PERCUSSION DRILLING REPORT

on the

Rag 15-18, G.S., Happy Days 5 MINERAL CLAIMS

LOG NO:	12-19	RD.
ACTION:		
2		

KAMLOOPS MINING DIVISION NTS 921/10E

Latitude: 50'39'N

Longitude 120°41'W

for

TECK CORPORATION 1199 West Hastings Street Vancouver, BC V6E 2K5

Report By

Lorne A. Bond Louis H. C. Tsang

Kamloops, BC

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

~

																				Ρā	age
1.	Introdu	uction		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	Propert	y Des	cript	cio	n.	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	4
3.	Previo	18 Wor	ĸ.	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
4.	Current	: Prog	ram	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
5.	Drillin	ng Res	ults	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
6.	Conclus	sions a	and I	Reco	omn	neng	dat	tic	ons	1	•	•	•	•	•	•	•	•	•]	12
7.	Stateme	ent of	Cost	S	•••	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	1	L 3
8.	Stateme	ent of	Qual	lif	ica	tio	פמכ	3	•	•	•	•	•	•	•	•	٠	•	•	1	4
Apper	ndix - I	logs o	E Dri	111	hol	e	Cut	tì	.ng	S	an	d	As	ssa	iys	5					
LIST	OF FIGU	JRES																			
Figur Figur Figur	re 1 re 2 re 3	Locat: Claim 1990 I	ion M Map Percu	lap issi	ion	• • •	ril	11h		e	•	•	•	•	•	•	•	•	•	•	23
		100	Jacit	JII P	παF	•	•	•	•	٠	•	•	٠	٠	٠	11		PC	JC I	ver	-1

1. Introduction

The GS-Rag-Happy Days property is located on the west side of Greenstone Mountain some 27 kilometres southwest of Kamloops. Access is from the Trans-Canada Highway west of Kamloops at Cherry Creek, then along good gravel roads to the Dominic Lake area (Fig 1.).

The claims are located at elevations between 1,350 and 1,650 meters. Upland pine forests cover an area of moderate relief containing a number of small lakes. Glacially derived overburden reaches depths of 30 m but some outcrop is present. Ice direction was from the northwest. Extensive clear-cut logging has made large areas of the property quite accessible.

A percussion drilling program was carried out between October 10, 1990, and October 28, 1990, to test two of the more promising Au and Cu geochemical soil anomalies outlined in earlier field work conducted during the spring and summer of 1990.

1

2. Property Description

...

The GS-Rag-Happy Days Group consists of the following claims:

<u>Claim Name</u>	<u>Units</u>	Record No.	<u>Expiry Date</u>
GS2 GS Rag 1-4 Rag 6 Rag 15-20 Rag 24-40 Rag 52 Rag 57-58 Rag 59-65 Rag 71-78	2 16 4 1 6 17 1 2 7 8	9393 7145 81476-79 81481 81490-95 81512-28 85361 85363-64 85365-71 85377-94	Expiry DateJune5, 1994*July1, 1994July4, 1995*July4, 1995*July4, 1995*July8, 1995*Nov12, 1995*Nov12, 1995*Nov12, 1995*Nov12, 1995*
Rag 81 Rag 83 Rag 85 Rag 87 Rag 89 Rag 95-96 Rag "B" Fr Rag "C" Fr Rag "C" Fr Rag "E" Fr Rag "F" Fr Happy Days 9 Happy Days 5 G.G.1	1 1 1 1 2 1 1 1 1 3 6 4	85387 85389 85391 85393 85395 90118-19 89224 89225 89560 89561 2100 1335 1885	Nov 12, 1995* Nov 12, 1995* Nov 12, 1995* Nov 12, 1995* July 20, 1995* May 27, 1994* May 27, 1994* June 22, 1994* June 22, 1994* Sept 5, 1995 Aug 8, 1995* May 18, 1995*

* Upon approval of assessment work described in this report.

The claims are owned by Teck Corporation (70%) and Cominco Ltd. (30%) in a joint venture agreement with Teck as operator. The Happy Days 5, 9, G.G.1 and GS2 claims are subject to a production royalty agreement with Antelope Resources.

4

3. Previous Work

The area has been explored periodically since 1960 when Kennco conducted an exploration program on their DRG claims (Ass. Rpt. #325). Subsequent programs are described in the following reports:

Assessment	Report	No.	1009	Dominic Mining Co., 1967
"			1099	Noranda 1967
11			2511	Cominco 1970
11		3713,	4004	Mid-North Exploration 1972
¢9			5673	Cominco 1975
**			7337	Cominco 1979
11			8238	Cominco 1980
**			17550	Teck Corp. 1988
**			17669	Cominco 1988

Cominco staked the Rag claims in 1969 to cover the northern and western part of an aeromagnetic anomaly associated with a composite diorite-monzonite intrusion (Durand Lake Stock) of Triassic age. Extensive geological and geophysical programs were conducted in 1969 - 70 and 1972. Additional work has been carried out at intervals up to the present. The previous work by Cominco has outlined disseminated sulphide zones (5 - 8% pyrite) along the westsouthwest and east-northeast flanks of the intrusive. These peripheral areas have been covered by I.P. and Mag surveys. A limited amount of percussion drilling has been done as well.

In 1987 Teck Corporation staked the GS claim of 16 units to the south and east of the Rag claims and carried out Mag, VLF-EM, and soil sampling programs. A Cu-Au soil anomaly was outlined on the northwest part of the claim immediately southeast of the Rag claims.

<u>5</u>

In 1989 Teck Corporation entered into a joint venture agreement with Cominco Ltd. covering Teck and Cominco-owned mineral claims in the Greenstone Mountain area. During the spring and summer of 1990, Teck conducted soil sampling, magnetometer and VLF-EM surveys over previously untested portions of the Rag and Happy Days claims (described in Geochemical and Geophysical Report, September 10, 1990).

4. Current Program

The current drilling program was designed to test two of the more promising Au and Cu geochemical soil anomalies outlined by the 1990 field work.

The holes were sited in clear cut areas. However, some access road and drillsite preparation was required to allow utilization of the truck mounted percussion drill and service vehicles. A D-6 bulldozer and operator were contracted from Pineview Ranch for the work.

H. Horning Percussion Drilling was retained for the program and 9 vertical percussion holes for a total of 716.3 m (2,350 feet) were completed between October 10 and October 28, 1990. Samples were collected for each 10 foot (3.05m) advance and sent to the Afton Operating Corporation analytical lab for assaying. The samples were dried and broken down. Sample volume was reduced to 250 grams using a Jones riffle. This smaller sample was then pulverized. Reject material from the splitter was bagged, labelled and stored.

<u>6</u>

Assays for copper and MoS, were performed by dissolution followed by atomic absorption spectrophotometry analysis. Gold assays were performed by fire assaying with atomic absorption analysis of the resultant bead in a methyl isobutyl ketone medium.

Detailed logs and assay results are included in the appendix.

Five percussion drill holes (PDH 1-5) were initially laid out to test anomalous Cu and Au values in soil between 10W and 14W and from 2.2N to 0.6S on the main or Durand Lake grid (Figure 3). Significant gold values encountered in PDH 3 and PDH 5 resulted in 3 additional holes being drilled (PDH 10-12).

In the south or Dominic Lake grid, a small northwest trending Cu and Au geochemical anomaly between 4W to 5W on Line 6N was tested with one hole (PDH 8).

5. Drilling Results

Detailed logs of drill cuttings and certificates of assay for each sample interval are included in the appendix. The following are summary descriptions of rock type, alteration, and mineralization for each hole.

<u>7</u>

P90~1 (10W 0.6S)

0 m - 3.0 m Overburden

3.0 m - 91.4 m "Oxidized" monzonite - the mafics have been totally replaced by limonite and/or chlorite.

Propylitic alteration is moderate and is overlapped by argillic alteration with clay minerals increasing from 57.9 m to 91.4 m. Epidote-chlorites and magnetite are also significant in this section. Carbonates and epidote are moderate from 9.1 m - 54.9 m. Pyrite is significant from 21.3 m 0 91.4 m with an estimated average of 1%. Some low gold values (>.002 oz/ton) are found in 21.3 m - 30.5 m., 42.7 m - 57.9 m., 64.0 m -67.1 m, and 70.1 m - 73.2 m.

- P90-2 (11.4W 0.3N)
- 0 m 6.1 m Overburden
- 6.1 m 91.4 m "Oxidized" Monzonite, similar to 90-1. Propylitic and argillic facies are present with equal intensity. Epidote-Chlorite-clay minerals - carbonates - magnetite are relatively significant throughout the hole with high concentration of magnetitecarbonates and clay minerals in 57.9 m -67.1 m.

K-spars are also present in moderate amounts.

Some low copper values are located in 15.2 m - 24.4 m with an average grade 0.207% Cu.

P90-3 (13.7W 0.45S)

0 m - 3.0 m Overburden

3.0 m - 15.2 m "Oxidized" monzonite as described in 90-1. Some albitization is present together with moderate clay minerals and carbonates. Quartz is note abundant from 9.1 m - 15.2 m.

15.2 m - 48.8 m Magnetite-rich diorite is granular varying from fine-grained to coarse grained with moderate percentage of mafics (1% - 6%).

Propylitic alteration is dominant with significant epidote-chlorite-carbonates present. Muscovite and biotite are noted from 15.2 m - 39.6 m. Pyrite content is estimated to be 1/2% in average.

- 48.8 m 54.9 m Diorite is above with gold values averaging to 0.009 oz/ton. Pyrite significantly increases with an estimated average of 3%.
- P. 90-4 (12W 2.1N)
- 0 m 3.0 m Overburden
- 3.0 m 91.4 m Similar diorite as described in 90-3. Magnetite and carbonates are abundant in section 3.0 m - 33.5 m and 79.2 m - 91.4 m.

Epidote-chlorite are generally weak and muscovite is present from 3.0 m - 21.3 m.

Overall pyrite content is moderate throughout the hole ranging from 1/2% to 2% estimated.

Trace of chalcopyrite in 3.0 m - 27.1 m, 51.8 m - 67.1 m and 73.2 m - 91.4 m. Some low gold values are again found in 6.1 m - 30.5 m with an average (.0038 oz/ton) 42.7 m - 45.7 m (.0029 oz/ton) and 51.8 m - 57.9 m (.0025 oz/ton).

P. 90-5 (10W 2N)

0 m - 6.1 m Overburden

6.1 m - 91.4 m "Oxidized" monzonite as described in P90-1. Argillic alteration is dominant with high clay and carbonates content. Propylitic alteration is present but weak.

Trace of chalcopyrite are noted in sections 12.2 m - 18.3 m and 36.6 m - 54.9 m.

High pyrite content (>2%) is found in section 30.5 m - 39.6 m, 54.9 m - 61.0 m and 73.2 m - 91.4 m. Pyrite is significant throughout the hole. Gold values are significant, ranging from .0013 oz/ton to .216 oz/ton. Relatively high averages of gold values are found in sections 30.5 m -39.6 m (.0106 oz/ton) and 51.8 m - 91.4 m(.509 oz/ton). Second cut samples from 54.9 m - 76.2 m were collected for assay checks and the assay result is confirmed.

P. 90-8 (13.65 W 8.55S)

- 0 m 3.0 m Overburden
- 3.0 m 91.4 m Diorite as described in P90-3. Oxidation of rock reached to a depth of 33.5 m.

Magnetite is significant after 64.0 m. Propylitic alteration is pervasive with significant epidot-carbonates. Clay content is between moderate to high. Minor muscovite and/or biotite is present in 3.0 m - 12.2 m.

- P 90-10 (13W 0.75S)
- 0 m 3.0 m Overburden
- 3.0 m ~ 21.3 m Diorite as described in 90-3. Argillic alteration is dominant with significant and clay minerals and carbonate for the whole hole. Epidote is present only as trace.

Magnetite is abundant. Pyrite is estimated from trace to 1/2%. Average gold grade of the hole is .0042 oz/ton with a range from .0018 to .0081.

P	90-	11	(10)	.65	W	2N)
---	-----	----	------	-----	---	-----

0 m - 6.1 m Overburden

6.1 m - 91.4 m "Oxidized" monzonite as described in 90-1.

Clay content of the hole is relatively high with minor medium grained muscovite present.

Carbonates are significant but minor epidote-chlorite alteration.

Pyrite content is ranging from 1/4% to 1 1/2% with an estimated average of 1/2%.

- P 90-12
- 0 m 3.0 m Overburden
- 3.0 m 91.4 m "Oxidized" monzonite as described in 90-1. Oxidation of the rock reaches to a depth of 39.6 m.

Magnetite is significant with some high concentration in section 21.3 m - 27.4 m and 73.2 m - 76.2 m.

Pyrite content is ranging from trace to 1% with an estimated average of 1/4%j.

Clay content is comparatively less abundant than 90-5 and 90-11.

Carbonates are significant to a depth of 70.1 m.

Significant Epidote-chlorite alteration from 12.2 m to 36.6 m.

Conclusions and Recommendations

Five percussion holes were drilled to test an area of anomalous Cu and Au values in soil between 10W and 14W and from 2.2N to 0.6S on the main Durand Lake grid. Drillholes PDH 90-1, 90-2, and 90-4 cut intermittent sections with low gold and copper values ranging from .002 to .004 oz/ton Au and up to .20% Cu. Drillholes PDH 90-3 and 90-5 encountered some relatively high gold values and three followup holes were drilled. Drillhole PDH-10 averaged .004 oz/ton Au over 18.3 meters. Three holes drilled 50 meters west and east of PDH-5 (PDH- 11 and 12) returned very low values.

Though subeconomic at this time, significant widths with average gold grades greater than .003 oz/ton have been intersected. A short program of diamond drilling should be carried out to determine the nature and attitude of gold mineralizations in PDH-90-5 and 90-3.

The single hole (PDH-8) drilled to test the narrow north west trending anomaly on the Dominic Lake grid returned very low values. No further work is recommended for that area.

<u>12</u>

7. Statement of Costs

Percussion Drilling (October 10 - 28, 1990)

H. N. Horning Percussion Drilling Ltd. 2,350 feet @ 6.50 per foot Drilling supplies (grout, mud, etc.)	\$15,275.00 260.00
Subtotal	\$15,535.00
Assaying Percussion Drill Samples	
223 samples for Cu and Au @ 15.40 each 6 samples for MoS ₂ @ 5.60 each	\$3,434.20 33.60
Subtotal	\$3,467.80
Site Preparation (Pineview Ranch)	
D6 Bulldozer Rental @ \$91.25/hour for 8 hours Operator Travel Time (2.5 hours) @ \$31.00/hour	\$730.00 77.50
Subtotal	\$807.50
Geological Control (L. Bond)	
Planning and Supervision between October 10-17, 24-26, 28	
10 days @ \$255	\$2,550.00
Report preparation, drafting, and cuttings logging	\$1,275.00
TOTAL	\$23,635.30
Withdrawn from Teck Corporation PAC Account	6,964.70
Total amount applied to the GS-RAG-HAPPY DAYS claim group	<u>\$30,600.00</u>

8. Statement of Qualifications

I, Lorne Allan Bond, of the City of Kamloops, British Columbia, do hereby certify that:

1. I am a qualified, practising Geologist.

- I am a graduate of Loyola College (University of Montreal), with a B.Sc. (1967) in Geotechnical Sciences.
- 3. I have practised my profession since 1967 while employed with Sherritt-Gordon Mines Ltd., Cominco Ltd., and Afton Operating Corporation.
- This report described a percussion drilling program performed under my supervision from October 10 to 28, 1990.

Lorne A. Bond Senior Geologist Afton Operating Corporation

8. Statement of Qualifications

I, Louis Hee-Choi Tsang, of the City of Kamloops, British Columbia, do hereby certify that:

- 1. I am a qualified, practising geologist.
- I am a graduate of the University of British Columbia with a B.Sc. (1972) in Geology and Geophysics.
- 3. I have practised my profession since 1972 while employed with Granisle Copper Ltd., Highmont Operating Corporation and Afton Operating Corporation.
- 4. I have logged the drill cuttings of six percussion holes that were drilled on the GS-Rag-Happy Days claim group from October 10 to 28, 1990.

Louis H. C. Tsang Exploration Geologist Afton Operating Corporation

15

APPENDIX

Logs of Drill Cuttings and Assays

LEGEND FOR LOGS OF PRILL CUTTINES . Symbols / Abbreviation Description × × abundant 0 significant present in small amount K-spars KF Plagioclase PC quartz QU BI biotite НО Pyroxene / amphibole muscovite MU pyrite PY СΥ day minerals Chlorites CH EP Epidote СВ Carbonates Degree of alteration [L light M medium L intense Intensity of A+ CP Chalcopyrite MO Molybdenum BN Bornite CC Chalcocite ΗE Hematite Magnetite Limonite MG LM

<u>;</u>):

٧G	200	PDH
		 . – .

									-	во	RE	но	LE	cu	JTT	'I N	G	L	٥G		•	PDI	4 90	-#1	15/10/90
<u> </u>	E.		1						_			_	I	T					_		[inged	by	<u> </u>	un Vang
Hole No	Feldspar	1 Minerals			760	onda	<u>iny</u>	, 	nin	era I	/c	1	Lisz	55		Mi	ner	ali	zat	tior	2 	7		Assay	Remarks/Date
(in feet)	KF PC	31.1	0	QU	KF	81 1	MU	PY	су	CH	EP	CB	2.2	22	СP	MO	BN	CC	PΥ	нe	MG	IM	Mo	Cu	
0-10	<u>+-</u>		+	\Rightarrow	\leq	\Rightarrow	4	_	_	\vdash									\sim	L	┢		+	<u> </u>	9/B - NO SAMPLE
10 20	V *	i	_	_			/			V	0	~	L	Monz					/	V	10	*			oxidized ZONE
20.30	V *		_				~			V	~	\checkmark	L	MON Z						V	V	*			./ ./
30 40	01*		1						_	0		ο	L	Mon Z						~	1~	*			<u> </u>
40-50	0 *									0	1	0	L	MONZ	ŀ						~	٥			ر د رو مردهوی د ر . د
50-60	04									0	0	٥	М	MONZ	~					V	~	0			
60-70	0 \$	1							/	0	0	0	Μ	MONZ	~					~	0	1			
70-80	0 *						0		1	\checkmark	\checkmark	0	I	MONZ	\checkmark				0	\checkmark	\checkmark		1		12% PY
80-90	VIK	~	T							1		Q	L	MONZ	~				*	_		V			1×272 PY
90-100	VIA	1	T				1		~	\checkmark	\checkmark	0	I	Monz	レ				0	/		1			17, PY :
1 a 0-110	V A		T			T		Ì		1		0	I	MONZ					×	\checkmark		0	T		1% % PY
110-120	01*		T						7			/	I	Manz	.7				*			0	1		1/2. % PY
120-130	Vitt		\dagger	+		1	7		\checkmark	\checkmark		0	I	MONZ					0	_		0			3 0% PY
130-140	1 A		╈	+	1				7			0	I	MONZ					#				-		1% PY
140-150	14		\dagger				$\overline{\Lambda}$		/		-	0	T.	MON T	-				0	1		0	1		178 PY
150-160	1.4		╧						$\overline{\mathbf{A}}$	1	-	0	Ĩ	MONZ					0			0			170 PY
160-170	1#	1	╁	1			7		\checkmark	-	-	0	÷ Ý	Marz			\neg			/		0			1% AY
170-180	N+		1				オ		$\overline{}$			0	+ 7	Mu T		/			#	$\overline{\mathbf{V}}$		0	┼──		1+9 W
180-190	V t		╈	+	-+	-+-	7	-	$\overline{\mathbf{V}}$	-		$\overline{\Lambda}$	Ĩ	Marco	/	-			4	Л		0			H9. PY
190-200	1.4		╋	+	+				7	0	0	7	м	Mon 7		-+	-		*		0	1	╏╌╴	•	12217 H2PY
200-210	VA		\dagger				$\overline{\Lambda}$		/	0	0	/	M	Монг.			_				0				+2 PY
210-220	VX			+	+				/	0	0	7	M	MIAZ					0	1	0				12 PY
220-230	1		╋				7		7	~	-+	7	M	MANZ					6		0		1	· ·	15200
230-240	VIX		T	╈	+					/	7	7	M	MANZ	1	•			H	-	0				12 PY
240-250	VIX		\dagger		╈	+	+			0	1	7	M	MAUT		+	+		<u>v</u> 1		2				KRPY KR
250-260	01\$		ϯ			+	+		0	0	1		M	YOHZ	\dashv	-+					Y ./	<u></u>			19. PV
260-270	OIA	<u> </u>	\dagger	+				+	0	0	· /	7	м	MAL	-+	-	+			_		7			+2.PY
270-180	0.1		\dagger		+-	+	╉	+		$\frac{1}{2}$	+	╎	· ()	MAL	-	+	+		7	+					+"" / 上のの1
280-99	DIA		╋	╉	+		+	+	0			$\frac{1}{2}$	/*1	INA	-+	+	+	+	1	+	$\frac{1}{2}$		┨──┤	[+ 65Y
290-2.1	0 A		1	+			+		<u> </u>		<u></u>	<u> </u>	M	1014	_			<u>را</u> ۱	1		2		 		3 %17
~10700	0, 14		L		<u> </u>				4		4	<u></u>	M	MORA	-			10	<u>א</u>	10	7				2%/7

BOREHOLE CUTTING LOG

<u>):</u>

PDH 90-#2 17/10/90

مو<u>ت</u>عة (

				-						-		T	· 1	3				4	osged	by	L.	TSANG	<u> </u>	fuis Usano .
Hole No	Essentia	d Min	erale		See	cono	lary	min	era	le		Et	4.4	L	М,	ner	ali	zat	ion.			2	guu guu	Pemarka / O.T.
(in feet)	KE PC	QU	Mafic B1 H0	QU	KF	BI	MU PY	су	q	EP	CB	of a	202 7 Poc	СР	мо	BN	cc	PY	HE M	GU	1	Mo	Cu	nemarks/bute
0 - 10	-+			L	L		4	-	-	-	$\left \right $								-+-	+	+	 		% -NO SAMPLE
10 - 20	4	<u> </u>				\vdash		-	-	-			-							-				% -NO SAMPLE
20-30	0 *							0	0	0	0			Γ					1					OVERBURDEN MIXED
30 - 40	01#							0	0	0	0			1				V	r	¥	ž			CHERBURDEN MIXED
40 - 50	0 *							0	0	1	0	I	MONZ	0				~	r e	> 7	F		.2%	#2 PY
50 - 60	1*							0	V	V	0	I	MONZ	*				0	C	*	·		.47,	±2PY
60-70	√ \$		I					0	~	1	10	I	MONZ		ſ			\checkmark	V	10				$\frac{1}{2}$ % PY
70-80	$\sqrt{1}$							A	\checkmark	1	*	I	MONZ	0				\checkmark	ľ	10	<u></u>		4%	±28 PY
80-90	01*							0	Q	0	¥	L	MONZ	~	ſ			0		C)			220 PX
90-100	01\$		1					0	0	0	V	I	MONZ	1				0	C	> -	1			±%PY :
100-110	0 \$							0	0	0	0	I	Monz	0				0	Ĉ	0			· 1 %	342, PY
110 -120	01#		•					V	0	v	0	I	MIZ	~	r			0	c	> 0	>			3-7° PY
120-130	VI#		1					0	v	1	0	I	NONZ					1		v	1			78 PY
130 -140	₽N		1					1	0	0	0	1	MONZ	F				~		v	1			273PY
140-150	VIX							0	V	V	0	I	MONZ					1	1	V	1			±28PY .
150-160	0.4							0	0	0	٥	J	HINZ	1				$\overline{\mathbf{v}}$	0	L	1			Z2PY
1607-170	0 ×		1					0	0	0	0	I	MONZ	1	-			7	0	V	1		.1%	#2PY
170-180	∂¦≉		1					0	/	1	0	I	MONZ	2	-			~	0	V	F			#2, PY
180-190	OIA		1					V	0	0	υ	I	MONZ	v				1	C	V	$\overline{1}$.1%	\$2,PY
190 -200	*		1					¥	C	0	*	I	Fadt	V	~			1	*	0				22 PY
200-210	01		1					*	C	10	0	I	MOHZ	-1	-	Ī		1	*	10	1			22 PY
210-720	0 \$		1					0	0	0	0	I	MONZ	v	~			1	Ħ	V				122PY
120-230	OH		V					~	0	0	V	M	MONZ		-			1	0	1r	1			#3 PY
230-240	01\$		1					0	<u>,</u>	~	V	I	MONZ		/	\uparrow		1	V	1	F			# 2, PY
240-250	OA		1					0	0	0	~	м	MONZ	1				1	0	1	ł		12	290 PY
250-260	014		1					0	d	0	0	М	MONT	4	ŕ			1	0	1				#3.PY
260-270	14							V	a	0	7	M	MONZ	1		+		1	0	0				
270-280	0 \$							0	0	0	7	M	MONZ		╡			ł	0	~				======================================
280-290	01\$							0	0	0	0	I	MONZ			-†		J	0	V				# 2. PY
290-300	0 total	+ i						01	0	0	0	21	YON3	-1		 		5	15	1/		;-	Ī	3-2 PY
				<u> </u>										<u> </u>				,						

) :).		•		
									4		•	B	ORI	EHO	DLE	с С	υτ	T 1 N	/G	L	• G				Rig	- //c	Apy Deys
	-								Ser											7					0µ7/k 3 cm o	/	76-3 18/10/90
Hole	No	Essen	tial	Min	erale			Secon	olar	Y	min	era	n /e		5:5			M	iner	rali	zat	tion				Assay	
(in f	ut)	Teldspo KF P	ir (ຈບ	Mafic B1 ; H	0	20	KF B	I M	I PY	cy	4	I EF	СВ	124	Rock	СР	мо	BN	CC	PY	HE M	G 2	2	Mo	Cu	Remarks/Date
0-1	0		+	_	-+-	\ddagger	1			\pm		\vdash	+				-	\vdash				-+-	+	+		-	JAne son
10.	20	×	<u>:</u>				4				0	ò	·	G		AL	8						e				Albitist play
20-	30	× I					4				0	¢		0		H B	ł				V		C				Alb. fized
30-	<u>rc</u>	1 X	-			1	¥				0			0		ALB	*				L		¥				Alb. Fized
40-22	50	_ ; ×	<u>د </u>				×				L	ł		C		AL B	F				C		0	·			A15. fizzat
50.0	. <u>.</u>	*	:			5 (2		12				o	С		þvy					L	×	**				mag-reck Dicz
60-7	70	<u> </u> *			110	l	-		0			c	c	0			L				V	X					+ Kay Hen
76 - 5	20	<u> </u>		_	1)	4	-		U			¢	σ	C							U	*	0				TIPY
80-9	ĩc	}¥	-		X	1			1			0	S	ى. ئېر			5				0	×	v	ł			1 Tepy
90-10	· c	<u> </u>	-		<u> </u>	4	_		V			Ø	0	0			4	r			U	X	V	ł			· there '
100 -1	rc	İ¥	<u> </u> .		'× -+-	4		L				0	S	C			1				<u>ĵ</u>	×	V				+ 7c m
110-17	d	×	-		<u> </u> #		\bot	L				0	L	C							v	1	v				Triv
/x - 13	'c	_ *		-	Î¥		1	4				0	v	0					·		V	X	L				Trav
<u> 3C · /</u>	ra	<u>*</u>	-		<u> </u> *		_				·	0	v	С			V				0	*	v				1/2 114
140-1	50	1 24			 X	Ļ						Ø	2	e			L				0	*	r				1 - Teni
150 10	<u>sc</u>	*		\downarrow	1*							C	v	0			U			0	2	X	v				19.14
122-17	76	<u> *</u>		+	1#							2	$\overline{\mathbf{v}}$	c	<u> </u>		4			+	*†	X	L				2-3 95 ANC
176-1	FU	*		Ļ	*		L_					0	~	0		DICR	V			7	F	*	r				3-48.14
	-			_																							17.
	+				-		Ľ	Δ		Ł	5	4				18	0	1								·	• ·
	-	1		_	1				\square																		7
	_			_							\square																
											·		\downarrow														· · · · · · · · · · · · · · · · · · ·
				+	!								\downarrow														
	╇								\downarrow																		· · · ·
	+			<u> </u>	+					\bot																	
					<u>.</u>						1	\downarrow														T	
	+-	_ <u>_</u>		+-	$\frac{1}{1}$													Γ						Γ			
					Ļ											J	Γ	Γ					T	T			
• • •	i	: 1		İ	! [1	ł	1	1	1	1	1	1	1	1	1	i	Ī		1	1		T	and the second second second second second second second second second second second second second second second

BOREHOLE CUTTING LOG

 $\langle \cdot \rangle$:

2Dit 90-4 Liss = 21: 213 19/10/80

Hala No	Essentiz	al Min	erals		Sec	:000	lary	AH.	min	erai	/c	· · ·	5		Ì	Μ,	ner	ali	zat	ion.			F	lssay	
(in feet)	Feldspar KF PC	QU	Mafic B1 H0	QU	KF	BI	MU	PX	су	CL	EP	СВ	in real	Rock	СР	мо	BN	CC	PY	HE M	G	4	Mo	Cu	Remarks/Date
0-10		; ; ;	F-+	\cap																	Ī	,		-	9/A marsana
10-20	*		×	~			2			.2	0	K	1	Dar)	i				ن	0	;	¥			Mirid UIB
20-30	1		1				v			L	0	*			L				0	3	K -	×			190 14
30-40	X						0			L	·J	*			L				V	*	4	0			1 1cpy
10-50	×						Ŀ			г	Ŀ	*	V		2					1	H	2			
50-60	*		1 				ι			v	Ĺ	*			V				2)	k -	*			2 Kpy + Lm
66-70	*		1				υ			i	L	¥	Au		i				0	*		2			11. au Em
70-80	⊁									L	V	¥	220		i				σ	×	4,	¥			17 mg in
80-90	*									V	L	*	ھر ر		U	1			0	*	(7	*			+ Penie lim
50-100	1*		I .							L	V	×	X						6	¥	4	+			Tray La
100410	*									L	L	¥	<i>C</i>							X		2			
;10-17c	! *		1							i		*							0	*	HC	,			19.00
120-130	*		J. 1							L		*	Play						~	*	C	,			Trave
130-140	_ ' *									٢		☀							0	*	4	>			12 m
140-150	1*									L		*	52						0	*	- 0	7			L'IL MY
152-160	*		1					_		L		*	0						0	*	10	2			1 c/c ny
162-170	1+		1							i		*	Y						0	*	10	<i>,</i>			1 Lui generit at
170-180	*									V	ŀ	¥	- 2 4		v			1	0	*	0	,			11. 21
150-190	1*									L		*	د . x					1	0	×	L	-			1 %
190 - 200	_ <u> </u> ×									L		¥	22		v				*	×				•	1-2 % m.c
205-210	1×1		1							v	ł	¥			i				×	*	6				2%
310-320	*		1							L		*			i				*	*					24.00
220-130	*									ı		*							0	*				·	1 %
736-210	1*		1							v		×							0	×					1 / au
212-252	*									L	-	¥			4				¥	¥					1 / 24
152-760	+									6	Ī	*		T -	4	Ì	Ì			*					1 %
260-272	1+		_¦_[v	i.	×			~			ĺ	,	*	1	Ŧ			5 /c m
12-790	*		i		Ι					2	4	*			4			0	/	*	i				÷ ./
780-290	1*									r	4	*					1	0	,	*	v				1 te autoria
90-300	*	1	!						1	"	1.	*		nur	4			10	2	1	v				1%py

								$\sum_{i=1}^{n}$												14 (ŕ	Dh	ł	90	- #5	
									-	вс	RE	НС	LE	c	דדט	- 1 ^	/G	L	٥G	_		, ,	0.1		,	30/10/90	
													 -		3							Log	sed b	by	Ň	us formas.	
Hole No	Essenti	al Mir	nerals	Ļ	See	and	ary		nin	era	lc			40		M	iner	ali	zat	ion	-			A	5 8 A Y	Bemarks 10	aTa
(in feet)	KF PC	QU	BI HO	QU	KF	BI	MU	PY	сy	сH	EP	СВ	يد تر مر تر	Roc Typ	СP	мо	BN	CC	PY	нe	MG	Щ	М	6	Cu	nemains ju	a12
0 - 10		<u>}_</u>		L				\square	_	\vdash	\vdash	<u> </u>						$\left \right $	\square	-	-	\downarrow	+			OVERBURDEN	
10 - 20		<u> </u>										-	-		-	-						\neg	\bot	-	-	OVERBURD ET	r
20 - 30			1	\checkmark			~	12/2	0	0	0	0		-	Γ						0	*	Τ			oridized ZONE MI	хec
30-40	Vit								\checkmark	٥	V	1	L	MONZ							*	*		T		OXIDIZED ZONE MI	NE C
40-50	1								*	0	1	0	1	MONZ	1	r					0	*		1		oxidized zoner	STIL
50 -60	1A		1						k	٥	v	ο	I	MOKZ	$\overline{\mathbf{V}}$				1		0	0	1				
60-70	0 \$		1						*	V	V	V	I	MONZ					121			0		1			
70-80	VIX								#	V	V	*	T	MONZ								ŧ		+		Olidized Bone	
80-90	1#						0		*			*	 I	MONZ					Ż		$\overline{\Lambda}$	*		+		Oxidized ZONE	
90-100	014		1				1		#	~	\mathbf{V}	★	Ľ	MONZ					7		╡	*	1	-+-		OXICUZED ZONET	
100-110	01*							Ì.	Ł			¥	Į	NONZ					22		$\overline{\Lambda}$	$\frac{\alpha}{\alpha}$	T	Ì			
110-120	VX		112						*			\$	T	MAN Z					32		7	0		╡		·	
120-130	VIX		1					1	ŧ		_	+		MOUZ			$\left - \right $		10 90)		7	0	1	+			
130-140	0 *		1				$\overline{\Lambda}$	-†	Å			∽ ∳	Ī	MONZ				-ř	12	-+		0		╉			
140-150	01#			,			-	+	- X		$\overline{\mathbf{v}}$	^ ≵	I	MONZ		1			19		$\frac{1}{2}$			+			
150-160	0.\$						-+	+	0	0	0	0	L	MOUZ		-		-	12 12			0	╋	╉		· · · · · · · · · · · · · · · · · · ·	
1407-170	01#								0	0	0	V	Ī	MONZ					60)	+			+	+			
17:-180	0 4		-1		-+	-+-			b	V	\checkmark	~	M	Manz		,		<u>ہ</u> با	-70 -01				-	+		and an arrive burth	
Ga -190	01\$		·		\neg				<u>↓</u>			4	7	Nauz				- 9	10			+	+	╀		C.g. Py Constalline	Ţ
190-200	1 \$		1		-	-+			4				L I	MAR		_			8	+	+	0		+			
200-210	54				\neg		+		<u>/</u>			\hat{A}	T	No.		_			60 00				╋	+			
210-29-	1.				-+	+	+			-	-	M 2	7	под 2	$\left - \right $	\neg	-+		6 07			1		+	-	· .	
29 - 23-	V H				\rightarrow	-+	╉	+	$\frac{1}{1}$	-			L 7	MOHZ			-+	_ <u></u>	16						-		
2:-24	14				-+		╉	7	<u>k</u>	\dashv	_	×1 ,	<u>_</u> 7	MONZ	-		-	/. /	7) 0		4	2		+-		· · · · · · · · · · · · · · · · · · ·	
250 - 25	0.4				\rightarrow	-+	_	17		_	-	*		MONZ	-	_	-		51	1	/p			+			
10-20					-	_	+		<u>}</u>	_		*		MONZ	-1	_		2,	7	-	1			+			
1	14					-+	+	- \$	R			#	1	Моні	.~	_		2	2	 	1	2		+-	-		
20- 2/0			-+	-		+	+	1	*	1	4	익	L	NONZ		_		_/' <i>!</i>	0	<u>ا</u>	4	1_		\downarrow			
2/0-40	O K			-+	+		-			4	1	0	F	YONZ	-	_		39	2		10	>		-	_İ		
80-490	UX					1		0	2	1	1	0	I	40n z				2	81	10	10	2	<u> </u>	<u> </u>			
10-300	0:01	i	!					1		1	1	21	Z	Nouz	•	1	1	4	2	0	10	2					• • •

SOREHOLE CUTTING

<u></u>

- PDH 90 - #

LOG

DDH 90-#8 NOV 5, 1990 Quin Aring.

Hele No	Essentii	al Min	ierals	S	econ	dan	r mi	rera	le		1.			Mine	ralis	zatio	n		A	ls say	
(in feet)	Feidspar KF PC	QU	Mafic 31 HO	QU I	KF BI	MU	Py C;	' <i>'</i> 4	EP	CB	in ten	Rock	СР	MOBN	cc	ру на	MG	LM	Mo	Cu	Kemarks/Cate
0 - 10		\vdash	\downarrow	\vdash			44	1	4							$\overline{}$	h	\square	1		OVERBURBEN
10 -20	14		0		1	1	0	0	0	0	M	DUOR				22 v	1/	0			
20 - 30	14		¦0			~	0	0	0	V	M	PIOR				120	0	0			
30-40	VIA		11			~	0	0	0	V	M	DIOR				429	0	0			
40 .50	V						A	V	0	0	I	DIOR				22	1	0			
50-60	0		1				V	1/	0	V	I	DIOR				32	V	A			from Oxidized Zor
60-70	VO		11				C	9	k	υ	I	DIDR				52	V	0			
70-80	1*	V	0				0	V	0	*	L	DIOR				10/22/2	~	*			
80-90	1		1				C	0	9	0	M	DIOR				12	V	0			
90-100	VIA		I I				0	0	0	0	М	DIDA				22	1	0			
100-110	A		0				0	0	0	0	M	OWR				9	1	0			
110-120	1#			r			0	V	0	ò	M	DIOR				12		·J			
120-130	H		1				0	\checkmark	0	0	M	DIOR				142	V	1			
130-140	\ #						*	1	0	0	M	DIOR				2 ~	1	1			
140 -150	1-\$		<u> </u> /				¢	~	0	Ø	M	DIDR				12	~	1			
150-160	,≉		V				0	~	0	0	M	DIDR			5	2	1	1			
160-170	I Å		1				A	V	\$	0	ĩ	DIOR			3	32	0	X			
170-80	4						0	V	A	ο	Μ	DIOR			3	2	~	1			
180-190	14		1				0	2	0	0	М	DIÓR			ť	52		1			
190-200	*		~				0	~	0	0	M	DIOP			7	79	1	V			
200-210	it		11				0	1	0	0	M	DIOR			3	1	1	V			
210-220	★		1				\$	0	0	0	M	DIOR			ŀ	22 V	0	1			
220-230	A		V	/			V	1	0	0	I	DIUR	_		4	2	0	1			
230-240	1*		ΙV			1	V	1	V	7	M	PIUR			4	2	0	1			
240-250	ist		ا •⁄				0	1	0	0	M	DINR			1	2	0	V			
250-260	'⊀		1.				0	V	0	0	M	DWR			3	2	0	16			
260-270	1		1				0	~	0	0	N	DIOR			5	2	0	И			
270-280	#						0	1	0	0	M	DIOR			5	2	0	1		{ 	
280-290	1\$						0	1	D	0	М	OIATA			2	2	0	7		-1	
1290 3071	:41	1	!				0	V	DI	0	M	Dicra	.		3	2	0	1		1	· · · · · · · · · · · · · · · · · · ·

BOREHOLE CUTTING LOG

 $\overline{\mathbf{x}}$

RAG - HAPPY DAYS PDH 90-10 30/10/1990

				-	_	_			_		_												-099	ied	<u> </u>	L. Bon	id.
Hole No	Essenti	al Min	terale		Se	c 670	lary	• •	ніп	era	/c		15.			Μ	line	rali	iza	tior	L		_		Assa		
(m feet)	teldspar KF PC	QU	Mafic BI HO	QU	KF	BI	MU	PY	су	cH	EP	Св	inter of o	Rock	СР	MC	BN	I CC	PY	HE	MG	14	1	Mo	Cu	Rem	arks/Date
0-10	TX	<u>}</u>	<u> </u>	Ł	\vdash	\vdash		_				\vdash	\vdash			h	h	+	\vdash	\downarrow	K	h	-	F	1-	OVERK	WRDEN
10-20	*		0								V	0	Poss AB	DIOR MON	2				\checkmark	1	*	0	1			Trace	of py
20-30	* *		10								1	0	17	y	Γ				1	1	¥	V				- v	
30-40	1*		10						0		V	0	~	v	Γ				1		X	¥					
40-50	*		0						0		1	0	•/	y					V	1	*	$\overline{\mathbf{V}}$				· · ·	
50 - 60	*		10				Τ		0		V	9	٠,	4	T				V		×	*				2	
60 - 70	×		10				1		0		~	0	~	У	Í				7		×	¥					, РУ
	1		1																		-						
														-													
	1		ł																								
																					Ì						
	1		1																				1				······
			ا ۲						T																		
			1					Τ		T										\uparrow	1						
			1						T												1		Ť				•
			1			T		T													+	-	+				
ר!	1		1				T													\uparrow	+						
;								1				1									╈	╡	╉			A.	and a surface of the second
	il	·	1					1-	1		1	1			-		\uparrow	-+-	+		╈	+	╉				
	1		1			T	T			T	1					╈		╈	\uparrow		╈	+	+	-+		· · · · · · · · · · · · · · · · · · ·	
	1		1						T		T	T				+	Ť	\uparrow			1	1	╈		-+		
			1			1	T	\uparrow	1	1	T	1						+	+	+	╉	╉	╋		-		· .
					T	1	T	1			1	\uparrow						+	+		+	+	╋	-+			
	1		1			1	1			1-	+	╋		\uparrow	+	+	+	+-	+		╈	+	╉		-		
							\uparrow		T	1	+	1-	+		+		+		╈		+	+	╉	-+			
	1			Ť		1	+			+-	1	┢	-†-	\neg					+-	+	+		+		+		
1	1						+-	\uparrow	\uparrow	+-	+	╋	\uparrow		+	+	+	+	+	+-	+-	+	- -		+		
					+-	\uparrow	+	+-	-	†	+	╀	+		+	+	+	<u> </u> 	+-	+-	┝	╀	╋				
	1				+-	+-	+		+	\uparrow	┼	+			+-	+	+	+	+	+	\vdash	+	╀		+		
			1	-	1	1	<u> </u> 	! 	! 	 	 	.t 1	_!	_!_		1	 	<u> </u>		<u> </u> 	 	<u> </u> 	 				
		<u> </u>	<u></u>	. 	<u> </u>	<u>.</u>	<u>!</u>	Ļ	Ļ	<u> </u>	<u> </u>	L				ļ.	1		<u> </u>	 	Ļ	1	ļ	-			

 \mathcal{D}

.

ł

		(bo.
ING	LOG		PDF

									-	50	R E	но	LE	cu	JTT	' N	G	Loc	;	-	Ρ <i>L</i>	ЭҢ	90	- # ₁	
									<u> </u>					.							No	V 5	,19	90	Que sang_
Hole No	Essenti	al Mir	nerale	ļ	Se	cono	lary	· ,	мin	era	/c		L. st	20		Mi	n e r _c	liza	tior	L			A	ssay	Pemarka D.T.
(in feet)	teidspar KF: PC	QU	BI H	, QI	UKF	BI	MU	PY	cy	CH	EP	CB	hree of	Roc Typ	СP	мо	אפ	cc py	HE	MG	LM	1	Mo	Cu	Nemarks/Late
0-10		1		+	+	\vdash						_					\rightarrow	\downarrow	$\overline{\vdash}$		_	_	\sim		WERBURDEN
10-20	-	\vdash		+	+-					-			~						-		\square	4	\neg		OVERBURDEN
20-30	VA		1:0						¥	0	0	0	M	DICR				42	V	0	0				
30-40	01A								¥	V	V	٥	L	MONZ	ŀ			12	2	0	V				
40-50	0 4			T					A	\checkmark	V	0	L	MONZ	\checkmark			10	2	*	0	Ī			a ser en a successione
50-60	01*			Ť					0	0	/	0	I	MONZ				12/	2	¥	2	1			
60 -70	14	1	1	T			0		*	\checkmark	\checkmark	¥	L	MON Z				42			V				
70-80	<u> </u> ★	1		T				r	Å	v	1	*	I	MONZ				12		0	~				some f.g. silvery mineral
80-90	14			İ					A			0	I	MONZ				12			0	Ī			<i>F</i>
90 700	OIA		1	T	-	- ·			٠×	\checkmark	v	0	F	MONZ				20	1		0	Ī			
100-110	0 ×	1		Ì	Ì				Ħ	/	1	0	I	MON Z				12		0	0	Í			
110-120	0 \$		<u> </u>	\uparrow			0		#	~		0	I	YON	2			10	V	V	- 0	1			• • • •
120-130	0 \$						0		Å	\checkmark	\checkmark	0	Z	Monz				19	V	0	0	╈			
130-140	0 *			1			V		4	0	0	0	ſ	MONZ				12		0	1	╁			
140-150	01\$								*	V	1	0	<u>г</u>	MOL				12			1	1			· · ·
150-160	0.7	<u> </u>		1-	+		$\overline{\mathbf{A}}$		×	-	~	1	Ĩ	MONZ				12		0	1	╪			
160+70	016			+			,		*		1	0	I	MONZ				40		<u> </u>		╉			
170 +80	1 A			\uparrow				,	0	1	~	1	T	MONT				120		0		╉			and an other that the second
180 +90	14		1.	1-			-		<u>с</u>	7	~	1	-	MAN				- 49		0		╉	-+		
190200	VX		1	1-	-		7		0	V	1	J	I	MAN		\dashv		19		0		╉	-+		
200-910	VIX			┼╴			1		0	1		7	I	HART		-		119			./	╈			
210-290	0 A		 	$\left - \right $	+		0		#	1	N	0	T	Mik	2			12/		0		+			
220-12	0.7			-				,	¢.		1	0	- 7	Man				20		/		+			
230-240	14		}∔ 	-			-		6			2	$\frac{r}{T}$	Mad 1	-	-+		44				╉			
240 24	14			┼╴			./		0	1			$\frac{1}{T}$	N.	\leq		-	44		0		╀		-	
250-11				┼─		_	1			· ,/	v V	$\frac{1}{2}$	- 7	· IONZ				45				╀		-	
2/ 7				┢				,	<u>×1</u>	-	1		+	NNZ	.	<u> </u>		14	-+		$\frac{1}{2}$	┦╴			
270	X			╞			4			7		1		· 101 2				24		1	4	╀	-		
-10-200 20 .0	V X			┢	$\left - \right $							$\frac{1}{2}$	<u>}</u>	TWZ	=	,		77	-+			╀		-+	{
~00 - 470	0.4		<u> </u>	<u> </u>			<u>N</u>			<u>/</u>	1	<u> </u>		TONZ	<u> </u>			73		<u>И</u>	<u> </u>		¦-		
~10 000 1	0;X			L			~	1	0		1	2	LY	TONZ	-			24		01	1			ł	

 \mathcal{D}

	с	υ	τ	т	1	NG	LOG
--	---	---	---	---	---	----	-----

)										<u>}</u>		F	рμ	90	- #12
										5 <i>0</i> (E H	OLE	cu	JTT	/ NG	;	Log			Nor	16,	1990 1990	Jui Isang
									_			-	T	3									-
Hole No	t ssentia Feláspar	Mineral	le afic		See	ond	ary	m	ine	rale	50/00	in sil	ock YPE		Min	era	lizat	ion	-		/	is say	Remarks/Cate
(m feet)	KF PC	31	но			101	170			4		5.5	- K	CP	MOIS	NIC		ЯĘ	MG		170		· · · · ·
$\frac{0}{10} - 8$	14	\geq			-		-	\rightarrow	=	+	+	Ę		F	\rightarrow	+					\vdash	<u> </u>	OVERISURDEN
20-20			1					(2			<u>L</u> 7	MON Z				12						
30-4	<u>-</u> ^-		1								4	$\frac{1}{7}$	Man -				40						
40-50	0. *						7				20	I I	MOK 7			_	10						
50-60	V t		!									I	MON Z				70		<u>ار</u>	$\frac{01}{1/1}$			
60-70	0 6					./			>	00	i U	I	MOH 7			_	40		0	0	 		
70-80	015								5	00	\mathcal{O}	I	MONT				43		*	0	ŀ		
80-90	UA					7	1		2	d	00	I	MONZ				49	~	*	1	-		
90-100	UNA		1				1	1	5	V	10	I	MON				#2	0	ð	i			
100-110	0 *						1	1	2		10	I	MONZ				42	0	0	1			
110-120	01*		1				1	10	2	00	0	I	MON	-			V	V	0	0			
120-130	VX		1				1	6	>		0	I	Marz				~	~	0	0			
130-140	1A		1 1					Ċ		/ 1	10	I	MINZ				#2	1	1	1			
140-150	NX		1				0	7	ŧ	y.	10	I	MON	2			12/2	V	1	L			
150-160	14						V	7	1		0	Z	MONZ				1/	1	И	1			
160-170	rif		11				4	6		00	0	I	MONZ	_			122	~	\checkmark	V			
170-180	0#						4	Ĺ	1	•	10	I	MON	_			122	1	0	4			
180-190	014		1					0		1	0	I	MONZ				22		Ø	2			
190-200	0 \$							-	1.	1.	0	L	Movz				42		01	/			
200-210	VIX							ľ	1	10	51	I	MUNZ	_			#20		0	V			
210-220	0\$							0	v	1.	0	Z	MON :	2			12	1	0	Ø			
220-230	VX			_				×	1 .	1-	0	I	MORÍZ	_			V	1	0	4			
230-240	V14					\downarrow		C	1/2	1	1	L	Монг	-			42	· (5	1			
240-250	VIX	_			_		1	10	<u>,</u>	V	1/	I	MOHZ				73	7	<u> </u>	4			
250-260						_		1	1	ν	12	L	MONZ	4			42		2	1			
260-270					\downarrow			1	1	ľ	11	Ι	HOWZ	_	_		42	4	2/1	4			
20-280	X					_		<u> </u>	1	Y		I	Marz	\square			72	4)	1,			
260-290	VX							12	12	10	11	L	MON	2			1		1	4			<u></u>

and the stand and a I

INTER-OFFICE LETTER DATE: October 23, 1990

COPIES TO:

Lorne Bond TO:

FROM: Joe Mihalech

ſ

WHEN FEASIBLE, CONFINE LETTER TO ONE SUBJECT

Hole PDH 90-1	Depth Interval	Cu	7	-
<u>Hole</u> PDH 90-1	Interval		Au	Ag
PDH 90-1		(%)	<u>(opst)</u>	<u>(opst</u>
	10-20	.005	T., 0005	
	20-30	.002	L. 0005	
	30-40	.006	L.0005	
	40-50	.009	L.0005	
	50-60	.007	L.0005	
	60-70	.005	.0017	
	70-80	.004	.0024	
	80-90	.002	.0034	
	90-100	.003	.0027	
	100-110	.003	.0015	
	110-120	.002	.0015	
	120-130	.002	.0013	
	130-140	.002	.0018	
	140-150	.002	.0040	
	150 - 160	.002	.0041	
	160-170	.002	.0031	
	170-180	.003	.0033	
	180-190	.001	.0021	
	190-200	.002	L.0005	
	200-210	.002	.0015	
	210-220	.013	.0026	
	220-230	.010	.0017	
	230-240	.010	.0022	
	240-250	.011	.0011	
	250-160	.008	.0011	
	260-270	.007	.0012	
	270-280	.007	.0012	
	280-290	.006	.0016	

(J. Mihalech, Chief Assayer

JM/rd

INTER-OFFICE LETTER DATE: October 24, 1990
TO: Lorne Bond
FROM: Joe Mihalech
WHEN FEASIBLE. CONFINE LETTER
TO ONE SUBJECT

<u>e</u> Int	erval	Cu (%)	Au (opst)	Ag (opst)
190-2 2	20-30	.042	.0008	
3	30-40	.077	.0025	
4	0-50	.062	.0026	
5	50-60	.291	.0052	
6	50-70	.115	.0025	
7	0-80	.216	.0066	
8	80-90	.055	.0017	
90	-100	.033	.0014	
100)-110	.035	.0012	
110)-120	.029	.0014	
120	-130	.015	.0022	
130	-140	.047	.0016	
140	-150	.030	.0012	
150	-160	.057	.0022	
160	-170	.034	.0012	
170	-180	.034	.0012	
180	-190	.057	.0018	
190	-200	.026	.0009	
200	0-210	.050	.0014	
210	-220	.065	.0025	
220	-230	.055	.0019	
230	-240	.036	.0013	
240	-250	.037	.0017	
250	-260	.035	.0014	
260	-270	.047	.0014	
270	-280	.037	.0013	
280	-290	.033	.0009	
230 260 270 280 290 Miha(lech, ef Assayer	-280 -270 -280 -290 -300	.035 .047 .037 .033 .031	.0014 .0013 .0009 .0014	

INTER-OFFICE LETTER DATE: October 24, 1990
TO: Lorne Bond
FROM: Joe Mihalech
WHEN FEASIBLE. CONFINE LETTER
TO ONE SUBJECT

RE:

Afton's Assays on Greenstone Drill Samples

		_	_	_
	Depth	Cu	Au	Ag
<u>Hole</u>	<u>Interval</u>	<u>(%)</u>	<u>(opst)</u>	(opst)
PDH 90-3	10-20	.003	L.0005	
	20-30	.003	.0006	
	30-40	.004	L.0005	
	40-50	.001	L.0005	
	50-60	.004	L.0005	
	60-70	.005	L.0005	
	70-80	.002	L.0005	
	80-90	.007	L.0005	
	90-100	.004	L.0005	
	100-110	.003	L.0005	
	110-120	.002	L.0005	
	120-130	.003	L.0005	
	130-140	.002	L.0005	
	140-150	.004	L.0005	
	150-160	.004	L.0005	
	160-170	.004	.0064	
	170-180	.009	.0130	

h laler Joe Mihalech,

Chief Assayer

JM/rd

INTER-OFFICE LETTER

DATE: October 30, 1990

TO: Lorne Bond

FROM: Joe Mihalech

COPIES TO:

WHEN FEASIBLE, CONFINE LETTER TO ONE SUBJECT

Afton's As	says on Greens	tone Drill	Samples	
Hole	Depth Interval	Cu (%)	Au (opst)	Ag (opst)
1011 90 4	10-20	008	T. 0005	
	20-30	.000	0031	
	30-40	.023	.0035	
	40-50	.067	.0052	
	50-60	.069	.0049	
	60-70	.068	.0036	
	70-80	.062	.0024	
	80-90	.044	.0041	
	90-100	.037	.0038	
	100-110	.029	.0014	
	110-120	.029	.0014	
	120-130	.013	L.0005	
	130-140	.011	.0013	
	140-150	.006	.0029	
	150-160	.006	L.0005	
	160-170	.005	.0006	
	170-180	.004	.0025	
	180-190	.005	.0025	
	190-200	.004	.0007	
	200-210	.005	L.0005	
	210-220	.017	.0013	
	220-230	.019	.0005	

PDH 90-4 (cont.d)

230-240	.067	.0017
240-250	.085	.0012
250-260	.108	.0011
260-270	.044	.0005
270-280	.042	L.0005
280-290	.026	L.0005
290-300	.021	L.0005

Joe Milalech, Chief Assayer

JM/rd

INTER-OFFICE LETTER DATE November 2, 1990

Lorne Bond TO:

FROM: Joe Mihalech

COPIES TO: WHEN FEASIBLE, CONFINE LETTER TO ONE SUBJECT

fton's As	says on Greenst	cone Drill S	Samples	
Iole	Depth Interval	Cu (%)	Au (opst)	Ag (opst)
			<u> </u>	
PDH 5-90	20-30	.010	.0031	
	30-40	.005	.0033	
	40-50	.002	.0016	
	50-60	.006	.0008	
	60-70	.003	.0039	
	70-80	.006	.0024	
	80-90	.007	.0013	
	90-100	.009	.0023	
	100-110	.012	.0128	
	110-120	.010	.0113	
	120-130	.012	.0076	
	130-140	.011	.0030	
	140-150	.011	.0045	
	150-160	.016	.0048	
	160-170	.026	.0034	
	170-180	.030	.0219	<u>2nd Cut</u>
	180-190	.059	.216	.212
	190-200	.046	.095	.104
	200-210	.039	.055	.071
	210-220	.029	.045	.047
	220-230	.025	.048	.045
	230-240	.019	.033	.033
	240-250	.020	.032	.031
	250-260	.014	.0260	
	260-270	.011	.0213	
	270-280	.011	.0193	
	280-290	.010	.0216	
	290-300	.010	.0273	

Milafre J/ Mihalech,

Chief Assayer

INTER-OFFICE LETTER DATE: November 2, 1990
TO: Lorne Bond
FROM: Joe Mihalech
WHEN FEASIBLE. CONFINE LETTER
TO ONE SUBJECT

le	Depth <u>Interval</u>	Cu (%)	Au (opst)	MoS ₂ (%)
H 8-90	8-20	010	0013	000
-DR 8-90	20-20	.012	.0011	.002
	30-40	.014	D-0005	+002
	40-50	.017	.0000	.002
	50-60	.033	0005	.002
	60-70	.028	0006	.003
	70-80	.016	T. 0005	.002
	80-90	.014	T. 0005	.002
	90-100	.022	.0009	.002
	100-110	.026	,0011	.001
	110-120	.031	.0018	.002
	120-130	.025	.0010	.002
	130-140	.020	.0011	.001
	140-150	.015	.0008	.002
	150-160	.014	.0008	.001
	160-170	.020	.0013	.001
	170-180	.016	.0010	.002
	180-190	.019	.0012	.001
	190-200	.021	.0009	.001
	200-210	.014	.0006	.001
	210-220	.014	.0006	.001
	220-230	.008	L.0005	.001
	230-240	.006	.0005	.001
	240-250	.009	L.0005	.002
	250-260	.010	.0005	.002
	260-270	.018	.0011	.001
	270-280	.036	.0018	.001
	280-290	.018	.0014	.001
	290-300	.011	.0008	.001

INTER-OFFICE LETTER DATE: November 2, 1990

COPIES TO:

Lorne Bond TO:

FROM: Joe Mihalech

WHEN FEASIBLE, CONFINE LETTER TO ONE SUBJECT

Afton's As:	says on Greenst	tone Drill S	Samples	
<u>Họle</u>	Depth	Cu	Au	MoS ₂
	Interval	(%)	(opst)	(%)
PDH 9-90	27-40	.042	.0016	.015
	40-50	.041	.0008	.011
PDH 10-90	10-20	.012	.0034	.001
	20-30	.017	.0018	.001
	30-40	.016	.0081	.001
	40-50	.014	.0025	.001
	60-70	.027	.0038	.001

nilaler-J./Mihalech,

Chlief Assayer

JM/rd

OATE:

INTER-OFFICE LETTER

November 21, 1990

COPIES TO:

TO: Lorne Bond

FROM: Joe Mihalech

WHEN FEASIBLE, CONFINE LETTER TO ONE SUBJECT

<u>ole</u>	Depth <u>Interval</u>	Cu (%)	Au <u>(opst)</u>	Ag (opst)
H 11-90	20-30	.021	.0012	
	30-40	.024	.0014	
	40-50	.023	.0024	
	50-60	.017	.0013	
	60-70	.007	.0007	
	70-80	.003	.0005	
	80-90	.002	L.0005	
	90-100	.002	.0019	
	100-110	.002	.0014	
	110-120	.004	.0021	
	120-130	.002	.0027	
	130-140	.002	.0015	
	140-150	.002	.0016	
	150-160	.002	.0012	
	160-170	.002	.0011	
	170-180	.002	.0014	
	180-190	.001	.0027	
	190-200	.001	.0012	
	200-210	.001	.0008	
	210-220	.001	.0012	
	220-230	.005	.0021	
	230-240	.012	.0012	
	240-250	.007	.0010	
	250-260	.006	.0008	
	260-270	.007	.0008	
	270-280	.006	.0019	
	280-290	.007	.0012	
	290-300	.014	.0061	

November 21, 1990 COPIES TO: INTER-OFFICE LETTER DATE: Lorne Bond Joe Mihalech FROM: WHEN FEASIBLE. CONFINE LETTER TO ONE SUBJECT

ole	Depth <u>Interval</u>	Cu (%)	Au (opst)	Ag (opst)
PDH12-90	10-20	.004	.0010	
	20-30	.005	.0024	
	30-40	.001	.0023	
	40-50	.002	.0019	
	50-60	.002	.0012	
	60-70	.015	.0009	
	70-80	.008	.0011	
	80-90	.017	.0005	
	90-100	.012	L.0005	
	100-110	.012	.0007	
	110-120	.014	L.0005	
	120-130	.005	L.0005	
	130-140	.004	L.0005	
	140-150	.003	.0009	
	150-160	.002	.0005	
	160-170	.002	.0007	
	170-180	.001	.0008	
	180-190	.002	.0011	
	190-200	.002	.0006	
	200-210	.001	.0014	
	210-220	.001	.0011	
	220-230	.004	.0011	
	230-240	.002	.0007	
	240-250	.001	0013	
	250-260	003	0008	
	260-270	.005	0008	
	270-280	.002	.0008	
	280-200	.002	.0008	
	200-290	.001	.0007	
	290-300	.003	.0007	

TO:

RE

