LOG NO: 12-17	RD.
ACTION:	

REPORT ON THE

ROU 1 - 2 MINERAL CLAIMS

FILE NO: **1990 PROSPECTING PROGRAM**

ISKUT RIVER AREA LIARD MINING DIVISION **BRITISH COLUMBIA**

57°05' NORTH LATITUDE 131°02' WEST LONGITUDE

Claim Name	Record No.	No. of Units	Record Date
ROU 1	6392	16	Sept 14, 1989
ROU 2	6393	20	Sept 14, 1989

Work Period:

July 1990 to September 5, 1990

Owner and **Operator:**

KESTREL RESOURCES LTD. 507 - 675 West Hastings Street Vancouver, B.C. V6B 1N2 (604) 683-9177

≫ Ω の同

S

(F) 🛌

S O

ZÞ 对因

円 知

78 🄊

OZ

X O

 \mathcal{O} ብ 3 四 🤿

By:

S. J. Tennant

December 11, 1990

Self-Carrow

RECEIVED DEC 1 2 1990 Gold Commissioner's Office VANCOUVER, B.C.

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
LOCATION, ACCESS AND TOPOGRAPHY	1
PROPERTY AND LIST OF CLAIMS	. 2
AREA HISTORY	2
REGIONAL GEOLOGY	. 4
PROPERTY GEOLOGY	5
1990 EXPLORATION PROGRAM	. 5
DISCUSSION OF RESULTS	. 6
RECOMMENDATIONS	. 7
BIBLIOGRAPHY	. 8
STATEMENT OF QUALIFICATIONS	. 9
PROGRAM COSTS	. 10

List of Figures

Figure 1	Index Map	
Figure 2	Claim Map; Scale 1:50,000	
Figure 3	Regional Geology; Scale 1:125,000	
Figure 4	Sample Location Map; Scale 1:20,000	

In pocket

List of Appendices

Appendix I Appendix II Sample Assay Results Sample Descriptions

SUMMARY

Kestrel Resources Ltd. acquired the ROU claims in September of 1989. The claims are located 20 kilometres north of the Forrest Kerr airstrip. The claims are underlain by foliated rocks of Paleozoic age consisting of phyllite, greenstone, quartz sericite-chlorite schist, argillaceous quartzite, and schistose tuff.

A total of 54 rock sample were collected and the results are discussed in the text of this report and the data are plotted on the accompany map.

INTRODUCTION

The ROU 1-2 claims are located approximately 15 kilometres southwest of Arctic Lake within the Liard Mining Division of northwestern British Columbia.

The claims are accessible by helicopter from a base camp at the Forrest Kerr airstrip, located 20 kilometres to the south.

A program of preliminary prospecting and sampling was carried out by Kestrel Resources Ltd. during the summer of 1990, to evaluate the mineral potential of the property.

LOCATION, ACCESS AND TOPOGRAPHY

The property is located within the Liard Mining Division some 15 kilometres southwest of Arctic Lake. Latitude 57°05' North and Longitude 131°02' West pass through the property. Access to the property is via fixed wing aircraft from Smithers or Terrace to Bronson, which is located 110 kilometres northwest of Stewart, British Columbia, or to Forrest Kerr located at the headwaters of the Forrest Kerr River. Access from Bronson is via helicopter (35 kilometres) and then via foot traverse

within the claims. Most of the property is accessible by foot or helicopter, although there are portions at higher elevations which are not readily accessible due to steep terrain or ice. Elevations range from approximately 1100 metres in the centre of the claim block to well above 2,000 metres at the north end of the ROU 1 claim. Above 1350 metres the claims are devoid of vegetation except for shrubs and grasses, and exhibit abundant outcrop. Below this elevation the usual coast mountain evergreens, devils club and alder predominate. Precipitation exceeds 4,000 mm (160 inches) annually, while temperatures range from -40° to 25° Centigrade.

PROPERTY AND LIST OF CLAIMS

The ROU prospect consists of the following modified grid claims wholly owned by Kestrel Resources Ltd.

<u>Claim Name</u>	Record No.	<u>No. of Units</u>	Record Date	Expiry Date
ROU 1	6392	16	Sept 14, 1989	Sept 14, 1990
ROU 2	6393	20	Sept 14, 1989	Sept 14, 1990

So far as the writer is aware the claims were properly staked and recorded and are in good standing as indicated by the expiry dates.

AREA HISTORY

Sporadic exploration efforts have continued intermittently in the lskut River area since the turn of the century, with early activity concentrated in the area of the Stewart mining camp. As prospecting and exploration continued northward, various placer gold operations were discontinuously active along both the Iskut and Unuk Rivers.

In 1907, a prospecting party from Wrangell, Alaska staked nine mineral claims north of Johnny Mountain, the first recorded work in the area. The claims were subsequently explored and mined by the Iskut Mining Company, who in 1917 shipped a ton of high grade ore which reportedly assayed \$1.20 gold, 44.2 ounces silver and 12.45% copper (B.C.M.M.A.R., 1917).

Little is known about subsequent work until 1954 when Hudson Bay Mining and Smelting Limited discovered high grade gold-silver-lead zinc mineralization, known as the "Pickaxe" showing, on the slopes of Johnny Mountain. These claims were eventually allowed to lapse after and initial evaluation.

Several major mining companies initiated reconnaissance exploration programs in the 1960's in the Iskut River Area. Of these, Cominco Ltd. drilled several core holes in search of pyritic mineralization on Johnny Mountain area potential to host significant sulphide mineralization increased with Skyline Exploration Ltd.'s discovery of mineralized float on the Bronson Creek glacier in 1969, resulting in that company staking the Inel property. In 1980, the company staked the REG property on Johnny Mountain after the discovery of high grade gold-bearing veins. Exploration on both their INel and REG properties continued to 1989.

Skyline Exploration Ltd. reported in late fall of 1989, geological reserves of their Stonehouse deposit of 740,000 tons grading 18.0 gms/tonne (0.52 opt), gold with significant silver and copper values. Production commenced in 1988, but the mine experienced difficulties in both recovery of metal and ore reserves. Consequently the mine shut down in September of 1990.

The joint venture partners of Prime Resources Corporation and Cominco Ltd. are currently in the final stages of a feasibility study of their SNIP property, located immediately north of REG property on the northern slopes of Johnny Mountain. The latest combined geological reserve for the property is 1,000,000 tons grading 0.80 opt gold.

Other advanced prospects currently undergoing intense exploration efforts in the area include Inel Resources Ltd.'s property, Gulf International Minerals Ltd.'s McLymont property, Placer Dome Ltd.'s Kerr deposit and Calpine's 21 Zone Discovery.

The discovery of the Eskay Creek gold prospect (Calpine 21 Zone) in November of 1988 has done much to stimulate exploration activity in the Iskut region. The deposit occurs essentially at the upper contact of a relatively flat lying, hydrothermally-altered andesit breccia (Rhyolite) within Middle Jurassic Hazelton Group volcanic and sedimentary rocks. The effects of faulting and folding are not clearly understood at this date. The zone remains open to the northeast and downdip, although fill-in drilling at 25 metre spacing is continuing. Spectacular results have been obtained in drill core assays, particularly those in Hole No. 109, which returned 201.2 metres (660 feet) grading 30 grams per tonne gold (0.876 opt). Drill hole intersection varying from 5 to 10 metres (16 to 33 feet) and grading to 100 grams gold per tonne (2.92 opt) with an average 1,000 grams or more of silver per tonne (29.2 opt), are not uncommon. Significant values in lead and zinc are present as well. This prospect is without doubt the most important precious metal deposit ever discovered in British Columbia.

REGIONAL GEOLOGY

The Stewart-Iskut-Eskay Creek gold silver area is situated along the western margin of the Intermontaine belt of volcanic and sedimentary rocks where they join the Coast Plutonic Complex of intrusive and metamorphic rocks. The most significant host of gold-silver mineralization in the area is the Triassic to Jurassic volcanicsedimentary Stewart complex (Hazelton group). Triassic to Tertiary plutonic rocks of the Coast Intrusion are considered to be the source of the mineralization. Jurassic sedimentary rocks of the Bower Basin are extensively underlain by rocks of the Stewart Complex.

Within the Stewart Complex of volcanics and sedimentary rocks, both narrow fractures and wide shear zones carry gold, silver and often, copper and molybdenum values associated with quartz veining. These mineralized areas are frequently close to felsic porphyry sills and dykes. The northern portion of the district appears to contain higher frequency of gold quartz veins grading to increased silver toward the south and increased copper toward the west.

	LEGEND	
QUATE	RNARY	
29	EISTOCENE AND RECENT	
	Trainerie Brainel break break ones ones west where wertand mid anisating	
28	Hot-spring deposit, tufa , aragonite	
27	Olivine basalt, related pyroclastic rocks and loose tephra; younger than	
) [])	some or 29	
TERTI	ARY AND QUATERNARY	
UP	PER TERTIARY AND PLEISTOCENE By olite and decite flows, lave domes, pyroclastic rocks and related sub-	
26	volcanic intrusions; minor basalt	
25	Basalt, olivine basalt, dacite, related pyroclastic rocks and subvolcanic	
	intrusions; minor rhyolite; in part younger than some 26	
CRETA	CECUS AND TEDTIARY	
UP	PER CRETACEOUS AND LOWER TERTIARY	
24	SLOKO GROUP Light green, purple and white rhyolite, trachyte and dacite flows,pyroclastic	
	rocks and derived sediments	
22 23	22. Biotite leucogranite, subvolcanic stocks, dykes and sills 23. Poerbystije, biotite andesite, leve domes, flows and (2) sills	
• 		
	Chert-pebble conglomerate, granite-boulder conglomerate, quartzose	
	sandstone, arkose, siltstone, carbonaceous shale and minor coal	
20	Felsite, quartz-feldspar porphyry, pyritiferous felsite, orbicular rhyolite; in part conjugatent to 22	
19	Medium-to coarse-grained, pink biotite-hornblende quartz monzonite	
	STO AND OD CREWACEOUS	
PC	ST-UPPER TRIASSIC PRE-TERTIARY	
18	Hornblende diorite	
17	Granodiorite, quartz diorite; minor diorite, leucogranite and migmatite	
[]	•
M	DDLE (?) AND UPPER JURASSIC	
	BOWSER GROUP] Chert-pebble conglomerate, grit, greywacke, subgreywacke, siltstone and	
16	shale; may include some 13	
<u>M</u>	DDLE JURASSIC	
15	Basait, pittow lava, tun-breccia, derived volcaniciastic rocks and related	
L	OWER AND MIDDLE JURASSIC	
14	Shale, minor siltstone, siliceous and calcareous siltstone, greywacke and ironstone	
L	OWER JURASSIC	
1 1 13	Conglomerate, polymictic conglomerate; granite-boulder conglomerate, grit,	

TRIASSIC AND JURASSIC

POST-UPPER TRIASSIC PRE-LOWER JURASSIC

	Syenite,	orthoclase	porphyry,	monzonite,	pyroxenite
1					

HICKMAN BATHOLITH

1	
21	
21	
<u>S I</u>	
87	
Ω ₁	
(S)	
H	
51	
~ .	

10. Hornblende granodiorite, minor hornblende-quartz diorite 11. Hornblende, quartz diorite, hornblende-pyroxene diorite, amphibolite and pyroxene-bearing amphibolite

TRIASSIC UPPER TRIASSIC

8

7

6

12

10 11

Undifferentiated volcanic and sedimentary rocks (units 5 to 8 inclusive)

Augite-andesite flows, pyroclastic rocks, derived volcaniclastic rocks and related subvolcanic intrusions; minor greywacke, siltstone and polymictic conglomerate

Siltstone, thin-bedded siliceous siltstone, ribbon chert, calcareous and dolomictic siltstone, greywacke, volcanic conglomerate, and minor limestone

Limestone, fetid argillaceous limestone, calcareous shale and reefoid limestone; may be in part younger than some 7 and 8

4

з

2

PALEOZOIC

Greywacke, siltstone, shale; minor conglomerate, tuff and volcanic sandstone

MIDDLE TRIASSIC

Shale, concretionary black shale; minor calcareous shale and siltstone

PERMIAN

MIDDLE AND UPPER PERMIAN

٦	· Limestone,	thick-bedded	mainly bioclastic	limestone; minor	siltatione, chert
J	and tuff	· · · ·			

PERMIAN AND OLDER

٦	Phyllite, argillaceous quartzite, quartz-sericite schist, chlorite schist,
	greenstone, minor chert, schistose tuff and limestone

MISSISSIPPIAN

1

Limestone, crinoidal limestone, ferruginous limestone; maroon tuff, chert and phyllite

Amphibolite, amphibolite gneiss; age unknown probably pre-Upper Jurassic

Ultramafic rocks; peridotite, dunite, serpentinite; age unknown, probably pre-Lower Jurassic

Geological boundary (defined and approximate, assumed)
Bedding (horizontal, inclined, vertical, overturned)+ / / /
Antioline
Syncline
Fault (defined and approximate, assumed)
Thrust fault, teeth on hanging-wall side (defined and approximate, assumed).
Fossil locality
Mineral property
Glacier

INDEX TO MINERAL PROPERTIES

1. Liard Copper	5. Bam	9. MH	13. Ann, Su	
2. Galore Creek	6. Gordon	10. BIK	14. SF	
3. QC, QCA	7. Limpoke	11. JW	15. Goat	

5:

The recently discovered 21 Zone on the Stikine Silver/Calpine claims to the southeast of the ROU claims, is hosted in the Mount Dilworth formation of the upper Hazelton group. The Dilworth formation has been traced to the northwest from the 21 Zone.

PROPERTY GEOLOGY

Geological Survey Map 11-1971, prepared by J.G. Souther, shows the geology of the ROU claims at a scale of 1:250,000. More detailed maps are unavailable from Government sources and Kestrel Resources has not completed reconnaissance mapping on this property. According to Souther's work, the claims are underlain by foliated rocks of Paleozoic age, minor limestone, and associated intermediate intrusive rocks of Jurassic-Triassic age. Foliated rocks consist of phyllite, greenstone, quartz sericite - chlorite schist, argillaceous quartzite, minor chert and schistose tuff. The rock units generally trend northwesterly with moderate to steep dips to the southwest, and are variably altered, deformed and metamorphosed.

1990 EXPLORATION PROGRAM

The 1990 exploration program was undertaken to assess the exploration potential of the property. The field program was conducted during the last week of July.

Access was via helicopter (provided by Northern Mountain Helicopters), from a base camp at Forrest Kerr Airstrip, some 20 kilometres to the south. Field work was conducted by employees of Kestrel Resources Ltd. under the supervision of the author. A total of 9 man days were spent in collecting 54 rock samples.

The lithogeochemical samples were properly bagged, described and labelled in the field. Later, they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. for analysis under the supervision of professional assayers. All

of the samples were analyzed for gold, using fire assay and atomic absorption procedures, and for a 25-element suite by inductively coupled argon plasma (ICAP) methods.

At Vangeochem Lab Ltd., each rock sample was ground to -100 mesh and a 0.5 gram pulp was digested with 5 millilitres of 3:2:1 hydrochloric acid to nitric acid to water at 95°C for 90 minutes, and then diluted to 10 millilitres with water. The resulting precipitate was then analyzed by ICAP methods for : silver, aluminum, arsenic, barium, bismuth, calcium, cadmium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, lead antimony, tin strontium, uranium, tungsten and zinc.

A 20.0 to 30.0 gram pulp was split from each of the ground samples, mixed with flux, fused at 1,900°F to form a button, and subsequently digested in an aqua regia solution. This solution was then analyzed for gold be a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp.

Prospecting traverses and all sample locations are shown on Figure 4 of this report. The analytical results and lithogeochemical sample description accompany this report as Appendices I and II respectively.

DISCUSSION OF RESULTS

A total of 9 man days were spent prospecting the ROU 1-2 claims. The claims are underlain by variably altered, deformed, metamorphosed and mineralized phyllites, schists, greenstones and limestone. Structurally the formations trend northwesterly with moderate dips to the southeast.

Samples collected on the ROU claims were generally from quartz carbonate shears or quartz veins. Fine pyrite and some minor chalcopyrite were the only visible sulphides. Malachite staining is sparsely distributed. The highest value obtained was 210 ppb gold in Sample No. 92994 with the average value <20 ppb gold.

Assay results of the samples collected did not return significant values in base or precious metals. No concentrated zones of mineralization were identified.

RECOMMENDATIONS

The 1990 sampling program did not dilineate any strong anomalous zones. To the east of the ROU claims, Cominco own the large Foremore group of claims and have been successful in locating and tracing sulphide boulders on some of their claims. Additional work on the ROU claims should be concentrated on checking for sulphide boulders particularly in the low lying areas, along with some detailed geological mapping.

BIBLIOGRAPHY

STATEMENT OF QUALIFICATIONS

I, STUART J. TENNANT, of Kestrel Resources Ltd., do hereby certify that:

- I am a Geologist employed by Kestrel Resources Ltd. during the period October 1989 to present.
- 2. I am a graduate of the University of British Columbia with a B.Sc. in Geology in 1959.
- 3. From 1959 until present, I have been engaged in exploration primarily in Western Canada.
- 4. I personally supervised and participated in the field work and have compiled, reviewed and assessed the data resulting from the work.

tuant J. Sennant

Stuart J. Tennant

th DATED at Vancouver, British Columbia, this // day of December 1990

PROGRAM COSTS

S. Tennant Geologist	1 day @ \$325/day	\$	325
B. Chase Prospector	2 days @ \$275/day		550
C. Bilquist Prospector	2 days @ \$200/day	· ·	400
K. Forster Prospector	2 days @ \$200/day		400
W. Grier Prospector	2 days @ \$200/day		<u>400</u>
· · · ·		\$	<u>2,075</u>

<u>Field Expense</u>

Room and Board	9 man days @ \$125/day	1,125
Helicopter	1.4 hrs. @ \$800/hr	1,200
Drafting and Maps		100
Freight		40
Assaying (Vangeoch 53 samples @ \$16/	em Labs) (samples	848

TOTAL COST OF 1990 PROGRAM

<u>5,388</u>

\$

APPENDIX I

Sample Assay Results

	SC VANGEO	CHEM LAB L	IMITED	MAIN OFFICE 	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT
			2 N	• FAX (604) 254-5717	RENO, NEVADA, U.S.A.
•	REPORT NUMBER: 900166 GA	JOB NUMBER: 900166	SULLIVA	N MANAGEMENT/KESTREL RES.	PAGE 1 OF 1
	SAMPLE 1 81501 92293	Ag Au ppn ppb .4 nd .2 nd	• • •		
•	92294 92295 92296	.1 nd .8 nd .2 nd	· · · · · ·		
	92297 92298 92299 92984 92985	.1 nd .1 10 .2 10 .1 10 nd nd		· · · · · · · · · · · · · · · · · · ·	
	92986 92987 92988 92989 92989 92990	nd nd nd 20 nd nd nd nd .1 nd			
	92991 92992 92993 92994 92995	.1 20 .6 nd nd nd .3 210 .2 nd			
	92996 92997 92998 92999 92999 93000	nd 10 nd nd nd nd nd nd nd nd			

DETECTION LIMIT nd = none detected

. .

È

0.1 5 -- = not analysed is

is = insufficient sample

MI

1630 Pandora Street, Vancouve Ph:(604)251-5656 Fax:(604) V5L, 1L6

-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HND₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900166 PA	SULLIVAN P	IANAGEMEN	T / KEST	REL RES.		PROJE	CT: ROU	1-2		DAT	'E IN: AU	6 01 199	O DA	TE OUT:	AUG 23 1	990	ATTENTIO	N: MR. T	ENNANT &	MR. BUCH	IHOLZ	· PAG	E 1,0F	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	·· K	fig	Ħn	Ho	. Na	Ni	P	Pb	Sb	- Sn	Sr	. U	. #	Zn
	ppa	Ľ	ppa	ppe	ppe	1	ppe	ppe	ppe	· ppa	. 7	1	- 1 i	ppa	ppe	X	. ppa	I	pps	pps	ppe	ppa	pps	pps	ppe
81501	0.4	1.44	(3	30	(3	1.32	1.3	11	145	- 35	3.95	0.25	0.88	887	7	0.02	3	0.27	16	13	. 8	93	<5	15	74
92293	0.2	0.10	<3	135	(3	4.33	<0.1	(1	60	27	1.32	0.05	0.65	1308	<1	0.01	<1	0.02	<2	<2	· <2	169	< 5	3	- 28
92294	.1	0.46	22	102	<3	>10.00	<0.1	2	127	<1	3.39	(0.0 1	2.21	2815	4	0.03	(1	0.82	7	<2	2	435	<5	<3	29
92295	0.8	0.44	· 6	56	; ∢3	3.54	2.6	11	86	360	2.07	(0.01	1.16	689	10	0.02	4	0.05	52	24	3	151	18	3	. 51 .
92296	0.2	0.36	69	52	(3	0.22	(0.1	6	123	23	1.79	0.15	-0.14	110	8	(0.01	-<1	0.10	29	12	- 3	· 40	. <5	4	11
92297	0.1	~0.34	20	48	<3	. 1.57	(0. 1	(1	258	1	0.73	0.29	0.23	279	(1	<0.01	-KI	. 0.01	<2	. <2	(2	119	(5	7	15
92298	0.1	0.22	58	290	8	0.16	<0.1	1	186	- 39	2.83	0.19	0.01	115	12	0.02	(1	0.15	10	(2	₹2	52	<5	7	98
92299	0.2	0.05	71	101	. (3	- 1.47	<0.1	3	203	6	2.44	<0:01	0.69	297	15	0.02	(1	0.07	17	6	· (2	50	_11	5	77
92984	0.1	0.14	54	57	₹3	1.57	<0.1	7	70	119	2.05	(0.01	0.84	235	12	0.01	(1	0.01	31	29	2	69	<5	· 6	41
92985	<0.1	0.09	-15	286	. (3	2.07	<0.1	3	187	16	1.99	0.03	1.15	482	(1	0.02	<1	0.02	2	<2	3	97	14	5,	28
92986	(0.1	0.03	13	>1000	{3	1.99	<0.1	· (1	69	241	1.25	0.47	0.76	1016	(1	0.01	41	<0.01	<2	{2	<2	107	16	7	.10
92987	<0.1	0.73	(3	71	_ ∢3	3.79	0.1	37	147	26	8.68	0.50	1.18	917	. 3	0.04	-{1	0.24	<2	. <2	3	117	(5	· 8	45
92988	<0.1	0.11	18	57	11	>10.00	0.4	<1	65	<1	2.96	0.23	5.02	1488		0.04	· · (1	0.08	<2	<2	<2	350	<5	(3	14
92989	<0.1	0.17	<3	14	<3	5.84	2.2	(1	51	15	4.17	<0.01	2.66	2262	3	0.03		0.02	4	. 4	2	254	14	<3	26
92990	0.1	0.09	31	50	(3	>10.00	4.0	2	78	(1	4.47	<0.01	4.74	2481	(1	0.05	<u>∖</u> {1	0.04	. (2	<2	6	294	<5	<3	57
92991	0.1	0.30	(3	99	- (3	7.09	1.9	5	38	.(1	5.32	0.59	4.18	1430	(1	0.05	· (1	0.12	<2	<2	2	254	۲5	7	92
92992	0.6	4.07	<3	83	<3	. 5.18	0.4	35	32	190	8.99	0.59	3.72	2580	· (1	0.09	43	0.65	13	19	3	403	· (5	35	372
92993	· <0.1	0.84	<3	92	(3	7.28	8.0	30	95	(1	9.01	0.09	4.41	2398	5	0.07	۲i	0.45	<2	33	7	351	8	. 5	158
92994	0.3	0.30	<3	72	(3	3.61	<0.1	23	75	246	7.48	0.13	3.21	1176	<1	0.05	1	0.15	<2	7	4	185	22	<3	139
92995	0.2	0.07	<3	39	(3	9.63	<0.1	1	37	- 14	2.81	(0.01	3.44	1806	(1 -	0.03	<u></u> (1	0.21	<2	<2	4	529	<5	<3	37
92996	(0.1	0.91	<3	25	(3	1.27	(0.1	(1)	129	(1	2.26	0.B3	0.77	703	CI	0.02	- (1	0.19	<2	<2	<2	96	12	18	22
92997	<0.1	0.04	<3	104	(3	0.77	<0.1	-<1	78	(1	0.92	0.50	0.12	364	<1	<0.01	< <u>(1</u> -	0.04	(2	<2	<2	21	· (5	13	1)
92998	(0.1	0.05	- 5	- 40	(3	7.40	(0,1	, a	46	: (1	4.09	0.13	2.44	3418	1	0.03	(1	0.10	· {2	(2	(2	560	<5	. (3	-19
92999	(0.1	0.12	48	4	(3	0.17	(0.1	0	234		0.93	(0.01	0.12	394	0	<0.01	q	0.02	(2	(2	- (2	13	. 8	8	.3
93000	<0.1	1.03	51	66	(3	0.28	<0.1	<1	90	132	2.16	0.31	0.69	194	(1	0.01	(1	0.1B	<2	{ 2	3	- 39	20	17	26 (
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	· 1	1	. i	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	• 3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - Greater T	'han Maxi	NUR .	is - Insu	fficien	t Sample	: NS ·	- No Samp	ole 🝸	ANDHALOU	S RESULT	S - Furt	her Anal	yses By i	Alternat	e Nethod	s Sugges	ted.							

UNKAD US

ANALYST: Rynth

	VGC	VANGEO	CHE	M LAB L	IMITED		UMPH ST I, B.C. V5L 1K5 251 5656	- PAS BA MISS	ADENA, I THURST, SISSAUGA	NFLD. N.B. , ONT.
				·		• FAX (6	J4) 254-5717	RENC	, NEVADA	, U.S.A
	REPORT NUM	BBR: 900201 GA	JOB NU	INBER: 900201	SULLIVAN	N NIBIGENEBT/KEST	REL RES.	PACE	1 OP 1	
	SAMPLE #		Ag ppn	Au ppb	•					
•	92963	•	.2	40						
	92964		nd	10						
	92965		.4	10						
	32300		nu 1	nu 20						
	32343		•1							
	92968		nd	10	· .					
	92969		.8	10	•	1				
	92970		.2	30	•					
	92971	· ·	6	20		•				
	92972		• .1	60						
	92973		1	100						
	92974		nd	nd						•
•	92975	· · · ·	nð	nd						
. '	92976		nd	ba		·				
	92977		.2	20					•	
· ·										
	92978		.1	20						
	32373	· .	00 5 a	· 10					•	
	92981		рц А	20						
	92982	• .	nd	20						
					•	· · · ·				
	92983		nd	10		•	·			

DETECTION LINIT nd = none detected 0.1 5 -- = not analysed

is = insufficient sample

VANGEOCHEM LAB LIMITED

1630 Pandora Street, Vancouver, 1007C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Ronalh

								1 e								· .									5
REPORT #: 900201 PA	SULLIVAN	NANAGENEN	T / KES	TREL RES.	• •	PROJE	CT: NONE	GIVEN		DAT	E IN: AU	6 07 199	0'. DA	TE OUT:	AUG 27 1	990	ATTENTI	DN: MR. J	OHN BUCH	HOLZ		PAGE	I DF	1	25
Sample Name	. · · A	g Å1	As	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe		Ng	ťin	No	Na	Ni	P	Pb	Sb	Sn	Sr	U U	- ¥	Zn
	00	1	008	004	004	Ż	DD8	ppe	<u>ppe</u>	DDA	1	1	1	008	001	1	DD	1	008	ppa	ppe	ppa .	<u>ppa</u>	ppe	opa -
92963	0.5	2 1.29	(3	180	21	0.49	1.4	- C	65	123	1.84	0.06	0.87	381	- 14	(0.01		0.05	(2	(2	17	97	(5	. (3	42
92964	(0.	0.51	72	163	(3	0.21	(0.1	(1	144	1 1	0.77	(0.01	0.36	167	3	(0.01	-0	0.02	(2	52	6	28	(5	(3	- 19
92965	0.0	1 1.74	99	>1000	(3	3.13	0.3	37	63	34	3,88	(0.01	2.17	1237		70.01	31	0.04	0	128	4	145	. (5	(3	77
02005		0.32	194	175	20	1 09	(0.1	1	122	17	1 66	20.01	0.28	421	1	(0 01	7	. (0 01	17	165	5	13	(5	116	7
92967	0.	1 0.19	153	110	. (3	0.02	(0.1	, ä	96	i di	0.89	0.07	0.01	116	2	<0.01	्रतं	0.01	· <2	110	5	. 3	<5	- 15	21
97959	(0.	1 0.95	161	%7	63	0.50	- (0,1	20	54	93	3.47	0.72	0.29	492		(0.01	7	0.03	(2	167	7	23	- (5	< 3	72
92929	- 01	R 1.01	330	94	102	5.87	1.9	31	55	110	2 80	20.01	0 R7	258		(0 01	. 42	(0.01	. 57	334	5	273	(5	88	88
92970	0.5	2 0.38	108	559	73	6.74	(0.1	- 1	137		0.85	. (0.0)	0.44	391		<0 01	- 1	0.02	0	52		248	. (5	(3	39
00071		1 1 20	207	607		4 20	6.9	. 20	20		4 57	70.01	4 94	200		/0 01	2	A A2.		-179		102	-75	12	60
92972	0.	1 0.55	 <3	8	34	1.42	(0.1	<1	94	33 (1	3.04	(0.01	0.30	89	2	(0.01	ं (1	<0.01	(2	175	7	51	<5	<3	8
· · · · `			• • • • •			·	·						•						•						
92973	0.	0.35	170	82	(3	5.14	<0.1	16	156	- 43	3.02	<0.01	1.62	. 710	(1	<0.01	1	(0.01	<2	160	. 4	165	(5	86	34
92974	<0.	1 . 0.07	241	49	100	>10.00	0.7	28	6	. 50	4.01	<0.01	5.52	1814	· 4	<0.01	16	0.02	-14	277	8	167	÷ (5	₹3	. 45
92975	<o.1< td=""><td>1 0.13</td><td>. <3</td><td>64</td><td>7</td><td>0.28</td><td><0.1</td><td> (1 -</td><td>233</td><td>. (1</td><td>· 0.45</td><td><0.01</td><td>0.12</td><td>88</td><td>{1</td><td><0.01</td><td>. (1</td><td>0.01</td><td><2</td><td>· <2</td><td>. 3</td><td>21</td><td>· <5</td><td><3</td><td>2</td></o.1<>	1 0.13	. <3	64	7	0.28	<0.1	(1 -	233	. (1	· 0.45	<0.01	0.12	88	{1	<0.01	. (1	0.01	<2	· <2	. 3	21	· <5	<3	2
92976	(0.)	0.11	307	- 44	110	0.09	(0.1	9 .	95	51	0.89	<0.01	0.04	162	1) (I	<0.01	(1	0.06	<2	269	2	. 14	`<5	45	8
92977	0.:	2 0.40	235	110	6	0.05	0.7	· (1 ·	203	35	1.24	<0.01	0.29	40	· - X 1	(0.01	. 1	0.08	· · (2	211	<2	. 5	(5	96	47
92978	0.	7 0.10	<3	3	<3	0.23	1.5	4	65	16	>10.00	0.06	0.04	27	10	<0.01	- (1	<0.01	<2	7	8	- 10	<5	<3	137
9 29 79	<0. :	l 0.32	્ (3	768	- 11	4.76	<0.1	23	65	. (1	>10.00	(0.01	2.95	4450	11	<0.01	<1	0.36	(2	128	17	239	. <5	<3	31
92980	<0.1	L 0.08	<3	81	<3	3.07	(0.1	(1	81	∶ ∢1	2.88	<0.01	1.03	834	L L	(0.01	<1	0.18	<2	<2	7	- 95	· <5	-{3	7 -
92981	0.4	0.58	7	30	89	0.07	(0.1	<u>с</u>	164	53	2.78	<0.01	0.34	50	(1	<0.01	` {1	0.02	<2	<2	. 7	<i .<="" td=""><td><5</td><td><3</td><td>100</td></i>	<5	<3	100
92982	<0.	i 0.64	18	.74	<3	3.50	<0.1	41	55	1	4.05	<0.01	0.73	1839	1	<0.01	(1	0.25	-{2	13	2	188 🖓	< 3	(3	43
92983	(0.	t 0.0B	25	58	41	6.53	<0.1	. (1	162	208	2.19	<0.01	3.39	1752	4	<0.01	⁵ (1	0.01	(2	35	2	165	<5	(3	30
Miniaua Detection	0.1	0.01	3	1	3	0.01	0.1	20000	1000	20000	0.01	0.01	0.01	20000	1	0.01	20000	0.01	2	2	- 2	1	°5	3	1
naximum verettivn	JV:1	76	2000	in I		10.00	1000.0	- No Corr	1.	ANONAL OF		1949V	3V,VV L 10-1	20000	414000-1	A Makka			TAAAA	2000	1000	10000	100	1000	f in the second
Less inte minibul	/ - breater	inan naxi	a v a	15 " 105	ur 11 C1 80	i sample	85	- NO 3480	16	ลสมกิลเป็น	IS KESULI	a – rurc	ner Anal	7385 DY	niternat	e nevao	is gugges	.099							/

ALCARIAN DA

		163(DORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656	
ANGEOCHEN	/ LAB LIMITED	MAIN OFFICE 1900 TRIUMPH ST. VANCOUVER, B.C. VSL 1K5- VCR1, B.C. VSL 1K5-	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B.
1		● (604) 251-5656 ● FAX (604) 254-5717	RENO, NEVADA, U.S.A.

SULLIVAN MANAGEMENT/KESTREL RES.

PAGE 1 OF 1

λg	- Au
DDA	daa
.1	20
.2	20
nd .	nđ
	20
nd	10
1	10
1 1	10
1.1	20
.1	nd
	Ag ppn .1 .2 nd .4 nd .1 1.1 1.1

REPORT NUMBER: 900211 GA JOB NUMBER: 900211

DETECTION LIMIT 0.1 5 nd = none detected -- = not analysed is = insufficient sample

1630 Pandora Street, Vancouver, B.C. V5L 11.6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

• • · · · · · · · · · · · · · · · · · ·					•					19 - E. A.				- i -	÷									4 - C.	
REPORT #: 900211 PA	SULLIVAN NA	NAGEMENT	/KESTŔE	i.	2 · · ·	PROJE	CT: NONE	GIVEN	•	DATI	E IN: AUG	6 07 199) DAT	TE OUT:	AUG 24 1	990	ATTENTION	i: MR. T	ENNANT &	MR. BUCH	HOL2	PAG	E 1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	fin	Мо	Na	Ni	P	Pb	Sb	Sn	Sr	Ü	N.	Zn
	ppe	ĭ	ppa	pp∎	. ppe	1	ppe	ppa	· ppa	pps	7	7	. 7	ppe	. ppe	1	ppe	X	ppe	ppia	ppa .	. ppa	pp≞	ppe	ppa
92285	0,1	0.12	14	>1000	(3	7.05	6.5	16	63	65	2.55	0.13	2.79	2615	15	<0.01	17	0.02	51	(2	13	104	36	<3	44
92286	0.2	0.61	39	157	(3	>10.00	7.5	31	28	220	6.79	0.11	4.68	2940	12	<0.01	17	0.04	51	<2	15	194	58	(3	100
92287	(0.1	0.11	. 7	>1000	3	2.40	2.4	8	58	16	1.58	0.10	0.60	810	11	0.01	· (1	0.03	39	<2	8	83	40	(3)	21
92288	0.4	0.14	36	641	(3	2.57	3.7	9	193	25	2.10	0.11	0.95	2029	11	0.02	(1	0.03	49	<2	. 8	111	39	(3	40
92289	(0.1	0.43	20	54	<3	1.07	3.8	10	75	26	1.43	-0.11	0.66	808	13	0.02	<1	0.03	60	·· (2	9	32	34 .	(3	29
92290	0.1	0.11	13	117	. (3	1.97	3.8	13	198	23	2.37	: 0.12	0.46	788	11	0.02	a	0.05	56	. (2	. 9	28	28	(3	32
92291	1.1	0.15	8	28	(3	1.38	6.9	14	65	46	4.91	0.14	0.42	504	20	0.02	(1)	0.05	93	25	12	12	<5	(3)	- 46
92292	0.1	0.30	15	957	<3	0.96	4.6	12	217	19	1.43	0.15	0.13	1151	13	0.03	1	0.02	70	3	11	29	28	<3	.21
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	-1	1	0.01	1	0.01	2	2	2	1.	5	3	1
Maximum Detection < - Less Than Minimum	50.0 > - Greater TH	10.00 Nan Maxim	2000 Iumi	1000 is - Ins	1000 ufficien	10.00 it Sample	1000.0 ns -	20000 • No Samp	1000 le	20000 Anomalous	10.00 S RESULTS	10.00 5 - Furti	10.00 her Analy	20000 (ses By	1000 Alternati	10.00 e Method	20000 s Suggest	10.00 ed.	20000	2000	1000	10000	100	1000	20000

.

ANALYST: Rynth

VANGEOCHEM SAMPLE ANALYSIS DESCRIPTION

The lithogeochemical samples were properly bagged, described and labelled in the field. Later, they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. for analysis under the supervision of professional assayers. All of the samples were analyzed for gold, using fire assay and atomic absorption procedures, and for a 25-element suite by inductively coupled argon plasma (ICAP) methods.

At Vangeochem Lab Ltd., each rock sample was ground to -100 mesh and a 0.5 gram pulp was digested with 5 millilitres of 3:2:1 hydrochloric acid to nitric acid to water at 95°C for 90 minutes, and then diluted to 10 millilitres with water. The resulting precipitate was then analyzed by ICAP methods for: silver, aluminum, arsenic, barium, bismuth, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, lead, antimony, tin, strontium, uranium, tungsten and zinc.

A 20.0 to 30.0 gram pulp was split from each of the ground samples, mixed with flux, fused at 1,900°F to form a button, and subsequently digested in an aqua regia solution. This solution was then analyzed for gold by a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp.

Sample Descriptions

APPENDIX II

				Geochen	nical Data	sheet - RO	CK SAMPLING	NITO	•	3
amnler	BC	have		Project	K	estrel	Loca	tion Ref		
)ate _	July	29/90	-	Property		Rou z	Air P	hoto No		
		F	Sample	1	DESCRIPTION	4			ASSAYS	
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Hg Itu poin ppD		
92963	5000'	Select	30 m	chilorite schust	gtz viens Kspaneo	cpy, mal	abundant vert EW gvs.	.2 40		↓ ↓ ↓↓
64	5000'	4 6	4	L.	L	~ ~ ~	in in the the	.nd 10		<u> </u>
65	5000'	chips	40 cm	ч	qu.		10 cm qv in strong carb. @ 158° depercent	.4 10	·	<u> </u>
66	5000'	chipo	40 cm	cherty Sedo	gerentets	fine nifed sul.		nol nd		
67	4800'	h	3000	slater	rusty	forme minor py	7 cm qv	.1 20		
- 68	4660'	u	100 cm	chlonta Slate	strong		@ 160°	nd 10		<u> </u>
69	4450'	ц	XZM Yes	rusty Slates	pt silicen		NS, d.p 450 Et/.	.8.10		<u></u>
70	4400'	ч	15cm TW	greygreen schist		graphite	2×15 cm qvs.	.2 30	 	
71	\$400'	'n	154	L 4		2 cm H mars sulp	use adj. QV. (12 cm)	.6 20		<u> </u>
72	4400'	4	100 ges	ferro- schist	Siliceons	Pycubes		.1 60		<u> </u>
73	4440'	: 4	60 -		siliceons.	rusty	2×10 cm qus. @ 180°	08) 1.		<u> </u>
74	3770'	select		limestone	carb.		pos. glacial debriz.	nd nd		<u></u>
75	3760'	chips	Scriyes	Chlorite	- qv	minor		nd nd		
76	3760'	4	30cm yes	u 4	qv	fine	Vuggy	nd no		
77	3820'	6	1m 2m	Chlorte Schut	Sinterno	fine	Alathynne?	.2 20		<u> </u>
78	3750'	4	410 000	slate pchist	gus.	4cm	Carge angilor boulder.	.7.20		
79	3810'	И	1m	Chlischi	- Carb	py	Chlor, nem, q toody	nd 10		
80	'n	4	210	4 11	n n	hem.	Zone crientated 130°	nd 20		
81	3715'	И	1.21	Chiles schig	Siliceous	mass Sul.		.4 20	<u> </u>	<u> </u>
82	3710'	grab		n 4	arts.	minor	loud outble	nd 20		

		a 1		Geochen	nical Data :	ser - RU	UK SAMPLING	N	TS	104	6	3
Samoler	BC	hose /1	Bilguist	Project		Kestre	lLoca	ation F	lef			· · · ·
Date	Jul	129-30	19 ð	- Property	Ŧ	<u>Zou 2</u>	Air F	Photo I	No	·	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		·			ont		<u>.</u>			
SAMPLE	LOCATION	SAMPLE	Sample Width True	Back Time	Alteration	Mineralization		7 <u>4</u> 9	Au			
MU.	2100		Victh 70 cm	graphetiz	912	blebs		<u>· post</u>	<u></u>	 	- +	
92783	3695	Chips 10f. 2	1m yes	schist	Sweat Strong	fine dis	-Zone @ / L PA I	I/c/			╞╼╌┨	
	4650		1100	Schist	carb	P4	140 - 1912 Thomas		10		┟──┤	
185	4600	2 of 2	150		strong atz	By, CPN	Cast halt previous	nd.	Ad .		╞──┤	
86	4650		1.2 +	L G G	carb zone	mal	trends 75°	<u>n a</u>	nd		┟╧═╾┨	
87	4580'		1. Com	schist	vuggy	Pry 14 a long th	3Em and gen (husty) nd	20		-	
88	4590'	dups.		- 10 - 1 -	Carb.	Pry .	cliff face to south.	nd	nd			
89	4620'	grabs		schist	Siliceno	Mass Sul py, mal	prob. source 92988.	nd	· nd			
90	4500'	chips	5000	· 6 6	gte conte-	burnityme	<u>e</u>	(vid	<u> </u>	 	
92991	4500'	6	Im +		sencite tale	cpy, bomit	Frends @ 150°	1.1	20		╞━╧┠	
92	4470'	grab		Schist		Pyicpy	angular (were) bornder	6	nd	 		
193	4400'	chips	1m +		gf2 carbo	Ame	130°, dip 30° Sw: 10f 2	nd	n.t.			
<u>\94</u>	4400'	и	1m 7	1	<i>in a</i>	u	a - a n zof:	1.3	210			
95	4170'	h	1.2m+	chlorte Schist	gricante	dis py	Mcludes 3×6cm qvs.	.2	nd			
96	4200'	grass	1 ² m	h 4	gvs.		10cm cach noty.	nel	10			
97	4210'	chipo	251905	~ ~	Zavas	time dis.py.	40 cm, 100 cm.	nd	nd			
98	4200'	4	4 m yes		gr/Zone	h u	sericite	nd	nd			
92999	4170'	h -	2.511/05	Chlar Schuzt	rusty Vuggy 9.V.	fine py	100°/vert.	410	nd			
93000	4200'	chino		chly t	gtz.	mal	angular pubble.	nd	ad			
81501	3860'	Select	2512	nn	rust 9VS	Petrinul	2XECr. cerch	1.4	nd			
		- unge			·····							

	•		
la de la companya de		Geochemical Data Geet - ROCK SAMPLING	
			NTS <u>10463 E</u>
	1 D == V :=		Location Def

Sampler	Kent Forster	Wesbrier
Date	July 30/90	· · · · · · · · · · · · · · · · · · ·

Project	Iskut	
Property	Roul	

Location Ref

.

· · · · · · · ·

Air Photo No _____

		CANEL F	Sample	DESCRIPTION		1		ASSAYS					
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Ag	Au				
97293	El. 5800A	Rock Sele	7 2000	Otz Corb.	Limeonik	Diseminat	E of W. Convon 215° JBE	5.5	nd				
92294	4	4	4000	10	"		15m East 92293	,[ind.				·
92295	5840Ft	. r.		Qtzii	74	Fe Pynk	IMR20M -> 50° 60m NE 4922 94	.8	nd	l ·			Γ
92296	El. 5760 FZ	~		atz. Floct	1. J. J.		5m 5. 92295 E. Bounder	. 2	nd	·.			
92297	El. 5570 Ft	1.	2000	Otzvein Swam	£1		100 m 5.92295 ->10"195E	•1	nd	1			
92298	El. 5100 FI	*	2500	1	h		200 m East of West Cr. 150 m x 100 m	»	10				
92299	El. 488092	20	2000	4	3¥.	te Pynte	->90° 145°5E/07 West Cr.	•2 •	iO				
					· .								
									• `				
					,								ŀ
													ľ
;													
			بالرين متجرب ويتصبحه من	·····		· · · · · · · · · · · · · · · · · · ·					9	NATED IN	Cari

. .

Geochemical Data Seet - ROCK SAMPLING

NTS ____

Location Ref

Sampler	Kent Forster	Wes Grier
Date	Juy 29, 199	2

Project IsKut Property Row 1

Air Photo No _____

				J			ASSAYS						
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	H.J.	/tu pr.P				
92285	ET. 6980 Pt	Select Grab Rock	airm	Otz Carbonche	Malichite	Felynte	20cm /m disappears into) ' 3	20		. I ł		Ļ
92286	ET. 6910 A.	h yr	2000	Carbonete Shear		n Ti	> DU° /35m 5 of 42285	•(20			. 	
92287	El. 6900 PT.	. k	2000	Otz, Carbona Shear	e/Limesnike Staining		>20° USW/20mWest \$2286	nd	rìđ	· ·			ŀ
92288	EL. 6893Ft.	- 4e .		Otz. Plogt	"		10m E of 92287	•4	20		·	·	-
92289	E1.1860A		your	Oten Sheer Carbonate	<i>f</i> 1		20 m 5m 92280, 50 60cm 25n 760 6 90	nd	10				-
92290	6715.47.	£		Cheer Surm	·c	5 0 1	100m 5 of 92289	<u>•1</u> ·	(0)				
92291	El. 665077	lı.	youn	Otz. Carb. Shear		le tyrite.	10m 5W of 92290	<u> . .</u>	20				
92292	El. 6015 FF	+	200	Qtz. Vein	15		150 m SE OF W. Cleviertoe	• • [nd]			
1. 1.							<u> </u>						
						· · · · ·					<u> </u>		
the second s													
						2							
•													
					· ·								
					•					· ·			į.
·													
											{	·{	
							· · · · · · · · · · · · · · · · · · ·						
							·						

