GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL

 ANDDIAMOND DRILLING ASSESSMENT REPORT

ON THE FORD PROPERTY

Kamloops Mining Division
NTS 82M/4E, 82L/13E
Latitude $51^{\circ} 02^{\prime} \mathrm{N}$ Longitude $119^{\circ} 37^{\prime} \mathrm{W}$

S. Jensen
R. Farmer

December 1990
Kamloops, B.C.

SUMMARY

During 1990 an integrated program consisting of reconnaissance and grid controlled geological mapping, soil sampling, limited geophysics, relogging of old drill core and diamond drilling was completed. The program was carried out between June 5th and September 1st, 1990.

Geological mapping on the Ford 4 grid extended the favourable intermediate volcanic-dacite contact through the grid area, with the exception of the central part of the grid where the section is cut off by foliated granodiorite. Mapping also indicated a thrust fault in the southwest grid area. Reworked fragmental volcanics grading into conglomerates and quartzose wacke's comprise the western, upper thrust sheet. Intermediate to felsic volcanics and granodiorite comprise the lower thrust sheet and the favourable stratigraphy. Exposed mineralization in the grid area is related to the hornfelsic contact adjacent to the granodiorite and to sericitic and siliceous shear zones.

On the Adam-C grid geological mapping confirmed the presence of a belt of felsic volcanics bounded on both sides by intermediate volcanics. Prospecting along the southern contact identified a siliceous sericitic zone with heavily disseminated pyrite and chalcopyrite near the contact.

Soil sampling identified weak copper and zinc anomalies associated with IP anomalies along the intermediate - felsic volcanic contact. A soil test over the northern contact of the felsic volcanics on line 18E identified a single station copper-zinc anomaly. Prospecting in the area, which has good outcrop exposure did not locate any sulphide mineralization. A soil test over an IP anomaly near the road on line 16E did not identify any significant anomalies.

Since the mineralization discovered along the south contact was outside the area of grid and IP coverage two grid lines were added. The new lines were surveyed with induced polarization as were the two preceding previously surveyed lines to preserve continuity between surveys. The IP anomaly was confirmed and extended across the new lines.

Reconnaissance mapping in the Woolford Creek area and in the northwest and southeast corners of the property failed to identify any areas requiring follow-up.

Seven previously drilled holes were relogged to gain a better understanding of the geology and related mineralization, particularly in the outcrop poor Ford 4 area.

Four diamond drill holes were drilled for a total of 860.45 metres. Two holes were drilled on the Ford 4 grid and two on the Adam-C grid.

In the Ford 4 area the first hole intersected the target intermediate volcanic-dacite contact, but mineralization was not present. The second hole was collared in the upper thrust sheet and was lost in a fault before reaching the target stratigraphy.

On the Adam-C grid, both holes penetrated the target contact. The first hole intersected the contact down dip from the newly discovered mineralization and related IP anomaly. Only weak fracture-fill mineralization was encountered. The second hole tested an IP anomaly 100 metres west of the previously drilled DDH 36. Again only weak, fracture-fill mineralization was encountered.

The northern contact has not been evaluated nor has the western strike extension of the felsic volcanics.

RECOMMENDATIONS

1) Any additional work on the property should concentrate on the Adam-C grid felsic volcanic belt.
2) Assuming 1) above, additional work should begin by resolving the cause of eastward thinning of the belt (ie structural or stratigraphic), as this has a direct bearing on the focus of continued work.
3) If the answer to 2) above is stratigraphic, then detailed geology, geochemistry and geophysics should be expanded westwards towards the thickened portion of the felsic pile.
4) If the answer to 2) above is structural, then continued work including lithogeochemistry, geophysics, trenching and diamond drilling should be carried out in the area of 1990 work as well as along the northern contact.

TABLE OF CONTENTS

PAGE NO.
Summary i
Recommendations iii

1. Introduction 1
2. Location and Access 1
3. Topography and Vegetation 2
4. Claims 2
5. Previous Work 3
6. 1990 Program 4
7. Geology 5
A) Regional Geology 5
B) Property Geology 6
I) Lithology 7
(a) Map Unit 1: Argillite, Shale, Mudstone, Limestone, Chert, Quartzite, Conglomerate, Wacke 7
(b) Map Unit 2: Quartz-Sericite to Sericite
Schist (Rhyolite) 8
(c) Map Unit 3: Sericite-Chlorite Phyllite (Dacite) 8
(d) Map Unit 4: Intermediate Volcanic-Chlorite Phyllite 9
(e) Map Unit 5: Foliated Granodiorite 10
(f) Map Unit 6: Mafic Dyke 10
(g) Map Unit 7: Quartz-Feldspar Porphyry 10
II) Ford 4 Grid 10
III) Adam-C Grid 11
IV) Reconnaissance Mapping 12
V) Mineralization and Rock Chip Sampling 13
8. Grid Preparation 14
9. Geophysics 14
10. Soil Geochemistry 15
11. Diamond Drilling 16
A) Old Core - Relogging 18
1) DDH 36 18
2) DDH 61 19
3) DDH 62
19
19
4) DDH 63 19
5) DDH 67 20
6) DDH 68 20
7) DDH 88-96. 21
B) 1990 Drilling Program 21
8) Hole FF-90-1 21
9) Hole FF-90-2 22
10) Hole FAC-90-3 23
11) Hole FAC-90-4 23
12. Conclusions 24
13. References 26

LIST OF FIGURES

Following Page No
Figure 1: Ford Property Location Map (1:600,000) 1
Figure 2: Claim Map (1:50,000) 2
Figure 3: Regional Geology ($1: 100,000$) 5
Figure 4: Grid Location Map (1:50,000) 4
Figure 5: Property Geology ($1: 10,000$) In Pocket
Figure 6: Grid Geology - Ford 4 Grid (1:2500) In Pocket
Figure 7: Grid Geology - Adam-C Grid (1:2500) In Pocket
Figure 8: Soil Sample Location Map-Adam-C Grid (1:2500) In Pocket
Figure 9: Soil Results, Copper, Zinc-Adam-C Grid (1:2500) In Pocket
Figure 10: IP Survey - Adam-C Grid, L20+00E 14
Figure 11: IP Survey - Adam-C Grid, L21 + O0E 14
Figure 12: IP Survey - Adam-C Grid, L21 +50E 14
Figure 13: IP Survey - Adam-C Grid, L22+00E 14
Figure 14: Drill Section - DDH FF-90-1 In Pocket
Figure 15: Drill Section - DDH FF-90-2 In Pocket
Figure 16: Drill Section - DDH FAC-90-3Figure 17: Drill Section - DDH FAC-90-4In Pocket
LIST OF TABLES
Page No.
Table 1: Claim Records 2
Table 2: 1990 Drill Hole Statistics 17
Table 3: \quad Previously Drilled Holes Relogged 17

APPENDICES

Appendix I: Statement of Qualifications
Appendix II: Cost Statement
Appendix III: Certificates of Analysis
Appendix IV: Analytical Procedures
Appendix V: Rock Sample Descriptions
Appendix VI: Diamond Drill Logs
Appendix VII: IP Survey - Summary Data Listings

1. INTRODUCTION

During 1990 an integrated program consisting of 1:2500 scale grid mapping, limited concurrent rock and soil sampling, limited geophysics, diamond drilling and minor reconnaissance mapping was carried out on the Ford Property. The program focused on areas selected in 1989 as warranting follow-up.

Detailed geological mapping was carried on two previously established grids here termed the Ford 4 grid, and Adam-C grid, at a scale of 1:2500.

Limited soil sampling was carried out over a portion of the Adam-C grid. Four lines (1600 metres) of Induced Polarization were run to confirm and extend previous coverage and trace anomalous zones.

Four diamond drill holes were drilled (two on each grid) to follow-up both previously and currently identified targets.

Limited reconnaissance mapping was carried out to follow-up mineralization or geological targets identified by previous workers. In addition, limited mapping was carried out in the northwest corner of the property to determine if felsic volcanic stratigraphy identified on the adjacent Beca Property extends onto the Ford property.

This report describes the program and results.

2. LOCATION AND ACCESS (Figure 1)

The Ford and Woof mineral claims are located on the southern end of the Adams Plateau, approximately 65 kilometres northeast of Kamloops, B.C. The property is located on NTS map sheets $82 \mathrm{M} / 4 \mathrm{E}$ and $82 \mathrm{~L} / 13 \mathrm{E}$, with an approximate latitude and longitude of $51^{\circ} 02^{\prime} \mathrm{N}$ and $119^{\circ} 37^{\prime} \mathrm{W}$, respectively.

The property is road accessible from Kamloops via Highway 1 east for 65 kilometres to the Squilax Bridge and then north 12 kilometres to the base of Adams Lake. From Adams Lake the Adams-Spillman Forest Service Road is followed for 15 kilometres to the centre of the property. A network of secondary logging roads provides good access to most of the property.

3. TOPOGRAPHY AND VEGETATION

Relief on the property is variable, ranging from relatively flat plateau in the northern claim area to, steep sided valleys in the eastern, western and southern claim area. Elevations range from 400 metres near the shore of Adams Lake to 1900 metres on Adams Plateau.

Vegetation is thick to open, and consists of mature cedar, hemlock, fir, aspen and birch at lower elevations and spruce and balsam at higher elevations. Approximately 20% of the property has been selectively or clear-cut logged.

4. CLAIMS (Figure 2)

The property, located in the Kamloops Mining Division, consists of the Ford 1-7 and Woof 1-3 mineral claims totalling 145 contiguous units (approximately 3625 hectares). The claims are registered in the name of Teck Corporation held in trust for BHP-Utah Mines Ltd. The following table lists all pertinent claim data.

TABLE 1

CLAIM RECORDS

Claim Name	Record No.	Units	Record Date	Expiry Date
Ford 1	5310	15	Dec. 22/83	Dec. 22/92
Ford 2	5311	20	Dec. 22/83	Dec. 22/92
Ford 3	5312	16	Dec. 22/83	Dec. 22/92
Ford 4	5313	16	Dec. 22/83	Dec. 22/92
Ford 5	5314	12	Dec. 22/83	Dec. 22/92
Ford 6	6219	8	May 16/85	May 16/93
Ford 7	6220	10	May 16/85	May 16/93
Woof 1	4997	12	Nov. 18/83	Nov. 18/93
Woof 2	4998	16	Nov. 18/83	Nov. 18/93
Woof 3	4999	20	Nov. 18/83	Nov. 18/93
		145		

NOTE * - Expiry date based on acceptance of this report.
Ford 1, Woof 1,3 (total 47 units) Grouped as Ford A Group
Ford 2-7, Woof 2 (total 98 units) Grouped as Ford B Group

5. PREVIOUS WORK

Mineralization was discovered on Adams Plateau in the 1920's (Lucky Coon area) and substantial, although intermittent work, has been carried out since. Numerous mineral occurrences including the Lucky Coon, Elsie, King Tut, Mosquito King, Joe and Beca, are located proximal to the Ford claims.

The Lucky Coon, Elsie, King Tut, Mosquito King, Pet and Spar showings are located within 5-7 kilometres north and northeast of the Ford property and consist of stratabound massive to semi-massive sulphides (mainly lead-zinc-silver) found within metasediments. The deposits are discontinuous, locally as high grade lenses, and have had modest production: Lucky Coon-920 tonnes yielding 713 grams gold; 222,982 grams silver; 131,738 kilograms lead; 48,783 kilograms zinc and 3,822 kilograms cadmium in 1975 and 1977.

The Beca and Joe showings are located approximately 3-4 kilometres west and northwest of the Ford and consist of lenses of volcanogenic massive sulphides (mainly silver-lead-zinc) within felsic to intermediate phyllites and schists.

In 1984, Player Resources Inc. carried out geological, geochemical, and geophysical surveys with follow up trenching on the Wad 2 and 3 claims located immediately north of the Ford. The result was the delineation of narrow copper-lead-zinc mineralization coinciding with geochemical and geophysical anomalies on Wad 2.

During 1985 the Adams Plateau Joint Venture (APJV) carried out geological, geochemical, and geophysical surveys with follow-up trenching and diamond drilling on the AXL, Wad, and Adam claims adjoining the Ford property to the north and northeast. Twenty eight holes totalling 1542 metres were drilled and intersected two narrow massive sulphide (predominantly pyrrhotite with lesser pyrite, lead, zinc, and copper) zones on strike with the Ford claims.

Mineralization was first discovered on the present Ford claims in 1971 by Derry, Michener, and Booth. Massive sulphide boulders (predominantly pyrrhotite) were uncovered while prospecting Nikwikwaia Creek. The source was found to be in the present Ford 6 and 7 claim area. Canico followed up this mineralization in 1980, but abandoned it due to low base metal grades (up to 3% lead-zinc).

The present day Ford and Woof claims were staked in 1983, by BHP-Utah Mines Ltd., to cover heavy mineral stream anomalies discovered during regional exploration of the area. At that time regional exploration in the plateau area was intensified by the discovery of the Rea deposit (located 15-20 kilometres to the northwest) by Rea Gold.

In the late fall of 1983, BHP-Utah carried out reconnaissance mapping and limited rock and soil sampling in the Woolford Creek area. An airborne electromagnetic (AEM) survey across the entire Ford property was completed by Questor Surveys Ltd. in May 1984 with 1:10,000 property mapping and sampling carried out in July and August of the same year. Property scale mapping $(1: 5,000)$ was undertaken in 1985. Four grids were constructed with subsequent soil sampling, VLF, and magnetometer surveys. Additional prospecting led to the discovery of narrow massive sulphide (predominantly pyrrhotite) lenses up to 15 centimetres in width along Nikwikwaia Creek.

In the fall of 1986, the APJV Group optioned the Ford property from BHP-Utah, adding it to their adjoining ground to the north. During 1986, APJV concentrated their work (including seven drill holes and numerous trenches) north of the Ford property on the AXL, Wad, and Adam claims in an attempt to further outline the main sulphide zones delineated by their 1985 drilling.

Additional work by APJV on the Ford Property consisted of Induced Polarization (IP) surveys on four grids, including the Adam-C and Woolford Creek grids (Figure 5). Follow-up drilling was concentrated in the northern Ford claim area in an attempt to test the possible southwest strike extension of the APJV sulphide zones to the north. Four diamond drill holes totalling 401 metres were drilled with no significant mineralization found. Two holes totalling 232 metres were drilled in the Adam-C grid area intersecting weak mineralization (see Property Geology - Adam-C grid). APJV returned the property to BHP-Utah Mines Ltd. at the end of 1988.

In 1989 Teck Corporation carried out 1:10,000 scale geological mapping on the Ford Property. The work was of a preliminary nature designed to select areas requiring more detailed follow-up.

6. 1990 PROGRAM

In 1990, 90 man days were spent on the Ford Property between June 5th and September 8th. The program consisted of geological mapping and concurrent rock chip sampling, soil sampling, limited geophysics and diamond drilling. In addition drill core from previous workers was relogged.

Geological mapping consisted of limited reconnaissance mapping at a scale of 1:10,000 as well as mapping of two grid areas, selected in 1989, at a scale of 1:2500. Existing grid lines were used as controls. A total of 43 rock chip samples were collected as part of the mapping program. Grid locations are shown on Figure 4.

A portion of one grid (Adam-C grid) was soil sampled to test for anomalous metal concentrations associated with IP anomalies. A total of 84 samples were collected.

A total of 1600 metres of Induced Polarization were surveyed in four lines on the Adam-C grid. The survey consisted of resurveying of the eastern two lines and adding two additional lines to the east side of the grid to trace anomalies identified by earlier workers and to ensure compatibility between the old and current surveys. The two new lines were established as part of the 1990 program.

A total of 860.45 metres were diamond drilled in four holes comprising two holes on each grid. In addition seven previously drilled holes were relogged to aid in understanding of the geology.

The purpose of the 1990 program was to follow-up targets selected during the 1989 reconnaissance program. More specifically the program had three main objectives:

1) To attempt to trace known mineralization on the adjoining Adams Exploration ground onto the property in the Ford 4 area (Ford 4 grid).
2) To further test pyritic felsic volcanics in the Adam-C grid area where weak base metal mineralization was known to be present.
3) To expand on the 1989 reconnaissance mapping to include areas which had not previously been mapped as well as to follow-up on selected areas identified in 1989 and by previous workers.

7. GEOLOGY

A. Regional Geology (Figure 3)

The Clearwater-Adams Plateau-Vavenby region has been mapped by the government (mainly the Geological Survey of Canada) since 1872. The most recent and comprehensive mapping project was initiated in 1978 by Schiarizza and Preto of the B.C. Ministry of Mines and Petroleum Resources and is summarized in their most recent report (Paper 1987-2).

This work indicates the Ford property is underlain by predominantly Paleozoic (Mississippian or older) rocks of the Eagle Bay Assemblage found within the western margin of the Omineca Belt. The Eagle Bay rocks are bounded to the east by the high-grade metamorphic rocks of the Shuswap Complex and to

the west by the rocks of the Intermontane Belt. The Eagle Bay Assemblage consists of complexly deformed low grade (lower greenschist) metavolcanic and metasedimentary rocks generally striking northwest and dipping northeast. They have been intruded by a late Devonian foliated granodiorite, Cretaceous granite, and early Tertiary quartz feldspar porphyry and basalt dykes.

The structural history of the area is complex as there are at least four recognizable stages of folding and/or faulting from the Jurassic to the Tertiary. Most predominant is the synmetamorphic west to southwest verging overturned folds and associated southwest directed thrust faults (such as the Haggard Creek thrust fault recognized in the northern property area). The Nikwikwaia synform is a southwest trending overturned isoclinal fold consisting of a core of metasediments enclosed by chlorite schists (Schiarriza and Preto, 1987). The nose of this synform (outlined by quartzites) is located on the northern end of the Ford property. Post metamorphic mesoscopic northwest plunging folds and later, east-west trending folds overprint the above synmetamorphic structures. The most recent and recognizable deformation on the property is comprised of northeasterly trending strike-slip faults and later, high angle normal faults and associated northerly trending folds.

Numerous mineral occurrences are located in the Adams Plateau and surrounding area. They are predominantly stratabound massive sulphide (lead-zinc-silver), hosted by metasediments and volcanogenic massive sulphide (silver-lead-zinc), hosted by felsic to intermediate phyllites and schists.

B. Property Geology (Figure 5)

The Ford Property map area has been revised to include 7 major rock units. Due to the inherent fabric imposed by greenschist facies metamorphism and widespread shearing, recognition and distinction in the field of original rock types is sometimes difficult. The section generally strikes $040^{\circ}-060^{\circ}$ with dips of $30^{\circ}-60^{\circ}$ to the northwest, with the exception of the northern claim area (junction of Ford 4,5 and Woof 1,2 where strike is $080^{\circ}-120^{\circ}$ with dips of $20^{\circ}-40^{\circ}$ to the northeast).

The most extensive units underlying the claims (comprising about 70\% of the map area) are chlorite phyllite (intermediate volcanics) and foliated to locally gneissic granodiorite to diorite intrusive.

The chlorite phyllite represents metamorphosed andesitic tuffs and flows. Although metamorphism generally obliterates flow vs. clastic textures, a clastic subunit is identified in the northern portion of the property. These clastic rocks consist of lithic tuffs, lapilli tuffs and breccias which are intercalated with and grade into clastic sediments (wacke and conglomerate). These reworked clastic volcanics and intercalated sediments may represent a transitional environment from a dominantly volcanic regime underlying the majority of the Ford property to a dominantly sedimentary regime (basin) northeast of the property?

Sericite to quartz-sericite schist and sericite-chlorite phyllite/schist are present locally throughout the property. These rocks, interpreted as metamorphosed dacite to rhyolite, occur most extensively in the Adam-C grid area, located in the southwestern portion of the property (Ford 3 and Woof 1 claims). These units will be discussed further in the Adam-C grid Section of this report.

A sedimentary unit consisting of the above mentioned wacke and conglomerate as well as argillite, mudstone, chert, shale and local quartzite and limestone is present in the very northernmost portion of the property.

Sericite-chlorite phyllite, likely representing meta-dacite, is present in the Ford 4 area, and also occurs as narrow, discontinuous bands in the southern claim area. This unit will be described in more detail in the Lithology and Ford 4 grid sections of this report.

The youngest units in the map area consist of quartz-feldspar porphyry and mafic dykes. These dykes are likely Cretaceous to Tertiary in age and may be related to late, north to northeast trending high angle faults. Both the QFP and mafic dykes are common throughout the map area.

I. Lithology

Unit 1A, 1C, 1D: Argillite, Mudstone, Chert, Shale, Minor Limestone, Quartzite

This aphanitic to fine grained sedimentary unit is comprised predominantly of argillite, mudstone, and chert. Argillite is dark brown to black, locally graphitic, weakly pyritic, and commonly displays crenulation cleavage. Mudstone is light, pale greenish grey and locally conglomeratic. The argilites and mudstones; are weakly to strongly foliated and locally exhibit mesoscopic folding, kink banding and soft sediment deformation; are commonly interbanded; and locally display relict bedding. Chert is silvery grey, strongly siliceous and occurs as bands (intercalations) up to 1 centimetre wide in argillites and mudstones giving a weak to strong cherty nature. Shale is dark brown to greyish to black and is moderately to strongly foliated. Limestone is white to bluish, fine to coarse grained, and occurs as minor bands within the other sediments and chlorite schists. Quartzite is white to greyish, strongly siliceous and is also intercalated with other sediments. The sediments were not separated into their individual components on Figure 5 because of their limited continuity, interbedded nature, and variable cherty content.

Unit 1B: Conglomerate, Wacke

Unit 1B is located on the Ford 4 grid and consists of discontinuous lenses of bedded conglomerate and quartzose wacke. The conglomerate consists of subrounded clasts of; sediments (argillite, wacke, mudstone), quartz, and rarely, intermediate volcanics; set in an argillaceous matrix. Clast to matrix ratios are highly variable. Conglomerates generally occur as internally disorganized beds up to 3 metres thick within bedded, medium to coarse grained quartzose wacke. The lensoid nature appears to be due to truncation caused by thrust faulting.

Unit 2: Quartz-Sericite to Sericite Schist (Rhyolite)

This felsic unit is fine grained, white to buff yellow, weakly to moderately calcareous, locally mesoscopically folded, and weakly pyritic. Quartz content is variable, ranging from weak (sericite schist with high feldspar content) to strong (quartz-sericite schist).

It is locally quartz-eyed with clear to whiteish "eyes" up to 3 millimetres in diameter and round to square in shape. Chlorite may be present but, generally only in minor concentrations while muscovite may be present in weak to moderate amounts. Schistosity ranges from weak to intense (paper schist) with moderate to strong as most common. A local, hard, massive to weakly foliated, variety is present, and may represent felsic flows (Unit 2a). Minor amounts of pyrite are common. The unit is rhyolitic in composition and is derived from felsic volcanic rocks. Rocks of Unit 2 are best exposed on the Adam-C grid and will be described in more detail in the Adam-C grid section of this report.

Unit 3: Sericite-Chlorite Phyllite (Dacite)

Unit 3 is a fine grained, weak to moderately calcareous, patchy buff (sericite) and medium green (chlorite) phyllite. Overall, it has equivalent amounts of sericite and chlorite. Locally, sericite is commonly a little more predominant. Minor amounts of quartz-eyes (similar to "eyes" in Unit 2) can also be present locally. It is derived from either a siliceous sediment or a felsic volcanic and is dacitic in overall composition. The sericite-chlorite schist is distinguished from the quartz-sericite to sericite schist (Unit 2) by its greater concentration of chlorite and general lack of appreciable quartz. The thickest section of Unit 3 rocks is located on the Ford 4 grid and will be discussed in more detail in the section pertaining to the Ford 4 grid.

Unit 4: Intermediate Volcanic - Chlorite Phyllite

The intermediate volcanic - chlorite phyllite is a fine grained, medium to dark green, moderately to strongly calcareous, and weakly to moderately magnetic unit. It ranges from an andesite (non-foliated) to intermediate phyllite (weak to moderately foliated) to chlorite schist (strongly foliated) depending on the degree of metamorphism and mica development. It is derived from andesite flows and fine grained tuffs. Local mesoscopic folding may be present as well as intercalations of sediments (argillites, mudstones, shales) and/or felsic schists. Variable amounts of sericite may be present, usually minor. Minor to weak concentrations of pyrite, malachite, chalcopyrite, and sphalerite are found within this extensive unit. The chlorite schist variety of this unit is distinguished from the sericite-chlorite unit (Unit 3) by its greater amounts of chlorite and carbonate and lack of sericite.

Unit 4a: Polylithic Breccia (Volcanic)

Unit 4a is an intermediate volcanic breccia located on the northern edge of the property (Ford 4). It was identified in pre-existing drill core while only float boulders have been found on surface. It is comprised of lithic clasts (which constitute 80% of the rock) in an intermediate volcanic matrix. The subangular clasts range from 1 millimetre to 5 centimetres in diameter and are weakly to moderately deformed. The composition of the lithic clasts (in decreasing order of abundance) is; felsic volcanics, intermediate volcanics, quartz, and sediments (argillites, wackes). Both the clasts and matrix exhibit weak to moderate sericite and epidote alteration. Local weak pyrite, pyrrhotite, sphalerite, and galena occur as disseminations in the matrix. This subunit represents a specific, recognizable fragmental which was thought might be useful as a marker unit. The unit has not been recognized on the property, however, except as float boulders.

Unit 4b: Lapilli Tuff to Breccia

Unit 4b consists of clastic intermediate volcanics ranging from tuff to breccia, with lapilli tuff and breccia being most common. The rocks are often calcareous and consist of intermediate lithic clasts set in an intermediate matrix. The unit shows considerable reworking and grades into bedded volcaniclastic sediments and finally into conglomerates and wackes of Unit 1b. Rocks of Unit 4 are exposed in the northern portion of the property on the Ford 4 grid and will be described further in that section of the report.

Unit 4b rocks are likely derived from Unit 4 andesites, however, the relationship is tenuous as a thrust fault is believed to separate the two.

Unit 5: Foliated Granodiorite to Diorite

This intrusive unit is a medium grained granodiorite to diorite which is commonly strongly foliated. It is weakly to moderately gneissic (locally). A leucocratic quartz and feldspar rich variety is most common, however, darker, more mafic rich varieties are locally present. The contacts with the intermediate volcanics range from sharp to gradational, and are locally hornfelsic. The intrusive commonly contains xenolith near country rock contacts. Xenoliths are often hornfelsic intermediate volcanics and locally quartz-eyed sericite phyllite. Foliations within the intrusive parallel foliations in the surrounding country rock. At time the foliated granodiorite becomes very fine grained, lending difficulty in distinguishing it from some of the felsic volcanics. Portions of this unit have been mapped as felsic volcanics by previous workers.

Unit 6: Mafic Dyke

Unit 6 is a dark green to black, fine grained, locally hornblende porphyritic mafic dyke. It is andesitic to basaltic in composition, magnetic, and non-foliated. Locally it contains weak pyrite.

Unit 7: Quartz Feldspar Porphyry

Rocks of Unit 7 are white to buff coloured and composed predominantly of aphanitic to fine grained quartz and feldspar. Local quartz and feldspar phenocrysts, up to 2 millimetres in diameter, are present. Spherulitic texture may be present and flow banding is common, with alternating white and buff or white and light green bands (usually 1 millimetre in width but may be up to 3 millimetres). Weathering produces a chalky white appearance in this unmetamorphosed, nonfoliated, and non-calcareous unit. It occurs as dykes or sills (structurally controlled?) and locally contains up to 0.5% pyrite. Distinction from older felsic volcanics (Unit 2) is made by its fresh looking appearance due to lack of sericite and/or chlorite alteration and lack of foliation.

II. Ford 4 Grid (Figure 6)

Detailed, grid controlled mapping was carried out on the Ford 4 grid. The grid was put in by previous workers and reflagging of stations was all that was required. The grid consists of a 2.3 kilometres baseline running at 020° with crosslines spaced 100 metres apart, for a total of 16.1 linekilometers mapped (including the baseline).

In general bedrock exposure is very good in the southern half of the grid area and very poor in the northern half.

The most common rock type underlying the grid area is intermediate volcanics of Unit 4. Intermediate volcanics, generally chlorite phyllite, form a belt about 200 metres wide through the centre of the grid area. A narrow (approximately 10-20 metre) band of sericite-chlorite phyllite (dacite) occurs within the intermediate volcanics near the east side of the grid. These rocks are lighter coloured, more sericitic and siliceous (occasional quartz eyes) and locally are fragmental (lapilli to breccia). Weak pyrite, chalcopyrite and sphalerite are associated with this unit near the northeast corner of the grid and on the adjoining property along strike to the northeast.

In the southeast portion of the grid foliated granodiorite of unit 5 intrudes the section. The dacite appears to be cut off by the intrusive in the central part of the grid, but, reappears on the other side at the south end of the grid. The granodiorite is strongly foliated to locally gneissic, quartz-rich and contains variable amounts of chlorite, sericite and muscovite. The contact with surrounding lithologies is irregular and often hornfelsic. In some areas irregular xenoliths of hornfelsic country rock are present within the granodiorite, generally within 50-70 metres of the contact.

The western and northwestern portions of the grid are underlain by reworked volcaniclastics of unit 4 b which grade to conglomerates and wackes of Unit 1 b . The transition from volcanic to sedimentary nature is gradational. Conglomerates and wackes are present as discontinuous lenses, however the lensed shape appears structural as the rocks are truncated by thrust faulting. This truncation is most apparent in the conglomerates, likely because this is the most readily identifiable unit. Bedding and foliation west of the proposed thrust fault seem to have a more easterly trend than east of the thrust $\left(060^{\circ}\right.$ vs. $\left.040^{\circ}\right)$.

Only weak mineralization in the form of disseminated and fracture-fill pyrite with local minor chalcopyrite and sphalerite were observed. This mineralization seems to occur in two ways: (1) In hornfelsic zones along the contact with granodiorite; (2) associated with narrow zones of sericite schist which represents shear zones (previously mapped as felsic volcanics). Significant mineralization was not noticed on surface.

III. Adam-C Grid (Figure 7)

The Adam-C grid is located on the Woof 3 claim. The base line trends 090° with crosslines at varying intervals from 50 metres to 200 metres. The grid was established by previous workers with the exception of lines $21+50 \mathrm{E}$ and $22+00 \mathrm{E}$ (800 m total) which was established in 1990 as part of the current program. Geological mapping included the portion from $\mathrm{L} 12+00 \mathrm{E}$ to line $22+00 \mathrm{E}$, approximately eight line kilometres including the baseline.

The grid area is underlain by a northeast trending belt of felsic volcanics (sericite and quartz-sericite schists) bounded to the north and south by intermediate volcanics. Felsic volcanics consist largely of
fragmental rocks (tuffs, lapilli tuffs, breccias). Local hard, massive exposures may represent flows (unit 2a). Due to surface oxidation fragmental textures are generally only recognizable in drill core. Felsic volcanics characteristically contain $1 \%-5 \%$ disseminated and fracture fill pyrite. The belt of felsic volcanics thins dramatically eastward. It is not know whether this thinning is stratigraphic or structural in nature. If stratigraphic there may be potential to the west (ie. direction of thickening of felsic section). If structural any mineralization may be concentrated in local fold closures and will likely be rod shaped. Lineations in the area plunge shallowly to the WNW.

Surrounding intermediate volcanics consist of a fairly monotonous sequence of chlorite phyllites. At the south end of the grid the chlorite phyllites are hornfelsic and intruded by dykes of foliated granodiorite. This area is likely close to a contact with a large body of granodiorite.

Minor argillaceous sediments have been identified (in drill core) along the southern felsic intermediate volcanic contact. Minor disseminated and fracture-fill chalcopyrite and sphalerite is present on surface and in drill core near this contact. Two diamond drill holes (DDH 36 and 37) were drilled by previous workers in this area, to test induced polarization anomalies. Core could not be found from DDH 37, however, core from hole 36 was relogged and the mineralized contact zone sampled. Results include; 5840 $\mathrm{ppm} \mathrm{Zn} / 4.14 \mathrm{~m}$, followed by 0.88 metres unmineralized, in turn followed by 4016 ppm copper $/ 4.15 \mathrm{~m}$ including 1.04% copper over 1.0 metres. Weak copper mineralization was also found on surface near the contact in the area of line $21+50 \mathrm{E}$. An induced polarization anomaly follows the contact zone through the area tested by DDH 36 and eastward to the edge of the grid. Two lines were added to the east end of the grid and run with IP. Results indicates that the anomaly continues east but weakens. Two holes were drilled to test the contact zone along strike as well as down dip, the results of which are described in the diamond drilling section of this report.

The felsic volcanics continue westwards, however, sulphides are not apparent and limited IP work indicates that anomalies do not continue to the west.

IV. Reconnaissance Mapping

Limited reconnaissance mapping, encompassing a total of 7 mandays, was carried out over selected small areas of the property including the Woolford Creek area, the southeast portion of the property near Nikwikwaia Creek and in the northwest corner of the property. Results are plotted on the 1:10,000 Geology Map (Figure 5). The purpose of the mapping was to fill in holes in the 1989 mapping as well as to followup on previously identified targets.

In the Woolford Creek area a copper occurrence reported by previous workers was located and
sampled. Additional mapping was carried out in the area to determine if the area was underlain by favourable geology.

The mineralization was found to be narrow and erratic. The area is underlain by intermediate volcanics. Expected felsic volcanics were not observed in the area.

Traverses were made in the northwest corner to determine if felsic stratigraphy hosting massive sulphides on the adjacent Beca Claims extends onto the property. The area was found to be underlain by intermediate volcanics. Two samples were collected of pyritic gossans. Results were negative. Dacite lapilli tuff was identified west of the property (on the Beca claims) but does not extend onto the property.

One traverse was carried out in the southeast portion of the property to locate pyrite-pyrrhotite mineralization reported in the area. The area down to Nikwikwaia Creek is primarily underlain by intermediate volcanics. Local sericite and sericite-chlorite phyllite is present but may be related to shearing. The mineralization was not found.

V. Mineralization and Rock Chip Sampling

A total of 17 rock samples were collected from the property. Sample locations are shown on Figures 5, 6 and 7. Samples were sent to Acme Analytical Labs, Vancouver, B.C. and analyzed for Au by atomic absorption and for 29 elements by ICP ($\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{U}, \mathrm{Th}, \mathrm{Sr}, \mathrm{Cd}, \mathrm{Sb}$, $\mathrm{Bi}, \mathrm{V}, \mathrm{Ca}, \mathrm{P}, \mathrm{La}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}, \mathrm{Ti}, \mathrm{B}, \mathrm{Al}, \mathrm{Na}, \mathrm{K}, \mathrm{W}$. Analytical Procedures are included in Appendix IV and Certificates of Analysis in Appendix III.

Weak pyrite mineralization is widespread throughout the property as disseminations, fracture fillings and associated crosscutting quartz/carbonate veinlets.

In the Woolford Creek area a copper occurrence described by previous workers was located and sampled. A narrow zone of heavy pyrite with malachite and chalcopyrite is related to crosscutting fractures. Sample number 20023 was collected from this mineralization and ran 1444 ppm Cu . The mineralization associated with sericitic schist, which here is likely related to shearing and associated alteration. Felsic volcanics are not present in this area. Mineralization is erratic with little potential.

On the Adam-C grid pyrite with minor chalcopyrite and sphalerite occurs near the southern contact of a band of felsic volcanics with intermediate volcanics. This mineralization was intersected in DDH 36 drilled by previous workers. Prospecting along the contact in 1990 identified pyrite-chalcopyrite mineralization near the same contact 350 metres to the east. Sample 20021, a grab of the mineralization
ran $8982 \mathrm{ppm} \mathrm{Cu}, 17.6 \mathrm{ppm} \mathrm{Ag}$ and 205 ppb gold (see Figure 7). Mineralization consists of heavily disseminated and fracture-fill pyrite and chalcopyrite hosted by a siliceous (silicified?) sericite schist. The sericite schist occurs near the contact with intermediate volcanics. IP anomalies are present associated with this contact over a strike length of 500 metres.

Narrow zones of sulphide mineralization consisting of pyrite, pyrrhotite, sphalerite, galena and minor chalcopyrite have been intersected by drilling just outside the northeast corner of the property (Ford 4 claim). The mineralization seems to be related to a band of dacite (sericite-chlorite phyllite). The Ford 4 claim is along strike however outcrop is poor. Several minor occurrences of pyrite with trace chalcopyrite or sphalerite are present in the Ford 4 grid area. Mineralization is generally of one of the following two types: 1) Hornfelsic, often quartz veined zones along the contact with foliated granodiorite or; 2) Sericitic and sometimes siliceous shear zones. These types of mineralization are not considered to have much potential on the Ford property. Two holes were drilled to test the stratigraphy hosting mineralization just outside the property boundary. Results are described in the Diamond Drilling section of this report.

8. GRID PREPARATION

Amex Exploration Services of Kamloops, B.C. were contracted to add two lines to the east end of the Adam-C grid. The lines $(L 21+50 E$ and $22+00 E)$ were cut to IP standard with slope corrected stations established every 25 metres and marked on tyvex tags. A total of 800 metres of line were established. Lines were established by chain and compass.

9. GEOPHYSICS

During 1990 an Induced Polarization survey was run on four lines on the Adam-C grid for a total of 1.6 line kilometres surveyed. Lines surveyed include the two lines established as part of the current program ($\mathrm{L} 21+50 \mathrm{E}$ and $22+00 \mathrm{E}$), as well as the two immediately adjacent lines ($\mathrm{L} 20+00 \mathrm{E}$ and $\mathrm{L} 21+00 \mathrm{E}$). These two lines had been included in a previous IP survey and were rerun to ensure compatibility between the previous and current surveys.

Scott Geophysics Ltd. of Vancouver, B.C. was contracted to carry out the survey. IP pseudosections are included in Figures 10, 11, 12 and 13. The survey was carried out on August 4th and 5th, 1990.

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

The survey was performed utilizing a Scintrex IPR11 receiver with a Scintrex 2.5 kw transmitter. The program utilized a pole-dipole array with an "a" spacing of 25 metres and separations of $\mathrm{N}=1$ to 5 . Readings were taken in the time domain utilizing a 2 second on $/ 2$ second off alternating square wave.

Chargeabilities (mv / v) were measured at 10 delay times after cessation of the current pulse. These values, along with apparent resistivity, primary voltage during the current on time, the self potential gradient and the line and station number are presented as summary data listings (Appendix VII). The results are presented in posted and contoured pseudosection form for apparent resistivity and M7 chargeability (Figures 10-13).

Spectral analysis of the decay curves for time constant, frequency dependence, Mo and fit to the theoretical decay curve, are presented as data listings (Appendix VII).

On the two previously surveyed lines ($\mathrm{L} 20+00 \mathrm{E}$ and $21+00 \mathrm{E}$) the anomalous responses were confirmed and the anomaly was extended eastward across the two new lines ($\mathrm{L} 21+50 \mathrm{E}, \mathrm{L} 22+00 \mathrm{E}$). Centres of these anomalous zones are at: L20+00E, $7+25$ S; Line $21+00 \mathrm{E}, 6+70 \mathrm{~S}$; Line $21+50 \mathrm{E}, 6+50 \mathrm{~S}$ and ; Line $22+00 E, 6+00 S$. Alan Wynne, geophysicist, of Scott Geophysics states: "The zones appear to be flat lying, with the possible exception of line $20+00 \mathrm{E}$. High resistivities generally conform to the chargeability highs."

The anomalies appear to be related to the felsic-intermediate volcanic contact and to related mineralization as exposed near $L 21+50 \mathrm{E}, 6+40 \mathrm{~S}$ in the creek bed.

10. SOIL GEOCHEMISTRY

Grid soil sampling was carried out over a portion of the Adam-C grid. A total of 84 samples were collected and sent to Acme Analytical Labs Ltd. in Vancouver for 29 elements by ICP (Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, $\mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{U}, \mathrm{Th}, \mathrm{Sr}, \mathrm{Cd}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{V}, \mathrm{Ca}, \mathrm{P}, \mathrm{La}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}, \mathrm{Ti}, \mathrm{B}, \mathrm{Al}, \mathrm{Na}, \mathrm{K}, \mathrm{W}$) and gold by atomic absorption. Samples were collected from the 'B' horizon, which generally occurs at a depth of 10 cm to 20 cm . Local areas of talus are present and while a "B" soil horizon is generally still developed it generally occurs at a greater depth $(30 \mathrm{~cm}$ to 40 cm$)$. All soils were collected in kraft bags and allowed to air dry before shipment to the lab. Four moss mat samples from local creeks were collected and also analyzed for ICP and Au. Sample locations are shown on Figure 8 and results for copper and zinc on Figure 9. For a complete list of results see Appendix III for certificates of analysis. Analytical procedures are included in Appendix IV.

The majority of soils were collected from line $18+00 \mathrm{E}$ to $21+00 \mathrm{E}$, on lines 50 metres apart. Sample interval was 25 metres. As previously established lines are at 100 metre spacings, the intervening lines were
run utilizing topofil and compass. Slope corrected stations along with sample numbers were marked on tyvex tags. Lines were run concurrent with sampling. This sampling was carried out to test the southern intermediate - felsic volcanic contact and related IP anomalies. In addition five soils were collected across the northern felsic -intermediate volcanic contact on line $18+00 \mathrm{E}$ using a 12.5 m station interval. Similarly 8 soils were collected at 12.5 m intervals on line $16+00 \mathrm{E}$ between $4+25 \mathrm{~S}$ and $5+25 \mathrm{~S}$ to test for metal concentrations associated with an IP anomaly at that location.

Due to the small population a statistical analysis was not done on the results. A visual estimate was made for the background values for copper and zinc. Two times the background value was then used as an anomalous threshold. Background values are taken to be: 50 ppm for copper and; 100 ppm for zinc. Anomalous threshold are taken at; $\mathbf{1 0 0} \mathrm{ppm}$ for copper and; 200 ppm for zinc.

Weak discontinuous copper and zinc anomalies are present along the south side of the grid (Figure 9) These reflect known mineralization and seem related to IP anomalies associated with the contact between felsic volcanics and intermediate volcanics. The soil anomalies suggest that mineralization may be more extensive than presently known.

Results of soils taken across the northern intermediate - felsic volcanic contact on line $18+00 \mathrm{E}$ show a single point anomaly of 418 ppm copper and 606 ppm Zn . Prospecting in this area of good outcrop and subcrop failed to locate any sulphide mineralization (including pyrite). The source of this anomalous response is not known. Additional soil sampling to cover the contact along strike is warranted to determine if an extensive anomaly warranting follow-up is present.

Results from eight soils collected over an IP anomaly on line 16+00E show no anomalous copper values. Two successive anomalous zinc values (323 ppm and 304 ppm Zn) are present near the road. Good exposure is present along the road and while felsic volcanics in this area are pyritic, (possibly explaining the IP response), no base metal mineralization was noted.

11. DIAMOND DRILLING

Four holes were drilled in 1990 between Aug. 19-28, 1990 for a total of 860.45 metres. Two holes were drilled on the Ford 4 grid and two on the Adam-C grid. Drill hole locations are shown on Figures 5, 6 and 7. In addition to the above mentioned holes drilled as part of this program, a total of seven previously drilled holes were relogged to gain a better understanding of the geology prior to the current programs. A total of 746.14 metres were relogged. Drill hole locations are plotted on Figures 5,6 and 7 (drill sections are shown on Figures 14-17). Table 2 summarizes all pertinent drill data. Table 3 provides a summary of
previously drilled holes which were relogged as part of the 1990 program. Drill logs for 1990 drilling as well as previous holes are found in Appendix VI .

TABLE 2

1990 Drill Hole Statistics

Hole No.	Azimuth	Dip	Total Length	No. of Samples	Claim
FF-90-1	135°	-50°	306.93 m	Nil	Ford 4
FF-90-2	135°	-50°	168.55m	Nil	Ford 4
FAC-90-3	155°	-70 ${ }^{\circ}$	263.96 m	18	Woof 3
FAC-90-4	--	-90°	121.01 m	$\underline{8}$	Woof 3
	Total		860.45m	26	

TABLE 3

Previous Drilled Holes Relogged

Hole No.	Total Length	No. of Samples	Claim
DDH 36	154.53 m	-	Woof 3
DDH 61	122.83 m	-	Ford 4
DDH 62	81.38 m	-	Ford 4
DDH 63	117.35 m	-	Ford 4
DDH 67	79.55 m	2	Ford 4
DDH 68	114.30 m	Ford 4	
DDH-88-96	76.20 m		Ford 1
Total	$\mathbf{7 4 6 . 1 4 m}$	8	

On the Ford 4 grid the holes were drilled to test the potential along strike and down dip from mineralization located just outside the property boundary.

Drill holes on the Adam-C grid were drilled to test IP anomalies with known, associated, weak base metal mineralization near the contact between sericitic, pyritic felsic volcanics and intermediate volcanics.

Drilling was contracted to LDS Diamond Drilling Ltd., of Kamloops, B.C. Drilling proceeded swiftly and efficiently and core recoveries averaged between 90% and 100%. Drill core is currently stored at Mattey Bros. in Chase, B.C. and will be returned to the property when weather permits.

Selected portions of the core were split and analyzed for 29 elements by ICP (Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, $\mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{U}, \mathrm{Th}, \mathrm{Sr}, \mathrm{Cd}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{V}, \mathrm{Ca}, \mathrm{P}, \mathrm{La}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}, \mathrm{Ti}, \mathrm{B}, \mathrm{Al}, \mathrm{Na}, \mathrm{K}, \mathrm{W}$) plus gold by A.A. Samples were sent to Acme Analytical Labs Ltd. in Vancouver, B.C. for analysis. Sample locations and lengths are shown on the drill sections for holes drilled in 1990 (Figures 10 to 13) and on drill logs located in Appendix VI for relogged holes. Certificates of analysis for all core samples are located in Appendix III.

A total of $\mathbf{8}$ samples were collected from old core and $\mathbf{2 6}$ samples from the current holes.

A brief description of each hole follows.

A) Old Core - Relogging

1) $\operatorname{DDH} 36$

Hole 36 was drilled on the Adam-C grid to test an IP anomaly (Figure 7).

This hole intersected felsic volcanics consisting of chlorite - sericite phyllite until 32.11 metres. Locally siliceous, cherty-looking sections are present. From 32.11 to 40.20 metres metasediments consisting of intercalated argilite, mudstone and minor tuff are present. The sediments are locally graphitic. The bottom contact of the sediments is a fault zone (40.20 $40.84 \mathrm{~m})$. After the fault intermediate volcanics were intersected until the end of the hole at 154.53 metres. The section from 116.00-154.83 metres is hornfelsic and may in part be foliated granodiorite.

The contact zone, metasediments into intermediate volcanics, roughly 37 m to 47 metres is weakly mineralized ($10-15 \%$ total sulphides) with pyrite, chalcopyrite and sphalerite. The section hosted by sediments is sphalerite rich, occurring as discontinuous bands and in fractures; while fracture controlled pyrite - chalcopyrite is present in the intermediate volcanics.

Significant results are as follows:

Sample No.	Interval	Length(m)	Cu(ppm)	Zn (ppm)	Pb (ppm)
20001	37.18-38.71m	1.58	536	7515	2949
20002	38.71-40.23m	1.52	310	5448	2144
20003	40.23-41.27m	1.04	261	3868	181
*OId Sample	41.27-42.15m	0.88	0.10\%	0.07\%	0.01\%
20004	42.15-44.26m	2.11	990	198	45
*Old Sample	44.26-45.26m	1.00	1.03\%	0.03\%	0.01\%
20005	45.26-46.30m	1.04	4113	351	

2) $\operatorname{DDH} 61$

Hole 61 was collared in the north central portion of the Ford 4 grid (Figure 6).

Intermediate volcanics with local, narrow, intercalated sediments were intersected throughout the entire 122.83 metre length of the hole. An unit termed a feldspar augen gneiss in the drill log is common. Grid mapping has shown this unit, where less deformed, to be an intermediate volcanic which variably has the appearance of a coarse trachytic textured flow and a feldspar crystal lapilli tuff.

This hole is now believed to have been drilled within the upper thrust sheet. No significant mineralization was intersected.

3) DDH 62

Hole 62 was drilled on the Ford 4 grid approximately 200 metres southwest of hole 61 and is a vertical hole. Essentially the same sequence of alternating intermediate tuffs and flows as in hole 61 were intersected. Two differences are noteworthy. First, abundant younger (Tertiary?) mafic dykes are present and secondly, bands of grey chert occur within the volcanics, and form a mappable unit at 71.84-73.08 metres. Cherts are most common to the north and have been used to outline the Nikwikwaia synform in that area.

Hole 62 was also drilled within the upper thrust sheet.

4) DDH 63

Hole 63 was drilled in the same area as holes 61 and 62, approximately 200 metres southwest of hole 62 (Figure 6). The same sequence of intermediate tuffs to lapilli tuffs and
flows were intersected as in holes 61 and 62. The multilithic lapilli tuffs have the same fragments as in the conglomerate in hole FF-90-2 but the matrix is chloritic and tuffaceous. On surface these lapilli tuffs can be seen to grade into the conglomerates. This entire upper thrust slice sequence is thought to represent a transgression from a dominantly volcanic regime to a dominantly sedimentary one (perhaps a basin margin coarse clastic sequence?).

5) DDH 67

Hole 67 is located in the northeast corner of the Ford 4 grid near the property boundary (Figure 5, 6).

This hole collared into foliated to gneissic granodiorite. The granodiorite is medium to coarse grained and strongly invaded by white quartz veins. From 47.53 m to the end of the hole at 79.55 metres narrow sections of intermediate volcanics are present which may represent either large xenoliths or intermediate volcanics intruded by dyke swarms of granodiorite near the contact.

Minor lead and zinc are present associated with these intermediate volcanic sections, and with quartz veins. Best results were from an old sample as shown below:

$$
\text { 60.93m-62.18m: } 0.05 \% \mathrm{Cu}, \quad 0.47 \% \mathrm{~Pb}, \quad 0.34 \% \mathrm{Zn}
$$

6) DDH 68

Hole 68 was collared about 200 metres northeast and 50 metres northwest of hole 67. The hole is off the Ford property but close to the claim boundary (Figure 5).

Hole 68 penetrated intermediate volcanics until 7.38 m followed by felsic volcanics until 25.62 metres. Felsic volcanics are greenish/grey in colour, siliceous and sericitic. The interval from 25.62-64.73 metres consists of a mixed zone of felsic volcanics and foliated to gneissic granodiorite. Felsic volcanics are increasingly difficult to recognize down hole. From 64.73 metres to the end of the hole at 114.30 metres a mixed zone consisting of intermediate volcanics and granodiorite is present. These mixed zones likely represent a contact zone with the intrusive with the bottom portion of hole 68 equivalent to the bottom portion of hole 67.

Within the intermediate volcanics at the top of the hole, but near the felsic volcanic
contact, a mineralized zone is present (4.60-5.93 metres). The interval is moderately quartz/carbonate veined and contains disseminated, fracture and vein related and patchy pyrite, sphalerite and galena. Two samples collected yield the following results:
$\left.\begin{array}{llllllll}\text { Sample No. } & & \text { Interval } & & \text { Length(m) } & & \text { Cu(ppm) } & \text { Pb(ppm) }\end{array}\right)$

7) \quad DDH 88-96

Drill hole 88-96 was collared along the main logging road near kilometre 8 (Figure 5). The hole was drilled near the south contact of the felsic volcanics described on the Adam-C grid and is located about 800 metres west of the Adam-C grid as described in this report. The hole was drilled to test an IP anomaly obtained by surveying the main logging road.

Rocks penetrated by this hole alternate between; quartz-sericite phyllite, locally quartz-eyed, and chlorite/sericite phyllite; which may represent intercalated intermediate and felsic (dacite) volcanics. Veined and sheared zones tend to produce siliceous and sericitic rocks, lending difficulty at times to distinguishing felsic volcanics from sheared or veined intermediate volcanics. A strong orange coloured carbonate alteration is present throughout the hole.

This apparent intercalation of units near the contact has not been observed elsewhere. If the rocks are predominantly felsic volcanics to the end of the hole then the prospective felsic-intermediate volcanic contact may not have been tested.

Minor pyrite is present throughout the hole, up to 2% locally, with rare traces of sphalerite and chalcopyrite, however, it is debatable if this is sufficient to explain the IP anomaly.

B) 1990 DRILLING PROGRAM

1) Hole FF-90-1 (Figure 14)

This hole, collared at the northeast end of the Ford 4 grid (Figure 6) was drilled to
intersect the strike and dip extension of the horizon hosting mineralization off the property.

Intermediate clastic rocks comprising, tuffs, lapilli tuffs and breccias, were intersected until 94.40 metres. This was followed by dacite (sericite/chlorite phyllite), with intercalated intermediate sections until 126.91 metres. Light green/grey coloured, massive dacite, possibly flows are present from 126.91 to 154.10. A light coloured, quartz-eyed rhyolite is present from 154.10-159.74 metres, followed by banded (flow?) dacite. The dacite continues, but coarsens, downhole. The unit becomes intrusive around 281 metres, but a contact could not be discerned. It is not clear how much of the section from 159.74 306.93 metres is intrusive rather than dacite.

The target stratigraphy, the intermediate - felsic volcanic contact was intersected, however, no mineralization or significant alteration is present.

One to two percent pyrite is present throughout the hole with local traces of sphalerite or chalcopyrite (usually associated with veins). The mineralization appears insignificant and no samples were collected.

2) Hole FF-90 -2 (Figure 15)

Hole FF-90-2 was collared 400 metres southwest of hole FF-90-1 with the purpose being to test the same prospective stratigraphy along strike (Figure 6).

This hole penetrated intermediate tuffs to breccias which become increasingly reworked downhole. The volcanics eventually grade into sediments consisting of, bedded quartz and chert pebble conglomerates, quartzose wackes and local tuff beds. A major fault zone was intersected at 105-109 metres.

After the fault the hole again penetrated intermediate tuffs to breccias, followed by conglomerates and wacke's until 168.55 metres where the hole was lost due to binding of the rods in the aforementioned fault.

The fault may represent a thrust (somewhat reactivated as evidenced by local steep dipping gouge and fault breccia zones). In this case the upper portion of the hole may represent a structural repetition of the stratigraphy in the lower portion of the hole. In addition the entire hole is likely within the upper thrust sheet where stratigraphy is not conformable with the target stratigraphy containing felsic volcanics and weak mineralization.

No significant alteration or mineralization were encountered in this hole and no samples were collected.

3) Hole FAC-90-3 (Figure 16)

Hole FAC-90-3 was drilled on the Adam-C grid. The hole was drilled to test an IP anomaly and associated weak mineralization exposed along the felsic-intermediate volcanic contact near line $21+50 \mathrm{E}$. Due to topographic constraints the hole could not be collared near the target and had to be drilled from the main logging road above. As a result the drill hole intersected the prospective contact approximately 200 metres downdip.

The hole intersected felsic volcanics (dacite-rhyolite) which are locally fragmental and pyritic, to 176 metres. After 176 metres intermediate volcanics were encountered to 200 metres where a major fault zone was intersected. Below the fault hornfelsic intermediate volcanics were encountered to the end of the hole. The hornfelsic nature likely indicates proximity to the granodiroritic intrusive.

Weak pyrite occurs throughout the felsic sequence, generally $\leq 1 \%$, but increases to about 2% in the upper portion of the intermediate volcanics. Minor chalcopyrite is also present here as disseminations and fracture fillings.

Best results include:

1974ppm Cu over 3.0 metres (average) includes 3613ppm Cu over 1.0 metres

There are no significant zinc or precious metal values. The IP anomaly is likely reflecting increased sulphides up dip from the intercept (towards the surface).

Weak mineralization persists near the intermediate - felsic contact, but has not improved.

4) Hole FAC-90-4 (Figure 17)

The second hole (FAC-90-4) was collared about 300 metres west of FAC-90-3 and closer to the intermediate-felsic contact. This hole also tested an IP anomaly associated with the contact.

Predominately felsic volcanics were intersected until 54 metres followed by intermediate volcanics until the end of the hole at 121.01 metres.

This hole differs from FAC-90-3 and DDH 36 in that from 21-28.5 metres intermediate volcanics and graphitic argillite are present followed by a narrow dacitic section then, massive, cherty, non-sericitic rhyolite (flow?) until 54 metres. All rock types between 16 and 32 metres contain about 2% pyrite plus pyrrhotite with local minor sphalerite and chalcopyrite.

The intermediate volcanics and graphitic argillite seem to roughly correspond with stratigraphy observed in DDH 36, 100 metres to the east. The presence of felsic volcanics as well as massive cherty rhyolite rather than sericite schist may be an indication that this rhyolite represents a separate felsic volcanic horizon not observed in holes FAC-90-3 or DDH 36.

$$
\begin{array}{ll}
\text { Best results include } & \begin{array}{l}
\text { (1) } 1365 p p m ~ \mathrm{Zn} \text { over } 1.0 \text { metres; } \\
\\
\text { (2) } 2295 \mathrm{ppm} \mathrm{Cu} \text { over } 1.0 \text { metres. }
\end{array},
\end{array}
$$

The 1990 drilling in the Adam-C grid has confirmed weak mineralization near a felsicintermediate contact but has not found any evidence of improvement.

12. CONCLUSION

Results from the 1990 program were not encouraging.

Geological mapping on the Adam-C grid traced the contacts between the felsic volcanics and surrounding intermediate volcanics. Strongly disseminated pyrite and chalcopyrite were identified in a siliceous sericitic (fault?) zone along the southern contact.

IP coverage was extended in this area to trace the mineralized contact zone eastward. The existing IP anomalies were confirmed and extended across the new lines. Weak copper and zinc soil anomalies were outlined along the IP anomalous southern felsic-intermediate volcanic contact. A soil test across the northern contact as well as an existing IP anomaly did not identify any significant anomalies.

Follow-up in this area consisted of 384.97 metres of diamond drilling in two holes. The target southern contact zone was penetrated with only weak fracture-fill mineralization encountered. The first hole
tested the down dip potential of the newly discovered disseminated mineralized zone and associated IP anomaly. The second hole tested an IP anomaly.

Geological mapping on the Ford 4 grid traced the favourable intermedite volcanic-dacite contact southwestward. Mapping also indicated the grid area to be divided into two thrust sheets, the top sheet comprising reworked fragmental volcanics and sediments while the lower, favourable thrust sheet comprising intermediate to felsic volcanics and foliated granodiorite. Only weak, sporadic mineralization was discovered and probably related to the intrusive contact and local shear zones.

Two diamond drill holes totalling 475.48 metres were drilled in the Ford 4 grid area to test the intermediate volcanic-dacite contact. The first hole penetrated this target zone but mineralization was not present. The second hole was lost in a fault zone before reaching the target zone.

Reconnaissance mapping in the northwest and southeast corners of the property as well as the Woolford Creek area did not identify any favourable areas warranting follow-up.

Any follow-up work on the Ford property should be concentrated in the Adam-C grid area.

13. REFERENCES

Jensen, S.J., (1990): Geological Geochemical Assessment Report on the Ford Property
Robinson, C., (1984): Geophysical and Geochemical Report on the Ford Mineral Claims. Assessment Report No. 13400.

Robinson, C., Ord, R., and Burt, P., (1986): Geological, Geochemical and Geophysical report on the Ford Mineral Claims. Assessment Report No. 14359.

Schiarizza, P. and Pieto, V.A., (1987): Geology of the Adams Plateau - Clearwater - Vavenby Area. B.C. Ministry of Energy, Mines and Petroleum Resources; Paper 1987-2.

Spencer, B.E., (1989): Diamond Drilling Assessment Report on the Ford and Woof Claims.
Wojdak, P.J., (1978): Geological and Geochemical Assessment Report on the Beca 5, 6, 7, 8, 10, 11 Mineral Claims. Assessment Report No. 7040.

APPENDIX I

Statement of Qualifications

I, Randy Farmer do hereby certify that:

1) I am a geologist and have practised my profession for more than 10 years.
2) I graduated from Lakehead University in Thunder Bay, Ontario with an Honours Bachelor of Science degree, (Geology), in 1980.
3) I supervised the work on the Ford property and co-authored the report contained herein.
4) All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.
5) I hold no personal interest, direct or indirect in the Ford property which is the subject of this report.

Randy Farmer
Project Geologist
December, 1990

I, Steve Jensen, do hereby certify that:

1) I am a geologist and have practised my profession for the past four years.
2) I graduated from the University of British Columbia, Vancouver, British Columbia with a Bachelor of Sciences degree in Geology (1987).
3) I was actively involved in the mapping of the Ford property and co-authored the report contained herein.
4) All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.
5) I hold no personal interest, direct or indirect, in the Ford property which is the subject of this report.

Steve Jensen
Geologist
December, 1990

APPENDIX II
Cost Statement

FORD PROPERTY

COST STATEMENT

1) Geology

a) Reconnaissance
(Including Field Plotting: Aug. 31 - Sept. 13, 1990)i) Steve Jensen (Geologist)7 days @ 193.05/day\$1,351.35June 22,26, July 12; Aug 8,31,Sept. 6,7, 1990ii) Randy Farmer (Geologist)5 days @ $\$ 250.25$ /day $1,251.25$June 26; July 12; Aug. 8,31;Sept. 7, 1990
iii) Mike Cumming (Assistant) 3 days @ 121.55/day 364.65
June 22; July 12; Aug. 8, 1990
Subtotal\$2,967.25
b) Ford 4 Grid
i) Steve Jensen (Geologist)4 days @ \$193.05/day\$ 772.20July 7-14, 1990
ii) Randy Farmer (Geologist)5 days @ $\$ 250.25 /$ day $1,251.25$July 7-14, 1990
iii) Mike Cumming (Assistant)
6 days @ \$121.55/day 729.30
July 7-14, 1990
Subtotal
c) Adam-C Gridi) Steve Jensen (Geologist)6 days @ \$193.05/day \$1,158.30
June 15-24, 1990ii) Randy Farmer (Geologist)6 days @ \$250.25/day1,501.50June 15-24, 1990iii) Mike Cumming (Assistant)
1 day @ 121.55/day 121.55
June 15-24, 1990Subtotal
GEOLOGY TOTAL \$8,501.35
2) Soil Survey (Adam-C Grid)
Mike Cumming (Assistant) 5 days @ \$121.55/day \$ 607.75
June 5, 23, 24, 25, 26, 1990
Steve Jensen (Geologist)2 days @ \$193.05/day386.10June 5, 24, 1990
Randy Farmer (Geologist)2 days @ \$250.25/day $\underline{500.50}$June 5, 24, 1990
Subtotal \$1,494.35
3) Analytical
a) Rock Chip
43 samples @ $\$ 12.25$ each \$ 526.75(analysed for 29 elements by ICP + Auby AA at Acme Analytical Labs L.td)
b) Soils
84 samples @ $\$ 10.10$ each 848.40(analysed for 29 elements by ICP + Auby AA at Acme Analytical Labs Ltd)
c) Core Samples from Relogged Holes
8 samples @ \$12.25 each 98.00(analysed for 29 elements by ICP + Auby AA at Acme Analytical Labs Ltd)$\$ 2.781 .35$
d) Drill Core Samples - 1990 Drilling 26 samples @ \$12.25 each 318.50 (analysed for 29 elements by ICP + Au by AA at Acme Analytical Labs Ltd)

Subtotal
$\$ 1,791.65$
4) Linecutting
a) $\quad 800 \mathrm{~m}$ IP standard cut lines, Adam-C Grid 2 crew-days @ 728.00/crew-day $\quad \$ 1,456.00$
Materials - flagging, powersaw, etc. 118.27 (Amex Exploration Services Ltd) July 17-18, 1990

Subtotal
\$1,574.27
5) Geophysics
a) $\quad 1.6 \mathrm{~km}$ IP survey, Adam-C Grid 3 days @ \$1824.07/day
$\$ 5,472.21$ (Scott Geophysics Ltd)
Aug 3-6, 1990
Subtotal $\mathbf{\$ 5 , 4 7 2 . 2 1}$
6) Diamond Drilling
a) Relogging and Sampling of Oid Core

1) Steve Jensen (Geologist) 5 days @ \$193.05/day \$ 965.25 June 13-20, 1990
2) Randy Farmer (Geologist) 5 days @ \$250.25/day 1,251.25 June 13-20, 1990
3) Mike Cumming 5 days @ \$121.55/day $\quad \underline{607.75}$ June 13-20, 1990

Subtotal
b) 1990 Drill Program
i) Core Logging, Sampling and Supervision

1) Steve Jensen (Geologist)

10 days @ \$193.05/day \$1,930.50
Aug. 19-30, 1990
2) Randy Farmer (Geologist) 9 days @ \$250.25/day 2,252.25Aug. 19-30, 1990
3) Mike Cumming (Assistant)4 days @ \$121.55/day486.20Aug. 19-30, 1990
Subtotal
\$4,668.95
ii) Contract Diamond Drilling
a) Ford 4 Grid
475.49m @ \$49.33/metre $\$ 23,458.71$(LDS Diamond Drilling Ltd)Aug 19-24, 1990
b) Adam-C Grid
384.96 m @ \$52.83/metre$\underline{20,337.27}$
(LDS Diamond Drilling Ltd)
Aug. 24-28, 1990
Subtotal\$43,795.98
7) Food and Accomodation
a) Food
$\$ 17.00 /$ manday $\times 90$ mandays \$1,530.00
June 5 - Aug. 30, 1990
b) Accomodation
40 days @ \$50/day for crew $\underline{2,000.00}$
June 5 - Aug. 30, 1990Subtotal\$3,530.00
8) Transportation
2-4×4 Truck Lease (including fuel, insurance) 40 days @ \$50 \$da000.00 June 5 - Aug. 30, 1990
Subtotal\$2,000.00
9) Report Writing
a) Steve Jensen2 days @ \$193.05/day$\$ 386.10$
b) Randy Farmer
4 days @ 250.25/day$1,001.00$

10) Drafting and Typing

a) Draftingi) Patricia Lammerding
20 hrs @ \$22.40/hr \$ 448.00Materials250.00
ii) Steve Jensen 6 days @ \$193.05/day 1,158.30
b) Typing
2 days @ \$100.00/day 200.00
Subtotal \$2,056.30
COST TOTAL$\$ 79,096.41$

COST ALLOCATION

Ford A Group

90 total mandays were spent on the Ford, 40 of which on the Ford A Group.
Therefore, $40 / 90=44 \%$ of total cost of common items (food, transportation, reconnaissance geology, etc.) is allocated to the Ford A Group, while services or work performed entirely in the group receive 100% of the total cost.

The following table lists the itemized costs.

ITEM	TOTAL COST (\$)	\% COST	$\begin{aligned} & \text { FORD A GROUP } \\ & \text { COST ALLOCATION (\$) } \end{aligned}$
Geology-Recconnaissance	\$2,967.25	44	\$1,305.59
Geology-Adam-C	2,781.35	100	2,781.35
Soil Survey-Adam-C	1,494.35	100	1,494.35
Soil Samples	848.40	100	848.40
1990 Drill Core Samples	318.50	100	318.50
Rock Chip Samples	502.25	100	502.25
Linecutting	1,574.27	100	1,574.27
IP Survey	5,472.21	100	5,472.21
Relogging of Old Core	564.85	100	564.85
Core Logging 1990	1,387.10	100	1,387.10
Drilling	20,337.27	100	20,337.27
Food	1,530.00	44	673.20
Accomodation	2,000.00	44	880.00
Transportation	2,000.00	44	880.00
Report Writing	1,387.10	44	610.32
Drafting and Typing	2,056.30	44	904.77

COST ALLOCATION

Ford B Group

90 total mandays were spent on the Ford, 50 of which on the Ford B Group.
Therefore $50 / 90=56 \%$ of total cost of common items (food, transportation, reconnaissance geology, etc.) is allocated to the Ford B Group while services or work performed entirely in the group receive 100% of the total cost.

The following table lists the itemized costs.

ITEM	TOTAL COST (\$)	\% COST	FORD B GROUP COST ALLOCATION (\$)
Geology-Reconnaissance	\$2,967.25	56	\$661.66
Geology-Ford 4	2,752.75	100	2,752.75
Core Samples Relogged Holes	98.00	100	98.00
Rock Chip Samples	24.50	100	24.50
Relogging of Old Core	2,259.40	100	2,259.40
Core Logging 1990	3,281.85	100	3,281.85
Drilling	23,458.71	100	23,458.71
Food	1,530.00	56	856.80
Accomodation	2,000.00	56	1,120.00
Transportation	2,000.00	56	1,120.00
Report Writing	1,387.10	56	776.78
Drafting and Typing	2,056.30	56	1,151.53
	Ford B Group Sub		\$38,561.98

FORD A GROUP

Claims Applied	Units	Years Applied	Value (\$)
Woof 1	12	2	\$4,800.00
Woof 3	20	1	4,000.00
			\$8,800.00
	To PAC Account Teck Corporation		\$31,734.43
	Ford A Group Subtotal		\$40,534.43

FORD B GROUP

Claims Applied	Units	Years Applied	Value (\$)
Ford 2	20	2	\$8,000.00
Ford 3	16	1	\$3,200.00
Ford 4	16	1	\$3,200.00
Ford 5	12	1	\$2,400.00
Ford 6	8	2	\$3,200.00
Ford 7	10	2	\$4,000.00
Woof 2	16	2	\$ 6400.00
			\$30,400.00
	To PAC Account Teck Corporation		\$30,400.00
	Ford B Group Subtotal		\$38,561.98

APPENDIX III

Certificate of Analysis
"PREVIOUS DRILL

SAMPLEM	$\begin{aligned} & \text { Mo } \\ & \text { mpp } \end{aligned}$	$\boldsymbol{\omega}$	pop	${ }_{\text {ppp }}^{2 n}$	A_{9}		co	min		$\mathrm{X}_{\mathrm{pp}}^{\mathrm{nc}}$				${ }_{\text {ppr }}$	cd			\bar{v}	c_{x}				\bar{x}	Be	$\begin{aligned} & 71 \\ & x \end{aligned}$		$\begin{gathered} \mathrm{Al} \\ \mathrm{x} \end{gathered}$	M_{x}			p
c 20001	6	536	2949	7315	. 9	56	23	275	6.31	56	5	mo	2	7	22.9	2	2	115	1.13	. 065	4		2.86	7	. 02		3.54	. 01	. 17	1	
c 20002	18	310	214	5448	1.3	76	21	2539	5.36	253	5	10	3	9	18.5	2	31	133	1.32	. 059	5		2.68	79	. 02		3.14	. 01	. 21	1	
c 20003	7	261	181	3868	. 8	39	18	4603	5.36	173	5	10	21	19	13.7	2	2	82	3.25	. 059	5		2.74	110	. 03		2.89	. 01	. 33	1	10
c 20006	4	990	45	198	. 3	4	15	1623	7.22	22	5	wo	5	36	. 4	2	3	4	. 39	.054	7		1.42	132	. 03		2.39	. 01	. 29	1	
c 20005		4113	25	351	1.8	9	21	2432	10.06	42	5	mo	4	30	2.3	4	5	26	. 34	. 072	5			101	. 05			. 01	. 37	1	80
c 20006						16		2603	10.00	13	5	${ }^{0}$	3	28	1.4	3	2	43	. 29	. 064	5			135	. 09		3.83	. 01	. 47	1	12
c 20007	1	1636	17043	2285	9. 5	4	15	801	7.87	61	5	wo	8	16	35.9	9	2	9	. 62	. 024	5		1.91	58	. 01		2.28	. 01	. 12	2	22
c 20008		Se0	18909	9807/		4	7	1557	8.95	60	5	\%	8	5	,	-	21	16	1.84	016	4			11	03		3.22			3	33

/ ASSAY RECOMMENDED

ROCK SAMPRES
Teak Exploration (BC) PROJECT 1381 FILE \# 90-2127
Page 4

SAMPLE*	Mo	Cu	$\begin{aligned} & \text { pb } \\ & \text { ppom } \end{aligned}$	$\begin{aligned} & \text { 2n } \\ & \text { ppon } \end{aligned}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppp} \end{gathered}$	${ }_{\text {mp }}^{\mathrm{ml}}$	$\begin{gathered} \text { Co } \\ \hline \end{gathered}$	$m_{m \times m}^{m}$	\underline{x}	AB	$\underset{\text { ppen }}{u}$	$\mathrm{ApO}_{\mathrm{Al}}$	ppm	$\underset{\substack{\text { sp } \\ \hline}}{ }$	or	$\begin{gathered} \text { sb } \\ \text { ppp } \end{gathered}$	81	$\begin{array}{r} \mathbf{v} \\ \text { ppm } \end{array}$	$\begin{gathered} c_{x} \\ x \end{gathered}$	x	Lep	$\begin{gathered} \mathrm{cr} \\ \mathrm{prpm} \end{gathered}$	$\begin{gathered} \mathrm{mog} \\ x \end{gathered}$	$\begin{aligned} & 60 \\ & p p o m \end{aligned}$	$\begin{array}{r} 11 \\ x \\ \hline \end{array}$	pom	$\begin{gathered} \text { Al } \\ x \end{gathered}$	\bar{m}_{x}	x		∞
c 20009	!	16	8	21	1	4		1156	1.41	4	5	10	16	17	2	3	2	3	. 20	. 025	33	5	. 41	134	. 01	6		. 02	. 20		
c 20010	1	47	31	86	. 1	1		790	3.81	6	5	${ }^{10}$	7	27	. 3	2	2	5	. 20	.085	15	2	. 60	292	. 08			. 01	. 36	,	
c 20011	1	7	25	π	. 1	3		1161	4.50	2	5	no	4	37	. 6	3	6	9	. 48	. 117	11	2	. 93	607	. 24		1.76	. 02	. 06	1	14
c 20012	1	79	38	81	. 1	2		1260	3.56	4	5	0	5	35	. 4	2	2	6	. 45	. 110	12	3	. 71	478	. 14		1.43	. 01	. 7	1	
c 20013	1	6	49	123	. 1	3		1121	3.89	6	5	No	5	40	. 9	2	2	7	. 81	. 113	13	3	. 81	479	. 14			. 01	. 73	1	12
c 20016	2	140	65	149	. 2	1	15	1348	4.53	11	5	10	5	40	. 9	2	2	10	. 47	. 126	16	3	. 98	560	. 13		9.67	. 01	. 0	1	
c 20015	1	78	69	90	. 1	1	12	766	3.66	6	5	no	7	39	. 3	2	2	7	. 35	. 119	16	2	. 81	476	. 15		1.56	. 01	. 00	1	
c 20016	1	130	47	149	1	2	10	${ }^{003}$	3.59	7	5	wo	5	29	. 8	2	2	7	. 30	. 103	16	3	. 67	44	. 13		1.36	. 01	. 76	1	
c 20017	1	62	69	224	.1	1	11	1081	3.54	9	5	\%	5	25	1.2	2	5	7	. 33	. 109	14	2	. 75	501	. 17		1.46	. 01	.86	1	
c 20018	1	51	47	482	. 1	4		1380	2.82	2	5	\%	6	42	1.1	2	2	6	. 71	. 112	20	3	. 92	413	. 11		1.36	. 01	. 71	1	
c 20019	4	178	152	829	. 9	3	20	1920	10.99	57	5	10	10	6	4.9	2	2	16	. 02	. 022	4		2.36	65	. 02		3.02	. 01	. 16	1	48
c 20020	3	65	7	169	. 1	1	6	713	5.73	40	5	10	10	13	. 2	2	2	6	. 08	. 028	11	6	. 83	103	. 02			. 02	. 27	1	27
c 20021		0982	52	322	17.6	3	3	1031	7.93	58	6	No	4	7	. 9	2	2	1	. 08	. 029	4		. 69	37	. 01		1.38	. 01	. 20	1	205
c 20022	1	163	27	177	. 1	1	10	1503	6.13	3	5	No	6	37	1.0		2	7	. 91	. 113	18	2	1.24	61	. 03		2.60	. 02	. 21	1	,
c 20023		1646	38	82	1.6	7	70	587	9.14	106	5	\%	\bigcirc	29	1.6	2	2	11	. 56	. 102	35	1	. 7	43	. 02		1.59	. 01	. 26	1	23
Stamdaro C/mu-R	18	57	39	132	7.1	68	28	1031	4.06	39	21	6	36	48	18.3	15	21	55	. 52	. 098	37	57	. 92	173	. 07	36	1.93	. 06	. 14	11	67

ROcK SAMPLES GEOCHENICAL NRALYEIS CERTIFICATE

SMPLE*	$\mathrm{mpo}_{\mathrm{pop}}$	cu	$\begin{aligned} & \text { pb } \\ & \hline \text { ppon } \end{aligned}$	$\begin{array}{r} \text { 2n } \\ \text { ppm } \end{array}$	$\mathrm{Md}_{\mathrm{pp}}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppom} \end{gathered}$	co	$\underset{\text { ppm }}{\substack{m n}}$	Fe_{x}	As	U	Au	Th	$\begin{aligned} & \text { sr } \\ & \text { ppp } \end{aligned}$	$\overline{\mathrm{cd}}$	$\begin{gathered} \text { st } \\ \text { ppm } \end{gathered}$	pi	$\begin{gathered} v \\ p p p \end{gathered}$	$\begin{gathered} c_{0} \\ x \end{gathered}$	$\begin{aligned} & p \\ & x \\ & \hline \end{aligned}$	Le ppom	cr	$\begin{gathered} \mathrm{mg} \\ \hline \end{gathered}$	pp	$\begin{gathered} 11 \\ x \end{gathered}$	npin	$\begin{gathered} \mathrm{A} I \\ \mathrm{X} \\ \hline \end{gathered}$	me_{x}	x	
	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 37 \\ & 69 \end{aligned}$	$\begin{gathered} 108 \\ 28 \end{gathered}$	$\begin{gathered} 102 \\ 88 \end{gathered}$	$.5$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	9	$\begin{aligned} & 643 \\ & 373 \end{aligned}$	$\begin{aligned} & 7.00 \\ & 4.73 \end{aligned}$	$\begin{array}{r} 111 \\ \hline \end{array}$	5	ω_{0}	9	$\begin{aligned} & 22 \\ & 27 \end{aligned}$	$\begin{array}{r} .3 \\ .2 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 37 \\ & 44 \end{aligned}$	$.33$		$\begin{gathered} 8 \\ 15 \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	$.67$	62	$\begin{aligned} & .06 \\ & .08 \end{aligned}$	2	$.25$	$.03$	$\begin{aligned} & 12 \\ & .03 \end{aligned}$	$\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}$

SMMPLE TYPE: CORE ANO: AMLYSIS OY EAVICP FROM 10 cm sMPLE.
date recerved
dats report maiked: Sept $7 / 90$.

ADAm-C
MOSS MAT Teok EEploration (BC) PROJECT 1381 FILE 90-1708

Sumplem	$\begin{gathered} \text { Mo } \\ \text { ppo } \end{gathered}$	$\begin{gathered} \text { cu } \\ \text { ppp } \end{gathered}$	$\begin{gathered} \text { po } \\ \text { ppp } \end{gathered}$	$\begin{gathered} 2 n \\ p p m \end{gathered}$	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{pqpm} \end{aligned}$	$\begin{array}{ll} \mathrm{NI} \\ \mathrm{prom} \end{array}$	$\begin{gathered} c_{0} \\ \text { pp } \end{gathered}$	$\begin{gathered} m n \\ p p m \end{gathered}$	$\begin{gathered} \mathrm{fe} \\ \mathrm{x} \end{gathered}$	ppos	up	Av	$\begin{gathered} \text { Th } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \mathrm{sr} \\ p \mathrm{pm} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{cd} \\ \mathrm{pmam} \end{gathered}$	$\begin{array}{r} \text { sb } \\ \text { ppm } \end{array}$	$\begin{gathered} \hline \text { Bi } \\ \text { ppo } \end{gathered}$	v	c_{x}	$\begin{aligned} & \mathrm{p} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { Le } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathbf{c r} \\ \text { pp } \end{gathered}$	mg_{x}	ppo	$\begin{gathered} 11 \\ x \end{gathered}$	ppin	$\begin{array}{r} A 1 \\ x \end{array}$	$\begin{gathered} \mathrm{max} \\ \mathrm{x} \end{gathered}$	$\begin{aligned} & \mathrm{k} \\ & \mathbf{x} \\ & \hline \end{aligned}$	ب"	$\begin{gathered} \mathrm{N}^{\mathrm{m} ⿻} \\ \mathrm{pppb} \end{gathered}$
51512	2	91	50	282	. 3	19	13	1020	69	6	5	mo	0	53	. 8	2	2	28	. 80	. 067	27	27	. 93	0	. 05	8	. 68	. 01	. 33	1	10

ADAm-C GRID SOKS								$\frac{\text { cioration }}{960-175 \cdot \frac{12}{2 n}}$			EAstrimos GEOCHE $\text { (BC) } \mathrm{PI}$		$\begin{aligned} & \text { 8T. vNMCOUV } \\ & \text { 3NICNL MNALY } \\ & \text { KROJECT } 1381 \end{aligned}$			File \# 90-2127 sumitited by: R. FANEER						PHown (604) 253-3158 Page 1					8 FAX (606)253-1716				
sample\%	no	cu	$\begin{aligned} & \text { po } \\ & \hline \text { ppp } \end{aligned}$	2n	Ad	$\underset{ }{\mathbf{H 1}}$	$\underset{p}{c_{0}}$	${ }_{p r p}^{m p}$	$\begin{array}{\|cc} \mathrm{Fe} \\ \hline \end{array}$	Asp	up	$\underset{\text { ppp }}{\text { Au }}$	Th	prp	cd	sp	81	$\begin{gathered} v \\ p p p \end{gathered}$	c_{x}	\bar{p}	Le	$\begin{gathered} \text { cr } \\ \text { ppp } \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{x}} \\ \hline \end{gathered}$	$\begin{gathered} \text { en } \\ \text { ppp } \end{gathered}$	$\begin{gathered} T i \\ x \end{gathered}$	ppp	$\begin{array}{r} A 1 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ha}_{\mathrm{x}} \\ \hline \end{gathered}$	$\begin{aligned} & k \\ & x \\ & \hline \end{aligned}$		$\begin{gathered} \text { An } \\ \text { ppob } \\ \hline \end{gathered}$
\$51522	1	36	29	319	2	18		1763	32.79	8	6	mo	7	30	1.3	2	2	24		. 100	17	20	. 64	181	.04		1.39 1.30	. 01	. 18	,	
\$51523	1	46	30	115	. 2	8	14	$\begin{aligned} & 4020 \\ & 588 \end{aligned}$	22.89 3.8	6	6	mo	10	14	. 2	2	2	42	. 21	.056	24	13	. 1.31	40	.05		1.30	. 01	. 18	1	1
51525	1	48	32	185	. 2	15		570	3.08	10	5	mo	-	15	. 3	2	2	25	. 19	. 025	27	20	. 79	52	.05		1.38	. 01	. 17	1	1
51527	1	33	39	322	.3	-	7		12.55	T	8	10	-	26	. 2	2	2	20	. 23	. 116	20	10	. 41	91	.06		1.66	. 01	. 18	1	2
51528	1	14	25	27	.1	7		1072	2.25	4	5	mo	4	33	. 5	2	2	24	. 40	. 080	12	9	. 28	120	. 05		1.51	. 02	. 15	,	1
51529	1	16	13	${ }^{2}$. 4	8	3	292	21.25	8	5	10	4	29	. 2	2	2	13	. 35	. 105	8	5	. 16	69	. 08		1.99	. 04	. 10	2	1
51530	2	23	21	147	. 2	6		1957	2.36	12	5	no	8	48	. 3	2	2	17	. 59	. 070	22	8	. 27	215	. 03		1.71	. 01	. 24	1	5
51531	1	19	26	216	. 1	8	6	1333	2.31	2	5	10	4	24	. 4	3	2	22	. 27	. 032	45	10	. 38	148	. 05		1.73	. 01	. 18	1	2
51533	1	58	568	559	. 5	-	10	851	3.06	7	5	mo	7	36	. 5	2	2	27	. 48	.040	18	11	. 46	8	.05		2.21	. 02	. 17	1	6
51534	1	38	35	201	.2	7	3		2.76	2	5	10	5	22	. 2	2	2	23	. 27	.045	23	11	. 48	${ }^{95}$. 05		1.86	. 02	. 23	1	4
51535	1	11	12	112	. 6	7	3	392	21.40	7	5	mo	5	29	. 2	2	2	13	. 26	.094	10	5	. 16	as	. 07		1.91	. 03	. 11		
51536	1	86	50	248	.3	14	6	449	2.99	6	5	N0	9	46	. 3	3	2	20	. 50	. 030	28	12	. 35	195	. 11		4.18	. 03	. 20	1	2
51537 51539	1	43	23	135	. 3	${ }_{10}^{8}$	8	545	32.87	2	5	\%	9	31 19	. 3	2	2	26	. 23	.019	212	13 19	. 55	${ }_{63}^{93}$. 05		11.82	. 02	. 19	1	1
51539	1	23	21	135	. 1	10	9		2.83	9	5	No	8	19	. 3	2	2	26	. 23	. 066	20	19	. 76	63	. 03			. 01	. 15	1	3
51540	1	30	118	507	1	,	8	1096	3.33	13	5	mo	13	19	4	3	2	16	. 24	. 062	30	10	. 82	63	. 03		1.38	. 01	. 20	1	1
51542	1	31	24	109	. 3	11	8	316	2.82	4	5	mo	8	19	. 2	2	2	26	. 19	. 022	18	15	. 68	108	. 06		2.12	. 02	. 16	1	1
51546	1	23	21	192	. 2	9	7	602	2.22	3	5	mo	6	24	. 2	2	2	19	. 29	.054	17		. 39	154	.05		1.73	. 01	. 18	1	4
51565	1	18	18	121	. 2	13	8		2.56	2	5	mo	6	22	. 2	2	2	22	. 25	.065	15	16	. 61	117	. 05		1.73	. 01	. 18	1	4
51546	1	33	29	183	. 1	41	16		3.63	2	5	mo	6	38	. 4	2	2	39	. 42	. 115	15	46	. 04	149	. 07		3.09	. 01	. 19	1	1
51547	1	28	20	162	. 3	14	7	903	32.30	7	5	mo	4	27	. 4	2	2	22	. 29	. 150	14	16	. 45	136	. 05		1.00	. 02	. 13	1	?
51568	1	57	35	153	. 4	23	12	1002	23.38	7	5	mo	7	30	. 4	3	2	32	. 38	. 182	18	31	. 87	105	. 6		1.84	. 01	. 14	1	1
(51569	1	122	57	306	$\cdot 4$	11	12		3.86	11	5	mo	-	54	. 6	3		21		. 117	16	11	. 67	320	. 09		2.52	. 02	. 36	1	4
51550	1	39	31	187	1	9	8	1317	72.68	5	5	No	8	31	- 4	2	2	22	. 30	.082	22	12	. 53	163 51	.04		${ }^{1} 1.04$. 01	. 26	$!$	4
51551	1	20	18	68	.1	7	8		2.57	2	5	mo	8	11	. 2	2	2	20	. 14	. 015	22	12	. 63	51	.04		1.36	. 01	. 13	1	2
51552	1	13	17	110	.1	9	7		2.36	2	5	mo	5	21	. 2	2	2	21	. 23	. 029	43	12	. 51	98	. 0		1.53	. 01	. 16	1	4
51553	1	13	19	195	1	10	7	542	22.26	4	5	${ }_{0}^{0}$	9	20	. 2	2	2	22	. 17	.055	14	12	. 46	${ }^{107}$.04		31.47	. 01	. 12	i	4
51554	1	33	21	125	1	7	7	316	462.65	5	5	N0	9	15	. 2	2	2	19	. 17	. 035	${ }_{23}^{24}$	18	. 58	${ }_{46} 6$.04		21.21	. 01	. 26	1	1
51555 51556	1	35 18	38 22	126	. 2	8	9	471	13.02	8	5	N0	7	12	. 2	2	2	20	. 15	. 028	18	13	. 52	89	. 05		21.63	. 01	. 20	1	4
51557	1	20	20	155	. 2	15	8	616	62.67	2	5	mo	5	21	. 2	2	2	26	. 23	.002	13	16	. 46	143	. 0		31.95	. 02	. 14	!	!
51558	1	16	26	167	. 3	19		600	2.63	7	5	mo	5	29	. 2	2	2	27	. 37	.096	13	19	. 53	146	. 0		2.18	. 02	. 17	!	1
51559	1	18	19	127	1	19	8		S32.43	4	5	N0	4	23	. 2	2	2	31			11	20	. 49	137				. 02	. 11	1	1
51560 51561	1	${ }_{60} 0$	30	175	2	23	12	1458	(3.15	2	5	N0	10	18	. 3	3	2	313	. 25	.073	29	${ }_{3}^{28}$	1.81	137 76	. 05		(1.83	. 01	. 13	1	2
51561	1	65	48	134	. 2	20	11		3.95	4	6	No	10	18	. 3	3	2	40	. 23	. 035	29		. 21	76	. 06		2.16	. 01	. 21	1	2
51562 STAMONEOC/MU-S	17	$\begin{aligned} & 22 \\ & 58 \end{aligned}$	$\begin{aligned} & 24 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 173 \\ & 132 \end{aligned}$	7.6	$\begin{array}{r} 8 \\ 68 \end{array}$	28	$\begin{array}{r} 635 \\ 1007 \\ \hline \end{array}$	152.49	$\begin{array}{r} 2 \\ 41 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 23 \\ \hline \end{array}$	$\begin{gathered} 10 \\ 7 \end{gathered}$	$\begin{array}{r} 7 \\ 36 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 40 \\ & \hline \end{aligned}$	18.5	$\begin{array}{r} 2 \\ 16 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & .22 \\ & . \end{aligned}$	$\begin{aligned} & 2.064 \\ & 0.086 \\ & \hline \end{aligned}$	$\begin{array}{r} 19 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 93 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & .51 \\ & .92 \end{aligned}$	$\begin{aligned} & 162 \\ & 179 \\ & \hline \end{aligned}$	$.06$		$\begin{aligned} & 81.56 \\ & \hline \end{aligned}$	$.01$	$\begin{aligned} & .20 \\ & .16 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 13 \\ \hline \end{array}$	50

ADAM-C SOLLS Teok Exploration (BC) PROSECT 1381 FILE \# 90-2127
Page 2

Sumble	$\begin{aligned} & \text { mo } \\ & \text { pom } \end{aligned}$	$\underset{\sim}{c}$	$\begin{gathered} \text { pto } \\ \text { ppp } \end{gathered}$	$\begin{gathered} 2 n \\ \text { pppm } \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppgm} \end{gathered}$	$\begin{gathered} \mathrm{nc} \\ \mathrm{ppm} \end{gathered}$	co	m	$\begin{gathered} \mathrm{Fi} \\ \hline \end{gathered}$	As	up	$\begin{gathered} \mathrm{Mu} \\ \mathrm{popm} \end{gathered}$	Th	$\begin{gathered} \text { sr } \\ \text { ppp } \end{gathered}$	$\begin{gathered} \mathrm{Cd} \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { st } \\ \text { ppm } \end{gathered}$	Bi	\mathbf{v}	c_{0}	\dot{x}	La	$\underset{p r}{\text { cr }}$	$\begin{aligned} & \mathrm{ma} \\ & \mathrm{x} \end{aligned}$	6	$\begin{gathered} 11 \\ x \end{gathered}$	8	$\begin{array}{r} \mathrm{Al} \\ \mathrm{x} \end{array}$	$\begin{aligned} & \mathrm{Ma}_{\mathrm{x}} \\ & \hline \end{aligned}$	x		
51563	2	90	53	322	. 3	11	11	879	3.23	6	5	10	4	34	. 9	3	2	24	. 30	.000	13	12	. 4	151	. 07		2.64	. 08	. 16	2	11
	1	24	29	187	. 2		8	702	2.41	5	5	No	4	21	. 2	2	2	22	. 22	. 061	14	12	. 37	165	. 05		1.\%	. 01	. 13		1
51565 51565	1	17	29	218	. 2	6	7		2.16	2	5	10	3	15	. 3	2	3	20	. 13	.036	14	11	. 29	133	.06		1.48	. 01	. 11	1	8
51566	1	26	26	208	. 1	12	9	616	2.58	2	5	10	5	18	1.3	2	2	24	. 24	.090	16	13	. 41	116	. 05		1.83	. 02	. 17	1	,
51567	1	26	23	129	. 1	10	\bigcirc		2.59	2	5	mo	5	16	. 3	2	2	23		. 040	15	15	. 52	0	. 0		1.59	. 01	. 12	2	4
51568	1	31	27	154	1	8	10	649	2.87	2	5	0	6	25	. 2	2	2	23	. 27	. 00	18	15	. 38	107	. 04		1.56	. 01	. 17	2	17
51569	1	30	21	258	.1	8		1086	2.72	2	5	10	7	26	1.3	2	2	20	. 18	. 107	21	12	. 50	155	. 08		1.49	. 01	. 19	1	1
c L16e 4+258	1	20	47	254	. 2	13		1369	2.17	6	5	mo	3	61	. 5	2	2	24	. 36	. 072	12	12	. 27	200	. 07		2.11	. 02	. 09	!	
c L16E 6+30s	1	16	26	186	$\cdot 1$	9	6	1416	1.8	2	5	10	2	33	1.2	2	2	21	. 30	. 092	11	9	. 21	191	. 07		2.05	. 03	. 08	2	4
C LIGE 4+505	1	15	18	239	. 1	8		1900	1.88	6	5	10	2	29	. 6	2	2	21	. 24	. 116	10	10	. 23	220	. 05		1.63	. 02	. 09	1	1
c L16E 4+63s	1	25	20	224	.1	10		1236	2.20	2	5	10	3	23	. 5	2	3	29	. 22	. 10	10	11	. 24	120	. 08		2.15	. 02	. 08	1	6
c Lice batss	1	30	42	323	. 2	14		1269	2.40	2	5	m	4	28	. 7	2	2	22	. 25	. 109	14	13	. 32	219	. 07		2.60	. 02	. 12	1	8
C L16E 4-885	1	19	24	306	. 2	9		2226	1.61	2	5	mo	2	4	. 5	2	2	20	. 43	.077	9	9	. 18	181	. 07		1.99	. 03	. 10	1	4
c L16E 5+25s	1	35	4	246	.1	16	d		2.51	8	5	10	4	25	. 8	2	3	25	. 21	. 086	17	15	. 34	152	. 07		2.78	. 02	. 13	1	3
c L16E 5+365	1	33	31	168	.1	15	8		. 59	5	5	mo	4	28	. 9	2	2	26	. 26	. 104	15	15	. 33	142	. 09		3.17	. 02	. 09	1	
c L18E $2+258$	1	29	22	65	4	10			2.46	2	5	m	4	22	. 5	2	2	31	. 25	. 080	6	19	. 19	81	. 19		3.51	. 03	.0s	2	
c L18E 2436s	1	418	18	151	. 2	17	10	450	3.49	2	5	10	7	31	. 6	2		35	. 33	. 061	18	21	. 47	141	. 09		3.15	. 02	. 10	1	1
c L18E $2+500$	1	108	3	606	1	11	8		2.77	2	5	10	6	22	. 8	2	2	28	. 25	. 102	16	13	. 28	103	. 15		5.00	. 02	. 0	2	
c L18E 24635	1	7	23	150	. 2	14	8		2.83	3	5	10	8	28	. 6	2	2	29	. 26	. 107	15	13	. 30	126	. 17		3.62	. 03	.08	1	1
C L18E 2473	1	50	29	150	.3	13	9		2.74	2	7	0	6	33	. 7	2	2	27		. 121	13	12	. 29	152	. 11		3.99	. 03	.08	1	1
stamonad C/mu-s	18	62	45	132	7.2	71	30	1030	6.00	38	23	7	36		18.5	16	18	so	. 52	. 099	33	57	. 92	177	. 07	37	1.92	. 06	. 16	11	56

MOSS MATS Teck Exploration (BC) PROTECT 1381 FILE \# 90-2127
Page 3

SNMPLE*	mo	Cu	$\begin{gathered} \text { po } \\ \text { ppm } \end{gathered}$	$2 n$		$\begin{gathered} \text { M1 } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { co } \\ \text { ppom } \end{gathered}$	$m^{m n}$	$\begin{gathered} \text { Fo } \\ \text { x } \end{gathered}$	$\begin{gathered} \text { at } \\ \text { ppin } \end{gathered}$	$\xrightarrow[\text { up }]{\mathbf{u}}$	$\underset{\mathrm{ppom}}{\mathrm{Av}}$	in	sp	cd	so	$\underset{\substack{\mathrm{pp} \\ \hline}}{ }$	$\begin{gathered} v \\ p p p \end{gathered}$	c_{x}	\bar{p}	Le	Cr	$\begin{gathered} \mathrm{m}_{\mathrm{g}} \\ \hline \end{gathered}$	0	$\begin{aligned} & 11 \\ & x \end{aligned}$	pin	$\overline{A 1}$	m_{x}	\bar{x}		6
51526	1	88	60	246	. 2	16	14	961	3.72	4	5	\cdots	8	35	. 3	3	2	26	. 68	.070	25	22	. 7	6	. 05	5	1.54	. 01	17	2	,
51538	1	185	18	269	. 3	6	6		1.73	2	5	10	1	106	1.3	2	2	12	7.53	. 090	12	9	. 40	38	. 02	8	. $\%$. 01	. 25	1	$!$
51541	1	86	38	265	. 2	19	12	950	3.50	2	5	mo	8	36	. 2	3	2	25	. 87	. 064	23	21	.TP	63	. 04	4	1.51	. 01	. 20	1	3
51543	1	82	48	236	. 1	15	12		3.56	6	5	mo	7	37	. 9	2	2	25	. 63	. 067	22	21	. 00	54	. 04	5	1.51	. 01	. 21	1	4

APPENDIX IV
Analytical Procedures

$$
\begin{aligned}
& \text { ICP - } 0.5 \text { gram sample is digested with } 3 \mathrm{ml} \mathrm{3-1-2} \\
& \text { HCL-hNO3-H2O at } 95 \text { deg.C for one hour and is } \\
& \text { diluted to } 10 \mathrm{ml} \text { with water. This leach is } \\
& \text { partial for Mn, Fe, Sr, Ca, } P, L a, C r, \mathrm{Mg}, \mathrm{Ba}, \\
& \\
& \text { Ti, B, w and limited for Na, } K, A 1 .
\end{aligned}
$$

GOLD \& BILVER BY FIRE ABBAY

1/2 A.T. samples is mix in dry reagent flux with 1 Ag inquart and fused at 1000 deg C for 45 to 60 mins . The resulting Ag bead from cupeliation is dissolved in aquaregia. Au and Ag are analyzed by ICP.

- For $A u>.5 \mathrm{oz} / \mathrm{t}$, determination by gravimetric finished.
- Wet acid leached for Ag is also ran for confirmation. (procedure same as below).

ASBAY FOR CU, PB, $Z N$ AND AG
In 100 ml volumetric flask, 1 g sample is digested in 50 ml 3-1-2 HCL-HNO3-H2O at 95 deg C for one hour, dilute to 100 ml with demineralized water, analysis by ICP.

APPENDIX V
Rock Sample Descriptions

Same as 20024.

APPENDIX VI

	TECK EXPLORATIONS LIMITED					HOLE NO. 36							PAGE		2	of	4
DEPTH (metres) FROM TO		DESCRIPTION		STRUCTURE		ALTERATION	METALLIC MINERALS (\%)	SAMPLE DATA				RESULTS					
				ANGLES	VEINS												
								$\begin{array}{\|l\|} \hline \text { SAMRE: } \\ \text { NO } \\ \hline \end{array}$	FROM	то	(ENGTH	$\mathrm{cou}_{\mathrm{ppm}}$	$\begin{aligned} & \mathrm{Pb} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Zn} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \mathbf{A g} \\ \text { pppm } \end{array}$	Au	
32.11-40.20		-37.5-40.23-graphitic shale/argillaceous	-	-													
(con'td)		- weak to moderate quartz veins (increase near		-													
		bottom)					Pyrite up to 2%										
		-37.18-40.20-minor Sphalerite in veinlets and															
		wisps, light trace galena and Cp.															
		- 39.14-.70m zone with 10% Sphalerite with minor Galena, Cp.		-													-
		- 40.20-40.84-Fault Zone		- -													
		- top fault contact 50°															
																	-
40.84		INIEPMEDIATE TUFF	80\%			Moderate to Strong Chl	40.89-49.00 $=5-$	20003	40.23	41.27	1.04	261	181	3868	0.8	10	
116.00		- fine grained, medium green intermediate tuff					10% total sulphides	S	Oid sol		1.04	261	181		0.8	10	
		- moderate to strong chlorite (some zones strong	90\%				predom. pyrite, $\quad 2$	20004	42.15	44.26	2.11	990	45	198	0.3	7	
		chloritic)				----	same Cp										-
		- variablly silica flooded - 5 - 10% total sulphides - predominantly pyrite,	100\%						45.26	46.30	1.04	4113	25	351	1.8	80	
		some Cp_(40.84-49.00)	100\%				sample)	20006	46.30	47.30	1	576	12	231	0.5	12	
		- Cp in quartz/carbonate clots															
		- pyrite in veins, subhedral, disseminated.															
		- local coarser clastic sections - probable		Fol 60°			44.26-45.26 (old					\cdots					\square
		. lapilli sized tuff		O 50.30			sample) 15\% total										-
		- $45.70-46.00-10 \%$ total sulphide, over 9% pyrita					Sulphide: Py, Cp										
							(runs 1.03\% Cu)										
		- 48.00-49.98- probably intermediate flow															
		- 49.98 - 50.29 :					49.00-55.00-up										
		- coarser clastic (lapilli tuff?)					to 5\% total sulph des										
		- variable sericite alteration zones (up to 300m)					locally, predom Py										1
							minor Cp										
		- 52.54-52.64 - possible dyke?															
		- top contact 90, bottom broken has 2-3\% prite					57.65 a blotchy CD										
							in fractured quartz										
							vein										

APPENDIX VII

IP Survey - Summary of Data Listings

IPR-1 1 SPECTRAL ANALYSIS SUMMAFY

LINE ND. $=2000$

Station Dipole		Vp	Apparent Resist.	47	Cole-Cole Paraneters					Fit/lf	Fit/EM	
		M-IP			tal-Ip	C-IP	H-EK	tau-EM				
425	1		624.0	489.8	6.1	245.52	. 01	. 10	-2000.00	-2000.000		-2000.00
	2	298.3	702.5	6.3	243.31	. 03	. 10	-2000.00	-2000.000	1.09	-2000.00	
	3	100.4	471.9	5.5	222.99	. 01	. 10	-2000.00	-2000.000	1.68	-2000.00	
	4	94.6	742.5	5.8	123.25	. 10	. 20	-2000.00	-2000.000	1.79	-2000.00	
	5	107.9	1270.5	6.6	262.04	. 01	. 10	-2000.00	-2000.000	1.28	-2000.00	
448	1	1010.0	704.8	5.1	107.65	. 10	. 20	-2000.00	-2000.000	1.41	-2000.00	
	2	226.1	473.3	4.9	104.62	. 10	. 20	-2000.00	-2000.000		-2000.00	
	3	175.4	732.8	5.3	113.20	. 10	. 20	-2000.00	-2000.000	1.78	-2000.00	
	4	233.5	1629.3	6.3	132.78	. 10	. 20	-2000.00	-2000.000		-2000.00	
	5	112.6	1178.5	6.8	258.34	. 03	. 10	-2000.00	-2000.000	1.91	-2000.00	
471	1	542.0	340.0	3.4	88.92	. 01	. 20	-2000.00	-2000.000	1.66	-2000.00	
	2	338.4	637.0	4.3	112.23	. 01	. 20	-2000.00	-2000.000	1.60	-2000.00	
	3	407.1	1530.0	5.7	122.03	. 10	. 20	-2000.00	-2000.000	1.66	-2000.00	
	4	177.1	1110.0	6.1	129.33	. 10	. 20	-2000.00	-2000.000	1.51	-2000.00	
	5	114.8	1080.0	7.7	284.07	.10	.10	-2000.00	-2000.000	2.11	-2000.00	
494	1	580.6	552.0	2.6	69.48	. 01	. 20	-2000.00	-2000.000	3.58	-2000.00	
	2	528.4	1508.0	4.6	73.58	. 10	. 30	-2000.00	-2000.000	1.57	-2000.00	
	3	195.1	1110.0	5.2	112.56	. 10	. 20	-2000.00	-2000.000	1.65	-2000.00	
	4	111.4	1050.0	7.1	278.08	. 01	.10	-2000.00	-2000.000	1.26	-2000.00	
	5	110.2	1570.0	9.2	311.60	3.00	. 10	-2000.00	-2000.100	1.11	-2000.00	
518	1	1035.0	810.0	3.7	70.78	. 03	. 30	-2000.00	-2000.000	1.67	-2000.00	
	2	321.3	756.0	4.4	114.45	. 01	. 20	-2000.00	-2000.000	1.53	-2000.00	
	3	175.8	820.0	6.4	253.55	. 01	. 10	-2000.00	-2000.000	1.57	-2000.00	
	,	156.7	1230.0	8.3	294.24	1.00	. 10	-2000.00	-2000.000	1.96	-2000.00	
	5	123.9	1450.0	9.8	361.59	. 01	.10	-2000.00	-2000.000	2.36	-2000.00	
540	1	630.4	565.0	3.6	58.86	. 10	. 30	-2000.00	-2000.000	1.80	-2000.00	
	2	266.5	717.0	5.6	120.39	. 10	. 20	-2000.00	-2000.000	1.98	-2000.00	
	3	210.0	1120.0	7.7	285.45	. 10	. 10	-2000.00	-2000.000	1.24	-2000.00	
	4	151.9	1360.0	9.1	311.76	3.00	.10	-2000.00	-2000.000		-2000.00	
	5	50.8	683.0	11.1	203.13	10.00	. 20	-2000.00	-2000.000	1.55	-2001.00	
562	1	1111.0	770.0	4.5	104.54	. 03	. 20	-2000.00	-2000.000	1.64	-2000.00	
	2	617.1	1291.0	7.0	274.66	. 01	. 10	-2010.00	-2000.000		-2000.00	
	3	350.4	1460.0	8.3	290.89	1.00	. 10	-2000.00	-2000.000	1.32	-2000.00	
	4	111.2	770.0	10.1	186.03	10.00	. 20	-2000.00	-2000.000	1.42	-2000.00	
	5	55.6	582.0	11.0	72.53	. 30	. 60	-2000.00	-2000.000	13.12	-2000.00	
583	1	1315.0	930.0	6.2	247.25	. 01	. 10	-2000.00	-2000.000	1.61	-2000.00	
	2	647.3	1385.0	7.3	266.87	. 10	. 10	-2000.00	-2000.000	1.36	-2000.00	

Station Dipole		Vp	Apparent Resist.	17	Cole-Cole Parameters					Fit/IP	Fit/EM	
		$\mathrm{H}-\mathrm{IP}$			TAU-If	C-IP	H-EN	TAU-EK				
	3		141.0	600.0	9.6	178.10	10.00	. 20	-2000.00	-2000.000	1.44	-2000.00
	4	75.8	541.0	10.4	189.93	10.00	. 20	-2000.00	-2000.000	1.26	-2000.00	
	5	61.8	662.0	10.4	341.91	30.00	. 10	-2000.00	-2000.000	. 96	-2000.00	
605	1	1159.0	820.0	5.7	228.14	. 01	. 10	-2000.00	-2000.000	1.12	-2000.00	
	2	245.7	526.0	7.7	273.07	100.00	. 10	-2000.00	-2000.000	. 85	-2000.00	
	3	130.0	550.0	9.5	175.66	10.00	. 20	-2000.00	-2000.000	1.34	-2000.00	
	4	97.8	698.0	9.8	330.91	100.00	. 10	-2000.00	-2000.000	1.25	-2000.00	
	5	42.6	456.0	11.0	360.88	100.00	.10	-2000.00	-2000.000	1.001	-2000.00	
625	1	636.4	624.0	5.4	204.26	. 10	. 10	-2000.00	-2000.000	1.74	-2000.00	
	2	218.3	642.0	7.9	274.26	30.00	.10	-2000.00	-2000.000	1.21	-2000.00	
	3	144.1	840.0	8.3	294.55	. 30	. 10	-2000.00	-2000.000	. 82	-2000.00	
	4	57.9	568.0	11.2	221.73	100.00	. 20	-2000.00	-2000.000	2.56	-2000.00	
	5	49.8	733.0	13.4	191.53	30.00	. 30	-2000.00	-2000.000	6.13	-2000.00	
646	1	327.2	513.0	5.1	199.88	. 03	. 10	-2000.00	-2000.000	1.10	-2000.00	
	2	141.7	667.0	6.5	235.04	30.00	.10	-2000.00	-2000.000	1.04	-2000.00	
	3	64.6	607.0	8.5	297.15	100.00	.10	-2000.00	-2000.000	1.35	-2000.00	
	4	45.3	711.0	11.1	363.54	100.00	. 10	-2000.00	-2000.000	1.29	-2000.00	
	5	114.0	2680.0	18.7	337.93	100.00	.20	-2000.00	-2000.000	1.35	-2000.00	
668	1	418.0	437.0	4.2	173.31	. 01	.10	-2000.00	-2000.000	2.11	-2000.00	
	2	163.1	512.0	6.3	233.21	. 10	.10	-2000.00	-2000.000	4.31	-2000.00	
	3	100.5	620.0	9.3	319.87	100.00	.10	-2000.00	-2000.000	1.34	-2000.00	
	4	249.4	2610.0	17.3	316.48	100.00	. 20	-2000.00	-2000.000	1.45	-2000.00	
	5	98.6	1547.0	19.7	351.73	100.00	. 20	-2000.00	-2000.000	. 91	-2000.00	
688	1	439.6	306.0	3.4	80.04	. 03	. 20	-2000.00	-2000.000	1.43	-2000.00	
	2	236.9	495.0	6.7	242.15	1.00	. 10	-2000.00	-200\%.000	1.30	-2000.00	
	3	525.5	2190.0	15.4	274.75	30.00	. 20	-2000.00	-2000.000	1.06	-2000.00	
	4	193.3	1340.0	18.6	334.46	100.00	. 20	-2000.00	-2000.000	2.42	-2000.00	
	5	94.6	990.0	16.7	293.93	30.00	. 20	-2000.00	-2000.000	1.52	-2000.00	
708	1	278.9	250.0	4.0	85.51	. 10	. 20	-2000.00	-2000.000	1.83	-2000.00	
	2	537.8	1447.0	13.2	240.88	30.00	. 20	-2000.00	-2000.000	1.49	-2000.00	
	3	183.8	980.0	17.2	314.57	100.00	. 20	-2000.00	-2000.000	1.29	-2000.00	
	4	83.0	744.0	15.4	274.99	30.00	. 20	-2000.00	-2000.000	1.34	-2000.00	
725	1	817.6	693.0	10.9	209.58	31.00	. 20	-2000.00	-2000.000	2.65	-2000.00	
	2	222.6	566.0	15.7	292.61	100.00	. 20	-2000.00	-2000.000	1.55	-2000.00	
	3	109.9	550.0	14.5	261.55	30.00	. 20	-2000.00	-2000. 100	1.62	-2000.00	
750	1	214.6	292.0	14.4	274.70	100.00	. 20	-2000.00	-2000.000	1.43	-2000.00	
	2	90.5	370.5	13.6	248.24	30.00	. 20	-2000.00	-2000.000	1.70	-2000.00	
775	1	420.5	776.0	14.2	270.94	100.00	.20	-2000.00	-2000.000	1.25	-2000.00	

IPR-1 SFECTRAL ANALYSIS SLMMARY

LINE NO_ $\quad 2100$

Station Dipole		v_{p}	Apparent Resist.	47	Cole-Cole Paraneters					Fit/IP	Fit/EM	
		H-IP			TAU-1P	C-IP	H -EM	tau-En				
425	1		1191.0	1010.0	4.7	194.37	. 01	. 10	-2000.00	-2000.000	1.86	-2000.00
	2	415.4	1057.0	6.1	227.91	. 30	.10	-2000.00	-2000.000	1.36	-2000.00	
	3	181.6	920.0	7.8	286.29	. 10	. 10	-2000.00	-2000.000		-2000.00	
	4	116.8	990.0	9.0	310.17	30.00	.10	-2000.00	-2000.000		-2000.00	
	5	79.6	1013.0	9.0	310.52	1.00	. 10	-2000.00	-2000.000	1.26	-2000.00	
450	1	862.6	773.0	4.8	194.76	. 01	. 10	-2000.00	-2000.000	1.05	-2000.00	
	2	273.0	734.0	7.1	252.35	1.00	.10	-2000.00	-2000.000	1.02	-2000.00	
	3	163.7	870.0	8.6	301.09	100.00	. 10	-2000.00	-2000.000	1.21	-2000.00	
	4	104.1	930.0	8.5	297.81	30.00	. 10	-2000.00	-2003.000		-2000.00	
	5	63.2	850.0	9.1	308.68	31.00	. 10	-2000.00	-2000.000		-2000.00	
475	1	628.9	448.0	6.0	221.77	. 30	. 10	-2000.00	-2000.000		-2000.00	
	2	319.7	684.0	8.0	281.08	100.00	. 10	-2000.00	-2000.000		-2000.00	
	3	178.4	760.0	8.1	282.74	30.00	. 10	-2000.00	-2000.000		-2000.00	
	4	97.3	694.0	8.4	291.03	30.00	. 10	-2000.00	-2000.000	1.21	-2000.00	
	5	86.4	924.0	8.8	301.29	10.00	. 10	-2000.00	-2000.000		-2000.00	
497	1	1103.0	860.0	6.5	235.65	100.00	. 10	-2000.00	-2000.000	1.28	-2000.00	
	2	426.8	1005.0	7.3	257.85	10.00	.10	-2000.00	-2000.000	1.12	-2000.00	
	3	161.8	760.0	7.6	268.42	1.00	. 10	-2000.00	-2000.000	1.01	-2000.00	
	4	135.1	1060.0	8.4	291.12	100.00	. 10	-2000.00	-2000.000		-2000.00	
	5	83.5	983.0	12.9	414.72	109.00	. 10	-2000.00	-2000.000	1.51	-2000.00	
517	1	1105.0	860.0	5.4	210.18	. 03	. 10	-2000.00	-2000.000		-2000.00	
	2	329.8	776.0	6.6	254.27	. 03	. 10	-2000.00	-2000.000	1.01	-2000.00	
	3	186.8	870.0	8.1	285.18	1.00	. 10	-2000.00	-2009.009		-2000.00	
	4	116.5	910.0	12.4	223.09	10.00	. 20	-2000.00	-2000.000	1.28	-2000.00	
	5	117.8	1380.0	14.4	251.03	10.00	. 20	-2000.00	-2000.000		-2000.00	
536	1	904.4	811.0	4.5	96.10	. 10	. 20	-2000.00	-2000.000	1.73	-2000.00	
	2	323.5	870.0	7.3	263.10	1.00	. 10	-2000.00	-2000.000	1.34	-2000.00	
	3	169.9	910.0	11.1	364.91	100.00	. 10	-2000.00	-2000.000		-2000.00	
	4	142.2	1270.0	13.7	241.77	3.00	. 20	-2000.00	-2000.000		-2000.00	
	5	31.1	418.0	10.2	342.28	30.00	. 10	-2000.00	-2000.000	1.32	-2000.00	
558	1	552.5	693.0	6.6	245.86	. 10	. 10	-2000.00	-2000.000	1.10	-2000.00	
	2	228.3	860.0	10.5	349.01	30.00	. 10	-2000.00	-2000.000	. 81	-2000.00	
	3	122.8	920.0	13.3	236.31	10.00	. 20	-2000.00	-2000.000	1.13	-2000.00	
	4	36.5	458.0	10.5	349.95	100.00	. 10	-2000.00	-2000.000	1.15	-2000.00	
	5	13.6	256.0	11.1	361.05	100.00	. 10	-2000.00	-2009.000	1.70	-2000.00	
582	1	1096.0	930.0	9.5	323.38	100.00	. 10	-2000.00	-2009.003	. 83	-2000.00	
	2	342.8	872.0	14.0	246.15	10.00	. 20	-2000.00	-2000.006		-2000.00	

Statior Dipoie		v_{F}	Apparent Resist.	17	Cole-Cole Faraneters					Fit/IP	Fit/EM	
		M-IF			TAU-1P	[-1p	H-En	TAU-EM				
	3		89.6	455.0	10.8	355.92	100.00	. 10	-2000.00	-2000.000	. 88	-2000.00
	4	33.0	280.0	11.5	219.18	30.00	. 20	-2000.00	-2000.000	2.80	-2000.00	
	5	53.4	679.0	15.2	266.01	10.00	. 20	-2000.00	-2000.000	1.20	-2000.00	
602	1	540.3	514.0	15.3	273.66	30.00	. 20	-2000.00	-2000.000	1.07	-2000.00	
	2	126.8	361.0	11.9	214.21	10.00	. 20	-2000.00	-2000.000	1.26	-2000.00	
	3	46.1	262.0	12.2	392.72	100.00	. 10	-2000.00	-2000.000	1.16	-2000.00	
	4	59.5	566.0	16.0	276.74	10.00	. 20	-2000.00	-2000.000	1.28	-2000.00	
	5	31.7	451.0	16.5	310.16	100.00	. 20	-2000.00	-2000.000	3.64	-2000.00	
620	1	281.1	294.0	15.7	271.92	10.00	. 20	-2000.00	-2000.000	1.16	-2000.00	
	2	96.5	303.1	15.7	272.56	10.00	. 20	-2000.00	-2000.000	1.51	-2000.00	
	3	118.4	740.0	18.9	317.94	10.00	. 20	-2000.00	-2000.000	1.14	-2000.00	
	4	51.9	543.0	20.0	338.48	30.00	. 20	-2000.00	-2000.000		-2000.00	
	5	47.8	750.0	20.1	356.36	100.00	. 20	-2000.00	-2000.000	1.45	-2000.00	
645	1	1226.0	760.0	10.3	343.44	100.00	. 10	-2000.00	-2000.000	1.28	-2000.00	
	2	903.8	1702.0	15.3	266.55	10.00	. 20	-2000.00	-2000.000	1.14	-2000.00	
	3	299.8	1120.0	18.2	315.78	30.00	. 20	-2000.00	-2000.000	1.23	-2000.00	
	4	213.1	1330.0	19.3	329.17	30.00	. 20	-2000.00	-2000.000	1.21	-2000.00	
	5	100.2	940.0	20.3	342.13	30.00	. 20	-2000.00	-2000.000	1.15	-2000.00	
670	1	1864.0	1460.0	7.9	280.21	1.00	. 10	-2000.00	-2000.000	. 96	-2000.00	
	2	492.3	1159.0	12.5	224.58	10.00	. 20	-2000.00	-2000.000	1.16	-2000.00	
	3	305.1	1430.0	15.6	278.92	30.00	. 20	-2000.00	-2000.000	1.20	-2000.00	
	4	113.4	890.0	17.5	303.94	30.00	. 20	-2000.00	-2000.000	1.18	-2000.00	
	5	56.3	663.0	18.3	315.59	30.00	. 20	-2000.00	-2000.000	1.11	-2000.00	
695	1	1565.0	910.0	7.8	277.41	100.00	. 10	-2000.00	-2000.000	1.07	-2000.00	
	2	652.2	1137.0	12.5	231.44	30.00	. 20	-2000.00	-2000.000	1.37	-2000.00	
	3	249.7	860.0	15.1	270.26	30.00	. 20	-2000.00	-2000.000	1.39	-2000.00	
	4	106.0	610.0	15.7	290.01	30.00	. 20	-2000.00	-2000.000	4.19	-2000.00	
720	1	1341.0	1130.0	8.8	302.35	100.00	. 10	-2000.00	-2000.000	1.19	-2000.00	
	2	358.9	913.0	12.4	229.16	30.00	. 20	-2000.00	-2000.000	1.42	-2000.00	
	3	129.2	650.0	14.8	265.83	31.00	. 20	-2000.001	-2000.000	1.97	-2000.00	
745	1	743.0	666.0	8.7	163.68	10.00	. 20	-2000.00	-2000.000	1.40	-200.00	
	2	226.5	609.0	12.0	216.51	10.00	. 20	-2000.00	-2000.100	1.82	-2000.00	
770	1	425.3	741.0	6.6	236.53	30.00	. 10	-2000.00	-2000.000	1.50	-2000.00	

IPF-11 SFECTRAL ANALYSIS SUMMAFV

LINE NO_ $\quad 2150$

Station Dipole		Vp	Apparent Resist.	M7	Cole-Cole Paraneters					Fit/lp	Fit/EN	
		N-IP			tau-Ip	C-IP	n -EM	tau-En				
425	1		328.6	396.0	5.0	203.63	. 01	. 10	-2000.00	-2000.000	1.83	-2000.00
	2	208.6	755.0	6.6	238.03	10.00	. 10	-2000.00	-2000.000	1.39	-2006.00	
	3	92.3	667.0	9.1	312.30	100.00	. 10	-2000.00	-2000.000		-2000.00	
	4	63.2	763.0	10.9	358.37	100.00	. 10	-2000.00	-2000.000		-2000.00	
	5	38.7	700.0	12.0	213.30	10.00	. 20	-2000.00	-2000.000	2.56	-2000.00	
447	1	383.0	522.0	5.3	197.96	. 30	. 10	-2000.00	-2000.000	1.26	-2000.00	
	2	136.7	559.0	8.1	282.82	100.00	.10	-2000.00	-2000.000		-2000.00	
	3	87.8	717.0	9.8	356.98	. 03	. 10	-2000.00	-2000.000	1.48	-2000.00	
	1	56.4	769.0	12.0	234.18	100.00	. 20	-2000.00	-2000.000	2.57	-2000.00	
	5	37.3	763.0	12.3	399.01	100.00	. 10	-2000.00	-2000.000		-2006.00	
468	1	636.0	499.0	5.5	200.85	3.00	. 10	-2000.00	-2000.000		-2000.00	
	2	318.6	750.0	9.2	170.69	10.00	. 20	-2000.00	-2000.000	1.30	-2000.00	
	3	165.2	770.0	10.4	188.32	10.00	. 20	-2000.00	-2000.000	1.30	-2000.60	
		109.6	860.0	11.1	368.04	100.00	. 10	-2000.00	-2000.000		-2000.60	
	5	60.2	708.0	14.3	251.39	10.00	. 20	-2000.00	-2003.000	1.04	-2000.00	
490	1	765.3	801.0	6.8	243.89	100.00	. 10	-2000.00	-2000.000	1.12	-2000.00	
		295.4	927.0	9.1	109.21	10.00	. 20	-2000.00	-2000.000	1.08	-2000.00	
	3	130.6	810.0	10.5	350.18	100.00	. 10	-2000.00	-2000.000	1.13	-2000.00	
	4	71.9	752.0	13.4	237.55	10.00	. 20	-2000.00	-2000.000	1.06	-2000.60	
	5	62.0	973.0	15.3	264.43	10.00	. 20	-2000.00	-2000.000	3.56	-2000.60	
508	1	1213.0	950.0	6.7	241.78	100.00	. 10	-2000.00	-2000.000		-2000.00	
	2	360.7	849.0	9.1	309.34	3.00	. 10	-2000.00	-2000.000		-2000.00	
	3	176.7	830.0	12.4	222.76	10.00	. 20	-2000.00	-2000.000		-2000.00	
	4	95.7	751.0	15.4	267.24	10.00	. 20	-2000.00	-2000.000		-2000.00	
	5	40.5	477.0	14.2	251.67	11.00	. 20	-2000.00	-2000.000	1.53	-2000.00	
527	1	1156.0	720.0	7.9	279.34	1.00	. 10	-2000.00	-2000.000		-2000.00	
	,	412.8	777.0	11.5	374.46	100.00	. 10	-2000.00	-2000.000		-2000.00	
	3	175.7	660.0	15.2	265.88	10.00	. 20	-2000.00	-2000.000	1.43	-2000.00	
		64.5	404.0	13.9	433.30	100.00	. 10	-2000.00	-2000.000		-2000.00	
	5	47.8	449.0	14.6	256.05	10.00	. 20	-2000.00	-2000.000	1.38	-2000.00	
545	1	741.2	704.0	10.4	347.94	100.00	. 10	-2000.00	-2000.000	1.04	-2000.00	
	2	197.4	563.0	15.0	261.87	10.00	. 20	-2000.00	-2000.000	1.06	-2000.00	
	3	83.0	472.0	14.0	248.19	10.00	. 20	-2000.00	-2000.100	1.22	-2000.00	
	4	48.5	461.0	14.5	253.94	10.00	. 20	-2000.00	-2000.000		-2000.00	
	5	24.4	348.0	14.9	262.22	10.00	. 20	-2000.00	-2000.000!	1.30	-2003.00	
563	1	552.9	496.0	14.5	254.74	10.00	. 20	-2000.00	-2000.000		-2000.00	
	2	185.3	498.0	14.4	253.05	10.00	. 20	-2000.00	-2000.000		-2000.00	

Station	Dipole	V_{p}	Apparent Resist.	17	Cole-Cole Paraneters					Fit/IP	Fit/EM
					H-IP	tal-Ip	C-If	H-EM	TAU-EM		
	3	95.2	511.0	15.2	264.36	10.00	. 20	-2000.00	-2000.000	1.06	-2000.00
	4	47.1	422.0	15.5	269.79	10.00	. 20	-2000.00	-2000.000	1.41	-2000.00
	5	40.7	547.0	16.1	276.52	10.00	. 20	-2000.00	-2000.000	1.22	-2000.00
585	1	760.1	477.0	13.1	415.30	100.00	. 10	-2000.00	-2000.000	1.03	-2000.00
	2	291.2	548.0	15.2	262.83	10.00	.20	-2000.00	-2000.000	1.13	-2000.00
	3	124.3	460.0	15.2	467.84	100.00	. 10	-2000.00	-2000.000	1.75	-2000.00
	1	102.1	640.0	16.5	283.03	10.00	. 20	-2000.00	-2000.000	1.30	-2000.00
	5	89.2	840.0	16.7	295.82	30.00	. 20	-2000.00	-2000.000	1.24	-2000.00
610	1	820.1	858.0	7.2	256.24	30.00	.10	-2000.00	-2000.000	1.22	-2000.00
	2	161.7	507.0	11.9	385.85	100.00	. 10	-2000.00	-2000.000	1.32	-2000.00
	3	127.8	800.0	13.4	240.21	10.00	. 20	-2000.00	-2000.000	1.45	-2000.00
	4	99.0	1036.0	14.6	254.78	10.00	. 20	-2000.00	-2000.000	1.30	-2000.00
	5	51.0	800.0	17.4	278.43	100.00	. 30	-2000.00	-2000.000	5.08	-2000.00
633	1	880.2	628.0	5.6	214.34	.10	. 10	-2000.00	-2000.000	1.42	-2000.00
	2	421.4	902.0	9.0	312.45	1.00	. 10	-2000.00	-2000.000	1.19	-2000.00
	3	252.3	1070.0	11.3	207.00	10.00	. 20	-2000.00	-2000.000	1.88	-2000.00
	4	128.3	910.0	14.2	260.95	30.00	. 20	-2000.00	-2000.000	1.70	-2000.00
	5	51.2	547.0	15.9	181.89	3.00	.30	-2000.00	-2000.000	3.32	-2000.00
656	1	1531.0	1200.0	4.9	105.14	. 10	. 210	-2000.00	-2000.000	1.51	-2000.00
	2	524.9	1236.0	7.7	269.40	3.00	. 10	-2000.00	-2000.000	1.02	-2000.00
	3	163.3	760.0	12.3	220.77	10.00	. 20	-2000.00	-2000.000	1.13	-2000.00
	4	73.5	577.0	13.6	239.48	10.00	. 20	-2000.00	-2000.000	1.13	-2000.00
	5	39.9	470.0	15.2	267.11	10.00	. 20	-2000.00	-2000.000	1.56	-2000.00
680	1	1055.0	820.0	4.8	198.14	. 01	. 10	-2000.00	-2000.000	1.78	-2000.00
	2	240.8	567.0	10.0	183.95	10.00	. 20	-2000.00	-2000.000	1.12	-2000.00
	3	98.3	462.0	12.0	215.85	10.00	. 20	-2000.00	-2000.000	1.39	-2000.00
	4	51.2	402.0	13.6	241.54	10.00	. 20	-2000.00	-2000.000	1.87	-2000.00
	5	52.5	617.0	14.5	261.40	30.00	. 20	-2000.00	-2000.000	2.18	-2000.00
705	1	808.9	634.0	5.8	210.29	10.00	. 10	-2000.00	-2000.000	. 90	-2000.00
	2	158.1	372.0	8.9	166.44	10.00	. 20	-2000.00	-2000.000	1.34	-2000.00
	3	131.1	610.0	10.8	196.74	10.00	. 20	-2000.00	-2000.000	1.17	-2000. 10
	4	84.0	659.0	11.5	390.99	100.00	. 10	-2000.00	-2000.1000	3.87	-2000.00
725	1	263.0	330.0	5.7	208.77	10.00	. 10	-2000.00	-2000.000	1.36	-2000.00
	2	169.0	636.0	7.8	274.56	30.00	.10	-2000.00	-2006.009	1.25	-2000.00
	3	92.7	696.0	9.8	331.79	100.00	. 10	-2000.00	-2000.000	1.73	-2000.00
750	1	966.8	689.0	3.4	80.45	. 03	. 20	-2000.00	-2000.000	1.78	-2000.00
	2	393.8	843.0	5.7	228.80	. 01	. 10	-2000.00	-2000.000	2.41	-2000.00
775	1	395.6	477.0	3.3	72.57	. 10	. 20	-2000.00	-2000.000	3.22	-2000.00

IPR-11 SPECTRAL ANALYSIS SUMMAFY

LINE NQ_ $=2200$

Station Dipole		$v p$	Apparent Resist.	47	Cole-Cole Paraneters					Fit/JP	Fit/EM	
		H-IP			tau-Ip	C-IP	H-EM	TAU-EM				
425	1		698.8	626.0	5.0	204.79	. 01	. 10	-2000.00	-2000.000	1.74	-2000.00
	2	255.5	687.0	7.8	280.36	. 30	. 10	-2000.00	-2000.000	1.18	-2000.00	
	3	129.5	690.0	10.5	349.97	30.00	. 10	-2000.00	-2000.000	1.01	-2000.00	
	4	98.6	884.0	12.7	227.43	10.00	. 20	-2000.00	-2000.000		-2000.00	
	5	59.8	805.0	13.7	248.86	30.00	. 20	-2000.00	-2000.000	1.43	-2000.00	
447	1	368.3	481.0	5.2	54.73	. 30	. 40	-2000.00	-2000.000		-2000.00	
	2	136.1	534.0	9.3	197.50	100.00	. 20	-2000.00	-2000.000	5.56	-2000.00	
	3	101.3	790.0	11.8	212.99	10.00	. 20	-2000.00	-2000.000	1.55	-2000.00	
	4	57.1	746.0	12.6	225.18	10.00	. 20	-2000.00	-2000.000		-2000.00	
	5	41.2	807.0	15.3	466.92	10.00	. 10	-2000.00	-2000.000	. 96	-2000.00	
469	1	450.6	329.0	7.6	268.05	100.00	. 10	-2000.00	-2000.000		-2000.00	
	2	285.6	625.0	10.6	194.80	10.00	. 20	-2000.00	-2000.000		-2000.00	
	3	137.5	600.0	11.9	220.61	30.00	. 20	-2000.00	-2000.000		-2000.00	
	4	111.0	810.0	13.9	452.00	. 30	. 10	-2000.00	-2000.000	. 70	-2000.00	
	5	86.2	943.0	15.4	275.00	30.00	. 20	-2000.00	-2000.000	1.26	-2000. 10	
490	1	1125.0	920.0	7.1	254.28	100.00	. 10	-2000.00	-2000.000	. 90	-2000.00	
	2	355.4	881.0	11.1	206.74	30.00	. 20	-2000.00	-2000.000	1.51	-2000.00	
	3	208.2	1030.0	14.0	244.13	10.00	. 20	-2000.00	-2000.000	2.74	-2000.00	
	1	121.2	1000.0	15.7	190.54	10.00	. 30	-2000.00	-2000.000		-2000.00	
	5	27.9	345.0	13.3	207.05	100.00	. 30	-2000.00	-2000.000		-2000.00	
510	1	408.7	534.0	9.4	173.75	10.00	. 20	-2000.00	-2000.000	1.18	-2000.00	
	2	181.7	713.0	12.3	419.92	. 10	. 10	-2000.00	-2000.000	. 76	-2000.00	
	3	101.9	790.0	14.7	265.18	30.00	. 20	-2000.00	-2000.000	1.01	-2000. 10	
	4	22.6	295.0	11.9	234.68	100.00	. 20	-2000.00	-2000.000		-2000.00	
	5	8.9	174.1	11.7	216.50	30.00	. 20	-2000.00	-2000.000	1.09	-2000.10	
530	1	605.0	431.8	12.2	447.14	. 01	. 10	-2000.06	-2000.000	1.14	-2000.00	
	2	310.4	664.5	12.1	224.23	30.00	. 20	-2000.00	-2000.000		-2000.00	
	3	87.0	371.6	10.9	218.15	101.00	. 20	-2000.00	-2000.000		-2006.00	
	4	33.2	237.1	11.0	205.45	30.00	. 20	-2000.00	-2000.000		-2000.00	
	5	31.9	341.0	12.4	230.4?	30.00	. 20	-2000.00	-2000.000	1.27	-2000.00	
550	1	677.5	759.0	11.6	210.10	10.00	. 20	-2000.00	-2000.000		-2000.00	
	2	161.9	544.0	10.3	208.18	100.00	. 20	-2000.00	-2000.000	1.89	-2000.00	
	3	57.2	384.0	10.6	176.98	100.00	. 30	-2000.00	-2000.000	7.31	-2000.00	
	4	47.6	533.0	11.9	198.89	100.00	. 30	-2000.00	-2000.000	7.12	-2000.00	
	5	20.8	349.0	12.7	151.20	30.00	. 40	-2000.00	-2000.000	9.76	-2000.00	
575	1	993.1	779.0	10.5	350.88	100.00	. 10	-2000.00	-2000.000	1.31	-2000.00	
	2	204.1	480.0	10.1	186.55	10.00	. 20	-2000.00	-2000.000	1.39	-2000.00	

Station D	Dipole	V_{p}	Apparent Resist.	17	Cole-Cole Paraneters					Fit/lP	Fit/EM
					H-IF	TAll- IP	C-]P	H-En	TAU-EM		
	3	164.3	770.0	12.5	88.05	1.00	. 50	-2000.00	-2000.000	2.73	-2000.00
	4	65.8	516.0	14.3	65.97	1.00	. 70	-2000.00	-2000.000	5.40	-2000.00
	5	53.9	634.0	15.6	71.25	1.00	.70	-2000.00	-2000.000	5.18	-2000.00
600	1	911.7	817.0	3.7	86.15	. 03	. 20	-2000.00	-2000.000	2.06	-2000.00
	2	430.8	1159.0	5.7	118.91	. 10	. 20	-2000.00	-2000.000	1.47	-2000.00
	3	158.3	850.0	7.0	251.22	30.00	.10	-2000.00	-2000.000	1.61	-2000.00
	4	93.6	840.0	8.3	287.65	30.00	.10	-2000.00	-2000.000	1.26	-2000.00
	5	137.2	1840.0	11.0	362.22	100.00	.10	-2000.00	-2000.000	. 96	-2000.00
625	1	850.1	762.7	3.4	88.83	. 01	. 20	-2000.00	-2000.000	1.83	-2000.00
	2	264.2	711.1	4.7	100.35	. 10	. 20	-2000.00	-2000.000	1.96	-2000.00
	3	143.8	772.4	6.2	226.48	30.00	.10	-2000.00	-2000.000	1.53	-2000.00
	4	194.5	1744.9	8.9	305.19	30.00	. 10	-2000.00	-2000.000	. 87	-2000.00
	5	102.4	1378.0	9.9	335.19	100.00	.10	-2000.00	-2000.000	1.23	-2000.00
650	1	387.0	347.0	3.4	80.23	. 03	. 20	-2000.00	-2000.000	1.90	-2000.00
	2	195.1	525.0	5.0	202.49	. 01	.10	-2000.00	-2000.000	1.55	-2000.00
	3	232.1	1240.0	8.1	281.73	100.00	.10	-2000.00	-2000.000	1.08	-2000. 00
	4	120.1	1070.0	8.6	298.28	10.00	.10	-2000.00	-2000.000	1.22	-2000.00
	5	34.2	460.0	10.5	346.38	30.00	.10	-2000.00	-2000.000	1.71	-2000.00
675	1	373.4	390.0	2.7	72.31	. 01	. 21	-2000.00	-2000.000	2.30	-2000.00
	2	357.6	1122.0	5.7	221.60	.03	.10	-2000.00	-2000.000	1.27	-2000.00
	3	170.6	1060.0	6.8	247.67	. 30	.10	-2000.00	-2000.000	1.18	-2000.00
	4	44.7	468.0	9.0	306.88	100.00	. 10	-2000.00	-2000.000	2.77	-2000.00
	5	53.9	846.0	9.1	124.41	. 30	. 30	-2000.00	-2000.000	6.17	-2000.00
700	1	838.1	657.0	3.9	81.96	. 10	.20	-2000.00	-2000.000	2.32	-2000.00
	2	359.6	799.0	4.9	199.32	. 01	. 10	-2000.00	-2000.000	1.15	-2000.00
	3	83.6	393.1	7.0	253.94	. 30	. 10	-2000.00	-2000.000	. 73	-2000.00
	4	83.7	656.0	8.3	290.20	100.00	. 10	-2000.00	-2000.000	2.09	-2000.00
725	1	672.0	555.0	3.0	79.77	. 01	. 20	-2000.00	-2000.000	1.84	-2000.00
	2	121.1	300.0	4.8	197.48	.01	.10	-2000.00	-2000.000	1.61	-2000.00
	3	110.7	546.0	6.2	235.72	.10	.10	-2000.00	-2000.000	2.71	-2000.00
750	1	357.7	295.0	2.5	39.24	.10	. 30	-2000.00	-2000.000	2.19	-2000.00
	2	262.4	650.0	3.2	62.46	.03	.30	-2000.00	-2000.000	4.81	-2000.00
775	1	261.8	456.0	1.6	40.80	.01	. 31	-2000.00	-2000.000	4.50	-2000.00

IPR-1 DATA SLIMMARY

SURVEY : TECK
INDEX FILE : A: 2000E.IND
DATA FILE : A: 2000E. DAT

		2	23.1	19.0	16.7	15.1	11.9	8.8	7.2	5.6	4.4	3.6	266.5	4.	717.
		3	29.7	24.9	22.1	20.0	16.0	12.0	9.8	7.7	6.1	5.0	210.0	-37.	1120.
		4	33.6	28.3	25.2	23.0	18.5	14.0	11.5	9.1	7.1	5.8	151.9	30.	1360.
		5	39.0	33.2	29.6	27.1	22.0	16.8	13.8	11.1	8.8	7.3	50.8	-5.	683.
562	2	1	18.6	15.4	13.4	12.0	9.5	7.1	5.7	4.5	3.4	2.8	1111.0	-12.	770.
		2	27.3	22.8	20.1	18.2	14.4	10.8	8.8	7.0	5.4	4.4	617.1	-49.	1291.
		3	30.8	20.0	23.0	21.0	16.8	12.7	10.4	8.3	6.5	5.4	350.4	41.	1460.
		4	35.3	30.0	26.8	24.5	19.9	15.2	12.7	10.1	8.0	6.5	111.2	-2.	770.
		5	37.1	36.9	28.1	24.7	21.6	16.6	12.6	11.0	5.3	4.0	55.6	17.	582.
58.3	2	1	24.5	20.4	17.9	16.1	12.8	9.6	7.9	6.2	4.8	3.9	1315.0	-41.	930.
		2	27.5	23.1	20.6	18.7	14.9	11.1	8.9	7.3	5.6	4.6	647.3	51.	1385.
		3	33.5	28.5	25.5	23.2	18.9	14.5	12.0	9.6	7.6	6.3	141.0	-20.	600.
		4	35.9	30.6	27.3	25.0	20.4	15.6	12.9	10.4	8.2	6.7	75.8	22.	541.
		5	36.9	31.3	28.0	25.4	20.7	15.8	13.0	10.4	8.0	6.5	61.8	4.	662.
605	2	1	22.1	18.5	16.4	14.7	11.8	8.8	7.2	5.7	4.4	3.6	1159.0	15.	820.
		2	27.5	23.5	21.0	19.1	15.5	11.8	9.6	7.7	6.1	5.0	245.7	-30.	526.
		3	32.8	28.1	25.1	23.0	18.6	14.3	11.7	9.5	7.5	6.2	130.0	27.	550.
		4	34.5	29.5	26.3	24.0	19.4	14.9	12.3	9.8	7.7	6.4	97.8	5.	698.
		5	38.7	33.0	29.5	27.0	21.7	16.7	13.6	11.0	8.5	7.1	42.6	12.	456.
625	2	1	20.5	17.2	15.3	13.6	11.0	8.2	6.7	5.4	4.1	3.5	636.4	-29.	624.
		2	28.4	24.1	21.7	19.3	15.6	12.1	10.0	7.9	6.1	5.0	218.3	29.	642.
		3	30.8	26.1	23.3	20.9	16.9	12.9	10.5	8.3	6.4	5.3	144.1	0.	840.
		4	36.9	31.5	28.3	25.7	21.1	16.1	13.5	11.2	9.0	7.6	57.9	12.	568.
		5	43.0	38.9	33.1	29.6	26.0	18.1	18.0	13.4	12.0	10.0	49.8	11.	733.
646	2	1	19.4	16.1	14.6	13.0	10.5	7.9	6.5	5.1	4.0	3.2	327.2	8.	513.
		2	23.7	20.1	18.0	16.3	13.1	10.0	8.2	6.5	5.2	4.2	141.7	-7.	667.
		3	30.5	25.8	23.2	21.0	17.0	13.0	10.7	8.5	6.8	5.6	64.6	14.	607.
		4	38.9	33.1	29.7	27.0	21.9	16.8	13.7	11.1	8.7	7.2	45.3	14.	711.
		5	60.9	52.5	46.7	43.8	35.8	28.2	23.5	18.7	15.1	12.6	114.0	-22.	2680.
668	2	1	16.3	13.6	12.1	10.9	8.6	6.9	5.2	4.2	3.3	2.7	418.0	0.	437.
		2	24.0	19.8	17.7	16.0	12.9	8.5	7.9	6.3	5.0	4.0	163.1	11.	512.
		3	33.6	28.8	25.5	23.1	18.6	14.2	11.6	9.3	7.4	6.1	100.5	8.	620.
		4	56.9	48.9	44.0	40.3	33.0	25.7	21.3	17.3	13.7	11.4	249.4	-6.	2610.
		5	64.1	55.6	50.4	47.1	38.0	29.8	24.4	19.7	15.8	13.1	98.6	-5.	1547.
688	2	1	14.2	11.7	10.3	9.3	7.2	5.4	4.3	3.4	2.6	2.1	439.6	-2.	306.
		2	25.2	21.1	18.8	17.1	13.6	10.3	8.4	6.7	5.3	4.3	236.9	-6.	495.
		3	51.3	44.0	39.7	36.5	29.8	23.3	19.0	15.4	12.3	10.1	525.5	-5.	2190.
		4	60.4	51.9	46.8	43.0	35.0	26.6	23.1	18.6	14.8	12.8	193.3	-5.	1340.
		5	56.2	48.0	43.3	39.5	32.0	25.0	20.7	16.7	13.3	11.1	94.6	11.	990.
708	2	1	15.8	13.7	11.8	10.6	8.5	6.1	5.1	4.0	3.0	2.5	278.9	-11.	250.
		2	44.1	37.8	33.7	31.0	25.3	19.6	16.3	13.2	10.5	8.7	537.8	2.	1447.
		3	55.9	48.4	43.4	39.9	32.7	25.4	21.1	17.2	13.7	11.4	183.8	-1.	980.

		4	51.7	44.5	39.8	36.4	29.8	23.0	19.1	15.4	12.2	10.2	83.0	-4.	744.
725	2	1	38.8	31.8	28.7	25.8	21.5	17.0	14.0	10.9	8.9	7.4	817.6	-16.	693.
		2	51.2	43.6	39.7	36.3	29.6	23.1	19.3	15.7	12.5	10.5	222.6	16.	566.
		3	49.0	41.4	37.5	34.3	27.9	21.6	17.9	14.5	11.6	9.6	109.9	1.	550.
750	2	1	47.4	40.5	36.9	33.7	27.5	21.4	17.8	14.4	11.6	9.6	214.6	14.	292.
		2	46.4	39.0	35.2	32.2	26.3	20.3	16.9	13.6	10.8	9.0	90.5	0.	371.
775	2	1	46.2	40.2	35.9	33.2	27.1	21.1	17.5	14.2	11.3	9.5	420.5	-5.	776.

IFR-11 DATA SUMMARY

SURVEY : TECK
INDEX FILE : A:2100E.IND
DATA FILE : A:2100E.DAT

LINE NO. $=2100$

 Made BVIV aV aV Resist.

425	2	1	19.0	15.7	13.9	12.5	9.9	7.4	6.0	4.7	3.7	3.0	1191.0	-22.	1010.
		2	23.4	19.6	17.5	15.7	12.6	9.5	7.8	6.1	4.8	4.0	415.4	-1.	1057.
		3	29.3	24.8	22.1	20.1	16.2	12.3	10.0	7.8	6.1	4.9	181.6	-29.	920.
		4	32.9	27.8	24.9	22.8	18.4	14.0	11.3	9.0	7.1	5.9	116.8	44.	990.
		5	32.9	28.0	25.0	22.4	18.2	14.2	11.5	9.0	6.9	5.7	79.6	10.	1013.
450	2	1	18.6	15.5	13.9	12.6	9.9	7.4	6.1	4.8	3.7	3.0	862.6	-8.	773.
		2	26.1	21.9	19.7	17.9	14.3	11.0	9.0	7.1	5.4	4.5	273.0	-8.	734.
		3	31.1	26.3	23.9	21.5	17.3	13.3	10.8	8.6	6,8	5.7	163.7	19.	870.
		4	31.2	26.6	23.6	21.3	17.5	13.2	10.8	8.5	6.7	5.8	104.1	16.	930.
		5	33.0	27.7	24.9	23.7	17.5	13.4	11.0	9.1	7.3	5.8	63.2	-3.	850.
475	2	1	22.5	18.9	16.9	15.3	12.2	9.3	7.6	6.0	4.7	3.8	628.9	-10.	448.
		2	28.5	24.2	21.7	19.8	15.9	12.2	10.0	8.0	6.3	5.2	319.7	25.	684.
		3	29.2	24.9	22.4	20.3	16.3	12.4	10.1	8.1	6.4	5.3	178.4	-19.	760.
		4	30.8	26.0	23.0	21.0	16.9	12.9	10.5	8.4	6.6	5.4	97.3	22.	694.
		5	32.1	27.2	24.3	22.0	17.7	13.5	11.0	8.8	6.9	5.6	86.4	-13.	924.
497	2	1	23.5	19.7	17.7	16.0	13.0	9.8	8.1	6.5	5.1	4.2	1103.0	12.	860.
		2	26.9	22.6	20.3	18.3	14.8	11.2	9.1	7.3	5.7	4.7	426.8	-29.	1005.
		3	28.2	23.7	21.2	19.1	15.4	11.6	9.6	7.6	5.9	4.8	161.8	20.	760.
		4	30.2	25.4	22.8	20.5	16.6	12.6	10.5	8.4	6.5	5.4	135.1	-5.	1060.
		5	46.4	39.3	35.2	32.0	26.1	19.9	16.4	12.9	10.4	8.6	83.5	-59.	983.
517	2	1	20.7	17.3	15.2	13.9	11.0	8.3	6.8	5.4	4.2	3.4	1105.0	-22.	860.
		2	25.3	21.3	18.9	17.2	13.7	10.3	8.3	6.6	5.2	4.2	329.8	-5.	776.
		3	30.1	25.5	22.6	20.7	16.5	12.4	10.3	8.1	6.3	5.2	186.8	14.	870.
		4	43.1	36.9	32.9	30.2	24.3	18.8	15.5	12.4	9.8	8.1	116.5	-52.	910.
		5	48.6	41.9	37.3	34.5	28.1	21.4	17.8	14.4	11.4	9.3	117.8	50.	1380.
536	2	1	18.2	15.0	13.1	12.0	9.4	7.0	5.7	4.5	3.5	2.8	904.4	-7.	811.

		2	27.5	23.2	20.6	18.8	14.9	11.3	9.3	7.3	5.8	4.8	323.5	2.	870.
		3	39.4	33.5	29.8	27.4	22.2	16.9	13.9	11.1	8.7	7.1	169.9	-38.	910.
		4	47.1	40.4	36.2	39.6	27.0	20.7	17.1	13.7	10.8	8.9	142.2	42.	1270.
		5	37.5	31.7	27.9	25.5	20.6	15.6	12.9	10.2	8.1	6.6	31.1	2.	418.
558	2	1	25.1	21.0	18.7	17.0	13.5	10.1	8.3	6.6	5.1	4.2	552.5	2.	693.
		2	37.9	32.0	28.8	26.3	21.1	16.1	13.3	10.5	8.2	6.8	228.3	-33.	860.
		3	45.5	38.8	35.1	32.2	26.1	20.1	16.5	13.3	10.6	8.7	122.8	35.	920.
		4	37.5	31.7	28.4	25.8	20.9	15.9	13.1	10.5	8.3	6.8	36.5	1.	458.
		5	39.0	32.6	29.5	27.1	21.5	16.5	13.5	11.0	8.6	7.2	13.6	18.	256.
582	2	1	33.9	28.7	25.8	23.6	18.9	14.5	11.9	9.5	7.5	6.1	1096.0	-57.	930.
		2	47.5	40.9	36.8	33.8	27.4	21.2	17.4	14.0	11.0	9.1	342.8	21.	872.
		3	38.4	32.5	29.1	26.6	21.4	16.4	13.5	10.8	8.4	6.8	89.6	12.	455.
		4	40.6	34.4	30.6	28.0	22.6	17.3	14.2	11.5	9.4	7.9	33.0	21.	280.
		5	53.0	45.3	40.7	37.3	30.0	23.1	19.0	15.2	12.0	9.9	53.4	5.	679.
602	2	1	51.5	44.1	39.8	36.6	29.8	23.0	19.0	15.3	12.1	10.0	540.3	17.	514.
		2	40.8	34.8	31.2	28.6	23.3	17.9	14.8	11.9	9.4	7.8	126.8	17.	361.
		3	43.5	36.8	32.8	30.0	24.2	18.5	15.2	12.2	9.6	7.9	46.1	2.	262.
		4	54.9	46.9	42.1	38.7	31.4	24.2	20.0	16.0	12.6	10.6	59.5	15.	566.
		5	56.1	47.8	41.0	36.8	32.3	24.8	21.7	16.5	13.9	11.2	31.7	1.	451.
620	2	1	53.8	46.0	41.3	37.9	30.8	23.6	19.6	15.7	12.4	10.3	281.1	1.	294.
		2	54.4	46.3	41.5	38.0	30.8	23.6	19.5	15.7	12.4	10.4	96.5	-7.	303.
		3	65.3	55.7	50.0	45.9	37.3	28.6	23.6	18.9	15.0	12.4	118.4	12.	740.
		4	66.6	57.2	51.7	47.7	38.7	29.9	24.8	20.0	15.8	13.1	51.9	12.	543.
		5	66.5	56.8	51.1	47.0	38.6	30.0	25.0	20.1	16.0	13.4	47.8	-3.	750.
645	2	1	36.2	30.8	27.6	25.2	20.3	15.6	12.8	10.3	8.1	6.7	1226.0	-27.	760.
		2	52.8	45.2	40.5	37.2	30.1	23.1	19.0	15.3	12.1	10.0	903.8	12.	1702.
		3	61.2	52.6	47.3	43.5	35.4	27.3	22.6	18.2	14.5	12.1	299.8	-3.	1120.
		4	63.8	55.0	49.5	45.6	37.2	28.8	23.9	19.3	15.4	12.8	213.1	-3.	1330.
		5	67.0	57.8	52.0	47.9	39.1	30.3	25.1	20.3	16.2	13.4	100.2	-7.	940.
670	2	1	29.6	25.0	22.2	20.2	16.2	12.2	10.0	7.9	6.2	5.1	1864.0	-5.	1460.
		2	43.2	37.0	33.1	30.4	24.6	18.9	15.6	12.5	9.9	8.2	492.3	-12.	1159.
		3	52.2	44.9	40.4	37.1	30.3	23.6	19.4	15.6	12.5	10.4	305.1	-1.	1430.
		4	58.1	49.9	45.0	41.2	33.6	26.1	21.6	17.5	13.9	11.5	113.4	-1.	890.
		5	61.1	52.4	47.5	43.3	35.3	27.3	22.7	18.3	14.5	12.0	56.3	-21.	663.
695	2	1	28.3	24.0	21.5	19.5	15.7	12.0	9.8	7.8	6.2	5.1	1565.0	-20.	910.
		2	42.4	36.2	32.8	29.8	24.3	18.8	15.5	12.5	9.9	8.2	652.2	6.	1137.
		3	50.6	43.3	39.0	35.6	29.1	22.5	18.7	15.1	12.0	10.0	249.7	-18.	860.
		4	53.6	46.5	41.7	40.3	33.2	25.1	19.8	15.7	14.3	10.3	106.0	-10.	610.
720	2	1	31.3	26.5	23.5	21.7	17.5	13.3	10.9	8.8	6.8	5.7	1341.0	5.	1130.
		2	41.8	35.7	31.9	29.5	24.0	18.5	15.3	12.4	9.8	8.2	358.9	-18.	913.
		3	50.5	42.8	38.3	34.1	28.8	22.2	18.4	14.8	11.7	9.7	129.2	-9.	650.

Index: $A: 2100 \mathrm{E}$. $\mathrm{IN}^{\text {a }}$
$\begin{array}{llllllllllllllllllll}745 & 2 & 1 & 30.6 & 25.9 & 23.4 & 21.3 & 17.3 & 13.2 & 10.9 & 8.7 & 6.9 & 5.7 & 743.0 & -14 . & 666 .\end{array}$$\begin{array}{llllllllllllllll}2 & 41.9 & 35.1 & 31.6 & 28.7 & 23.5 & 18.0 & 15.0 & 12.0 & 9.6 & 7.9 & 226.5 & -8 . & 609 .\end{array}$
$\begin{array}{lllllllllllllllllll}770 & 2 & 1 & 24.2 & 20.1 & 17.9 & 16.5 & 13.3 & 10.0 & 8.3 & 6.6 & 5.1 & 4.3 & 425.3 & -7 . & 74 .\end{array}$

IPR-1 DATA SUMMARY

SURVEY : teck
INDEX FILE : a:2150e.IND
DATA FILE : a:2150e.DAT

LINE NO. $=2150$

Station Receive Dipole: M0 M1 M2 M3 M4 | M5 |
| :---: |
| Mode |

425	2	1	19.8	16.3	14.5	12.7	10.4	7.8	6.4	5.0	3.9	3.2	328.6	-6.	396.
		2	24.7	20.5	18.3	16.8	13.4	10.2	8.4	6.6	5.2	4.3	208.6	-2.	755.
		3	32.5	27.5	24.6	22.4	18.1	13.8	11.4	9.1	7.2	5.9	92.3	-3.	667.
		4	38.3	32.3	28.9	26.7	21.7	16.5	13.6	10.9	8.4	7.1	63.2	16.	763.
		5	41.4	35.4	31.7	28.7	22.3	17.4	15.0	12.0	9.2	7.7	38.7	-8.	700.
447	2	1	20.0	16.7	14.9	13.6	10.7	8.2	6.6	5.3	4.1	3.4	383.0	2.	522.
		2	28.8	24.4	21.9	20.0	16.1	12.3	10.1	8.1	6.3	5.2	136.7	-22.	559.
		3	36.7	30.9	27.6	25.0	20.3	15.5	12.6	9.8	7.7	6.0	87.8	6.	717.
		4	38.5	33.2	30.0	27.7	22.4	17.3	14.4	12.0	9.5	8.3	56.4	6.	769.
		5	44.1	37.4	33.5	30.7	24.9	19.1	15.5	12.3	9.8	8.1	37.3	-43.	763.
468	2	1	20.2	17.0	15.2	13.9	11.1	8.5	6.9	5.5	4.3	3.5	636.0	-26.	499.
		2	31.9	27.1	24.4	22.3	18.0	13.9	11.4	9.2	7.2	6.0	318.6	14.	750.
		3	35.3	29.9	27.1	24.9	20.1	15.4	12.8	10.4	8.2	6.6	165.2	-2.	770.
		4	39.9	33.7	30.3	27.8	22.3	17.1	13.9	11.1	8.8	7.3	109.6	-55.	860.
		5	49.2	42.0	37.9	34.8	28.1	21.5	17.8	14.3	11.3	9.3	60.2	66.	708.
490	2	1	24.1	20.3	18.3	16.6	13.5	10.3	8.5	6.8	5.3	4.4	765.3	-3.	801.
		2	31.4	26.7	24.2	22.0	17.9	13.7	11.4	9.1	7.2	5.9	295.4	-18.	927.
		3	37.6	31.7	28.5	25.9	20.9	15.9	13.1	10.5	8.3	6.8	130.6	-30.	810.
		4	46.2	39.4	35.6	32.5	26.4	20.2	16.6	13.4	10.5	8.7	71.9	54.	752.
		5	52.8	41.8	39.7	37.4	29.9	24.0	19.4	15.3	11.2	10.2	62.0	-1.	973.
508	2	1	23.7	20.3	18.1	16.5	13.3	10.3	8.4	6.7	5.3	4.3	1213.0	-25.	950.
		$\stackrel{2}{3}$	$\begin{aligned} & 33.0 \\ & 42.6 \end{aligned}$	$\begin{aligned} & 28.1 \\ & 36.6 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 32.8 \end{aligned}$	$\begin{aligned} & 22.8 \\ & 30.1 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 11.3 \\ & 15.5 \end{aligned}$	$\begin{array}{r} 9.1 \\ 12.4 \end{array}$	$\begin{aligned} & 7.1 \\ & 9.8 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 366.7 \\ & 176.7 \end{aligned}$	11. 10.	89. 880. 875.
		4	42.6 52.6	36.6 45.3	40.8	$\begin{aligned} & 30.1 \\ & 37.4 \end{aligned}$	24.4 30.1	18.8 23.3	19.5	12.4 15.4	9.8 12.1	$\begin{array}{r} 8.1 \\ 10.0 \end{array}$	$\begin{array}{r} 176.7 \\ 95.7 \end{array}$	-1.	830. 751.
		5	49.5	42.1	37.6	34.7	28.4	21.3	17.8	14.2	11.5	9.3	40.5	0.	477.
527	2	1	29.5	24.5	22.0	20.1	16.1	12.2	10.0	7.9	6.2	5.1	1156.0	-8.	720

		2	40.3	34.3	30.8	28.2	22.8	17.5	14.5	11.5	9.0	7.4	412.8	0.	777.
		3	52.6	44.5	40.3	36.9	29.9	23.0	19.0	15.2	12.1	10.1	175.7	6.	660.
		4	49.4	41.8	37.5	34.4	27.7	21.2	17.5	13.9	10.9	8.9	64.5	-5.	404.
		5	50.9	43.1	38.7	35.5	28.7	22.0	18.1	14.6	11.5	9.5	47.8	0.	449.
545	2	1	36.6	31.4	28.1	25.6	20.8	15.9	13.1	10.4	8.2	6.8	740.2	-5.	704.
		2	51.6	44.2	39.8	36.3	29.5	22.6	18.7	15.0	11.8	9.8	197.4	1.	563.
		3	48.7	41.6	37.3	34.2	27.7	21.2	17.5	14.0	11.1	9.2	83.0	-3.	472.
		4	50.3	42.7	38.3	35.1	28.3	21.7	18.0	14.5	11.3	9.5	48.5	-3.	461.
		5	51.7	44.3	40.0	36.3	29.5	22.6	18.6	14.9	12.0	9.8	24.4	13.	348.
563	2	1	50.1	43.0	38.5	35.3	28.6	22.0	18.1	14.5	11.4	9.4	552.9	-15.	496.
		2	50.1	42.8	38.2	35.0	28.4	21.8	17.9	14.4	11.3	9.3	185.3	-7.	498.
		3	52.1	44.6	40.0	36.7	29.8	22.9	18.9	15.2	12.0	9.9	95.2	-12.	511.
		4	53.3	45.5	40.8	37.5	30.5	23.4	19.3	15.5	12.3	10.3	47.1	20.	422.
		5	54.7	46.9	42.0	38.6	31.3	24.1	20.0	16.1	12.7	10.5	40.7	-17.	547.
585	2	1	46.8	39.7	35.4	32.4	26.1	19.9	16.4	13.1	10.3	8.5	760.1	-14.	477.
		2	52.0	44.4	39.8	36.4	29.5	22.8	18.9	15.2	11.9	9.7	291.2	-12.	548.
		3	54.3	46.5	41.6	38.3	30.9	23.3	19.0	15.2	12.1	10.3	124.3	0.	460.
		4	56.4	48.3	43.3	39.7	32.2	24.7	20.5	16.5	13.1	10.8	102.1	0.	640.
		5	56.8	48.8	43.8	40.3	32.8	25.3	20.9	16.7	13.3	11.0	89.2	11.	840.
610	2	1	26.3	22.3	19.9	18.0	14.5	11.0	9.0	7.2	5.7	4.7	820.1	-20.	858.
		2	42.0	35.8	32.0	29.2	23.6	18.1	14.9	11.9	9.4	7.8	161.7	7.	507.
		3	47.0	40.1	36.0	32.8	26.6	20.4	16.8	13.4	10.7	8.9	127.8	-12.	800.
		4	49.9	42.8	38.2	34.9	28.4	21.8	18.2	14.6	11.5	9.5	99.0	17.	1036.
		5	54.2	48.0	44.5	38.4	33.2	26.8	22.3	17.4	16.1	14.1	51.0	-5.	800.
635	2	1	21.8	18.1	16.1	14.6	11.6	8.7	7.1	5.6	4.4	3.6	880.2	-4.	628.
		2	33.6	28.2	25.1	22.9	18.4	14.0	11.6	9.0	6.9	5.8	421.4	9.	902.
		3	40.1	33.8	30.4	27.8	22.4	17.1	14.0	11.3	9.0	7.5	252.3	-20.	1070.
		4	49.0	41.8	37.6	34.2	28.0	21.6	17.9	14.2	11.6	9.5	128.3	7.	910.
		5	52.1	44.5	39.6	36.2	29.6	24.1	20.3	15.9	11.9	9.3	51.2	3.	547.
656	2	1	19.9	16.5	14.6	13.2	10.4	7.7	6.2	4.9	3.8	3.1	1531.0	-9.	1200.
		2	28.3	23.8	21.2	19.4	15.5	11.8	9.6	7.7	6.0	4.9	524.9	-13.	1236.
		3	42.0	36.0	32.4	29.7	24.1	18.6	15.3	12.3	9.7	8.1	163.3	5.	760.
		4	46.3.	39.6	35.5	32.5	26.4	20.5	16.9	13.6	10.7	8.8	73.5	-6.	577.
		5	52.7	45.1	40.6	37.3	30.0	23.0	19.0	15.2	12.2	10.2	39.9	7.	470.
$68!$	2	1	19.3	15.7	14.1	12.7	10.1	7.5	6.2	4.8	3.8	3.1	1055.0	-15.	820.
		2	34.5	29.2	26.4	24.2	19.6	15.1	12.5	10.0	7.9	6.5	240.8	4.	567.
		3	41.2	34.9	31.5	28.9	23.5	18.0	14.9	12.0	9.5	7.9	98.3	-9.	462.
		4	47.0	40.1	37.1	32.5	26.4	20.6	16.8	13.6	10.8	9.0	51.2	8.	402.
		5	49.1	41.0	36.1	35.5	28.4	21.6	18.5	14.5	11.3	9.5	52.5	-6.	617.
705	2	1	21.0	18.1	15.8	14.6	11.7	8.9	7.3	5.8	4.5	3.7	808.9	-23.	634.
		2	31.1	26.6	23.7	21.7	17.6	13.5	11.1	8.9	7.0	5.8	158.1	-10.	372.
		3	37.3	32.0	28.4	26.2	21.2	16.3	13.5	10.8	8.4	7.0	131.1	6.	610.

Index: a:2150e.IND
Data : a:2150e.DAT

		4	42.6	37.5	32.3	29.9	23.4	19.3	14.3	11.5	9.8	8.2	84.0	-5.	659.
725	2	1	21.2	17.8	15.8	14.4	11.6	8.7	7.2	5.7	4.5	3.7	263.0	-3.	330.
		2	28.7	23.9	21.4	19.7	15.8	12.0	9.9	7.8	6.1	5.1	169.0	6.	636.
		3	35.4	29.5	26.3	23.9	19.4	14.9	12.3	9.8	7.8	6.4	92.7	-3.	696.
750	2	1	14.0	11.4	10.4	9.4	7.3	5.4	4.3	3.4	2.7	2.1	966.8	7.	689.
		2	23.1	18.5	16.5	14.7	11.7	8.8	7.2	5.7	4.4	3.6	393.8	-5.	843.
775	2	1	13.8	11.4	9.8	8.9	7.0	5.1	4.2	3.3	2.6	2.2	395.6	-6.	477.

IPRR-11 DATA SUMMAFY

SURVEY : TECK

```
INDEX FILE : A: 2200E.IND
DATA FILE : A:2200E.DAT
```


425	2	1	20.0	16.3	14.5	13.4	10.5	7.8	6.4	5.0	3.9	3.2	698.8	14.	626.
		2	29.5	24.6	21.9	20.1	16.1	12.1	9.7	7.8	6.1	5.0	255.5	-22.	687.
		3	38.4	32.3	28.9	26.6	21.2	16.1	13.3	10.5	8.2	6.8	129.5	B.	690.
		4	44.1	37.3	33.6	30.9	24.8	19.0	15.7	12.7	10.1	8.4	98.6	8.	884.
		5	45.9	39.5	35.3	32.2	26.5	20.4	16.8	13.7	10.9	9.0	59.8	-5.	805.
447	2	1	20.4	17.0	15.2	13.8	10.9	8.3	6.7	5.2	3.6	2.9	368.3	-15.	481.
		2	32.6	27.6	24.6	22.4	18.1	13.7	11.2	9.3	8.3	7.0	136.1	13.	534.
		3	40.5	34.6	31.1	28.4	23.0	17.7	14.6	11.8	9.4	7.8	101.3	-4.	790.
		4	42.7	36.6	33.3	30.3	24.6	19.1	15.8	12.6	10.0	8.2	57.1	-4.	746.
		5	55.9	47.2	42.2	38.3	30.8	23.4	19.1	15.3	11.9	9.8	41.2	9.	807.
469	2	1	27.0	23.0	20.5	18.8	15.1	11.5	9.4	7.6	5.9	4.9	450.6	5.	329.
		2	36.8	31.6	28.3	26.0	20.9	16.1	13.3	10.6	8.4	6.9	285.6	0.	625.
		3	39.5	34.1	30.6	28.1	23.0	17.8	14.7	11.9	9.4	7.8	137.5	-3.	600.
		4	51.6	43.7	38.8	35.5	28.3	21.5	17.5	13.9	10.8	8.8	111.0	14.	810.
		5	52.0	44.5	40.0	36.8	29.9	23.1	19.1	15.4	12.1	10.1	86.2	0.	943.
490	2	1	25.2	21.6	19.2	17.5	14.2	10.8	8.9	7.1	5.6	4.6	1125.0	-21.	920.
		2	36.6	31.5	28.2	25.9	21.1	16.3	13.7	11.1	8.8	7.3	355.4	-3.	881.
		3	48.4	41.1	36.4	33.2	26.4	20.0	17.2	14.0	11.1	9.1	208.2	11.	1030
		4	49.4	42.5	37.9	34.8	28.3	21.7	19.2	15.7	12.6	10.6	121.2	11.	1000.
		5	39,3	34.0	30.3	28.0	22.7	17.4	16.0	13.3	10.8	9.1	27.9	-11.	345.
510	2	1	32.3	28.0	24.7	22.8	18.4	14.2	11.7	9.4	7.3	6.1	408.7	-8.	534.
		2	46.1	39.2	34.7	31.6	25.2	19.0	15.5	12.3	9.6	7.8	181.7	9.	713.
		3	48.7	42.4	37.9	35.1	28.6	22.1	18.3	14.7	11.7	9.8	101.9	9.	790.
		4	38.7	33.8	30.4	28.1	22.9	17.8	14.8	11.9	9.4	7.9	22.6	-7.	295.
		5	38.4	33.5	39.9	27.6	22.5	17.3	14.4	11.7	9.1	7.7	8.9	-18.	174.
530	2	1	47.8	39.9	35.4	32.1	25.4	19.1	15.5	12.2	9.4	7.7	605.0	14.	432.

indel: A:2200E.jND
Data : A:2200E.DKi

		2	40.5	34.7	31.4	28.8	23.5	18.1	15.1	12.1	9.5	7.9	310.4	0.	665.
		3	35.5	30.6	27.9	25.7	21.1	16.6	13.6	10.9	8.6	7.2	87.0	-18.	372.
		4	35.9	30.9	28.2	25.9	21.2	16.4	13.6	11.0	8.7	7.2	33.2	-1.	237.
		5	42.0	35.9	32.5	29.7	24.2	18.7	15.4	12.4	9.9	8.2	31.9	5.	341.
550	2	1	40.0	34.1	30.5	28.1	22.8	17.5	14.5	11.6	9.2	7.6	677.5	-14.	759.
		2	34.0	29.2	26.2	24.2	19.7	15.1	12.7	10.3	8.3	7.0	161.9	-4.	544.
		3	32.5	27.7	24.7	22.9	18.3	13.9	12.5	10.6	9.7	8.3	57.2	-8.	384.
		4	38.1	32.3	28.7	26.4	21.2	16.2	14.3	11.9	10.9	9.4	47.6	7.	533.
		5	37.3	30.9	27.3	24.9	20.2	15.0	14.3	12.7	11.8	9.5	20.8	-4.	349.
575	2	1	38.1	31.8	28.5	26.1	20.9	16.0	13.1	10.5	8.3	6.8	993.1	-19.	779.
		2	35.5	29.8	26.9	24.7	20.0	15.4	12.7	10.1	7.9	6.6	204.1	-16.	480.
		3	42.1	35.7	32.2	29.6	24.2	19.0	15.7	12.5	9.4	7.2	164.3	5.	770.
		4	45.0	38.4	34.7	32.2	27.0	22.0	18.1	14.3	10.3	7.0	65.8	5.	516.
		5	48.2	41.3	37.6	34.8	29.1	23.9	19.7	15.6	11.1	7.6	53.9	-1.	634.
600	2	1	15.3	12.5	11.0	9.9	7.6	5.8	4.7	3.7	2.8	2.3	911.7	-18.	817.
		2	22.3	18.6	16.3	14.9	11.9	8.9	7.3	5.7	4.2	3.5	430.8	-4.	1159.
		3	25.9	21.8	19.4	17.7	14.2	10.7	8.7	7.0	5.6	4.6	158.3	3.	850.
		4	30.2	25.5	22.6	20.7	16.6	12.6	10.4	8.3	6.5	5.4	93.6	3.	840.
		5	39.1	33.1	29.6	27.1	21.9	16.7	13.7	11.0	8.6	7.1	137.2	-4.	1840.
625	2	1	14.6	12.2	10.5	9.3	7.3	5.4	4.3	3.4	2.6	2.1	850.1	2.	763.
		2	18.8	15.9	14.0	12.5	9.7	7.3	5.9	4.7	3.6	3.0	264.2	-10.	711.
		3	22.9	19.5	17.1	15.5	12.6	9.6	7.8	6.2	4.9	4.1	143.8	1.	772.
		4	32.3	27.5	24.5	22.3	17.9	13.6	11.2	8.9	7.0	5.7	194.5	1.	1745.
		5	35.4	30.3	26.8	24.4	19.8	15.1	12.4	9.9	7.8	6.5	102.4	6.	1378.
650	2	1	14.4	11.7	10.1	9.3	7.2	5.4	4.4	3.4	2.6	2.1	387.0	-2.	347.
		2	19.4	16.2	14.3	13.1	10.3	7.7	6.2	5.0	3.9	3.2	195.1	-8.	525.
		3	28.6	24.4	21.7	19.9	15.9	12.2	10.0	8.1	6.3	5.2	232.1	0.	1240.
		4	31.7	27.2	23.8	21.9	17.5	13.3	10.8	8.6	6.8	5.6	120.1	15.	1070.
		5	38.2	32.0	28.4	25.9	20.8	15.8	12.8	10.5	8.3	6.7	34.2	-9.	460.
675	2	1	12.0	9.8	8.3	7.9	5.9	4.4	3.5	2.7	2.1	1.7	373.4	-1.	390.
		2	21.9	18.4	16.1	15.0	11.7	8.8	7.2	5.7	4.4	3.6	357.6	-16.	1122.
		3	25.4	21.4	18.9	17.8	13.9	10.5	8.5	6.8	5.3	4.3	170.6	14.	1060.
		4	32.4	27.7	23.2	22.1	17.8	13.8	10.8	9.0	6.8	5.9	44.7	-1.	468.
		5	37.0	30.2	27.0	24.5	18.9	13.9	12.6	9.1	7.7	4.9	53.9	-16.	846.
700	2	1	15.7	12.9	11.3	10.0	8.1	5.9	4.8	3.8	2.9	2.4	838.1	-7.	657.
		2	19.0	16.0	14.2	12.6	10.2	7.6	6.3	4.9	3.8	3.1	339.6	-4.	799.
		3	26.0	22.0	19.6	17.8	14.5	10.9	8.9	7.0	5.4	4.4	83.6	-9.	393.
		4	30.6	25.2	22.6	20.2	16.4	12.5	10.4	8.3	6.6	5.4	83.7	5.	656.
725	2	1	13.2	10.7	9.4	8.5	6.6	4.8	3.9	3.0	2.3	1.9	672.0	3.	555.
		2	19.1	15.6	14.0	12.7	10.1	7.5	6.1	4.8	3.8	3.1	121.1	-18.	300.
		3	24.9	19.7	17.7	16.0	12.7	9.6	7.9	6.2	4.9	4.1	110.7	5.	540.

750	2	1	10.3	8.9	7.8	7.2	5.5	3.9	3.1	2.5	1.8	1.4	357.7	-13.	295.
		2	15.9	12.3	10.1	9.0	7.0	5.2	4.1	3.2	2.4	2.0	262.4	5.	650.
775	2	1	9.0	6.8	6.0	5.2	3.8	2.7	2.1	1.6	1.2	.9	261.8	5.	456.

CRETACEOUS TO TERTIARY 7 aUaATZ FELLSSPAR PORPAMYYY
6 MAFC DTKE
LOWER CAMBRIAN TO MISSISSIPPIAN EAGLE BAY ASSEMBLAGE
5 FOLIATED GRANOODOFTE
4 INTEPMEDITE VOLCANC-CHLORTE PATULTE

3 SERCIT-CHLORITE PHYLLTE (DACTTE)
2 auartz-senicte to sericte schist rhtoute

1a ARGILTE, SHALE MUOSTONE
DD Conclomerate, wacke
L UMESTONE
id chert, quattzite

