20	452	3	54	24	<1	<5	48
T1 HOSS MAT	-005	21	0.7	52	22	225	4	52	18	<1	<5	38
T1 L-006		18	0.6	54	21	273	4	61	20	4	<5	9
 T1 L-007	·····	13	0.5	45	17	271	4	72	20	<1	<5	9
T1 NOSS MAT	L-008	25	1.0	54	25	175		45	15	<1	<5	29
T1 MOSS MAT		17	0.7	52	25	182	3	42	16	<1	<5	14
T1 MOSS MAT		129	0.6	40	19	170	4	40	15	<1	<5	6
T1 MOSS MAT		19	0.9	63	31	196	3	45	18	4	<5	38
T1 L-012		8	0.6	50	12	103	2	50	22	<1	<5	10
R2 90 P 082	(PREFIX)											
R2 R-4091		<5	0.8	181	7	51	1	18	14	4	<5	28
R2 R-4092		25	0.5	11	14	4	5	4	3	<1	<5	159
R2 R-4093		16	0.7	31	20	6	2	5	5	4	<5	1481
 R2 R-4094		10	1.3	87	27	45	<1	13	27	3	<5	>2000
R2 R-4095		14	0.8	69	38	243	2	55	18	<1	<5	103
R2 R-4096		<5	0.3	4	3	60	- 4	4	4	ব	<5	7
R2 R-4097		224	49.9	10	35	153	3	2	1	1	<5	1126
 R2 R-4098		603	>50.0	19	89	42		3	1	4	<5	>2000
 R2 R-4099		166	34.2	6	38	36	1	3	1	1	<5	738
R2 R-4100		107	12.8	5	35	38	3	1	4	4	<5	479
R2 R-4101		257	38.3	5	53	69	4	3	1	<1	<5	1289
R2 R-4102		8	0.6	10	24	21	8	3	1	4	<5	69
R2 R-4136		11	0.8	11	11	5	5	2	2	<1	<5	106

-

٣

Geochemical Lab Report

ł

A DIVISION OF INCHCAPE INSPECTION & TEST	ING SERVICES
--	--------------

REPORT: V90	-01686.0							DATE PRINTED: 7-SEP PROJECT: 082			PAGE 38		
 SAMPLE	ELEMENT	Sb	Fe	 Nn	Te	8a	Cr	V	Sn	Ņ	La	A1	
 NUMBER	UNITS	PPM	PCT	PCT	PPN	PPN	PPN	PPN	PPN	PPM	PPN	PCT	
 TI L-001 16	00F X 22+70N	7	5.40	0.11	<10	285	37	37	<20	<10	10	1.40	
T1 L-001 19		6	4.00	0,16	<10	273	55	55	<20	<10	33	2.81	
	00F X 15+40N	<5	5.11	0.27	<10	99	55	55	<20	<10	19	4.18	
	50F X 18+00N	11	5.21	0.13	<10	271	38	38	<20	<10	10	1.45	
T1 90 ST 08	2 (PREFIX)												
 T1 L-002		<5	7.11	1.27	10	514	53	53	<20	<10	14	2.55	
T1 L-003		<5	5.90	0.24	<10	263	51	51	<20	< <u>1</u> 0	11	2.37	
T1 L-004		<5	5.51	0.15	<10	217	51	51	<20	<10	15	1.95	
T1 L-100		7	5.92	0.11	<10	310	42	42	<20	<10	13	1.70	
T1 NOSS MAT	L-100M	8	5.82	0.09	<10	283	40	40	<20	<10	12	1.58	
 T1 L-102		<5	6.25	0.23	<10	230	45	45	<20	<10	13	1.99	
T1 L-103		9	6.52	0.11	<10	277	52	52	<20	<10	17	2.32	
T1 L-105		<5	6.13	0.13	<10	274	64	64	<20	<10	13	1.81	
T1 90 X 082	(PREFIX)	-							.00			4 05	
T1 L-001		7	7.18	0.33	11	480	36	36	<20	<10	12	1.25	
 T1 L-002		18	9.40	0.86	12	330	48	48	<20	<10	10	1.65	
T1 L-003		<5	6.30	0.14	<10	332	39	39	<20	<10	14	1.54	
T1 L-004		6	6.69	0.22	<10	244	49	49	<20	<10	14	2.19	
T1 MOSS NAT	L-005	7	5.51	0.11	<10	260	55	55	<20	<10	12	1.81	
 T1 L-006		7	5.89	0.13	10	238	50	50	<20	<10	14	2.00	
T1 L-007		8	5.50	0.14	<10	175	43	43	<20	<10	16	2.12	
T1 MOSS MAT		<5	5.53	0.06	<10	259	56	56	<20	<10	13	1.68	
T1 MOSS MAT		10	5.64	0.11	<10	250	56	56	<20	<10	12	1.65	
T1 MOSS NAT		1	4.90	0.08	<10	212	62	62	<20	<10	10	1.75	
 T1 MOSS NAT	L-U11	<5	5.94	0.13	<10	257	54	54	<20	<10	14	1.71	
T1 L-012		9	6.61	0.08	<10	123	85	85	<20	<10	10	2.74	
R2 90 P 082	(PREFIX)	_	.										
R2 R-4091		<5	5.60	0.12	<10	148	59	59	<20	<10	10	1.06	
R2 R-4092		16	2.05	<0.01	<10	52	6	6	<20	<10 <10	<1	0.21	
R2 R-4093		56	4.93	<0.01	<10	64	11	11	<20	<10	2	0.57	
R2 R-4094		90	>10.00	<0.01	11	13	44	44	<20	15	1	1.16	
R2 R-4095		12	4.91	0.09	<10	251	34	34	<20	<10	6	1.06	
R2 R-4096		<5	2.28	0.06	<10	57	17	17	<20	<10 <10	<1	0.49	
R2 R-4097		47	5.05	<0.01	<10	144 33	4 4	ব ব	<20 <20	<10 <10	21 20	0.44	
 R2 R-4098		173	9.40	<0.01	12	33	<u> </u>	<u></u>	×20	×10	20	0.39	
 R2 R-4099		46	2.46	0.01	<10	141	<1	4	<20	<10	26	0.52	
R2 R-4100		39	2.10	<0.01	<10	161	<1	<1	<20	<10	8	0.37	
R2 R-4101		67	3.39	<0.01	<10	80 70	<1	<1	<20	<10 <10	4	0.46	
R2 R-4102		<5	2.15	<0.01	<10	78	1	1	<20	<10	26	0.22	

٣

.

Geochemical Lab Report

 REPORT: V90-01686.0								DATE PRINTED: 7-SEP- PROJECT: 082		PAGE 3C		
 REPURT: V90	-01080.0						PRU	JEL1: 082	PA60	JL		
SAMPLE	ELEHENT	Ng	Ca	Na	K	Sr	Y					
NUMBER	UNITS	PCT	PCT	PCT	PCT	PPN	PPN					
 	MOF 4 22.700		A 50	<0.0E	0.00	40	11	· · · · · · · · · · · · · · · · · · ·				
	00F X 22+70N 100F X 9+30N	0.70 0.58	0.56 2.64	<0.05 0.06	0.09 0.06	46 121	11 28					
	00F X 15+40N	0.58	0.34	0.06	0.03	29	15					
	SOF X 194404	0.76	0.69	<0.05	0.09	62	10					
T1 90 ST 08		0.10	0,03	NU-U J	0.09	02	10					
 										·····		
T1 L-002		0.81	1.17	<0.05	0.06	98	12					
T1 L-003		0.92	0.80	<0.05	0.06	73	9					
T1 L-004		1.00	0.69	<0.05	0.09	54	14					
T1 L-100		0.84	0.63	<0.05	0.10	54	13					
T1 NOSS NAT	L-100M	0.78	0.55	<0.05	0.11	49	11					
T1 L-102		0.75	0.79	<0.05	0.08	81	12					
T1 L-102		0.73	0.75	<0.05	0.08	50	14					
T1 L-105		0.90	0.55	<0.05	0.10	58	14					
T1 90 X 082	(DDEE1V)	0.70	V+/4	20103	0.10	JU	17					
T1 J0 X 002	TINE INF	0.45	0.87	0.05	0.10	70	12					
 								·				
T1 L-002		0.47	0.89	0.07	0.08	53	14					
T1 L-003		0.73	0.83	<0.05	0.11	66	14					
T1 L-004		0.78	0.63	<0.05	0.10	68	12					
T1 NOSS NAT	L-005	1.00	0.53	<0.05	0.09	41	11					
T1 L-006		1.05	0.56	<0.05	0.09	46	13					
T1 L-007		1.04	0.46	<0.05	0.08	50	15					
T1 NOSS NAT	F-008	0.98	0.56	<0.05	0.09	39	11					
T1 NOSS MAT		0.93	0.73	<0.05	0.10	50	11					
T1 MOSS MAT		0.92	0.76	<0.05	0.09	51	10					
TI MUSS NAT		0.92	0.81	<0.05	0.09	55	13					
 1 NU COUNTS	L-011	0.00	1010	~0.03	0.10	11 L	1.7					
 T1 L-012		2.09	0.65	<0.05	0.09	27	11			· · · · ·		
R2 90 P 082	(PREFIX)											
R2 R-4091		1.27	7.61	0.06	0.21	264	10					
R2 R-4092		<0.05	<0.05	<0.05	0.11	5	1					
R2 R-4093		<0.05	<0.05	<0.05	0.31	12	2					
 R2 R-4094		0.13	0.50	<0.05	0.39	32	7					
R2 R-4094 R2 R-4095		1.30	6.58	<0.05	0.39	299	10					
		0.13	0.00 1.11	<0.05	0.25	71	6					
R2 R-4096		<0.05	0.08	<0.05	0.32	14	ŭ.					
R2 R-4097 R2 R-4098		<0.05	<0.05	<0.05	0.32	14	3					
 KZ K-4U98	•	10100	×0.03	10103	0.30		J					
 R2 R-4099		<0.05	<0.05	<0.05	0.35	13	3					
R2 R-4100		<0.05	<0.05	<0.05	0.29	4	2					
R2 R-4101		<0.05	<0.05	<0.05	0.38	6	2					
R2 R-4102		<0.05	0.06	<0.05	0.20	11	3					
R2 R-4136		<0.05	0.13	<0.05	0.30	19	2					

.

-

• .

-

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-90

 	REPORT: V90-01739.0						TE PRINTE		6-70	DACE
REPORT: V90-01	./39,0	:				PR	OJECT: DO			PAGE 1
SAMPLE NUMBER	FLEMENT AU 30g Units PPB	Ag PPil	Cu PPN	Pb PPN	Zn PPN	As PPN	Sb PPN	Ho PPH	Hg PPN	
S1 90 CC 082 (PREFIX									· · · · · · · · · · · · · · · · · · ·
S1 L001 4+30	<5	1.2	35	13	199	38	6	3	0.183	
\$1 L002 0+85	<5	1.3	37	21	221	11	10	2	0.197	
S1 L032 16+00	<5	0.9	27	13	40	<5	<5	2	0.184	
S1 L036 0+00 S	6	0.9	27	16	134	<5	ও	3	0.095	
S1 1037 0+258	6	1.3	44	15	64	24	\$	7	0.189	
\$1 L038 0+75S	<5	1.3	24	20	203	15	6	6	0.130	
S1 L039 1+00S	<5	1.0	25	19	106	<5	9	3	0.127	
\$1 L040 1+25S	7	1.2	90	19	252	26	ii	3	0.255	
S1 L041 1+50S	<5	1.0	12	12	38	<5	5	Э	0.091	
 \$1 L042 1+75S	<5	1.1	21	18	51	~ 5	S	6	0.132	
S1 L043 2+00 S	<5	1.1	15	6	54	<5	<5	6	0.099	
S1 L044	<5	6.7	17	10	100	<5	6	5	0.104	
\$1 L045 2+50	10	1.0	34	17	53	13	<5	3	0.201	
S1 L046 2+75	9	0.6	52	17	126	17	ଓ	2	0.164	
 S1 L047 2+75	<5	0.8	22	14	58	<5	6	5	0.168	
S1 L048	<5	1.1	26	6	42	<5	ଓ	3	0.222	
S1 L049	<5	0.9	36	17	157	<5	7	- 4	0.200	
S1 L050	10	0.9	32	13	63	<5	8	2	0.120	
S1 L051	<5	0.6	21	15	4 îi	<5	<5	3	0.099	·····
 S1 L052 4+25	6	0.8	35	15	36	ও	<5	3	0.206	
S1 L053 4+50	6	i.1	48	18	150	<5	6	5	0.198	
S1 L054 4+75	12	1.1	38	19	58	15	10	- 4	0.176	
\$1 L055 5+00	<5	0.6	22	6	35	<5	<5	3	0.131	
S1 L056 5+25	6	1.6	38	14	45	13	ও	5	0.203	<u></u>
 \$1 L057 5+50	<5	1.3	41	18	105	13	7	4	0.124	
S1 L058	<5	1.1	26	10	135	6	8	2	0.079	
S1 L059 6+00	<5	0.9	19	10	59	ও	6	5	0.136	
S1 L060 6+25	<5	1.1	18	13	38	9	6	4	0.107	
S1 1061 6+50	<5	0.9	21		35	ও	ও	3	0.147	
 S1 L062 6+75	<5	0.9	18	10	50	20	<5	2	0.174	<u> </u>
S1 L064 7+25	<5	1.7	18	14	75	15	6	5	0.116	
S1 L065 7+50	<5	0.6	27	13	110	9	8	2		
S1 L066 7+75	<5	<0.2	23	9	69 (7)	<u>رج</u>	<5	1	0.072	
S1 L067 8+DN	<5	0.6	22	10	60			2	D.058	
S1 1068 8+25	<5	1.5	27	9	62	<5	8	3	0.140	
\$1 L069 8+50	8	8.0	52	33	110	22	13	15	0.159	
S1 L070 8+75	<5	0.9	20	8	45	13	<5	7	0.083	
S1 1071 9+00	6	<0.2	21	8	37	ও	<5	5	0.067	
S1 L072 9+25	<5	1.2	24	24	177	12	<5	7	0.105	

.

.

~

Geochemical Lab Report

Ì


A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-017	39.0							DIE PRINTE		<u>v /u</u>	PAGE 2
 SANPLE HUNBER	FLENFNT	Au 30g PPB	Ag PPN	Cu PPN	Pb PPH	Zn PPN	Ás PPN	Sb PPN	lic PPN	Hg PPH	
 S1 L073 9+50		<5	0,8	30	21	113	7	7	5	0.091	
S1 1074 9+75		Ś	1.0	61	6	45	8	6	9	0.165	
S1 L075 10+00		<5	1.2	24	15	43	<5	<5	11	0,105	
S1 90 NB 082 (PI	REFIX)										
S1 S001 0+00		<5	<8.2	9	2	33	<5	<5	<1	0.166	
S1 S002 0+50		<5	<0.2	9	3	28	7	ও	1	0.225	
S1 S003 1+00		12	1.0	32	21	159	67	7	3	0.283	
S1 S004 1+50		6	<0.2	9	7	37	<5	(5		0.168	
S1 S006 2+50		<5	1.2	19	9	37	104	8	3	0.156	
\$1 S008 3+50		<5	0.6	7	4	23	< S	ଓ	<1	0.143	
 S1 S009 4+00		<5	<0.2	5	3	18	<5	<5	<1	0.225	
S1 S010 4+50		6	1.5	23	11	24	<5	7	2	0.191	
S1 SD11 5+00		Ś	1.8	17	8	39	7	s	4	0.170	
S1 S012 5+50		Ś	1.1	22	25	62	23	6	15	D. 332	
S1 S013 8+00		<5	0.6	25	12	53	<5	<5	1	0.140	
 S1 S014 D+014		<5	0.4	13	7	42	<5	G	7	0.215	
S1 SD15 9+00		<5	1.4	25	20	8 3	<5	9	7	0.153	
S1 S016		<5	1.5	42	23	80	21	6	5	0.195	
S1 S018		<5	1.6	17	16	67	14	12	15	0.144	
\$1 S019		< 5	0,6	15	10	48	<5	ও	2	0.231	_
\$1 S022		12	1.0	18	12	61	11	<5	2	0.149	
S1 S025		<5	0.7	48	17	133	11	6	2	0.115	
\$1 S027		<5	1.1	23	13	65	<5	10	7	0.253	
S1 S028		\$	1.1	23	15	71	< 5	<5	6	0.363	
S1 S029		<5	0.2	9	5	45	<5	<5	1	0.157	
 S1 S030		<5	0,3	10	5	44	45	<5	2	0.180	
S1 S031		<5	<0.2	11	11	58	<5	6	7	0.109	
S1 S032		<5	0.3	13	10	46	<5	5	1	0.279	
S1 S033		<5	1.3	95	11	122	39	6	2	0,073	
 S1 90 ST 082 (P	REFIX)							_			
S1 S046 3200X 0	+00	<5	1.0	21	13	54	20	<u>(</u> 5	6	0.104	
S1 SD47 3200X 0	+25	(5	1.4	17	20	96	26	<5	12	0.128	
S1 S048		102	2.2	27	38	65	20	9	2	0.221	
S1 S049		s	1.1	18	16	127	<5	6	4	0.075	
 S1 S050		393	1.9	68	52	185	53	6	3	0.207	
 \$1 S051		<5	1.6	11	18	70	18	<5	9	0.074	
S1 S052		<5	1.1	47	12	165	12	11	13	0.234	
S1 S053		<5	2.0	21	14	96	<5	-5	4	0.082	
S1 S054		<5	0.9	23	11	17	<5	<5	4	0.085	
S1 S055		ও	2.4	31	12	122	15	ও	6	0.102	

۶

y

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-90

REPORT: V90-D1						TF PRINTE OJECT: 08		6-90	PAGE 3		
SANPLE NUMBER	ELENENT UNITS	Au 30g PPB	Ag PPN	Cu PPH	Р5 РРН	Zn PPH	As PPN	Sb PPH	No PPN	Hg PPN	
S1 S056		8	1.3	34	48	158	23	<5	9	0.157	
S1 S057		<5	1.3	59	16	124	30	10	5	0.161	
S1 S058		(5	1.1	19	11	57	17	<5	2	0.090	
S1 S059		6	1.4	68	22	39	119	11	- 4	0.209	
S1 S060		<5	0.8	33	13	117	<5	<5	12	0.130	
S1 S061		<5	2.1	23	40	187	159	13	6	0,489	
S1 S062		10	2,5	33	58	164	195	17	7	0.434	
S1 SD63		6	2.3	39	97	170	25	13	5	0.122	
S1 S064		8	1.0	47	32	179	18	11	8	0.244	
S1 S065		<5	1.0	32	18	180	17	1	5	0.112	
S1 S066		<5	1.1	30	11	66	<5	<5	2	0.103	
S1 S067		<5	1.4	28	32	204	10	6	5	0.131	
S1 S068		10	3.7	44	53	80	<5	8	6	0.297	
S1 SD69		<5	1.8	36	33	269	61	7	15	0.085	
S1 S070		8	2.2	32	40	65	25	9	9	0.234	
\$1 S071		6	1.6	40	27	113	15	8	4	0.143	
S1 S072		9	1.1	47	13	102	12	7	4	0.130	
S1 S073		1	1.5	45	20	162	25	8	5	0.170	
S1 S074		6	2.9	37	31	137	30	7	12	0.138	
\$1 \$075		6	2.1	38	42	116	27	8	24	0.195	
S1 S076		9	2.7	55	37	279	24	12	13	0.309	
S1 S077		10	1.8	39	38	69	19	12	10	0,278	
S1 S078		71	3.9	59	250	245	58	13	15	0.359	
S1 S079		10	2.8	56	99	262	69	9	30	0.107	
S1 S080		37	8.7	90	111	258	139	12	20	0.174	
\$1 \$081		9	1.2	33	42	101	SN	6	8	0.048	
S1 S082		16	9,5	51	86	116	50	8	10	0.285	
S1 S083		<5	2.0	50	16	212	ЗЛ	8	40	0.139	
S1 S084		11	2.1	37	43	276	55	13	12	0.396	
S1 S085		10	4.7	71	104	147	195	11	16	B.142	
S1 S086		9	5.5	8 D	46	293	58	11	6	0.334	
S1 90 EB 082S							_	_		_	
S1 27+00N 0+25		<s< td=""><td>1.0</td><td>24</td><td>14</td><td>61</td><td><5</td><td><5</td><td>10</td><td>0.102</td><td></td></s<>	1.0	24	14	61	<5	<5	10	0.102	
S1 27+00N 0+25		<5	0.6	19	11	53	ৎ	ଓ	3	0.055	
S1 90 JJ 082S	(PREFIX)					<u> </u>					
S1 15+00N 3+00		<5	1.4	27	15	86	19	<5	8	0.527	
S1 15+DON 2+75		1	2.0	26	16	144	22	< <u>(</u> 5	6	0.207	
S1 15+00N 2+50		6	5.1	34	13	106	31	<5	5	0.727	
S1 15+00N 2+25		<5	2.4	40	15	127	26	<u>ح</u>	5	D.500	
S1 15+00N 2+00	N	7	0.7	36	14	63	16	<5	2	0.121	

.

-

ъ.

-

• .

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES
DATE PRINTED: 29-AUG-90

								TE PRINTE		/a=/u	PAGE 4
 REPORT: V90-017	57.U]					UJECI: 00			THUL 4
SANPLE	FLEMENT	Au 30g	Âg	Cu	РЪ	Zn	Åß	Sb	No	Hg	
NUMBER	UNITS	PPB	PPN	PPN	PPH	PPN	PPN	PPN	PPH	PPN	
\$1 15+00N 1+75W		15	0.5	10	17	27	<5	<5	4	0,210	
S1 15+00N 1+50W		<5	0.8	23	7	45	5	ও	3	0.076	
S1 15+00N 1+25W		<5	1.0	21	6	58	11	6	2	0.137	
S1 15+00N 1+00W		<5	0.6	19	19	59	<5	4	3	0.103	
S1 15+00W 0+75W		9	0.9	37	16	90	32	9	3	0.118	
S1 15+00N 0+50W		<5	0.6	15	4	40	ও	ৎ	2	0.042	
SI 15+00N 0+25W		Ś	0.6	36	7	93	Ś	<5	2	0.104	
\$1 15+00N 0+00E		Ś	0.6	26	13	86	8	7	2	0.087	
\$1 15+00N 0+25F		<5	0.8	25	15	90	34	9	3	0.104	
S1 15+00N 0+50E		ن د	0.5	23	8	99	25	5	1	0.190	
					42	444		<u>(5</u>	2	0.082	
\$1 15+00N 0+75F		<5	0.5	22	13	116	32		2		
S1 15+00N 1+08E		<5	0.8	23	14	127	78	9	•	0.111	
\$1 15+DON 1+25F		<5	1.0	19	13	128	490	8	4	0.120	
\$1 15+00N 1+50E		<5	0.7	15	21	76	14	11	2	0.086	
\$1 15+00N 1+75F		<5	0.7	19	13	81	17	<5	4	0.101	
S1 15+00N 2+00E	<u> </u>	<5	0.9	14	17	63	20	9	3	0.060	
S1 13+50N 0+00F		<5	0.5	22	6	57	7	7	3	0.096	
\$1 13+50N 0+25E		(5	0,6	33	12	112	47	<5	2	0.103	
\$1 13+50N 0+50F		<5	0.7	19	14	101	<5	ও	2	0.060	
\$1 13+50N 0+75E		ব্য	0.7	16	6	43	<5	<5	3	0.087	
 S1 13+50N 1+UNF		<5	0.5	25	22	97	<	12	4	0.099	
T1 90 JJ 082 (P											
T1 L001		<5	0.5	31	13	123	<5	<5	2	0.103	
T1 L002		10	0.7	52	21	157	22	9	3	0.164	
T1 L003		8	0.7	51	21	265	31	5	4	0.145	
 			0.6	53	14	132	<5		2	0.117	
T1 L004						128	9	5	3		
T1 L005		5	0.7	30	14	203	9 9	8		0.056	
T1 L006		<s< td=""><td>0.4</td><td>28</td><td>10</td><td></td><td></td><td>• 7</td><td>5</td><td>0.095</td><td></td></s<>	0.4	28	10			• 7	5	0.095	
T1 L007		<5	0.6	37	10	159	17	-	_		
 T1 L000		<u><</u>	2.2	53	49	389	31	13	31	0.272	
 T1 90 RR 082 (PI	REFIX)				,						
T1 1.001		ও	0.4	42	16	163	18	9	3	0,113	
T1 L002		<5	0.6	25	11	133	9	8	3	0.094	
T1 90 ST 082 (PI	REFIX)								<u> </u>		
 T1 L105		<5	1.8	57	48	312	42	12	24	0.152	
 T1 90 ST 0825 (PREFIX)							<u> </u>			
T1 24+00N 3+25N		<5	4.2	11	2	34	8	s	<1	0.099	
T1 24+00N 3+00W		7	0.6	43	16	200	69	<5	3	0.285	
71 24+00N 2+75H		<5	1.0	30	15	201	20	7	15	8.5 32	
		<5	0.7	26	19	162	18	8	5	0.226	

2: 4

-

٦

Γ.

]

Geochemical Lab Report

ţ

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

						<u>00</u>	TF PRINTF	D: 29-AL	<u>6-90</u>	<u> </u>
REPORT: V90-01739.0						PF	OJECT: DE	32		PAGE S
SAMPLE FLEMEN	-	Âg	Cu	РЪ	Zn	Á6	Sb	No	Hg	
 NUNBER UNIT	S PPB	PPH	PPN	PPK	PPN	PPN	PPN	PPH	PPN	
T1 24+00N 2+25W	<5	0.6	29	18	141	31	10	5	0.184	<u></u>
T1 24+00N 2+00H	<5	0.6	23	7	62	14	6	2	0.118	
T1 24+00N 1+75WA	30	1.1	59	20	126	36	12	3	0.231	
T1 24+00N 1+75HB	<5	0.6	21	9	86	<5	6	5	D.190	
¥1 24+00N 1+50¥	<5	0.8	24	17	101	9	7	5	0.086	. <u> </u>
T1 24+DON 1+25WA	7	1.0	65	18	133	21	7	4	0.177	
T1 24+00N 1+25WB	10	0.7	25	12	76	10	8	- 4	0.096	
T1 24+BON 1+BOW	<5	0.8	21	10	81	11	<5	4	0.122	
T1 24+DON 0+75H	G	Ð.8	24	16	102	7	<5	5	0.139	
T1 24+00N 0+50H	<5	0.4	15	3	51	<5	1	1	0.055	
 T1 24+BON D+25W	<5	0.5	31	6	84	د.	12	í	D.069	
T1 24+DON 0+00E	12	1.3	89	18	167	243	15	3	0.167	•
T1 24+DON 0+25E	<5	0.8	21	13	75	<5	6	3	0.106	
T1 24+00N 0+50E	< 5	0.5	17	10	63	<5	<5	1	0.128	
T1 24+DON 0+75F	<5	0.8	17	13	71	<5	S	5	0.086	
 T1 24+00N 1+00E]	0.5	48	18	103	25	ও	2	0.162	
T1 24+BON 1+5HE	11	1.1	40	16	88	39	8	2	0.067	
T1 24+00N 2+00E	6	0.9	20	14	63	(5	<5	3	0.130	

, **1**

.

١

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-406-90

 REPORT: V9D-01704.0			• or merica			-	<u>TE PRINIE</u> OJFCT: PA			PAGE 1A	
	MENT Au 30g NITS PPB	Ag PPM	Cu PPM	Pb PPH	Zn PPN		Ni PPM	Co PPM	Cd PPf1	81 PP#	As Ppn
 S1 90 CC 082 S-024	<5	<0.2	6	<2	24	<1	3	2	<1	<5	<5
S1 90 CC 082 S-024	8	1.2	20	15	52	4	11	12	<1	11	37
S1 90 CC 082 S-025	v <5	0.4	14	8	40	3	10		<1	<5	<s c<="" td=""></s>
S1 90 CC 082 S-027	<5	1.2	25	9	49	2	12	10	<1	<5	<5
S1 90 CC 082 S-028	<5	1.6	17	13	54	6	10	5	<1	<5	<5
S1 90 CC 082 S-029	<5	1.7	24	23	49	6	16	12		6	87
S1 90 CC 082 S-030	B	1.1	13	7	72	3	8	9	<1	<5	8
S1 90 CC 082 S-031	<5	1,1	21	14	73	5	14	9	<1	<5	<5
\$1 90 CC 082 S-032	16	2.1	36	30	99	6	11	32	<1	<5	45
\$1.90 CC 082 S-033	<5	1.2	48	12	53	3	26	13	<1	<5	<5
S1 90 CC 982 S-034	<5	1.6	26	21	53	1	13	13	<1	10	76
S1 90 CC 082 S-035	8	0.6	15	11	50	8	13	6	<1	<5	20
S1 90 33 082 L-001	<5	1.2	32	15	191	?	29	j 6	<1	<5	76
S1 90 JJ 082 (-NO2A	<5	1.0	31	19	218	3	38	23	<1	<5	- 64
51 9B JJ 082 L-802B	45	1.0	4{)	8	123	3	35	18	<1	<5	122
 S1 90 JJ 082 1-083	<5	1.1	32	16	114	3	34	17	<1	6	86
S1 96 JJ 682 L-004	12	B.8	41	17	123	3	44	16	<1	5	26
S1 90 JJ 082 L-005	<5	N. 9	48	18	156	3	40	23	<1	<5	143
S1 98 JU 082 S-001	<5	1,5	22	8	77	3	13	15	<1	<5	15
\$1 90 JJ 082 S-002	<5	1.0	14	16	56	5	43	6	1	9	62
 S1 90 JJ 082 S-003	<5	1.4	29	17	<u>8</u> П	4	41	8	<1	<5	25
S1 90 JJ 082 S-004	<5	0.9	24	12	75	4	38	7	<1	<5	14
S1 90 JJ 082 S-085	18	1.3	34	14	8 5	5	24	13	<1	<5	207
S1 90 JJ 882 S-806	<5	3.4	46	19	170	7	27	15	<1	<5	742
\$1,90,00,082,5-008	28	1.7	37	18	122	6	38	19	<1	<5	120
 S1 90 JJ 082 S-009	<5	1.6	24	28	88	22	7	3	<1	<5	11
S1 90 JJ 082 S-010	<5	1.1	41	14	144	6	48	31	<1	<5	171
S1 90 JJ 082 S-011	6	1.9	53	27	i 51	6	46	21	2	10	314
SJ 90 JJ 082 S-012	<5	0.3	6	<2	45	1	4	4	<1	<5	<5
\$1 90 JJ 082 \$-013	<5	1.3	21	12	39	5	12	7	<1	8	28
 51 90 RR 082 S-001	<5	1.1	22	12	46	3	14	13	<1	<s< td=""><td>10</td></s<>	10
\$1 90 RR 082 S-002	<5	0.8	14	7	36	6	15	4	<1	<5	9
S1 90 RR 082 S-003	<5	0.9	28	8	44	5	24	6	<1	ৎ	16
S1 90 RR 082 S-1004	43	1.1	20	6	31	3	12	5	<1	<5	<u>(</u>
S1 90 RR 082 S-005	15	1.2	36	7	134	7	27	22	<1	<5	539
S1 90 R8 082 S-1106	<5	1.1	17	10	63	9	19	14	4	<5	4[
\$1 941 RR 082 S-007	<5	n.)	32	26	57	8	23	9	<1	<5	52
S1 90 88 082 S-008	<5	1.1	21	23	75	21	8	3	<1	<5	10
S1 90 BR 082 S-009	<5	1.5	35	21	104	6	41	23	1	10	199
ST 90 RR 087 5-010	<5	1.0	35	6	129	3	20	13	<1	<5	144

-

-

Geochemical Lab Report

ì

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-90

 REPORT: V90	D4 707 0	1						ITE PRINTE OJECT: PA			PAGE 1B	
 REPORT: 070	^[[]]])))), ([]]])), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]]), ([]]))), ([]]))), ([]]))), ([]])))))))))))))))))))))))))))))))))))											
SAMPLE NUMBER	ELFNENT UNITS	Sb PPM	Fe PCT	Mn PCT	Te PPN	Ba PPM	Cr PPM	V PPN	Sn PPM	4 PPN	La PPN	AI PCT
 S1 90 CC B8	2 S-824		0.39	<0.01	<10		2		<20	<10	<1	0.37
S1 90 CC 08		11	5,80	0.10	17	152	18	85	<20	<10	14	2.64
\$1 90 CC 08		<5	3.70	0.02	<10	75	15	83	<20	<10	5	0.97
S1 90 CC 08		<5	>10.00	0.04	14	144	33	125	<21	<10	6	5.78
\$1 90 CC 08		9	>10.00	0.03	20	81	37	117	<20	15	12	3.82
 S1 90 CC 08	2 \$-029	24	9.00	0.06	25	647	28	114	<20	15	9	5.65
St 90 CC 08		Ś	>10.40	0.04	17	130	23	128	<20	<10	9	4.04
S1 90 CC 08		<5	>10,00	0,07	14	112	49	131	<20	<18	22	3,25
\$1.9B CC 08		15	>10.00	Π.16	20	170	32	130	<21	17	15	7.52
S1 90 CC 08		5	7,89	0.06	βŪ	1 60	64	111	<21	<10	13	2.6
 S1 90 CC B8	2 5-01/	24	8.61	0.06	19	110	26	137	<20	13	12	5.91
S1 90 CC 08		<5	5,09	N.N2	<1B	61	23	124	<20	<10	9	i. 5
S1 20 JJ 08		10	5.44	0.24	<11	457	21	41	<20	<16	18	1.98
\$1 90 JJ 08		9	6.27	0.21	15	447	31	58	<20	<10	15	2.2
S1 90 JH 08		<5	6.10	0.14	<10	368	39	82	<20	<10	18	2.71
 S1 90 J. 88	2 1 -003		5.62	0.16	13	343	31	76	<2R	<1[]	15	2.4
51 90 JJ 08		7	5.56	B.12	<10	221	42	49	<20	<10	17	2.1
51 70 JJ 08		7	7,94	0.18	11	284	44	104	<20	dū	11	3.1
S1 90 JJ 08		, 9	>10.00	0.08	17	210	35	<u>1</u> 44	<20	13	12	3.42
S1 90 JJ 08		19	6.32	n.n2	22	46	54	60	<20	<10	8	2.2
 	2 5 11/13		>10.00	0.04		62	63	62	<21	15	7	2.2
51 91 JJ B8		7	9.30	0.05	14	83	56	58	<21	<10	12	Э.Ф
51 96 JJ 08		18	>10.00	Q.15	21	69	60	153	<20	13	12	2.6
S1 90 33 08		9	7.14	0.41	<u>1</u> 1	121	38	53	<20	<16	21	8.2
S1 90 33 98		9	7,38	0.17	<10	150	46	68	<20	<10	28	2.9
 	2 C-DD9	6	>10.00	0.06	22	41	45	94	<20	20	37	2.0
\$1 90 JJ 08		15	6.51	0.20	<10	228	52	54	<20	<18	19	2.5
S1 9B JJ 06		26	6.79	D.21	23	238	53	60	<20	12	32	3.2
C' 05 JJ 08		<u>د</u> ة	0,86	<0.01	<10	90	3	19	<20	<10	1	0.4
St 90 JJ 08		9	4.59	0.01	12	144	18	98	<28	<10	6	0.8
 S1 90 R8 08	2.5-091		8.64	0.07	12	185	26	130	<20	<10	- 11	2.5
S1 90 RR 08		Ś	7.10	0.02	10	66	34	109	<20	<10	10	2.2
S1 90 RR 08		6	8,79	0.03	14	120	40	96	<20	<10	10	2.3
S1 90 RR 08		<5	>10.00	0.03	12	90	34	180	<20	12	4	1.0
S1 90 RR 08		<5	8.14	0.49	<10	482	37	101	<20	<10	22	4.4
 S1 90 8K 04	2 S-MG6	 4	>10.00	0.12	18	126	48	174	<211	11	9	2.4
S1 90 RR 08		1Ŭ	3.61	R,02	<10	98	36	71	<20	<10	12	1.9
S1 90 RR 08		7	>10.00	N.64	18	47	37	140	211	10	35	1.7
S1 20 RR 08		25	6.14	6.17	22	195	45	56	<213	12	19	2.5
S1 90 RR 00		7	6.03	10,0	<1i	215	40	110	<28	<10	37	5.3

ы.

۳

.

per - d

ł

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-90

									ATF_PRINTED: 29-AUG-90	
	REPORT: V90	1-01704.0							ROJECT: PARADIGM	PAGE 1C
	SAMPLE	ELENENT	Mg	Ca	Na	ĸ	Sr	Ϋ́		
	NUMBER	UNITS	PCT	PCT	PCT	PCT	PPN	PPM		
	S1 90 CC 08	32 S-024	0.05	0.42	<0,05	0.06	28	2		
	S1 90 CC 00		0.67	0.71	0.09	0.07	36	11		
	\$1 90 CC 08		0.31	0.45	0.08	0.05	40	3		
	S1 90 CC 00		0.56	0.23	<11.05	<0.05	24	7		
	S1 90 CC 08		0.27	0.23	<11.05	0.05	36	8		
									······································	
	S1 90 CC 08		0.70	0.34	0.08	0.06	39	11		
	S1 90 CC 08		A.55	Π.48	11.09	Π.06	59	9		
	St 90 CC 06		0,30	0.18	<n.05< td=""><td><0.05</td><td>22</td><td>15</td><td></td><td></td></n.05<>	<0.05	22	15		
	S1 90 CC 08		N.94	0.06	<11,05	<0.05	5	23		
	S1 90 CC D8	3 2 \$-833	0,49	0.32	<0.05	<1.05	32	9		
	S1 90 CC 08		0.50	0.28	<0.05	<0.05	29	12	· · · · · · · · · · · · · ·	·
	S1 98 CC 88		0.37	0.22	0.05	0.08	23	4		
	S1 90 JJ 08		0.37 ស.48	1.98	<0.65	0.08	122	19		
	ST 20 00 00		0.81	1.78	0,06	0.10	89	15		
	SI 90 JJ 08		0.93	1.61	0.06	0.07	93	20		
	31 70 JU UU	N 1 -134120	0.73	1.01	0.00			,,,		
	S1 90 JJ 08	82 L-003	1.21	1.54	0.11	0.08	93	16		
	\$1.20 JJ 88	3 2 L-0114	0.87	1.08	<0.05	0.08	54	15		
	S1 90 JJ B8	82 L-995	1.53	0.71	<0, 0 5	0.09	49	12		
	S1 90 JJ 08	82 S-001	0.60	0.30	<0.05	<0.05	23	11		
	S1 911 JJ B8	82 S-082	Ø.82	<0.05	<0.05	<0,05	9	4		
			0.70	0.40	.0.05	-0.00				
	S1 90 JJ 08		0.73	0.12	<0.05	<0.05	17	3		
	\$3 919 JU B8		0,74	<0.05	<0.05	<0.05	10	5		
	S1 90 JJ 08		n.87	D.14	<0.05	0.65	23	7		
	St 90 JJ R		ព.43 ព.43	0.26	<0.05	<0.05	18	28		
	S1 90 JJ 08	32 5-008	П.92	(),44	B, D6	13,07				
	\$1 90 JJ 08	82 5-009	0.10	0.10	<0.05	<0.05	8	14		
	S1 90 JJ 08	32 S-N1D	0.93	0.80	<0.05	0.07	55	24		
	\$1 90 JJ D		0.84	0,70	<0.05	0.07	41	49		
	S1 90 JJ 08		0.33	0.72	0.08	<0.05	69	2		
	S1 90 JJ 0		0.33	0.52	0,08	0.06	58	4		
							~~			
	S1 90 RR 08		D.64	0.34	C.U5	0.06 40.05	29	7		
•	S1 90 RR 00		0.33	0.06	<0,05	<0.05	14	4		
	S1 90 RR 08		0.39	0.08	<0.05	<0.05	25	5		
	S1 90 RR 00		0.31	0.25	<0.05	<0.05	32	3		
	S1 90 RR 08	82, S+805	1.03	1.59	0.11	0.17	108	17		
	S1 90 88 00	82 6-006	0,80	0.93	0.06	0.08	59	11		
	S1 90 RE 08		0.62	0,38	0.07	0.07	35	7		
	S1 90 R8 08		0.10	0.07	<0.05	<0.05	8	12		
	S1 98 RR 98		D.10 D.84	0.79	<0.115	0.07	56	26		
	51 90 RR 00		0.84	0,17 0,89	0.14	0.09	65	35		
	01 70 MB UI		0.00		0,17					

L

. -

1

)

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING	SERVICES

 REPORT: V90	~03764,50											
 							Ph	OJECT: PA	КАОТОЛ		PAGE 2A	
 SAMPLE	FI FINENT	Au 30g	Ag	Cu	РЪ	Zn	No	Nī	Co	Cd	81	As
 NUTIBER	UNITS	PP8	PPM	PPI	PPM	PPN	PPM	PPN	PPN	PPN	PPN	PP
S1 90 RR 08	2 S-D11	<5	0.7	32	9	154	4	25	15	<1	<5	<5
S1 90 RR 08		<5	1.4	52	25	66	4	16	5	<1	<5	38
S1 90 RR 08	2 S-013	<5	1.0	28	8	85	2	14	17	<i< td=""><td><5</td><td>Č</td></i<>	<5	Č
S1 90 RR 08	2 S-014	71	1.2	18	19	41	5	26	5	<1	6	4
S1 90 RR 08	2 8-015	<5	1.4	20	19	90	9	31	10	<1	<5	1
 S1 90 RR D8	2 S-016	<5	1.3	511	23	114	6	42	23	<1	6	6
S1 90 RR 08		<5	1.3	15	15	87	8	13	12	<1	5	14
SI 90 RR 08	2 S-018	S	1.8	16	22	53	11	11	4	< 1	5	5
S1 90 RR 08	2 S-019	<5	<0.2	24	7	36	2	6	3	<1	<5	1
S1 90 RR 08	2 S-020	ঙ	1.1	22	12	70	6	22	5	<1	<5	1
 SI 90 RR 08	2 \$-021	7	1.0	18	10	39	5	14	8	<1	<5	<
S1 90 RR D8		6	1.0	19	i 5	51	8	9	6	<1	<5	2
S1 90 RR 08		14	1.7	27	27	66	6	22	6	<1	<5	2
S1 90 ZZ D8		78	0,7	12	6	59	1	14	16	<1	<5	<
S1 90 ZZ 08	2 S-002A	6	0.5	21	10	52	5	10	7	<1	<5	<
 S1 90 77 08	2 0-0036	11	0.7	31	19	109	4	28	13	<1	<5	2
S1 90 77 08		13	1.7	21	12	85	12	10	5	<1	<5	<
S1 90 77 D8		<5	1.2	17	6	44	3	12	8	đ	<5	<
S1 90 ZZ 08		<5	2.1	18	18	67	7	32	5	<1	<5	3
S1 90 ZZ D8		<5	N.6	16	7	79	12	9	9	<1	<5	2
 S1 90 ZZ D8	2 5-11080	<5	0.7	19	10	61	4	15	9	<1	<5	1
S1 90 27 08		9	2.3 .	16	17	45	7	11	6	<1	11	3
S1 90 ZZ 08		6	0.7	10	9	41	3	10	5	<1	<5	<
S1 90 Z7 B8		6	1.2	15	5	62	2	13	11	<1	<5	1
S1 90 ZZ 08		6	1.2	19	9	43	4	8	4	<1	<5	1
 S1 90 77 D8	2 S-013A	15	0.8	36	14	88	6	14	6	<1	<5	
S1 90 ZZ 08		9	2.7	36	6	68	8	20	49	<1	< <u>s</u>	
S1 90 22 08		, (5	B.6	12	3	53	1	14	13	<1	<5	
S1 90 72 08		22	1.5	21	15	53	5	23	6	<1	<5	7
S1 90 22 08		12	1.5	22	26	61	6	34	11	1	7	25
 S1 90 ZZ 08	2 8-8020	7	1.5	18	16	62	10	11	4	<1	<5	1
St 90 ZZ 08		17	2.0	18	25	51	10 B	11	9 9	<1	9	5
S1 90 22 08		17	2.0 1.4	22	18	47	Å	14	, 7	<1	Ś	1
S1 70 22 00 S1 90 22 08		24	1.4	27	18	4, 64	5	26	7	d	Ś	ŝ
S1 90 ZZ 08		<5	0.8	17	9	49	2	16	20	<1	<5	Š
 \$1 90 77 08	2 0-0020	11	1.1	17	9	46		11	7	<1	(5	1
51 90 27 08 51 90 27 08		11 <5	1.8	20	10	40 81	3	11	, 1 8	<1	<5	
51 90 ZZ 08 51 90 ZZ 08		15	1.8	20 13	16 16	46	3 7	17 B	4	<1	- S	2
51 90 27 BC S1 90 77 D8		15 27	1.0	20	27	40 55	, 9	28	6	<1	<5	78
51 90 22 08 S1 90 27 08		<5	1.5	20 16	27 13	55 70	4	11	7	<1	<5	

,

.

L

L

. .

)

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-98

			A DIVISIO	N OF INCHCA	PE INSPECTI	UN& IESTIN		TE PRINTE	D: 29-AUG			
 REPORT: V90	1-01704.0						PR	OJECT: PA	RADIGH		PAGE 2B	
 SAMPLE	ELEMENT	Sb	Fe	lin	Te	Ba	Cr	Ų	Sn	4	La	AI
NUMBER	UNITS	PPH	PCT	PCT	PPN	PPN	PPN	PPH	PPM	PPM	PPH	PCT
 S1 90 RR 08	2 5-011	<5	7.01	0.12	<10	246	40	75	<20	<10	15	2.94
S1 90 RR 08		10	3.10	0.02	13	190	38	61	<20	<10	16	1.45
S1 90 RR 08		<5	8.87	0.14	<10	83	30	122	<20	<10	12	5.02
S1 90 RR 08		15	6.53	0.02	19	106	46	78	<20	< 1 0	9	1.5
S1 90 RR 08		<5	>10.00	0.09	18	89	46	64	<20	14	18	1.7
 S1 90 RR 08	2 5-016	22	8.15	0.12	31	94	51	61	<20	12	9	3.14
S1 90 RR 08		9	9.91	0.04	16	139	36	123	<20	<10	11	2.48
S1 90 RR 08		14	>10.00	0.03	28	40	31	154	<21	14	17	2.3
		<5	0.66	<0.01	<10	82	30	99	<20	<10	17	2.5
S1 90 RR 08 S1 90 RR 08		<5	0.00 9.94	0.04	16	79	42	92	<20	13	13	3.3
 01 7U KK UK	oz is=020	N2	7.74	€, 04 				· · ·				
 S1 90 RR 08		<5	9.38	0.02	14	88	51	192	<211 <211	14	13	3.24
S1 90 RR 01		8	7,04	0.01	13	213	16	111	<20 <20	<10	4	1.4
S1 90 RR 08		6	>10.00	0.03	27	115	63	95 82	<20 <20	14	7	5.9
S1 90 ZZ 08		<5	5.37	0.04 0.02	< <u>1</u> 0	88	13	82	<20 <20	<10 <10	6 9	1.94 0.94
St 90 ZZ 08	32 S-1002A	5	5.52	0.02	<10	61	26	110	<20	<10	7	0.7
 S1 90 ZZ 00	82 S-1113A	<5	5.42	0.12	<10	148	34	56	<21	<10	17	2.5
S1 90 ZZ 06	32 S-1104A	6	7.95	0.04	<10	53	25	155	<21	<10	15	0.51
S1 90 ZZ 08	82 S-005A	7	>10.00	11, 114	13	41	36	164	<21	<10	8	2.9
S1 90 22 08	32 S-1106A	6	>10.UN	0.03	26	59	8 4	69	<20	19	8	4.3
SI 90 27 00	82 S-007A	<5	6.04	0.03	<10	37	23	191	<20	<10	12	0.9
 S1 90 77 08	32 S-1108A	<5	8.92	0,04	<11	79	34	131	<20	<10	16	3.9
S1 98 27 A		17	7.63	0.02	21	46	25	136	<20	10	9	1.6
S1 90 ZZ D8		<5	2.42	<0.01	<10	98	17	94	<20	<10	4	0.7
S1 90 27 08		5	3.17	0.02	<10	178	В	48	<28	<10	6	1.3
S1 90 ZZ 08		6	>10,00	0.02	16	92	29	225	<20	<10	3	1.2
 	82 0-0134	<5	4.60	0.02	<10	57	42	94	<20	<10	21	4.0
51 70 22 DG S1 90 22 08		<5	4.80 >10.00	0.02	i 1	90	33	126	<20	<10	19	4.2
S1 90 ZZ 00		(5 (5	3.93	0.03	<10	56	10	66	<20	<10	5	1.4
S1 90 22 08		10	>10.00	0.03	17	101	42	107	<20	17	10	2.7
S1 90 77 0		15	9.55	0.10	30	86	45	55	<20	11	10	1.9
 S1 90 ZZ M	20 C-000		>10.00	0.03	21	36	28	88	<20	11	16	3.1
51 90 22 00 S1 90 22 0		0 16	>10.00	0.19	30	110	45	123	<20	16	16	3.3
S1 90 22 0 S1 90 22 08		15 8	9.83	0.04	15	67	51	9 3	<20	10	19	4.4
S1 90 ZZ 00 S1 90 ZZ 00		۰ ۲5	7.03 9.87	0.04	<10	84	51	65	<20	<18	15	4.5
S1 70 22 0 S1 90 22 08		<5	9.36	0.04	<10	59	28	144	<20	<10	10	4.1
 				0.00		0/	20	4/ 3	<20	<10	9	2.5
S1 90 ZZ 0		<5	>10.00	0.02 0.15	13	86	29	162 90	<20	<10	13	4.4
S1 90 77 08		7	7.29	0.15	<10 17	174 43	29 45	911 59	<20 <20	13	11	4.9
S1 90 77 0		<5 17	>10.00	0.02 0.02	14				<20	<10	13	4.1
S1 90 ZZ D8		16 (5	9.01	D.02	11	129	80 7 8	109 133	<20	្មារ 1ព	15 10	4.1
S1 90 ZZ 0	87 S-012D	<5	>10.00	[].03	17	153	48	133	N20	T.I.	10	

L

• . .

١.

ļ

Geochemical Lab Report

_

				A DIVISIO	IN UF INCHC.	APE INSPECTI	UN & TESTIN	DATE PRI	NTED: 29-AUG-9	<u>)</u>	
	REPORT: V90	1-01704.0						PROJECT:	PARADIGH	PAGE 20	
				Ca	N		Sr	Y			
_	SAMPLE NUMBER	ELEMENT Units	fig PCT	ça PCT	Na PCT	K PCT	PPM	PPN			
	NUNDER	UNIIS								<u> </u>	
1	S1 90 RR 08	2 S-011	0.61	2.28	<0.05	<0.05	96	16			
	S1 90 RR 08		0,29	1.09	<0.05	0.07	88	6			
-	S1 90 RR 08		0.83	0.73	D.12	0.09	55	15			
•	S1 90 RR 08	32 S-014	0.35	0.05	<0.05	0.06	10	4			
	S1 90 RR 08	2 8-015	0.50	0.40	<0.05	D.06	32	10			
L											
-	S1 90 RR 08		0.67	0.17	<0.05	0.06	16	14			
	S1 90 RR 08		0,39	0.57	D.05	0.06	46	10			
•	S1 90 RR 08		0.11	<0.05	<0.05	<0.05	7	8			
	S1 90 RR 08		0.21	0.18	0.06	0.06	25	11			
•	S) 90 RR 08	32 5-020	0,32	0.06	<0.05	<0.05	11	7			
	S1 90 RR 08	2 5-021	0.26	0.07	<11.115	<0.05	17				
_	S1 90 RR 08		0.12	0.61 0.68	<0.05	0,05	68	4			
-	SI 90 RR 08		0.51	<0.05	<0.05	<0.05	4	8			
_	St 90 ZZ D8		1.32	1.27	{ 1,38	0.16	115	8			
	\$1.90 ZZ 08		0.24	0.22	<0.05	0.07	29	3			
	······································							····	· · · · -		
	S1 90 Z7 D8	32 S-0113A	(1.6)	0.65	< 0.05	0.06	38	13			
-	S1 90 77 88	2 S-004A	0.16	0.14	<0,05	<0.05	19	4			
-	S1 90 77 08	82 S-005A	[] 48	8.16	<0.05	<0.05	18	5			
	St 90 ZZ 08	2 S-1416A	0.45	<0.85	<0.05	<n.05< td=""><td>6</td><td>5</td><td></td><td></td><td></td></n.05<>	6	5			
-	S1 90 22 08	32 S-987A	0.13	0.11	<0.05	<0.05	1 5	3			
-			0.44		0.07	0.0/	24		· · · · ·		_
	S1 90 ZZ 08		0.66	0.36 0.20	0.07 <0.05	0.06 <0.05	31 18	12 4			
-	S1 90 77 D8		0.21	0.20 0.30	<0.05	<0.05	53	2			
-	S1 90 ZZ 08 S1 90 ZZ 08		0.17 0.66	0.89	0.17	0.08	55 91	7			
	S1 90 77 08		0.23	0.36	<0.05	<0.05	33	3			
-					-0.05				·····		
-	S1 90 77 08	32 S-013A	0.40	0.31	<0.05	<0.05	24	19			
	S1 90 ZZ 08	2 S-014A	0.56	0.75	0.07	<0.05	54	18			
-	S1 90 ZZ 08	32 S-B15A	0.90	1.02	0.21	0.10	94	7			
	S1 90 ZZ 08	2 S-001D	0.37	0.06	<0.05	<0.05	13	6			
-	S1 90 ZZ 06	32 S-002D	0.56	0.08	<0.05	0,06	12	4			
		A 0 0000	<u> </u>	0.44	10 00			0		· · · · ·	
-	\$1 90 ZZ 08		0.33	0.16	<0.05	0.05	13	9			
-	S1 90 ZZ 08		0.16	0.09	<0.05	<0.05	11	9 12			
-4	S1 90 77 08		0.26	0.07	<0.05	<0.05	8 8	13 9			
	S1 90 ZZ 08		0.43	<0.05	<0.05	0,05 n ne	8 40	7 10			
• ••••	S1 90 ZZ 08	2 5-0070	1.09	0,48	0.13	0.09	40		· ·		
	S1 90 ZZ D8	32 \$-8680	0,37	0.21	<0.05	<0.05	23	6			
	S1 90 27 08		0,97	0.82	0.06	0.05	38	28			
-	S1 90 ZZ 08		0.22	0.02	0.08	0.06	26	6			
	S1 90 ZZ D8		0.47	<0.05	<11.05	0.06	9	7			
•	S1 90 ZZ 08		ຄ.46	B.12	<0.05	<0.05	14	6			
		en en en anterester								<u></u>	

. . .

L

.

Geochemical Lab Report

Ì

		A DIVISION	OF INCHCA	PE INSPECTI	ON & TESTIN	G SERVICES DA	TE PRINTE	D: 29-AUG	-9(1			
<u>ل</u> ہ۔۔۔	REPORT: 090-01704.0	· · · · · · · · · · · · · · · · · · ·						OJECT: PA			PAGE 3A	
	SAMPLE ELEMENT	Au 3Dg	 Ag	Cu	 Pb	Zn		Ni	Co	Cd	81	As
Ļ	NUMBER UNITS	-	PPM	PPN	рри	PPM	PPH	PPfi	PPN	PPN	PPM	PPN
	S1 90 ZZ 082 S-0130	6	1,7	22	11	59	7	13	6	<1	<5	24
	S1 90 77 082 S-015D	<5	1.4	20	5	56	3	8	6	<1	<5	13
	\$1 90 ZZ 082 S-016D	<5	0.9	22	7	46	1	24	8	<1	<5	18
_لم	S1 90 ZZ 082 S-0170	12	0.5	19	4	46	2	13	10	<1	5	7
	S1 90 ZZ 082 S-018D	28	0.5	12	7	26	3	8	5	<1	<5	<5
	S1 90 Z2 082 S-0190	9	0.5	21	5	44	2	11	7	<1	<5	10
	\$1 90 P 082 \$30N 2+50W	6	1.8	19	7	45	2	18	16	<1	<5 (5	<5 6
4	S1 90 P 082 S30N 2+254	<5	10	22	12	63	3	20	9	4	<5 (5	ও ও
	S1 90 P 082 S30N 2+00W	8	N.9	26	11	101	3	27	21	<1	<5 <5	3
ſ	S1 90 P 082 S304 1+754		1.0	20	7	62	1	16	18	<1		
_	ST 90 P 082 S30N 1+504	35	0.9	23	9	78	2	41	6	<1	<5	25
لم ا	S1 90 ₽ 082 S3DN 1+25₩	7	0.8	25	4	91	3	28	26	<1	<5	7
	\$1 90 P 082 \$30N 1+004	<5	1.7	16	14	71	7	14	5	<1	<5	<5
<u>۲</u>	S1 90 P 082 S30N 0+75W	<5	1.0	23	28	145	4	28	10	<1	<5	14
L.	S1 90 P 082 S3IN 0+504	<5	0.8	28	10	157	4		24	<1	<5	9
	51 90 P 082 S30N 0+254		1,1	19	18	128	4	23	28	4	<5	38
T	S1 90 P 082 S30N 0+00E	<5	1.1	20	14	95	7	18	22	<1	<5	9
1	S1 90 P 062 S30N 0+258	<5	1.0	16	12	5 i	4	13	24	<1	<5	<5
	S1 90 P 082 S30N 0+50E	<5	1.1	24	18	97	6	11	24	<1	<s< td=""><td>30</td></s<>	30
۲	S1 90 P 082 S30N 0+75E	<5	0.9	31	14	108	5	28	11	<1	<5	20
	S1 90 P 082 S30N 1+00F	9	0.7	45	19		3	58	23	<1	<5	23
L	S1 90 P 082 S30N 1+25E	<5	1.1	28	14	76	9	12	16	<1	<5	19
	S1 90 P 082 S30N 1+50F	5	1.2	23	20	99	5	15	17	<1	<5	16
–	S1 90 P 082 S30N 1+75F	9	D.8	39	16	119	2	39	16	<1	<5	30
L	S1 90 P 082 S30N 2+00F	13	1.2	25	14	77	5	19	21	<1	<5	9
	S1 90 P 082 S30N 2+25E	7	0.7	34	20	149	3	43	38	<1	<5	50
Ì	S1 90 P 082 S30N 2+50E	8	0.8	36	25	139	4	45	27	<1	<5	58
ις Γ	S1 90 JJ 082 (PREFIX)											
	S1 S28+55N 1+15W	11	3.4	25	17	123	7	16	13	<1	<5	21
	S1 S28+50N 3+00W	<5	1.1	24	4	36	2	14	9	<1	<5	8
L	S1 S28+50N 2+75W	48	1.1	22	4	33	2	9	7	<1	<5	9
<u>ل</u> م	S1 S28+50N 2+50H	<5	0.8	19	7	55	1	23	27	<1	<5	7
	S1 S28+50N 2+25W	<5	1.1	32	8	93	2	18	27	<1	<5	17
\mathbf{r}	S1 S28+50N 2+00W	<5	1.0	21	15	79	4	10	22	<1	<5	29
<u> </u>	\$1 \$28+50N 1+75W	<5	3.1	10	15	73	6	6	2	<1	<5	13
	S1 S28+50N 1+504	<5	1.6	23	12	70	7	22	6	<1	<5	23
	S1 S28+50N 1+25W	<5	1.0	20	16	102	6	30	14	<1	<5	31
<u>لم</u>	S1 S28+50N 1+00W	(5 (5	1.7	23	42	18(15	11	5	<1	<5	121
	S1 S28+S0N 0+754	<5	1.1	12	17	70	<u>1</u> 4	14	2	<1	<5	16
T	S1 S28+50N 0+50V	<5	0.9	31	15	112	4	33	16	<1	<5	23
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~												· .

L

٢



)

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES
<u>DATE PRINTED: 29-AUG-90</u>

}				i or memeri			DA	<u>TE PRINTE</u>	<u>d: 29-aug</u>			
<u>ل</u>	REPORT: V90-01704.0						PR	DJECT: PA	RADIGH		PAGE 3B	
<u> </u>							<u> </u>	Ų	Sn	μ	La	AI
Ļ	SAMPLE ELEMEN Number unit		Fe PCT	Min PCT	Te PPh	Ba PPN	Ст РРИ	v PPN	PFI	PPN	PP/K	PCT
<u> </u>	S1 90 ZZ D82 S-013D	<5	>10.00	0.03	22	190	54	130	<20	19	16	3.53
	S1 90 ZZ 082 S-0150	<5	9.77	0.04	<10	68	31	133	<20	<10	15	4.00
<b>۲</b>	S1 90 ZZ 082 S-0160	7	>10.00	D.03	<10	72	81	146	<20	<10	9	6.68
	S1 90 ZZ 082 S-0170	< <u>5</u>	6.63	0.03	<10	65	28	116	<20	<10	15	5.63
	S1 90 ZZ 082 S-0180	(5	6.52	0.02	11	86	21	131	<20	<10	7	2.21
L												
	S1 90 ZZ 082 S-0190	<5	7.08	0.02	12	50	29	158	<20	<10	12	5.55
	S1 90 P 082 S30N 2+504	7	9.17	0.07	13	48	39	116	<21	<10	19	3.17
L.	S1 90 P 082 S30N 2+25W	I 5	8.93	0.04	16	63	47	106	<20	<10	18	4.41
	S1 90 P 082 S30N 2+00W	10	7.34	0.19	<10	97	41	88	<20	<10	21	3.88
ţ -	S1 90 P 082 S30N 1+75W	J <5	7,63	0.10	<1R	165	27	109	<20	<10	17	4.79
$\downarrow =$	64 OD D 000 03001 4.000		6.30	0.02	<10	66	51	63	<20	<10	11	3.36
	S1 90 P 082 S30N 1+50W		6.30 8.92	0.02	11	76	33	135	<20	<10	26	5.48
<u> </u>	S1 90 P 082 S30N 1+75W		0.72 >10.00	D.05	11	21	40	75	<20	<10	30	3.85
	S1 90 P 082 S30N 1+00W		6.71	0.12	<10	125	36	69	<20	<10	19	3.19
T	S1 90 P 082 S30N 0+754 S1 90 P 082 S30N 0+504		7.56	0.12	11	97	31	113	<20	<10	27	5.26
۲		¥	1.30	0.00		,,						
	S1 90 P 082 S30N 0+25M	4 (5	8.48	0.17	<10	84	36	96	<20	10	20	4.32
T	S1 90 P 082 S30N 0+D0E		>10.00	0.23	17	67	47	123	<20	<10	19	4.02
1	S1 90 P 082 S30N 0+25E		9.56	0.14	13	42	38	122	<21	11	13	3.69
	S1 90 P 082 S30N 0+50E		9.83	0.17	14	48	24	68	<20	11	21	4.09
4	\$1 90 P 082 S30N 0+75E		8,82	0.116	12	52	45	90	<20	<10	21	4,42
					····-					<u> </u>		
<b></b>	S1 90 P 082 S30N 1+00E	ंड	7.68	0.17	12	114	50	50	<20	<10	22	2.77
4	S1 90 P 082 S30N 1+258	7	9.67	0.19	16	57	31	96	<20	<10	17	3.94
	S1 90 P 082 S30N 1+50E	7	8.62	0.19	15	40	31	73	<20	<10	21	4.70
r -	ST 90 P 062 S30N 1+750	ে ব	7,74	1.1N	12	146	37	69	<20	<10	15	3.23
4-	S1 90 P 082 S30N 2+00F	<5	8.61	D.27	11	222	38	103	<21	<10	45	4.21
			/ //	D 24	<18	85	43	41	<20	<10	17	3.76
r -	S1 90 P 082 S30N 2+25E		6.66	0.21	<10	100	43	59	<20	<10	13	3.45
L	S1 90 P 082 S30N 2+50E	10	7.89	0.17	10	TOO	72			.14		
	\$1 90 JJ 082 (PREFIX) \$1 \$28+55N 1+154	<5	9.70	0.14	12	48	31	86	<20	10	23	4.76
4	51 528+55N 1+15H S1 S28+50N 3+80N	(5 (5	8.71	0.04	12	31	51	94	<20	<10	25	4.92
L	MINITE MULTOLO LE				±¢					-		
<u> </u>	\$1 \$28+50N 2+75W	<5	7.47	0.02	13	44	32	105	<20	12	16	3.12
<u>م</u> لم	\$1 \$28+50N 2+50W	<5	5.58	0.31	<10	154	42	83	<20	<10	19	2.42
	\$1 \$28+50N 2+25W	<5	9,36	0.21	12	102	37	102	<20	<10	16	3.52
Τ	\$1 \$28+50N 2+00N	<5	7.36	0.30	12	87	29	108	<20	<10	22	3.71
4	S1 S28+50N 1+75W	<5	9.56	0.04	11	14	25	55	<20	<10		5.19
1 ==			10 DD	n or		33	43	<u>1</u> 11	<21	15	19	3.54
Т	S1 S28+50N 1+50N	6	>10,NN	0.05 0.08	20 15	53 50	4.5 38	46	<20	<10	22	4.35
Ъ	S1 S28+50N 1+25W	6	8.38	0.08 n 14	15 10	50 95	,° 5	40	<20	<10	41	0.70
1	S1 S28+50N 1+00M	8 7	5.65	0.16 D.05	10 12		41	117 117	<20	<10 <10	22	3.69
4	S1 S28+50N 0+75N	1	>10.00	<b>D.0</b> 5	12	171 48	41	83	<20	<10	13	3.36
1_	S1 S28+50N N+50W	8	B.11	0.14	13	40	+(		2618			
·												

L



Geochemical Lab Report

1

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 29-AUG-91

L				A DIVISIO	N OF INCHC.	APE INSPECTI	ON & TESTIN	NG SERVICES DATE PRINTED: 29-AUG-90			
	REPORT: V90-0	11764.1							JECT: PARADIGH	PAGE	30
	SAMPLE	ELEMENT	Mg	Ca	Na	K	Sr	 Y			
	NUMBER	UNITS	PCT	PCT	PCT	PCT	PPB	PPN			
		0.0420	0.00	0.46		<u> </u>	16	<b>i</b> 0			
	S1 90 ZZ 082		0.30	0.15	<0.05	<0.05		10			
	\$1 90 ZZ 082		0.27	0.15	<0.05	<0.05	18 9	7			
	S1 90 77 082		0.65	<0.05	< 1.05	<1.05		12			
	S1 90 ZZ 082		0.93	0.45	8.13	0.10 (0.05	39 23	4			
	S1 90 ZZ 082	5-0180	0.27	0.17	<0.05	<0.05	23	······································	· · · · · · · · · · · · · · · · · · ·		
	S1 90 27 082	S-0190	0.47	0.21	<0.05	<0.05	2D	9			
	S1 90 P 082 S	30N 2+50W	0.87	0.35	D.08	0.07	27	13			
	S1 90 P 082 3	\$30N 2+25⊭	0.62	0.07	<0.05	0.11	6	17			
	S1 90 P 082 S	30N 2+00W	0.99	0.11	<0.05	0.16	10	16			
	S1 90 P 082 3	\$30N 1+75W	0.71	0.25	0.05	0.11	21	11			
	51 90 P 082 S	30N 1+50U	0.70	0.09	<0.05	0.07	9	5			
	51 90 P 082 3		0.83	0.63	0.15	0.07	55	22			
	51 70 P 082 1		0.05 0.25	0.63	<0.05	0.07 0.06	5	17			
	S1 90 P C82		0.55	0.07 D.27	0.05	0.13	25	15			
	S1 90 P 082		0.93	0.27	0.08	0,09	34	30			
	51 70 P 067 ;	NUK UTONI M	0.75	17,40	0.00	0.07	J4				
	S1 90 P 682	\$30N 0+25V	0.66	0.07	<[1,05	0,10	8	19			
	S1. 90 P. 082 (	30N 0+00F	0.41	0.08	<0.05	0.07	9	15			
	S1 90 P 082 3	S30N 0+25F	0.32	0.14	<0.05	<8.05	15	10			
	S1 90 P 082 (	30N 0+50E	0.26	0.18	ព.08	0.08	17	16			
	S1 20 P C82 3	\$30N 0+75E	0,60	0.18	0,08	0.09	17	19			
	S1 90 P 082 1	2011 1 100	1.06	<0.05	< 0, 05	ก.11	5	20	· · · · · · · · · · · · · · · · · · ·		<u> </u>
	S1 90 P 082		0,35	0,15	<11,05	0,06	14	15			
	S1 90 P 007		0.35	0,15	<11.U5	0.06	,+ 9	20			
	S1 90 P 082		1.92	0.51	B . B9	0.11	47	18			
	S1 90 P 082 \$		0.59	0.38	0,06	0.08	30	37			
		7 7 0 M 2 1 0 M									
·	S1 90 P 082		0.67	<0.05	<0.05	0.09	5	16			
	S1 90 P 082 S		0.70	<0.05	<0.05	0.08	6	11			
	S1 90 JJ 082			_		<b>.</b>					
	\$1 \$28+55N 1		0.40	0.17	D.09	0.09	16	20			
	S1 S28+50N 3	+NN¥	D.35	0.14	<0.05	<0.05	9	19			•
	S1 S28+50N 2	+75#	0.42	0.05	<0.05	0.07	5	8	· ·	<u> </u>	
	S1 S28+50N 2		0.86	0.47	<0.05	0.09	23	11			
	S1 S28+50N 2		0.75	0.39	<0.05	0.09	16	17			
	S1 S28+50N 2		0.60	0.14	<0.05	0.13	12	19			
	S1 S28+50N 1		0.10	0.05	0,10	0.08	3	24			
					(0.05	(P. 05		4.0			
	S1 S28+50N 1		0.39	D.06	<0.05	<0.05	6	10			
	S1 S28+50N 1		11.43	0.05	<0.05	0.07	5	13			
	\$1 \$28+50N 1		0.11	<0.05	<0.05	0.12	2	29			
	S1 S28+50N 0		0.19	0.71	<0.05	0.05	45	16			
	S1 S28+50N 0	+501	0.75	0.12	0.05	0.09	13	11			

L



Ì

## Geochemical Lab Report

A DIVISION OF	INCHCAPE INSPECTIO	N & TESTING SERVICES

Γ			A DIVISION	OF INCHCA	PE INSPECTI	ON & TESTIN	G SERVICES DA	ITE PRINTE	D: 29-AUG	90		
r	REFORT: 091-01704.0							OJECT: PA			PAGE 4A	
	SAMPLE FIEMENT NUMBER UNITS	_	Ag PPM	Cu PPM	Pb PPM	Zn PPH	No PPH	N1 PPM	Co PPN	Cd PPN	Bî PPM	As PPN
	S1 S28+50N 0+254	<5	0.8	26	15	96	4	24	11	<1	<5	10
	S1 S28+50N 0+00E	<5	0.9	22	11	88	6	11	6	<1	<s< td=""><td>11</td></s<>	11
Г	\$1 \$28+50N 0+25E	<5	0.7	21	14	83	5	22	8	<1	<5	14
_	S1 S28+50N 0+50E	<5	1.0	27	18	129	6	19	6	<1	<5	21
	51 S28+50N 0+75E	<5	1.2	22	13	79	7	12	12	<1	<5	10
	S1 S28+50N 1+00E	<5	1.1	27	6	75	4	12	26	<i< td=""><td>&lt;5</td><td>&lt;5</td></i<>	<5	<5
	\$1 \$20+50N 1+25E	<5	0.9	72	25	112	2	23	26	<1	<5	17
	S1 S78+50N 1+50E	<5	1.0	20	12	135	5	12	21	<1	<5	<5
	S1 528+5UN 1+75F	12	1.1	31	28	<b>ii1</b>	5	22	18	<1	<5	30
-	S1 S28+50N 2+00E	11	1.0	34	16	206	3	18	12	<1	<5	<5
	S1 90 EB 082 S27N 2+50	1 <5	1.1	16	10	41	4	11	5	<1	<5	<5
	S1 9B EB 082 S27N 2+25	¥ <5	1.3	19	8	63	4	13	6	<1	<5	6
•	\$1 90 EB 082 L27N 2+000	I <5	1.6	27	18	326	7	54	21	10	<5	32
٣	S1 9D EB 082 S27N 2+AA	J 17	2.3	15	14	74	5	26	4	()	<5	37
	S1 90 E8 082 S27N 1+75	I <5	1.7	19	10	71	5	15	3	<1	<5	9
	S1 90 F8 D82 S27N 1+50	<u>н (5</u>	1.0	17	12	138	6	15	5	<1	<5	<5
-	S1 90 F8 082 S27N 1+25		1.2	25	12	94	5	17	22	<1	<5	7
	\$1 90 E8 062 S27N 1+00	u <5	<b>i.</b> 1	17	14	68	7	9	4	<1	<5	<5
	51 90 ER 082 S27N 0+75	1 9	1.3	40	22	94	2	14	18	<1	<5	34
-	S1 90 E8 082 S27N 0+50	¥ <5	1.R	15	6	54	5	8	5	<1	<5	6
-	S1 90 EB 082 S27N 0+25	4 6	1.2	22	11	58	7	9	6	<1	<5	<5
-	S1 90 P 082 (PREFIX)		•				_	-			<u>،</u> ۲	27
ł	S1 S27N D+UUF∼A	<5	0.9	17	14	101	9	5	4	<1	<5	26
4	S1 S27N 0+00F-R	<5	1.5	25	11	72	12	11	6	<1	<5 /	22 26
<b>ت</b>	\$1 90 P 082 \$27N 0+50E	<5	0.9	23	15	110		39	16	<1	<5	
	S1 90 P 082 S27N N+75E	12	1.0	54	18	110	2	21	25	<1	<5	22
	S1 90 P 082 S27N 1+00E	<5	0.9	24	13	81	3	20	14	<1	<5	20
٢	S1 90 P 082 S27N 1+50E		0.9	29	17	129	3	42	16	<1	<u>رج</u>	35
	S1 90 P 082 S27N 1+75E		1.7	31	30	142	4	18	19	<1	<5 (5	34 4 20
	S1 90 P 082 S27N 2+00E	17	1.5	62	79	208	3	74	45	<1	<5	120
	S1 90 P 082 S27N 2+25E		1.8	64	27	129	3	183	47	4	<5	165
L	S1 90 P 082 S27N 2+50E	7	1.1	37	15	105	Э	36	13	<i< td=""><td>&lt;5</td><td>103</td></i<>	<5	103
	\$1 90 JJ 082 (PREFIX)					_	_					
Γ	S1 S25+50N 3+00H	<5	2.8	19	24	107	9	12	12	<1	<5	27
L	S1 S25+50N 2+75N	16	1.7	20	36	98	9	7	5	d	<5	53
	\$1 \$25+50¥ 2+50¥	<5	0.9	21	20	260	4	45	9	<1	<	24
	ST S25+50N 2+25H	<5	0.6	10	37	68	4	12	9	<1	<5	6
L.	\$1 \$25+50M 2+00W	<5	0.6	24	6	54	3	12	8	<1	6	10 
	S1 S25+50N 1+75W	<5	0.8	21	11	141	6	16	13	<1	<5	s د
Г	\$1 \$25+50N 1+5NW	<5	Ŋ.8	25	14	121	5	16	13	<1	<5	15
. <b></b>											1 5	in t

1 Sitt. 71 Set

.

L

L



1

## Geochemical Lab Report

## A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

 	<u> </u>					TE PRINTE						
REPORT: V98	1-01704.N						PR	OJECT: PA	RADIGN		PAGE 4B	
 SAMPLE	ELFHENT	Sb	Fe	lln	Te	Ba	Cr	V	Sn		La	A
NUMBER	UNIIS	PPH	PCT	PCT	PPM	PPH	PPN	PPN	PPN	PPN	PPM	PC
S1 S28+50N	Ω+25₩	<5	8.26	0.06	<10	48	39	94	<20	<10	14	3.5
S1 S28+50N		<5	9.30	0.04	14	30	27	86	<20	<10	23	5.1
S1 S28+50N		8	7.64	0.05	<10	45	39	85	<20	<18	36	4,8
S1 S28+50N		<5	8.04	0.07	<10	34	26	36	<20	<10	20	3.0
S1 S28+50N		6	>10.00	0.06	17	27	42	123	<20	<10	21	5.7
S1 S28+5DN	1+005	<5	9.90	0.09	<u>1</u> (1	43	35	141	<20	<10	25	5.4
\$1 \$28+50N		7	7.38	0.26	12	257	12	32	<20	<10	3	2.1
S1 S28+50N		<5	>10.00	0,31	10	44	28	83	<20	<10	33	5,6
\$1 \$28+50N	1+75E	8	8.73	0.20	10	77	34	89	<20	<10	16	3.4
S1 S28+50N	2+NNE	5	8.62	0,08	12	93	32	91	<58	<10	38	4.5
 \$1 90 EB 08	2 S27N 2+504		7.28	0.01	<10	47	28	133	<21	<10	7	1.6
	82 S27N 2+25W	<5	8.43	<b>n</b> , 04	12	42	44	139	<20	<1B	10	4.0
	2 127N 2+00W	9	5.26	0.18	<10	186	19	57	<20	<10	12	1.8
S1 90 FC 08	32 G27N 2+00N	<5	5.14	0.01	<10	55	39	56	/1</td <td>&lt;10</td> <td>13</td> <td>2.7</td>	<10	13	2.7
\$1,90 EB 08	82 S27N 1+75₩	9	7.30	0.02	<10	32	34	75	<20	<10	13	3.7
S1 90 EB Q6	32 S27N 1+511		4,45	<b>N.</b> N5	<10	129	15	45	<21	<18	8	1.7
S1 90 ER 06	7 S27N 1+25W	<5	7.99	0.23	<18	63	.34	115	<20	<10	12	3.3
S1 90 EB 08	82 S27N 1+09N	<5	>10.00	0.03	11	28	36	95	<21	11	22	3.1
S1 90 EB 08	2 S27N R+75H	7	>10.10	0.19	23	81	24	52	<21	11	7	3.7
S1 90 E8 08	32 627N 0+50N	<s< td=""><td>9.89</td><td>0.04</td><td>13</td><td>26</td><td>29</td><td>92</td><td>&lt;20</td><td>&lt;10</td><td>20</td><td>4.1</td></s<>	9.89	0.04	13	26	29	92	<20	<10	20	4.1
 \$1 90 EB 08	2 S27N 0+25W	<5	>10.00	0.03	17	27	33	121	<20	<10	14	4.0
S1 90 P 082	? (PREF1X)											
ST S27N 0+0	IDE-A	୯	8.66	0.09	12	15	15	29	<20	<10	22	2.9
S1 S27N (I+(	ነበር - 8	< <u>5</u>	≻10.NN	0.07	19	18	48	156	<21	]4	24	3.9
S1 90 P 082	2 S27N :0+50F	7	7.51	6.19	11	54	39	49	<20	<10	18	3.5
 S1 90 P 062	2 S27N 0+75E	7	8.66	0.14	12	167	27	90	<20	<10	10	3.7
S1 90 P 082	S27N 1+00F	<5	8.32	0.08	<10	66	30	73	<20	<10	15	3.8
SI 90 P 082	2 S27N 1+50E	8	8.26	0.08	12	54	47	71	<20	<10	24	3.7
S1 90 P 082	\$27N 1+75E	6	>10.00	0,27	18	177	53	230	<20	14	18	3.6
S1 90 P 082	2 S27N 2+DBE	12	>10.00	0.26	18	88	173	98	<20	12	14	2.7
S1 90 P 082	2 S27N 2+25E	9	>10.00	0.22	20	89	567	139	<20	11	25	3.8
	? S27N 2+50E	12	8.16	0.05	10	76	65	58	<2B	<10	9	2.7
\$1 90 JJ 08												
S1 S25+50N		10	8.21	0.10	10	68 .	27	82	<20	<10	25	3.2
 \$1_\$25+50N	2+75¥	17	4.44	0.05	<10	131	13	32	<20	<10	11	1.8
 \$1 \$25+50N	2+504	7	9.30	0.06	12	73	53	71	<20	<10	23	4.6
\$1_\$25+5BN		<b>&lt;</b> 5	6.69	0.03	<10	B6	17	<b>9</b> 5	<20	<10	10	1.9
\$1 \$25+50N		9	8.56	0.02	10	54	26	134	<20	<10	11	5.6
S1_S25+50₩		6	8.61	D, D8	<10	62	33	117	П</td <td>&lt;10</td> <td>11</td> <td>3.4</td>	<10	11	3.4
\$1 \$25+58N	1+504	<5	6.67	0.10	<10	127	27	106	<20	<10	11	3,5

۰.

:

L

L



:

Geochemical Lab Report

}

1

į.

	<u>4</u> ***		A DIVISIC					ATE PRINTED: 29-AUG-9					
REPORT: V90	-01704.0						PI	ROJECT: PARADIGM	PAGE	40			
 SAMPLE	ELFMENT	Mg	Ca	Na	ĸ	Sr	Y						
NUMBER	UNITS	PCT	PCT	PCT	PCT	PPM	PPN						
 S1 S28+50N	N+25U	0.72	0.27	0.10	0.10	25	13			· · · · · · · · · · · · · · · · · · ·			
S1 S28+50N		0.33	0.18	0.10	0.08	16	18						
S1 S28+50N		0.42	0.07	<1.05	0.07	6	26						
S1 S28+50N		0.31	0.06	0.12	0.12	3	15						
S1 S28+50N		0.31	0.09	<0.05	<0.05	7	15						
 C4 C20 . E04	* • DDC	0.54	0.28	0.08	0.06	24	23						
S1 S28+50N		0.51	U.20 0.44	<0.05	0.08	35	14						
S1 S28+50N		0.25	0.48 0,11	0.06	0.11	10	26						
S1 S28+50N S1 S28+50N		0.23 N.61	0.11	0.10	0.09	27	18						
				0.16	0,04	28	35						
 \$1 \$28+50N	Z+000-	0.50	0.37	0.00	U, US	20							
	2 S27N 2+50H	0.21	0.07	<0.05	<0.05	11	3						
St 90 EB 08	2 S27N 2+25W	0.32	0,13	<0.05	<0.05	12	6						
S1 90 EB 08	2 1 27N 2+00W	1.19	1.33	<b>B.28</b>	0.17	109	13		_				
S1 90 EB 08	2 \$27N 2+004	<b>(</b> ] .50	0.08	<b>&lt;0.0</b> 5	0.08	9	7		•				
SA 90 E8 08	2 S27N 1+75W	0.29	0.07	<0.05	0.06	7	8						
S1 90 EB 08	2 S27N 1+50H	0.13	<0.05	<r.05< td=""><td>0.11</td><td>6</td><td>9</td><td></td><td></td><td></td></r.05<>	0.11	6	9						
	2 S27N 1+254	0.51	0.20	0.06	0.13	20	9						
	2 S27N 1+DD4	0.31	0.15	0,08	0.09	13	18						
	2 S27N D+75W	0.40	0,06	<0.05	D.06	7	8						
S1 90 EB 08	2 \$27N 0+5NH	0.27	ព.19	0.06	0.05	16	12						
 S1 90 FB 08	2 S27N 0+25W	0.42	0,31	0.11	0.09	27	13	······					
S1 90 P 082													
S1 S27N D+D		0.12	0,10	0.18	0.13	5	15						
S1 S27N 0+B		0.21	<0.05	0,06	0.07	3	17						
S1 90 P 082		0.68	0.09	<0.05	0.06	6	10						
 	00.211 0.255		0.12	0.13		50	15	·····					
S1 90 P 082		0.78	0.53	0.13	0.12	50	11						
S1 90 P 082		0,45	0.14	0.05 <0,05	0.06 D. <b>08</b>	14 7	16						
S1 90 P 082		0.57 0.27	0.06 0.06	<0.05	0.00	7	18						
S1 90 P 082 S1 90 P 082	S27N 1+75E S27N 2+00E	0.24 0.45	0.06	<0.05	0.09	15	15 15						
 				40.05			30						
S1 90 P 082		1.20	0.12	<0.05	0.05	15	32						
	S27N 2+50E	0.53	<0.05	<0.05	D.09	5	7						
\$1 90 JJ 08		0 00	0.44	40 OC	n 44		40						
S1 S25+50N		0.25	0.11	<0.05	0.11	13 20	19						
\$1_\$25+50N	Z+75H	0.11	<0.05	<0.05	0.20	30	6		·				
S1 S25+50M	2+504	N .56	0,08	<0.05	0.07	8	19						
S1_S25+50N	2+25W	0.59	0.57	0.17	0.10	59	6						
\$1 \$25+50N	2+DDW	0.78	0.53	0.15	0.11	44	13						
\$1 \$25+5DN	1+754	11.56	0.21	0.05	0.09	19	10						
S1 S25+50K	1+5RW	0.70	0.23	<0.05	0.10	18	10						

.

L



ļ

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES	

Γ			A DIVISIO	N OF INCHCA	PE INSPECTI	ON & TESTIN	IG SERVICES Da	ITF. PRINTF	D: 29-AUG	-90		
<b>b</b>	REPORT: V90-01704.0							ROJECT: PA			PAGE SA	
<b>F</b>	SAMPLE ELEME Number uni	-	Ag PF'N	Cu PPN	РЬ РРМ	Zn PPB	Мо РРМ	Ni PPN	Co PPM	Cd PPM	Bi PPM	As PPN
<b></b>	S1 S25+50N 1+1004	<5	0.8	15	8	49	4	12	6	<1	<5	18
L	S1 S25+50N 8+754	<5	0.9	25	11	<b>8</b> 5	2	31	10	<1	45	14
	S1 S25+50N 0+50N	<5	0.9	20	13	91	4	13	12	<1	<5	<5
F	S1 S25+50N 0+254	<5	D.8	24	14	75	5	14	8	<1	<5	<5
Ļ	\$1 S25+50N D+0UF	<5	0.6	13	13	95	6	13	3	<1	<5	21
	\$1 \$25+50N 0+25E	<5	0.7	21	13	58	3	11	6	<1	<5	8
	\$1 \$25+50N 0+50F	<5	0.9	15	13	89	5	28	10	<1	<5	15
<b>L</b>	S1 S25+50N 0+75E	<5	0.7	11	17	78	7	8	5	<1	<5	19
	SI S25+50N 1+00E	<5	0.6	21	15	89	5	19	10	<1	<5	11
ļ –	\$1 \$25+50N 1+25E	<5	<b>D.8</b>	23	12	64	3	23	11	<1	<5	15
	\$1 \$25+50N 1+5HF	<5	0.5	23	<u> </u>	100	3	25	12	<1	<5	11
Ţ	S1 S25+50N 1+75E	8	0.9	29	16	54	1	11	10	<1	<5	33
ł	\$1 \$25+50N 2+00F	21	0.8	21	14	75	4	30	6	<1	<5	30
<b></b>	S1 90 X 082 (PREFIX)											
<u> </u>	\$1 \$72+50N 3+254	<b>&lt;</b> 5	1.1	29	16	93	3	20	26	<1	<5	95
	ST S22+50N 3+80W	17	1.3	35	23	96	 9	21	21	<1	<5	66
1	S1 S22+50N 2+75W	<5	2.0	15	19	54	6	10	3	<1	s	9
<u> </u>	ST S22+50N 2+50N	<5	1.1	21	8	73	5	17	13	(1	<5	6
	S1 S22+50N 2+25W	<5	0.8	20	. 9	70	3	16	10	<1	<5	10
	S1 S22+50N 2+004	<5	0.8	24	16	96	6	13	15	<1	<5	10
<b></b>	S1 S22+50N 1+75W	16	6.7	19	12	82	3	14	13	· <1	<5	11
L	ST S22+50N 1+50W	10 (5	1.4	15	17	52	5	6	2	<1	5	18
	St S22+50N 1+25W	<5	0.8	19	1በ 1	63	ž	13	11	(1	<5	16
<b>–</b>	S1 S22+50N 1+600	<5	0.6	34	12	88	3	18	22	<1	<5	<5
Ļ	\$1 \$22+50N 0+504	9	0.5	47	16	105	2	26	12	<1	<5	12
	04 C00 F0U D.0EU			/0	2/	134	3	22	16	<1	<5	24
Γ	S1 S22+50N 0+259 S1 S22+50N 0+110F	11 <5	0.3 1,8	48 16	24 13	1 )4 71	5	10 10	10 9	<1	<5	8
4	S1 S22+50N 0+00F	23	D.6	39	29	121	4	22	22	<1	<5	38
	S1 S22+50N 0+50F	10	0.6	25	16	103	4	14	10	<1	<5	15
Ľ	S1 S22+SON D+75E	18	1.3	54	35	81	5	24	31	<1	<5	126
L	04 000 000 4 000			or	40	475		32	11	<1	<5	8
1	S1 S22+50N 1+00F	6	0.8 0.5	25 20	18	175 82	4	32 15	23	<1	<5	Ś
	S1 S22+50N 1+25F	<5 9	0.5	3N 58	11 17	02 119	3	137	31	<1	<5	203
5	S1 S22+50N 1+50F S1 S22+50N 1+75E	9 12	1.6 1.2	50 43	18	117	2	56	29	<1	<5	98
1	S1 S22+50N 2+00F	<5	1.2	4.J 27	10	96	5	16	28	a a	<\$	32
Γ	*** 055-30M 5.000			د. ۱ 								
Υ	S1 90 EB 082 S21N 3+0		0.8	22	5	52	2	12	11	<1	<5 (5	্র
<u>ل</u>	S1 90 E8 082 S21N 2+7		0.8	18	9	78	4	13	16	<1	<5 (5	14
1	S1 90 EB 082 S21N 2+5		1.3	20	16	106	7	19 17	<u>រ</u> ា 19	<1	<5 <5	17
<b>L</b>	S1 90 E8 082 S21N 2+2		2.7	24	8	73	3	14	19 11	<i< td=""><td>&lt;5 &lt;5</td><td>29 564</td></i<>	<5 <5	29 564
1	S1 90 E8 082 S21N 2+0	I(I)4 B	7.6	21	38	161	6	30	11	1		
											•	_

٠.



## Geochemical Lab Report

)

## A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-D	1704.0	DATE PRINTED: 29-AUG-90 PROJECT: PARADIGN PAGE 58									
							PRUJECT:	PARADIGN		PAGE	58
SAMPLE NUMBER			Fe Min PCT PCT		Ва РРИ	Cr PPN		Sn PPN	— И Рри	La PPN	
\$1 \$25+50N 1+U	nu	7 8.	39 0.04								
S1 S25+50N 0+7				<10	41	31	103	<20	<10	14	3.9
S1 S25+50N 0+5		-		<10	127	37	71	<20	<18	9	3.1
\$1 S25+50N D+2				12	33	32	77	<20	<10	26	5,4
S1 S25+50N R+D		7 >10.		<10	20	41	118	<20	<10	15	5.0
	- <u></u>	7 6.	55 0.03	<10	52	23	28	<20	<10	40	3.9
\$1 S25+50N 0+2		(5 7,3	83 0,04	<10	38						
\$1 \$25+50N ()+51		1 8.9		12	44	35	116	<20	<10	18	3.8
S1 S25+S0N 0+7	5E -	5 7,1		<10		39	74	<20	<10	25	3.9
\$1 \$25+500 1+00	Έ	7 7,5	• • • •	11	61	20	23	<20	<10	31	4.7
\$1 \$25+50N 1+25	5E 1	4 9.9			44	28	74	<20	<10	17	3.3
				<10	47	42	126	<20	<10	15	4.0
S1 S25+50N 1+50		7 6.1	3 0.14	<10	141	30	76	<20	/10		
SI S25+50N 1+79		8 7.2	2 0.04	12	119	23			<10	12	3.52
\$1 \$25+50N 2+00		9 9.2		12	50	43	73 71	<20	< <b>1</b> 0	7	2.9
\$1 90 X 062 (PR					(10)	<b>n</b> .)	11	<20	<10	13	2.40
\$1 \$22+50N 3+25	¥ 1	3 9.1	5 0.30	<10	114	25	103	<20	<10	14	3.72
S1 622+50N 3+00	u 1	? 9.6	5 0.12	(10							
S1 S22+50N 2+750				<10	53	40	66	<20	<10	19	2.68
S1 S22+50N 2+50				11	34	40	141	<20	<10	18	3.04
\$1 \$22+50H 2+25U				14	38	34	120	<2日	10	10	3.18
S1 S22+50N 2+00			- · · · ·	10	59	38	133	<20	<10	8	3.80
		i >10.01	0.17	14	44	44	107	<20	<10	24	4.29
\$1 \$22+50N 1+75		6.54	0.09	<10	87	35	95	(04)			
\$1 S22+50N \$+5AL		>10.00		14	24	35 34		<20	<10	13	3.97
\$1 \$22+50H 1+25U				<10	49		130	<20	12	20	3.83
S1_S22+50N_1+D04	6			11	47	30 30	110	<20	<10	15	4.65
81 S22+ <b>50</b> N A+5BW	8			<10	173	35 25	105 36	<20 <20	<10	24	4.60
S1 S22+50N 0+25W								~~~~~~	<1	10	1.92
S1 S22+50N D+00E	10	-		<10	157	20	36	<20	<10	- 11	1.76
S1 S22+50N 0+25E	9	9.57		12	31	34	94	<20	<10	22	4.43
S1 S22+50N 0+50F		7.59		<10	74	25	56	<20	<10	17	2.48
S1 S22+50N (1+51) S1 S22+50N (1+75E	11	8.55	0.06	<10	41	31	95	<20	<10	26	4.37
	18	>10.00	N.30	22	45	26	48	<20	16	13	2.19
\$1 \$22+50N 1+1/0E	10	6,60	0.27	<1D	103	20					
S1 S22+50N 1+25E	12	8,39	0.17	11		22	18	<20	<10	32	4.19
S1 S22+50N 1+50F	20	>10.00	0.11	18	58	30	117	<2Л	<10	8	4.63
S1 S22+50N 1+75E	14	8.78	0.11 0.26		82	154	83	<20	<10	5	2.74
\$1 \$22+50N 2+00E	8	9.20	0.20	10	90 20	126	<b>9</b> 9	<20	<10	10	3.00
	<u> </u>	/ . 21	U.2U	12	38	41	80	<20	<10	20	4.46
S1 90 EB 082 S21N		9.38	8, [14	<10	60	29	1/3	/20			
S1 90 EB 082 S21N		9.20	<b>D.13</b>	17	68	37	143	<20	<10	8	4.18
S1 90 EB 082 S21N		7,80	0.08	10	46	31	118	<20 <20	<10	11	3.73
S1 90 EB 082 S21N		8.46	0.08	<10	70		83	<20	<10	30	3.38
ST 90 ER 082 S21N	2+000 15	4,72	0.04	<10	187	29 24	126	<20	<10	14	4. <b>8</b> 9
	÷		(117	N.L.()	101	29	42	<20	<10	13	1.64



ł

## Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-0170	4.N						<u>DATE PRINTED: 29-AUG-90</u> PROJECT: PARADIGN	PAGE SC
	ELEMENT M	-	Na	K	 Sг	— <u> </u>		
NUMBER	UNITS PC	I PCT	PCT		PPh	PPN		
S1 S25+50N 1+00W	0.49		0.06	<0.05	15			
S1 S25+50N 0+75W	D.74	4 0.14	<0.05	0.09	11	. 6		
\$1 \$25+50N 0+50W	0.36	0.09	0.06	0.07	7	19		
S1 S25+50N 0+25µ	0.53	B 0.15		0.07	, 7	17		
S1 S25+50N 0+00F	0.15	0.06	0.07	0.09	3	13		
S1 S25+S0N 0+25E	0.41	D.16	0.05	0.06				
\$1 \$25+50N 0+50F	D.65		<0.05		16	14		
\$1 \$25+50N D+75E	0.14		0.07	<0.05 0.00	5	17		
S1 S25+50N 1+111E	0.62		0.11	0.09 D.10	4	16		
\$1 \$25+50N 1+25E	0,58		(N.11 <n.05< td=""><td>0.10 0.05</td><td>19 13</td><td>11</td><td></td><td></td></n.05<>	0.10 0.05	19 13	11		
\$1 \$25+50N 1+50E						11		
S1 S25+50N 1+50E S1 S25+50N 1+75E	0.66	0.17	<0.05	0.09	20	<b>i</b> 0		
\$1 \$25+59N 2+00E	0.28	0.14	<0.05	0.07	16	7		
51 90 X (182 (PREF)	0.55	0.06	<0.15	0.07	7	6		
S1 S22+50N 3+254								
	1.12	0.78	0.15	0.11	55	11		
\$1 \$22+50N 3+00W	0.44	<0.05	<0.05	0.11	4			
\$1 S22+50N 2+754	0.22	0.06	<0,05	0.05	4	4		
S1 S22+S0N 2+5AU	fl.63	0,17	0.05	0.09		8		
ST S22+50M 2+254	0.68	0.21	0.0S	0.07	16	9		
S1 S22+50N 2+DON	Ð.29	0,06	<0.05	0.07	20 6	5 20		
S1 S22+50N 1+75W								
SI S22+50N 1+50M SI S22+50N 1+50M	<u>ព.51</u>	0.11	<0,115	0.08	11	10		
	0.11	<0.05	<0.05	<0.05	5	13		
\$1 \$22+59N 1+25W	0.60	N.24	0,07	<b>N.</b> 05	21	11		
ST S22+50N 1+700	D.64	0,25	0.08	30.0	22	26		
\$1 \$22+50N 0+50₩	0.55	0.32	<0.05	0.10	30	13		
S1 S22+50N 0+25#	0.47	0.36	<0.05	0.11	33			
\$1 \$22+50N \$+00F	0.21	0.10	<0.05	<0.05	55	16		
S1 S22+50N 0+25E	0,49	0.09	<0.05	0.10	, 9	16		
\$1 \$22+50N D+50F	0.42	0.22	0.11	0.09	22	19		
S1 S22+50N 0+75E	0.12	<0.05	<0.05	0.07	4	22 8		
S1 S22+50W 1+RDE	0.27	0.00						
S1 S22+50N 1+25E	0.27	0.08 0.34	0.08	0.10	7	30		
\$1 \$22+50N 1+50F	0.42	0.07	0.10	0.08	30	12		
S1 S22+50N 1+75E	0.42		<0.05	0.07	10	5		
S1 S22+5RN 2+100E	0.42 D.26	B.14	<0.05	0.09	14	12		
		0.07	<0.05	0.05	7	16		
ST 90 EB 082 S21N 34	000 0.98	0.76	0.28	0.16	71	8		
\$1 90 EB 082 S21N 2+	754 0.62		<0.05	0.11	14	0 111		
S1 90 E8 082 S21N 24	SAN 0.32	0.iD	<0.05	0.D9	14 9	17		
\$1 90 EB 082 S21N 2+	25¥ 0.65	0.30	0,08	0.08	27	17 10		
ST 90 E8 082 S71N 2+	0111 D.66		<0.85	0.16	e 1	14		

### **APPENDIX VII**

### <u>Stream Silt and Soil Sample Histograms and Summary Statistics</u> (Au, Ag, As, Cu, Pb, Zn, Sb, Hg)

-----

L_

Γ 

L

----. -----_

-

•

-

•

j

**+**--1

I

I 1

1 Ł ł ł

E

1--

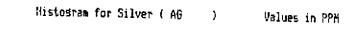
Page 5

PROJECTS 044 & 082 (SOILS) KEEWATIN ENGINEERING INC.

Histogram for Gold 30 grams ( AU_30G ) Values in PPB

	0 10	X of to				
	0 10 	20 30 	40 · ·{	50 -	in in #	terval Z
26.0	<b>                                    </b>	*******	<b>1112</b> // <b>1111</b>	*****	521	\$7.2
63.7	<b>‡</b> ‡				10	1.5
101.8	••				3	0.6
137.7	t				1	0.2
177 <b>.</b> 5					0	0,0
 215₊4					0	0.0
253.3 I					0	0.0
 271.2					0	0.0
 329,1					0	0.0
357.0					0	0.0
1					1	0.2
0		 20 30 X of total	40	<i> </i> 50		
		Sum	ers Statisti	ies		<b>+</b> ••
Number Minimum Maximum Median Modal R: Values :	value anse	: 11 : 2.5 : 393 : 2.5 : less than 26.0 : 521 ( 97.2 % pi	f total )	Standa Coeff,	alue : rd Deviation : of variation: ss : is ;	18+94   2+680

961000 10 80061 90020 4 021 3 7744 8 91 90901 7


----

-

.

Pase 2

PRDJECTS 044 & 082 (SDILS) KEENATIN ENGINEERING INC.



	Z of total           0         10         20         30         40         50           1         1         1         1         1         1	in interva ‡	al Z
	**************	115	21.5
1.74	#####################################	351	65.5
2.77	1#\$###################################	50	9,3
3.80		10	1.5
4,82		2	0,4
5.85 I		2	014
5.33 J		1	0.2
 7.71		i	0.2
 		2	0.4
1	1	1	0.2
 177		0	0.0
1   	· .	1	0.2
•	 10 20 30 40 50 7 of total		

1 1			Su	mary Statistics			
•							
	Number of samples	:	536		N		
	Number of intervals	+	12		Mean value	1,23	
1	Ninimum value		0.1		Standard Deviation :		
	Naximum value	:			Coeff. of variation:	0.838	
 		÷.	11.0		Skewness t	5,108	
	Median value		1.02		Kurtosis t		
	Nodal Ranse	1 9	freater than 0.	1 to less than 1.74	NO1 00313 i	35.3645	
	Values in modal ranse	+	251 / ZEEW				

Γ Ļ_

Ĺ

---------

-

-

-.

.

.

### PROJECTS 044 & 082 (SDILS) KEEWATIN ENGINEERING INC.

)

Histogram for Arsenic ( AS

Values in PPN

	0 10	Zof 20 30	0 A.O.	50	in ir	iterval
	 	= ·== == ·= =	-	•••	•••I <b>#</b>	-
<b>5</b> 0 4	***********	*****	***** // ***	*********	<b>\$\$\$</b> 484	9
58.7	1  ##\$##					
120.5					28	!
182.3					11	2
244.0					7	1
305.7					1	0
	11				1	0
367.4	ł				0	
427.1					U	0.
470.3					1	0.
1 552.5					1	0.
1 514.2 1					1	0.
1					0	0.
675.9   					0	
737.6   Fi	Į				Ū	٥.
ł					1	0.
- 0	!		40	1 50	I	
		Su	mars Statis	tics		
Number	of samples t of intervals t	17			Mean value : Standard Deviation :	28.1
Minimum Maurinum	value : value : value :	2.5			Coeff. of variation:	61./U 2.199
Median v	tajne t	742			Skewness !	1.71
HOUST RE	anse i	less than 58.9			Kurtosis :	57.096
Values i	n modal range :	434 ( 90.3 7	of total \			

**HSTGRM** 

L

----

-

ہ۔ ز Pase 12

i

1

PROJECTS 044 & 082 (SOILG) KEEWATIN ENGINEERING INC.

Nistogram for Copper (CU ) Values in PPM

Z of total 0 10 20 30 40 50	in inte	
}	<b>†</b> 10 1015	1141
1 <b>4</b> 7,1	4	0
/+1_1  ###############		
15.8 ł	63	11
#####################################	225	42.
	108	
33,2    ############	100	20.
42+0 1	58	10.
###### 50.7	30	5.
30+7 I I ###		
59+4 I	15	2,
68.1 F	9	1.
1.1	8	1.
75.8 / IX		± 4 1
85.4	7	1.3
1¥ 94.3	3	0.6
11 103.0 (*	2	0.4
11 111.7 1	i	0,2
11 120.4	1	0.2
127.1	1	0.2
137.7	0	0.0
<b>11</b>	1	0.2
<u>         </u>		
0 10 20 30 40 50 X of total		

1				
1		Summary Statistics		
•		* * * * * * * * * * * * * * * * *		
     	Number of samples Number of intervals Minimum value Naximum value	17 Star 5.2 Coef	n value : 28.9 ndard Deviation : 17.44 ff. of variation: 0.604	
     <del> </del>	Median value Modal Ranse Values in modal ranse		vness : 2.44 Losis : 21,997	     

Bondar Cless & Company Ltd., Vancouver

1

[

Γ

_

-

--_

.

ł

PRBJECTS 044 & 082 (SOILS) KEEWATIN ENGINEERING INC.

Histogram for Lead ( PB ) Values in PPM

	0 10		40	50 in i	nterval
	\ •  			•=[=====]	(1661 481
9.7	   <b>                                  </b>	*****		104	1
	**********	*****		<b>******</b> 369	68
25.8	   <b>                                  </b>				
41.7				38	7
57.7	l			14	3
74.0				0	0
90.1				3	0
1	*			3	0.
105.1 J	1				
122.2				1	0.
138,3 (				0	0,
 154.3				0	0.
 170.4				0	0.
1				0	0.
186.5   				_	
202.5 1				0	0.,
 218.5				0	0.1
1 234,7-1				0	0.(
				1	0.2
1   0	 10	20 30 X of tota	1111- 40 50 1		
			nary Statistics		• • • • • • • • • • • • • • • • • • • •
Number o	of samples If intervals	535		Mean value t	17.7
Minimum	ustus	• •		Standard Deviation : Coeff. of variation:	16.07
Maximum Madien //	value *lu=	250		Skewness t	7.28
Median v Modal Ra	3 (119)	147	to less than 25.8	_	B4.609
Ustune in	nac Dodal range	: 369 ( 68.8 Z c	to less than 25,8	3	

Sondar-Cless & Company Ltd., Vancouver

### PROJECTS 044 % 082 (SOILS) KEEWATIN ENGINEERING INC.

Histogram for Zinc ( ZN

) Values in PPH

7 of total 0 10 20 30 40 50		
0 10 20 30 40 50 i!!!!!!!	in inte ‡	rval Z
-  ‡	7	
26.3    ###################################	,	1.3
51.5 1	112	20.9
#####################################	156	29.1
######################################	102	40.0
0.8 1	192	19.0
<b>!#\$#\$#######</b> 5+5 1	65	12.1
F###### 1-2-1	34	6+3
/##### -7 }	22	4,1
1888	17	3.2
•5    ##		512
52 I	9	1.7
11 7 1	2	0.4
1# 5 1	6	1.1
11 3 i	3	0.6
7 I	0	0.0
11	1	0.2
 	-	<u></u>
0 10 20 30 40 50 X of total		
Summary Statistics		

			Summa	ary Statistics				
				******				
Number of samples	:	536			Mean value	+	00 E	
Number of intervals	1	14			Standard Deviation		88.5	
Minimum value	ł	18					49.36	
Maximum value	ł	326			Coeff. of variation	⊓‡	0.558	
Median value	1				Skewness	1	1.58	
		74.5			Kurtosis	1	25,026	
Hodal Ranse	Ŧ	greater than	51.5	to less than 76.2				
Values in modal range	1	156 ( 27.1	Z of	total )				

**HSTGRN** 

L

**.**...

L

.....

~

-

### PROJECTS 044 & 082 (SOILS) KEEWATIN ENGINEERING INC.

Histogram for Antimony (SB ) Values in PPM

c	10	20	X of total 30	40	EA		
1	·  -		-!=  ·	-11-	<u> </u>	in inte ‡	rval
1	********	******	*********	*****		216	
3.1	tkt					210	40.
5.3 1						19	3.
11 7,5	*****	*****				113	21.
11	(¥¥¥¥¥¥¥A\$¢\$;	*****				101	18.
9,7    1	******						107
11.2 1						44	8.
#  14,1	<u>ŧ</u> ŧŧ					15	3.
16+3 1						8	1.
<b>!</b> ‡ 18₊4 ]						6	1.
1# 2016						4	0.3
 22.8						1	0.2
1# 2540						3	0.6
11 27.2 1						2	0.4
1 27:4						0	0.0
1 31.5 F						Û	0.0
 13.8						0	0.0
1 1 0.5						0	0.0
41						1	0.2
 0	-   10	-iii 20 X c	 30 / of total		·11 60		

Summary Statistics			
I       Number of samples       535         I       Number of intervals       17         I       Minimum value       2.5         I       Maximum value       38         I       Median value       6         I       Modal Ranse       1 less than 3.1         I       Values in modal ranse       216 ( 40.3 % of total )	Mean value : Standard Deviation : Coeff. of variation: Skewness : Kurtosis :	6.4 4.39 0.691 1.90 11.931	1



HSTERM

Pase 14

PROJECTS 044 \$ 082 (SOILS) KEEWATIN ENGINEERING INC.

Histogram for Hercury (HG ) Values in PPH

	Z of total 0 10 20 30 40 50	in ir	terval
		#	
		-	
0.0764		23	11
	************************************		
0.1344	1	74	37
A 1004	*****************	51	26
0+1924	1  ###############		20
0.2504		25	12
0.3084	1	7	3
		6	-
0.3664		Ø	3.
0,4244		1	0.
V17277		-	**
0,4824		1	0.
0.5403		4	2.
A 5003 1		0	•
0.5983 J		v	0.(
0.6563 1		0	0.0
1			
0.7143 i		0	0.0
1:	r i i i i i i i i i i i i i i i i i i i	2	
0.7723		4	1.0
1 0,8303		0	0.0
1 CVCUVV		-	
		1	0.5
1- 0	 10 20 30 40 50 X of total		
	Sumary Statistics		
	f samples : 175 Mean wal	ue ;	A 4/7-
	- Analysis - 13 Standard	Deviation :	V:1554 A.11500
	Coeff. a	f variation:	0121022
Median v	volue i Village Skoupers		3.0096
Nodel Ra	arue i 0,135 Kuntocie		15.7886
	nse : greater than 0.0764 to less than 0.1344 n modal range : 74 ( 37.9 % of total )		

Bondar-Cleds & Company Ltd., Vancouver

Γ L

Γ

Γ

_

-

-

......

· . .....

j

#### PROJECTS 044 & 082 (SEDIMENTS) KEEWATIN ENGINEERING INC+

Histodram for Gold 30 drams ( AU_30G ) Values in PPB

	0 10			40 11			rval
	1	1 1-	· · · · · ·	1	11	, <b>•</b>	
	####################################	ŧŧŧŧ¥¥¥¥¥	¥¥¥¥¥¥¥¥¥¥	ŧŧŧŧŧĸĸĸĸĸĸĸ	****	56	46
7.8	]   東東米米米水東東東東	****	<u>*************************************</u>	**		41	34
16.1		· ቀ ቀ ቀ ቀ ቀ ቀ የየነት ዋነት	?ግ <b>ፑፍዋ</b> ውውውው	• • • •		т <b>.</b>	3-
		東京				15	12
24+4	   					4	
32.7	1						
** *						1	(
41.0						0	0
49,3	1					-	
57.5						0	Ó
<b>3/</b> ₊ŏ						1	C
65.7	1						
74.2						0	C
/4.2						0	0
82,5						-	
90.7						0	0
7947						0	0
97.2							
107.5						0	0
						1	0
115.8						<u>,</u>	
124 <b>.</b> 1						0	0
	¦¥					1	0
	ł			<b>.</b> .	_		
	l[ -/ 0 10	 20		40	50	1	
				mary Statis			
Nusber	r of samples	:	120			Mean value :	
	r of interval					Standard Deviation 1	
	m value m value	:	2,5			Coeff, of variation: Skewness	
	n value	1					26.051
Model	Ranse	: less	than 7.8				201901
Values	s in model re	ense : 56	( 46.7 Z	of total )			

Bondar Cless & Company Ltd., Vancouver

· -

[

L

L

L

-

Page 2

#### PROJECTS 044 & 082 (SEDIMENTS) KEEWATIN ENGINEERING INC.

Histogram for Silver ( AG ) Values in PPN

	Z of total 0 10 20 30 40 50	in inter	
		10 10000 ‡	Z X
1.57	<b>                                    </b>	113	\$4.2
	18888	5	4.2
2.87	1	0	0.0
4,15	11	1	0+8
5.45		0	0.0
6,75	1	-	
8.04	ł	Û	0.0
9,33		Q	0.0
10,53	F 1	0	0.0
11.92	1	Q	0.0
	1	0	0.0
13.21	1 7#	1	0.8
	i iiiiiiii 0 10 20 30 40 50 Z of total		

I			Summary Statistics			1
1			• = • • • • • • • • • • • • • • • • • •			1
1	Number of samples	1	120	Mean value	: 0.93	
÷.	Number of intervals	ţ	11	Standard Deviation 1	1.293	1
1	Minimum value	1	0.3	Coeff. of variation	1.395	1
ł	Maximum value	1	14.1	Skewness	8+955	- 1
ł	Median value	1	0+7	Kurtosis :	85,0921	1
I.	Nodal Ranse	1	less than 1.57			Ī
1	Values in modal range	: :	113 ( 74.2 % of total )			1

Ĺ

 $\left[ \right]$ 

Γ

Γ

-

----

-

---

--

Pase 4

### PROJECTS 044 & 082 (SEDIMENTS) KIEWATIN ENGINEERING INC.

Histogram for Arsenic (AS ) Values in PPM

	I of total		
	0 10 20 30 40 50 	in inter ŧ	val Z
	ſ <b>}₩₩₽₩₩₩₩₩₽₽₽₽₽₽₽₽₽₽₽₽</b> ₽	29	24.2
7.7	  ***********************************	71	59.2
34,2	1		
58,5	*****************	18	15.0
B2.9		i	0.8
	1	0	0.0
107.2		0	0.0
131.5	i	·	
155.3		0	0+0
180.1		0	0.0
1		0	0.0
204.4   		0	0.0
228.7		-	
I		1	0.8
(	10 20 JO 40 50 X of total		
· · · · ·			

1			Summary Statistics			
1						- 1
	Number of samples	1	120	Mean value 🕴 🛟	22.1	1
1	Number of intervals	‡	11	Standard Deviation :	24.31	1
1	Minimum value	ł	2.5	Coeff. of variation:	1,102	I
I	Maximum value	ł	243	Skewness :	6.36	I
t	Median value	:	17.2	Kurtosis	52.346	ł
ł.	Nodal Ranse	;	sreater than 9.9 to less than 34.2			1
1	Values in modal ranse	:	71 ( 59.2 % of total )			ł

L.,

L.,

L

L

š...

. . .

. .<del>..</del>

#### PROJECTS 044 % 082 (SEDIMENTS) KEEWATIN ENGINEERING INC.

Histogram for Copper (CU ) Values in PPH

% of total 0 10 20 30 40 50	in inter	
<b> </b> ] <b> </b>	+	2
 ] ##	2	1.7
5 1	11	7,2
########## 5 ]	11	742
l a l k x k z x x x x x x x x x x x x x x x x	14	11.7
7 1	20	16.7
] ####################################	20	10+/
/ 1 【####################################	28	23.3
9		
****** <b>********************</b>	25	20.8
_ 】 ] 本末本本水水本年	9	7.5
╡╇╪╪╇╄╄╄╪ ┊┋	,	/ • •
	4	3.3
1	_	
	3	2.5
5 l IX	i	0.8
·* 5	•	
事車	2	1.7
3 1		0.8
t# 1	1	V+0
,         -		
0 t0 20 30 40 50		
X of total		

1					Susaa	rs Stati	stics				1
ł											- 1
1	Number of samples	;	120					Mean value	t	41.9	I
t i	Number of intervals	ţ	12					Standard Deviation	ł	16.26	I
1	Minimum value	;	10.8					Coeff. of variation	nt	0.388	ł
I	Maximum value	:	98					Skewness	:	0.67	1
1	Median value	‡	41					Kurtosis	1	138,198	ł
1	Nodal Ranse	ţ	sreater t	han	37.9	to less	than 46.0				I
I	Values in modal range	1	28 ( 2	2.3	Z of	( fotal )					1

-

**L**___

L

Γ

- ---

----

### PROJECTS 044 & 082 (SEDIMENTS) KEEWATIN ENGINEERING INC.

Nistogram for Lead ( PB ) Values in PPM

	Z of total		
	0 10 20 30 40 50 	in inter ŧ	vai Z
		_	
3.5	1##	2	147
3+0	,   1 # # # #	5	4,2
8.0		J	412
	x x x x x x x x x	15	12.5
12.4	1		
	]************************	32	26.7
16+9			
21.2		29	24.2
	3 ]宋珠示本本宋本末末末末年春末意思常意	19	15.8
25.3		17	1-140
	,   米宋宗章章章章	9	7.5
30.0		-	
		2	1.7
34.4		•	
38.8		1	0.8
0010		1	0.8
43.2		*	440
	##	2	1.7
47.5			
	1885	3	2+5
	1		
	20 50 40 50 I of total		
	Company Chatichion		

1				Sueaa	ry Stati	stics				i
L										1
ł	Number of samples	;	120				Hean value	:	19.0	ł
I.	Number of intervals	ţ	12				Standard Deviation	:	8.80	1
I -	Minimum value	ł	2.3				Coeff. of variation	nt i	0+463	I
I.	Maximum value	ţ	51				Skewness	1	1.41	ł
1	Median value	į	17+6				Kurtosis	:	62,398	I
1	Modal Ranse	t	greater than	12,4	to less	than 16.8				1
ł	Values in modal range	\$	32 ( 26.7	Z of	total )					1

L.

Ĺ.

-. مربعة

Г L

L

L

Γ

. .

. ....

. ...

#### PROJECTS 044 & 032 (SEDIMENTS) KEEWATIN ENGINEERING INC.

Histogram for Zinc ( ZN ) Values in PPM

0 10 20 30 40 50		erval
│•··••┃···•┃┃┃┃┃┃┃	••••] <b>†</b>	
1 ] #	1	
43.0 1	1	
] ########	8	
32.5 l 1*********	15	1
122.0	13	1
	28	2
151.5    ********************	26	2
201.1	20	2
	20	1
240.0 j jatatatat	11	
280.1 1		
	4	
319.6 l	2	
359.2 1	-	
1### 398.7 1	3	
37617 1	0	1
438.2	-	
] <b>#</b> #	. 2	:
	1	
Summary Statistics		
Number of samples : 120	Mean value :	181.3
Number of intervals : 12 Minimum value : 34	Standard Deviation :	79.05
Minimum value : 34 Maximum value : 472	Coeff. of variation: Skewness :	0.438 1.07
Median value 🕴 170	Kurtosis ‡	B1₊13ć

Ē

Ĺ.

Ĺ

Ł

1

I.

F

Ţ

1

+---

Number of intervals

Maximum value

----

Minimum value 🕴 🕴

9

15

2.5

1

Values in model range : 53 ( 44.2 % of total )

Median value : 5.7 Modal Ranse : less than 3.1

Standard Deviation : 3.04

Coeff. of variation: 0.560

Kurtosis : 21.455

Skewness :

1

ł

1

I.

L

1

0.66

#### PROJECTS 044 1 082 (SEDIMENTS) KEEWATIN ENGINEERING INC.

Histogram for Antimony ( SR ) Values in PPH

1 1 1 1 1 1 1 1 1       #         1       1       53         3.1       0         4.7       1         1       0         4.7       15         6.2       1         1       15         6.2       1         1       16         7.7       1         1       16         7.7       1         1       16         7.7       1         1       3         10.7       1         11       3         12.3       3         13.3       1	1       0         1       0.1         1       0.1         1       0.1         1       0.1	0 t0 00	2 of total	£0.		
3.1       0         4.7       0         i####################################	0 0. ************************************					
1       0         4.7       1         12000000000000000000000000000000000000	************************************		********	\$	53	44.
4.7       1         1333333       15         6.2       1         134343434343434343434343434343434343434	************       15       12.4         ************************************					-
6.2   	13       14         14       25         16       13         16       13         11       14         11       0.8         11       0.8         10       20         20       30         20       30         20       30         20       30         20       10         20       30         20       10         20       30         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10         20       10	4			0	0.
i####################################	************************************				15	12.
7.7     1       1************************************	************************************		•		<b></b>	
************************************	##     4     3.       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     2.5       ##     3     3       ##     3     2.5       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3       ##     3     3		•		20	20.1
###     4       10.7	III     3     2.5       III     3     2.5       1     0.6	〕並米 <u>東米</u> 東米東 <b>本本本本本本</b> 本			16	13.
10.7 I  \$\$\$  \$\$  \$  \$   	III     3     2.5       III     3     2.5       1     0.6					-
12.3    **** 3  3.8	1 0.8 1				4	3+.
1 <b>***</b> 3 13.9 I	1 0.8 10 20 30 40 50 2 of total				3	2,5
13.8	1 0.8 10 20 30 40 50 2 of total				-	~ 1
1	10 20 30 40 50 Z of total				3	243
1	10 20 30 40 50 I of total	I.B.			1	0.8
			30 40			
Summary Statistics		Number of samples :	120	Nean value	:	5.4

Bondar Cless & Company Ltd., Vancouver

і К.,

L

L.

Γ

--

j

### PROJECTS 044 & 082 (SEDIMENTS) KEEWATIN ENGINEERING INC.

Histogram for Mercury (HG ) Values in PPM

	0 10 20 30 40 50	in inte	
		••••• <b>  #</b>	
	I II	1	1
0.0437		1	1
	1********	10	10
0.0798	l l		
	##EE#EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	41	41
0.1157			
0.1520	}**###################################	22	22
	, 夏蓉沐洋水寒水寒寒寒	11	11
0.1881		11	11
	[集末宗朱聿	5	5
0.2242	1	-	-
	1#\$\$	3	3
0.2602			
	1 ###	3	3
0.2963			
0.3324		1	1
		0	0
0.3685	•	v	v
		0	0
0.4045	1	-	-
1		1	1
0,4405		_	_
0.4767	•	0	0
0+4/0/		^	
0.5128		0	0
	, 生	1	1
i		-	-
	···  ·· -  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ····  ····  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ····  ····  ····  ····  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ····  ····  ····  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ···  ··  ··  ···  ···  ···  ···  ···  ···  ·		
(			
	I of total		
	Summary Statistics		
Nunhan	of samples : 79	Masa walue *	A 1770
	of intervals 1 15	Mean value : Standard Deviation :	
	a value : 0.043	Coeff. of variation:	
Maximu	n value : 0,532	Skewness i	
	value i 0.114	Kurtosis t	
	Ranse : sreater than 0.0798 to less than 0	.1159	
Values	in model range : 41 { 41.4 % of total }		

### Bondar Cless & Company Ltd., Vancouver

## APPENDIX VIII

## Stream Silt and Soil Sample Descriptions

-

L I		1 ( ]		],	) )		]		ין ר		(	1		T		1		<b></b>	ר ו
Project:	Pression	000	KEEWATIN STREAI																
		082.					Re	sults i	Plotte	ed By	•		<u></u>	M	e_,	174	KE		
Area (Grid)							Μα	p:	Plotte	_		1	N.T.S.	:	10-	+ <i>[</i> 3,	110	E	
Collectors :	B. MCENT	VRE							Ju										
90 <b>X</b> 082.4 Sample			······			IMEN		ATA			EAM (					T	1	1	
Number		NOTES		4.9	Poe	o Silt	Kclay	Organic	Bank	Active	fidth	Cepth	0 2	SPRING	ORY GULY				
001	Milcheil 2 2200	s' contou	<u></u>	-				<u> </u>			•			ft	60				
	2+73 stn. Bag 248 4+95 Bag 245	2/50		65		25	_		<u>  </u>	1	1/1	5cm	M	<u> </u>					
				60		30	┨	10	1	1	In	Sen	m.	∦	1	▋			
003	18+10 sto. Bct 270°	<u>CONTO</u>	ur north	<u> </u>				<u> </u>	1	, , ,		 ;							
004	22+60 Brg 265	1880 '		60	10	30	<u> </u>			1	1m			<b> </b>	<u> </u>	<b> </b>		<u> </u>	
	Northernest o	<u> </u>		50	2	75			#		10	Den	F		<u> </u>		<u> </u>	—	
005	1+16 the Bra, 050°	1560'	MOSE NA FE	1		+		<u></u>	1		3M	2.		<u> </u>		<u> </u>			
006	0+00 " 3500	1516'		10	20	40		<del>  .</del>	∦ ∥ .	1	314	- 2 <b>C</b> A	77					+	
_007	1+78 11 308"		Trib - Jonth bank			50				V	IM.	150-	<u> </u>			L	╀──		
008	2+00 11 250°	1600'	mid stream		<b>5</b> 5				1		2M								+
_009	3+15 " 260"	1685'	north side		055			TT			2~						<u> </u>		<u> -:</u>
010	3+62 " 240"	1720' 1	left fork		1055			tor			IM							╁╌──	
-011	4+09 " 290"	1750' 1	right fork	4	tors		M	in			/m					<u>.</u>		<del> </del>	<u></u>
	Paredian 2 2	600' conta	1 N. hounder													_	<del> </del>		
0/2	1+28 sto. Brg 190°	dry bed	-intermittant	40	20	40				No	Im	10cm	-						†
											·								
·																			<u> </u>
						·										•			
	<u> </u>																		
	· · · · · · · · · · · · · · · · · · ·								· ·										
																		-	
	······································	·····	<u>·</u>					·						· · · ·					
						╾╌╂		<u> </u>		<u> </u>						· _		]	
				<del></del>					<del></del>	<u> </u>	<u> </u>		-+-						
					$\rightarrow$	—ŀ-	+					$\rightarrow$		-+					•
	· · · · · · · · · · · · · · · · · · ·	······							<u> </u>		<u> </u>				—₽	$\rightarrow$			
							-+					-		+	∦	_			
											<u> </u>							<u> </u>	
							-+						┉┤╴	<u> </u> _				$ \rightarrow $	

I I			(	I ſ	]	ſ	]		ſ	1	Γ	]	۲	] [	]		
	REE KEE	WATIN ENG	SINE	EER	ING	INC											
Project :	TARADIGM 082.	STREAM SE	DIME	ENTS	Res	aite F	⊃ <i>lo</i> rtte	d Rv	•								
Area (Grid	): Chain 2.	-			Ma	. <i>1</i>		1 D 1 1	le en		U.T.C	. 7	54		10		
ollectors	: Chain 2. Leath Wittam.	_			Dat	p a:/	an	- 3		g		10	th		<u> </u>		
goor.			¢r.									T	1	1		1	T
90FF Sample	Notes		=					STRE			Τ	- g	<u>ا ک</u>				
Number			Sand	Silt -	Clay	Organic	Bank	Active	Width	Cepth		SPRING	DRY Grin V				
LOOI	1600' moss matt.	Ø	5	33	Ø	10	1	4	2.	10	m.		+		+	+	
1002	1640'	30	10			5		4	1/2	5	5.			-∦		<del> </del> ,	
1003	1620' moss matt.	Ø	5	85	Ø	10	l.	4	12m	B	m	1	1	╢──	1	+	<u> </u>
2004	moss matt	Ø	5	35	Í	10			/m		m.					1	
[00]	2800' moss matt.			-													
1001		Q	9	15			<u> </u>		2 m		m.	<b> </b>	<u> </u>	┨			
6003	2800' moss matt 2800' moss matt.	P	12	80					34.	مرز ا	M	∦			<u> </u>	<u> </u>	
L004	2800' dry inter-mitty triam		1 and	80	10	10	<u> </u>	1	Zm		m	 		<b> </b>		<u> </u>	
1005	2800' dry inter-mitter stream	- 70	( <u>2</u> / <del>2</del> ,	70	4	Pr	<u> </u>		12	10	Ø	-	9	<b> </b>	<u> </u>		
1006	2.700'	50	30	20	6	6		T d	/m K.m	<u>1-</u>	<u>m</u>		·			<b> </b>	
	2700		30	55		1		4			m			<u></u>	<u> </u>		
1008.	2700'			50		6	<u>  -</u>	4	m		m.						
			100	1		×	#	<u>a</u>	~			<u>-</u> -		<u> </u>			
			† ·	╞──	<u> </u>										-		
				1		1											·
						1									<u> </u>		
				1	ŀ		· · · · · · · · · · · · ·				·				<u> </u>		
																	•···
																. 1	
														•			<u> </u>
			L	ļ	 								·				
	·		<u> </u>														
			<b> </b>									]					
			ļ											_			
·			<u> </u>										$\square$	_			
		ł		<b> </b>			<b> </b>										
		<b>_</b>	L,	L													

Project:	" UE C	N ENG		NTS	Res	ults P	lotte									<u> </u>	<u> </u>
Area (Grid): Collectors :_	PARADIGM # 2 CLAIM Exic BIRKELAND.				Map Date	): e:	WG.	5	76	^ / q d	I.T.S.	:					
Sample	1		SED				11					<b>1</b> •	5			-	
Number	NOTES	Grwel	Sand	Silt	Clay	Organ	Bank	Active	Width	Depth		SPRIN	DRY GULLY				
2 EB 082							<u>.</u>										
001	Line 30 N			x		201		X	2	4"	-						
6002	fine 30 N		<u> </u>	x		10 7			2'			· ·					-
6003	- Rine 30N		ļ	×		20%		1	3'	6"		<b> </b>					L
1+00 %	-fine 27w			Y						<b></b>	[	<b> </b>	l				<u> </u>
+75 6	- kine 270	<u> </u>		X			<u> </u>	<u> </u>		<u>_</u>		<u> </u>					
ztoow	fine ZTN - Some Moss.			30		50%			Z			<b> </b>					<u> </u>
2+35W	fine 21 N			40		108	<u> </u>		6"								
<u>2+65E</u>	fine 21 N.		70			10	<u> </u>	x		6'							
1+38E	Line ZIN		70	30		how		X	3'	6"	•	<u> </u>					<u> </u>
									<u> </u>			<b> </b>					
							· · ·							<u> </u>			
									· · · · ·			ļ		<u> </u>			
													<b></b>			_	
							•						<b> </b>		· .		
											-			·			
											<u>-</u>					<del> </del>	
														<u> </u>			
												- ·				+	
					·	·						<b> </b>		.		-+	
							-							-+			
						<u></u>				_							
	······································																
	······································						i-										
																	·
																+	
								1		.							

I I			r	ז ר		<b>—</b>	7		l r	]	<b>–</b>			1		Г	7
		KEEWATIN EN				INC											
oject :	Para diam \$# 082 Mikail 2 Colin Anderson - (Norm B)	STREAM SE	EDIM	ENTS	Res	ults F	lotte	d By:									
rea (Grid)	: Mi Kail 2				Map	þ:					N.T.S.	:					
ollectors :	Colin Anderson - (Norm B)	•••••••			Date	e:	Jaly	27				-					····
			SE	DIMEN				STRE				<b>T</b> .				1	
Sample	NOTES		- 1		1	1.5	-¥		Ę	. 4	6.		DAY GULLY		ł		
Number			5 3	1 is	Canal Cana	ð	Bank	Active	R	ŏ	Celo- city	SPP	153				
LOOI	1900= Rounded Rould	· 57	1 a 5/	3.0%		5%			1.5	<u>n</u> 1			╞╤	-	+	╪═╤	+
1.002	1900	50	7. 201	Roll.		10%	<u> </u>		1,0	1	slow		<del>  ´ -</del>				┿──
(103)	1900	50	1.R.c.	20%		10%		-	15	.	264	· · ·		1	╉╍╼	+	
toon	19tc													1	╡━━╸		+
										•			1.		┼──		<del> </del>
							<u> </u>			,					1	1	<b>†</b>
						·										-	<del> </del>
····					<u> </u>	· ·	· .									1	<u> </u>
						L	Ì								1	T	<u> </u>
			-														
				ļ					<b>`</b> .						1	1	
			_	_													
															1		
				<u> </u>			ļ										
				<u> </u>									~				
				<u> </u>			L										
				-													
<u> </u>	······································			<u> </u>													
				+			•.				└ <u></u>						
																Ŀ	
		<b>_</b>							-+					_			
																<b> </b>	
			+														
						<u> </u>			-+		<u> </u>						
			+	<u>├</u>							— <u></u>		—-∦			<u> </u>	
			+			━━━━━╋			-+			+	∦			<del></del> +	<u> </u>
			+						+		+	-+				<u> </u>	
			+			┈╼╟			-		<u> </u>						

oject:082- P	aradigm	K	EEWATIN E			NTS	Res	ilte F	Platte	d By:	·								
ea (Grid):							Man			•			1TC		10	11	3/16	s –	
llectors :_ Aoror	Nardwell						Date	<u>.                                    </u>	500	+.2	1/9	0	1. 1. 3.		10'				
Sample		•					T DA	ŦA						11		1	Τ	T	Τ
Number 9CAWCE2	N.	OTES		Gravel	Sand	뷺	Clay	Organi	Bank	Active	Width	Cepth	ci V	SPRIN	DRY GULLY				
1001 48. Flor	J, Fast, silt	<u> </u>	2850'	10	20	70				105	3-4 Metres	15cm	Fast		<u> </u>		╞──	╞	╪
6002 55° Flo	W, Fast, Silt.		2725'		20	50		•		les Yes	4-5	25cm	fast				<b></b>	Ē	1
	4 				[		<u> </u>			•						<b> </b>			+
																			+
	· · · · · · · · · · · · · · · · · · ·			Į												-			$\Box$
		·····												<u> </u>				┞──	┿
						·													┼─
	·····																		Ē
																			$\Box$
											• • •								╞
										· · · · · ·									-
			· · · · · · · · · · · · · · · · · · ·			•													
		······							÷			•					<u> </u>		-
		· · · ·													. 1				
	- 							· [	•.				Ì						
		<u> </u>													-		_		<u> </u>
	·····															•		-+	· ·
				_															
					-+	-+											<b></b>		
	······································								·				<u> </u>					-+	
																Ι			

Project:	Parad	ion #08:	2800	SOIL SAMP	LES	;	Den	ulta	Diati	lad D									
Area (Grid	): Parac	tiam # 2	2800																
Collectors	Colin	Anderson	- Heath																
							Date	e											
	Sample I	Location		Т	pogr	aphy			<b>v</b>	egeto	otion	•				So	ŧ1	Dat	a
Somple Number			Notes	Bottom	of slope	0	Ground	Wooded	Wooded	مارا در ارد مورد در د		put		Sampled	Depth to Horizon Sample	Horizon	Develop - ment	Parent	
	Line	Station	· · ·	Voiley	Direction	Hil! To	Level	Heavily	Sparsely		Logged	Grassic	Swamp	Horizon	san t	G ood	Poor	Drite	
057	2800	5+50			5					1				8	30			╂╼╼┩	
051		5+75			~					7				8		17	+	┢──┦	┢
054		6+00			2					7		$\neg$	•	B	++	7	1	<b> </b>	┢
0.60		8+25			3					1				Ř	++				⊢
06		6+50	· · · · ·		3					7				3	1	1	1	<b>├──</b> ┦	<u> </u>
062	<u> </u>	8+75			N					7				5	ľ.	1	1	<u>├</u> ───┦	┢
063		7+00			2					/				R	N	1	1		$\vdash$
064		7+25			$\sim$					7				K	14	-	1		<u>├</u> ─
065		7+80			W								~	R	4	-			
066		7+75			2					7			-	B		1	1		
067	· · · · ·	8+00			٢									В					-
068	<b>└─}</b> ────	8+85			~									Б	N				ř-
069		8+50	creek Bank		3		.							Ъ		7			<u> </u>
070		8+75	······································	~	Ī									B		/	1		-
01		9100			5						Τ			A	5				Γ
072		9125	·		E					7			21	B	1	1	†	<b>├──</b> ┦	<u> </u>
-073		9+50	••••••••••••••••••••••••••••••••••••••		W									B	$\Box$	/	<u> </u>	<b> </b>	<u> </u>
	<u>_\/</u>	7+75	······································		$\mathbf{\mathbf{v}}$						·		- İ	8		1		r+	Γ
075	E.Ø.	10+00			-		-			7				B	V	/			Ē
		<u> </u>	· · · · · · · · · · · · · · · · · · ·								-+				╞──┨			<u> </u>	
					·								-		┝╼┤			<u> </u>	
		<u> </u>					-	$\neg$		$\square$									
							-+		┉╁			-+		~					
<u> </u>																			
	,	╉┈┈──┠╍╕								L									

# KEEWATIN ENGINEERING INC.

~

Project: Area (Grid)	Poraclic ): Million	# 082 12	(scott T)	SOIL	SAM	PLE	S				tted I										
Collectors	: <u>Colin</u>	Anderson -	(Scott T)					Dat		5.	ly 2	8 /0	î1)		/. ·						
		Location			Т	opog	raphy	/	1		Veget					·	So	11	Dat	1 0	
Sample Number			Notes	-	Volley Battom	Olrection of slope		Level Ground	· •	irsely Wooded	The Aler Dic	ged	Grassland	Swampy	izon' Sampled	Depth ta Harizon Sample	od Horizon	or Develop-		Bedrock Material	our
	Line	Station			10×	ž	Ξ	Ľ	Hea	Sp	4	وا	Gre	Sw.	Hor	Dep	G ood	Poor	Drift	Bed	Colour
5024	1900	12+00	O rock frag			W				[	$\square$				A	352-				· · ·	Black
5025		12+50	10% rock frag 5% 1: " 2% 1' "			N	<u> </u>	<b> </b>		ļ					A	522		$\square$			Black DRB
3026 9027		13+00	5% 11 9			w		<b> </b>	1	<u> </u>	12				A	35-					DRB
		13150	2% "		<u> </u>	<u>k</u>		<u> </u>	┢──~	<b> </b>	<u>ŀ</u> − ↓				B			$\leq$			RB
2028 5029		14+50	- 2% (1 '' .10% '' ''		<u> </u>	M	<u> </u>	<u> </u>		<u> </u>	$\left  - \right $				B						urs rb rb
2030		17400	5%			<u>w</u>	<b> </b>	<u> </u>			$\vdash$	—-			B	┠╌┠╴┦		4			RB
5 031		15+50	2% " "			w									ß			4		4	<u>RB</u>
5 032		16+00	10%		·•	<u>n</u>		<u> </u>			⊬~+				B	+++	_	4			RB
3 m33		16 +50	10%			2					$\vdash$	-+			ß	╡╌┤		$\leq$		4	ORB
5 034		17,00	20% 4 4			2					5				0 B	┿┼		4		]	DRB
2035		17 +00	25% "11			2					$ \rightarrow $				Б	1/1				<u> </u>	MRB
			- <u> </u>			~						+				₩∔		$\leftarrow$	<u> </u>	{	85
								-						—†		<u> </u>		-+			
									-			†						-+			
					·		*					ŀ	· .			╼╼╌╁	<u> </u>			-+	<b></b>
												-		- 1				— <u>†</u>		+	-+
														-+							
																			╧╼╂╴	<del>~~+</del>	-
																	-+	~+	+	-+	
	-													ŀ		-			— <u>†</u>		
																		-+-			
	···	· ·															$\neg$			$\rightarrow$	
												1									
																			-		$\neg$
								[					Ι								
~ <u>+</u> .		<u>├</u>											T								
		┟╾╍╌╌┥╴			$\rightarrow$								$-\Gamma$								
			,																		
		L				1			L												

! (_	. I	1	Ĩ.	1	l	)	[	1	[	]		1	[	] -	Ĺ	]	$( \neg )$	l t	]	r	]	[	ſ	[	1	1	1	<b></b>	3	<b></b>	l	r	ン
------	-----	---	----	---	---	---	---	---	---	---	--	---	---	-----	---	---	------------	-----	---	---	---	---	---	---	---	---	---	---------	---	---------	---	---	---

## KEEWATIN ENGINEERING INC.

Area (Gri	id): <i>Lcap</i>	lign # 087 Paradign#	2 2806 contain	SOIL - -	SAM	PLE	5	Maj	o:		tted										<u> </u>
Collecto	rs: <u>Lolin</u>	Anderson	POCCTOS2 (Heath M)	•				Dat	e	tug	9/9	0		<u> </u>		<u>.</u>			<b></b>		
	Somple	Location			Т	0000	raphy				Veget			·			So	11	Det		
Sample Number			Notes	•	Bottom	al stope		Ground	Wooded	Wooded	Devis Clab alde Ilder		P		Sompled	Depth to Harizon Somple	Horlzon	Develop ment	Parent	Malsrial	
	Line	Station			Voltey	Direction	Hill Top	-	Heavily Wooded	Sparsely	N. S. S.	Logged	Grasstand	Swampy	Harizon	Depth Ic Som	G ood	Poar	Drift	Bedrock	Colour
5036	2800	0+25	Beside creek		-	6								1	Ъ		1				KAP
6037	2800	0+50			<u> </u>	N	ļ	<b> </b>					_		ß		1				MRI
5039 5039	2800	0+75	· · · · · · · · · · · · · · · · · · ·		- <del> </del>	1	<b> </b>	<b> </b>							ß		1				KA A F
<u>2.19.39</u> 5. alia	2800	1+00				4					<u>احـــا</u>		<u></u>	$\checkmark$	ß					1	K. 0 F
5 040 5 041 5 042 5 043 5 044	2800	1+30				w .				•					ß		1				K RÍ URE MRE
2 042	2800	1+30	**************************************		-	W/					$ \vdash $			. /	B		<u> </u>			<u> </u>	MRE
5 043	28.00	2+00			<u>+</u>	4					$\left  \right\rangle$			2	ß			<b></b>			MRF
5044	2800	2+25					•								ß	₹.					<u>h Re</u>
ร / แร้	2800	2+50				4					$ \rightarrow $		<u> </u>		ß	<u> </u>	_		!		<u>n R</u> B
5.045	2800	2.475			<u> </u>	~									B B	6			<u> </u>		NRE
5 0.47	2800	3+00	outcrap			4					1				B	(7)			<b></b>		RR 🖠
5 047 5 044 5 044	2800	3+25				V					$ \rightarrow  $		· · · · · · · · · · · · · · · · · · ·		<u>р</u> В		$\leq$		<b></b>		
049	28.00	3+50				N		•	{		7				B	<u> </u>		+	-+		<u>18 B</u>
050	2800	3+75	outcrop			V	•		†		2			╼╼┼	B	ᢧ	$\overline{}$	+	$\rightarrow$	-4	<u>IR B</u>
5 051	2800	4.60	a li	· · · ·	_	~					<del>/_</del> +				B	त्र	<u></u>				RB
5 052	2800	4+25				w					7				B	د ا	Ħ		<del></del> +		e e
053	2800	4150	· · · · · · · · · · · · · · · · · · ·	········		~					71		-+		<u>B</u> .	হ	<del>7</del>		-+		A B
054 055	12800	4+75				w			†	.	<del>71</del>				B.	- S	5+	-+	╧╾┼		<u>R</u> B
0 0 5 5	2800	5+00				W		†			71	-+	+		B	<u></u>	51		+	-4	RE
056	28.00	5425				N					71						$ \rightarrow $		+		RB
•			·····		Ī					. [				-			$\leftarrow$	-+-		<del>_^</del>	ur isl
		· ·								1	Ţ.									+	
<u> </u>					_		Т								-			-+-		-+	-1
	<b> </b>														Ì			-+-	+		
			· · · · · · · · · · · · · · · · · · ·																	$\neg$	
	<u> </u>										·						-		+	<u> </u>	- 1
															_					-+	
					1	1					1		T		T	T					

-----

......

.

Area (Grid)	• M;	Man (	<u>532</u>								-								
			(Bab Murphy)				•	); e				r	N.I.S	· '					
	Somple L			Ţ	opogi	aby		<u> </u>	v	eget	ation	1				So	11	Dat	a
Sompie Number			Notes	Bottom	of slope		Ground	Wooded	Wooded			pu		Sampled	Depth to Horizon Somple	Horizon	Develop - ment	Parent	
gok Cobis	Line	Station	•	Valley	Direction	Hill Top	Level		Sparsely	Burni	Logged	Grassla	Swompy	Horizon	Depth to Som	Good	Poor	Drift	
- 201	1600'	3+00	MRB - Silty sand /20% Sandy Clay	÷	40			X							127	×			
002	<u> </u>	3450	- Sandy clany		40		ļ			•				-	r	x		<b> </b>	Ļ
<u>803</u>	11	4+00	۰. مربع المربع ا		40	ļ									11	×	ـ_	$\square$	┡
- 204-		5+00	· · · · · · · · · · · · · · · · · · ·		$\frac{26}{30}$	<b>'</b>		۲X-		·····				$\mathbb{H}$		×	┢	<b> </b>	┢
006	U	5+50 5+50	<u> </u>		20			X		•				┝╋┈	╉╇	<del>V</del>	+	┟╍╼╼┥	┢
- 007	1	lor 00	noulder that		10	1		$\frac{1}{x}$							++7		1		F
<u>0</u> 028	11	6+50	boulder / frild .		13			X							11	×			┢
	17	7+00	frond de field		30			X							11.1		X		Γ
-010	н	7+50			30				X			·	X		18"	x			
_011	1900	16+59	silly clay	<u> </u>	25			X							11'	<u>.</u> ×	$\vdash$		
012	<u></u>	17+00			<u>ko</u>			X		•	·			L L	1'	ř.	┥		┢
013	<u>u</u> \\	17+50	10 -07 0 . 1.		20 25		•	×	Χ.,			-	X		ļ	×	╞		┢╍
015	<u> </u>	18+50	40-50 70 hay's (reach	wangel	75			X									<u>↓×</u>	┢──┦	┝─
_016	<b>1</b>	e+00			75			X						1	6"	÷	╂──	┢──┦	┢
017	M	19.+50		X	10			X						T	187	X	1	<u> </u>	
018		20+m			10			X							12	×	1		T
019	N.	20+50	- organic-s (40%)	X	0			X							2A"		X		
- 620	<u> </u>	71+00			25 25			X			$\vdash \downarrow$			T	7 <b>A</b> "				
-021		21+0			25	ļ		<u>x</u>							R.*	×	<b>_</b>		Ľ
<u>77_</u>	լե	22+00	*		30			×			┝──┦			<b></b>	18"		<b></b>	$\square$	
7	<u>_</u>	2.7.450	· · · · · · · · · · · · · · · · · · ·		40			×						L	<b> 6</b>	<u> </u>	┼──		┢
																	t		┢

•

# KEEWATIN ENGINEERING INC.

~

SOIL SAMPLES

Area (Grid	):	aradigm				4 6	Ū	Re Mo	sults Ip:	Plot	tteð	By: .	10-	N.T.S	5. :	10	4	<u>B/1</u>	0		
Collectors	<u>Accor</u>	Wordwel						Do	<u>te</u>	స్	<u> 0+</u> .	21	40								
	Sample	Location			Ţ	iopoç	itaby			١	/ege	tatio	n				\$a	11	Qai	ta .	
Sample			Notes		Bottom	f slope	1	round	Wooded	Wooded					Sompled	Depth to Harlzon Sample	Harlzon	Develop - meni	Parent	Molecial	
Number 90AW082	Line	Station Super provided Price		•	Volley B		HIII Top	Level G	Heavily 1			Logged	Grassland	Swampy	Horlzon	Depth to Samp	Good	Poor	Drifi	Bedrock	Colour
5 001		0+10	50% Frag Silt /Sand	30501	1						T .	{			TALYS	25					*** Xa
5 001 5 002		0+57	50% Frag, silt/Sand 40% Frag, silt/Sand 40% Frag, silt/Sand 30% Frag, silt/Sand.	30001						1	Ŀ	~			TAUS	30	$\checkmark$			<u> </u>	
5003		0+88	40% Frag sitt/ sand	2975'								-	-		TAUS		$\checkmark$				MEC/an
5004		1+26	30% Fran, silt/sand.	2940'			<u> </u>		<u> </u>	ļ	li.	<u>.</u>			TAWS	30	$\sim$				1/202
			,,			<u> </u>	<u> </u>	<u> </u>	1.	<u>1 -</u>	<u> </u>								!		L
	•							<u> </u>		<u> </u>								<b> </b>		<b> </b>	
	·····		· · · · · · · · · · · · · · · · · · ·			-	<u> </u>									<b> </b>		-	ļ	<u> </u>	$\vdash$
		<u> </u>	······································			-	-		+												
																·					
				·			-	<u> </u>	+							+					
		<u> </u>			-																
									-								÷	-+			
	•	<u>} </u> }			•	ľ.		1					- i		<u> </u>			-			
		<u>∤</u>					-	1						Í							
		<u> </u> −−	· · · · · · · · · · · · · · · · · · ·															· 1			
		1																	·		
										•.	-								·		
								1			·		'	·	·		<b></b>		$\square$	$ \longrightarrow $	
								L		<u>·</u> .				<del></del> !			$\rightarrow$	$\rightarrow$	<del> </del>		
_			· · · · · · · · · · · · · · · · · · ·																	<u> </u>	
						·								<u> </u>	<b></b>		<b></b>				
		1									[†]					<u></u>		-+-	$\rightarrow$	-+	
	· · · · ·																-+		╾┼	┷╍╂	<b></b>
											<u> </u>						+	<del>-  </del> .	$\rightarrow$	<del> </del>	
										<del></del> +-							-+	<del></del>	-+		
									{		+						$\neg \uparrow$	-+-	+		
						-+			†								+	-	$\rightarrow$	-+	
										- 1		Ì	1				-	-+-			

			KEEW	VATIN EN			DIN		ыс	•									•		
Proiect:	PARA	DIGM	# OBZ	SOIL S							•व्वे ।	<b></b>	·								
A-a-a (C-i-d)	. Pra	DILM #	2 Riand	_								-			_						
Hrea (Gria)	: <u>/~~~</u>	47	Z CHAIM.					Мар	•						5. † <u></u>						
Collectors	<u> </u>		shano.					Date	8	Ai	16.	_6	/ 9	0.		<u> </u>					
	Somple L	noltozo.			Т	oboði	aphy			v	eget	atior	1				50	11	Dat	a j	
Sample			Notes		Bottom	of slope	4	round	Wooded	Wooded			d .	-	Sampled	n ta Harizon Sample	Horizan	Develop meni	Parent	Material	
Number	Line	S			Vailey 8	Direction	Hill Top	Level G	Heavily	Sparsely	Burnt -	Logged	Grassland	Swampy	Horizon	Depth ta Samp		20.00	Orift	Bedrock	Colour
0EB 08 Z	C1118	ELEVITO		·	×	ð	Ĩ	Ľ	I	ហ៊	æ	Ľ	°.	Ś	Ť	ő	5	4 <b>X</b>	õ	ă	Ŭ
oton W	21N	3300		-											ß	30		20			MK
S 0+25W		3260				<u> </u>									B.		20		[!]		<b>n</b> B
0450 W	21N	3265				<u> </u>					· · · · · ·				B	32		20	<u> </u>		MB
0+75W	ZIN	3260				╞──					•				ß	30		25			MRC
1+25 W	ZIN	3260				-									B	30		15	<u> '</u>	<u> </u>	n C
1+50W	ZIN	32.80			1											30		25	┟╍╍╺╺╌┥		MAL
1+75W	ZIN	3220	· · · · · · · · · · · · · · · · · · ·												3	30		20		┟───┤	DR
2toow	ZIN	3180								-					B	25	1	20			MB
2+25W		3200				[						· ·			ß	z5		20			MICE
2+5.3W	2/N	3160	·····												ß	25		20			MRI
2+750	<u>z.m/</u>	3110									•				B	30					ME
3+00 W	ZIN	3080		<u> </u>									•		8	30	15	25	r D		PRI
Ot25 E	ZIN	5300		•··	ļ										B	30	10	25		L]	MB
OF SOE	21N	3225			<b></b>		·								B	20		50			6
04752	ZIN	3290											<u> </u>		<u> </u>	10		50		l	0B OB
1+00 6	212	3320				:	·								B	20	te	20		<u> !</u>	<u>OB</u>
1+50 E	2/N 2/N	3320											·			20			<u> </u>		n 🕫
1+755	ZIN	<u>3300</u> 3300				-									2	30	10	10			MR3
21008	ZIN	3310														30 30			<u> </u>		me
				<u>.</u>											<u> </u>	00	10	121			MB
		1																┟─┤			
				-														┟──┤			
						[															
	·····	}	• • • • •																		
			a constant and a constant of the second																		

A <mark>rea</mark> (Grid	): :	COIGH #	ELMD:		SAMF		3	Res Map Date	uits p: e	Piot		By: . <u>+ 6</u> latio	<u>[</u> 9	N.T.S	s. : _			oli	Dat	 	
Sample Number 0 <i>68 082</i>		E LE CATION	Notes		Valley Bottom	Orection of stope	Hill Top	Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged	Grossland	Swampy	Horlzon' Sampled	Depth to Harizon Samole	Gut Horizon	Process Develop -	Drift Porent	Bedrock Malerial	Colour
Otto Fr	271	IIISM		····											ــكــا	30	15	10	P		М
DtO B.		IIIS M IIIO M	······	<u> </u>	┼──┤	-					•				ß	14	115	- 10.		<u> </u>	M
DE75E	2721	1115 M						-+							B	_		30			
1400 E	2721	1112 M	1		-+			<u> </u>				· ·			B	20	425	60		 	
1+85 E	272	1120 M	• • • • • • • • • • • • • • • • • • •		┝───┤					.	•				<u>n</u>			60		/	
1+ SOE		1126 M			[	-+			_						ß	10		10			<u>  68</u>
1+75TE	27N	1135 M		· · · · · · · · · · · · · · · · · · ·		<del></del>									B	15		30			210
THOSE	27N	1142 M							<u> </u>			+				15	_	20			25
2+25 E		1135 M													B	20		<b>ZD</b> ·			n R
ZHE	27N	ITES M	······································					╾╌┼	-+			- 1			Б В	15		20			Мľ
etzsw.	27N	3490'													2		15				MD
arsow	27N	3090.1		-											R		15 FD				ML
0+75W	27N	3470 '			·								-+	+	3	13-	20				MD
1400 W	ZTN	3450 '					·								Ø		20				нD
1+25W	27N	5A-20 '													š	10	25		—†		цĘ
1+50W		3405															20				нС
1+754		3990'							ŀ						B	15	20	201			MR
Ztoow	27N					$-\downarrow$				·			Τ	_	_		20		<u> </u>	Ť	5
2+2524		3200								<u> </u>	-				a		25				- 10-0 M K I
2+5001		3190.1				-+							<u> </u>		В		50				51.0
	4IN	<u>├──</u> ~ <u>-</u>			!`	-+				_ ·				Τ	R					1	
	····	┝╾╾╌╸┟╾					_				ŀ				<u>e</u>						
~~~+		┝━╍╴───┤┉	······································		<u> </u> [		-+	<u> </u>		<u> </u>	!`										
			······································	····	— <u> </u>	+						<u> </u>	\square		·						
							_ <u> </u> _			-+					-+						
	-						+	<u> </u>	<u></u>		<u> </u>	_ <u> </u>	-+								
										╺╼┟╍╸			_								

|--|--|--|--|--|

KEEWATIN ENGINEERING INC.

•

Project:	PARA	DIAM	# 1987	SOIL	5AM	PLE	5	_		— ••		_						•			
Area (Grid)	. Pa	2 4 57 1 6 10	\$ 2 Rians	•				Re	sults	P101											
		<u>se ergri</u>	#2 CLAIM.						p:					N.T.S	3. : -	_	··				<u> </u>
Collectors		DIKK	StanD.					Dai	te	Âυ	<u>q.</u>	5/9	20				<u>. </u>				
	Sample i	Location			Т	opog	raphy	1				ation					S	11	Dat	a	
1 ·		· ···-	-		 	·	1			T		<u> </u>		r+	<u> </u>	1					l
1							Í		1	. <u>.</u> .		1		.		18	5	1 Q,		<u>.</u>	
Banala		1			Ę	slope		P	Wooded	Wooded					ampted	Depth to Harizon Samole	14	EDevelop. ment	Porent	rial	
Sample		1	Notes		Bottem		1	Ground	8	ို					Ē	ļ	l Ē	. Se	à	Mol	
Number			· · · ·	-	Ê	5		5	₹		· ·	3.	2.		N N		<u> </u>	<u>.</u>	L.	•	4
		· ·			1	5	Top		<u>≻</u>	Sparsely	-	3	Grassland	Swampy	Harlzon'	× §		2		Badrock	
	Line		· ·	•	Valley	U T		Level	Heavily	S	Burnt	Logged	30	0	臣	140		. SF	Drift	dr.	Colour
90ER 08Z		ELE VESION	<u>.</u>		Š	<u></u>	Ĩ	ت	Ĩ	ŝ	Ð	ا گ	ອັ	່ທີ	원	ā	N 2	200	ŏ	8	3
50125W	SON	1108 M								·	·				B	25	20				KA
5 0+50W	JON .	1090									·				B	25					MET
50+75W	302	10.70	STATION IN ROCK-STAPL	e 4 1M	TO A	<i>.</i>									B			90			MES
5 1400 W	<u> 30N</u>	1068					_								ß		20				наб
S Itzsw	30N	1060													В	30					148
S 1+50 W	30N	10 68.								·	·				B	_	25				115
<u>S 1+75W</u>	30N	1050	····												ß		20				ACT
S Ztow	<u>30N</u>	1035				·					·				ß		20				MEB
5 2+25W	30N	1015	· · · · · · · · · · · · · · · · · · ·												ß		20				MKB
S Otop E	30N	1128	•												B		20				нß
SOLLSE	JON	(133													ß	20		25			MB
5.0+508	_ 30N	1140									<u>. </u>				B	F	30	3			1113
<u>3 00752</u>	301	1140										· ·			1			50			628
3 1700 FE	SON	114-1							.						B			5			63
SITZSE	SON	1143							·						ß	z0					MKE
3 1+50E	SON	1190	**************************************						$ \downarrow$	-+					ß		20				MEB
5 1+75 E	300	1130					ļ.				-+				B	20	20	50	·		MGB
S ZHOOR	SON	1130			ł		$ \rightarrow $!	<u> </u>					R	20	20	20			USB -
<u>5 24256</u> 3 <u>2+50</u> E	30N 30N	1150		<u> </u>				<u> </u>						-+	B	20	20	20			MKB
CT JU E-	20	135	······································				<u> </u>		\rightarrow	-+	<u> </u>				R	2	20	30			mes
			· · · · · · · · · · · · · · · · · · ·				<u> </u>		-+				<u> </u>	ĺ`							
		·			<u> </u> -			<u> </u>				-+		-+							
											<u> </u>										
		<u>+</u>					—	 -					-+	<u> </u>		<u> </u>		<u> </u>	\square		
		_	· • • • • • • • • • • • • • • • • • • •		-+	<u> </u>	╼╌┼						_ <u> </u> _		·						
					-+			-+	\rightarrow												
		┉┈──┼╴					<u> </u>				_ ` _								_	-+	
					╼╼┾╸			<u> </u>						<u> </u>		<u> </u>		<u> </u>	_	 	

oject: ea (Grid) llectors			582. North GRID. Ham.	EEWATIN EN SOIL SA	AMP	LES		Resu	ults_	Plott))[]	3/0 3/0	! 10 ·	I.T.S	.: 4	10 y					
	Sample L	ocation			Ţo	pogr	aphy	·		V	egeti	ation	i				So	11	Dat	a .	
aff			Notes		Bottom	of slope		Ground	Wooded	Wooded					Sampled	Depth to Horizon Somple	Horizon	Develop – meni	Parent	Materiat	
mber 00' ntour	Line	Station			Voiley B	Direction	HIII Top	Level G	Heavily	Sparsely	Burat	Logged	Grassland	Swampy	Horizon	Depth to Som	Good	Poor	0ri f I	Bedrock	Colour
101 102 102 102 102 102 102 102 102 102	······································	0+00	10% from, 10% org,	Silt Band.							÷				ß	30	∇				me
12		0150	102 tune, do org, 3	and Kitt							· .				<u>ß.</u>	25					WK
25	1645	1+00		Sand/Silt											Ķ	10	<u> </u>	 			me
4		1+20	15 tipe, dove,	Sand/silt							·				<u>a.</u>	45	N.	<u> </u>			mr
25		1+50 2.400	10 h trag un pro	Sand/ gill											<u>R</u>	50	<u>×</u>				m
<u>, 1</u>	1580	3+00	De Francis im mile	2 may sur											L	3	H.				hin
กซี	1520'	3+50	202 Free donth.	Silf/Cand.								·			4	3	<u>,</u>				Hone I
<i>.</i>		4100	57. Frag. 6218. 9	end/silt.					- f						8.	30	6	Ť			Dr
0		4450		sittleloy.											6.	30	V				ZR
0 9 . 10 11		5400		sitt alag								· .			6	40	1				MA
12		5+50	10 tray, min or	9, Sundy sitt	i			!·			·					40	<u>۷</u>				ny n De
3.		6+00	min sig, sand	Silt '		·						•	·			NR I					
	Runni	g GRID	3300'-3400'	North	RIT	> .	·								<u>A</u>	3	·				412
	26 160 ~	2+250	Volar. 1 on. C.	lay Kitt:											6.	20	\mathbf{V}		-		MR
		74500	52 Por Alava	day sitt												20					RK
		2+75W	57 frag 5 0/3 5 5 1 frag 5 1 gra 6 5 1 frag 5 1 gra 6 5 1 frag 5 1 gra 6 5 1 frag 5 1 gra 7	andfitt						•	ļ				Ā	35					DB
		1400W	52 + Hay, 5 kove, 4	las/silt							<u> </u>				k_	30	≁ –				DKK
<u> </u>		1+500	5 6 fing, 5 6 pr, 0	Lay/Sitt				-+				<u> </u>			5	40	┯┷┥	~			DRE
<u> </u>	<u> </u>	1+18 2,400	> fine, > (ovs, C	they alt		-+	-+		+	<u> </u>				 	6	355 300	Ť				MRS
		2+25	127 123 57 213	SIF -		-+	+		+						A	35	<u> </u>	\forall			DR
		2+50	15 Thise in one	Silt/clay											6	30	$t \dashv$	┷┼	-+		DB MAB
		2.175	52/ gag, un obs	sitt/clan					1						6-A	35	. 1				42
		3400	52 trog, min org	silt/clay						Ĩ					6	30		\neg		[ins

Area (Grid Collectors):	the Ch	082 SOIL NoverthGRID ittam	<u> </u>	opogr		Map Date	ults .: 24 e	20	ted I D <i>IG</i> <u>7</u> eget	n. [-]-		N.T.S	.: _	104 Ung.	1 <u>B</u> -/11 50		Det		
	Sompre C	1	4 .			арлу			•	egei		•					•••			
Sample			Notes	Bottom	of slope	1	Ground	Wooded	Wooded			Q	-	Sampled	Depth to Horizon Sample	Horizan	Develop – ment	Parent	Malerial	
Number	Line	Slation		Valley B	Oirection o	HIII Top	Level G	Heavily	Sparsely	Burnt	Logged	Grassland	Swampy	Harlzon	Depth to Samp	Good	Poor	Oriti	Bedrock	Colour
	1905N	04250		-										K	25	V				mR
		0+50.5	I type, min ove, silt I clay											te.	25					MK
	ļ	#155	o tipe, min or, silt / clay.											<u>k</u>	30	<u>\</u>	<u> </u>			mil
	<u>.</u>	140015	d like, un ove, sitte clay											k_	30	$\overline{\mathbf{v}}$	<u> </u>	<u> </u>		mR
		12515	etyon, min ave, not cher.						<u>.</u>	•				<u>12</u>	15	<u>A</u>	<u> </u>			MK
		1275 5	52 flag, & all, silt clay											bj.		HK-	<u> </u>			mR
·		2+00	Proce, min ora, sitt / clay.												30	<u> </u>	\mathbf{k}	r I		n R
		2+25 2+50		45. <u> </u>			—							<u>4 ~ c</u> 1	25	\	<u> </u>	\vdash		mK
		2430	Prote , min ort , silt (clay .						,					RY .						mK
	ALGN	<i>b.L</i>	207 ligg; min ova. Sand/Silt											6	28	1				ZK
		OTLOP	252 File one with Kand.	1								•		1-1	20	4				ĨĨ
		0450	57 Wal. A ma sund sitt				·							5. Ø	30					Ī,
		0+80	Olyan & ova Sitter day											4	30					DR
		1+20 '	atide, 6 or ; till clas.											k_	30	V	·			mK
	t i	1+25	blug immerce, sittlelay.											K_	25	$\overline{\mathbf{v}}$				mk
····		1+50	othe con sittician.						·						20	V]		m
		1+75	57 the It ma sitt clay. 5% trad. a ora silt felay.	 					·				-+	4	18	~			┢───┛	mK.
			5% Krad. O ora kill falay.									<u> </u>		6	70		<u> </u>		 #	mR
······································		2+25	50 files, 5 8 ora, sittleday.	+	.	\rightarrow				-+		<u> </u>		5	20 35	· V	\leftarrow		⊢_ -ľ	mr 5h
		2+50	LP & TVA, 5 6 DYA, SUL CLAU			┯╍╋							<u> </u>	2	25 20	\	$\mathbf{\nabla}$	 	¥	12
		3400.	207 file, 57 byg, gill/clay, 18 file, and by gill/clay 57 fre, and by gill/clay						-+	[<u> </u>		/	<u>z</u> _	~	v			¥	Ľ
		7700.	2 + 11 00, gr arg, min forger.	<u>+</u> [-+				\rightarrow	-+	-+						-+	
···						\neg					-+					·			ŀ	$\neg \neg$
											·								<u> </u>	

L

roject: _	PARA	DRAM	KEEWATIN E	SAMF		5	Res	ults	Plot	ted E	3y: _									
rea (Grie	1):	Nott H	GKID				Мар	»: —	~		Ar		N.T.S	3, : _						
ollector	s:	att 1th	ittam.				Date	e	44	1_	2							<u></u>		
	Sample L	_ocation		Т	opogr	aphy	•		d	eget	allar	1				50	i 1	Dat	a	
-			- · ·		1				<u> </u>				<u> </u>				1	1		
	•				2			- ·	2				· ·	2	Depth to Horizon Sampte	Horizon	Develop- meni	12	Materia	
omple				Baltom	slope	ŀ	Ground	Wooded	Wooded				·	Sompled	or	1 S	eye.	Parent	đ	ł
			Notes	1.2	5	ł	ē	Ň	3			P	ŀ	S	∓≞	1	۵°	<u>م</u>	<u>,</u> 2	[
amper					e	0			í -			u D [λ	ł	12 Ē		T I		×	1.
		· .		12	e.	- 4	Ξ	VII.	5	Ē	30	* 2	Ε 0	Horizon	l ≞ ∾	8	>	=	1 oc	1
	Line	Station		Volley	Ofrection	HIII Top	Level	H eavily	Sparsely	Burnt -	Logged	Grassland	Swampy	문	1	Good	Poor	Dritt	Bedrock	Calour
	1STOON	61	30 strag, min ove. sitt 15and.							· · ·				15	30	 \ -		1		MR
	1	Ot25 W	207 lon, a rig, sitt Band							-					20	<u> </u>	†t			m
		0160	57 trace min ma sitt/ class.											AB	20					MI
		0+75	O tray min orle, sand Bilt											14	25	IU	İ			m
		1100	d. traa, min dra. Sitt Clay.											14	20	6				M
		1+25	6 has im ave, silt clay.						·					h.	20	\mathbb{N}^{-}				h
		1450	blag, un ore sitt faloy.											1	30					M K K L
	· · · ·	1+75	& frag 107 and sitt/ clay								· · ·			Ä	20	<u> </u>				H
		2400	van trag + eve, silt / clay	_										A	20	<u>h</u>				RL
		2015	10+1 fag, um ore, sitt											7	20	<u> </u>				mk
	+	2480	57 mar a my sitt											3	30		\mathbb{N}			MK
		3,000	157 from min me, silt / clay					•			· ·	,		4_	30					Dh
		3000	5 110g, m NG, SAM Jang									1		<u>,</u>	10	×				ΜĽ
	IStOON	01255	5% Ping, un mg, Sund/sitt.					<u> </u>						K	75	^				N
	1 12 0010	0450	57 Kok him TV4 Sand Kill											1	25	\mathbf{k}	•			<u>nk</u> 4 K
		0675	min otes tone Sitt/ clen.													Ç			-1	m
	·	1400	57 hon, nin 6va, silto I clay.											Z	20	V			, i	ne
		1425	177 the min on hit liter			ļ			•				_	b	20 25					mK
		1+50	5. Ital min ova Sund Kibb	_										<u>A</u>	25	$\overline{\mathcal{N}}$				L
<u> </u>		1+75	5, 1 find, min ova Sund/sitt Office, O ova, Sitt/ Clay. 57 Hay, O ova, Sitt/ Clay.										···· [6	25	V				MR
·		2,400	57 Hag, O'ave, Sitt / Clay.		·		-+							B	25	\mathbf{v}	[nk
	a lot +					<u> </u>			<u> </u>	·				_		┍──┤				
·	13450N	0400 8.1	5 Tring, min eva, Sitt/ clay.	╉╌╌╂	[-+				-+				Ő,	20	<u>v</u>			!	<u>nr</u>
		002 6	un org fring, silt / clay 15 Idine un org, silt / clay 0 frag 10 org, silt / clay 35 (Prog, 0 org, silt / clay	╺┼───┼									ŀ	<u>z</u>	20	¥↓				nK
		0050.0	10 to take fin over the Clay.	╉╍╍╶╉	_Ļ			 -	╾╾╋		+		ť	<u>\$</u>	20 26	<u></u>	<u> </u>			<u>n (</u>
		DOI D	U FURA TU OVAL SVOT CORY	╉		-+			-+			-+	<u> </u>	s-A	40					
		17200	TO STIPS, U ST3, SWU Sand.	+ +	-+	-+	\rightarrow						f		20	f	v -		₩	4

. .

í

			HITTAM			-				Map Dat			In	5		90	.:- 2.		<u>~</u>		110		_
	Sample				¥		T	00091	aphy			v	egel	atio		7			Sa	5 11	Dat	a .	
Sample	·			otes			Bottom	stope		Ground	Wooded	Waaded					Sompled	Herlzon	Horlzon	Develop - ment	Parent	Materlat	
Number	Line	Station				•	Volley Bo	Direction of	HIII Top	Level Gr	Heavily W	Sparsely	Burni -	Logged	Grassland	Swampy	Harlzon' S	Depth ta Horlzon Sampte	Good	Poor	Drift	Bedrock	i
	99+ CA	NOT25	1-26	Ilas	le.H		-		-			· ·						20		+			
•	201 301	0+50 4	107 5		Te le								,				la K	2.2		+		· ·	
· · · · · · · · · · · · · · · · · · ·	3	0+754	21	Alan	Teitt											ſ	8	20	∇		[]		
•	-	1100	15111	4;A!	Courd								-				12	20	5				
	4	1+25 0	CIRA	Im te	H							ļ				-	6	15				1	
	*	1+50 W	<7 Hos.	clay 1	sitt												þ	20					
	17	1+750	107 4	alle!	Sill												6	25					
	H	2+00 W	103 Tink C	lay 151	H.									···			<u>6</u>	10	\mathbf{N}				
_	H	2+250	152 Pm.	clay 1	sitt	·			·								ß	15	\mathbb{N}	\square			
	H	2050W	20701/2	silt				•								/	4	20		\sim		عنديد	ľ
	11	2075W	52 mil	0100	, charles	sitt											6	25			$ \longrightarrow $		Ł
	37	Stoo W	5300,01	an / 51	tt .			-	·	-+	·	-+	<u>-</u>				8	50	<u>\</u>	┝━─┦	-+		ļ
	28+50N	DY26E	10%m.5	·H	-	·				·				- †			ß	20	∇			\neg	ţ
	11	24505	5 104,5	1 m	C.m.	1/cilb			•	. 1									\mathbf{V}				
	"	01760	1 - 6 518	sill		7							T	- · ·				25					Ľ
	H	1100 0	10% 00.	Silt	\$							Τ					£	20	V		·		F
	\$7	1125 5	TALUS.						ŀ	<i></i> *	ŀ					Ī	T			∇			Γ
	N	1+50 5	plan. S	ilt				Τ				•					3	20					
	11	1475 6	25 Mare	Good	Bett													15					k
	И	2+005	2. Elia	5%5	1 cla	4/Site											2	26	$\overline{\mathbf{v}}$		<u> </u>		Y
					<u></u>	/						_ ·				_	_						_
		•											 -		<u> </u>		_				-+		-
																		<u> </u>			-+		_
				<u>.</u>					<u> </u>	_							,			_ <u> </u>			_
														-+	-+		_		\rightarrow	_Ľ		<u> </u>	
																			 +-		+	 +	_
				·								-+-				╾┶┨╍╴	\rightarrow		-+	+	-+-		_

۶

	<i>ה</i> ו	, #	KEEWA	TIN EN SOIL SA				NG ∷ Resu			ء الربية.	24.								
roject: _	Parad	igm # 082	11 1 1 0					Resu	1175	Plan	eg (- · Y								
rea (Grid): <u>1600</u>	Contour	Mikail 2					Map	•					N. I. C), · —					
allectors	. Scott	Thankso	<u>9057 082</u>					Date												
	Sample L		1		To	pogr	aphy	·.		v	aget:	o ti o A	1				50	i 1	Dat	¢.
1.e.		.0001100		ļ	· · ·				1					[T.		1		<u> </u>
Sample	-		Notes		Bottom	slope	-	Ground	Vooded	Wooded		1			Sampled	Depth to Harlzon Somple	Horlzon	Develop ment	Parent	Materia
umber	Line	Station			Volley Ba	Okrection of	Hill Top	Level G	Heavily Wooded	Sporsely	Burnt	Logged	Grassland	Swampy	Harlzon	Depth to Somy		Poor	Drift	Bedrock
017	1600	15+50	10% Rack Fres						\leq						R		4			M
119		16+00	10% 11 11						<u> </u>								7	\vdash		
019 014 020 021 022		16+50	10% "												<u> 13 </u> 13					
010		17600	10%								-				B		~	┢───╈		A
021		17+50	10% "						4						51		1		{	All
022		18+00	10% 10												B					40
023		18+50	10% M t						+						R	1,°				D 6
7 <u>24</u>		19100	56 " "						1						ß		1	, ⊤†		Dr
225		19450	< 570		{										В	ا دم ا	/			
226			<5% ' '						$\overline{}$						B	-5	/			
<u>רבי</u>		20+50	á l					1	71	1					B	0				D
124		21100	4			·	-		アキ			. 1	•		ß.,				ļ	M
229		21.+50	<u>4</u> <u>7</u>						21	1					3_					M
030		22+00						·	7.						B	1 21	1		· ·]	
031		22+50	Laver II La Co		1				7						8		Ż	·		
032		23+00	K10% Route Fraz												B	13			•	R
<u>ø33</u>		23+50	1/						<u> </u>						5.	M		$ \longrightarrow $		
234		34+00	(f						/	•		_				1PD				
235 236		4127	<5% Kock Fras												B		<u> </u>	 +	<u> </u>	(b_1
737		25+50	1. <u>'</u>						\leq						B	┝──┼			<u> </u>	M
238		26100	G			<u> </u>			$ \rightarrow $						B	<u> </u>	\leq	<u> </u>		þ f
37) L 9									<u> </u>			ß	├ ───┤′	\vdash			4
40	<u> </u>	27+00	A						\leftarrow		{				ß	^	$\overline{}$	\rightarrow		- • • • • • • • • • • • • • • • • • • •
41		27+50	11					<u> </u>	$\leq \downarrow$	<u> </u>		-+				┠───╄	; 		+	<u> </u>
42			11 17					<u> </u>	<u> </u>	+					<u>B</u>	<u> </u>	/ 	-+	+	<u></u>
43		29+30	1. 11				 +		/ +			-+			<u>-</u> 8 -	(-	<u> </u>	+	A in D f
44	•	29100	11						$\not\vdash$						ß		7		+	

1

.

KEEWATIN	ENGINEERING INC.
----------	------------------

•

Area (Gria	ı): ⊥	24+	<u>00 h</u>	PAR4014M Z lort GRID. on 905T*082	SOIL S					»:		ted E			N.T.S	i.:						
Conector	-		ocation		· · · · · · · · · · · · · · · · · · ·	Ţ	opog	raphy	•		v	eget	atio					50	11	Dat	0	
Sample		•		Nates	•	Battom	e lope		Ground	Wooded	Wooded .		-		meddar	Sompled	Depth to Horlzan Sampte	Horizon	Develop - meni	Parent	Noterial	
Number	L	ine	Station		elevition	Voiley Bo	Direction o	HII Top	Level G	Heavily	Sparsely	Burnt	Logged	Grossland	Swampy	Horlzon	Depth to Som	0 Good	Poor	0r111	Badrock	
004	1/20	1+001	0400W	5-10% Fock fras	3420"		 	<u> </u>		/	<u> </u>			-	<u> </u>	12-		1		<u></u>		P RE
005			0+25W	15%	3420			ļ		<i>~</i>	[ß	1		\vdash			L R F
006	-	1	0150 W	15% 11 11 7506 11 11	3460	ļ	<u> </u>		ļ						i –	18	<u> </u>	17	+		Ľ	k Ri
007			0+75 W.	meadow	3420	ļ	<u> </u>		<u>{</u>	<u>+</u>					1	8	1	1	1			h R Í
008			1100 W		3410"					·['	-	-		1	B	1	1	<u>† </u>		\square	ARP
004	-		1125 2	11 1/	3340-	ļ	┼━━━	<u> </u>	<u> </u>						1	B	1	1				AR P R P
010			1+50 W	.1 /	3260			1		[V	B			1			L Ń.B
011			1+75 4	17 Y	3230										4	ß	1.		<u> </u>			ßß
on			2100 2	1 · · ·	3210	 	╆								<u> </u>	B	1 3	1	1			6 R B
013			2+25 2	50% rock fras	300"	<u> </u>	┼───	<u> </u>		12						17	12		1			S/an
013 014		1	2150 4		3130 *				·						i	Б	X					160
015			2+25 W		3090"		<u> </u>	!						•		8	<u>, , , , , , , , , , , , , , , , , , , </u>	1				h re
015 016			3+00 ×	15% rock trug	3050	+	<u> </u>			12					1	1	6		$\overline{\mathcal{V}}$		1	RE
017			3+25 4		2990-									_			5			· 1		•
018			Bt50 V	NS Cliffed out	2																	M R
019	424	100N	0+25 E		<u> </u>									-		?	~	1	1	•		DRI
020			0150 E		3715						-			<u> </u>	V	R.						181
021			0475 E		3380"	~									-	ß	3	/				P RI
022			1100 E		3580* 3380*					-						ß	I-					$^{\prime}$ \vec{K}
023			1+25 E		2200		<u></u>		1							'ß	5	1				AR
024			1450 E		3400"		. -			1	•	_				ß		/			6	2 11
025 026	1	V	1175E	30% hak Ecay	3470-					10					V	ß		1				110
026		,	2102 E															,		· · · · · · · · · · · · · · · · · · ·		

Ì

KEEWATIN	ENGINEERING	INC.
----------	-------------	------

•

SOIL SAMPLES

•

ì

Area (Grid): <u>1800</u>	on "082 contair t Thomp	Mikail 2 Sea 905T 082	3012 4				Res Mop Date					 	N.T. S	i. :						
	Sample 1	_ocation			T	59 <i>691</i>	aphy			V	aget	otior	•				30	+ I	Del	a 	
Sample Number		-	Notes	-	y Boltom	on of slope	Top .	1 Ground	Heovily Wooded	iely Wooded		1	Grassland	Swampy	Harlzon' Sompled	Depth to Horizan Sampto	d Horizon	r Develop - meni		Bedrack Materlat	
	Line	Station			Vailey	Direction	HIH	Level	Heovi	Sporsely	Burnt	Logged	Graa	S KO		Dept	6 004	Poor	0111		o Colour
SIDC	1800	0 +00	0% Back Ecogeneots			ļ		<u> </u>	ļ		<u> </u>				B	+	1	<u> </u>		<u>~</u>	ት <u>R</u>
5101		0+50	0% (c)										_		ß	1	17				IR
5 102	N	1400				<u> </u>									B	1		1		A	R
5 103		1150	0%						┠──┤						B						Ŕ
		Dtoo	15%					· · · ·			<u> </u>			<u> </u>	B	1	17	1			k R
5 <u>104</u> 5 <u>1</u> 05		2+50	0% -												ß	1	1			0	hß
5106		3+00	2%			 						· · ·			B		7			(11
5 107		3+50	0% 4 4						<u> </u>				_		ß	F	17	í T			DR
5 108		4ta	0% "								1				B					1	ι κί R
5 107		4490	0% * 1		+	-		-							B	0	1			1	R
5110		5400	10 70 "			╞──									B	3				L	R R
<u>5 ill</u>		5+50	0.0			<u> </u>									B	1-8	7				ÞR.
SIA		6+00	070	·····	-	i i									ß					Ń	кI
5113		6+50	0% 11 4		+										ß	3	/	. !		C	PRE
2114		7400	20%		+	<u> </u>									I B		7				RI NRI NRI
5115		7157	0% "		+										B	je l			•	N	1RI
5/14 5/15 5/16 9/17		8400	0%							•					ß		/			1	h K i
7 i 17		8+50	070							•					B	42	/			Ĺ	RI RI
5118		9100	0% 4												B	$ \mathbf{Y} $	/				R
5118 5119 5120			170				1		Í	_					B	122.3	\boldsymbol{Z}			Ľ	RI
>120		10+00	0%						1												
		· · · ·														· -					
			-						Ī												
									Ĭ										:		
		<u> </u>									•										
		ļ																			
	4 	ļ																			
		1			<u> </u>							1	}							1	

KEEWATIN	ENGINEERING	INC.
----------	-------------	------

Project:	Paradi	contour:		SOIL S				Res	ults	Plot	ted E	3y: _									
Area (Grid): 1900	contour						Мар):				I	Ŋ, I. 3							
Collectors	: Scott	Thompson	90 ST 082					Dat	e						r						
		Location			ί τ _ι	00001	a by A	•	ļ	v	eget	oti da) 				30	i I	Det	a	
Sample	•		Notes		Boltom	f slope		Ground	Wooded	Wooded			Pe		Sompled	Deplh to Horizon Sample	Horizon	Develop - ment	Parent	Material	
Number	Line	Station		•	Vailey B	Orection of	Hill Top	Level G	Heavily	Sparsely	Burni	Logged -	Grosslar	Swampy	Hertzen'	Depth to Sam	Goad	Poor	Dill	1	rologi 1RB
5011	1900°	5+50	0% rock fras			<u> </u>	<u> </u>	[-		-				D		1	┟╴╸╸┥			DRB.
5.012		6100	5% 11 1				<u> </u>		17-						B	1	1				.KB
5 012 > 013		6+50	0% "			 			17	[B	ř	1				IRR
5014		7400	5% "				1		1	<u> </u>	•				B_	5	1				285
5 015		7150	2% *												B	U U	1				RR
5016.	<u> /</u>	8100	1 170			†									В	0	2				urb
1 <u> </u>	ļ./	8+50	06				[1			···			B	123	C				h îl B
5019 j		9600	06						1						B	i S S	1		<u> </u>		DRB
019 i		9150	1570						/						B	L &	<u>/_</u>	╞╾╍┙	<u> </u>		266
<u>5 020;</u>	<u> </u>	10100	0.0			ł.						-			B		/	Ļ		4	NRB
i osli <u> </u>		10150	2%						/			_ ·			?	4					<u>27</u>
1522		11100	15% " "						/				·		5	tace	/	├ ───-	;		<u>. RB</u>
023i	17.	11+50		·#	•	<u> </u>										-+-	·	 	j		
024						1			•							Ę		\square			
	<u> </u>					Ì								_							
																		 	<u> </u>		
			•							•								\vdash			<u> </u>
																		┝──┥			
	1																	┝──┥		-+	<u> </u>
	<u></u>		· · · · · · · · · · · · · · · · · · ·															<u> </u>		<u> </u>	{
·						•												├── ┤			}
	· · · · · ·											·						\vdash			
	· · · · · · · · · · · · · · ·																				┈┙
······································	[-									<u> </u>							┢──┤			<u> </u>
																		┢━━━━┫	 	ł	—
]						<u>i</u>							┢╼╼╼┫			1
													<u> </u>		·			┝───┤			
																		┢╾╾┑	ł		i

Projecti	PARADIG	M 082	KEEW	ATIN EI SOIL :							tait 1	201		5-	The	mp s=	~~~				
A	En	adres 3 Che	(SE Guines)	-																*	
Area (Gria)	: <u></u> : इ.स.	aaigm & C/G	In DECUMPT	-				Мар); <u> </u>	a ()	0		ł	1.T.S	· · —		<u> </u>			*	
Collectors		windson		_			_	Date	<u>• </u>	<u> 9 - 8</u>	• 7 •)		· · · ·							
	Sample L				Ţ	opogi	aphy	•		. v	eget	otio	1				So	i 1	Dat	0	
Somple			Notes		Bottom	of slope		Ground	wood ed	Sparsely Wooded	Burnt Merchan, wass	Lagger Alder	P	•	Sampled	Depth to Horizon Somple	Horizan	Develop ment	Parent	Material	
Number	Line	Station			Volley B	rection	Hill Top	Level G	eavily	parsely		- meteo	Grassland	Swompy	Harlzon	epth to Sam	G ood	Poor	Orlf1	Bedrock	Colour
OST 002					<u> ></u>	ō	<u>~</u>	-	Υ	نې.	9	-1	9	S							
5068046 5069041	3200	9-00 25									$\overline{}$				B	25	> >		M4	VA	4 R\$ "
07-048		50													+	25				· ·	
071-049		15		·	+	<u> </u>	[1-				+	30				·	MRS LRB
050 FFR		1 100			1											75					MR
072 050 051 052 053		25								•						20					6.10
052		50	<u>_</u>													35			-		BR,
053		75	. <u></u>													30					LAR
054		2+00		· 							\downarrow				\perp	30					MA
075		25	·		 	·				[+					35	\bot				MR
056		50									+					25					LRB
058		3+00				-					-	· ·	,	\rightarrow		30	+				12/2
059		25			· · · ·	·		•			┼╌┤					30					DRB
060		50							<u>-</u>							25					LRB
061		15		<u> </u>				i				71			+	3.1					NRS
062		4100										~				35			·		DRE
063		25							·		Y			T	1.	20					MRB
064		50								•	~				-	25					"
065		15			ļ					-+	<u>~</u>]	-+				5					1/
066	<u> </u>	Stad	·	<u></u>						\rightarrow	커	_			+	25	┯				"
068	·	25					<u> </u>			<u> </u>		z	-+	<u> </u>	+	25	┼┤				
069		15				-+	<u> </u>				,	乧	╍╼╋		+	25	┽┤	-+	╺╌┼		
010		600						-+				7	-+	-+	+	30	+			<u> </u>	<u> </u>
071		25					-+	-+		\rightarrow	-+	5	<u> </u>			3.	╉╌╉		-+		DKB
071		30	· · · · · · · · · · · · · · · · · · ·					-+		-+		マ			┽┥	3.	┥┥	-+	-+	 [·	<u>or</u>
013		75										Z				30	\uparrow	<u> </u>			OR
014		1100					Τ			T		रा				25	Σ^{\dagger}			1	DAD.
015	•	75					1	ſ		.1		▼ [Г	T	6	30	V			11	RA

Project: Area (Grid) Collectors	Parac :	t Thom	North pson	SOIL S				Resi Map Date	ults :	Plot:	red E	3y: _ 10	^	I.T.S	. :						
	Somple L				To	pogr	aphy	:		v	eget	otian		i			So	11	Dat	0	
Somple			Notes		Bottom	of slope		round	Wooded	Wooded	erdon	Acta-	đ		S ampled	Harizon ale	Horizon	Poor Develop -	Parent	Material	
Nymber	Line	Station		•	Vailey B	Orection o	HIH TOP	Level G	Heavily	Sparsely	Burnt M	-pegea.	Grasslan	Swampy	Harizon	Depth to Samp	G ood	Poor	Orift	Bedrock	Cotour
	045 3200					\mathbf{w}					7				•	25	~	1			P L
046	<u>γ</u>	25	<u> </u>								\vdash					┝╂─	-+-	- 	 	┢──┦	9 4
047	<u>├</u>	50		<u> </u>		┝┟╴					┝╍╉╌				┝╼┥╍╸	<u>┥</u> ┨╧	\square	 '		 	\$/M
041							÷		<u> </u>							30	\square	+		╉╍╍╍┩	LR
USO	3200		· · · · · · · · · · · · · · · · · · ·													35		1			
osi		59														20		1			•
052		15		<u></u>	<u> </u>										\square	35					LR
053 054 055		200			ļ											90		_			MR
054		25				┝╍╍┝╸		ļ											ļ	 	ŀ
<u> </u>		50		·	4	┝╍┟╸					┝╌╉				┝╌╌╂╼	1		<u> </u>	┟	∔	LRI
056		75 3170				╞╌┨╴			ŀ		\vdash				┝─┼╸	25	\vdash	┼──	├──	╉───┙	DRI "
058		45		·		<u> </u>									┝╍┼	25	+			╂───┤	M
059	3200	Se		· · · · ·												10	+	+	<u> </u>	╂───┥	L
060	1000	73		<u></u>												35	H	+		┦ ───┥	M
060	1	4100														30		1			2
062		25															-				M
063		50			ļ	\square									ЦĻ			\square			٩
064	├	75				μ						$ \rightarrow $			┝╋╍	25	\square	╉───	 	 '	
_%5	├	STDD													\vdash	35	┝╺┟╴	╄	—	_	•
066	/ / / / / / / / / / / / / / / / / / /	25		-		+									\vdash	35	┝╼╂━	╂──	—	╉╍╍╍╵	
067 068	3200	25		· · ·		┝╋									┝╍╋╼╍	10	+	+		+	DR
069	<u> </u>	6100				\vdash						7				25	⊢ † -	+	<u> </u>	╆╾┙	4
010	·	25	• •	•	1	†			 			ン				20		+	<u> </u>	┢──┤	4
_071	│∤	50		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	W				· · · ·						20	+	+	<u> </u>	t	41

Sample Number	Somple L		<u>9057*082</u> Not		• • • • • • • • • • • • • • • • • • •	Ţ	opogi	aphy	· .		v		otia	,	_			50	11	Dat	a	
Number	Line		Note	•						9			~~~~	•							-	
	Line			1 5		Baliom	f slope		Ground	Nooded	Wooded			Grassiand Madeu		Horizon Sampled	Depth to Horizon Sample	Horlzon	Develop ment	Parent	Materiat	
		Station			election	Voltey B.	Ofrection of	HIII Top	Level G	Heavily Wooded	Sparsely Waaded	Jide H	Logged	Grassian	Swampy	1	Depth ta Samy		Poor	Driti	Bedrock	,
1	L6+501	OFOOE	24 Martin		3240	ļ						•				β.	+	/	<u> </u>		i	ĺ
		0425 E	NO sample	<u>clift outcase</u>	<u>, </u>	<u> </u>									ł	┼───	+	<u> </u>	┾───	\vdash	<u> </u>	Ì
		0+50 E	in Sample											D		8	1	1	 	+	├──	ł
		0175 E			3570				-		-	•	┝──┤			ß	†	1				1
		1+00 E	FO DIE		3520						1.	···		5		B	1	17	 			ļ
	· · · · ·		15% Rak Eca	\$	3480			- 1						1		ß	T	-				ĺ
 		1+50 E 1+75 E			3450		· · · ·						·	/		ð		/		1		Ì
		1100 E	0% Lock Frag		3450									\mathcal{L}		В						Ī
		190 E	UN NOCH 1745			-					-	÷	· .	1		B		1				k
······	16+50N	MITCH			3200-									-		ß	15	\checkmark				Ł
		0150 W			3210			ļ		. 1		•	<u> </u>			ß						ł
		0+75 W	 		3200				.				· · · ·	<u> </u>		ß	10					4
		1400 W			322.											B		\leq	\square		4	
		1+25 4			300			·		·	·					B	4	<u> </u>				
		1150 W		-	3150									<u> </u>		<u>ß</u>	$\frac{1}{1}$		i d			
	L. L. L. L. L. L. L. L. L. L. L. L. L. L	1+75 W			3140									4	 ł	В	15	4		·	4	
		2+00 W			3110				!	!			┯┽	\leftarrow		<u><u> </u></u>	┝──┤				4	
		3+25 ~			3030					<u> </u>					 +	б В	- Z	4				ľ
		2+50 W	25% Rock Fra	4	30.20		 						<u> </u>	\rightarrow		B	3	$ \leftarrow$		·		Þ
		2+75 W		· · · · · ·	2180				 -					/		B	12	÷⊢	╾┼			
		3+00 50			2420					+-	<u>-</u>		┉╋	 +		B	â		+		10 10	5
		425 4		······································	2880					. 	-	7	-+	7		2		<u> </u>	7†	¦	₩) /)
		5450 in 1	Tavial		- 20 50									-	\neg		<u> </u>		<u></u>		لائى ا	1
					ł	 +	+		<u> </u>			-	\neg		\neg	-		-	<u>+</u> -	·	\dashv	-

KEEWATIN ENGINEERING INC.

1

·

1

÷

- {

Ň

1 . .

ŗ

t

Salt

Horizon

1

1

7

.

Oepih la Karlzan Sample

HOC-

de-

100

Her.

Her

Hocm

.

.

F

Derelop meni ŗ

Date

Parent

Proc

Material

Bedrock

Colour

RK

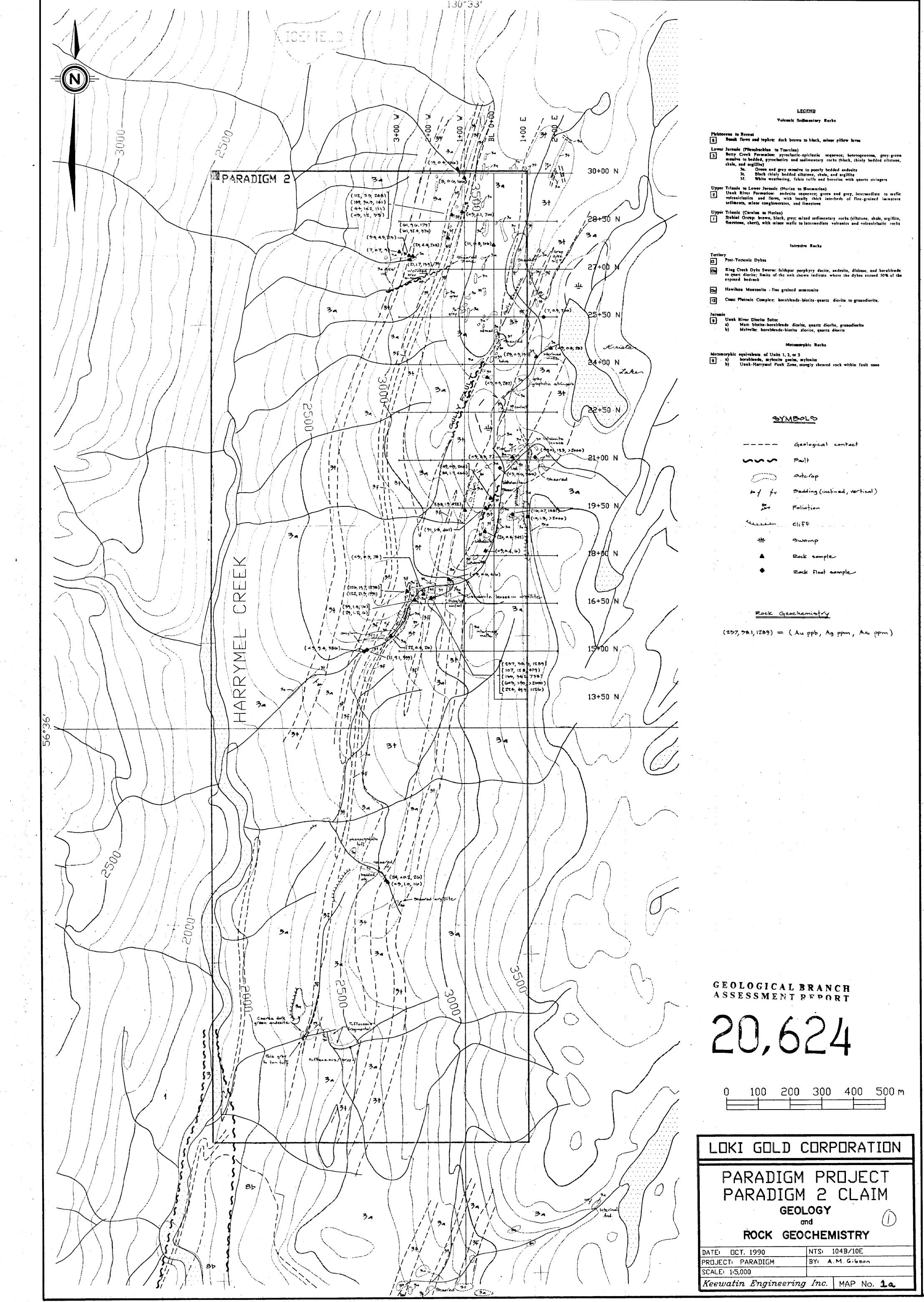
M<u>RB</u> D<u>RR</u>

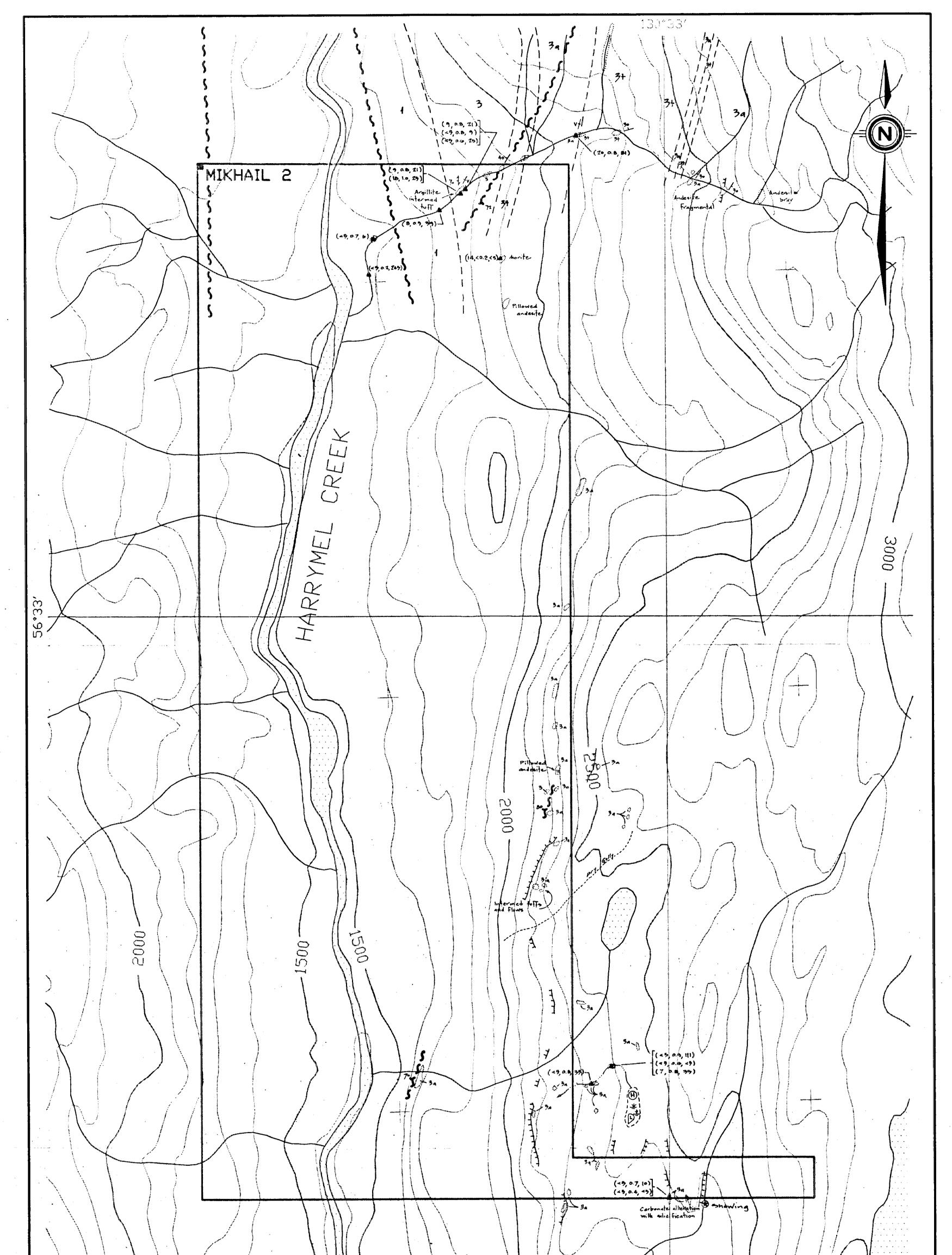
фra

ARB

ARIS

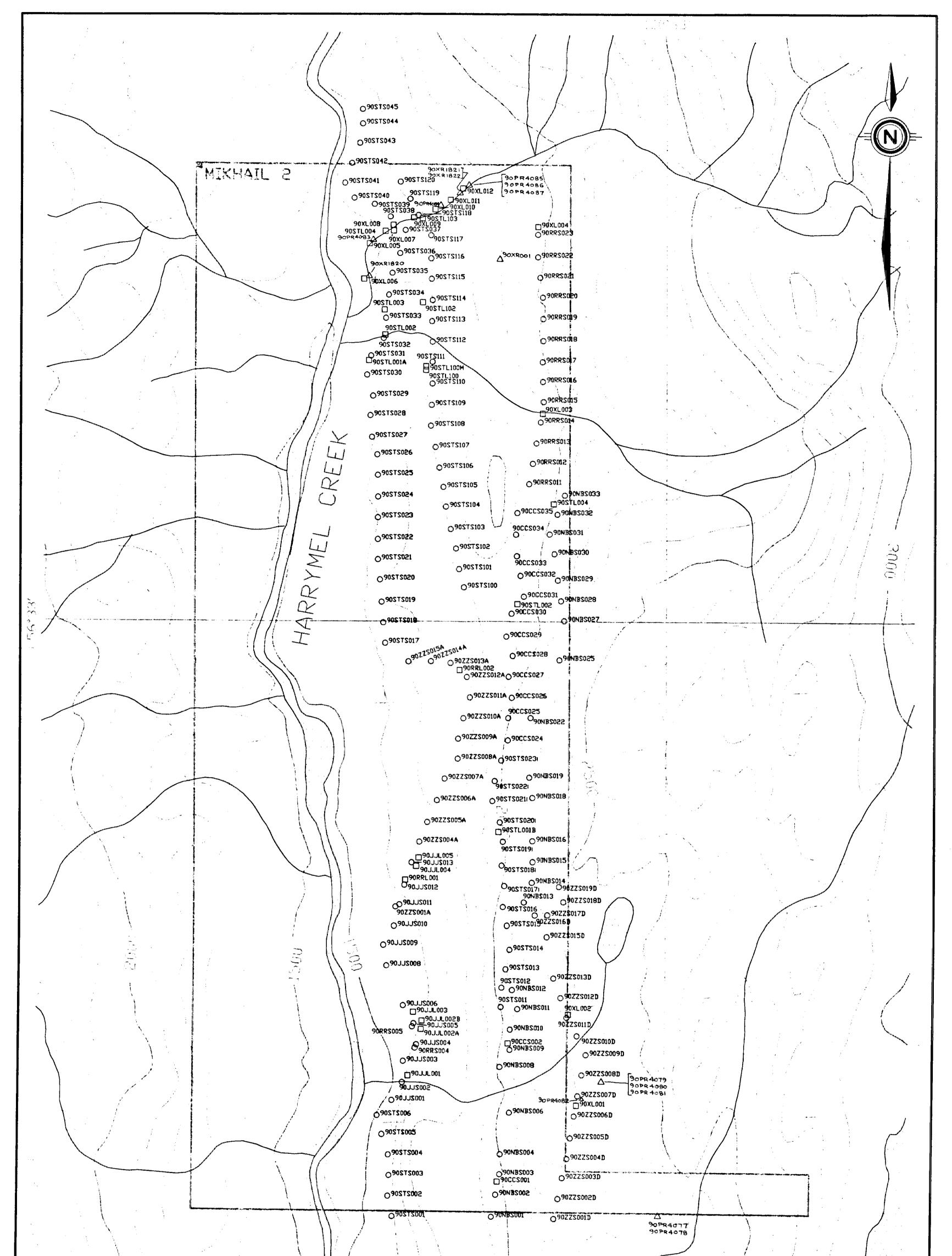
Project:	Pacadia	m # 082 contair		SOIL S	SAMF	PLES		Res	ults	Plot	ted l	B y : _			
Area (Grid) Collectors): <u>1600-</u> : Scat	Contour :	905T 082					Dat	<u> </u>	<i>"</i> L	126	190	2	N.T.S	
	1	Location		**-	T	pogi	aphy			V	eget	atio	n 1		
Sample Number	Line	Station	Notes		Volley Boliom	Direction of stops	HIII Top	Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged -	Grassland		W Horlzon' Sampled
5001	1600	0400	5% rack frag				<u> </u>	ļ			•				ñ
002		0+50	5% (* *						-			<u> </u>			5
003		1400	2% <u>"</u> "		+	<u> </u>		-	7						ß
004		1+50		····	+		1		1		+				B
005	ļ	2100	25% "		+				1	-					ß
006		2+50			┼───										Ľ
					+				i —						
				•					•						
					+										
					1							•			
			· · · · · · · · · · · · · · · · · · ·								•				
				· · · · · · · · · · · · · · · · · · ·		i							•		
					1.										L
															ŀ
			· · · · · · · · · · · · · · · · · · ·												ĺ
	•						·								
	·	<u> </u>								•					··
						-									
					- · · · · · · · · · · · · · · · · · · ·						_				

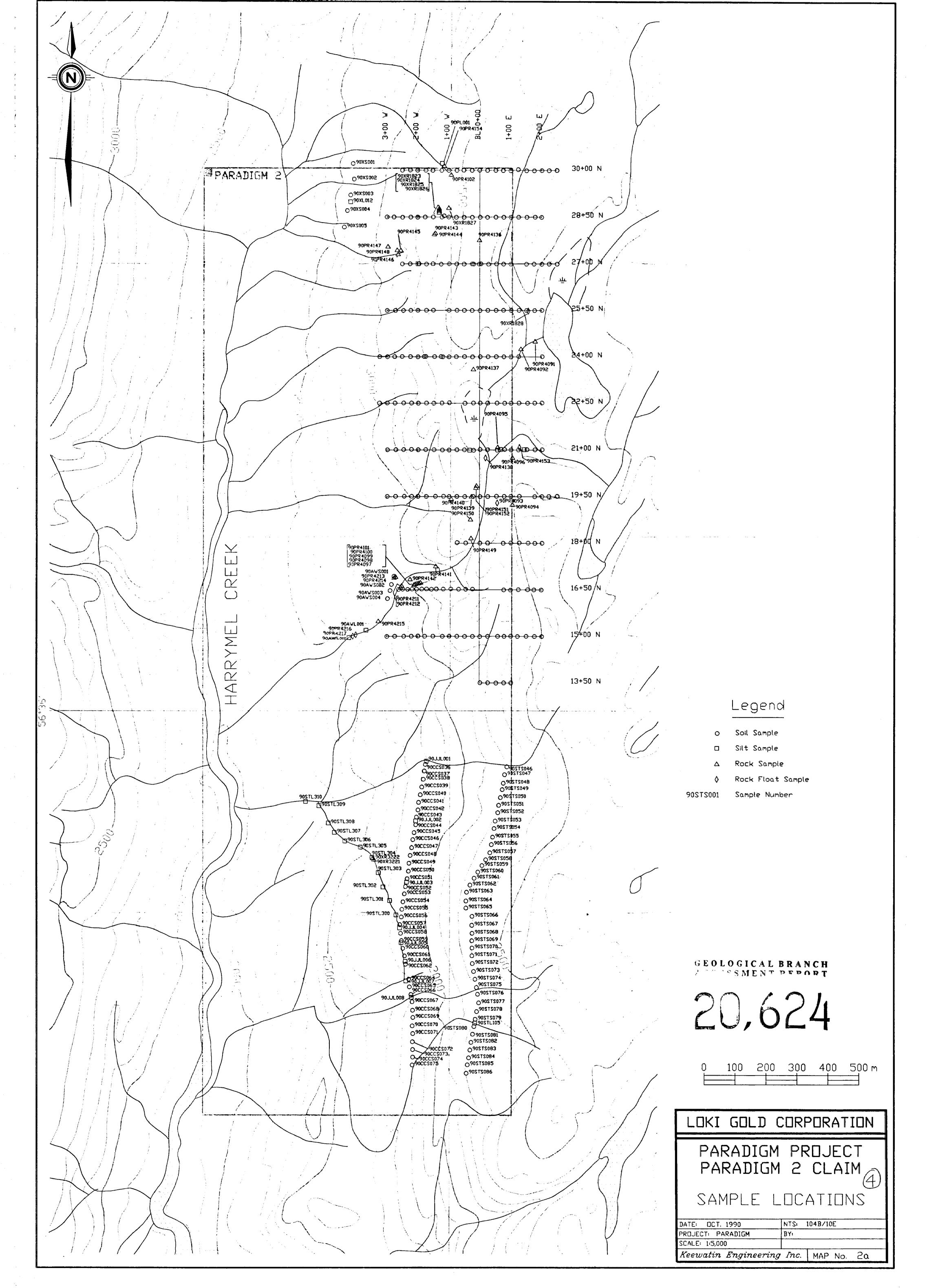

.

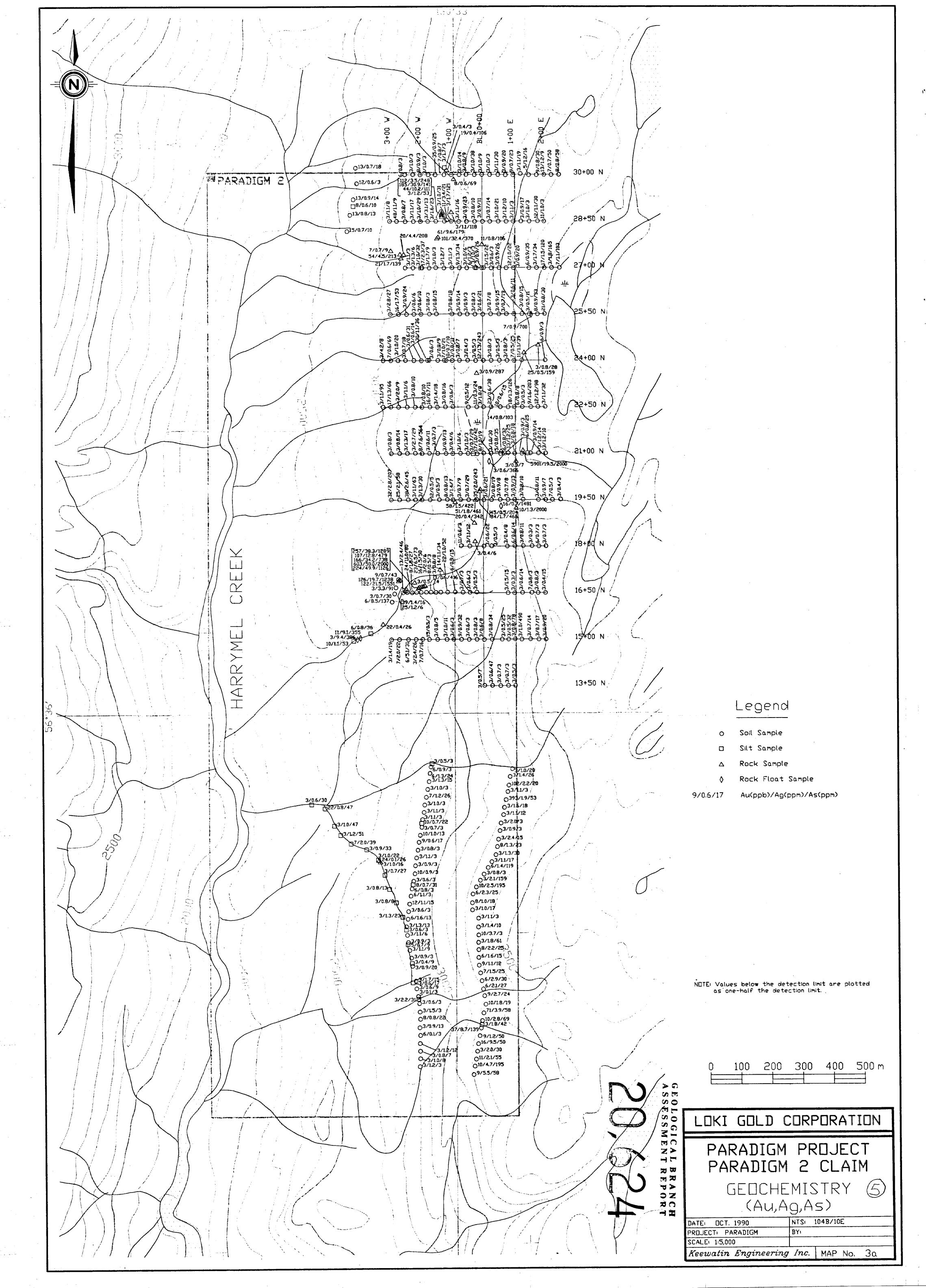

.

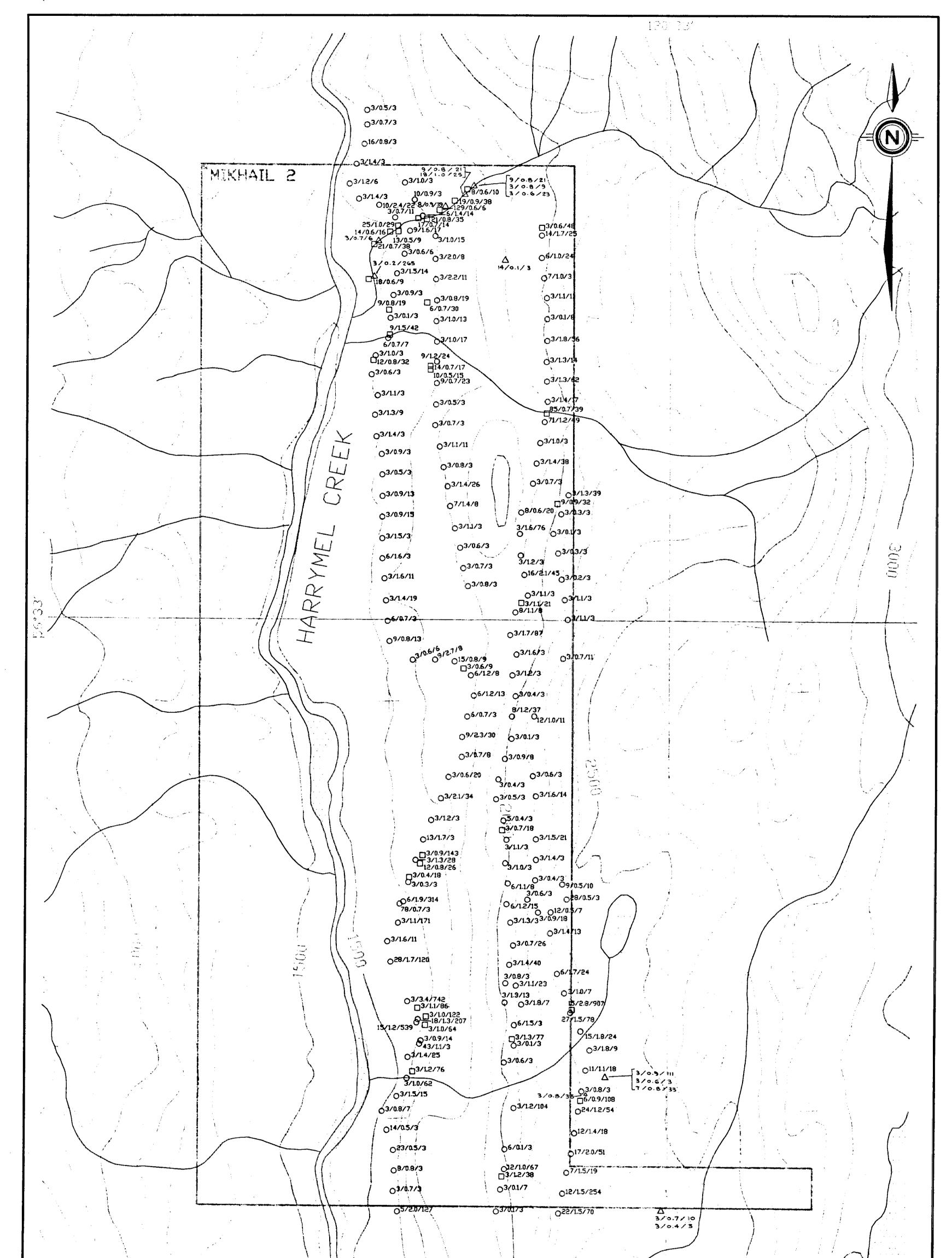
.

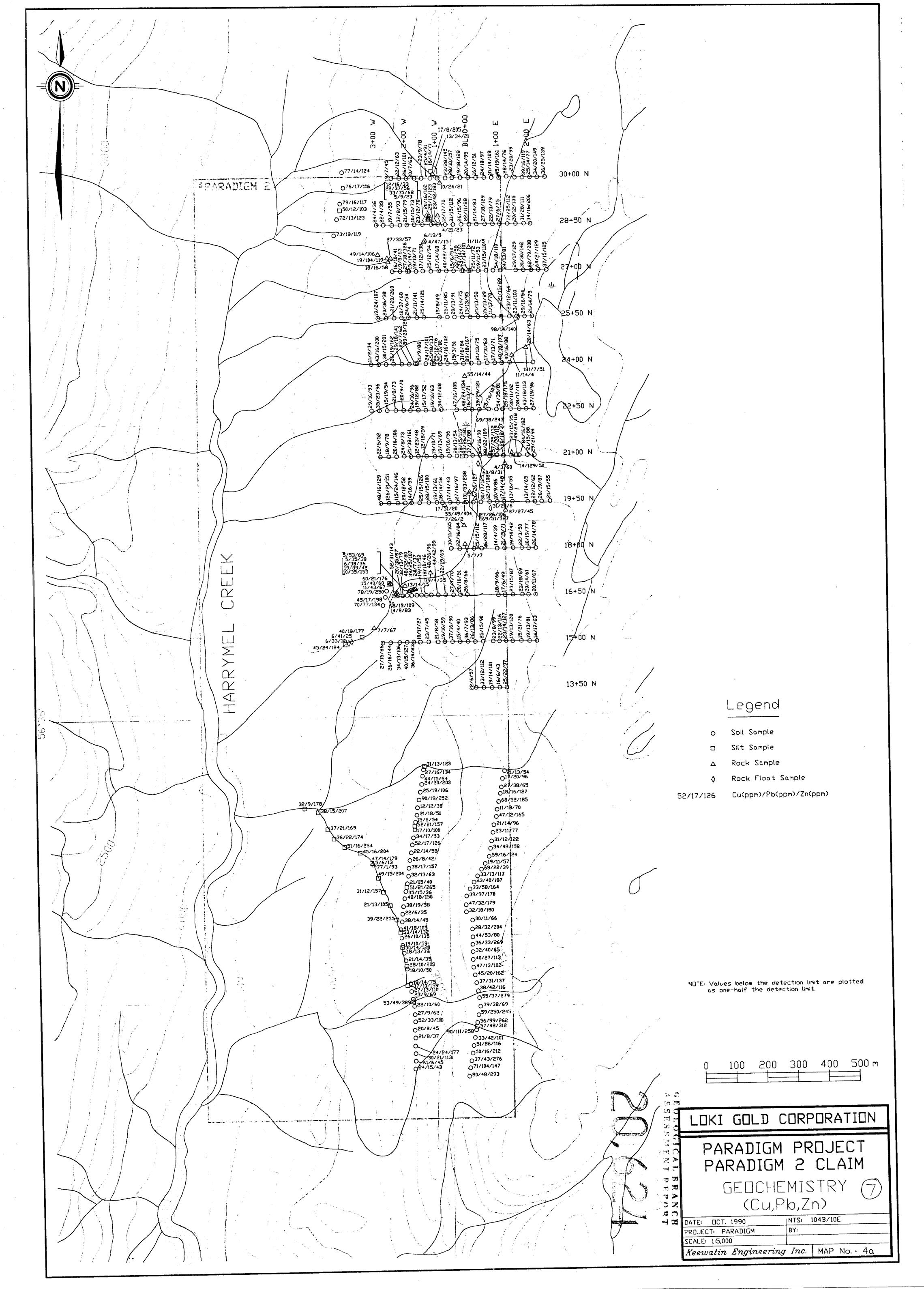
1 1

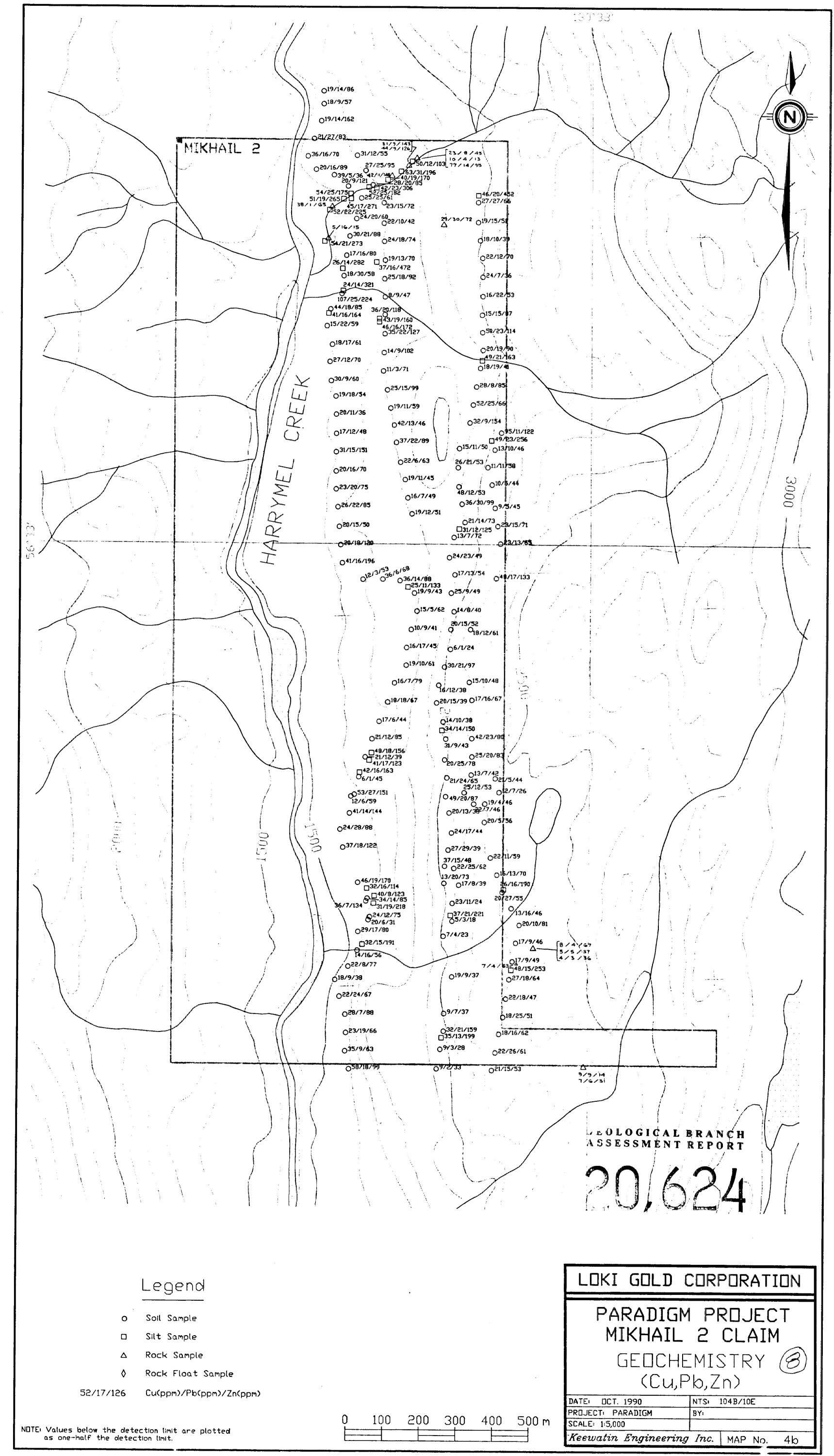

) <u>[</u>]




LEGEME LEGEME Volennie Sedimentary Rocks Pleiotocene to Recent Dasak flows and tephnic dark brown to black, minor pillow laves Lower Jeressie (Plienduchien to Tourcian) Betty Creek Fournation: pyrochastic epiclastic sequence: heterogeneous, grey-green massive to bedded, pyrochastics and sedimentary rocks (black, thinly beddind situtone, shale, and argillite) Sn. Green und grey massive to poorly bedded anderine St. Black thinly bedded situtone, shale and argillite St. Black thinly bedded situtone, shale and argillite St. Black thinly bedded situtone, shale and argillite		2010GICAL BRANCH ASSESSMENT REPORT 206824
Upper Triassic to Lower Junnasic (Noring to Sincumurian) Unak River Formation: undexite sequence; green and grey, intermediate to malic volcanicizatics and flows, with locally thick interbeds of fine-grained instalate sediments, minor conglowersten, and limestone Upper Triassic (Carnien to Norian)	<u></u> Geological contact	0 100 200 300 400 500 m.
E Studini Gronge brown, black, greys mixed sedimediary rocks (tinstone, inade, argume, Umestone, churt), with minor mulic to intermediate volcanics and volcaniciastic rocks	Outersp	LOKI GOLD CORPORATION
Vutrustry Rocks Post-Textunic Dytes	Bedding (inclined, vertical)	PARADIGM PROJECT
King Creek Dyke Swarm: feldager porphyry dzeite, andezite, diubase, and harableade to quart diorite; limits of the wak shown indicate where the dykes exceed 50% of the exposed bedrock Hawilson Monzonite - five grhined monzbaite	w swamp	MIKHAIL 2 CLAIM GEOLOGY
 Coast Platonic Complex: hornblande-biotity-quarts diorite to granodiarita. Jurassic Unuk River Diorite Sutte: a) Max: biotite-bornblande diorite, quartz diorite, granodiorite 	(P) Helipad	and ROCK GEOCHEMISTRY
b) Melvelle: hornblende biotise diorite, quartz diorite b) Melvelle: hornblende-biotise diorite Motamorphic aquivalents of Units 1, 3, or 3	Rock GEOCHEMISTRY	DATE: DCT. 1990 NTS: 104B/10E PRDJECT: PARADIGM BY1 SCALE: 1/5,000 BY1
 a) hormblende, myboaite greiss, myboaite b) Unuk-Harrymel Pault Zone, stongly sheared rock within fault 2000 	(20,0.0,01) = (Auppb, Agppm, Asppb)	Keewatin Engineering Inc. MAP No. 16


•


		GEOLOGICAL BRANCH ASSESSMENT REPORT 20, 900 - 1000
Legend		LOKI GOLD CORPORATION
O Soil Sample □ Silt Sample △ Rock Sample		PARADIGM PROJECT MIKHAIL 2 CLAIM
Rock Float Sample 90STS001 Sample Number		SAMPLE LOCATIONS
	U 100 200 300 400 500 m	DATE:DCT. 1990NTS:104B/10EPRUJECT:PARADIGMBY:SCALE:1:5,000Keewatin Engineering Inc.MAP No.2b



			GEOLOGICAL BRANCH ASSESSMENT REPORT 20,624
	Legend		LOKI GOLD CORPORATION
0 	Soil Sample Silt Sample		PARADIGM PROJECT MIKHAIL 2 CLAIM
	Rock Sample Rock Float Sample		GEOCHEMISTRY 6 (Au,Ag,As)
9/0.6/17 NDTE: Values below the detection one-half the detection	Au(ppb)/Ag(ppm)/As(ppm) ection limit are plotted tion limit.	0 100 200 300 400 500 m	DATE:DCT. 1990NTS:104B/10EPRDJECT:PARADIGMBY:SCALE:1:5,000Keewatin Engineering Inc.MAP No.

