LOG NO:	12-21	RD.
ACTION:		
FILE NO:		

SUB-RECORDER RECEIVED
DEC 1 4 1990
M.R. #\$ VANCOUVER, B.C.

REPOR

-

< Z

0 G I C S S M E

E I

00

SUMMARY REPORT OF 1990 EXPLORATION ON THE NEW 7 & 8, ICE 1-17, AND VER 3 & 4 MINERAL CLAIMS

Located in the Iskut River Area Liard Mining Division NTS 104B/14E, 15W

56°50' North Latitude, 131°00' West Longitude

- Prepared for -TICKER TAPE RESOURCES LTD. TYMAR RESOURCES INC.

- Prepared by -S.L. TODORUK, Geologist C.K. IKONA, P.Eng.

December 1990

– Pamicon Developments Ltd. –

SUMMARY REPORT of 1990 EXPLORATION on the NEW 7 & 8, ICE 1-17, AND VER 3 & 4 MINERAL CLAIMS

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	LIST OF CLAIMS	2
3.0	LOCATION, ACCESS AND PHYSIOGRAPHY	3
4.0	AREA HISTORY	4
5.0	REGIONAL GEOLOGY	9
6.0	PROPERTY GEOLOGY	12
7.0	MINERALIZATION	14
	7.1 King Vein Area	14
	7.2 Rumble Creek Area	15
8.0	1990 WORK PROGRAM	16
	8.1 Prospecting and Reconnaissance Geology	16
	8.2 Diamond Drilling	17
9.0	DISCUSSION AND CONCLUSIONS	18

LIST OF FIGURES

Following Page

D - - - -

Figure	1	B.C. Location Map	2
Figure	2	Claim Location Map	3
Figure	3	Regional Mineral Occurrence Map	4
Figure	4	Simplified Regional Geology	9
Figure	5	Preliminary Property Geology	13
Figure	6	Mineralization Summary Map	14
Figure	7	1990 Rock Chip Sample Locations and Results	16
Figure	8	King Vein Area Drill Hole Plan Map	17
Figure	9	Cross Section TT90-1	18
Figure	10	Cross Section TT90-2	pocket
Figure	11	Cross Section TT90-3	18
Figure	12	Cross Section TT90-4	18

SUMMARY REPORT of 1990 EXPLORATION on the NEW 7 & 8, ICE 1-17, AND VER 3 & 4 MINERAL CLAIMS

APPENDICES

Appendix	I	Bibliography
Appendix	II	Cost Statement
Appendix	III	Analytical Procedures
Appendix	IV	Sample Descriptions
Appendix	v	Diamond Drill Logs
Appendix	VI	Analytical Certificates
Appendix	VII	Statement of Qualifications
Appendix	VIII	Engineer's Certificate

1.0 INTRODUCTION

This report describes a program of sampling, prospecting and diamond drilling carried out on the New, Ice and Ver claims during the 1990 field season. Work was completed by Pamicon Developments Ltd. under the direction of Prime Explorations Ltd. The claims are jointly owned by Ticker Tape Resources Ltd. and Tymar Resources Inc. under a joint venture agreement. Much of this report is taken from the March, 1990 report on this property written by the authors.

The property, totalling 295 units and covering approximately 60 km² is located along the Verrett River 10 km north of the Iskut River, in northwestern B.C. (Figure 1). The Johnny Mountain gold mine of Skyline Gold Corporation and Cominco/Prime's Snip deposit are located 15 km to the south, while Prime Resources/Stikine Resources' Eskay Creek project is situated 35 km to the southeast.

The area is underlain by metallogenically favourable volcanic and sedimentary rocks and is cut by several intrusive events. This has been labelled the "Golden Triangle" because of the prolific occurrence of mineralization. Coast Range Complex intrusives bound this area to the west and Bowser Group sediments overlap to the east.

Much of the Ticker Tape/Tymar property is underlain by volcanic and sedimentary rocks of Mesozoic and Paleozoic age. Younger felsic to intermediate intrusives underly the south and east area of the property. A major northeast trending structure trends across the claims and may be the localizing force for several showings.

The Ticker Tape/Tymar property was acquired in 1987 and 1988. Work on the claims in 1987 and 1988, including soil, stream and rock geochemistry, followup geophysics and diamond drilling (1397.8 m/4,586') led to the discovery of Pb-Zn-Ag skarns and Au-bearing quartz veins as well as other shear and precious metal vein mineralization.

Work in 1989 included contour soil sampling, prospecting, limited grid soil

sampling, heavy sediment sampling and surveying. This program led to the discovery of additional precious metal quartz veins and Au-Cu-Zn bearing skarns, as well as the identification of several moderate strength geochemical anomalies. Highlights include: assays to 5.473 oz/ton Au in narrow quartz veins proximal to the King Vein; assays to 0.180 oz/ton Au in float material from Au-Cu-Zn skarns located at Rumble Creek; high grade Ag and Au bearing quartz veins located in this same area with grab sample values to 32.77 oz/ton Ag and 0.862 oz/ton Au, respectively; and a 6,375 ppb Au result from a soil sample east of Cripple Creek.

The 1990 program consisted of 292.57 metres of diamond drilling in the King Vein area and follow-up prospecting in the Rumble and Cripple Creek areas. The results of the 1990 drilling program were discouraging and no further drilling in the King Vein area is recommended at this time.

Exploration programs on the remainder of the property have, however, returned encouraging results that warrant further work. It is recommended that continued evaluation of the known showing area be carried out in order to define further possible drill targets.

2.0 LIST OF CLAIMS (Figure 2)

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claims totalling 295 units and located in the Liard Mining Division, are owned by Ticker Tape Resources Ltd. The property is subject to a joint venture agreement whereby Tymar Resources Inc. has purchased 50% interest in the claim group.

Claim <u>Name</u>	No. of <u>Units</u>	Record <u>Number</u>	Record Date	Expiry Date
Ver 3	16	3895	February 19, 1988	February 19, 1999
Ver 4	16	3896	February 19, 1988	February 19, 1999
New 7	16	3919	February 19, 1987	February 19, 1999
New 8	16	3920	February 19, 1987	February 19, 1999

2

Pamicon Developments Ltd. -

Claim <u>Name</u>	No. of <u>Units</u>	Record <u>Number</u>	Record Date	Expiry Date
Ice l	12	4195	September 2, 1987	September 2, 1996
Ice 2	15	4196	September 2, 1987	September 2, 1996
Ice 3	12	4197	September 2, 1987	September 2, 1996
Ice 4	20	4198	September 2, 1987	September 2, 1996
Ice 5	10	4199	September 2, 1987	September 2, 1996
Ice 6	10	4214	September 17, 1987	September 17, 1996☆
Ice 7	10	4215	September 17, 1987	September 17, 1998
Ice 8	20	4216	September 17, 1987	September 17, 1996*
Ice 9	20	4217	September 17, 1987	September 17, 1998
Ice 10	10	4218	September 17, 1987	September 17, 1996☆
Ice 11	20	4219	September 17, 1987	September 17, 1996*
Ice 12	20	4220	September 17, 1987	September 17, 1996☆
Ice 13	16	4221	September 17, 1987	September 17, 1996*
Ice 14	10	4222	September 17, 1987	September 17, 1996*
Ice 15	8	. 4223	September 17, 1987	September 17, 1996*
Ice 16	6	4224	September 17, 1987	September 17, 1996*
Ice 17	12	4225	September 17, 1987	September 17, 1998

*pending government approval

3.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The subject property is located in northwestern British Columbia approximately 110 km northwest of Stewart, B.C. (Figure 1). The property is situated north of the Iskut River along the Verrett River within the Coast Range Mountains. The claims are centred at longitude 131°00'W and latitude 56°50'N within the Liard Mining Division. The Stewart-Cassiar Highway passes 55 km east of the claims.

The claims are presently accessible by helicopter, based at Bronson Creek gravel airstrip approximately 10 km to the southwest. Fixed wing aircraft arrive daily at Bronson Creek from Smithers, B.C., Terrace, B.C. and Wrangell,

Alaska to service Cominco/Prime's Snip deposit as well as the numerous projects in the area. The Bronson strip has the capacity to accommodate Hercules aircraft.

4

- Pamicon Developments Ltd. -

The Province of British Columbia has recently completed a study on possible road access to the Iskut, Eskay Creek and Sulphurets areas. Construction of a road from the Stewart-Cassiar Highway at Bob Quinn Lake down the Iskut to Bronson Creek is anticipated in the near future. The road would be situated 10 km south of the Ticker Tape property on the south side of the Iskut River valley.

The claims cover an area of moderate to steep terrain, typical for this area of the Coast Range Mountains. Approximately 75% of the property is covered by the south edge of a large icefield. Isolated rock exposures, nunataks, outcrop within this icefield. Elevations range from approximately 500 metres to 1800 metres above sea level. Tree line is at approximately 1200 metres asl with well developed forest at lower elevations giving way to sparse stunted forest and alpine vegetation at higher elevations. A dense undergrowth of devil's club and slide alder is typical along steeper slopes at lower elevations. Glacial activity has shaped much of the landscape at higher elevations. The claims are usually mostly snow free between July and September.

4.0 AREA HISTORY

Figure 3 of this report presents a 1:500,000 scale map of northwestern B.C. from the town of Stewart in the south to near Telegraph Creek in the north, a distance of 225 kilometres. Within this area, a semi-arcuate band of Hazelton Group equivalent volcanic and sedimentary rocks (Unuk River Formation, Betty Creek Formation, Salmon River Formation) with their metamorphic equivalents trend northwest and contain most of the known mineral occurrences. This group is bounded by the Coast Range intrusive complex to the west and by the much younger sediments of the Bowser Basin to the east.

MINERAL OCCURRENCE

10

340

0 31

21

20

NEW ICE PROJECT

MAJOR MINERAL OCCURRENCE

COMPILED BY S. TODORUK (1988-1990)

20 Km

260	PHOPENIT OWNER	ANDION
10	1. Testain Resources Ltd./Silbak Freujer Kines	6,100,000 tonnes 8,064 oz/ta
	2. Sestain Resources Ltd./Tournigan Bining Explorations Ltd.	1,860,000 tannes 0.09 oz/tos
). Berania (Todd Creek Project)	-
	4. Scottie Gold Rise	
	5. Grandur	10,890,000 tons 1,791 Cu
	6. Canadian Cariboo Resources/Magna Ventures/	470,000 tens 0.27 oz/ton Au.
	Silver Princess Besources (Roc Project)	
	7. Flacer Done Inc. (Kerr Project)	66 million tons, .861 Ca, .8
	8. Catear Resources Ltd. (Gold Reige Project)	375,000 tess 0.75 sz/tes As,
	9. Bewhavk/Granduc (Sulphurets West Zone Project)	715,400 tens 0.43 oz/ten Au,
	10. Prime/Stikine Besources Ltd. (Eskay Creek Project)	4.16 million tons 0.77 or/te
	11. Compolidted Silver Standard Hines Ltd. (E & L Deposit)	3,200,000 tons 9.401 81, 0.6
	12. Inel/Avondale Resources	Au, Ag, Cu, Pb, In
	13. Skyline Gold Corporation (Johnny Mountain Mine)	210,000 tons 0.45 oz/ton Am
	14. Kestrel Resources Ltd.	Au, Ac, Cu, Pb, Za
	15. Sector Resources Inc./Repheline Besources Ltd. (Golden Spray Yein)	hu, ha
	16. Royal Lay/Big # Petroleus	Au, Ag, Cu, Pb, In
	17. Timles	Au, Ac, Cu, Pb, In
	18. Cominco/Frime Resource Corp. (Snip Deposit)	1,032,000 tens 0.375 sz/ten
	19. International Prise Exploration Ltd.	Ac, Au
	10. Neridor Jesources Ltd.	40
	21. Frime Resource Corp./American Gre Ltd./Golden Band	An and a second s
	22. Magenta Development Corp./Crest Resources Ltd.	Au, Ag, Cu, Pb
	23. International Priss Exploration Ltd.	-
	24. Pezzald Resource Corp.	AL .
	25. Consolidated Sea-Gold Corp./Bryndon Ventures Inc.	k
	26. Gulf International Rinerals Ltd. (Northwest Zone)	Au, Ag, Cu
	27. Consolidated Caprock Resources/Florin Resources Ltd. (Kerr Claims)	Ag, Ca, Au
	28. International Priss Exploration Ltd.	Ac, Pb, In
	29. International Priss Exploration Ltd.	Ca, An
	30. Avundale Resources Inc. (Forrest Project)	Au, As, Cu
	31. Pass Lake Resources Ltd. /Lorica Resources Ltd. (Trek Project)	Cu, An
	32. Rudson Bay/Cominco/Kennco (Galore Creek Deposit)	125,000,000 tonnes 1.061 Cu,
	33. Continental Gold Corp./Gigi Resources Ltd./Goldbelt Mines Ltd.	Au, As, Ca
	34. Bellex Resources Ltd./Sarabat Resources Ltd. (Jack Wilson Project)	AN, CO
	35. Pass Lake Resources Ltd. (Consolidated Goldwest Ltd. (JD Project)	Au, Cu
	36. Lac Himerals (Hankin Peak Project)	
	37. Schuft Creek	310,000,000 tonnes 0.301 Cu
	18 Pennal idated Gilgar Standard Bacific Fastury Eval (Badiet Braiset)	200 000 tane 0 120 avitas &

MINERAL RESERVES AND/OR ELEMENTS

14

6750 ---

190

15

no Au, 2.39 oz/tou Ag u Au, 0.67 oz/tou Ag

, 1.31 oz/ton Az

.010 oz/ton án a, 1.0 oz/ton ág a, 19.70 oz/ton ág ton ás, 29.12 oz/ton ág 502 Ca ned to Angest, 1990

, 0.397 git An, 7.94 git Ag

. 0.0201 No. 0.113 g/t Au, 0.992 g/t Ag

5 6450 Store 1						
6742) a251 \$ 1					
1 Cart State	And the					
3) 5 Talgen 7322	6250					
-6750± 0600	A Charles					
A THE BUL	100 01 000 C					
100 BIBOT	Responder Carton					
0011 AD 00	ana.					
The second	6250+					
Some States States	Non The					
9 8400	56° 30'					
Sulpharets	1 N 2 12 62					
1 m 2 5 1 4 2						
a subling	Rhose					
A State of the second s	there a gent					
16 a cont Marin G						
87502	持くたい。					
Mt Willipert	8760 B260					
Same	5800					
MI WILL FRAM	Divide Juthice					
Mount 17500	1 Barris					
21	and a start Mount					
6198	LI E C CAMB					
5505 Ninamile	A B Bunt					
6398 A AS A Mamilale of	1					
6635 - 547	5-1 Buridings 6954					
Charles and Ca	and the second					
TICKER TAPE RESOURCES LTD.						
NEW ICE PRO	DJECT					
Regional	Mineral					
Occurrence	Мар					
LIARD MINING DIVI	SION, B.C.					

DRAWN: J.W. NTS: 103, 104 Date Dec.1990 FIGURE: 3

OE OE

Chism.

RE

EWART

This area of approximately 10,000 square kilometres has historically been referred to as the Stikine Arch. Mining activity within it goes back to the turn of the century. Due to the large size of the region it has been referred to in more specific areas which range from the Stewart area to Sulphurets, Iskut and Galore Creek areas. Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas.

The history of the area can be divided into two time periods: circa 1900 to the mid-1970s and the more recent activities of the late 1970s and 1980s.

1900 - 1975

The original discovery of mineralization in the area can be attributed to miners either en route to or returning from the Klondike gold fields at the turn of the century. Rivers flowing through the Alaska Panhandle served as access corridors and mineralization was noted along the Iskut and Unuk Rivers and at the head of the Portland Canal. Highlights of this period were:

- * discovery of copper, gold, silver mineralization at Bronson Creek in the Iskut
- * location of similar mineralization along the Unuk and at Sulphurets Creek
- * discovery of the Silbak-Premier gold-silver mine near Stewart plus a number of other rich silver occurrences along the Portland Canal
- * the location by Tom MacKay of the original mineralization at Eskay Creek near the headwater of the Unuk River

Development and production at this time was largely limited to the area around Stewart where a number of mines produced high grade silver. The most significant producer was the Silbak Premier some 12 km north of Stewart which from 1920 until 1936 produced some 2,550,000 tons grading 16.8 g/tonne gold and 409.5 g/tonne silver.

After World War II the area was explored for base metals, notably copper. This era led to the discovery of the Granduc, Galore Creek and Schaft Creek copper deposits and the E & L copper-nickel deposit. Published reserves of these are listed below and shown on Figure 3.

	<u>Tons</u>	<u>Cu</u> (%)	(g/t)	<u>Ag</u> (g/t)	<u>Mo</u> (%)	<u>Ni</u> (%)
Granduc	10,890,000	1.79				
Galore Creek	125,000,000	1.06	0.397	7.94		
Schaft Creek	910,000,000	0.30	0.113	0.992	0.02	
E & L	3,200,000	0.60				0.80

Of these Granduc was taken to production by Newmont Mining but a combination of low copper prices and high operating cost resulted in suspension of activity.

1975 - Present .

The more recent activity in the area dates to the rise of precious metal prices in the 1970s. Significant early events at this time were:

- * acquisition by Skyline Explorations of their property on Mt. Johnny near Bronson Creek in the Iskut in 1980
- * continued work by Esso Minerals on Granduc Mining's properties on Sulphurets Creek in the Unuk River area
- * re-organization of the Silbak-Premier property and participation by Westmin Resources Ltd.

Work on these properties led to the following reserves being published for the properties listed below as well as stimulating exploration activity in the area. This activity led to the definition drilling of the Snip deposit by Cominco/Prime, the reserves of which are also shown.

Company	<u>Deposit</u>	Area	<u>Short Tons</u>	(oz/t)	<u>Ag</u> (oz/t)	<u>Ref.</u>	
Cominco/Prime	Snip	Iskut	1,032,000	0.875		Note l	
Newhawk/Lacana	West Zone	Sulphurets	550,400	0.420	18.00	Note 2	
	Sulphurets Lake Zone	Sulphurets	20,000,000	0.08		Note 3	
Catear Resources	Gold Wedge	Sulphurets	295,000	0.835	2.44	Note 4	
Westmin Silbak	Silbak	Stewart	5,770,000	2.06 g/t	86.3 g/t		
Note 1: News Release, Vancouver Stockwatch, November 7, 1988 Note 2: News Release, Northern Miner, February 19, 1990 Note 3: News Release, Vancouver Stockwatch, August 24, 1989 Note 4: Pers. Comm., Catear Resources							

Between August, 1988 and July, 1990 Skyline Gold Corp. produced 210,000 tons grading 0.45 oz/ton Au (pers. comm., D. Yeager) from its Reg property.

These successes have generated extensive exploration activity in the area which has led to the discovery of a large number of mineral occurrences which are in a preliminary stage of evaluation. The most notable of these to date is on Tom MacKay's old Eskay Creek showings. The 1988/89 work on this project of Prime/Stikine Resources indicated a major gold-silver-base metal mineral deposit of possible vlcanogenic massive sulphide and epithermal affinity with a minimum strike length of 1800 metres. Some notable recent results on the project are:

DDH #CA 89-93 91.8 feet 0.453 oz/ton Au and 16.9 oz/ton Ag DDH #CA 89-109 682.2 feet 0.875 oz/ton Au and 0.97 oz/ton Ag including 62.3 feet 7.765 oz/ton Au and 1.35 oz/ton Ag

These intersections are considered to be close to the true width of the mineralization. A great many other excellent intersections have been

published by the companies and exploration is continuing with drilling and underground bulk sampling tests. Reserves based on this drilling indicate probable reserves of 4,364,000 tons grading 0.77 oz/ton Au and 29.12 oz/ton Ag (Northern Miner, September 24, 1990).

In 1990 the companies initiated an underground development and sampling program on the deposit to confirm these reserves and obtain bulk samples for metallurgical testing.

Drilling on Gulf International Minerals' Northwest Zone near Newmont Lake has been ongoing between 1987 and 1990. A few of their more significant intersections are provided below (annual reports and news releases).

Drill Hole	Interval	Length	Copper	Silver	Gold
	(feet)	(feet)	(%)	(oz/ton)	(oz/ton)
87-25	343.0-373.0	30.0	0.23	0.11	0.404
	409.3-412.0	2.7	0.55	0,35	0.250
	470.2-473.8	3.6	0.42	0.19	1.520
87-29	167.0-170.0	3.0	0.001	0.01	0.140
	205.0-241.5	36.5	0.97	1.16	1.605
88-28	213.9-229.0	15.1	0.41	0.29	0.810
	260.5-276.6	16.1	0.24	0.29	0.645
	300.2-301.5	1.3	0.15	0.17	0.320
	330.1-338.9	8.9	1.99	0.31	0.340
	353.0-363.2	10.2	1.02	0.22	0,268

In September 1989 Bond International Gold Inc. announced initial drill results from their Red Mountain project. The location of this project is believed to be some 15 kilometres east of Stewart. A 66 metre intersection on the Marc Zone reportedly graded 9.88 gm/tonne gold and 49.20 gm/tonne silver. On the Willoughby Gossan Zone a 20.5 metre intersection is reported as 24.98 gm/tonne gold and 184.2 gm/tonne silver.

A great many other companies active in the areas have released assays from preliminary trenching and/or drilling. Many of these show excellent values in gold, silver and base metals and it is anticipated that additional properties with mineral reserves of possible economic significance will emerge.

The locations of a number of these occurrences are indicated in the accompanying figure. At this time these represent only a fraction of the reported results in this rapidly developing area.

5.0 REGIONAL GEOLOGY

The geology of the Iskut-Galore-Eskay-Sulphurets area has undergone considerable study in the past few years by industry, federal and provincial geologists (Figure 4). Much of this work stemmed from Grove's mapping of the Stewart Complex (Grove, 1969, 1970, 1973, 1982, 1987). Earliest geological mapping of the area was carried out by Kerr (1948) during the 1920s and 1930s although Operation Stikine undertaken by the Geological Survey of Canada in 1957 produced the first publications. R.G. Anderson of the Geological Survey of Canada is presently mapping the area covered within NTS 104B.

Grove defined a northwest trending assemblage of Upper Triassic and Jurassic volcanics and sedimentary rocks extending from Alice Arm in the south to the Iskut River in the north as the Stewart Complex. Paleozoic limestone and volcanics underlie the complex while Mesozoic to Tertiary aged intrusives cut the units. Tertiary felsic plutons forming the Coast Plutonic Complex bound the area to the west while clastic sediments of the Spatsizi and Bowser Lake Groups overlap on the east.

Age dating of mineralization within the various mining districts suggests a close cospatial and coeval relationship with late Triassic to early Jurassic volcanics and intrusives within. This has directed exploration efforts toward these members.

A stratigraphic column of the area's lithologies is presented on the following page.

PALEOZOIC

Stikine Assemblage Volcanic and Sedimentary Rocks

Paleozoic Stikine assemblage rocks commonly occur as uplifted blocks associated with major intrusive bodies as exposed along the southwest flanks of Johnny Mountain and Zappa Mountain.

At the base of the Stikine assemblage stratigraphic column, at least four distinctive limestone members have been differentiated interlayered with mafic volcaniclastics, felsic crystal tuffs, pebble conglomerate and siliceous shale.

Mississippian rocks consist of thick-bedded limestone members interbedded with chert, pillowed basalt and epiclastic rocks.

Lower Permian units comprise thin- to thick-bedded corraline limestone interbedded with volcanic mafic to felsic volcanic flows, tuffs and volcaniclastics.

MESOZOIC

Stuhini Group Volcanic and Sedimentary Rocks

Upper Triassic Stuhini Group volcanic and sedimentary rocks are characterized by a distinct facies change from bimodal mafic to felsic flows and tuffs interbedded with thick sections of limestone in the northwest to predominantly mafic volcanics with minor shale members in the southeast.

Stratigraphy of the Iskut River Area (after descriptions by R.G. Anderson and J.M. Logan)

Stratigraphy	Lithology	Comments					
BOWSER GROUP M. Jurassic	conglomerate, siltstone, sandstone, shale	Successor basin					
SPATSIZI GROUP							
L. Jurassic	shale, tuff, limestone unconformable						
HAZELTON GRO E. Jurassic	UP coeval alkalic/calc-alkalic	contractional event? Island Arc rocks					
gradational to unconformable							
L. Triassic	intrusions; mafic volcanic rocks in the east, bimodal in the west	extensional in western area					
	polymictic conglomerate basaltic to andesitic volcanics (plagioclase and hornblende)	no Triassic clasts; limestone clasts common					
M. Triassic	sedimentary rocks						
STIKINE ASSE	MBLAGE						
Permian	thin bedded coralline to crystalline limestone (over 1000 m thick), fossiliferous; intermediate flows and volcaniclastics	volcanic units resemble Hazelton Group rocks					
E. Permian	rusty argillite						
	'siliceous' turbidite, felsic lapilli tuff	extensional event					
Missis- sippian	mafic meta- upper coralline volcanics and limestone and	thick bedded					
	metasediments conglomerate lower limestone with tuff layers	limestone commonly bioclastic, coarse crinoids, corals					
E. Devonian	limestone; intermediate to felsic volcanics	contractional events; rocks highly deformed					

Plutonic Rocks - Coast Plutonic Complex

L. Tertiary	granodiorite, diorite, basalt
E. Tertiary	quartz diorite, granodiorite, quartz monzonite, feldspar porphyry, granite
M. Jurassic	quartz monzonite, feldspar porphyry, syenite
L. Jurassic	diorite, syenodiorite, granite
L. Triassic	diorite, quartz diorite, granodiorite
? Not determined	quartz diorite, ?

– Pamicon Developments Ltd. –

Hazelton Group Volcanic and Sedimentary Rocks

Lower Jurrasic Hazelton Group volcanic and sedimentary rocks predominantly occur in the southeast, northwest corners and central portions of the Hazelton Group stratigraphy consists of Galore-Iskut-Sulphurets area. the lowermost Unuk River Formation (Grove, 1986) comprised of mafic to intermediate volcanics with interbedded shale, argillite and greywacke sediments capped by feldspar porphyry flow; the Betty Creek Formation (Grove, 1986) overlying the Unuk River Formation consists of maroon and green volcanic conglomerate and breccia often containing diagnostic jasperoidal veins, with the youngest uppermost member of the Hazelton Group consisting of dacite to rhyolite, spherulitic rhyolite welded tuff and tuff breccia with basal sediments and upper pillow basalts correlative with Grove's (1986) Salmon River Formation and Alldrick's (1987) Mount Dilworth Formation.

Lower Jurassic volcanics of the area are commonly correlated with the Telkwa Formation of the Hazelton Group. A close spatial and coeval relationship has long been recognized (Alldrick, 1986, 1987 and others) between Lower Jurassic volcanism and early Jurassic intrusive activity and its metallogenic importance in precious metal mineralization (Premier porphyry). Because of the relationship, lower members of the Hazelton Group are considered the most favourable targets for exploration.

Spatsizi Group Sedimentary Rocks

Spatsizi Group shales, tuffs and limestone of upper Lower and lower Middle Jurassic age overlie Hazelton Group rocks in the eastern part of the map area. Buff, sandy bivalve and belemnite fossil bearing limestone units decrease in abundance in the north parts of the area at the expense of shale. Here, black radiolarian-bearing siliceous shale alternately interbeds with white tuffs giving the units an informal name of 'pyjama beds'. This pyjama bed sequence serves as an important marker for identifying the favourable underlying Hazelton Group.

Bowser Group Sedimentary Rocks

Bowser Lake Group Middle and Upper Jurassic clastic sediments cover most of the northeast quadrant of the map area. Interbedded shale and greywacke units predominate in the south while thick-bedded shales dominate toward the north. Near the highlands toward the northern reaches of the Bowser Basin, basal chert-rich conglomerates identify the Bowser Group as an overlap assemblage.

CENOZOIC VOLCANIC ROCKS

Recent mafic flows and ash of the Hoodoo Formation, Iskut Formation and Lava Fork Formation cap specific areas within the region.

PLUTONIC ROCKS

The Coast Plutonic Complex, forming the western boundary of the Stewart Complex, is generally characterized by felsic Tertiary plutons. Late Triassic Stuhini Group and Early Jurassic Hazelton Group plutonic styles suggest coeval and cospatial relationships with surrounding volcanics via distinctive porphyritic dykes such as the Premier Porphyry. Tertiary Coast Complex plutons lack these dykes and volcanic equivalents.

6.0 PROPERTY GEOLOGY

The Ticker Tape property is approximately 75% covered by a large icefield. Limited outcrop is exposed through the ice and gives some details of the geology underlying the north and central claim areas. The best rock exposure occurs over the south and east parts of the property and consequently much of the geological interpretation relies on mapping in these areas.

Preliminary mapping in 1988 by Orequest Consultants Ltd. shows the north part

of the property underlain by Jurassic age Hazelton Group island arc volcanics and sediments (Figure 5). A 200 metre thick bed of Paleozoic limestone outcrops within these rocks in the southwest claim area. Further to the southwest and southeast the property is underlain by probable Mesozoic to Tertiary age intermediate to felsic intrusives. The intrusive body in the southwest is mapped as Coast Plutonic Complex.

Recent government regional mapping (BCGS Open File 1990-2, Geological Field Work 1989, Paper 1990-1) over the east portion of the property shows a Jurassic biotite granite/hornblende diorite batholith to the east in contact with Mississippian-Pennsylvanian undivided volcanics to the west.

Detailed mapping in 1987/88 was completed in the southeast claim area surrounding the North Zone, South Zone and King Vein mineralized showings. This area is underlain by moderately to steeply westward dipping clastic sediments, volcanics and limestone overlying intermediate volcanics which are in contact with medium grained granodiorite stock to the east. The granodiorite hosts the King Vein while the North and South Zones are hosted within the sedimentary/volcanic package. Intermediate subvolcanic intrusive outcrops at the North and South Zones. This unit may have been responsible for mineralization at these showings (Hudson, 1988). Several basic to felsic dykes are mapped in this area and elsewhere on the property.

Structural interpretations indicate that faulting in the region has a predominant northeast trend. Secondary east-west to north-south faulting is also evident. Mapping at the North Zone reveals complex folding of layered units, complicated by abundant faulting.

A major northeast trending (040°) fault structure extends from north of More Creek south along the Verrett River across the Ticker Tape property. This structure is expressed on surface by strong topographical features, gossans and mineralization. Several mineralized shears and skarns have been documented along this structure including Gulf International Minerals Ltd.'s Northwest Zone.

56°45

7.0 MINERALIZATION

Prospecting and geochemical work on the Ticker Tape property in 1989 resulted in the discovery of several new showings. This work followed up programs in 1987 and 1988 which lead to the discovery of vein, shear and skarn hosted mineralization with associated gold, silver, lead and zinc values.

In 1989 prospecting focussed on areas southeast of the King Vein and at Rumble Creek. Ninety-one rock chip samples were collected.

Figure 6 summarizes results of previous programs with some of the more significant assays highlighted.

Analytical procedures, sample descriptions and analytical certificates are appended to this report.

7.1 KING VEIN AREA

In 1989 several narrow quartz veins were discovered south of the King Vein over a northeast trending area approximately 250 m by 50 m (Figure 8). These veins are between 5 cm and 15 cm wide, and are hosted within the same intrusive which hosts the King Vein. Vein orientations are similar to that of the King Vein with northeast trends and shallow dips. No evidence of stockworking or close stacking of veins was noted.

Mineralization observed within veins includes rare visible gold, pyrite, bismuthinite and stibnite, generally as less than 5% total sulphides. Grab samples assay to greater than 1.0 oz/ton Au, with the highest value recorded of 5.473 oz/ton Au. Weak to moderate pervasive limonite, chlorite, sericite and potassic alteration is associated with veining.

7.2 RUMBLE CREEK AREA

Previous work north of Chubby Creek has defined gold mineralization occurring near the headwaters of both Rumble and Cripple Creeks. In 1989 mineralized float material was found at the base of Rumble Creek during soil sampling. Samples collected contained 2,800 ppb Au with 15,670 ppm Cu (Sample 06304), 2,150 ppb Au (Sample 06305) and 0.090 oz/ton Au, with 7.85% Zn and 13,122 ppm Cu (Sample 06307). A 1989 heavy sediment sample collected from this drainage returned 1,495 ppb Au. Prospecting resulted in the location of skarn and vein type mineralization.

A strata-bound bed of massive magnetite with minor malachite, one to three metres wide and visible for approximately 50 metres along strike, was discovered at the 1450 metre elevation. Float material returned 0.060 oz/ton Au with elevated copper and zinc (Sample 06310) while a select grab returned 540 ppb Au (Sample 06309). This zone occurs at the contact between a lime-stone and an intermediate volcanic unit. At 1350 metres elevation a 4.0 m x 2.5 m massive pyrite-magnetite pod returned geochemically anomalous gold and copper (Sample 06260). Float samples of skarn material collected in this area assayed to 0.180 oz/ton Au (Sample 06308) with associated anomalous copper, zinc and silver values.

At the 1280 metre elevation grab samples from a narrow quartz-sulphide vein assayed 18.76 oz/ton Ag (Sample 06209) and 32.77 oz/ton Ag (Sample 06210) with significant copper, lead and zinc present. Where observed in outcrop the vein is less than 15 cm wide. It occurs in a 0.5 metre wide shear that can be traced on surface for approximately 20 metres. Sulphides within the vein include tetrahedrite, galena and sphalerite.

8.0 1990 WORK PROGRAM

8.1 PROSPECTING AND RECONNAISSANCE GEOLOGY

During the 1990 field season four man days were spent on the Ticker Tape property conducting follow-up prospecting and reconnaissance geology. This work was concentrated in the area adjacent and between the Rumble Creek skarn/vein showings and the King Vein showings.

On the southern flank of the Rumble Creek area significant assays of 1.500 oz/ton Au and 0.480 oz/ton Au were obtained in small (30 cm) quartz veins (samples 35821 and 55963). During 1988 and 1989 sampling some 500 m to the of southeast generated gold values 0.280 oz/ton and 0.862 oz/ton, respectively, over the same narrow widths. Host rocks in the area are described as Paleozoic limestone with overlying early Jurassic Hazelton Group volcanics and sediments. The latter offer excellent host potential for vein systems.

Samp1e	Au		Ag	Cu	Pb	
	(ppb)	(oz/ton)	(oz/ton)	(%)	(%)	
55960		0.190				
35821		1.500				
55955	980		3.21			
55954	380		58.15			
55953				1.85	1.71	
55952					1.08	
55961		0.054				

1990 Prospecting and Mapping Significant Assays

See appendices for sample description and Figure 7 for sample locations.

Some 500 m west of the King Vein float samples of metasediment rock yielded values of up to 58.15 oz/ton Ag with anomalous Au, Pb and Zn values (sample

55954). Disseminated tetrahedrite is reported in this sample. Other samples taken in the area during 1990 yielded values of up to 1.85% Cu and 1.71% Pb with anomalous Au values from localized quartz veins (samples 55953 to 55955). Although some of these samples are taken from local float rock it is noted that sampling from previous programs has also yielded anomalous Ag (24.1 ppb, 1989) in this area. Follow-up detailed mapping to define the source and style of this mineralization is recommended for the 1991 field season.

8.2 DIAMOND DRILLING

During August of 1990 a program consisting of four BQ diamond drill holes totalling 292.57 metres was initiated on the property (Figure 8). The diamond drill program was designed to test the width and dip extension on a series of stacked Au-quartz veinlets located beneath the King and Darwin Vein exposures. During 1989 grab sampling of these veins yielded Au assays ranging from 0.302 oz/ton to 1.072 oz/ton. Significant Sb and Bi values were also obtained from these samples.(See Apendix IV - Diamond Drill Logs)

Summary of Diamond Drilling - 1990

<u>Hole</u>	Location	Azimuth	Dip	Length (m)
TT90-01	1000N, 1010E	157°	-90°	48.46
TT90-02	1130N, 970E	157°	-80°	152.13
тт90-03	1000N, 955E	157°	-90°	46.65
TT90-04	1020N, 775E	157°	-90°	45.33

Drill hole TT90-01 (Figure 9) was collared immediately above the mineralized veins and was designed to intersect the apparently sub-horizontal dip extension of the zone within 50 metres. Granodiorite was encountered throughout the entire hole, excepting a 1.2 m wide mafic dyke. Alteration within the intrusion was characterized by pervasive chlorite with more localized potassic zones. Mineralization consisting of disseminated pyrite, magnetite and pyrrhotite was restricted to small (<10 cm) quartz stringers. Core angle

measurements of quartz stringers indicates a generalized 50° to 60° dip to these structures. Assays of 0.034 oz/ton Au and 0.048 oz/ton Au were encountered at 6.63 and 47.55 metres respectively. Minor potassic alteration was noted in the upper interval while pyritic quartz stringers were recognized as the host in the lower interval. Analysis of drill hole data indicates that the targeted zone weakens significantly at depth. Alternately, and less probable, the zone rolls over at depth to a sub-vertical orientation. Surface geological data supports the first assumption.

Drill hole TT90-02 (Figure 10) was a 130 metre step back (grid south) from hole TT90-01. The hole was collared to test for a southwest strike extension of the King and Darwin veins and to check for possible dip projection of the quartz stringer zone described previously. As in hole TT90-01, granodiorite was intersected throughout the entire hole. Mineralization consisted of disseminated pyrite and local specular hematite. From 76 to 82 metres, at the approximate strike projection of the Darwin Vein, a zone of quartz-carbonate/barite "flooding" was noted. This interval was barren of mineralization. Complete sampling of the entire hole returned no significant gold results.

Drill hole TT90-03 (Figure 11) was collared approximately 50 metres (grid) west of DDH TT90-01 to test the possible strike extension of the quartz-stringer zone. As in previous holes granodiorite, with locally developed chlorite alteration, was encountered throughout. Small (5 cm) quartz stringers carrying minor pyrite and chalcopyrite were noted at 38 metres. Complete sampling of the hole yielded no significant precious metal values.

Drill hole TT90-04 (Figure 12) was collared approximately 175 metres grid south of DDH TT90-03 on the same geological section. The hole was designed to test for possible westward strike and dip projections of all three mineralized zones previously mentioned. A reduction of quartz stringers in favour of weak carbonate-propylitic alteration within the granodiorite was noted. Sampling returned no significant results.

9.0 DISCUSSION AND CONCLUSIONS

Diamond drilling during 1990 within the King Vein area has failed to intersect any mineralization of economic significance. The drilling was designed to test both the southwest extension of King Vein and the 'stacked vein' system lying some 150 metres to the south. While drill hole TT90-01 did intersect narrow zones of geochemically anomalous gold values, it was interpreted that the stacked vein system appears to have little continuity at depth. Holes TT90-03 and 90-04 also support this conclusion. Drill hole TT90-02 was designed to test the southwest extension of the King Vein. Although narrow quartz stringers were intersected, no mineralization comparable to the main King Vein was encountered. No further drilling of the King Vein is justified at this time.

Follow-up prospecting in the Rumble and Cripple Creek areas continued to reveal gold mineralization occurring in skarn zones and narrow quartz veins. In the Cripple Creek area silver values up to 58.15 oz/ton in float material confirmed previous sampling that showed anomalous silver. No detailed geological mapping has been done in either of the above areas.

A program consisting of detailed geologic mapping and prospecting will be required to fully evaluate the Rumble and Cripple Creek areas as well as other areas of known mineralization on the property.

Respectfully submitted,

S.L. Todoruk, Geologist

CHARLES M. Jkona, P.Eng.

APPENDIX I

BIBLIOGRAPHY

.

BIBLIOGRAPHY

- Alldrick, D.J., J.K. Mortensen, and R.L. Armstrong (1986): Uranium-Lead Age Determinations in the Stewart Area; <u>in</u> Geological Fieldwork, 1985, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 217-218.
- Alldrick, D.J. (1987): Geology and Mineral Deposits of the Salmon River Valley, Stewart Area, NTS 104A and 104B; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File Map 1987-22.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia; <u>in</u> Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.
- Caulfield, D.A. and C.K. Ikona (1987): Geological Report on the New 7 & 8 Mineral Claims.
- Collins, Denis A. and George R. King (1987): Geological, Geochemical, Geochemical, Geophysical and Diamond Drilling Report on the New 7 & 8 Mineral Claims, Hi-Tec Resource Management Limited.
- Dewonck, Bernard, Ed McCrossan and Paul Brucciani (1989): Report on the New 1, 5 and 6 Mineral Claims, Phase II, Orequest Consultants Ltd.
- Grove, E.W. (1968): Unuk River, Annual Report, Ministry of Mines and Petroleum Resources, British Columbia, p. 45-46.
- Grove, E.W. (1972): Geology and Mineral Deposits of the Stewart Area; B.C. Department of Mines and Petroleum Resources, Bulletin 58.
- Grove, E.W. (1973): Detailed Geological Studies in the Stewart Complex, Northwestern British Columbia, Ph.D. Thesis, McGill University.

Pamicon Developments Ltd. -
Grove, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas; Ministry of Energy, Mines and Petroleum Resources.

Grove, E.W. (1987): Geology and Mineral Deposits of the Unuk River, Salmon River, and Anyox Map Areas; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.

Gulf International Minerals Ltd.: Annual Report, February 1988.

- Hudson, Kim (1988): Report on the Ticker Tape Property, Orequest Consultants Ltd.
- Kerr, F.A. (1948): Geological Survey of Canada, Memoir 246, Lower Stikine and Western Iskut River Areas, B.C.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990): Geology of the Forrest Kerr Creek Area, Northwestern British Columbia (104B/15); British Columbia Geological Survey, Geological Fieldwork 1989, Paper 1990-1, p. 127-139.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990): Geology and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern B.C., British Columbia Geological Survey Open File 1990-2.
- Montgomery, A. and C.K. Ikona (1989): Geological Report on the New 3 & 4 and Joy 12 Mineral Claims.
- Montgomery, A.R. and C.K. Ikona (1990): Summary Report of 1990 Exploration on the New 7 & 8, Ice 1-17 and Ver 3 & 4 Mineral Claims.
- Souther, J.G., D.A. Brew and A.V. Ikulitch (1979): Geological Survey of Canada, Map 1418A Iskut River.
- Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Gab 11 & 12, Mon 1 & 2, Wei & Zel, Stu 8 & 9 Mineral Claims.

2

Pamicon Developments Ltd. –

APPENDIX II

COST STATEMENT

- Pamicon Developments Ltd. -

COST STATEMENT TICKER TAPE RESOURCES NEW, ICE, VER CLAIMS AUGUST 1 TO SEPTEMBER 15, 1990 LIARD MINING DIVISION

WAGES	
Manager/Coordinator	
K. Milledge - 1 day @ \$250.00	\$ 250.00
Geologists	
R. Darney	
- 1 day @ \$400.00	400.00
S. Todoruk	
- 2.5 days @ \$400.00	1,000.00
M. Stammers	
- 1.5 days @ \$400.00	600.00
R. Gerhardt	
- 6 days @ \$325.00	1,950.00
L. Vanzino	205 00
- 1 day @ \$325.00	325.00
Prospectors	
N. Debock - 4 days @ \$300.00	1,200.00
B. Girling - 1 day @ \$300.00	300.00
E. Debock - 1 day @ \$300.00	300.00
J. Anderson - 1 day @ \$250.00	250.00
J. Gordon - 1 day @ \$250.00	250.00
Samplers/Trenchers	
G. Douglas - 1 day @ \$225.00	225.00
B. McAdam - 4 days @ \$225.00	900.00
J. Elmore 1 day @ \$225.00	225.00

Total Wages

\$ 8,175.00

Field Project Supervision

\$ 4,805.50

CAMP AND EQUIPMENT EXP	ENSES		
Room and Board Pamicon Crew Driller Pad Builders N.M.H.	27.0 days 18.0 days 4.0 days <u>11.0 days</u> 60.0 days @ \$125.00	\$ 7,500.00	
Field Equipment and Su	pplies	1,112.50	8,612.50
GENERAL EXPENSES			
Travel, Accommodation Space Tel Communicatio Fixed Wing Helicopter (26.7 hours Drilling Drill Materials Drill Fuel Assays Report	and Airfare ns @ \$651.15)	\$ 560.00 585.00 326.80 17,385.70 24,719.45 1,724.50 671.04 3,804.00 3,000.00	52,776.49
TOTAL THIS PROGRAM	,		<u>11,155.42</u> \$ 85,524.91

APPENDIX III

ANALYTICAL PROCEDURES

C VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

November 15, 1989

- TO: Mr. Mike Stammers PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4
- FROM: Vangeochem Lab Limited 1988 Triumph Street Vancouver, British Columbia V5L 1K5
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".
- (c) The gold is extracted by cupellation and parted with diluted nitric acid.

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

(d) The gold bead is retained for subsequent measurement.

3. Method of Detection

- (a) The gold bead is dissolved by boiling with conentrated aqua regia solution in hot water bath.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
- 4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

November 15, 1989

- TO: Mr. Mike Stammers PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4
- FROM: Vangeochem Lab Limited 1988 Triumph Street Vancouver, British Columbia V5L 1K5
- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

1. Method_of_Sample_Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method_of_Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCL:HNO3:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

3. Method_of_Analyses

The ICP analyses elements were determined by using a Jarrel-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disk.

4. Analysts

The analyses were supervised or determined by either Mr. Conway Chun, and, the laboratory staff.

Jaime Wong VANGEOCHEM LAB LIMITED

APPENDIX IV

SAMPLE DESCRIPTIONS

PAMIC DEVELOPMENTS LIMITED

Geochemical Data Sneet - ROCK SAMPLING

NTS _____

Sampler _	L.VANZINO	
Date _	aim Sept 90	

Project

Property_TICKERTAPE

Location Ref _____ Air Photo No _____

SAMPLE		SAMPLE	Sample		DESCRIPTION	I			 ASS	AYS		
NO.	LOCATION	TYPE	Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	AJ PPB				
55956		Grab.		Spotted Skarn .	Lincole	Pyt Cpy usps	skarns occur us obscrete pools at base of marble unt	110			`	
957				N. Start			Skarns are almandine	50				
95B				u			gernetrich. 15m x 20m diminishing	જ્ય				
							in skarnification & minz chay from contect					
55959	1545	Grab		Marble	hineste	Ryrike	Minz associated in	30	х.			
						· · ·	med xtl ntrusive dyke.					
55960	1520-	Float		Magnetik	+CF SK	en.		1760				
								.054 oz/z				
* 55961		Gr-b		Brothe, 1	yrik - qtz	sheer.	CK collecent to C.P.C	9100				
and the second sec							Im vide shear in contact	1.500 05/t				
							aurcole of behalit.	.190 02/E				
*35821	3930'	Chip		Otz	limy		10-20 Cmy 8h /15-45	yooco				
								1/SARD				
								1.500				
								व्य/ट				
											Ì	
				100 - 100 - 100 110 - 100 - 100 110 - 100 - 100								

DEVEL	OPMEN'	ts lim	ITED	Geochem	nical Data	et - RO) ور	CK SAMPLING	N	-s		J		
Sampler _	E: Deac	×ĸ	_ ·	Project	TICKER.	TAPE	Loc	ation R	ef	•			
Date _	SEPT B,	1990		Property_			Air l	Photo N	lo				
							·					<u>.</u>	
			Sample		DESCRIPTION					ASS	AYS		
NO.	Image: Angle of the state	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS							
	TICKER TAPE	GRAB		1				Au ppb	G.	РЬ	2n	Ag	
55951	a	. lt		TUFF	Silicified	PYRITE	8m WIDE, 10-12m La	16 350					
55952	ų	ł		META - SED.	QV	GALENA	FLOAT	160		1.08%			
55953	N	ų			QV		FLOAT, 10cm WIDE, VUGGY, LIMONITE	30	1.85%	1.71 8			
55954	¥ .			META -		TETROHED.	RLOAT. DISSEMINATED TETRAHEDRITE	380				5 8.15	05
55955	k	is		lı	QV	TETRAHED.	VEINS. 1-6cm wide 10m Long.	980				3.21	or/

•

Ę

ł

. . . .

ł

:

:

;

PAMIC DEVED	JPMEN'	ts lim	ITED	Geochen	nical Data	et - ROO	CK SAMPLING			
ampler /	N: DEB	δοςκ		Project	TICKER	TAPE .		NI Location R	S ef	
atte	SEPT 8,	1990		Property				Air Photo N	lo	
			Sample		DESCRIPTION	1	· · · · · · · · · · · · · · · · · · ·		ASS	SAYS
NO.		TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATION	ONS Au		
5801	4250 "	GRAB	25	TUFF	SIL /CHLOR	DYR + MAG	+ 35° 90°	. 60		
802	N.	ч	4	ч	ų	· ′	. 11	90		
803	u	st -	4	11	n		U	100		
			Im	·	CLAY/					

٦Ì

902	×.	Ч		<u> </u>	"(. 17	40	\rightarrow		
803	LL		4	14	n		<i>u</i>	100	_		
804	4500	Снір	Im	TUFF	CLAY/	RyR.	1 30° 45° 500	20			
පිර	4570	FLOAT	30 cm	GABBRO	OLIVINE	RIR + MAG.	·	490			
Bab	4600	CHIP	30 cm	n	LIMEY	RyR.	15m x 25 m	250			
807	4660	ч	30cm	ANDESITE	a	4	135° 90°	20	_		
BOB	4770	N	"	TUFF	4	4		. 20			
809	4810	K	4	4.	4	RyR. + MAG.		130	;		
						·		_			
810	4810	ų	u	11	4	11	·	50			
811	11	ti	ч	U.	1/	u		80			
BIZ	h	u	v	SKARN	-	Fe. Cu		nd			
813	4940	11	"	TUFF		Fe		nd			
\$14	49.00	FLOAT	4	SKARN		Fe lu, 2n	15-20m × 50m	190 #d			
BIS	4765	CHIP	11	u	LIMEY	Fe		220			
816	4650	ч	"	4	4	4		400			
817	4	4	4	17	4	4	· ·	850			
818	ч	ł	"	<u>u</u>	4	4		160			
819	4	- 41	"	1	4	4		180			

annal	X/ D=	Rob		Project	TH.	\mathcal{T}			I ocation	Ref			
ampier	Sept 3	0/90		Property	TR'	7			Air Photo	No			;
				1		· ·				· .		<u> </u>	•
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITION	IAL OBSERVATIO		<u>ر ز</u>	ASS	AYS	
559(2	50 m N of	Chip	30 -	Qt-	_	~	4400		σι	5 6			
55963	Reof		1	n -	Lime tela	4 Pur	Zinsan	ples on	same .9	30			
55964	35821	ų		₿. Internet	4. 1	1	Svein 5	mapart	<u>'</u>				
							•	·				2	
•						 		; 					
						•	·	·					
										<u> </u>			
							\						
							<u> </u>						
										_			
											_		
· · ·													
•								<u>,</u>					
							·						
	and the second se			1 .	1		1						
					· · · · · · · · · · · · · · · · · · ·	·		·					

APPENDIX V

DIAMOND DRILL LOGS

PAMICON DEVELOPMENTS LIMITED

(

(

DRILL LOG	
PROJECT	GROUND ELEV.
Ticker Tape	1497m
HOLE NO. DDH 90-1	BEARING 1570
LOCATION	DIP
1000N 1010E	TOTAL LENGTH
	48.46m
LOGGED BY R. Gerhardt	HORIZONTAL PROJECT
DATE Aug 17/90	VERTICAL PROJECT
CONTRACTOR Estas Drilling	ALTERATION SCALE
	0 1 2 3 absent slight
CORE SIZE BQ	moderate
DATE STARTED Aug 16 /90	intense
	TOTAL SULPHIDE SCALE
LATE COMPLETED Aug 16/90	traces only
DIP TESTS	1% - 3%
	3% – 10% > 10%
COMMENTS	LEGEND
	· · · ·
· ·	
· · · · · ·	

PAGE)	PROJECT:	TickerTape							HOL	EI	NO	TT	90 - 1
(E) H	CORE REC	THOLOGY	RUCTURE		GEOLOGICAL DESCRIPTION			AĽ	TER	ATIC	ON			RACTURE	VEIN QTZ.	
3	%		S		1	A	÷	<u>B</u>			D	E			8	$\left \right $
		13		2.1		1		##	++-	<u> </u>	#	11	Ħ	11		111
				213-48.4	6m granodiocite - med. zln,			$\pm\pm$								
		 	+ + -	equiaran	ular medium duishcire. to greenish	┞╋	\mathbb{H}	++	╉┽	┼┼	++	┼┼╸	┼┼	┿╋	┠┼┼	+++
		٢	530	grey, Por	lasing weak to mail and a last his		1	11	++		11	++	Ħ	11		
			124	atteration	generally distinct as irregular optimer			11	11		ţţ.		ţ ļ	11		111
0				or bands	concordent to fractures. Local		H	$\pm \pm$					<u>i t</u>			
				tiesegang	elteration assoc. W fractures.		┢╋	╉╋	++	+	++	++	+	++	┢┼┽	╉┼┼╋
		-+	26%	Contains	<1% dissen py, magnetite and	F		++			\mathbf{H}		П	++	\square	$\downarrow \downarrow \downarrow$
			F/L	pyrnoat	2.		Ħ	##	11		ţţ.		Ì	11		111
		+	1		-7.77 810 band (mor) ootassic		H	$\pm\pm$					Ħ	$\pm\pm$		
20			2/6	•	altin @ 53° TCA II an alevated to		$\left \right $	╋	╉╋	++	┼┼	┼┼	┼┼	┿┼	┝┿┿	┥┽┽
20			6	· · · · · · · · · · · · · · · · · · ·	1-22 assoc. I carb- actin - chipinlets		ļ.	##	11-		İİ.		İ-İ-	11		1-1-1
	1		1/he					$\pm\pm$						$\pm\pm$		
	· [×	₽ <i>3</i> 9	·	- 14, 15-14,76m O.3cm wide band		┝┼	╂╂	╉╋	┼┼╴	$\left \right $		┢┤	++	┠┼┼	┼╍┝┿
		-]	ot ufine chlorite, magnetite and	H-	Ħ	$\uparrow \uparrow$	11	F	ŦŦ-	H	Ħ	\mp	III.	11
		-			pyrite @ 36° TCA		Ħ				Ħ		Ħ	扗		$\pm\pm$
30	.	_	A.			\mathbb{H}	\mathbb{H}	++	++-	┢╋	+		+	++	\vdash	
			r –		-19.08-19.09m 02. with to		F-F-	\mp	++-	H-	H-		F†	++-	HÌ	
					diate chi and the giz		Ħ	11	11		t†		Ħ	#	11	
		Ŧ	520/	<u> </u>	- unionite stringerte 68 TCA, w 5-10%		H	$\pm +$	++-				┢╋	++		
			K		pyrite and magnetite as blobs		F	H	++-	FF	H		FF	++	H	
				<u> </u>			LT.	##	11		t†		口	<u>†</u> †	11	11
4					-19.40-19.41m O.5cm wide ats		h						E	++	+++	
U					stringer @ 60° TCA 20-209_ Ou		H	++	\square		H	H	H	++		+++
	j.	+			às blebs		1	#	11-		† ‡		口	#	+++	
			2°C	2			<u>H</u>	\pm			Ħ		<u>H</u>	\pm		
		+	27	61	=23.90m time 21 inequigranular	+		++	┨┼		\vdash		\vdash	+	++	÷
-+-	- 1			56 med	greenish grey matic dyke, upper		_	11						ļļ		
40	.щ.			83° conta	ct distinct @ 31° TCA, lower contact			\pm						11	11	
. 48	346			distir	at @ 33° Tra several calcite			++			\vdash			+		+ i t
				strin	cors & Law wide	+		++			$\left \cdot \right $		\square	$\overline{+}\overline{+}$		
								$\downarrow \downarrow$			匚		Γļ	11		
								±±			Ħ			$\pm \pm$		
			┟─┼─	· · · · · · · · · · · · · · · · · · ·	- 29.38 - 29.39m O.7cm wide Juggy	-+		++	++		╟┼			++	\rightarrow	
-	1	—			qt2 stringer (a 64° TCA, 3-5%		T		1	H			ļ ļ		1	
·					py as blebs		Ħ	11			廿		<u></u>			
					- 3502 - 3503 0.7cm wide	\pm		$\pm\pm$			H					
					magnetite band @ 57°TCA	$-\Pi$	F	$+\top$	+	- -	F		Ļ	+	H	
						1		11	11		T -					
	1				- T3:00-43:10- 10cm 2000 0t			\ddagger			上			+		
					tenit gouge @ 35° TCA		F		+			\square	$\left \right $		11	
	Ì	,			-44.80-4500m zone of strong	+		Ţļ	1		 - -	ГÌ	[]-	4	ŢŢ	
		<u> </u>			arguillic alth, w dendritic py colusite			#	11		廿	口口	Ľİ.			1
		<u> </u>				\pm	+							+		
					- AE 05 15 00 25			Ħ	+	F	F	$\left + \right $		++		
						1	=	11	11		T			<u>†</u>	han haveraa variaa saar	
					sugnary suggy qiz-py vein to									······		
			 		61-1CA, 20-30% py 25 bands	+		++	$+ \square$		H					-
					and blebs, 3-5% dissem cpy			11	1-		1				· · · · ·	1
					- 47.96-47.97 1.0 cm wite otz vein			$\pm\pm$			1					ŀ
	1				@ 50° TCA 1-39 01. ac higher tr	+		+	-		-i-					
					Lb	干	1	T†	Ļ		1				· · · · · · · ·	
					magnetik			11	15		L.				······································	1
	L		1		-10.20.40.21 U.D cm wide av			ş i	1 .			l `	È	۰.		L

,

		<u>.</u>	· · · · · · · · · · · · · · · · · · ·	, 								
	1	Щ	ĺ	SA	MPLES				ASS	SAYS		
MINERALIZATION DESCRIPTION	TOTAL	SULPHIG	FRO	Cm M	eters) TO	HIDIN	SAMPLE	Au ppb	Aw Oz/T			
	Ħ	Ħ	2.13	3	3.63	1.5	63851	10		<u> </u>		<u></u>
	H	$\left \right $	-36	3 5	5.13	1.5	~ 852	40				
L1% fine discern		Н	51	3 6	6.63	1.5	~ 853	, 50	-			
ourite magnetite	H		6.6	3 8	8.13	1.5	- 854	- 1620	.034			
ourchatite	\mathbb{H}		8.0	3	9.63	1.5	< 85 <u>9</u>	5 50				
· · · · · · · · · · · · · · · · · · ·	╞╪	\pm	9.6:	3 1	1-13	1.5	- 856	, 120				
		++	111	3 1	263	15	<u>~ 85</u> 7	20				
	++		12.6	3 1	4.13	1.5	- 858	20				
	╞		14.5	3 1	5.63	1.5	- 859	10				-
· · · · · · · · · · · · · · · · · · ·	++	\ddagger	156	3 1	7.13	1.5	 860 	10	ļ			
2 4 4 20 202 04			17.13	3 1	8.63	1.5	* 86	1 20		·		
- 0.7cm 3-570 py	3-1	17	186	3 1	9.05	.42	· · · 867	120	ļ			
	++	\uparrow	19.0	5 /2	2:55	1.5	· 863	120				
Lilo time		++	20.5	52	2.05	1.5	- 86A	20	<u> </u>	·		
dissem pyrite,	++	+†	22.0	252	3,55	1.5	* 865	<u>1:50</u>				·
	+	$\left \right $	235	52	5.06	15	· 866	20			·····	
pyrchotite	+	\prod	25.0	5 2	6.65	1.5	60	na				
	-	++	26.5	52	8.05	1.5	<u>· 868</u>	2 20				
			280		9.55	1.5	1. 069	60		<u> </u>		
	\		310	2.0	1.05	1.2	<u>* 50</u>					
		+	27 5	52	1.00		· 8/					
	╺╋╼╋╸	\ddagger	-1240		+:00 5 CC	1.5	× 01/	20		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	╞╪		-35,6	<u>5)</u> 5 3	205	1.5	2 874	30	<u>.</u>	<u> </u>		
	井	#	37.05	5 3	2.55	1.5	- 87	20				
	╞╪╴	Ħ	385	5 4	0.05	1.5	2 876	i nd				
	1	++	400	5 4	1.55	1.6	<i>" 877</i>	50				
	1	††	41.5	54	2.05	1.5	4 B78	20		·		
	Ħ	Ħ	420	54	4.55	1.5	· 819	100				
	H	++	44.5	54	6.05	1.5	<i>~ 8</i> 80	10	· · · ·			
	\mathbb{H}	$\left \right $	460	54	7.55	1.5	14 881	70	Î			
qv 20-30% barded py, 3-5% cpy	~12	5%	47,5	54	7.77	.22	/ 882	1500	.048			
(correlates to 25cm vn @ 45.85-41.88m)		┢	47.7	14	9.72	1.95	·· 883	66				
			49.7	25	0.12	AO	63884	50				
		╞┼		<u>er</u>	<u>.</u>	Ebd	e					
plote:	┢╍┼╍	╞┼╴	1						ļ			
sample intervals	╞╪╴		-						ļ			
not correlated to blocks.	井	##	1				ļ	<u> </u>				-
a discrepancy of zerrox	╞┿╴	Ħ	†					<u> </u>				ware chart ware a comp
1.5 m tarres ord of	+	<u>†</u> †	1—	+		····		<u> </u>				
vole results. Wrill lay	F	H]			· · · · · · · · · · · · · · · · · · ·						
to Horks	-	$\left \right $	}-								alaa ahaayiin daar ah	
	Ħ			+								
a anathaigh a a dhua an an an an an an an an an an an an an	H	$\left \right $	<u></u>								.,	
	T T	1	ר		1		1	1	1			

MADE IN VANCOUVER, CANADA

PAGE		OF		PROJECT:	<u></u>						нс	DLE	NO.]
	N	>	ш					ALT	ERAT					N	<u> </u>	-
JEPTH (m)	6 CORE RE	THOLOGY	TRUCTUR		GEOLOGICAL DESCRIPTION		Ţ				T	-	RACTURE	« VEIN QT		
-	8		<u> </u>		······································		╪	Ē	H			<u>с</u> - -				1
-					· · · · · · · · · · · · · · · · · · ·		-	Ħ	┟┼┼					╞╪╪		1
-]
-]
-							+	┢┼╴					++			ł
-				· .									##		┝┼┿	
-													\ddagger	╞┼┼		1
-													++			1
							+	Ħ					\mp			1
-					· · · · · · · · · · · · · · · · · · ·		1	H				H]
-						\square		H	H	\square		\square	+		H]
-						H	E	E				╞┼┨			H	1
-							\pm	Ħ	╞╞╋				\pm	╞┼┿		
-													++			
-					· · · · · · · · · · · · · · · · · · ·		+		╞╪╧╞				\pm		\downarrow	
-							1	 +-					++			1
-							1						++			
													##			1.
<u> </u>							+			Ħ			++			16
					······································		+		Hİ			H	++			1
								H					++			
-													++			
							+									1
• . —						+							\pm			1
						++	1-			11			$\ddagger \ddagger$			1
_													++			1
• . •						++	1						++			
, 	F						+	Ţ			+					
_	-				· · · · · · · · · · · · · · · · · · ·	+	_				_		+			
-													\pm			
-				· · · · · · · · · · · · · · · · · · ·			+						$\pm\pm$			
.						╘╋╋							$\pm\pm$			
-	þ								╎┼┼╴				++			
<u> </u>	-												++			
	-					++							+			
			-						1			H				
-	ŀ			· · · · · · · · · · · · · · · · · · ·				-	H				+			ł
.	ŀ				· · · · · · · · · · · · · · · · · · ·		-							+	<u> </u>	
	ľ											1-7-				
· · ·	ŀ										_					`
	-					+					_		ه برد مرجعهانه د بردهمانه م			
-	-]	+			$\rightarrow 1$										
	-					+				$\left + \right $	-		<u> </u>		++	

PAMICON DEVELOPMENTS LIMITED

DRILLLOG	
PROJECT Ticker Tape	GROUND ELEV. 1590m
HOLE NO. TT 90 - 02	BEARING 1570
LOCATION 1130N 970E	DIP - 80°
	TOTAL LENGTH 152.13m
LOGGED BY R. Gerhardt	HORIZONTAL PROJECT
DATE Aug 19/90	VERTICAL PROJECT
CONTRACTOR Falcon Drilling	ALTERATION SCALE
BQ	moderate
DATE STARTED A 06 17 / 90	TOTAL SULPHIDE SCALE
DATE COMPLETED 21 DIP TESTS	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
COMMENTS	LEGEND

.

9	x	OF	4	PROJECT: Tick	ier Tape	·					н	IOLE	E NC). 🤇	90.	02
	RE REC	JEOGY	CTURE	GEOLO	GICAL DESCRIPTION		/	ALT.	ERA		N		TURE	VSITY	IN QTZ.	
	8	ПТНО	STRU		•	A	E	3	c		D	Ε	FRAC	B I	% <e< th=""><th>- 7 - 7</th></e<>	- 7 - 7
		25		0.00-2.13m U	asing		┥┽		11			##			11	
		<u></u>	┟╌╁╼		J			+-			-+-	-+-	++			
				213-152.15 gran	odiorite		+	Ŧ	\square			+		+		
		Ŧ		- med zin med). bluish grey to greenis	5111		1								
				grey Approx 5	0-00% + 50er, 20-309		- - ⁻	\pm								
		+		matics(hight	a) and to 15% ato 11/201		+	+		+			++	╁╂		
					Saucesta distance			T	11	11					44-	
		<u>+</u>		hlashing to chlos	ticaltial ocall mod	<u>~</u>		+								
				line of the	Regana vivas Pondrit	ie + +	╺┝─┼╴	+-	++	┉	++	++	┥┽	┽╂	++	
				Ourolusite Dress	ent on brost fractures											
		<u> </u>			<u></u>								11			
		—		~ 1/0 10155em	m		+	+	┝┼┼	┼┤			+	╢		[+]
	ł			9.11-9.12 - O.	2 cm dalamite veiblet@	_[]]		T	11		+1	-71		Ţ	+	I
				670	TCA											
					· · ·		┥┽	+		+		+	╶╢╌┾╴	┽┽		
	1				······································			-		17		11			\uparrow	
		-+	+		<u> </u>											
		- <u></u> ->		14-64-16-26m h	24Cgike		++			+		+	┽┽	╬╋		
								+				71	H	+		
		1		-v. The xin, gr	eyish green. Sper Conce	\sim		1							++-	
		507		WOISTINCE OF	3°ICA, lower contact	_∎ È-∔-∔		\pm		- -						
	41			Starpe Starte	A everar cencile verni	erb i i		+	\square	-		\square		+	++	
				- < + Cm - 461055 0	FVGricus orientetions		++	+-		-11					<u> </u>	
		+		15.70 15.70				+-						\pm		
				13.10-15.19m - 0	6 cm calcite veinlet@67°	ICIA		-	+			\mp			++-	
				18.08-18.16m - 3	enestamising av upto kr			1		11				1	1	Ш
	600	700		wide (38°TCA mollingue local	Jul H		+			-				++	
				3-57		ᅴᆉ		+				-		+		
	56			18 11 10 11 - 7	1 0 428 TCA			Ŧ		_	_				++-	H
•					where a letter is the			-								
			1	18.94-19.44 - W	Kly silicities, pyelevated		┉┝╌┼╸	+-	++			+		+	++-	
		+			» [-2°]		17	Ŧ		\square				\mp		
		÷	1	22.47-23 15m -	6 qv, 0.5-5cm wide @65	· 20-TCI		+								
				locally	ruggy to limonitic fracture	s, ⊢+	+	╧						+		
	Go	\sim		Py 3-5	%, locally 20-30% in vein			Ŧ								
		<u>+</u>		24.40-74-47 - 1.30	m atz-carb voinlet@ 56°TC	AH	1İ	Ť	11				11	-	-+	
				2920-2921 - 0.2	m chlorite-carb veinlet			+				1			++-	
								┿				+		+	+	+
	5	6°/-				$-\square$		+			_			Ŧ	-+	
i	[]	~		$\frac{32.77-30.28}{100} = mo}{100}$	o to invense diezening, w			+				11			<u></u>	
	1	+ -		av L	inen of multimes. Levere	`		+					╶┤╼╋	┽╢		
	ļ			33.18-33.19 -10,	m gv@ 56° TCA			Ŧ	+			+		+		
		t-						t	廿			<u> </u>			11	
					· · · · · · · · · · · · · · · · · · ·			+			\pm			\pm		
	ļ						17	Ŧ	++	П	Ŧ			Ŧ	+	
		┝╼╾╼┺╼ ┝━╍╼╼╍	=	200 1210-			11	1-		╶┟╡		+		訆	#	
				27. 31 - 4010m -	strong dikening, moo.			+	 	- -		<u>_</u>	╘┈╽╌╃		+	<u></u> j
				<u></u>	······································			+	HI		+	1 1		+		
					·····	-	11	1	;;†			1				
		_						\pm				\pm				
					Min Ster number in distribute Statistical Indiana - Colomate Roading Statistics of a colonical statistical statistics for a second statistical statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the statistics of the	- 	17	Ţ	H-							
		·- t					17	4		13			-			·
			-+-								+	<u></u>				
						1 1	i	j.	1-1-1	. Li						- i -

PAGE 16 OF 4. PROJECT: Tid	cK	er	τ_{i}	sp	z						но	DLE NO. 90-02
		ш		S	AMPLES		Ι.		ASS	SAYS		
MINERALIZATION DESCRIPTION	TOTAL	SULPHID	FF	C NOM	то то	HTOIW	SAMPLE NUMBER	Au oz/sł				
	H		-					<u> </u>			-	
	╞┼	╈			2.50		(- 000			 		
412 09	Ħ	++	-12.	15	3.19	1.66	63885	2.005				
locally 3-5%	Ħ	\ddagger	3.	79-	5.43	1.CA-	63886	1.05				
in veins		\mathbf{H}					1000	2.005				
			-þ.	43	1.24	181	63881	2.005				
-		\ddagger	- 7.2	24	9.11	1.87	63888	1.005				
	Ħ	\ddagger	+				00000			<u> </u>	,	······································
	+	##	-19.1	-t	10:61	1.50	63889	2.005				
	Ħ	\ddagger	-10.	61	12.10	1.49	63890	2.005				
	H	+	-									
oute s			-12	10	13,13	1.03	63891	2.005				
J	H		- 13.	13	14.66	1.53	63892	2.005				
		+		~~~	10.76	I.GO	1-490-4					
				00	10.20		00075	2.005				
		$\left \right $	16	25	11.87	1.62	63894	2.005			-	· · · · · · · · · · · · · · · · · · ·
		+	17	87	10.10	1.52	63895	1.005		┟╌╌╌┼		
1-2% ру		11	-10	40	2012	100	62896	0.01				
			12	47	2042	1.40	62900	1 005				·
	 	$\frac{1}{1}$		12	21.30	0.50	95071	<u></u>				a and a second second second second second second second second second second second second second second second
3-59 04 105214 20-202	 - -	++	21	.90	2340	1:50	ତ୍ୟେଷ୍ପକ୍ଷ	<-005				
	H		-23	340	24.94	1.54	63899	<.005				-
			-									
	H	\ddagger	-24	.94	26,45	151	63900	<.005				
		$\frac{1}{1}$	26	45	27.93	1-48	63901	6.005				
	$\left \right $	\ddagger	-	~	<u> </u>							
	Ħ	\ddagger	12/	93	29.42	149	63902	<.005		 		
-			129	.42	30.30	.91	63903	<.005				
		$\left\{ \cdot \right\}$	140	-33	31.80	1.47	63904	2.000				
			3	80	33-77	1.47	-63905	2.005		·		The physical and desired a structure, etc.
	L_	$\frac{1}{1}$	33	-27	34-78	1.51	63906	<i>2.005</i>				and an an an an and an an an an an an an an an an an an an
	┝╶┿╸	╞┼	34	1.70	362	1.42	63907	1.005				
	F	Ħ				<u> </u>						· - · · · · · · · · · · · · · · · · · ·
	H	H	-36	.26	39.24	୦୫୪	63908	۵.005				and an analysis of an analysis of a second second second second second second second second second second second
		H	-37,	24	38-28	1.54	63909	2.005				
	H	Ħ	38	3.28	39.79	1.51	63910	<.005	•			
	┝╋	╞╪		<u></u>	A.1-22		6-20-1-		_			
	 - -	##		· 17	-71'25	1.54	0.3711	<-00	F			No. No
	片	\ddagger	41	33	4291	1.58	63912	<.005		-		·
	Ħ	Ħ	1	ar	רא עוד	1.67	(2017		•		are 1979 and 1, 2017 and	
	F	Ħ	1-2	.71		1.20	62713	<.005				· · · · ·
		Π]							<u>├</u>		

MADE IN VANCOUVER, CANADA

N2/E2

PAGE	e 2a		OF	4	PROJECT: Ticker Tape					н	OLE	NO.	90	-02	-
:PTH (m)		CORE REC	THOLOGY	RUCTURE	GEOLOGICAL DESCRIPTION		AL					ACTURE	VEIN OTZ		
_ <u>¤</u>		8	5	ST	· · · · · · · · · · · · · · · · · · ·	<u>A</u>	В	c		<u>}</u>	Ε	臣길	8		
_			.			##	┝╌┾╌┥		#	Ħ	井		++		4
-				_	f	#		╈╋		╄╋	#		#		4
-		5	⅔	<u></u>	47.82-4783 - lange @ 52° TCA			111	#				++-		
	•		-+-		48.10-4932 - strong chloritic alt'n and	++			11	\ddagger	#			╞┼╌┼┨	
5	o l				weak sericitic altin					ţţ					
		-	+			\pm			┼┼			╞┼┽			1
-						井		┨╁╁		╞┼	11.				-
-				_	-										
-			1	<u> </u>	54:57-59172 - mod. to strong silic's bleadi	Ha.				$^{++}$					
		-			2 sericitic attin	17					++	-+-+			
		F	+		57.00-57.07 - bleached zone @ 71° TCA 51	+	\square								
•		F	71.0		fuchido (?) hiebs & ato ever	<u> </u>	H			H	$\pm \Gamma$	H			
-					200rox Imm dia 25 wellias -	++		┨╋╋	++		++		· · ·		
-		-	+		sericite transers I chlorite -	++			+	$\left \right $	++	\square			-
	-	-			epidote bands, Francologh, -	#	$\left \right $		#	╄╋	++	++		\square	7
- 60	0	ŀ			Scm band of week breating	11		┼┼┼	++-		++		忭		_
			ŧ		and 3-5% py	井									
		-		_							$\pm\pm$				
-		-	++			++		╋							
<u></u>		-				++		+++	++-	+	++-				-
•		ŀ	7						+	Ħ			+](
-		-		_	60.04-66.81 - strong bleaching weak-mod	++			++-		++		++-		
. 		-			Silic'n & Pervestile sericitic alth	11				╇╼╋	11		++-		-
-			+		۲ 	井				##	+		11		
-				_		++				ļ	++-		1		
- 7	6	67	\geq		65.26-65.29 - 3 cm qv@ 67°TCA -	$\pm\pm$					\pm				_
_	Ŭ	-													
•		E	T		-	++					$\pm\pm$				
-		-	-+-		-	++		┥┼┼		+	++		+		
-		-		_	-	₩		+++		$\overline{+}$	++	++			-
-		F	+			Ħ		++	+	H	\mp				
		-		<u> </u>	7568-8707 - mod to brally strangetz -	+	4		11-		11		1-		7
-		-	+	4	(Im) a Heading and mitte	#		111		<u> -</u> -	++				
-						11		111			11		11		
			(1	78.56-90.56 - work herristian at mater								11		
		-		<u> </u>	Icrel white basite "last" into				++		$\pm\pm$				
- 8	0	ŀ		1	Sam love locally 1-32 fine head										
		-	L		Py	++-			++	+					
-		-			· · · · · · · · · · · · · · · · · · ·	11				+					
		Ē		1	······································	\ddagger		11	#	+	++	 	1		_
. ·]		Ť		#			11	#	11		Ļ		-
-		Ŀ		<u>-+</u> -		++-			1	tt	+				1
				1		\ddagger				÷	 	<u> </u>			
_		-				$\pm\pm$	出			+	<u>_</u>				
-		-	_+			$\pm\pm$				÷		<u> </u>			-
-	1	F				+ -	+								~
		1-					÷			771		F . 7	1		-1
-		- H	┝		1 <u>1</u> 1			-		† -					

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		``	104	e	×	ist)e						НО	LE NO. 90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				ų		S	AMPLES				ASS	SAYS		
$\frac{44.47}{45.80} \frac{44.47}{45.80} \frac{41}{1.54} \frac{2001}{2.0916} \frac{2.005}{4.005}$ $\frac{47.42}{49.98} \frac{47.42}{1.54} \frac{43.91}{2.0916} \frac{2.005}{4.005}$ $\frac{47.92}{50.55} \frac{47.92}{1.55} \frac{2.001}{2.001} \frac{2.005}{4.005}$ $\frac{50.55}{50.55} \frac{52.2}{1.59} \frac{2.005}{2.0019} \frac{2.005}{4.005}$ $\frac{53.26}{53.26} \frac{53.46}{53.46} \frac{0.30}{6.2020} \frac{2.005}{4.005}$ $\frac{53.26}{53.26} \frac{53.46}{53.46} \frac{0.30}{4.002} \frac{2.005}{4.005}$ $\frac{55.48}{56.06} \frac{50.92}{6.2022} \frac{2.005}{4.005}$ $\frac{56.48}{56.06} \frac{50.01}{62} \frac{2.005}{4.002} \frac{2.005}{4.005}$ $\frac{56.48}{56.06} \frac{50.12}{6.2022} \frac{2.005}{4.005}$ $\frac{56.46}{6.012} \frac{1.53}{6.302.44} \frac{2.005}{4.005}$ $\frac{56.46}{6.013} \frac{1.53}{6.302.44} \frac{2.005}{4.005}$ $\frac{60.13}{6.06} \frac{64.26}{6.13} \frac{1.53}{6.302.44} \frac{2.005}{4.005}$ $\frac{64.46}{6.011} \frac{1.56}{6.392.92} \frac{2.005}{6.005}$ $\frac{7.16}{67.71} \frac{1.54}{6.392.92} \frac{2.005}{6.005}$ $\frac{7.17}{69.26} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{67.70} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.18}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.763}{7.763} \frac{7.763}{7.753} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.763}{7.763} \frac{7.763}{7.763} \frac{1.52}{6.292.92} \frac{2.005}{6.005}$ $\frac{7.763}{7.763} \frac{7.763}{7.753} \frac{2.002}{6.005}$ $\frac{7.763}{7.763} \frac{2.002}{6.005}$ $\frac{7.763}{7.763} \frac{2.972}{6.005}$ $\frac{7.763}{7.763} \frac{2.972}{6.005}$ $\frac{7.763}{7.763} \frac{2.972}{6.005}$ $\frac{7.763}{7.763} \frac{2.972}{6.005}$ $\frac{7.763}{7.763} \frac{2.76}{6.005}$ $\frac{7.763}{7.763} \frac{2.972}{6.005}$ $\frac{7.76}{7.763} \frac{2.76}{6.005}$ $\frac{7.76}{7.763} \frac{2.76}{6.005}$ $\frac{7.76}{7.763} \frac{2.76}{6.005}$ $\frac{7.76}{6.005}$ $\frac{7.76}{6.005}$ $\frac{7.76}{6.005}$ $\frac{7.76}{6.005}$	MINERALIZATION DESCRIPTION		TOTAL	SULPHID	F	ROM	то	WIDTH	SAMPLE NUMBER	Au oz/st				
$\frac{2176}{9} + \frac{45.88}{47.42} + \frac{1.54}{6.2396} + \frac{2.95}{6.2396} + \frac{2.95}{6.239} + \frac{2.95}{6.2397} + \frac{2.95}{6.2395} $	/, 87			H	- 4	447	45.88	1.41	63914	K.005	·			
$\frac{47.42}{48.98} \frac{48.98}{45.49} \frac{45.6}{6.3916} \frac{2.053}{6.055}$	zi no fy			H	-4	5.88	47.42	154	63915	4.005				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					4	742	4898	1.56	63916	<u>ک, می</u> 5				
$\frac{5053}{5242} \frac{522}{139} \frac{5395}{6399} \frac{5.005}{5396} \frac{5395}{539} \frac{5.005}{5396} \frac{5396}{5396} \frac{5396}{5392} \frac{5.005}{5396} \frac{5396}{5392} \frac{5.005}{5396} \frac{5396}{5392} \frac{5.005}{5396} \frac{5596}{5392} \frac{5.005}{5396} \frac{5596}{5392} \frac{5.005}{5396} \frac{5596}{5392} \frac{5.005}{5396} \frac{5596}{5392} \frac{5.005}{5396} \frac{5596}{5392} \frac{5.005}{5392} rac{5.005}{59} \frac{5.005}{59}			-	Ħ	-4	8.98	50.53	1.55	63917	2.005				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-50	0.53	52/12	1.59	63918	(.005				·.
$\frac{1}{53.66} \frac{53.96}{53.92} \frac{1}{6.052} \frac{1}{6.2921} \frac{1}{6.055}$ $\frac{1}{53.96} \frac{55.46}{55.46} \frac{15.7}{15.2} \frac{6.2921}{6.2922} \frac{1}{6.055}$ $\frac{1}{55.48} \frac{5}{59.94} \frac{1}{50} \frac{6.2922}{6.2922} \frac{1}{6.055}$ $\frac{1}{56.98} \frac{1}{58.66} \frac{1}{60.13} \frac{1}{58} \frac{6}{63.924} \frac{1}{6.055}$ $\frac{1}{60.13} \frac{61.60}{64.01} \frac{1}{1.75} \frac{1}{63.926} \frac{1}{6.055}$ $\frac{1}{64.66} \frac{1}{66.11} \frac{1}{1.56} \frac{1}{63.926} \frac{1}{6.055}$ $\frac{1}{64.64} \frac{1}{66.11} \frac{1}{1.56} \frac{1}{63.929} \frac{1}{6.055}$ $\frac{1}{64.64} \frac{1}{66.11} \frac{1}{1.56} \frac{1}{63.929} \frac{1}{6.055}$ $\frac{1}{64.64} \frac{1}{66.11} \frac{1}{1.56} \frac{1}{63.929} \frac{1}{6.055}$ $\frac{1}{64.64} \frac{1}{66.11} \frac{1}{1.56} \frac{1}{63.929} \frac{1}{6.055}$ $\frac{1}{64.7} \frac{1}{67.11} \frac{1}{1.54} \frac{1}{63.929} \frac{1}{6.055}$ $\frac{1}{67.71} \frac{1}{69.76} \frac{1}{155} \frac{1}{63.932} \frac{1}{6.055}$ $\frac{1}{71.78} \frac{1}{73.32} \frac{1}{1.54} \frac{1}{63.932} \frac{1}{6.055}$ $\frac{1}{74.87} \frac{1}{76.42} \frac{1}{1.55} \frac{1}{62.9324} \frac{1}{6.055}$ $\frac{1}{76.32} \frac{1}{72.9} \frac{1}{102} \frac{1}{63.927} \frac{1}{6.055}$ $\frac{1}{72.57} \frac{1}{63.56} \frac{1}{9.29} \frac{1}{69.24} \frac{1}{69.25} \frac{1}{6.055}$ $\frac{1}{72.57} \frac{1}{63.56} \frac{1}{9.24} \frac{1}{63.63} \frac{1}{63.63} \frac{1}{6.055}$ $\frac{1}{72.57} \frac{1}{63.94} \frac{1}{63.94} \frac{1}{63.929} \frac{1}{63.945} \frac{1}{65.945} \frac{1}$				Ц	5	212	5300	0.96	63919	2.005				
$\frac{53\%}{544} \frac{5544}{52} \frac{5321}{6392} \frac{5\%}{5\%}$	B alantin		+	H	-5	3.06	53.96	0.80	63970	1 005				
$\frac{1}{55.48} 56.98 1.50 6.2022 2.005$ $\frac{56.98}{56.98} 56.00 162 (23.922 2.005)$ $\frac{56.98}{56.00} 60.13 153 6.3926 2.005$ $\frac{60.13}{61.00} (3.13 153 6.3926 2.005)$ $\frac{61.00}{63.13} (4.61 1.48 6.3927 2.005)$ $\frac{64.64}{64.11} 1.56 6.3928 2.005$ $\frac{64.64}{64.11} 1.56 6.3928 2.005$ $\frac{64.64}{64.11} 1.56 6.3928 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3929 2.005$ $\frac{64.64}{64.11} 1.56 6.3922 2.005$ $\frac{64.64}{64.11} 1.56 6.3932 2.005$ $\frac{64.64}{64.11} 1.56 6.3932 2.005$ $\frac{64.64}{64.11} 1.56 6.3932 2.005$ $\frac{64.64}{64.11} 1.56 6.3932 2.005$ $\frac{64.64}{64.11} 1.56 6.3928 2.005$ $\frac{64.64}{64.11} 1.56 6.3928 2.005$ $\frac{64.64}{64.11} 1.56 6.3928 2.005$ $\frac{64.64}{64.11} 1.56 6.3932 2.005$ $\frac{64.64}{71.18} 1.52 6.3932 2.005$ $\frac{64.64}{71.18} 1.52 6.3932 2.005$ $\frac{64.64}{71.18} 1.52 6.3932 2.005$ $\frac{74.87}{76.42} 1.55 6.3933 2.005$ $\frac{74.87}{76.32} 7.923 1.02 6.3926 2.005$ $\frac{74.87}{76.32} 7.923 1.02 6.3926 2.005$ $\frac{76.32}{76.33} 7.923 1.02 6.3926 2.005$ $\frac{76.32}{76.33} 7.924 1.01 6.3937 2.005$ $\frac{76.32}{76.33} 7.924 1.01 6.3937 2.005$ $\frac{76.32}{76.33} 7.924 1.01 6.3937 2.005$ $\frac{76.32}{76.33} 7.924 1.01 6.3937 2.005$ $\frac{80.62}{24.24} 2.005 1.40 6.2938 2.005$ $\frac{80.62}{24.24} 2.005 1.40 6.2938 2.005$ $\frac{80.62}{24.24} 2.005 1.51 6.3940 2.005$ $\frac{80.62}{24.24} 2.005 1.51 6.3940 2.005$ $\frac{81.01}{83.91} 1.52 6.3943 2.005$			 +	H	-53	3.96	55.40	152	63.921	2.005				
$\frac{1}{5698} \frac{1}{5860} \frac{1}{122} \frac{1}{2} \frac{1}$				Ħ	5	5.48	56.98	1.50	63972	2.005				
$\frac{1}{58.6} \frac{1}{58.6} \frac{1}{62} \frac{1}{28273} \frac{1}{2805}$ $= \frac{1}{58.6} \frac{1}{60.13} \frac{1}{53} \frac{1}{632924} \frac{1}{2805}$ $= \frac{1}{60.13} \frac{1}{61.60} \frac{1}{147} \frac{1}{632925} \frac{1}{2005}$ $= \frac{1}{63.13} \frac{1}{64.61} \frac{1}{148} \frac{1}{63927} \frac{1}{2005}$ $= \frac{1}{64.61} \frac{1}{60.11} \frac{1}{156} \frac{1}{632928} \frac{1}{2005}$ $= \frac{1}{64.61} \frac{1}{60.11} \frac{1}{156} \frac{1}{632928} \frac{1}{2005}$ $= \frac{1}{64.61} \frac{1}{67.11} \frac{1}{154} \frac{1}{632929} \frac{1}{2005}$ $= \frac{1}{64.26} \frac{1}{71.78} \frac{1}{155} \frac{1}{632920} \frac{1}{2005}$ $= \frac{1}{64.26} \frac{1}{71.78} \frac{1}{155} \frac{1}{632930} \frac{1}{2005}$ $= \frac{1}{64.26} \frac{1}{71.78} \frac{1}{75.32} \frac{1}{154} \frac{1}{632932} \frac{1}{2005}$ $= \frac{1}{74.87} \frac{1}{76.42} \frac{1}{155} \frac{1}{62924} \frac{1}{2005}$ $= \frac{1}{74.87} \frac{1}{76.42} \frac{1}{155} \frac{1}{62924} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.22} \frac{1}{10.26} \frac{1}{62924} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.22} \frac{1}{10.26} \frac{1}{62928} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.22} \frac{1}{10.26} \frac{1}{62928} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.22} \frac{1}{10.26} \frac{1}{62928} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.22} \frac{1}{10.26} \frac{1}{62928} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.22} \frac{1}{10.26} \frac{1}{62928} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{153} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{153} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{153} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{153} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{151} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{151} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{77.31} \frac{1}{78.42} \frac{1}{151} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{85.49} \frac{1}{85.49} \frac{1}{151} \frac{1}{63240} \frac{1}{2005}$ $= \frac{1}{85.49} \frac{1}{85.49} \frac{1}{152} \frac{1}{63242} \frac{1}{2005}$ $= \frac{1}{87.01} \frac{1}{52} \frac{1}{63242} \frac{1}{2005}$ $= \frac{1}{87.01} \frac{1}{52} \frac{1}{63242} \frac{1}{2005}$ $= \frac{1}{87.01} \frac{1}{52} \frac{1}{63242} \frac{1}{2005}$ $= \frac{1}{87.01} \frac{1}{52} \frac{1}{63242} \frac{1}{2005}$ $= \frac{1}{87.01} \frac{1}{52} \frac{1}{63244} \frac{1}{6005}$ $= \frac{1}{87.01} \frac{1}{52} \frac{1}{63244} \frac{1}{6005}$					-	<u>.</u>	5010							
$\frac{58}{60} (c.13 153 63924 (2.05)$ $= (0.13 6160 147 63925 (.005)$ $= (6160 6313 153 63926 (.005)$ $= (64.6) (641 148 63927 (.005)$ $= (64.6) (641 156 63928 (.005)$ $= (64.6) (641 156 63928 (.005)$ $= (64.7) (9.26 711 154 63920 (.005)$ $= (67.7) (9.26 71.7) (54 63930 (.005)$ $= (67.7) (9.26 71.78 152 63933 (.005)$ $= (71.78 73.32 154 63932 (.005)$ $= (71.78 73.32 154 63932 (.005)$ $= (71.78 73.32 155 63933 (.005)$ $= (77.32 74.87 155 63933 (.005)$ $= (74.87 76.42 155 63933 (.005)$ $= (74.87 76.42 155 63933 (.005)$ $= (74.87 76.42 155 63933 (.005)$ $= (74.87 76.42 155 63933 (.005)$ $= (77.31 78.23 10.2 (.3928 (.005))$ $= (77.31 78.23 10.2 (.3924 (.005))$ $= (73.4 (.005) (.506 (.3044 (.005))$ $= (73.6 (.5074 (.005))$ $= (73.6 (.5074 (.005))$ $= (73.6 (.5074 (.005))$ $= (73.6 (.5074 (.005))$ $= (73.6 (.5074 (.5074 (.005))$ $= (73.6 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.5074 (.507$			H	Ħ	-13	2990	2860	1.62	63923	K.009	······			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					5	360	6013	153	63924	2.005				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$\left \right $	-60).13	61.60	1.47	63925	K.005				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-61	60	63.13	1.53	63926	K.005				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	·			╞┼	63	3.13	64.61	1.48	63927	K.005		<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				H	6	~6(66.17	1.56	63928	<.005	, 			
$\begin{array}{c} 67.71 & 69.26 & 155 & 63.930 \\ 67.71 & 69.26 & 155 & 63.930 \\ 69.26 & 71.78 & 152 & 63.931 \\ 71.78 & 73.32 & 1.54 & 63.932 \\ 73.32 & 1.54 & 63.933 \\ 73.32 & 1.54 & 63.933 \\ 73.32 & 1.55 & 63.933 \\ 74.87 & 76.42 & 1.55 & 63.933 \\ 74.87 & 76.42 & 1.55 & 63.933 \\ 74.87 & 76.42 & 1.55 & 63.933 \\ 74.87 & 76.42 & 1.55 & 63.933 \\ 76.33 & 79.34 & 100 & 63.935 \\ 77.31 & 79.23 & 1.02 & 63.936 \\ 77.31 & 79.23 & 1.02 & 63.936 \\ 77.31 & 79.23 & 1.02 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 78.33 & 79.34 & 100 & 63.937 \\ 80.83 & 62.43 & 16.9 & 63.937 \\ 80.83 & 62.43 & 16.9 & 63.937 \\ 80.83 & 62.44 & 16.9 & 63.937 \\ 83.94 & 85.49 & 15.5 & 63.941 \\ 83.94 & 85.49 & 87.01 & 152 & 63.942 \\ 83.94 & 85.49 & 87.01 & 152 & 63.942 \\ 83.94 & 85.99 & 87.01 & 152 & 63.942 \\ 83.99 & 87.01 & 158 & 63.943 \\ 83.89 & 90.19 & 160 & 63.944 \\ 83.89 & 90.19 & 160 & 63.944 \\ 83.90 & 90.94 & 160 & 63.944 \\ 83.90 & 90.94 & 160 & 63.944 \\ 83.90 & 90.94 & 160 & 63.944 \\ 83.90 & 90.94 & 160 & 160 \\ 83.91 & 90.94 \\ 83.91 & 90.94 \\ 83.91 & 90.$	2 1%				K	<u>,17</u>	6771	1.54	63979	1.005				
$\begin{array}{c} 0.7.7 & 69.26 & 135 & 63.930 & 2.005 \\ \hline 0.9.26 & 71.78 & 152 & 63.931 & 2.005 \\ \hline 71.78 & 73.32 & 1.54 & 63.932 & 2.005 \\ \hline 73.32 & 74.87 & 1.55 & 63.933 & 2.005 \\ \hline 74.87 & 76.42 & 1.55 & 63.933 & 2.005 \\ \hline 74.87 & 76.42 & 1.55 & 63.933 & 2.005 \\ \hline 77.31 & 78.73 & 1.02 & 63.926 & 2.005 \\ \hline 77.31 & 78.73 & 1.02 & 63.937 & 2.005 \\ \hline 77.31 & 78.73 & 1.02 & 63.937 & 2.005 \\ \hline 78.32 & 79.34 & 101 & 63.937 & 2.005 \\ \hline 82.43 & 83.94 & 1.51 & 63.940 & 2.005 \\ \hline 83.49 & 87.01 & 1.52 & 63.942 & 2.005 \\ \hline 87.01 & 88.59 & 1.58 & 63.942 & 2.005 \\ \hline 88.59 & 90.19 & 1.60 & 63.944 & 2.005 \\ \hline \end{array}$	E9						10.71		60027					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-π_	09.25	13	65930	K.005				
71.78 73.32 1.54 63932 2.05 $73.32 1.54 63932 2.05$ $73.32 1487 155 63933 7.05$ $74.87 76.42 1.55 63934 7.05$ $74.87 76.42 1.55 63934 7.05$ $77.31 79.33 1.02 63936 7.05$ $77.31 79.33 1.02 63937 7.05$ $76.33 79.34 101 63937 7.05$ $76.33 79.34 101 63937 7.05$ $78.33 79.34 101 63937 7.05$ $80.83 8243 1.60 63937 7.05$ $82.43 8394 1.51 63940 7.05$ $82.43 8394 1.51 63940 7.05$ $83.49 87.01 1.52 63941 7.05$					-69	1.26	71.78	152	63931	K.005				
$\frac{71.76}{73.32} \frac{7.54}{1.55} \frac{63932}{63933} \frac{1.54}{1.55} \frac{1.55}{63933} \frac{1.55}{1.55} \frac{1.55}{63933} \frac{1.55}{1.55} \frac{1.55}{63933} \frac{1.55}{1.55} \frac{1.55}{63933} \frac{1.55}{1.55} \frac{1.55}{63933} \frac{1.55}{1.55} \frac{1.55}{63937} \frac{1.55}{1.55} \frac{1.55}{63937} \frac{1.55}{1.55} \frac{1.55}{63937} \frac{1.55}{1.55} \frac{1.55}{63937} \frac{1.55}{1.55} \frac{1.55}{63937} \frac{1.55}{1.55} \frac{1.55}{63937} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} \frac{1.55}{63941} \frac{1.55}{1.55} $				╞┼	-		7 00		7-7075	1				
73.32 /4-87 1.55 63933 .005 74.87 76.42 1.55 63933 .005 74.87 76.42 1.55 63934 .005 76.42 77.31 0.89 63935 .005 77.31 78.23 1.02 63936 .005 1-3% dissem py 78.33 70.34 101 63937 .005 1-3% dissem py 80.83 82.43 1.61 63939 .005 82.43 8394 1.51 63940 .005 82.43 8394 1.51 63940 .005 83.94 85.49 1.55 63941 .005 83.94 85.49 1.55 63941 .005 83.94 85.49 1.58 63943 .005 83.94 85.49 1.58 63943 .005				İ-İ	-1/1	.10	13:32	1.54	63932	C	· ····································			
74.87 76.42 1.55 63934 6.005 76.42 77.31 0.89 63325 2.005 77.31 78.33 79.34 1.02 63936 6.005 1-370 dissem py 70.33 79.34 1.01 63937 6.005 1-370 dissem py 79.34 6083 649 63937 6.005 80.83 82.43 83.94 1.51 63940 6.005 2170 83.94 85.49 1.55 63940 6.005 83.94 85.49 1.52 63942 6.005 87.01 88.59 1.58 63943 6.005 88.59 80.99 1.58 63943 6.005				╞╌╊	7	3-32	14.87	1.55	63933	1.005				
74.87 76.42 1.55 63934 (.005 76.42 77.31 0.89 62925 (.005 77.31 78.33 79.34 101 63937 (.005 1-3% dissem py 79.34 90.93 (49 63938 (.005 80.83 82.43 1.60 63939 (.005 82.43 83.94 1.51 63940 (.005 21% py 83.94 85.49 1.55 63941 (.005 85.49 87.01 1.52 63942 (.005 87.01 88.59 1.58 63943 (.005 83.94 (.005)				$\left \right $]					<u> </u>				
72.42 77.31 0.89 6.392.5 2.005 1-3% 77.31 78.33 79.33 1.02 6.3936 2.005 1-3% 101 63937 6.005 1.02 6.3938 2.005 1-3% 101 63937 6.005 1.02 6.3938 2.005 1-3% 101 63937 6.005 1.02 6.3938 2.005 1-3% 101 63939 6.005 1.02 6.3939 2.005 1-3% 101 1.51 6.3940 2.005 1.02 2.005 1-3% 101 1.55 6.3940 2.005 1.005 1.005 101 102 1.55 6.3941 2.005 1.005 1.005 102 102 1.52 6.3942 2.005 1.005 1.005 1.005 102 1.59 1.58 6.3943 2.005 1.005 1.005 1.005 1.005 102 1.59 1.59 1.59 1.59 1.59 1.005 1.005 1.005 1.005				H	74	-87	76.42	1:55	63934	2.005				
$\frac{76.42}{77.31} + 72.3 + 1.02 + 6.29.25 + 2.002}{77.31} + 72.3 + 1.02 + 6.29.25 + 2.002}$ $\frac{77.31}{77.31} + 72.3 + 1.01 + 6.39.25 + 2.005$ $\frac{78.33}{79.34} + 01 + 6.39.37 + 2.005$ $\frac{78.33}{79.34} + 01 + 6.39.38 + 2.005$ $\frac{80.83}{82.43} + 85.49 + 1.51 + 6.39.40 + 2.005$ $\frac{83.94}{85.49} + 85.49 + 1.55 + 6.39.41 + 2.005$ $\frac{85.49}{87.01} + 55 + 6.39.41 + 2.005$ $\frac{85.49}{87.01} + 52 + 6.39.42 + 2.005$	· · · · · · · · · · · · · · · · · · ·			H						4	···· ···			
1-3% dissem py 1-3% dissem py 80.83 82.43 1.60 63937 6.005 82.43 83.94 1.51 63940 6.005 21% py 83.94 85.49 1.55 63941 6.005 85.49 87.01 1.52 63942 6.005 87.01 88.59 1.58 63943 6.005 88.59 90.19 1.60 63944 6.005					-76	42	7731	089	62925	2.003				
1-3% dissem py 7931 8083 (49 63938 (200 80.83 8243 1.60 63939 (200 80.83 8243 1.60 63939 (200 82.43 8394 1.51 63940 (200 83.94 8549 1.55 (3941 600 83.94 8549 1.55 (3941 600 83.94 8549 1.55 (3942 (200 83.94 85.99 1.58 63943 (200 83.94 (20			Ť.	Ħ	7	73-	78-33	1.07	63936	6.000				
$\frac{19}{200} = \frac{19}{200} + \frac{19}{200} + \frac{1000}{2000} + 100$	1-3% dissen py			+		5-55	19.54	101	63931	<.∞s				The second second second second second second second second second second second second second second second s
2003 8243 160 00939 Cross 2120 py 8394 8549 1.51 63940 Cross 8394 8549 1.55 63941 Cross 8549 8701 1.52 63942 Cross 87.01 8859 1.58 63943 Cross				Ħ	- 0	107	0005	100	63020	1.005				
2 1% py 82.43 83.94 1.51 63.940 <.005 2 1% py 83.94 85.49 1.55 63.941 6.005 85.49 87.01 1.52 63.942 <.005 87.01 88.59 1.58 63.943 <.005 88.59 90.19 1.60 63.944 <.005				Π		~ 00	02* 4 5	heo	63737					
2 1% py 83.94 8549 1.55 63941 6.005 85.49 87.01 1.52 63942 6.005 87.01 88.59 1.58 63943 6.005			_		-8	243	8394	1.51	63940	৻ .∞5				······································
85-49 87.01 1.52 63942 <.cos 87.01 88 59 1.58 63943 <.cos	<122 py			┝┼	-83	, 9 4-	85-49	1-55	63941-	6.005				
87.01 88.59 1.58 63943 C.25				F T	-80	5.49	800	1.50	62017	6.005		`		ļ
87.01 88.59 1.58 63943 C.005 88.59 90.19 1.60 63944 C.005				ţ.ļ	╧	/	0.01	. Se	0.5792	<u> </u>				The second second second second second second second second second second second second second second second s
88.59 90.19 (60 63944 K.005				H	8	1:01	88.59	1.58	63943	८.ळ्ळ				
			-	H	- 8	3.59	90.19	(.60	63944	K.005	•			

N2/E2

F	PAGE 36 OF 4 PROJECT:			-	Tid	er 1	[3p	e				но	le no. 90-0
[T		щ	S	AMPLES	ર. નિર્દ્ધાનું			ASSAY	S		
	MINERALIZATION DESCRIPTION		TOTAL	SULPHID	FRÓM	то	WIDTH -	SAMPLE NUMBER	Au oz/sł				
		-		T	90.19	9168	1.49	63945	1.005				
	< % مع	F		+	9168	93.04	1-36	63946	6.005				
╹┝╴				-	9304	94-41	1.37	63947	2.005				
y=	50% py in qv	F	Ħ	Ŧ	94-41	94.91	०.ऽ०	63948	L.005				
╞╞		-		+	94.91	9637	1.46	63949	K.005				
╻┝╴		E	H	Ì	96.37	97.89	1.52	63950	<u> </u>				
		F	┝┼		97.89	199.44	1-55	63951	<.005				
. –				+	29:44	101-11	1.67	63952	<u> </u>				
╏├╴				+	iorit	102-62	12.1	63953	۲.005			·- ·-	
		E		+	102.62	104-13	1.51	63954	K.005				
					104.13	10561	148	63955	2.005			·····	
	gy Llam vide	-			105.61	10700	1.45	63956	1.005				
	<u>spècular henatite</u>	+		+	10200	0000	1.52	63900	1005				· · · · · · · · · · · · · · · · · · ·
_	breccipted frectures			+	108.5	INK	155	62960	1 005				
				1				00/06					
•		┢		+	110.14	111.63	1.49	63959	2.005				
┠┝╸			H	\mp	111-63	11345	1.52	63960	C-005				
		F		+	113.15	114-72	1.57	63961	K.005				
╏┝─	······································	F		+	11472	+16.29	1.57	63962	6.005				, ,
<u> </u>				+	116.29	117.84	1.55	63963	K.005				
		E		1	117.00	1102		1.2001	1.005				
┛┝╴		F		+	110 77	11/32	1.55	63104					
╻┝╴		F		T	11935	120.88	1.22	63965	<u>K.005</u>				
				1	120.88	122-44	1-56-	63966	2.002				
		-		+	122.44	123.91	1.48	63967	<.∞5				n and generation of the same of the same state of the same
					123.91	126-47	1-56	63968	1.005				
				$\frac{1}{1}$	12.47	177.94	1.4.7	63969	1.005				
	~	È											
╻┝╌		H		+	127.94	129.39	1.45	63970	2.005			V NUMBER OF STREET	
		E	H	+	129.39	130.91	1.52	62971	6.005				
		E		+	130.91	132:40	1.49	63972	6.005				
F				+	137.40	13295	a, ca	62000	2.005			****	
I		F	H	Ť									1.00 A.00 A.00 A.00 A.00
		H	H	1	133.98	1348	0.84	63974	6.005				

page 42	AGE 42 OF 4 PROJECT: Ticker Tape								HOLI	E NO.	90	-02
DEPTH (m)	% CORE REC	ГІТНОГОСУ	STRUCTURE	GEOLOGICAL DESCRIPTION	A	AL [*] B	C	D	E	FRACTURE	% VEIN QTZ.	
_		+					╅╋				┼┼┧	
-	72°			136.44-136.45 - 1cmqv@72°TCA	╶┝┾┼╼		╅┿┿				┤┼┨	╧╪╪
_						╞┼┼	╉╁╁					
_ ·		4			╺┝┿┿╸		<u>+++</u>					
- 140				· · · · · · · · · · · · · · · · · · ·								
												┤┼┼
-		+ .										
_				143.30-14343-py elevated to approx. 19.								
_				locally 1-3%			╉╋╋					╈
_	-				++-							
_		t				++						
-						HŦ	++-					
-		2					-					
-						H						++
	ļ	k					+++	\square				
- 150							+++	+++			11	11
		+			╺╴ <mark>┥</mark>		+++					╡╪╡
152.13												
TO							╉					
						++	┼┾┼					
-												
				· · · · · · · · · · · · · · · · · · ·		+		+++				
							1++					
						11						++
						┝┼┼						
				· ·								
				· · · · · · · · · · · · · · · · · · ·								<u> </u>
							╺┠╌╂╌╂╴					
				· ·								╧╋╧╡
-								+++				
					++			$\left + \right $				
-					++							
•							++	H				
-						III -						
					11		+++					
					1+-		┤┼┼	111				
•							╞╪╪	╞╋┤	╞╋			
				· · · · · · · · · · · · · · · · · · ·								
_												
• .								144		;		
					- 中			<u> </u>			··	
							1			÷		
			<u></u>							(m.)		

	<u> </u>	•		, abi			.				,
		ЭЕ	S	AMPLES	; +			ASS	SAYS		_
MINERALIZATION DESCRIPTION	TOTAL	SULPHII	FROM	то	HTDIW	SAMPLE NUMBER	AU 02/st			1	
	T	H	134.82	13632	151	63975	(.005			·	+
		\square	126.22	12700	1.55	63976	6.005				
<u> (1%)</u>										·	
Pg	<u> </u>	H	137.88	159:37	1.49	63977	2.005	~			
			139.37	1409	1.58	63978	2.005			<u></u>	
			140.95	1424 3	1.48	63979	∞5				
		H	14742	144.14	1.71	63980	1.005				
			144,14	145.63	1.49	63981	2.005			<u> </u>	1
·		\square	45.63	14747	1.54	63982	(.005				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	╶╴┝╌┝╸		147.17	148.70	1.53	63983	(.005				· ·
			LIROO	150.00	150	63901	1.005				
·				130.22	150		<u> </u>				
· .			150.28	151.8	1.52	63985	۲.005				
			151-80		2	63986	<u> </u>				
			+					- <u></u>			
								······			
	╾╼╼┝╌╧╼		ļ					<u>.</u>			
		H						•			
				·							
			1	· -		, 					an
						<del>********</del> ****************************					
						·····					
· · · · · · · · · · · · · · · · · · ·								<u></u>			
											+
										, sam a Landon dan di Arra	
		+									· · · · · · · · · · · · · · · · · · ·
			<u> </u>								
			<u>├</u> ───┤					<u> </u>	<del>  </del>		
						······				- 1999 - 1994 - 1994 - 1997 - 1994 - 1997 - 1994 - 1997 - 1994 - 1997 - 1994 - 1997 - 1997 - 1997 - 1997 - 199	nyi Sabaya ka ina ina iki ing ing i
·		T									
									1		

`

MADE IN VANCOUVER, CANADA

PAGE		OF		PROJECT:						нс	DLE	NO.			]
_	ы Ш	≻	Å				ALT	ERA		1			N		1
DEPTH (m)	% CORE R	LITHOLOG	STRUCTUF		GEOLOGICAL DESCRIPTION		в	С			E	FRACTURE	% VEIN QT		Ģ
			Ť	4			$\overline{+}$	Ħ	$\mp$		Ē	<b>T</b>	<b>İ</b> ŤŦ		1
<u>.</u>	•									+	盽	┟╂╂	<b>     </b>		1
•			-						++		Ħ				1
' ·				-		<b> </b> -			+		Ħ				1
-								$\square$	++	+-	F		$\left\{ \right\}$	$\mathbf{H}$	1
				-									$\mathbb{H}$		]
											╢				.
—			_	·							┢┼╴		┟┼╋	+++	
				· · · · · · · · · · · · · · · · · · ·							$\mathbb{H}$		╏┼┼┼		
• ••••			_	-											1
, · 			-+-	1					#		Ħ	╞┼┼	╞┼┼╴	╞┼╋	1
				-					#						1
				-					11						1
-									#						1
_									#		Ħ		╞╞┼╴		
-									#		İT.				-
-				-							1				1
-									#		Ħ				
_			<u> </u>						#		Ħ			╞┼┼╴	(
-									11						
-								$\uparrow$	11		Ħ				1
-				·					++						1
<b>-</b> .											H			H	
-			1	]						1					]
-				]						$\left  - \right $				$\left[ + \right]$	
-										1					
<b>-</b> .									+						
-	ŀ								$\square$		H			<u>H</u>	
-															
-															
-															
<del>-</del> '					•						H				1
-			+		****		++-		╈		廿				
-															
-			_				<u> </u>							┝┼┿	
-			<u> </u>												
-			1		*						LL-				
-			+-			++			†		<u> </u>	14	<u> </u> ++	<b> </b>	
					••••••••••••••••••••••••••••••••••••••		+		1-						Ι.
-							++-	‡‡			1				
-							++		- -┿╌ · -┿╌						
-									- 			<u> </u>			
-		·		,,,,,,,,,			#	k		+   	t-			11	
-									<u> </u>		Ļ,				
	L 1			L			· ·	L .	-	'	1	<u> </u>	1		

## PAMICON DEVELOPMENTS LIMITED

(

. . .

DRIL	LLOG
PROJECT Ticker Tape	GROUND ELEV. 1496m
HOLE NO. T90-03	IS7°
LOCATION 1000N 955E	DIP So [°] TOTAL LENGTH 46.65
RGerhardt	HORIZONTAL PROJECT
DATE Aug 25/90	VERTICAL PROJECT
CONTRACTOR Falcon Drilling	ALTERATION SCALE
DATE STARTED AUG 21/96	moderate intense TOTAL SULPHIDE SCALE
DATE COMPLETED AUG 22/90 DIP TESTS	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
COMMENTS	

PAGE 3		OF		1	PROJECT:	TickerTape					•	IOLE	NO.	30-0	03	
DEPTH (m)	% CORE REC	ГІТНОГОВУ			· · · ·	GEOLOGICAL DESCRIPTION	A	AL			D	E	FRACTURE INTENSITY	% VEIN QTZ.		
		c_		-7	100 - 30	5 - casing	++	++		$\left  \cdot \right $	$\overline{+}$	+++		H	-	1
		4						$\square$		H	T		$\mathbf{H}$		$\square$	ļ
			h	6							1					1
				7	2.05 - A(-)	5 constants				╞┼┼						
		+	$\left  - \right $		5.05-404	3 grandolorite					$\pm$					ł
_			$\square$		-med =	In, med, greenish grey to			++-		Ŧ		$\square$			{
-		-+			_bluish	grey, approx 50-60% +spar,					+	++	HT	$\square$	H	
-					_20-30	20 matics (mostly biotite)					+			$\mp$		1
-					10-152	fine all atz. Locally weak										
		+-	-		chlorit	alt'n and sausspritization.		$\left  \cdot \right $			+-				++	
-				_	110-	Find Disson Ou	++-	$\left\{ + \right\}$		$\left[ + \right]$	+	++-		++		
- 10			F†	_		Mr. Olaren Py	<b> </b>	$\uparrow$	44-		+	11-	F†‡	Ħ	HT.	ł
-			<u>⊢</u> †		.60-25.0	5 eltered granodiorite	<b> </b> ]		11		+			<b>       </b>		Į
<del>-</del> ,		±			05 1-0			$\left  \cdot \right $			$\pm$					
_			$\square$		- as bet	alle alle	H		++	Нf	+					l
—					chlorit	ic eith			++	H	·		H.	++	- - -	1
							Ħ		+1	[]]	1		<u> </u>			ļ
<u></u>		F		1_		· · · · · · · · · · · · · · · · · · ·	<b>     </b>	<u>     </u>	#	╞┼┼	+					ł
_			-+													
-		-+	+								-		+++			
-				_						[ ]	+		HT			
-		+							17		+			44		ſ
-20						······································							╞╪╪╴			<u> </u>
-		+														
-								$\left  \right $			+			++-	-+	
-		+							++		Ŧ		$\square$		++	
-											+	44		11		
_			34	/12	24,96 - 24.9	17 - 0.2 cm calcite veinlet @								++		
		<del>_</del>	71			34° TCA J 20000x 5-10%					$\pm$					
_				-		auchotite as stringers		╋╋			+			-+		
-		+					+ +	$\left  \right $		$\left  \right $	+		$\square$	++-		
-		<u> </u>		_						H	+			1		
		-+	24 ^d	12	965-29	67 - 2 cm chlorite colcite in					+		<b> </b> ]]]			
-30				Ŧ		Di zom chunte-celche vela										
-		+				(84 TCA W 10-20% Py	++-	┟┾┽	┼┼	$\left  \right $			┝┼┼╴			l
-						5	H	H		H	Ŧ	H	H		H	l
<b>-</b> ·		+	4				4		11	F††	$\mp$	1	<b> </b> ]‡‡	1		l
-									11		+		<u> </u> ]‡‡			ł
_		<u> </u>	$\rightarrow$	1							+			++-	-+	1
_							++			H	+	++	$\left  + + \right $	++		İ
<b>-</b> .			-	_				H	-	F 🕂	1		HŤ	$\square$	++	l
-									11		$\mp$					
-	[			43	8.9-3814	- 5.5cm wide qv @ 71° Tra	廿十				+					
-		+	1			Slightly waqy, 3-5% each ou					+					
-40	• •		1		 i	- and copy as blebs		$\square$	Ţ							
-		+-	4			- J	Ħ	H	#	FH	-					
-			_						11		+				-+	
_		t_									-					
			-				++				-				4	
							1	H.	1+	Γļ	1	-,-	<u> </u>		ŦŦ	ł
-			709		1			1	11	Ħ	+					
1665		+	Ż	74	6.00-46.	20 - 20cm zone of boxwork altz.		1	<u> </u>		4		<u> </u>	L		L
40.62 TD	Ē			=		interstitial barite and calcite & 7	p°7	-CA								Ĺ

	0		•	IC.	Ker .	Spe							LE NO. 90-
		I	-			SAMPLES	;		1	ASS	SAYS		
	MINERALIZA DESCRIPTI	rion On	TOTAL	SULPHID	FROM	то	HTOIW	SAMPLE NUMBER	Aa oz/st				
	· · · · · · · · · · · · · · · · · · ·			$\square$	- L	12.	·					1	
	<170 S	issem					ļ		ļļ				
		Py	·		-	1 55	10	(2007	1005			·	
<u>,</u>							1.2	60787	1				
					4.55	6.05	1.5	63988	K.003			+	+
		· · ·			6.05	7.55	1.5	63989	2.005				
					700	0.5		(	1 005			+	
				+		1903-		63990				1	
				$\square$	-9.05	10.55	1.5	63991	L.005				
					10.55	1205	45	63992	2.005				
						12.55		( 0000	1.005				
				+	-12.05	15:55	1.5	63993	2.005				
		· · · · · · · · · · · · · · · · · · ·	$\Box$		43-55	15-05	15	63994	<.∞5				
· · · · · ·	·		┉┾┼		-15.05	16.55	1.5	63995	(.005				· · · · · · · · · · · · · · · · · · ·
		<u>, ,</u>			- ICEE	10 00	16	(2000	×.005			1	
					116-99	18.09		63770					
				+	-18.05	19.55	1.5	63997	<.005				
	· · · · · · · · · · · · · · · · · · ·				19.55	21.05	4.5	63998	1.005				
						0055	16	(2000	1 005				
					-21.05	22.55	1.5	62227					
					22.55	24.05	1-5-	64000	K.005				-
<b></b>	منهم	dinas			24.05	25.55	1.5	01751	1.005	<b></b>		+	
	Gerena	sundar	— <del>  ]</del>		2555	2200	15	0.200					
• • • • • • • • • • • • • • • • • • •							1-3	9152	(				· · · · · · · · · · · · · · · · · · ·
	0 <b></b>			+	-27.09	27.55	0.5	91753	<u>(.</u>				
			<u> </u> †	$\frac{1}{1}$	-27.55	2905	1.5	91754	1.005			ļ	-
		24	<u> </u>	-20	229.05	30.55	1.5	91755	5.005			 	·····
		<u> </u>	[]		<u>]3055</u>	32.05	1.5	91756	1.005				
	<del></del>				-37.05	22.55	15	91757	1005			+	
					- 32.50	3555	2.0	91758	1.005				
	****	·····		$\ddagger$	-								
		· · · · · · · · · · · · · · · · · · ·		+	3555	36.05	0.5	9,759	.010				
					36.05	37.55	1.5	91760	6.005				
equel ents	py & cpy as k	olebs			27.55	39.05	1.5-	91761	K.005				
	· · · · · · · · · · · · · · · · · · ·										ļ		
	· .		[†		-3905	14055	1.5	9(762	<u>K.005</u>		<b> </b>		<u> </u>
<b></b>			[]	H	40.58	4205	1-5-	91763	2.005				· · · · · · · · · · · · · · · · · · ·
		<del></del>		+	4205	43.55	15	gizz	6.005				
		<u></u>	╾╼╞╌┼	╈	10000	1	1	0000	1 005		1	+	
	· · · · · · · · · · · · · · · · · · ·	*****	‡	$\ddagger$	1723	4665	- <del>\</del>	1-71-16J-	<u></u>				· · · · · · · ·

PAGE		OF		PROJECT:								ŀ	HOL	E١	10.			
(m) HTH:	CORE REC	гногоду	RUCTURE		GEOLOGICAL DESCRIPTION			A	LT	ERAT		N			ACTURE TENSITY	VEIN OTZ		
8	8	5	<u>8</u>	 		<u>^</u>	$\left  \right $	B	, ;	<u> </u>	1	D	E		₽≥	~		·
-			H				Ŧ			1	Ħ							$\mp$
												_		H	++			$\pm$
										++	H	+		H				+
-							+					+			++			
_				<u> </u>										$\square$				
							$\pm$	$\pm$	E									
				· · · · ·	·····			+				+-		$\mathbb{H}$	┼╋			
_							╉╌╢		$\mathbb{H}$	+		+						$\pm$
_									$\square$						++			-
			1			H	Ħ	_	F	+	$\prod$	П	H	₽Ŧ	+			$\square$
					· · · · · · · · · · · · · · · · · · ·	F	Π	+	П		Ħ	H	H	Ħ	H	H		F
_						FŦ	Ħ	+	F	$\mp$	Π	Ŧ	F	FF	Ħ	H		Ŧ
_						厈	Ħ	+	F	++-	Ħ	+	-	井	┼┼			+
_						[]	71	-	F		$\left  \right $		$\left  \right $	FF	++			干
-			<u> </u>		· · · · · · · · · · · · · · · · · · ·	Þ	††	+	Тļ	++		+		H	++			井
-						Ħ	╪┤	+	Ħ	++-	11	$\mp$		Ħ	Ħ	Ħ		丅
-					•	1	$\ddagger$	+	Ħ	+†			<b> </b>	<b>[</b> ]	##	11		#
-						<u> </u>	$\ddagger$	+	Ħ	++-	#	╪┤		=	$\downarrow \downarrow$			
-		w					╞	-	╞	+		+			$\pm \pm$			-
						H	$\pm$	+		++		+-						
-		·····					╁	_	H	++		$\pm$			++			
-				•				+	┢┫		╂╋	+		╞				
_							$\pm$	+	$\exists$	++	┟┟	$\pm$	╞┼╴	┢	++			╧
-						H	£	_	+	+	H		1	┟╢				╧
_						+-		+	1		$\left  \right $		$\left  \right $	$\left  \right $				
-						+	+	+	H		$\mathbb{H}$	+	-+-	<u> </u>	+			$\overline{+}$
-							+	1			$\left  \right $	-	+	$\square$	H			Ŧ
•						F	Ŧ	+	F	+	$\square$				ŦŦ			Ŧ
-						H	H	1			11	+		$\square$		H		-
-									T-			1	+		$\mp$			
-									┝┤	++		+-			++	+	- -	Ħ
-						4	╤╢	-		++-	1	+	-		+		- -	귀
-						<b>  </b> -	Ħ	+-		#	‡			<b> </b> - -	++-			十
-						ļ†		1	H	++	ļļ	Ħ		╞╌╞╴	11			十
-					· · · · · · · · · · · · · · · · · · ·	1	╞┼	+-	Ħ						$\ddagger$			Ŧľ
-						Ħ	$\ddagger$		Ħ	++	1			ţ†	11			
•						+			Ħ	+	Ħ	+		忭	††			井
-								ţ	t			$\downarrow$		比	$\uparrow$			亅
								+	H	$\pm\pm$		$\pm$		╞╴┠╴	$\frac{1}{1}$			
		*******			· · · · · · · · · · · · · · · · · · ·		╢		╞		+	Ļ			$\frac{1}{1}$			
<b>-</b> '	[							1										
-						+	F	+	H		H							
						H	H	+	Ľ.	T		-					-   - ]	_
						Ţ	T		Ţ	1				]				
<u>-</u> .						<b>T</b>	Ħ			17								
-							井	+	-	++	<u> </u>	+	·'		+			
	ĺ						╈		- /	1-1-		÷			in the second second second second second second second second second second second second second second second		-   -	

## PAMICON **DEVELOPMENTS LIMITED**

PROJECT Ticker Tape	GROUND ELEV.
	1497m
HOLE NO.	BEARING
T90-04-	157°
	010
LOCATION	
1020N 775E	
· · ·	TOTAL LENGTH
	45.33m
P Garbon St	HOMZOWALTHOLOT
R: Or Marou	
DATE	VERTICAL PROJECT
Aug 25/90	
CONTRACTOR	
Falcon Drilling	ALIENATION SCALE
· E · · · · · · · · · · · · · · · · · ·	
	absent
	slight
CORESIZE	moderate
~~	interne
DATE STARTED /	
AUG. 22/90	TOTAL SULPHIDE SCALE
$A_{\mu\nu} = 72/9\pi$	traces only
$\pi u_0$ . $c_1 v_1$	< 1%
DIP TESTS	19/ - 39/
COMMENTS	LEGEND
· · · ·	

GE \/	5	OF	1	PROJECT: Licker lape						н	DLE	NO.	90	- 04	f
	CORE REC	ногоду	RUCTURE	GEOLOGICAL DESCRIPTION				ERAT		T		ACTURE	/EIN QTZ.		
	%	5	STI		Α		3	С	D		Ε	l E Z	8		
		caς	24	0.00-1.52 Casing	++		+	-+	++		+	$\left\{ + \right\}$	╉╫┨		_
			B			++	+-	++-			++	$\square$			
		Ŧ		1.52-45:33 grandiorite	+†	11	$\mp$	++							
				-med zh med, greenish grey to bluish.	++-		$\pm$								
				grow, weak calcite-existe-chlorite (produlit	iel										
				gitte broke producte for alle wikke	<u>יווי</u>	+	$\frac{1}{1}$		++		++-		$\left  \right $	╋	$\neg$
		+		to mod hleached. < 12 dison by	++	++	+				+		$\square$		7
			397-			11					11				_
		+	4	6.67-669 - 2cm qv 21% dissem py 2	11	11	$\pm$				#			11	
				specular hematite @ 380TCA		++	$\pm$							╅┼	
10				9.00-9.50 - zone of rendomly oriented	++	++	+				++		$\left  + \right $	┥┽┥	-
	F			chlorite bourlestatite	++	$\overline{+}$	$\overline{+}$		F†	-	H	$\square$	H		7
				Veinlets	+	#	#1	+		1-	#	++		- - -	1
		`			11	11	╪┨	++	<b>     </b>	+	Ħ	++	11	╡┼┇	1
						╈	$\pm$	++		+	Ħ				
	1 E	<u> </u>				++				$\pm$	$\square$		┢┼┼		-
						Ħ	T	$\square$	FΠ	T	H		H		7
					+	11	Ŧ	++-		+	11		Ħ	╪╪	7
						11	$\ddagger$	++		1	#		11	╡┿╉	T
		<del>4-</del>	27	17.61-17.67 - 0.2 cm calcite veinlet Q			$\pm$				H				1
				55° TCA bounded buddlarite	++	╀	$\square$	$+ \mp$	Ħ	-	$+ \Box$	HT	H	+	-
20	-	<u> </u>				11	+	++	111	-	1			┱╪┇	1
					$\pm$	#		++-			Ħ	H‡	<b>††</b> †	$\ddagger$	1
		+						<u>+</u> +			Ħ				1
		<u> </u>			+	$\left  + \right $		$\pm +$		_			++	$\pm$	-
	F	-+	$\mp$		++	H	Ŧ	+	FTÌ				H		7
			=		+†	11	Ŧ	11	11		11			1+1	_
	ļĹ				11	Ħ	ţ	1						- <u> </u>	
		-+	1	25.09.25.10 - 0.2 cm calcite Vanlet @ 14 TCA-	++-	+	$\pm$	++							-
		·	" <u>+</u> ++		$\pm -$	+	$\pm 1$						┢┼┽		_
		<b>+</b>	7		Ŧ	$\left  \right $	ŦI	++	$\mathbf{H}$		H		III		-
					#	11	#1	++	+	1	11	11	[‡‡	11	
00		-+			#	11	$\ddagger$			_	tt				-
30				30,90-40,00 - zone of local weight 1						+					
	-			En avidation	1	H	$\pm$	$\pm$		_ -	H		H		-
				TE UN UE WA	++		Ŧ	1	$\left  + \right $		T		FĦ		-
					11	11	$\uparrow$	11	Ħ	-	Ħ				_
		+			11	11	$\ddagger$	#			Ì				
							$\pm$	$\pm\pm$							'
			<u> </u>	1	++		+	$\pm +$			+ -	11			-
	F	E			++	H	F	++	Π		H		H		-
					#	1	T	#	F‡	- -	T_		++		_
		_+	ᆂ	38-71-38.72 - 0.3 an chlorite hainel !	<u>+</u> †		$\ddagger$		<b> </b>		十	1		╌╽╌╍┝╍╈	
A -			16/-	Cabite win Tun 200 0	$\pm$		$\pm$				H	11	出		-
40	E	<u>t_</u>		Liter W 10-20 76 Py	$\pm$	H	$\frac{1}{1}$			+					-
	-		$-\Box$	@ 46°TCA 0205	++	H	F	Ŧ	H	_	-		ļ.ļ.ļ		-
					#	1	1			- -		 		1	-
i					$\pm$		†-l				÷ +				
	Ē	-			$\pm \pm$	$\square$	$\frac{1}{2}$	-							
$5\pi$	-	-+			$\prod$	厈	Ţ	Ţ							-
ددين					+-		į.,	<u> </u>			i				1

F	PAGE (6 OF 1	PROJECT: T	ĩcl	Le	r To	pe						н	DLE NO. 90-C	
Γ				ų	S	AMPLES				ASS	SAYS			
	MINERALIZA DESCRIPTI	TION ON	TOTAL	SULPHID	FROM	то	WIDTH	SAMPLE NUMBER	Av oz/st					
				$\square$	-									
	< 192 8	155 Cross		╞┼╴	+52-	302	15	9766	.006					
	P	4		##		· ·					·			
-	· · · · · · · · · · · · · · · · · · ·	<u> </u>		Ħ	302	4.52	1.5	91767	<u>2.005</u>					
-				H	4.52	6.22	1.7	91768	2.005					
ļ	· · · · · · · · · · · · · · · · · · ·					1		0000	( 205					
$\vdash$					67	672	1.0	9170	2.005					
$\vdash$	<u> </u>		┝┼╴			0.52		317.0	6 005				****	
			+	Ħ	8.52	9.32	0.8	91771	2.000					
Γ			H	H	9.52	10.82	1.5	9172	K.005					
					10.82	12-32	1.2	91113	2.005				<u>.</u>	
	· · · · · · · · · · · · · · · · · · ·			$\square$	12.32	13.82	1.5	91774	K.005					
			<u>├</u>	++	13-87	19.37	15	91775	005		ļļ			
								73			<b>  </b>			
			<b> -</b> +-	井	15.32	16.82	15	91726	<.005					
-				H	16-82	48-32	15	91777	<u>&lt;.005</u>		<u> </u>			
				$\left  \right $	10 27	10 00	1.5	Q1220	1.005		<u> </u>			
				#	10.51	12.01	1.5	2118	1 005					
-	·····				19.82	21.32	1.5	91719	2.000					
				#	-21.37	22.82	1.5	91780	6.005					
	gal _{an d} a mar ita mana da antar da mana da mana da mana da mana da mana da mana da mana da da da da da da da da		H	TT.	-									
	· · ·			H	- 22.82	24,32	1.5	91781	2.005					
L				$\square$	24.20	200	1.5	6,000	2.005					
			┝╌┿╼	Ħ	25.87	77.37	1.5	01722	1.005					
		·	Ħ	++	0020	2000		000				·····		
-	۲ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰			$\ddagger$	-21.52	-28.82	1.5	91,84	<.005					
		<u></u>	ļ†	††	28.82	3037	15-	91785	K.005					
$\vdash$					3037	3180	1.5	91786	6.005		$\left  \right $			
				╞┼	22.22	5102		11,00						
		· · · · · · · · · · · · · · · · · · ·		#	31.82	33.32	1.5	91787	.006					
	*** *** La Brier and a company and and a state of the state of the state of the state of the state of the state		╞╪╴	Ħ	- 33.37	34.87	1.5	91788	K.005				<b>ara</b> ( <b>ba</b> ( <b>ba</b> ( <b>ba</b> ( <b>b</b> ( <b>b</b> ))) ( <b>b</b> ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ( <b>b</b> )) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b> ) ( <b>b</b>	
-				++				0.000	1.005				annan arannan constantion	
		·····	H	H	34-82	36.32	1.5	91789						
			$\square$		-36.3	37.82	1.5	91790	کەر.>					
			┢╋	╆	2707	202-	I.G	0.701	1.005					
	*****		╞╪	╞┼	0102		13	71 /51			ļ			
			<b>├┼</b>	<u>++</u>	39.32	40.82	15	91792	K.005					
			<b>⊨</b> †	╞┼	40.87	42.37	1.5	91792	<.005				**************************************	
-	====================================		Ħ	$\ddagger$	4727	120	1.6	91794	2.005					
			F	Ħ	120	4.00	<u>C''</u>	Terre						
			ΓĒ	Π	14-5.81	44533	Ļ	171/92	12.00		<b> </b>			
PAGE		OF		PROJECT:						HOLE	E NO.			]
--------------	------	----------	--------	-------------------------------	---------------------------------------	---------	------	------------------------	------------------	-------	--------	---------------------	----------	-------------
(u	REC	λg	ЗК				ALI	ERAT	ION	 T	- # 2	Ľ		
EPTH (r	CORE	THOLO	TRUCTI		GEOLOGICAL DESCRIPTION						RACTUR	VEINO		
	8		S.				B			I E	╡┙╡			
-		<u> </u>					╏┼┼┼	┝┼┼╴	┼┼┼	┤┼┤		┼┼╄	┼┼┼	1
			++		· · · · · · · · · · · · · · · · · · ·						┥┽╉	111		1
-					· · · · · · · · · · · · · · · · · · ·									]
_														]
-						╶┝┿┿	┟┼┼			┤┼┤		$\ddagger \ddagger$	┼┼┼	1
-			╞╍╆╼								┤┼┼	╆╪┿╴		1
-						╺-┠╼╄╼╄						+++	1++-	1
							11							-
	Ì				· · · · · · · · · · · · · · · · · · ·				ŀ					]
-						-11	┟╁Ҭ					┟┼┼		1
-						┥╁╁								
						┤┼┼							╏╌┟╉	
_					· · · · · · · · · · · · · · · · · · ·	┥┽┼╴	11				╶┼┼┼		┼┼┼	
-							┢╋	┟┼┼	$\left  \right $		-+++	$\mp$	<b>T</b>	1
-				- Alfred - Standart (s. 1997)										
-														
-									┢╋╋					1
-				·····										10
						╞╪╪╧			┢╋╋			┼┼┼		- - -
					•			╞┼┼╴				┼┼┼		
-				·····		- ++								-
-														
-					· · · · · · · · · · · · · · · · · · ·									
 -				**********										
-					•						╡╪╪	┤┼┼		1
-						1#	╞╪╪╴						╎┼┼	
						111						111		
						11-	H						++	
-		······												
-														
-					······	╶╞╪╪╧								
- 														
-		·						╞╪╪╴						
<del>-</del>				·····		-++-								
-														
-							H	H						
-						-								
-			=					┝╌┿╌╸			-			
-				· · ·		- ++						· │		
-							+-	$\left  \right\rangle$	++					
										. '			-	-

### APPENDIX VI

### ANALYTICAL CERTIFICATES

1

·		1630 PARROWA UTBELT VANCOUVER, BC - V5L 1L6 (604) 251-5656	
	CHEM LAB L	MAIN OFFICE - 1960 TRIUMPH ST VANCOUVER, B.C. V5L 1K • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
REPORT NUMBER: 900506 GA	JOB NUMBBR: 900506	PRIME BOUITIES INC.	PAGE 1 OF 1
SAMPLB #	Au		
35801 35802 35803 35804	ppb 60 90 100 20	-	
35805	490		
35806 35807 35808 35809 35810	250 10 20 130 50		
35811 35812 35813 35814 35814 35815	60 nd 190 220		
35816			
35810 35817 35818 35819 35820	850 160 180 540		
35821 55951 55952 55953 55954	> 10000 350 160 30 380		
55955 55956 55957 55958 55959	980 110 50 50 30	- · ·	
55960 55961	1760 9100		

DBTECTION LINIT nd = none detected

÷

5 -- = not analysed is = insufficient sample

----

# 

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

#### BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

### REPORT NUMBER: 900653 GA JOB NUMBER: 900653 PRIME RQUITIES INC. PAGE 1 OF 1 SAMPLE # Au ppb 55962 nd 55963 > 10000

55964 430

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

# VGC VANGEOCHEM LAB LIMITED

,

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

**BRANCH OFFICES** BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMB	BR: 900653 AA	JOB NUNBER: 9	00653	PRIME EQUITI	IBS INC.		PAGE 1 (	)F 1
SAMPLE	#	•	Au oz/st		 			
55963		•	.480	•				
· .		. •				·		
			• .					
		• • • • •						• •
. ,					•		•	
	· .		·					
	: :		•					
•								
DETECTI 1 froy	ION LIMIT y oz/short ton =	34.28 ppm	.005 1 ppm = 0.000	)1% ppm = p	arts per million	1 < = les	s_than	
	S	igned:	10-	12	:		ъ. Э	

1

.

_ _ -- -- --

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-57 17 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900506 AA	JOB NUMBER: 900506	PRIME EQUITIES INC.	PAGE 1 OF 1
SAMPLE #	Au oz/st		
35821	1.500		
55960	.054	ч.	
55961	.190		

DETECTION LIMIT 1 froy oz/short ton = 34.28 ppm

signed:

.005 1 ppm = 0.0001%

ppm = parts per million

l

< = less than</pre>

GC VANGEOCHEM LAB LIMITED

•··· •·

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT	NUMBER: 900506 AC	JOB NUMBER: 900506	P	RIME EQUITIES INC	•	PAGE	1 07	1	
SAMP	LE #		Cu %	Pb %				·	
5595	2			1.08		1			
5595	4	1.	.85	1.71					

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm .01 .01 1 ppm = 0.0001% ppm = parts per million

< = less than

signed:

# CONTRACTOR VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER:	900506 AB	JOB NUMBER:	900506	PRIME EQUITIES	S INC.	- -	PAGE	1 OF	1
SAMPLE #	-		Ag oz/st						·
•									١
55954	·.		58.15						
55955		•	3.21						
•					· •				
	· ·		N,						·
i.		•					· · · · ·		

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

ppm = parts per million

< = less than</pre>

IMPRIME AU CANADA

VANGEOCHEM LAB LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5655 Fax:(604)254-5717

### ICAP GEOCHEMICAL ANALYSIS

A..5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 % for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mo, Na, P, Sn, Sr and W.

			·		Th	is leach	is part	ial for A	al, Ba,	Ca, Cr,	Fe, K, M	g, Mn, N	a, P, Sn	, Sr and	₩.	•			ANAL	YST:	Ky.	~lh			
REPORT 0: 900506 PA	PRIME EQUI	TIES INC.				PROJE	CT: TICK	ER TAPE		DAI	E IN: SE	PT 17 19	90 DA	TE OUT: I	OCT 18 1	990	ATTENTIO	l: MR. J	IN FOSTE	R	,	PAG	E 1 OF	1	
Sample Name	Ag oge	Al I	As DD#	Ba BOB	Bi Dom	Ca ž	Cd DOM	Co Dom	Cr 009	Cu Dom	Fe	K	Ng X	Kn opa	No Boa	Na Z	Ni	р I	Pb	Sb Dd <b>e</b>	Sn Dû <b>n</b>	Sr põõ	រៀ Dom	¥ Op <b>s</b>	Zn oge
35801	0.9	6.13	(3	23	(3	1.92	3.5	93	61	1428	8.66	0.35	1.72	672	29	0.20	24	0.03	(2	(2	20	59	(5	(3	260
35802	0.B	4.37	. (3	23	3	2.01	1.4	44	40	1235	6.36	0.28	0.94	608	20	0.11	11	0.02	ö	0	15	68	(5	(å	49
35803	0.9	2.60	(3	7	(3	1.15	3.0	88	76	962	510 00	0.52	0.73	576	20	6 19	29	0.02	12	35	20	30	(5	500	73
25002	(0.1	5 67	/3	ຊ່າ	/3	2 27	1.0	22	54	202	A 37	0.24	0.64	216	20	0.10	10	0.05	12	(2	16	122	(5	(3	21
35805	0.6	0.13	<3	20	<b>3</b>	3.19	8.3	74	23	1097	>10.00	0.92	0.15	1186	- 22	0.24	12	<0.01	150	72	21	22	(5	4	114
35806	1.3	1.48	(3	8	(3	5.42	4.5	. 40	33	576	>10.00	0.62	1.42	1953	19	0.18	35	0.05	72	26	17	56	<5	₹3	92
35807	(0.1	0.57	<3	330	<3	4.16	1.2	4	47	· 30	2.43	0.24	1,19	1832	9	0.02	14	0.03	11	<2	4	31	<5	(3	15
35808	(0.1	0.53	(3	15	(3	0,21	2.3	65	105	24	8.45	0.13	0.12	92	15	0,06	21	0.04	30	2	6	11	<\$	(3	5
35809	0.5	0.93	<3	7	<3	0.65	6.6	58	53	53	>10.00	0.60	0.36	311	23	0.20	22	(0.01	114	47	22	6.	<5	<3	5B
35810	1.3	2.48	(3	15	(3	1.11	5.1	131	69	155	>10.00	0.41	0.79	650	63	0.13	36	0.03	47	. 6	18	19	<5	<b>∢</b> 3	54
35811	2.7	0.36	(3	g	<3	0.45	7.3	273	59	242	>10.00	0.52	0.20	315	. 27	0.19	28	<0,01	123	49	19	7	<5	<3	51
35812	0.3	0.22	<3	15	<3	>10.00	4.1	26	53	64	>10.00	0.52	0.11	3080	19	0.09	21	0.03	68	27	11	13	<5	263	58
35813	0.2	3,82	<3	63	<3	1.04	1.9	25	62	134	5.52	0.23	1.54	624	20	0.14	18	0.07	<2	· <2	17	49	<5	(3	66
35814	· i.0	0.13	(3	11	<3	7.83	7.2	67	15	959	>10.00	0.69	0.14	1914	16	0.16	26	(0.01	105	45	14	33	<5	(3	154
35915	1.7	1.29	<3	8	<3	1.02	5.0	183	57	1181	>10.00	0.39	0.52	254	2û	0.13	34	0.22	64	16	15	18	<5	<3	101
35816	1.9	1.18	۲3	22	<3	0.95	3,7	143	55	530	>10.00	0.30	0.33	155	168	0.12	29	0.13	73	13	13	62	<5	<3	64
35817	4.0	0.64	43	15	<3	0.41	8.0	77	57	2294	<b>}10.00</b>	0,58	0,30	906	51	0.25	26	0.01	167	52	19	9	<5	<3	780
35818	1.0	1.51	<3	13	<3	08.0	3.3	110	78	884	>10.00	0.22	0.27	231	17	0.10	36	0.10	37	<2	15	46	(5	<3	36
35819	1.9	1.25	(3	5	<3	1.12	4.0	118	94	918	>10.00	0.32	0.27	318	19	0.10	44	0.26	47	11	13	42	(5	(3	27
35820	2.0	0.40	(3	7	<b>∢</b> 3	0.70	3.7	191	107	171	>10.00	0.39	0.13	163	28	0.14	48	0.04	80	31	15	15	<5	<3	31
35821	2.2	0.49	(3	10	661	0.09	2,1	46	95	407	7,38	0.10	0.22	112	10	0.05	63	<0.01	43	5	6	4	<5	(3	18
55951	0.4	0.97	(3	64	(3	0.11	1,1	61	103	19	4.77	0.07	0.45	335	13	0.03	30	0.04	11	<2	5	t5	(5	<3	39
5595Z	18.2	0.86	<3	79	61	0.90	2.9	8	77	29	1.55	0.10	0.28	653	. 4	0.12	29	0.04	13542	<2	4	22	(5	(3	1783
55953	0.6	0.43	(3	43	(3	0.17	(0.1	3	202	40	2.46	0.04	0.14	481	15	0.03	36	0,02	283	(2	3	2	(3	(3	280
55954	>50.0	1.05	440	188	(3	0.40	643,6	18	40	14671	1.50	0.08	0.39	442	9	0.08	33	0.08	19497	>2000	8	45	(5	(3	- 193
\$5955	>50.0	0,30	(3	>1000	(3	4.20	12.2	7	77	5555	3.20	0.26	0.09	2291	8	0.07	34	0.08	383	203	5	148	<5	(3	257
55956	3,8	4.84	<3	52	<3	1.91	3.1	16	46	156	4,28	0.25	1.18	302	20	0.08	32	0.05	39	<2	14	76	<5	<3	. 37
55957	1.0	3.47	(3	25	<3	1.37	1.7	15	63	59	3.35	0.18	0.95	459	22	0.05	36	0.06	(2	(2	13	15/	(5	3	32
55958	1.0	2.99	<3	58	(3	1.14	1.0	14	41	44	2.80	0.16	0.69	259	19	0.05	33	0.06	<2	. <2	8	75	(5	(3	15
55959	0.5	1.02	(3	15	(3	0.38	2.1	59	40	276	>10.00	0,18	0.38	208	44	0.07	66	0.05	41	12	9	6	(5	(3	18
55960	16.2	0.13	(3	22	<b>∢</b> 3	5.90	7.8	19	52	4755	>10.00	0,45	0.29	1103	9	0.11	49	0.02	70	26	9	86	(5	(3	269
55961	1.3	2.00	(3	67	4	0,16	1.2	15	91	319	4.83	0.11	0.90	497	15	0.05	37	0.02	3	<2	10	4	<b>(</b> 5	(3	51
Minimum Detection	0.1	0.01	3	i	3	0.01	0.1	1	i	1	0.01	0.01	0.01	1	1	0,01	1	0.01	2	2	2	1	5	3	1
Maximum Detection C - Less Than Minimum	50.0 ) - Greater Ti	10.00 han Maxim	2001) IU <b>n</b>	1000 is - insu	1000 Ificien	10.00 t Sample	1000.0 ns	20000 - No Samo	1000 le	20000 ANOMALOL	10.00 S RESULT	10.00 5 - Furt	10.00 her Anal	20000 (585 Bv 1	1000 Alternati	10.00 e Method	20000 5 Succes	10.00 ed.	20000	2000	1000	10000	100	1000	20000

Production of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

VANGEOCHEM LAB LIMITED

n An Arthon an Arthon an Arthon

_____ 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

### ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H_2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: _kmlh

REPORT #: 900653 PA	PRIME EQUI	TIES INC.				PROJE	CT: TICK	ER TAPE		DATI	E IN: OC	05 1990	DAT	re out: N	NOV 07 1	990	ATTENTIO	N: MR. J	IN FOSTER	}		PAG	E 1 OF	1	
Sample Name	Ag	Al Z	As Dom	Ba	Bi	Ca X	Cd	Co	. Cr	Cu	Fe X	K X	Ng X	ក្រ ក្រុក	Mo ane	Na 7	Ni	P X	Pb	Sb	Sn	Sr	U OD <b>a</b>	¥ 006	Zn
55962 55963	0.8	0.17	<3 (3	67	3 146	0.03	1.3	2	189	91 244	0.58	<0.01 0.09	0.04	96 150	14	0.02	14	<0.01	268	<2 8	6	3	(5	(3 (3	49
55964	0.5	0.20	⟨3	140	<3	0.57	1.2	8	79	150	1.98	0.08	0.07	551	8	0.05	<1	(0.01	40	<2	<2	5	(5	<b>(3</b>	17
Minigum Detection Maxigum Detection < - Less Than Minigum	0.1 50.0 > - Greater T	0.01 10.00 han Maxid	3 2000 nua	1 1000 is - Insu	3 1000 Ifficient	0.01 10.00 Sample	0.1 1000.0 ns	1 20000 - No Sam	1 1000 11e	1 20000 Anomalous	0.01 10.00 5 RESULT	0.01 10.00 5 - Furth	0.01 10.00 er Analy	1 20000 (ses By #	1 1000 Alternat	0.01 10.00 e Nethod	1 20000 s Suggest	0.01 10.00 ted.	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

VANGEOCHEM LAB LIMITED

**'G** 

MAIN OFFICE -1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT I	WMBBR: 900351 GA JOB	NUMBER: 900351	PRIME EQUITIES INC.	PAGE 1 OF 1
SAMPLE	Au			
(3051	ppD 10			
63823	10			
63853	- - - - - - - - - - - - - - - - - - -			
63854	1620			-
63855	50			
63856	120			
63857	20			
63858	20			
63859	10			
63860	10			
63861	20			
63862	120			
63863	120			
63864	20		.*	
63865	50			
63866	20			
63867	nd			
63868	20			
63869	60			
63870	. nd			
63871	nd			
63872	nd			
63873	20			
63874	30			
63875	20			
63876	ba			
63877	50			
63878	20			
63879	100			
63880	10			
63881	70			
63882	1500			
63883	60			
63884	50			

DETECTION LINIT nd = none detected 5 = not analysed

-- = not analysed is = insufficient sample

	CHEM LAB LI		MAIN OFFICE 38 TRIUMPH ST. WVER, B.C. VSL 1K5 (604) 251-5656 AX (604) 254-5717	BRANCH OFFIC PASADENA, NFL BATHURST, N.I MISSISSAUGA, O RENO, NEVADA, U
REPORT NUMBER: 900351 AA	JOB NUNBBR: 900351	PRIME EQUITIES INC.		PAGE 1 OF 1
SAMPLE #	Au oz/st			
63854 63882	.034 .048		•	. "
<ul> <li>Alexandrica de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la c</li></ul>		• • • • • • • • • •		
	tin en en en en en en en en en en en en en	• • •		
			, ·	
· .				

ECTION LIMIT .005 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001% DETECTION LIMIT

ppm = parts per million < = less than

....

Payalh signed:

1630 Pandora Street, Vancouver, B.C. VSL 11.6

Ph: (604)251-5656 Fax: (604)254-5717

ANGE

INPUISE AU CANNON

### ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mymb

			1 6 4 4																						
REPORT #: 900351 PA	PRIME EQUI	TIES INC	•		•	PROJE	CT: TICK	ER TAPE		DAT	E IN: AU	G 31 1990	) DA	TE OUT: C	DCT 2 199	90	ATTENTIO	N: MR. J	IN FOSTER			PAG	E 1 OF	1	
Sample Name	Âg	Al T	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe 7	K	Mg	Mn	No	Na 7	Ni	P 7	Pb	Sb	Sn	Sr	U	¥ 008	Zn
62951	<0 1	0.76	. /2	270	/2	۰ م م 2	0.2	4	40 20	25	1 77	0 1 4	0 24	02A	7	<u>م م2</u>	2 2	0 01	/2		5	21	/5	/3	45
63051	/0.1	A 15	: /0	213	10	0.33	0.5	· ·	00	23	1.0	0.11	0.01	724	,	0.02	2	0.01	12	12	J A	21	/5	/2	27
63632	(0.1	0.61	()	- 210	(3	0.09	0.4	3	63	0	1.03	0.11	0.19	760	3	0.03	2	0.01	(2	12	7	14	13	10	26
03013	(0.1	0.01		213	13	0.33	0.0	3	00	21	1	0.07	0.10	744	0	0.02		0.01	14	14	J 5	17	10	10	20
63839	(0.1	0.63		1/2	(3	0.35	. 0.2	. 4	30	32	2.02	0.08	0.17	113	3	0.02	3	0.01	(2		3	1/	\J (F	13	30
63855	(0.1	0.65	(3	. 300	. (3	0.80	1.0	4	68	13	1.90	0.11	0.22	897	1	0.03	2	0.01	<2	(2	5	30	(3	3	46
63856	(0.1	0.63	<3	227	<3	0.70	0.3	4	74	22	1.90	0.11	0.16	771	5	0.02	4	0.01	<2	<2	6	20	<5	(3	35
63857	<0.1	0.59	.⊀3	270	(3	0.45	1.1	4	77	7	1.60	0.OB	0,14	609	5	0.02	3	<0.01	<2	<2	6	17	(5	<3	35
63858	<0.1	0.54	· (3	170	(3	0.19	0.4	. 5	100	14	1.30	0.06	0.12	332	5	0,03	3	0.01	<2	. 3	5	12	<5	<3	32
63859	(0.1	0.57	: (3	145 (	<3	0.56	1.2	<u> </u>	70	6	1.29	0.08	0.17	488	6	0,02	2	0.01	<2	<2	5	20	<5	<3	63
63860	<0.1	0.52	<3	150	<3	0.53	1.0	2	.83	10	1.32	0.08	0.13	498	7	0.03	4	0.01	<2	3	4	18	<5	<3	66
63861	(0.1	0.61	(3	173	<3	0.43	0.2	4	78	13	1.63	0.07	0.18	607	6	0.03	5	0.01	<2	<2	4	25	<5	<3	· 29
63862	<0.1	0.77	. (3	276	(3	1.12	0.7	4	83	25	1.68	0.14	0.30	910	5	0.02	4	<0.01	<2	<2	4	46	<5	<3	22
63863	<0.1	0.82	(3	203	(3	0.75	0.7	7	65	91	1.65	0.13	0.32	710	7	0.02	10	<0.01	<2	<2	5	23	<5	<3	28
63864	(0.1	0.74	3	>1000	(3	0.10	(0.1	4	89	4	1.52	0.07	0.21	455	6	0.03	5	0.01	(2	<2	6	96	۲5	(3	40
63865	<0.1	4.05	<3	638	. (3	4.72	· · 2.2	31	257	52	4.97	0.48	2.28	2176	15	0.03	100	0.04	<2	<2	17	112	<5	<3	86
63866	(0.1	1.43	(3	481	. (3	2.02	0.5	8	89	19	2.41	0.21	1.02	1506	8	0.02	13	0.02	(2	<2	8	27	<5	(3	67
63867	<0.1	0.77	<3	307	(3	0.38	(0.1	5	74	7	1.74	0.09	0.29	656	B	0.03	5	0.01	(2	<2	6	13	<5	(3	48
63868	(0.1	0.73	(3	308	(3	0.43	(0.1	4	87	9	1.87	0.08	0.21	652	6	0.03	5	0.01	(2	(2	6	19	(5	(3	49
63869	(0.1	0.68	1 12	257	. (3	0 10	· 0 4	Ś	79	, , , , , , , , , , , , , , , , , , , ,	1 90	0.05	0 19	247	å	0.02	5	. 0.01	12	12	6	10	(5	(3	23
63870	(0.1	0.64	(3	316	<3	0.09	(0.1	5	11	43	1.85	0.05	0.17	223	6	0.02	7	0.01	(2	3	5	8	<5	(3	17
63871	0.1	0.58		210	(3	0, 10		4	64	19	1.57	0.05	0.16	308	6	0.02	10	0.01	(2	(2	4	8	۲5	(3	38
63972	0.2	0.73	13	31000	(3	0.10	(0.1	2	87	.,	1 50	0 07	0.21	437	Š	0.02		(0.01	(2	(7	6	92	(5	(3	40
63873	(0.1	0.52	(3	313	(3	0.27	(0.1	1	59	ú	1.33	0.05	0.16	458	4	0.02	5	(0.01	ö	0	4	12	(5	(3	27
63974	(0.1	0.56		200		0 41			76	č	1 45	0 09	0.16	269	ċ	0.03	5	0 01	0	2	4	15	(5	(3	24
63875	(0.1	0.55		261	- (3	0.24	<0.1	3	70	15	1.48	0.06	0.16	341	7	0.03	7	0.01	0	3	4	12	(5	(3	39
				AL S										••••	•		•		· · ·		·				
63876	<0.1	0.45	- 3	232	<u>`</u> (3	0.13	² (0.1	1	.87	12	1.60	0.05	0.16	379	5	0.03	5	0.01	(2	7	4	10	<5	<3	44
63877	<0.1	0.39	(3) (3)	246	(3	0.56	<0.1	[*] 1	60	9	1.54	0.07	0.15	550	7	0.02	7	<0.01	6	3	4	19	<5	<3	34
63878	(0.1	0.47	(3	210	(3	0.37	0.4	2	78	10	1.27	0.06	0.17	450	5	0.02	7	<0.01	<2	2	3	11	(5	(3	33
63879	0.2	0.66	(3	255	<3	0.31	<0.1	3	63	7	1.55	0.07	0.28	502	1	0.02	7	<0.01	· <2	<2	4	11	<5	<3	35
63880	(0.1	0.63	(3	191	(3	0.72	<0.1	3	73	23	1.47	0.09	0.27	534	1	0.02	5	<0.01	<2	<2	4	12	<5	(3	32
63881	0.6	0.85	<3	174	(3	1.17	0.3	. 4	62	271	2.19	0.16	0.36	1440	12	0.02	7	<0.01	<2	3	5	22	<5	<b>∢</b> 3	107
63882	23.0	0.79	(3	46	(3	0.58	6.6	5	81	3206	2.97	0.14	0.33	560	9	0.02	8	(0.01	<2	9	7	11	<5	(3	162
63883	0.7	1.01	(3	223	(3	1.36	(0.1	4	59	24	1.69	0.1B	0.52	773	Ŕ	0.02	3	(0.0)	(2	(2	7	27	(5	<3	45
63884	0.3	0.90	.(3	178	(3	1.16	<0.1	4	11	33	1.64	0.15	0.41	817	6	0.02	5	<0.01	(2	(2	6	24	(5	(3	32
Niniaua Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Navieue Detection	50.0	10.00	2000	1000	1000	10 00	1000.0	20000	1000	20000	10 00	10 00	10 00	20000	1000	10 00	20000	10.00	20000	2000	1000	10000	100	1000	20000
C - Less Than Minimum	) - Greater T	'han Mavi		ic - Ine	ufficient	- Samle		- No Sana	1000		C DECHUT	S - Furti	avive	VEAR DU A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. Kathad	L Cuance	tod	*****	2444					
	7 WILWIGH 1					• eembig	. 112	nu veer		neuraluu	9 2000	⊎ (ઘાધ	ICI MIGL	jses Dy f	ni sei lidi i	- 1121100	a augues								

## GC VANGEOCHEM LAB LIMITED

 MAIN OFFICE

 1988 TRIUMPH ST.

 VANCOUVER, B.C. V5L 1K5

 ● (604) 251-5656

 ● FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900342 AA	JOB NUNBER: 900342	PRIME EQUITIES INC.	PAGE 1 OF 6
SAMPLE #	Ag oz/st	Au oz/st	
63885	<.01	<.005	
63886	.01	<.005	
63887	<.01	<.005	
63888	<.01	<.005	
63889	<.01	<.005	
63890	<.01	<.005	
63891	<.01	<.005	
63892	<.01	<.005	
63893	<.01	<.005	
63894	<.01	<.005	
63895	<.01	<.005	· · ·
63896	.02	.010	
63897	<.01	<.005	
63898	.01	<.005	· ·
63899	<.01	<.005	
•			
63900	.01	<.005	
63901	<.01	<.005	
63902	<.01	<.005	
63903	<.01	<.005	
63904	<.01	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppa .01 1 ppm = 0.0001%

Rynth

.005 ppm = parts per million

< = less than

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988 TRIUMPH-ST: -VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900342 A	A JOB NUMBER: 900342	PRIME EQUITIES INC.	PAGE 2 OF 6
SAMPLE #	Ag oz/st	Au oz/st	
			÷.
63905	<.01	<.005	
63906	<.01	<.005	
63907	.01	<.005	
63908	.01	<.005	
63909	<.01	<.005	
63910	<.01	<.005	
63911	<.01	<.005	
63912	.01	<.005	
63913	.01	<.005	
63914	.02	<.005	
63915	<.01	<.005	
63916	.01	<.005	
63917	<.01	<.005	
63918	<.01	<.005	
63919	<.01	<.005	
63920	<.01	<.005	
63921	.01	<.005	
63922	<.01	<.005	
63923	<.01	<.005	
63924	<.01	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

Myn h

.005 ppm = parts per million

< = less than</pre>

## JGC VANGEOCHEM LAB LIMITED

• • • •

• . . . . . • • •

MAIN OFFICE +988-TRIUMPH ST. +VANCOUVER, B.C. V6L-1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT BUNBER: 900342 AA	JOB NUMBER: 900342	PRIME EQUITIES INC.	PAGE 3 OF 6
SAMPLE #	Ag oz/st	Au oz/st	
			-
63925	.01	<.005	
63926	<.01	<.005	
63927	.01	<.005	
63928	.03	<.005	
63929	<.01	<.005	
63930	<.01	<.005	
63931	.02	<.005	
63932	.02	<.005	
63933	<.01	<.005	
63934	.02	<.005	
$X = X^{-1/2}$			
63935	.01	<.005	
63936	<.01	<.005	
63937	.01	<.005	
63938		<.005	
63939	.01	<.005	
63940	.01	<.005	
63941	<.01	<.005	
63942	<.01	<.005	
63943	<.01	<.005	
63944	<.01	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

Rym

.005 ppm = parts per million

4

< = less than</pre>

## GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST: -VANCOUVER, B.C. V5L 1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

	REPORT NUMBER: 900342 AA	JOB NUMBER: 900342	PRIME EQUITIES INC.	PAGE 4 OF 6	
	SAMPLE #	Ag oz/st	Au oz/st		
	-		-		
	63945	<.01	<.005		
	63946	.01	<.005		
	63947	.02	<.005		
	63948	.03	<.005		
	63949	<.01	<.005		
	63950	<.01	<.005		
	63951	、 <.01	<.005		
	63952	<.01	<.005		
	63953	<.01	<.005		
	63954	.01	<.005		
	63955	.01	<.005		
:	63956	<.01	<.005		
	63957	.01	<.005		
•	63958	<.01	<.005		
	63959	<.01	<.005		
	63960	.02	<.005		
	63961	<.01	<.005		
	63962	.02	<.005		
	63963	.02	<.005		
	63964	<.01	<.005		
		•			

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

Rymit h

.005 ppm = parts per million

___

K = less than

# VANGEOCHEM LAB LIMITED

• • •

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

**BRANCH OFFICES** 

PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900342 AA	JOB NUMBER: 900342	PRIME EQUITIES INC.	PAGE 5 OF 6
SAMPLE #	Ag oz/st	Au oz/st	
	· _		
63965	.01	<.005	
63966	<.01	<.005	
63967	<.01	<.005	
63968	<.01	<.005	
63969	<.01	<.005	
63970	<.01	<.005	
63971	.01	<.005	
63972	.02	<.005	
639 <b>73</b>	.01	<.005	
63974	<.01	<.005	
•			
63975	<.01	<.005	
63976	<.01	<.005	
63977	.01	<.005	
63978	<.01	<.005	
63979	.02	<.005	
63980	<.01	<.005	
63981	<.01	<.005	
63982	.02	<.005	· ·
63983	<.01	<.005	
63984	.02	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

.01 1 ppm = 0.0001%

.005 ppm = parts per million

< = less than</pre>

signed: L

MAIN OFFICE 1988 TRIUMPH_ST. -VANCOUVER, B.C. V5I_1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

OF 6

REPORT NUMBER: 900342 AA	JOB NUNBER: 900342	PRIME EQUITIES INC.	PAGE 6
SAMPLE #	Ag oz/st	Au oz/st	
	<i>,</i>		
63985	.01	<.005	
63986	.01	<.005	

GC VANGEOCHEM LAB LIMITED

... ..

DETECTION LIMIT .01 .005 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001% ppm = parts per million < = less than signed: _____ 1630 Pandora Street, Vancouver, B.C. V5L 1L6 .....

Ph1 (604) 251-5656 Fax1 (604) 254-5717

VANGEOCHEM

### ICAP GEOCHEMICAL ANALYSIS

LAB

LIMITED

### A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mynth

PARTED IN LARAL A

	REPORT #: 900342 PA	PRIME EQUI	TIES INC.				PROJE	CT: TICKE	R TAPE		DATE	IN: AUG	30 1990	) DA	TE OUT: (	DCT 2 199	)0 · · · i	ATTENTIO	(: KR. JI	h foster			PAGE	E L OF	3	
	Sample Name 63885 63886 63887 63888 63889	Ag ppm 0.2 0.4 0.2 0.2 0.2 0.4	A1 0.44 0.40 0.57 0.67 0.66	As ppa (3 (3 (3 (3 (3)	Ba ppm 86 46 64 69 131	Bi ppm <3 <3 <3 <3 <3 <3	Ca 1.90 1.51 1.43 1.56 1.33	Cd pp= 0.8 0.9 0.9 0.4 0.3	Co ppm 3 2 2 4 3	Cr ppe 72 99 87 99 74	Cu ppm 108 161 26 28 20	fe 1 0.69 0.58 0.88 0.93 0.85	K 2 0.13 0.11 0.13 0.15 0.14	Mg 2 0.12 0.10 0.20 0.28 0.27	Mn 611 490 571 798 663	Ho ppm 4 5 6 6	Na 2.03 0.03 0.03 0.03 0.02 0.02	Ni pp= 5 4 3 5 5	P 1 0.02 0.01 0.01 (0.01 (0.01	Pb ppm {2 {2 {2 {2 {2} {2} {2} {2} {2} {2}	Sb ppe {2 {2 {2 {2 {2} {2} {2} {2} {2} {2} {2}	Sn ppm 2 {2 2 3 3 3	Sr 28 19 20 20 16	U 9pm (5 (5 (5 (5 (5	W 23 23 23 23 23 23 23 23	Zn ppm 32 28 19 23 21
	63890 63891 63892 63893 63893	0.2 0.2 0.3 0.1 0.2	0.70 0.87 3.87 1.02 0.70	(3 (3 (3 (3 (3	68 56 204 293 198	(3 (3 (3 (3 (3	1.08 1.46 7.51 2.02 0.99	1.6 0.8 2.5 1.4 0.8	3 4 28 5 3	100 72 78 77 90	22 6 56 7 31	0.88 1.14 4.73 1.46 0.99	0.13 0.15 0.47 0.19 0.12	0.29 0.46 2.29 0.59 0.27	593 612 1856 747 539	5 4 15 6 8	0.03 0.03 0.03 0.03 0.02	7 9 43 8 8	<0.01 <0.01 0.03 <0.01 <0.01	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	3 5 14 5 3	18 20 102 45 18	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	21 21 67 25 14
U CANADA	63895 63896 63897 63898 63899	0.4 0.1 <0.1 <0.1 <0.1	0.78 0.73 0.72 0.63 0.60	(3 (3 (3 (3 (3	134 244 263 860 450	<3 (3 (3 (3 (3	1.01 0.58 1.18 1.13 0.97	1.2 1.8 1.9 1.3 1.4	3 6 3 3 2	93 112 70 101 88	17 25 5 7 5	1.00 1.34 0.99 1.25 1.36	0.13 0.11 0.14 0.13 0.12	0.28 0.25 0.33 0.30 0.24	524 397 629 710 645	7 8 5 5 5	0.03 0.02 0.03 0.03 0.03	6 6 4 4	<0.01 0.01 0.03 0.01 0.01	<pre>{2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {2 {</pre>	<2 <2 <2 <2 <2 <2 <2	3 4 4 3 3	18 17 31 60 41	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3)	23 20 23 38 32
INPAINE A	63900 63901 63902 63903 63904	<0.1 <0.1 <0.1 <0.1 <0.1	0.57 0.54 0.45 0.24 0.20	(3 (3 (3 (3 (3	300 419 693 277 462	(3 (3 (3 (3 (3	0.85 0.99 0.86 0.30 0.23	1.6 1.6 1.2 1.5 1.6	1 2 1 1 (1	107 75 84 82 90	7 5 10 13 5	1.12 1.14 0.87 0.45 0.31	0.11 0.12 0.10 0.05 0.04	0.19 0.20 0.20 0.04 0.03	559 587 543 232 170	6 5 5 4 4	0.03 0.03 0.03 0.03 0.03 0.02	3 4 5 8 5	0.01 0.01 0.01 0.01 0.01	<2 <2 <2 2 12	<2 <2 <2 <2 <2 5	3 3 3 (2 (2	35 41 44 19 19	(5 (5 (5 (5 (5	<3 <3 <3 <3 <3	31 28 12 6 4
	63905 63906 63907 63908 63909	<pre>(0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1</pre>	0.36 0.39 0.51 0.51 0.46	(3 (3 (3 (3 (3	325 274 184 204 342	<3 <3 <3 <3 <3	0.60 0.74 0.88 0.22 0.01	2.1 2.0 2.7 2.3 2.8	2 3 2 (1 1	89 101 66 87 81	12 26 19 21 15	0.78 1.08 1.27 0.78 1.20	0.08 0.11 0.10 0.05 0.04	0.10 0.13 0.10 0.07 <0.01	388 483 498 365 575	6 5 5 6	0.02 0.03 0.03 0.01 0.02	9 5 4 5	0.01 0.01 (0.01 0.02 (0.01	<2 3 <2 <2 12	4 4 2 (2 4	<pre>{2     3     2     {2     {2     </pre>	29 33 16 7 15	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	10 19 134 24 117
	63910 63911 63912 63913 63914	<pre>(0.1 (0.1 (0.1 (0.1 (0.1 0.2</pre>	0.52 0.54 0.40 0.44 1.00	<3 <3 <3 <3 <3	324 448 200 149 216	(3 (3 (3 (3 (3	<0.01 0.07 0.33 0.37 0.79	2.3 3.1 2.6 2.6 2.6	1 (1 1 (1 3	84 60 76 62 63	12 7 4 6 20	1.15 0.65 0.50 0.77 2.15	0.02 0.02 0.07 0.08 0.15	<0.01 0.01 0.07 0.11 0.32	622 416 311 343 928	9 6 3 5 6	0.01 0.01 0.02 0.02 0.03	8 4 5 2	<0.01 <0.01 <0.01 0.01 0.03	14 <2 4 <2 <2 <2	3 <2 4 <2 <2 <2	<2 <2 2 2 6	12 13 13 13 21	<5 <5 <5 <5 <5	(3 (3 (3 (3 (3	85 93 27 12 42
	63915 63916 63917 63918 63919	<0.1 <0.1 <0.1 <0.1 0.1	0.48 0.31 0.31 0.28 0.33	<pre>&lt;3 &lt;3 &lt;3 &lt;3 &lt;3 &lt;3 &lt;3 </pre>	208 264 172 270 280	(3 (3 (3 (3 (3	0.33 0.42 0.46 0.43 0.55	2.2 2.6 2.7 2.4 3.1	<1 1 1 (1 2	78 80 67 99 81	18 15 5 7 10	1.32 1.10 1.10 0.60 0.58	0.08 0.08 0.08 0.07 0.08	0.13 0.06 0.12 0.06 0.09	507 383 429 336 318	5 3 5 4 7	0.03 0.02 0.03 0.03 0.03	2 5 5 6 4	<0.01 <0.01 <0.01 <0.01 <0.01	<2 2 4 4 2	<2 4 7 3 2	(2 (2 2 (2 (2	20 21 25 25 27	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3)	33 21 18 7 7
	63920 63921 63922 63923	0.2 0.2 0.2 (0.1	0.38 0.34 0.45 0.33	(3 (3 (3 (3	445 177 339 470	<3 <3 <3 <3	0.49 0.23 0.69 0.51	2.9 2.7 2.6 2.6	2 <1 1 <1	94 81 109 188	30 14 7 9	0.46 0.29 0.67 0.58	0.07 0.04 0.09 0.07	0.10 0.06 0.18 0.07	248 134 401 307	6 4 6 . 115	0.02 0.02 0.03 0.03	6 5 5 524	0.02 0.01 (0.01 0.01	5 (2 (2 (2	<2 3 <2 <2	2 (2 (2 (2	28 18 44 54	<5 <5 <5 <5	(3 (3 (3 (3	4 4 15 7
	Minimum Detection Maximum Detection	0.1 50.0	0.01 10.00	3 2000	1 1000	3 1000	0.01 10.00	0.1 1000.0	1 20000	i 1000	1 20000	0.01 10.00	0.01 10.00	0.01 10.00	1 20000	1 1000	0.01 10.00	1 20000	0.01	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ней

ОĈ

ANGE

INPRIME AU CANADA

### ICAP GEOCHEMICAL ANALYSIS

### A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ED

٤

		ė			Thi	is leach	is parti	ial for A	1, Ba, (	Ca, Cr, I	⁻ e, K, H	g, Mn, Ni	1, P, Sn	, Sr and	W.				ANALY	YST:	4	Mh				ŧ
REPORT #: 900342 PA	PRIME EQUIT	TES INC.				PROJE	CT: TICK	ER TAPE		DATI	E IN: AU	G 30 1990	) DA	TE OUT: O	ICT 2 199	90 -	ATTENTIO	I: MR. J	IN FOSTER			PAG	2 OF	3		,
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mo	No	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn	ę
	ppa	1	ppe	ppe	ppa	Z	ppa	ppe	pps	pps	ĩ	I	X	ppe	ppe	1	ppe	1	pps	- pos	ppm	ppa	ppm	ppe	ppe	
63924	0.2	0.40	(3	>1000	(3	0.20	1.5	2	78	76	0.90	0.05	0.11	363	4	0.02	6	0.01	(2	3	<2	69	<5	<3	26	
63925	<b>XU.1</b>	0.43	(3	337	(3	0.33	1.4	3	100	1	1.31	0.0/	0.12	335	1	0.03	9	0.01	<2	5	3	29	()	(3	19	
DJJ2D 6997	20.1	0.31	(3	>1000	(3)	0.13	1.1		13/	2	V.3/	0.09	0.02	95 956	2	0.03		0.01	20	(2	(2	200	() /5	(3	. D	
63928	0.5	0.43	 <3	258	(3	1.02	1.4	2	102	53	1.05	0.12	0.14	£39 650	7	0.02	4	0.01	16	3	<2 <2	174	<5	<3	19	1
C 2020	0.1	A 20	/2		/3	A (C	1 5	•	62		A 90	A 00		204	,	A 42	•	/0 01	• /2	12	12	43	/5	12	12	
63323	V.1 (0 1	0.33	(3)	333 627	(3	0.52	1.3	2	112	13	V.85	0.09	0.14	374		0.02	2	0.01	(2	(2	12	92	(3	(3	13	1
63931	(0.1	0.45	(3	>1000	(3	0.93	1.5	1	39	<u>،</u>	0.72	0.10	0.12	473	J J	0.02	3	0.01	(7	2	ő	56	(5	(3	15	
63932	(0.1	0.42	, (3	337	(3	0.29	0.3	2	90	26	0.54	0.05	0.01	269	5	0.02	4	(0.01	11	3	(2	12	<5	(3	42	(
63933	<0.1	0.49	<3	604	<3	1.54	0.9	ĩ	85	15	0.72	0.14	0.05	896	3	0.02	(1	0.01	9	<2	<2	44	<5	<3	4L	
63934	<0.1	0.34	<3	518	(3	0.20	0.5	1	110	-23	0.31	0.04	<0.01	92	4	0.02	(1	<0.01	13	(2	<2	19	<5	(3	14	(
63935	0.7	0.38	<3	>1000	(3	0.05	1.1.	(1	· 111	39	0.26	0.02	<0.01	73	4	0.02	(1	0.01	110	5	<2	115	<5	<3	18	
63936	0.2	0.34	<3	>1000	<3	0.01	1.9	<1	135	16	0.26	<0.01	<0.01	10	4	0.01	<b>(</b> 1	<0.01	27	<2	<2	166	<5	<3	17	2
63937	0.3	0.38	(3	>1000	20	(0.01	1.3	1	101	18	0.45	0.02	<0.01	28	4	0.01	(1	(0.01	68	7	<2	184	<5	(3	34	127
63730	V.4	V.40	• (3	21000	(3	(0.01	1.1	1	115	13	0.31	0.03	<0.01	17	4	0.01	(1	(0.01	52	5	<2	46	<5	<3	23	0140
63939	0.4	0.61	<3	692	<3	0.06	1.4	3	114	35	1.06	0.05	0.03	184	6	0.02	(1	0.01	9	<2	2	18	<5	(3	81	CANA
63940	0.3	0.42	<3	317	<3	0.26	1.4	3	88	40	1.26	0.07	0.08	401	6	0.02	<b>{i</b>	0.01	<2	3	<2	15	<5	(3	38	D A
63941	0.2	0.49	(3	506	(3	0.19	1.5	2	87	37	1.17	0.07	0.07	401	. 8	0.02	<1	0.01	(2	2	2	17	(5	(3	63	•
63943	0.3	0.42	<ul> <li>&lt;3</li> <li>&lt;3</li> </ul>	613 488	(3 (3	0.09	1.6	23	93 72	43 24	0.86	0.05	0.04 0.08	291 471	12	0.02 0.02		0.01	11 49	6	2	17	(5 (5	(3	73 38	i
63944	0.2	0.57	(3	544	(3	0.23	1. R	3	Ri	19	1.81	0 08	0 14	652	7	0.03	4	0 01	0	4	2	18	(5	(3	49	
63945	0.1	0.58	(3	360	(3	0.08	2.0	3	76		1.57	0.06	0.08	559	5	0.02	ä	0.01	4	5	2		(5	(3	79	
63946	<0.1	0.52	3	514	(3	0.17	1.3	2	89	. 6	1.76	0.07	0.10	589	5	0.03	(1	0.01	<2	5	2	16	<5	<3	58	
63947	<b>&lt;0.1</b>	0.50	<3	876	<3	0.07	1.2	3	67	24	1.58	0.06	0.09	434	5	0.02	<1	0.01	<2	. 3	2	26	<5	(3	34	·* 1
63948	<0.1	0.45	<3	253	<b>3</b>	0.03	1.9	3	92	52	1.83	0.05	0.07	250	5	0.02	<1	0.01	<2	7	3	6	<5	~ (3	40	
63949	<0.1	0.56	. (3	435	<3	0.47	1.9	3	77	19	1.62	0.09	0.14	675	7	0.02	1	0.01	<2	3	2	21	· <5 ·	· <3	39	
63950	.0.3	0.55	<3	284	(3	0.67	1.1	3	76	20	1.83	0.11	0.15	B14	7	0.03	(1	0.01	<2	4	.3	27	<5	(3	54	
10260	0.2	0.35	. (3	>1000	(3	0.48	0.9	2	67	9	0.93	0.07	0.02	322	5	0.02	. (1	0.01	8	. <u>6</u> .	<2	39	<5 /5	(3	36	
63953	<0.1	0.28	<3	>1000	(3	0.18	1.7	1	65	6	0.70	0.05	0.04	239	3	0.02		0.01	28	6	<2	43	<5	(3	16	4
63954	<b>(0, 1</b>	0.36	. (3	R64	(3	0.24	0.9	2	76		A 43	0 06	A A7			0.02	4	0.01	0	3	0	45	. (5	(3	19	
63955	(0.1	0.60	(3	242	(3	0.20	1.3	3	60	á	1.52	0.08	0.14	507	. 8	0.03	ä	0.01	(2	3	2	17	<b>&lt;</b> 5	(3	32	'
63956	<0.1	0.52	(3	903	(3	0.20	1.3	1	. 87	8	1.42	0.07	0.11	480	5'	0.03	(1	0.01	(2	<2	(2	24	<5	<3	32	
63957	<0.1	0.40	<3	283	<3	0.09	2.0	2	77	10	1.56	0.05	0.03	532	4	0.02	<1	0.01	8	7	2	11	<5	<3	57	
63958	0.2	0.45	<3	540	<3	. 0.10	1.9	<u>,</u> 3	89	24	1.72	0.06	0.0B	648	5	0.03	<1	0.01	3	5	2	16	<5	<3	52	
63959	<0.1	0.45	(3	526	(3	0.09	1.2	3	86	24	1.67	0.07	0.09	622	5	0.03	(1	0.01	(2	5	2	16	(5	(3	51	
63960	0.2	0.52	(3	169	<3	0.13	1.5	2	71	23	1.15	0.06	0.09	373	4	0.02	(1	0.02	<2	3	(2	12	(5	(3	. 39	
63961	<0.1	0.61	<3	292	<3	0.40	1.2	3	90	7	1.61	0.10	0.19	627	4	0.03	(1	0.01	<2	2	3	25	(5	(3	34	
63962	<0.1	0.33	<b>(</b> 3 )	>1000	<3	0.06	1.7	2	87	17	0.55	0.03	0.04	186	2	0.03	4	0,01	. <2	6	<2	44	<5	<3	18.	۰.
Minimum Detection	0.1	0.01	3	- 1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	. 1	5	. 3	. 1	
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	- 1000	10000	100	1000	20000	. (

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

### ICAP GEOCHEMICAL ANALYSIS

### A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOm to H=O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

					Thi	s leach	is parti	ial for Al	, Ba, (	Ca, Cr, I	Fe, K, Mg	, Mn, Ni	ı, P, Sn	, Sr and	¥.				ANALY	YST:	_l.	ynd	<u></u>		
REPORT #: 900342 PA	PRIME EQUIT	FIES INC.				PROJE	CT: TICK	ER TAPE		DAT	E IN: AUG	30 199	) DA	TE OUT: I	OCT 2 199	0 /	ATTENTIO	i: MR. J	IN FOSTER			PAGE	3 OF	3	
Sample Name	Ag	A1	As	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	K	Mg	Ma	No	Na	Ni	P	Pb	Sþ	Sn	Sr	U	W	Zn
	ppe	ĩ	ppe	ppa	ppm	ĩ	ppa	ppe	ppe	ppe	X	ĩ	ĩ	ppm	ppa	z	ppa	ĩ	ppe	ppe	ppe	ppe	ppa	ppa	ppe
53963	<0.1	0.41	<3	>1000	(3	0.20	0.9	<1	11	79	0.91	0.03	0.11	362	4	0.02	8	0.01	<2	2	2	70	<5	<3	26
53964	0.2	0.37	(3	>1000	(3	0.44	0.1	1	94	26	1.00	0.07	0.09	442	4	0.03	7	0.01	<2	2	2	30	<5	<3	21
53965	<0.1	0.49	<3	404	(3	1.19	1.2	2	70	17	1.45	0.13	0.20	1028	5	0.02	6	0.01	<2	3	3	48	<5	<3	42
53966	<0.1	0.43	(3	519	(3	0.20	0.5	1	83	- 14	1.64	0.05	0.08	604	6	0.02	. (1	0.01	<2	4	3	18	<5	<3	39
53967	(0.1	0.46	<3	29i	<3	0.32	0.4	2	64	6	1.76	0.07	0.11	527	5	0.03	(1	0.01	<2	<2	3	24	<5	<3	34
53968	(0.1	0.54	<3	341	<3	0.25	0.4	2	97	4	1.69	0.05	0.11	435	5	0.03	t	0.01	<2	<2	2	19	<5	<3	43
53969	<0.1	0.35	<3	398	<3	0.06	0.1	2	80	31	0.76	0.03	0.03	288	4	0.02	<1	0.01	<2	7	<b>{2</b>	14	<5	<3	16
53970	<0.1	0.80	<3	483	(3	0.59	0.9	4	95	11	1.59	0.12	0.26	693	7	0.02	<1	0.01	<2	<2	- 4	20	<5	<3	39
53971	<0.1	0.66	(3	549	(3	0.20	0.3	3	92	16	1.47	0.07	0.18	512	5	0.03	(1	0.01	<2	<2	3	13	<5	<3	27
53972	0.2	0.59	<3	319	<3	0.54	0.3	2	65	11	1.70	0.10	0.17	453	5	0.03	(1	0.01	<2	<2	3	22	<5	<3	17
53973	<0.1	0.45	<3	303	<3	0.27	(0.1	2	11	34	1.19	0.05	0.13	353	2	0.03	(1	0.01	<2	<2	2	14	<5	<3	17
63974	<0.1	0.35	<3	370	<3	0.04	0.4	2	85	9	1.44	0.03	0.03	118	2	0.02	<1	0.01	<2	6	2	9	<5	<3	- 11
63975	<0.1	0.38	<3	319	<3	0.11	0.4	<1	91	8	1.15	0.04	0.07	364	2	0.02	· (1	0.01	<2	4	<2	10	<5	<3	28
63976	<0.1	0.69	(3	748	<3	0.93	0.9	2	89	13	1.34	0.13	0.21	736	7	0.02	(1	<0.01	<2	<2	3	45	<5	<3	27
53977	<0.1	0.47	<3	678	<3	0.12	<0.1	` <b>1</b>	89	5	0.86	0.05	0.08	272	5	0.02	(1	0.01	<2	<2	<2	21	<5	<3	17
63978	<0.1	0.47	(3	311	<3	0.14	0.2	. 2	74	9	1.49	0.06	0.10	361	5	0.03	4	0.01	. (2	3	3	17	{5	<3	23
63979	<0.1	0.47	(3	292	<3	0.10	0.2	(1	90	8	1.46	0.05	0.08	375	5	0.03	(1	<0.01	<2	3	3	16	(5	<3	25
53980	<0.1	0.50	(3	411	<3	0.11	0.3	2	71	5	1.36	0.04	0.10	465	4	0.03	(1	0.01	(2	3	<2	15	<5	<3	21
53981	<0.1	0.65	<3	463	<3	0.05	0.8	3	91	6	1.67	0.07	0.14	527	5	0.03	(1	(0.01	<2	<2	3	13	<5	<3	32
63982	0.3	0.53	<3	235	(3	0.25	0.6	3	80	- 16	1.82	0.06	0.13	535	4.	0.03	a	0.01	<2	3	3	27	(5	<3	19
53983	<0.1	0.58	(3	475	(3	0.05	<0.1	4	94	14	1.65	0.05	0.13	371	3	0.03	(1	0.01	<2	3	3	17	(5	<b>∢</b> 3	17
63984	<0.1	0.53	(3	538	<3	(0.01	<0.1	2	68	23	1.43	0.02	0.13	412	3	0.02	(1	(0.01	<2	<2	3	13	(5	{3	21
53985	(0.1	0.56	(3	533	(3	(0.01	0.1	Ī	91	18	1.33	0.04	0.13	380	2	0.03	(I)	(0.01	(2	<2	2	13	<5	<3	21
53986	0.4	0.47	<3	525	<3	0.15	0.2	μ., <b>α</b>	65	11	1.03	0.05	0.14	274	<1	0.02	a	<0.0l	. <2	<2	2	19	<5	<3	7
Ninious Detection	0.1	0.01	3	1	3	0.01	0.1	. 1	i	1.	0.01	0.01	0.01	. 1	1	0.01	. 1	0.01	2	2	2	i	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
( - Less Than Minioum	> - Greater Ti	han Maxia	u <b>n</b>	is - Ins	ufficient	Sample	រាទ	- No Sampl	e	ANCHALOU	S RESULTS	5 - Furt	her Anal	vses By	Alternate	Nethod	s Sugges	ted.				•			

IMPRIMÉ AU CANADA

INTER IN CLUSTER

## VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988 TRIUMPH ST. -VANCOUVER, B.C. V5L 1K5-(604) 251-5656
FAX (604) 254-5717

**BRANCH OFFICES** PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT BUMBER: 900434 AA	JOB NUMBER: 900434	PRIME EQUITIES INC.	PAGE 1 OF 3
SAMPLE #	Ag oz/st	Au oz/st	
			-
63400	<.01	<.005	
63987	.01	<.005	• · ·
63988	<.01	<.005	
63989	.01	<.005	
63990	<.01	<.005	
63991	<.01	<.005	
63992	.02	<.005	
63993	.04	<.005	
63994	.01	<.005	
63995	.03	<.005	ς.
63996	.05	<.005	
63997	<.01	<.005	- 
63998	<.01	<.005	
63999	<.01	<.005	
91751	.02	<.005	
91752	.02	<.005	
91753	.04	<.005	•
91754	.01	<.005	
91755	<.01	<.005	
91756	<.01	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

.005 ppm = parts per million < = less than

Bul G

16.80 FA10066A SCULET VA10001VER, SC - V5L 1L6 (604) 251-5656

VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988 TRIUMPH ST. -VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT HUNBER: 900434 AA	JOB NUMBER: 900434	PRIME EQUITIES INC.	PAGE 2 OF 3
SAMPLE #	Ag oz/st	Au oz/st	
91757	<.01	<.005	
91758	<.01	<.005	
91759	.04	.010	
91760	<.01	<.005	
91761	.02	<.005	
91762	.02	<.005	
91763	.03	<.005	
91764	<.01	<.005	
91765	.02	<.005	
91766	.04	.006	
91767	<.01	<.005	
91768	.04	<.005	
91769	<.01	<.005	
91770	<.01	<.005	
91771	<.01	<.005	
91772	.03	<.005	
91773	.03	<.005	
91774	.01	<.005	
91775	.02	<.005	
91776	.01	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

Rymph

.005 ppm = parts per million

_____

 $\langle$  = less than

### **VANGEOCHEM LAB LIMITED**

MAIN OFFICE -1988 TRIUMPH ST: -VANCOUVER, B.C. V5L-1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT HUNBER: 900434 AA JOB	NUMBER: 900434	PRIME EQUITIES INC.	PAGE 3 OF 3
SAMPLE #	Ag oz/st	Au oz/st	
	·		
91777	.02	<.005	
91778	.02	<.005	
91779	<.01	<.005	
91780	<.01	<.005	
91781	.04	<.005	
91782	<.01	<.005	
91783	<.01	<.005	
91784	.02	<.005	
91785	<.01	<.005	
91786	.04	<.005	
91787	.04	.006	
91788	.02	<.005	
91789	.01	<.005	
91790	<.01	<.005	
91791	<.01	<.005	
91792	.01	<.005	
91793	<.01	<.005	
91794	<.01	<.005	
91795	<.01	<.005	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

.01 1 ppm = 0.0001%

Kyn h

.005 ppm = parts per million

____

< = less than

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

### ICAP GEOCHEMICAL ANALYSIS

### A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HHO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Kg, Mn, Na, P, Sn, Sr and W.

Much

ANALYST: __

REPORT <b>#: 9</b> 00434 PA	PRIME EQUI	TIES INC	•			PROJE	CT: TICK	er tape		DATE	IN: SEF	PT 10 19	10 DA	TE OUT: O	ICT 09 19	190	ATTENTION	: MR	JIN FOSTER		•	PAGE	1 QF	2	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Ng	Mn	No	Na	Ni	P	Pb	Sb	Şn	Sr	U	W	In
****	ppa (A.1		ppe : 70	ppa	ppa		µβ∎	ppa	ppe	ppa				ppe	ope	1	opa		ppa	, bbu	ppe	ppn	ppe	ppa	pp
63400	(0.1	1,64	<b>K</b> 3	116	(3	V.64	<0.1	2	38	4	1.13	0.09	0.18	530	4	0.02	2	<0.01	(2	Q	. 3	11	(5	(3	3/
6338/	(0.1	0.70	(3	2//	(3	0.55	(0.1	4	74	6	1.74	0.10	0.22	480	3	0.03	4	0,01	. (2	(2	្រុង	20	(5	<3	. 22
63988	(0.1	0.85	(3	322	(3	0.78	<0.1	4	110	8	1.88	0.14	0.27	568	4	0.03	6	0.01	<2	2	5	25	(5	(3	24
63989	<0.1	0,85	(3	249	<3	0,82	1.1	5	116	15	2.32	0.14	0.26	572	7	0.03	102	0,01	<2 .	(2	5	. 20	<5	<3	27
63990	<0.1	0.90	<b>₹</b> 3	257	<b>₹</b> 3	0,88	0.7	4	54	11	2.20	0.16	0.20	625	9	0.03	13	0.01	(2	<2	6	20	<5	(3	31
63991	0.3	0.82	<3	298	(3	0.B4	(0.1	2	83	4	1.35	0.15	0.24	637	. 5	0.02	5	<b>K0.01</b>	(2	(2	4	18	(5	(3	32
63992	0.2	0.80	<3	261	(3	0,30	1.0	2	123	7	1.66	0.09	0.23	455	7	0.03	103	0.01	<2	(2	5	12	<5	(3	27
63993	0.1	0.81	{3	442	(3	0.64	(0.1	3	99	4	1.53	0.12	0.25	555	5	0.03	6	<0.01	<2	` <b>⟨</b> 2	5	19	<5	<3	35
63994	<0.1	0.79	(3	475	<3	0.75	1.1	3	45	3	1.39	0.13	0.25	614	5	0.03	7	0.01	(2	(2	4	18	(5	· (3	34
63995	<0.1	0.72	<3	357	<3	0.65	<0.1	2	11	2	1.02	0.10	0.19	510	3	0,02	6	9.01	<2	(2	4	12	<5	(3	32
63996	(0.1	0.83	(3	555	{3	0.59	1.1	2	103	B	1.35	0.12	0.24	638	5	0.02	91	(0.01	(2	<2	4	15	<5	(3	32
63997	(0.1	0.74	(3	525	a	1.13	1.2	2	87	,	1.12	0.14	0.19	678	2	0.02	2	(0.01	0	. 6	Å	24	(5	ä	35
63998	(0.1	0.76	· (3	150	ä	1.02	(0.1	,	72	19	1.11	0.14	0.10	757	ž	0.07	5	<0 01	6	0		11	65	(3	50
63999	(0.1	0.73	ä	-171	(1	1 07	1 6	2	77	0	1 10	6 12	0.19	756	5	0.02	, i	20.01			, r	ü	(5		195
91751	(0.1	0.81	(3	163	<3	0.58	(0.1	3	90	12	1.27	0.09	0.24	585	3	0.02	(1	(0.01	(2	<2	5	13	(5	(3	37
91752	<b>/0</b> 1	0 62	12	210	12	0 52	/0.1	2	100	19	1 15	A 11	A 22	500	· c	A 43		/0.01	79		F	19	/5	12	24
91759	(0.1	0.03 0.03	12	200	13	1 52	1 2	3	103	12	1.23	0.11	0.22	1100	J	0.02	100	10.01	12.		J	10	\J /5	()	34 117
91754	(0,1	0.30		100	13	1. 32	20.1	,	20	0 10	1.37	0.10	0.37	1130	2	0.02		10.01	<u><u> </u></u>	20		15	10	·· \3	37
01755	20.1	0.00	10	100	13	0.34		3	23	10	1.20	0.03	9.22	327	3	V. VZ	NI	(0.01	12	. 14	۳ ۳	15	13	10	20
71 <i>10</i> J 01757	(0.1	0.69	(3	171	()	V. 29	(0.1	4	83	18	1.33	0.05	0.16	308	3	0.02	CI (I	(0.01	(2	: J	Ş	13	(3	(3	29
dC/16	(0.1	0,58	(3	184	()	0.29	(0.1	4	Л	9	1.53	0.05	0.19	410	3	0.03	(1	(0.01	(2	<2	4	14	(3	(3	31
91757	(0,1	0.76	(3	160	<3	0.22	<0.1	4	109	10	1.64	0.05	0.19	357	5	0.03	102	<0.01	<2	<2	3	10	(5	(3	33
91758	<0.1	0,84	(3	186	(3	0.87	<0.1	2	79	3	1.13	0.12	0.23	534	2	0.02		0.01	(2)		· · • •	13	(5	G	32
91759	4,5	1.06	(3	309	(3	0.57	2.2	3	49	1315	1.82	0.11	0.31	934	6	0.02		<0.01	<2	. ( <b>2</b>	5	12	(5	(3	95
91760	0.2	0.74	- (3	364	G	0.87	0.8	5	114	30	1.87	0.12	0.19	578	8	0.03	98	(0.01	. <u>(2</u>	- 32	<u>*</u>	30	()	. G	33
317PT	(0.1	0.5/	3	492	(3	1.13	<0.1	4	ß	7	1.53	0.12	0.15	564	3	0,03	(1	0.01	, <b>(2</b>	<b>(2</b> )	3	38	<b>(</b> )	- <b>(3</b> - ;	40
91762	(0.1	0.59	(3	254	(3	1.04	(0.1	. 3	38	7	1.38	0.11	0.14	487	· 4	0.03	4	0.01	2	12	3	30	(5	: (3 .	. 40
91763	(0,1	0.59	(3	281	(3	1.06	(0.1	3	80	ż	1.39	0.12	0.15	517	3	0.03	· 8	0.01	(2	(2	3	32	(5	3	- 6f
91764	(0.1	0.84	(3	177	(3	0.86	(0.1	3	104	15	1.74	0.12	0.22	578	,	0.03	95	0.01	0	6	5	25	(5	(3	67
91765	0.2	0.38	. (3	>1000	(3	2.05	(0.1	a	53	ä	1.29	0.12	0.17	177	,	0.02	(1	(0.01	(7	č 0.	· 0	1037	(5	(3	27
91766	(0.1	0.60	(3	>1000	(3	0.24	(0.1	2	35	2	0.89	0.04	0.20	318	4	0.02	G C	{0.01	(2	(2	3	62	(5	(3	16
91767	(0.1	0.74	<3	332	(3	0.36	{0.1	2	71	2	0.99	0.08	0.26	344	3	0.02	(1	(0.01	(2	. 12	4	18	۲5	(3	23
91768	<b>{0.1</b>	6.70	(3	180	a	0.30	(0.1	2	105	12	1.49	0.05	0 22	303	5	0.03	98	(0.01	. 0.	0	4	11	(5	(3	20
91769	(0.1	0.74	(3	513	ä	0.39	(0) 1	ä	79		0 99	0.08	0.27	290	ň	0.03	ä	(0.01	0	10		29	(5	(3	12
91770	/0.1	0.05	12	220	/2	A 46	70.1	2	27		1 15	0.00	0.21	400	3	0.03		0 01	10	1.		11	- 75	23	21
91771	0.1	1.62	<3	202	(3	1.84	0.6	3	91	3	1.63	0.25	0.66	916	3	0.02	2	<0.01	· · · · · · · · · · · · · · · · · · ·	<2	5	19	(5	(3	25
61773		6 67	/7	220	/5	A 99		•	4.00		1 40	A 47	'A 45			a		/0 ^*	· * . • /0	10	· .	, 14	15	. 19	
71/74	V.1	V.73	13	229	13	V.22	\$9.1	. <u>3</u>	102	16	1.23	0.06	0.25	423	1	0.02	83	(0.01	14	· \2	<del>م</del> .	10		13	
21//5	(0.1	V.68	(3	196	(3	0.09	(0.1	3	13	1	1.22	0.04	0.14	323	2	0.02	(I	(0.01	<2	(2	3	10	()	(3	17
31179	(0,1	V. 48	(3	249	(3	0.06	(0.1	2	37	(1	Q.94	0.02	0.10	175	4	0.02	0	<0.01	· (2)	··· (2)	2	У	()	3	12
41//5	<0.1	0,64	<3	194	(3	0.30	(0.1	2	. 79	25	1.02	0.05	0.20	396	4	0.02	4	(0.01	(2	·, (2	2	11	(5	<b>(3</b> 2	19
Miniaum Detection	0.1	0.01	3	· 1	. 3	0.01	0.1	ł	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	· 2	2	1	5	3	्री
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	) - Greater T	han Kaxi	eue	is - Ins	ufficien	: Sample	05	- No Samp	le	ANOKALOUS	5 RESULT	5 - Furt	her Anal	yses By /	Alternate	e Nethod	ls Suggest	ed.		. : : :				1.1	2

IPPRINE AU CAPACA

-11

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

### ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNDs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST:

1h

PRINTLD IN CARADA

REPORT #: 900434 PA	PRIME EQUITIES INC.					PROJECT: TICKER TAPE				DATE	IN: SEI	PT 10 19	90 DA	TE OUT: (	JUT: OCT 09 1990 ATTENTIO				N: MR. JIN FOSTER			PAGE 2 OF 2			
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	: Co	Cr	Cu	Fe	. <b>K</b>	Kg	Kn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	1 W	Zn
	. bbe	. 1	ppe	ppe	ppa	X	. ppa	** pp <b>s</b>	ppa	ppe	1	· . X	ž	ppe	006	x	pon	7.	ppe	ppe	ppm	pom	DOM	. pps	ppm
91776	(0.1	0.61	<3	265	(3	0.21	<0.1	2	96	9	1.45	0.05	0.16	343	5	0.02	105	<0.01	(2	(2	2	16	(5	(3	25
91777	(0,1	0.59	<3	206	<3	0.34	(0.1	2	71	3	0.92	0.07	0.16	303	4	0.02	2	(0.01	(2	(2	2	13	(5	(3	20
91778	(0.1	0.4B	3	134	<3	0.32	. (0.1	2	45	2	0.73	0.06	0.13	247	5	0.02	3	<0.01	(2	3	2 ·	10	<b>(5</b> )	<3	14
91779	<0.1	0.58	<3	173	(3	0.25	(0.1	. 3	96	3	0.96	0.06	0.15	222	1	0.02	- d	(0.01	(2	3	2	10	(5	(3	- 17
91780	(0.1	0.57	<3	174	<3	0.28	<0.1	3	95	2	1.11	0.09	.0.17	278	- 4	0.03	(1	<0.01	<2	3	3	12	<5	(3	16
91781	-<0.1	0.87	<3	177	<3	0.53	(0.1	4	107	5	1.23	0.13	0,26	411	5	0.02	93	(0.01	{2	(2	4	12	۲)	{3	22
91782	<0.1	0.73	(3	198	(3	0.85	. (0.1	3	90	1	1.17	0.15	0.26	425	4	0.03	(1	<0.01	<2	(2	2	19	· <5	(3	24
91783	(0.1	0.60	<3	97	(3	0.74	. (0.1	(1	50	(1	0.98	0.09	0.18	343	3	0.02	(1	<0.01	<2	<2	2	20	<5	(3	19
91784	(0.1	0.76	<3	205	<3	0.54	(0.1	2	76	1	1.36	0.09	0.22	372	2	0.02	<1	<0.01	<2	<2	. 3	18	<5	<3	28
91785	<0.1	0.65	<3	237	· <3	0.49	(0.1	(1	96	3	1.48	0.07	0.19	393	2	0.02	82	<0.01	<2	<2	2	17	<5	(3	22
91786	(0.1	0.60	<3	288	<3	0.77	(0.1	(1	92	(1	1.23	0.11	0.20	502	2	0.02	(1	(0.01	(2)	2	2	27	. <5	<3	. 25
91787	(0.1	0.57	(3	140	(3	0.98	<0.1	(1	42	(1	1.05	0.11	0.21	690	3	0.02	<1	(0.01	<2	4	<2	37	<5	<3	23
91788	<0.1	0.37	(3	>1000	<3	0.65	<0.1	(1	64	(1	1.14	0.07	0.08	482	1	0.01	(1	<0.01	<2	3	<2	52	<5	<3	21
91789	<0.1	0.69	(3	613	(3	0.51	(0.1	3	127	14	2.09	0.11	0.14	657	6	0.02	110	<0.01	· <2	4	4	19	<5	(3	25
91790	<0.1	0.44	<3	>1000	<3	0.15	<0.1	<i td="" ·<=""><td>93</td><td>&lt;1</td><td>1.03</td><td>0.03</td><td>0.04</td><td>432</td><td>(1</td><td>&lt;0.01</td><td>(1</td><td>0.01</td><td>&lt;2</td><td>5</td><td>&lt;2</td><td>23</td><td>(5</td><td>. (3</td><td>- 16</td></i>	93	<1	1.03	0.03	0.04	432	(1	<0.01	(1	0.01	<2	5	<2	23	(5	. (3	- 16
91791	<0.1	0.54	<3	277	<3	0.89	<0.1	<1	44	(1	1.20	0.11	0.16	464	2	0.02	(1	<0.01	<2	5	2	27	<5	<3	22
91792	<0.1	0.65	<3	287	. <3	0.60	. (0.1	1	105		,1.35	.0.08	0.15	333	<1	0.02	<1	0.01	<2	3	3	19 .	<5	. (3	24
91793	<0.1	0.69	<3	176	<3	0.83	(0.1	2	126	4	1.70	0.12	0.19	365	4	0.02	77	0.01	<2	5	3	30	· <5	(3	24
91794	<0.1	0.47	<3	>1000	<3	0.92	<0.1	<1	16	12.	1.11	0.07	0.13	366	<1	0.02	<1	0.01	<2	2	<2	55	(5	<3	19
91795	<0.1	0.65	<3	472	<b>(3</b>	0.85	1.3	(1	43	<b>(1</b> );	1.25	0.08	0.23	483	1	0.02	<1	<0.01	<2	<2	2	34	(5	<3	30
Nicious Dotoction	A (	A A1	2			A A.					0.01	A A1	0.01			A 01		0.01	•	2	2	1.	5	2	1
Navious Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10 00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	) - Greater T	han Maxim	un -	is - Ins	ufficient	Sample	ns	- No Sampi	le	ANOMALOUS	RESULTS	6 - Furti	her Anal	yses By	Alternat	e Method	s Sugges	ted.	*****	2.000					

### APPENDIX VII

### STATEMENT OF QUALIFICATIONS

#### STATEMENT OF QUALIFICATIONS

I, STEVE L. TODORUK, of 5700 Surf Circle, Sechelt, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3. THAT my primary employment since 1979 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on data generated by myself, under the direction of Charles K. Ikona, Professional Engineer.
- 6. THAT I have no interest in the property described herein.
- 7. THAT I hereby grant permission to Ticker Tape Resources Ltd./Tymar Resources Inc. for the use of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this 13th day of Occember, 1990.



Steve L. Todoruk, Geologist

### APPENDIX VIII

### ENGINEER'S CERTIFICATE

#### ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Consulting Mining Engineer with offices at Suite 711, 675
   West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. THAT this report is based on all available information and work carried out under my supervision.
- 5. THAT I have no interest in the property reported on herein or in the securities of Ticker Tape Resources Ltd./Tymar Resources Inc. nor do I expect to receive such interest.
- 6. THAT I consent to the use by Ticker Tape Resources Ltd./Tymar Resources Inc. of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.



.

