LOG NO: 12.31	RD.
ACTION:	
FILE NO:	

ASSESSMENT REPORT

ON GEOLOGICAL MAPPING, SILT SAMPLING AND

SOIL SAMPLING OF THE TUK, TAT 5, 6 & 7

AND BRITT 1 & 2 MINERAL CLAIMS

Liard Mining Division, British Columbia NTS 104G 9E/W and 16 E/W Latitude: 57° 45' N Longitude: 130° 16' W

for

ASCOT RESOURCES LTD. Vancouver, B.C.

by

David T. Mehner, M.Sc., FGAC KEEWATIN ENGINEERING INC.

#800 - 900 West Hastings Street

Vancouver, B.C.

V6C 1E5

December 17, 1990

LIST_OF FIGURES

		Following Page No.
Figure 1.	Location Map	. 1
Figure 2.	Regional Location Map	
Figure 3.	Claim Map	. 2
Figure 4.	Regional Geology/Bowser Basin	
Figure 5.	Regional Geology Map	

LIST OF MAPS

Map 1.	Tat Claims - Cu-Au Soil Geochemistry	in podet
Map 2.	Tuk Claims - Geology, Rock Geochemistry	*
Map 3.	Britt Claims - Silt and Rock Geochemistry and Geology	Ħ
Map 4.	Tat Claims - Pb-Zn Soil Geochemistry	Ħ
Map 5.	Tat Claims - Ag-Mo Soil Geochemistry	
Map 6.	Tat Claims - As-Hg-Sb Soil Geochemistry	
Map 7.	Tuk Claims - Silt Geochemistry	*

LIST OF APPENDICES

APPENDIX I	Statement of Qualifications
APPENDIX II	Summary of Personnel
APPENDIX III	Analytical Procedures Used by Min-En Laboratories Ltd.
APPENDIX IV	Tat Soil Geochemistry Results
APPENDIX V	Tat Soil Sample Descriptions
APPENDIX VI	Tuk Silt Geochemistry Results
APPENDIX VII	Tuk Soil Sample Descriptions
APPENDIX VIII	Tuk Rock Geochemistry Results
APPENDIX IX	Tuk Rock Sample Descriptions
APPENDIX X	Britt Silt Geochemistry Results
APPENDIX XI	Britt Silt Sample Descriptions
APPENDIX XII	Britt Rock Geochemistry Results
APPENDIX XIII	Britt Rock Sample Descriptions
	• •

APPENDIX XIV Statement of Qualifications

.

TABLE OF CONTENTS

INTRODUCTION	1
Location and Access	1
	2
Property and Ownership	2
Previous Work and History	3
GEOLOGY	4
Regional Geology	4
Property Geology	5
Mineralization	5
	6
	6
GEOCHEMISTRY	6
Sampling	6
Analyses	7
Results	7
	7
Tuk Claims	8
Britt Claims	9
CONCLUSIONS 1	0
RECOMMENDATIONS 1	.1
REFERENCES	2

Page No.

INTRODUCTION

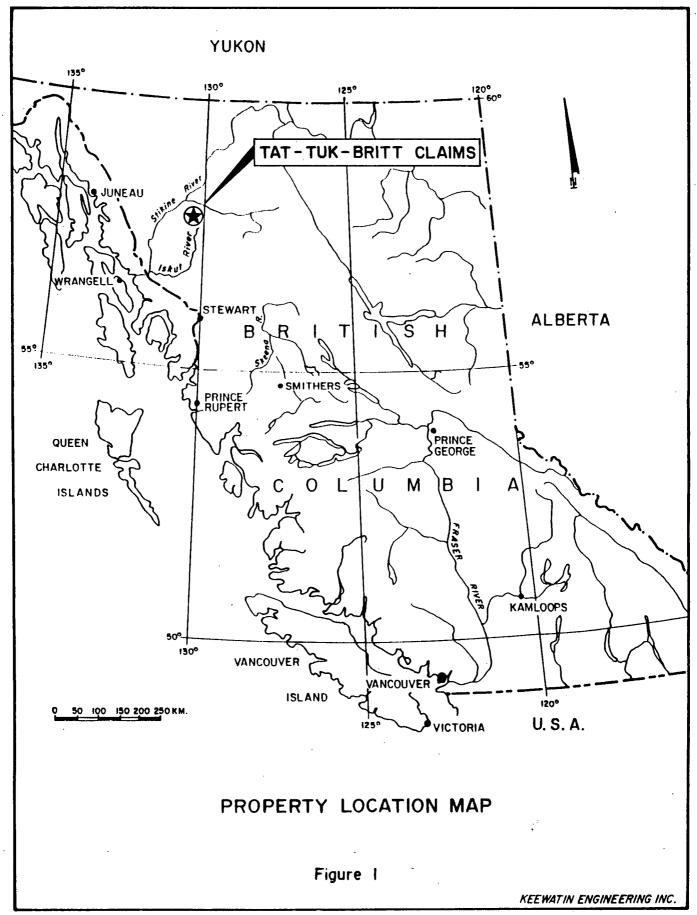
The Tuk, Tat and Britt Mineral Claims are located on the Klastline Plateau within the Stikine Arch of northwestern British Columbia. They were staked in 1989 to cover ground thought to have excellent potential for hosting porphyry Cu-Au mineralization or precious metal rich veins which commonly occur peripheral to these deposits.

In 1990, Keewatin Engineering Inc. was contracted by Ascot Resources Ltd. to conduct reconnaissance exploration over the properties and assess their potential for porphyry Cu-Au or precious metal vein mineralization.

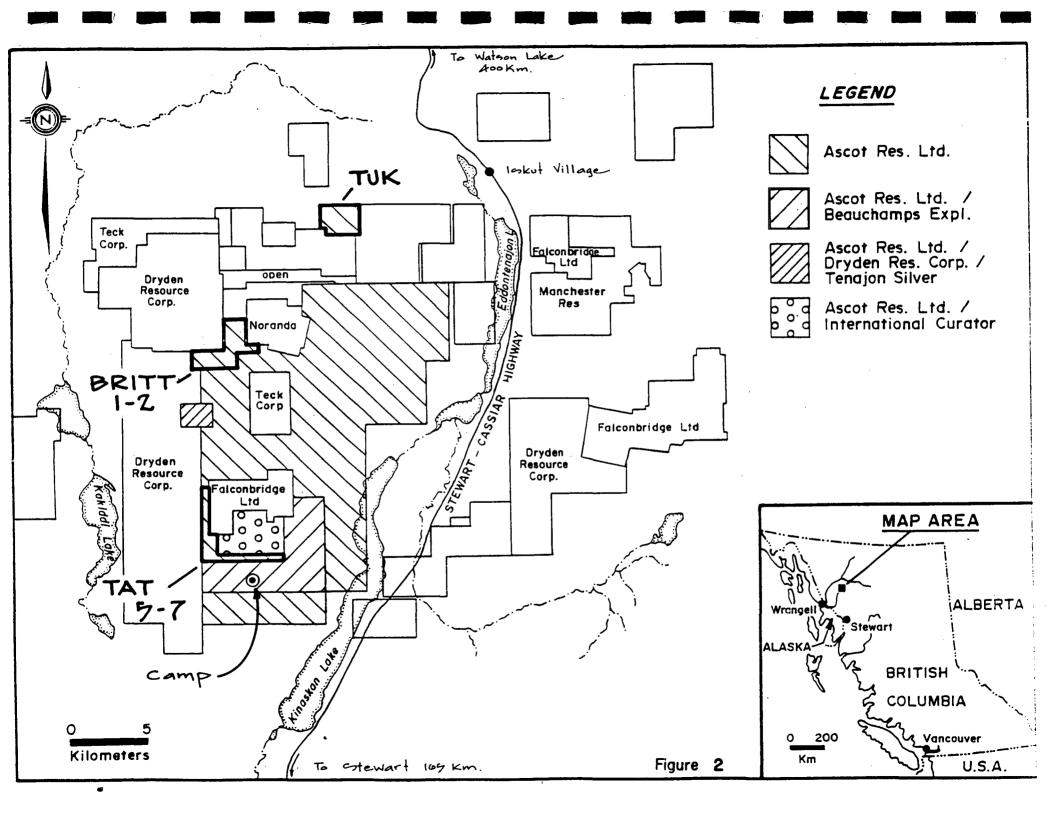
Field work was carried out from a camp established on the south end of the Klastline Plateau, 18 km southwest of Tatogga Lake Lodge.

Location and Access

The three properties are located in the Stikine region of northwestern British Columbia approximately 200 km north of Stewart, B.C. (Figure 1).


The Tat 5-7 claims are 8.5 km west of Kinaskan Lake and 28 km southwest of Iskut Village at 57° 39' North latitude and 130° 17' West longitude (Figure 2).

The Britt claims are centred 16 km west of Eddontenajon Lake and 19 km southwest of Iskut Village at 57° 45' North latitude and 130° 16' West longitude.


The Tuk claim is centred 10 km west of Eddontenajon Lake and 10 km southwest of Iskut Village at 57° 49' North Latitude and 130° 09' West longitude.

The Tuk is located on NTS map sheet 104G, 16E. The Tat is on 104G, 9E/W and the Britt is on 104G, 9E/W.

Access to the properties is via helicopter from Tatogga Lake Lodge, a resort situated 15 km south of Iskut Village and east of all three properties. Distances are 19 km to the Tat, 16 km to the Britt and 15 km to the Tuk. Both the Lodge and Iskut Village are situated on the Stewart-Cassiar Highway. The proposed B.C. Rail extension to Dease Lake is about 32 km east of Kinaskan Lake.

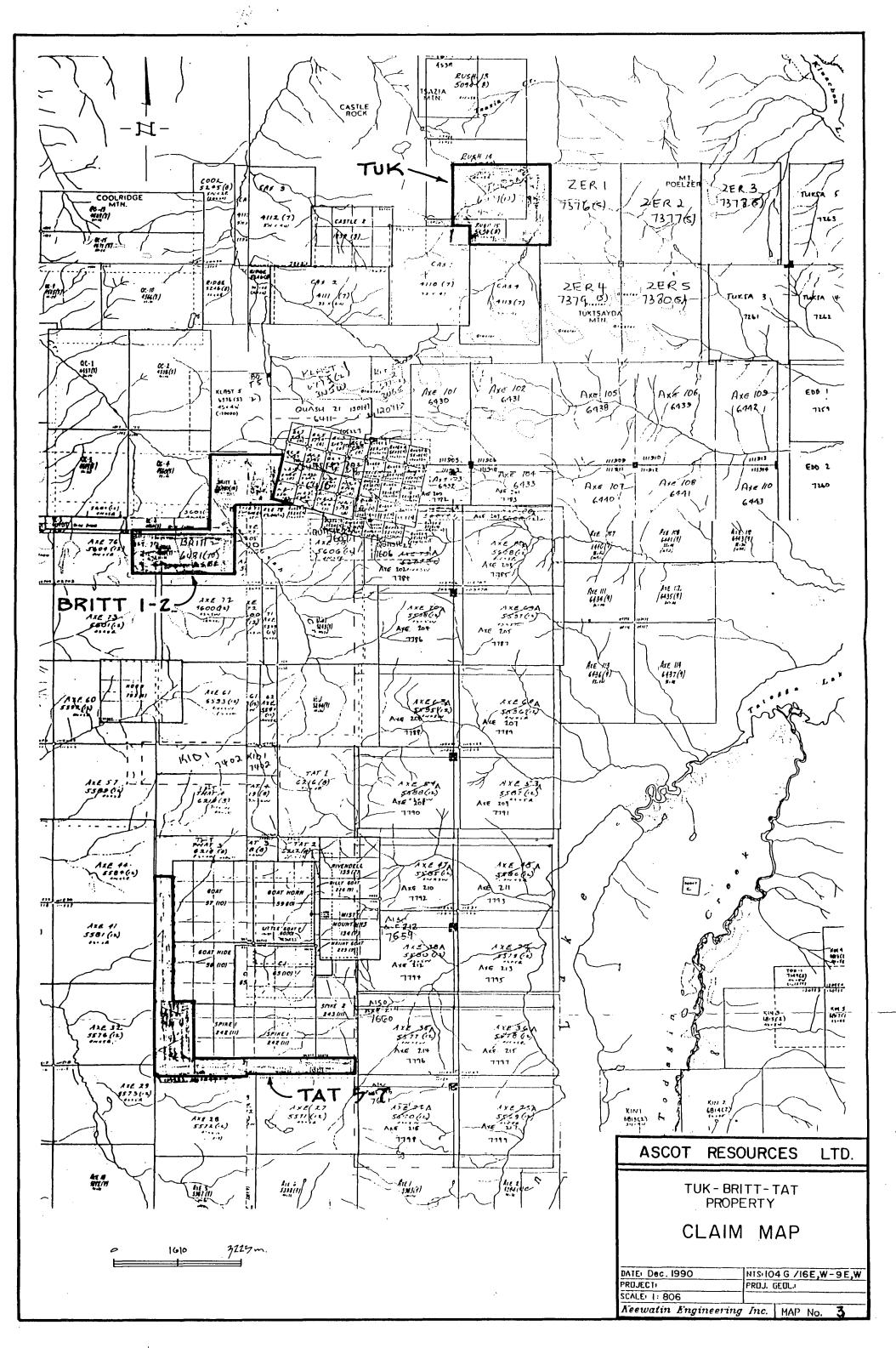
Topography

The Tat claims cover an "L" shaped section of land which encompasses a narrow and relatively flat strip atop the Klastline Plateau and a north-south piece which occurs along the west facing slopes on the edge of the plateau. Elevations range from 5,200 feet above sea level on the Tat 7 claim in the south to 3,800 feet above sea level on Tat 6 in the extreme southwest corner of the property (Map 1).

The Tuk claims cover a portion of the plateau where two deeply incised creeks have aided in forming a northeast-southwest oriented ridge with steep southeast and northwest facing slopes. Elevations vary from 6,400 feet above sea level in the extreme northwest corner of the claim to 3,900 feet above sea level at the LCP in the northeast corner of the property (Map 2).

The Britt 1 and 2 claims cover a portion of the Klastline Plateau that is dissected by the northwest draining, Quash Creek Valley. The southern half of the property is quite rugged and is characterized by steep north, northeast and northwest facing slopes. Elevations vary from 4,000 feet above sea level along Quash Creek in the west to 6,700 feet above sea level at the very south edge of the property atop the Klastline Plateau (Map 3).

Vegetation consists of swamp grass in the low areas, willows and alders along lower creek valleys and spruce and pine along the slopes. Sub-alpine scrub meanders through the property at about the 4,300 foot level. Tree line is about 4,500 feet above sea level.


Remnant glaciers occupy north facing cirques on the western portion of the Britt 2 claim.

Precipitation is moderate, averaging 100 cm per year. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

Property and Ownership

The Tat, Tuk and Britt properties are located in the Liard Mining Division of British Columbia (Figure 3). The claims are owned 100% by Ascot Resources Ltd. with offices at 800 - 900 West Hastings Street, Vancouver, B.C., V6C 1E5.

The properties consist of the following claims:

Claim Name	Record No.	No. of Units	Date Recorded	Due Date*
Tat 5	6444	6	September 24, 1989	September 24, 1992
Tat 6	6445	8	September 24, 1989	September 24, 1992
Tat 7	6446	8	September 24, 1989	September 24, 1992
Tuk	6479	20	October 2, 1989	October 2, 1992
Britt 1	6480	20	October 1, 1989	October 1, 1991
Britt 2	6481	10	October 1, 1989	October 1, 1991

* These are effective due dates after filing this report.

Previous Work and History

No mineral showings are known to exist on the claims discussed in this report nor is there any record of exploration work having taken place on them. However, all three properties are located in an area that was extensively explored for porphyry Cu mineralization in the 1970's.

Some of the better known showings or deposits that were identified during the course of this work include the Red-Chris deposit located 19 km southeast of Iskut Village, the GJ showing 27 km southwest of Iskut Village and the Q.C. deposit 21 km southwest of Iskut Village.

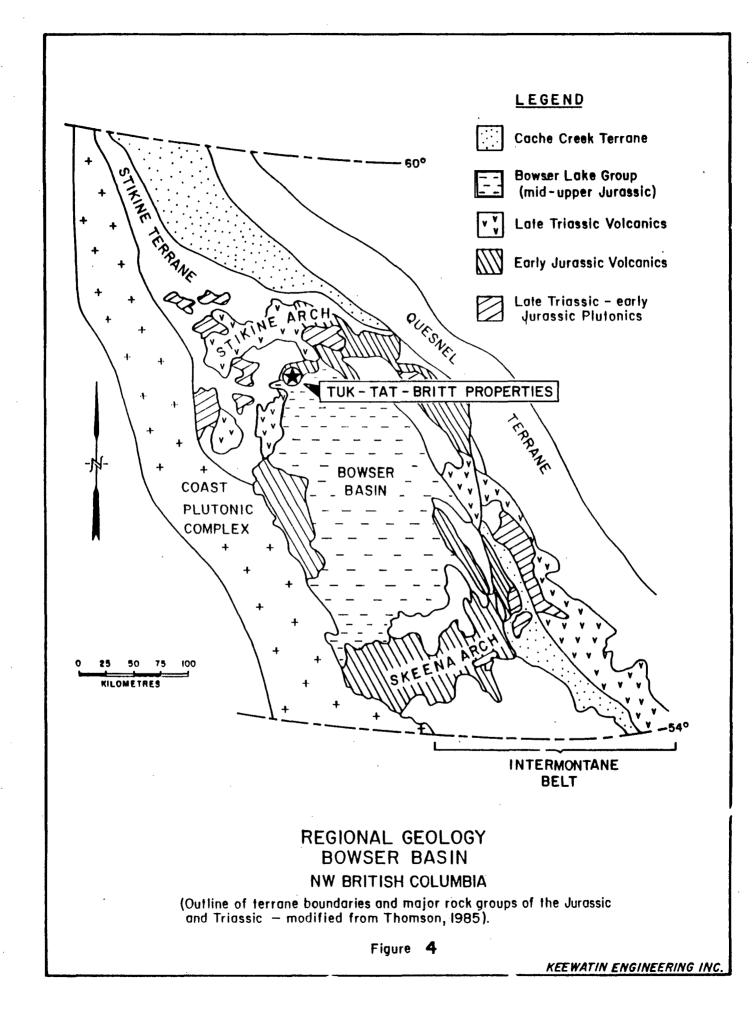
The Red Chris porphyry Cu-Au deposit owned by Falconbridge has published reverses of 45.2 million tons grading 0.56% Cu and 0.010 oz/ton Au (Panteleyev, 1977). The GJ property located immediately north of the Tat 7 claim and under option to Ascot Resources Ltd. has inferred geological reserves of at least 30 million tons grading 0.30% Cu equivalent or better (Mehner, 1990). The Q.C. porphyry Cu-Au deposit situated immediately east and north of the Britt claims and under option to Dryden Resource Corporation has inferred geological reserves of 150 million tons grading 0.12% Cu (Wayne Roberts, 1990, oral communication).

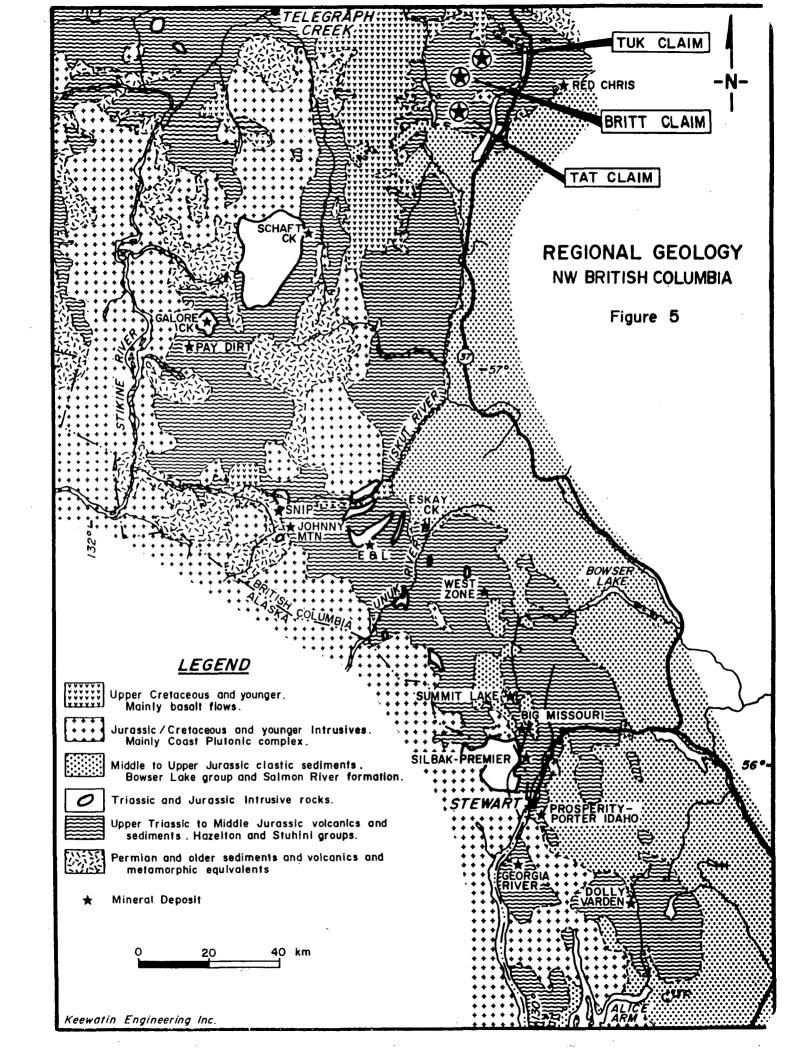
High grade precious metal values which likely reflect peripheral veins related to the porphyry systems have been identified 3 km southwest of the Britt claims on the Horn property (11.04 oz/ton Ag over 45 m x 4.2 m, Phendler, 1980) and 10 km west-southwest of the Tuk claims on the Q.C. property (0.680 oz/ton Au and 6.81 oz/ton Ag over 28.0 m x 1.40 m at the Gordon Showing). In addition, a gold rich shear zone striking northwest-southeast and traceable for up to 7 km has been

identified on the Castle property 2 km southeast of the Tuk claim (K. Konchin, 1990; oral communication).

The most recent exploration activity in the area was initiated in 1988 when the GSC carried out a regional stream silt sampling program (National Geochemical Reconnaissance, 1988) on the Klastline Plateau. This was followed up in 1989 by more detailed and systematic stream silt sampling, geological mapping and prospecting by Ascot Resources Ltd. and Dryden Resource Corporation.

GEOLOGY


Regional Geology


The Tat, Tuk and Britt properties are located on the Klastline Plateau within the Intermontane-Tectono-Stratigraphic Belt of the Canadian Cordillera (Figure 4). The claims lie within the northeast half of the Stikine Arch near the contact with the unmetamorphosed sediments of the Bowser Basin.

The northern half of the Klastline Plateau (Figure 5) has been mapped as Upper Triassic augite-andesite flows, pyroclastics and derived volcaniclastics ranging from conglomerates down to siltstones (Souther, 1971). Minor limestone and chert occur within the stratigraphy. Related coeval intrusives cut all rock types. A regional fault trending northeasterly passes through the centre of the Kakiddi Lake and intersects the Iskut Valley fault zone at the north end of Kinaskan Lake. To the south of the fault the G.S.C. mapped the rocks as a downthrown sequence of Middle Jurassic basalt pillow lavas, fragmentals and proximal volcaniclastic rocks intruded by coeval plutons. Subsequent K-Ar and Rb-Sr age dating (Schmitt, 1977) has yielded intrusive ages of 185 to 195 million years for the intrusive rocks south of the fault, suggesting the volcanic rocks are similar in age to the Upper Triassic stratigraphy north of the fault.

South of the volcanic units are chert pebble conglomerate, grit, greywacke and siltstone of the Middle to Upper Jurassic Bowser Group.

Intruding Upper Triassic volcanics are massive and flow banded rhyolite, orbicular rhyolite and massive felsite of Upper Cretaceous to Lower Tertiary age.

Capping Upper Triassic stratigraphy on the southern portion of the Plateau are Upper Tertiary basalt and olivine basalt flows. These often exhibit excellent columnar jointing.

Property Geology

Minimal geological mapping was carried out over the Tuk and Britt claims during the course of the property work. No mapping was conducted on the Tat claim.

On the <u>Tuk</u> (Map 2) mapping along the ridge and part of the north facing slope indicates Upper Triassic andesite flows are cut by a medium to fine grained hornblende diorite plug or dyke. The intrusive is highly magnetic.

On the <u>Britt</u> property mapping was restricted to a few short traverses on the claims north of Quash Creek (Map 3). In this region well bedded but contorted Upper Triassic argillite, siltstone and greywacke seem to be unconformably overlain by andesite flows and interflow andesite conglomerates.

Geological mapping of the <u>Tat</u> 5-7 claims in 1989 (Mehner, 1990) shows the underlying stratigraphy to consist of interlayered augite basalt porphyry and andesite porphyry flows with an interbedded assemblage of siltstone, greywacke, grit and polymictic volcanic conglomerate. Minor interbedded tuffs, tuff breccias argillite and chert also underlie the claims.

Mineralization

On the Tuk claim (Map 2) calcite-quartz veining containing disseminated chalcopyrite, malachite, azurite and pyrite were found along the ridge top in the southern half of the property. The quartz veins are typically 2 cm wide although veins to 20 cm wide and traceable over 100 metres up slope were noted. Most of the veining occurs in andesite flows near the contact with the diorite plug.

Minimal rock sampling indicates the veins contain highly anomalous Cu values to 74,919 ppm as well as elevated Ag (to 11.7 ppm) and Au (to 5,800 ppb) values. One rock sample yielded anomalous Mo (51 ppm) values as well.

The style of mineralization observed including the elevated gold values associated with chalcopyrite in narrow quartz-calcite veins is typical of porphyry Cu-Au mineralization in the Klastline Plateau area.

On the Britt property, mineralization appears limited to weak (<<1%) malachite and pyrite in narrow (<2 cm) calcite veins and fracture fillings within tightly folded sediments.

No mineralization is known on the Tat 5-7 claims.

<u>Alteration</u>

On the Tuk property weak propyllitic alteration consisting of epidote and calcite fracture filling is present in the area examined. Iron gossans resulting from oxidized pyrite are developed in the area with quartz veins. Magnetite veins and local flooding (to 10%) is found within the diorite.

On the Britt property very minor epidote fracture filling combined with calcite fracture filling are the extent of alteration.

Structure

On the Tuk claims significant structure is not apparent. Jointing and weak foliation in the andesites near the diorite contact are the extent of structural readings.

On the Britt claims an apparent unconformity exists between tightly folded, crenulated and fissile argillites, siltstones and greywackes and overlying andesite flows. No other significant structures were observed on the property.

GEOCHEMISTRY

Sampling

During the 1990 field season fifty-nine soils, fourteen silts and seventeen rock samples were collected from the three properties. The soils were taken with a mattock from the "B" horizon wherever present. Samples were collected in kraft sample bags and sample sites were flagged with

red and blue flagging. Tyvek tags were used for recording the sample number and co-ordinates on site.

Silts were taken from active stream beds whenever possible. Samples were collected in kraft sample bags and sample sites were flagged with red and blue flagging.

Rock samples of outcrop or float were taken on the most prospective looking material, usually with visible sulphides and or good alteration.

<u>Analyses</u>

All samples were sent to Min-En Laboratories Ltd. in Smithers, B.C. where they were processed and analyzed for gold. Pulps were forwarded to Min-En Laboratories Ltd.'s in Vancouver, B.C. for 7 element I.C.P. plus Hg analysis.

Analytical procedures used by Min-En are outlined in Appendix III.

<u>Results</u>

i) <u>Tat Claims</u>

During the 1990 program, fifty-eight soils and one silt sample were taken from the property between the 4,400 and 4,700 foot elevation contours.

The results for the soil samples are quite low and provide no indication of underlying mineralization. The complete soil geochemistry results are given in Appendix IV and sample descriptions are in Appendix V. Sample locations and results are plotted on Maps 1 and 4 to 6. A summary of values is as follows:

Copper (Map 1):	Range 7-97 ppm
Lead (Map 4):	Range 8 - 53 ppm
Zinc (Map 4):	Range 35 - 194 ppm
Silver (Map 5):	Range 0.3 - 2.7 ppm
Gold (Map 1):	Range 1 - 20 ppb
Arsenic (Map 6):	Range 1 - 54 ppm

Mercury (Map 6): Antimony (Map 6): Molybdenum (Map 5): Range 105- 935 pb Range 1 - 13 ppm Range 1 - 5 ppm

Silt sample V-01 also yielded low geochemistry values. The results are as follows: 79 Cu, 28 Pb, 82 Zn, 0.6 Ag, 1 Au, 79 As, 170 Hg, 1 Sb, 3 Mo. Gold and Hg values are in ppb. The remaining results are in ppm.

8

ii) <u>Tuk Claims</u>

As part of the Tuk claim evaluation four silts, one soil and eleven rock samples were collected. The silts were collected from two, small, north flowing drainages (Map 7). Three of the samples collected from one creek yielded elevated Cu and Au values to 239 ppm and 168 ppb respectively. Values for other elements as well as those from the fourth silt sample are low.

Complete silt geochemistry results are given in Appendix VI and sample descriptions are in Appendix VII.

Soil sample FS-03 was taken from an area underlain by altered and weakly pyritized hornblende diorite (Map 2). The sample yielded elevated Pb (342 pm), As (2,923 ppm), Hg (4,650 ppb), Sb (75 ppm) and Mo (33 ppm) values.

Rock samples of outcrop and float yielded highly anomalous Cu values of between 907 ppm and 74,919 ppm for nine of the eleven samples taken. The elevated results which come from an area 1,000 metres x 400 metres are underlain by both andesite flows and a diorite plug (Map 2).

In addition to copper, three rocks returned anomalous gold values of 841 ppb, 1,810 ppb and 5,800 ppb. Elevated silver values of 5.3 ppm to 11.7 ppm were obtained from five samples, zinc numbers of 665 ppm and 1,192 ppm were returned by two rocks and one sample ran 51 ppm molybdenum. All of the anomalous samples were of quartz-calcite veining within flows or intrusive. Complete rock geochemistry results are available in Appendix VIII and sample descriptions are in Appendix IX.

A summary of rock geochemistry results follows:

Copper:	Range 85 ppm - 74,919 ppm
Lead:	Range 10 ppm - 81 ppm
Zinc:	Range 4 ppm - 1,192 ppm
Silver:	Range 1.2 ppm - 11.7 ppm
Gold:	Range 21 ppb - 5,800 ppb
Arsenic:	Range 1 ppm - 84 ppm
Mercury:	Range 90 ppb - 595 ppb
Antimony:	Range 1 ppm - 80 ppm
Molybdenum:	Range 1 ppm - 51 ppm

iii) Britt Claims

During the 1990 exploration program, nine stream silts and six rock samples were collected from the property (Map 3).

The stream silts yielded low results for all nine elements analyzed. A complete list of silt geochemistry results is available in Appendix X and sample descriptions are in Appendix XI. A summary of stream silt geochemistry results is as follows:

Copper:	Range 75 ppm - 175 ppm
Lead:	Range 1 ppm - 32 ppm
Zinc:	Range 65 ppm - 142 ppm
Silver:	Range 1.0 ppm - 2.8 ppm
Gold:	Range 1 ppb - 20 ppb
Arsenic:	Range 1 ppm
Mercury:	Range 50 ppb - 240 ppm
Antimony:	Range 1 ppm
Molybdenum:	Range 1 ppm

Rock sampling of float and outcrop yielded elevated copper values for five samples of between 514 ppm and 1,926 ppm from malachite bearing calcite veins in tightly folded sediments (Map 3). Samples BR-01, BR-02 and NN-200 are particularly anomalous with copper values of 1,926 ppm, 987 ppm and 1,249 ppm respectively. Geochemistry values for other elements are low.

Complete rock geochemistry results are in Appendix XII and sample descriptions are in Appendix XIII. A summary of results follows:

Copper:	Range 132 ppm - 1,926 ppm
Lead:	Range 6 ppm - 184 ppm
Zinc:	Range 27 ppm - 97 ppm
Silver:	Range 0.9 ppm - 4.6 ppm
Gold:	Range 1 ppb - 40 ppb
Arsenic:	Range 1 ppm - 49 ppm
Mercury:	Range 85 ppb - 440 ppb
Antimony:	Range 1 ppm - 8 ppm
Molybdenum:	Range 1 ppm

CONCLUSIONS

Preliminary prospecting, rock sampling and stream silt geochemistry all indicate the presence of copper with gold mineralization on the Tuk property. These results combined with geology indicate the property has excellent potential for hosting economic porphyry Cu-Au or precious metal vein mineralization.

Preliminary prospecting and stream silt geochemistry have provided no indication of significant alteration or mineralized zones on the Britt property. Minimal rock sampling indicates minor copper mineralization exists on the north part of the property but it appears to be weak in extent and not accompanied with gold.

Contour soil sampling on the Tat claims failed to provide any indications of economic mineralization on the Tat 5 -7 claims.

RECOMMENDATIONS

More detailed follow-up including prospecting, geological mapping and soil sampling is recommended for the Tuk property in order to delineate the size and grade of the mineralized system on the claim and identify specific targets within the system for trenching and diamond drill testing.

No further work is recommended for the Tat 5-7 claims or the Britt claims.

Respectfully submitted,

KEEWATIN ENGINEERING INC. ASSOCIAT CAMELINE David T. Mehaer, M.Sc., FGA ଚ FELLOW

REFERENCES

- Forsythe, J.R., Peatfield, G.R., Gasteiger, W.A. and Donnelly, D.A. 1977. Report on Geochemical and Geophysical Surveys, Diamond Drilling and Supporting Work on the Groat Creek Claims, Liard Mining Division. B.C. Dept. of Mines and Petroleum Resources, Assessment Report 6541.
- Mehner, D.T., 1990. Assessment Report on Geological Mapping and Contour Soil Sampling of the Horn Mineral Claim, Liard Mining Division, B.C.
- Mehner, D.T., 1990. Assessment Report on Overburden Drilling, Geological Mapping, Prospecting and Stream Silt Sampling of the GJ Property, Liard Mining Division, B.C.
- National Geochemical Reconnaissance, 1:250,000 Map Series, 1988. Geological Survey of Canada, Open File.
- Panteleyev, A. 1977. Red-Chris Deposit (104H/12W) in Geology in British Columbia, 1976. British Columbia Department of Mines and Petroleum Resources, Victoria, pp. 125-127.
- Phendler, R.W., 1980. Report on the Horn and Big Claims (covering the SF and QC Prospects), Liard Mining Division, B.C. Unpublished Company Report for ERL Resources Ltd.
- Schmitt, H.R. 1977. A Triassic-Jurassic Granodiorite Monzodiorite Pluton South-East of Telegraph Creek, B.C. Unpublished B.Sc. Thesis, University of British Columbia, Vancouver, 91 pp.
- Souther, J.G. 1971. Telegraph Creek Map-area, British Columbia. Geological Survey of Canada, Paper 71-44.

APPENDIX I

Statement of Expenditures

STATEMENT OF EXPENDITURES

for Work on the Tuk, Britt 1-2 and Tat 5, 6 & 7 Mineral Claims

<u>Salaries</u>			
Dave Mehner, Senior Geologist	1.0 days @ \$375/day	\$ 375.00	
Marty Bobyn, Project Geologist	2.0 days @ \$325/day	650.00	
Jason Miller, Geologist	1.0 days @ \$275/day	275.00	
Bob Ryziuk, Technician	1.0 days @ \$300/day	300.00	
Mike Skeoch, Prospector	4.0 days @ \$240/day	960.00	
Dan Perrett, Prospector	1.0 days @ \$250/day	250.00	
Andy Dupras, Prospector	1.0 days @ \$325/day	325.00	
Grant Nagy, Sampler	1.0 days @ \$250/day	250.00	
Kurt Kauss, Sampler	1.0 days @ \$225/day	225.00	
Keith Louie, Sampler	1.0 days @ \$175/day	175.00	
Trevor Shepard, Sampler	3.0 days @ \$175/day	525.00	
Andy Muirhead, Draftsperson	1.0 days @ \$240/day	240.00	
Verna Jordan, Cook/First Aid	4.0 days @ \$250/day	1,000.00	
,			\$ 5,550.00
			· - · ·
Accommodation & Food	25.0 man days @ \$60/day		1,500.00
<u>Equipment Use</u>	21.0 man days @ \$15/day		315.00
Helicopter [*] (including fuel)	3.0 hours @ \$670/hour		2,010.00
Vehicles All Terrain Vehicle	2.0 days @ \$50/day		100.00
Geochemistry*			
Soils	59 samples @ \$10.00 ea.	\$ 590.00	
(includes sample prep., Au fin		ψ 570.00	
Hg analysis and 7 element I			
Silts	14 samples @ \$10 ea.	140.00	
(includes as above)			
Rocks	17 samples @ \$12.50 ea.	212.50	
(includes analysis as above plu		·····	942.50
	• • • • •		
<u>Miscellaneous</u> *			
Flagging, sample bags, freight,	base maps, telephone		150.00
Report Writing			
D. Mehner	4.0 days @ \$375/day	\$1,500.00	
Typing, drafting, blueprints	· · · · · · · ·	480.00	
			1,980.00
Sub-Total:			\$12,547.50
Handling Fee - 10% on Third Party C	harges by Keewatin Engineer	ing	
(denoted by *)			310.25
			• · • •
TOTAL EXPENDITURES:			<u>\$12,857.75</u>

APPENDIX II

•.

Summary of Personnel

SUMMARY OF PERSONNEL

Name	<u>Position</u>	Sampler <u>Code</u>	Dates Worked
Dave Mehner	Senior Geologist	"AA"	July 23 ($\frac{1}{2}$ day), September 14 ($\frac{1}{2}$ day), December 3, 10 ($\frac{1}{2}$ day), 11, 14 ($\frac{1}{2}$ day), 16
Marty Bobyn	Project Geologist	"F "	July 23, September 14
Jason Miller	Geologist	"O"	July 23
Bob Ryziuk	Geological Technician	"BR"	September 14
Mike Skeoch	Prospector	"U"	July 23, August 14, September 6, 14
Dan Perrett	Prospector	"DP"	August 20
Andy Dupras	Prospector	"AD"	September 6
Grant Nagy	Sampler	"NN"	September 14
Kurt Kauss	Sampler	"Y"	August 14
Keith Louie	Sampler	"CL"	August 14
Trevor Shepard	Sampler	"V"	July 23, August 14, 20
Andy Muirhead	Draftsperson		December 17
Verna Jordan	Cook/1st Aid		July 23, August 14, September 6, 14

APPENDIX III

Analytical Procedures Used by Min-En Laboratories

Keewatin Engineering Inc.

•

.

ANALYTICAL PROCEDURES USED BY MIN-EN LABORATORIES

<u>Hg Analysis</u>

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, B.C., employing the following procedures.

After drying the samples @ 30°C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for two hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable dilutions made if necessary.

ICP Analysis for Cu, Pb, Zn, Ag, As, Sb, Mo

After drying the samples at 95°C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for two hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

Au Fire Geochem

A suitable sample weight; 15.00 or 30.00 grams is fire assay pre-concentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

APPENDIX IV

Tat Soil Geochemistry Results

Keewatin Engineering Inc.

.

.

COMP: KEEWATIN ENGINEERING PROJ: ASCOT-152

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1280-SJ1+2 DATE: 90/09/05 * SOIL * (ACT:F31)

SAMPLE	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	ÀS PPM	SB PPM	MO PPM	KG PPB	
										_
20-Y-152S-100		1.2	37	18	135	7	1	3	255	
20-Y-152S-101		1.7	36	25	150	1		1	150	
		.9	47	27	139	54	1	2	215	
PO-Y-152S-102	3	1.5	61	43	93	28	1	1	205	
PO-Y-1528-103	2	.9	85	53	164	1	1	3	245	
90-Y-152S-104 90-Y-152S-105	4	1.2 .4	19 40	25 28	123 96	26 42	1	1 3	180 141	
20-Y-152S-106	1						1		165	
		.8	33	32	153	17		2		
90-y-152s-107 90-y-152s-108	23	.9 .9	19 24	23 16	118 152	6 28	1	1	245 185	
·····										
90-Y-152S-109 90-Y-152S-110	12 2	1.6 1.3	20 22	11 19	166 65	1	1	1 3	245 140	
20-Y-152S-111	3	1.3	27	22	142	i	1	5	160	
20-Y-152S-112	2	2.7	34	11	149	1	i	1	175	
20-Y-152S-113	1	1.3	16	10	117	28	1	1	325	
90-Y-152S-114	1	1.1	29	23	85	23	1	1	150	
90-Y-1528-115	8	1.1	28	18	82	15	1	1	300	
90-Y-152S-116	11	.9	30	20	81	26	1	1	260	
90-Y-152S-117	1	1.4	16	11	43	1	1	1	325	
90-Y-152S-118	10	.5	24	17	70	32	1	3	171	
90-Y-152S-119	2	1.2	7	17	52	12	2	1	166	
90-Y-152S-120	Ī	.8	24	20	83	- 33	13	2	935	
90-Y-152S-121	2	1.1	25	34	170	26	1	2	225	
90-Y-152S-122	2	1.0	29	24	107	47	1	2	205	
90-Y-152S-123	1 ī	2.5	97	8	56	1	1	1	155	
90-Y-152S-124	1	.9	33	11	107	45	1	2	150	
90-V-1528-215	9	.4	29	17	125	17	1	1	240	
90-V-152S-216	4	.3	32	23	105	14	1	1	120	
90-V-1525-217	20	.5	59	20	89	41	1	2	665	
90-v-152s-218	2	.5	80	21	87	35	1	1	410	
90-V-152s-219	1	.6	48	23	87	8	1	1	170	
90-V-152S-220	1	.8	54	38	86	1	1	1	195	
90-v-152s-221	1	.6	43	18	35	6	1	1	170	
90-V-152S-222	2	1.0	33	27	101	20	1	2	615	
90-V-152S-223	1	.6	49	47	98	16	1	2	330	
90-V-152S-224	1	.7	28	35	115	35	1	1	175	
90-v-152s-225	1	.7	24	30	115	17	1	2	125	
90-v-152s-226	1 1	1.3	45	29	90	15	1	2	310	
90-v-152s-227	2	.9	19	24	84	22	1	2	160	
90-V-1528-228	1	.9	29	26	89	19	1	1	115	
		<u> </u>		* * * *			_			
<u></u>										
			•							

COMP: KEEWATIN ENGINEERING PRCJ: 152

.

•

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0527-SJ3 DATE: 90/09/22 • SOIL * (ACT:F31)

ĸ		(604)9	/80-5814 _, 0	R (604)98	8-4524			•	SOIL *	(ACT:F
AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
- 2 1 2 2 3	1.0 1.0 .5 .8 .6	44 30 22 23 31	14 20 16 18 10	86 121 194 136 82	1 1 1 1 1	1 1 1 1 1	1 2 1 1 1	225 180 140 185 105		
2	1.1	34	15	126	1	1	1	365		
				<u> </u>						
									<u></u>	
		,					. <u> </u>			
				<u> </u>						
				··				···· ·· -··-		
	<u></u>	·····								
n an	<u></u>									
						· · · · · · · · · · · · · · · · · · ·				
						<u> </u>	········	<u>.</u>		
	AU PPB - 2 1 2 2 3	AU AG PPB PPM 2 1.0 1 1.0 2 .5 2 .8 3 .6 2 1.1	AU AG CU PPB PPM PPM 2 1.0 44 1 1.0 30 2 .5 22 2 .8 23 3 .6 31 2 1.1 34	AU AG CU PB PPB PPM PPM PPM 2 1.0 44 14 1 1.0 30 20 2 .5 22 16 2 .8 23 18 3 .6 31 10 2 1.1 34 15	AU AG CU PB ZN PPB PPM PPM PPM PPM 2 1.0 44 14 86 1 1.0 30 20 121 2 .5 22 16 194 2 .8 23 18 136 3 .6 31 10 82 2 1.1 34 15 126	AU AG CU PB ZN AS PPB PPM PPM PPM PPM PPM 2 1.0 44 14 86 1 1 1.0 30 20 121 1 2 .5 222 16 194 1 2 .8 23 18 136 1 3 .6 31 10 82 1 2 1.1 34 15 126 1	AU AG CU PB ZN AS SB PPB PPM PPM PPM PPM PPM PPM 2 1.0 44 14 86 1 1 1 1.0 30 20 121 1 1 2 .5 22 16 194 1 1 2 .8 23 18 136 1 1 3 .6 31 10 82 1 1 2 1.1 34 15 126 1 1	AU AG CU PB ZM AS SB MO 2 1.0 44 14 86 1 1 1 2 1.0 30 20 121 1 1 2 2 1.0 30 20 121 1 1 2 2 .5 322 16 194 1 1 1 2 .6 31 10 82 1 1 1 2 1.1 34 15 126 1 1 1	AU AG CU PB ZN AS SB MO HG 2 1.0 44 14 86 1 1 1 225 1 1.0 30 20 121 1 1 2 180 2 -5 22 16 194 1 1 140 2 -5 22 16 194 1 1 140 2 -5 22 16 194 1 1 140 2 -6 31 10 82 1 1 1 155 2 1.1 34 15 126 1 1 1 365	AU AG CU PB 2N AS SB MO HG 2 1.0 44 14 86 1 1 1 225 1 1.0 30 20 121 1 1 2 180 2 1.0 44 14 86 1 1 1 225 1 1.0 30 20 121 1 1 140 2 .5 22 16 194 1 1 105 3 .6 31 10 82 1 1 105 2 1.1 34 15 126 1 1 1 365

APPENDIX V

.

1

Tat Soil Sample Descriptions

Project:	G	5 #1	GIN Amp			NG INC. Results Plotted By: _						<u>TS</u> N.T.S.:								
Area (Grid)	:				•		Мар	:	· · · ·	~		N	I.T.S.	:	-					
Collectors	·	revor	Stephund				Date				ing	<u>ين</u>	<u>+</u>	70	>.					
	Somple Lo	ocation	A angular	Τo	pogr	aphy			V	igeta	ition					Sol	1	Date	a	
Sample	Elev		A angular S.A subanyular S.R subanyular R subanded R rounded Notes	Bottom	of slope	- 1	Ground	Wooded	Wooded			q		Sampl ed	Depth to Morizon Somple(cm)	Hocizon	Develop - ment	Parent	Material	
Number	meters		•••	lley	Direction	۴ I	v el	Heavily	orsely	tat	Logged	Grassland	Swampy	Horlzon	Son to	G ood	- Lo	oritt.	Bedrock	
OVISIS	tefne	Station		2	ž	ШН	1	Ť	ò	8	٤	້ວ	Š	Å	Dei	ö	م	δ	8	l
059	1340	0+00	SILF Kand/ Srza 30/20140 A		W,			<u> </u>						ß	35	く	\Box			ľ
	1335	0150	Sillisand Gran Hory, 50/20/20/10 SK	┣───	W			~		<u> </u>					30			 		M
061	1340	1-100	511+1 sand/org/GR. 30/20/20/30 SR	┣	Ŵ			~							25		<u> </u>			L
062.	1345	1-150	SILF Sand / Gloking 40/20/10/30 A	┠────	W			X					<u> </u>		25		\vdash	I		Ľ
063	1350	2107	SITT Fray diothe	┣	W.	—								B	30		┢━┥			L
050 055	1350	2157	Siltisand & Ger, 20120/10 A		W			\prec					·	B	25 25		┟──┥			Ľ
0.54	1390	3+00	Silf/Clay/ 50130120 SP	<u> </u>	5				レ					3	25				~	ľ V
057	1380	0-50	silficiari San Spision Sposa	┢───	Ś				~						25		₽ _			D
<u> </u>	1200	1 700	sublear 1200 Soloria, MUSA	<u>├</u>	5								<u>`</u>	B	25			┝╼╼╼┦		0
 	14cm	1-50	silt /sand Fin Tolsollo		5				~					3	25		┼──┤	┟╾╍╍┙		1
<u> </u>	1425	2:00	cilticant sols lis	 	5				Ž					2	25		+-+	!		Ľ
	1422	7.50	siltisandiana solslis	<u>†</u>	5				マ					13	25		<u> </u>	┢───┤		Ē
· · · · ·	1425	3100	Silt Sand / Scale 60/30/20 SA	ţ	S				~					à		5	┝╼┥	┟╼──┦	Ĵ	ħ
073	1430	3450	Silt 1 ctaylor c. Soluply.	t	5			·	く					Ã	35		レ		5	ß
074	1430	- 2-30 V.4.913	SILFICIANIZEX. SOL YOLO	 	5									À	35	'	1	<u>├</u> ───┘	1.7	0
575	1430	USA	sill letant org 50/30/20	r—	5						レ			A	40	<u> </u>				ľ
275	luup		5,14/c/au 50/50	1.	2				·		V			5	40 30	1		—		1.
10 ⁻¹⁻¹	1440	5-150	silt/c'on I Gran Egizolas SA	1	5						5			B	30	V		<u> </u>	レ	Ť٣
	1440	6125	SIL+ I clay 12: 100-0120 SA		Ś						~				30				V	
	1440	6-150	SILLICION Licker Goboon A	1	5						~				30				1	
	1440	7400	SIH Isond 1 Grand 60120120 SA	 	5						~				25				5	
5 J 1	1440		siltiona, borno A	r	<						2				20			ł		17
N. 6 12	1440	April 1	silflorg 20/30 A		i -						~	·			30					ť
- 24	1467	Mar Sa	514/c/m/ Can 60/20/20 54		1						~				30				5	
0.54	144.5	دد بر	Stiller I Ima Solabo A		1						~			ß	25	~				'n
095	1430	3-5-	Silflorg/ Fing 40/20140 A		V					·	く			B	30		\checkmark		1	C
	1430	1-3.00	Silticianifica, 40/20140 SP		5											~	-			

Project: Area (Grid)	<u>A</u>	15COT	TAT SOIL	SAMP	PLES		Resi Map	ults i	Plotte	ed B	y: _	<u> </u>	. <u>K</u>	. <u> </u>	• .	•	, 			
Collectors	:	C.K./C	L .				Date	·	14	18/	/90	IN		••						
	Somple L			Τŗ	Topography				Vegetation						Soll Data					
Sample			Notes	Bottom	of slope		Ground	Wooded	Wooded			p		Sampled	Depth to Horizon Sample	Horizon	Develop - ment	Parent	Material	
Number	Line	ELEV 84%1.ion	•••	Volley B	Direction	HILI TOP	Level 0	Heavily	Sparsely	Burnt	Logged	Grassland	Swampy	Horlzon	Septh to Som	G oo'd	Poor	Drift	Bedrock	
904 152	5.099	1340	10 gilt 20 und 10 ciay		W									ß	30	V				
	100	/	70 set 20 and 10 ang		\downarrow			Ň.		·				В	40	V	\Box	V		
· · · · · · · · · · · · · · · · · · ·	. 101	·	70ally 312 and		V	 	 '	V						R	30	~	\square	イ		
	102		40 cill 30 rand 30 and is la		μŲ	<u> </u>								À	40	V	┝	\leq		
5+00	103		60 silt 30 sand 10 org	9	╂╌┼─			\mathbf{X}	╎╌╌╴┠					B	30 30		\mathbb{M}			
5700	105	+	Toget 20 und 10 and		╏─┼─				┝╼╌┼					B	30	\mathbf{k}	+-+		l	
	106		60 rul 20 can L 10 cm					1/						B	30	V	+	1		
	107		60 rul - 10 word Zil 4 vor		W			レ						В	30	Ĭ.		\mathcal{V}		
	103		10 Met Formal 10ang				$\overline{\mathbf{V}}$	マ						B	30	V				
10+00	10-1		60 self 30 same 10 anon		U.			V			·			B		V.				
	110	(<i>p</i>	ECgelt Incare Ichang				'	1/	└──┼	<u>i</u>				B	30	V		$\overline{\checkmark}$		
		1340	70 ville 20 and 10 million		<u>- </u>			V						B	40	V	┢╾┙	\mathbf{X}		
	113	1345	Toget 20 yours card		╉┿╍	 	 i	<i>.</i>	┝──┼					B_	40	<u>.</u>	┟──┤			
		1320	ck botton 60 h Kr 20kind 1200		┼╌┼╌			1/-	┞──╂					B R	30 30	· <u> </u>	╂──┤	レン		
	115	1345	Cogilt 20 yard 2 cing		17	1		V						B	-	V	+-+	$\frac{1}{\nu}$		
	116	1345	70 sult 20 sand 10 th		W/			Ĩ.	· • •					R	30			1/		
	117	1350	504145 30 saint Dena		L			V						B	30	_		Ŭ		
	118	1355	10 sul 40 cand					12						B	30	V		$\overline{\mathcal{V}}$	<u> </u>	
	114	1345	60 gelt 20cand 20 org			 		V	\square]			B	30	V		レ		
	170	1345	TO RULT ECVENT 10 dra		<u> `</u>	 	L	レ	┝──┼					B	30	\checkmark		レ		
	121	1345	40 put 40 and 2 manut		14				┝──╄					Ą	40		4	V		
	123	1345	LOVEL 3 YEAR 10 ONG		Ŵ			K	┝──┼					Ď.	30	1V	┟╾╍┤	V		
	124	1355	60514 205and 20005		W M	 			┝╼╾┾					B B	30 170		╂───┤	レレ	'	

	KEEWATIN ENGINEERING INC. # [5] GJ (TAT) STREAM SEDIMENTS Results Plotted By:														•								
	Area (Grid): Collectors:Trevor_Shephad						-				Map Date	: :		A	hau	N ,	.T.S.: / 4	aa.0.					
								SEDIMENT DATA					STREAM DATA Bank Cepth Depth Active Coity Coity					<u>u</u>	×				
Sample Number			N	IOTES				Gravel	Sand	Silt	Clay	Organic	Benk					<u></u>	DAY GULL				
70V1514	-00	1	leri	1440	<u>m</u> .	+alcen	10 m		50	50				V	20e	19.	in	V					
		<u> </u>	ect c	<u>, </u>	<u>יסעיב</u>	5-0-	76													<u> </u>	 	jļ	
	$\leq \gamma_{\gamma}$	it get		, <u> </u>	ierc.			+										<u> </u>		<u> </u>			
						<u></u>	<u></u>	1								·					┝━┥		
							······································																
							<u></u>		<u> </u>									∦]]	<u>. </u>
																		╞───			╞───┤		
						<u></u>											·				i		
2																							
												·											
		·····							 									 					
	<u> </u>																	 			╞──┥		
												[1		— —	├───┤		· · · · · · · ·
·					<u></u>	<u> </u>							 					+			}		
											. .						·						<i>r</i>
							······										·						
								∦								<u> </u>							
					···_		-		 							<u> </u>	<u> </u>						
															-,		<u> </u>	<u> </u>					
	· · · · · ·					<u> </u>										<u> </u>						 	
							<u>_</u>						· · ·										
						<u></u>			ļ				<u> </u>										
		······································											<u> </u>	·				<u> -</u>					

, same and same a

APPENDIX VI

Tuk Silt Geochemistry Results

COMP: KEEWATIN ENGINEERING PROJ: 152

ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0235-LJ1+2+3+4 DATE: 90/08/10 * SILT * (ACT:F31)

ſ	SAMPLE NUMBER	AU PPB	AG	CU	PB	ZN	AS	SB	MO	HG	
ŀ	90-0-152 L001 NA	3	PPM 1.5	ррм 66	PPM 28	PPM 122	PPM1	<u>PPM</u> 1	<u>PPM</u> 1	РРВ 120	
	90-0-152 L002 TUK 90-0-152 L003 TUK	168 90	1.7 1.9	199 201	33 32	80 94	1 1	1 1	1 1	105 160	
	90V152 L037 NA 90V152 L038 A	6	.9 1.2	127 93	31 31	106 106	1	1	1	145 130	
ł	90V152 L039	5	1.4	92	26	106	1	1	1	125	
	90V152 L040 NA 90V152 L041	3 1	1.4 1.0	79 82	24 31	75 87	1	1 1	1 1	125 125	
	90V152 L042 90V152 L043	4	.8	76 93	30 34	80 111	1	1	1	115 350	
ŀ	90V152 L044 NA	3	.1	85	30	99	1	1	<u> </u>	170	,
	90V152 L045 NA 90V152 L046 NA	33 6	1.0 2.5	153 104	49 34	176 167	1 1	1 1	1 1	300 165	
	90V152 L047 NA 90V152 L048 TUK	13 65	1.1 1.2	119 239	17 25	104 101	1	1 1	1	150 170	
t	90V152 L049	2	.1	82	16	86	1	1	1	115	
\square	90V152 L050 90NN152 L022 NA	1	.4 .3	120 95	30 19	120 83	20 5	1 1	1	130 155	
	90NN152 L023 NA 90NN152 L024 A	1	.1 .1	114 100	23 36	87 101	1 1	1 2	1 1	145 230	
	90NN152 L025	27	.3	120	26	93	1	1	1	130	
	90NN152 L026 90NN152 L027	3	.2 .4	119 109	80 26	233 89	1 1	1	1	240 150	
	90NN152 L028 90NN152 L029 NA	16 1	.1 .1	117 110	32 28	105 90	1 1	, 1 1	1 1	155 170	·
Ģ ·	90NN152 L030	4	.4	68	26	103	1	1	1	115	
1	90NN152 L031 90NN152 L032	22	.5 .1	98 82	26 30	99 137	1	1	1	145 130	
(90NN152 L033 90NN152 L034	2	.1 .1	104 96	23 28	88 90	1 1	1	1 1	105 120	
	90NN152 L035 V 90NN152 L036 NA	32	.1 .2	125 88	46 25	202 113	1	1	2	160 130	
Ų	90NN152 L037 NA	14	.2	106	26	137	1	i	1	155	
	90Y152 L001 90Y152 L002	26 1	.9 .8	96 123	29 34	87 113	1 1	1	1	210 235	
	90Y152 L003 90Y152 L004	2	.7 1.1	96 110	33 16	85 98	1 1	1	1	125 105	
N	90Y152 L005 N P 90V152 S040	4	1.6	90 1341	20 46	90 43	1	i	1 3	100 250	
. #	907152 S040 90F152 L001	/6 9	.7	110	27	43 96	1	1		105	
	90F152 L002 90F152 L003	2	.7 .6	112 103	35 19	152 110	1 1	1 1	1 1	130 90	
	90F152 L004 90F152 L005	1 2	.6 .7	112 114	31 35	94 140	1	1	1	95 140	
	90F152 L006	6	.6	91	28	120	1	1	1	140	
	90F152 L007 NA 15290'NN	4	.6 1.4	97 123	33 46	118 191	1	1 1	1 1	215 155	
								·		-	
									. <u>.</u>		
				u					_ <u></u>		
	L,	<u></u>									

COMP: KEEWATIN ENGINEERING PROJ: 152

ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1111-LJ1 DATE: 90/08/21

• SILT * (ACT:)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90F152L008 イリK 90V152L060	9 1	1.9 1.1	167 103	44 39	111 151	1 1	1	1	245 195		
										·	
				<u></u>							
						<u></u>					<u></u>
	-						<u> </u>				
				 							

APPENDIX VII

Tuk Silt Sample Descriptions

Keewatin Engineering Inc.

•

KEEWATIN ENGINEERING INC.

Project: <u>NEW AXE CLAIMS (#152)</u>

STREAM SEDIMENTS Results Plotted By: JASOIJ MALLIK

	Area (Grid):					Map	:				N	.T.S.:		 1			
	Collectors :	JASON MILLER				Date	: لملك	'LY	1990	2 (1 LAT	ΈJ	<u>414</u>				
	, .			SEDI	MENT	DAT	A	S	TRE	AM D	ATA		(1)				
	Sample	NOTES	ie,	70			Organic	×	ive	£	Ľ,	Velo- city	NIN ON	DRY GUĻLY	ļ		I
	Number		Gravel	Sand	Silt	Clay	or G	Bank	Active	Wid	Dep	city City	SPF	80			
* •																┝━━╡	
A/A	90.0.1521- OC	1755m North edge of platinul, Small Seasonal Check Mossy						Halus		12m	30m	LOW	<u> </u>		 !		
187 187	1002	1734m. Treek draining glacier. Howing north.		HIGH	MOÛ.			tolus		1-Lm	Sim	MON	V			-	
18th	1.003	1875m. ". " V Flourna horthi		Pisil	100.			alys				Hist					
	90V-048	1755 m. North edge of finting Small Seasonal creek. Mossy 1734 m. Creek draining glacier. Flowing north 1875 m. "	50		50				V	200	S	hi				⊢!	
	047	1550 M J bowl facing north	ļ										L			┢──┤	 ····-
																l	
								<u> </u>									
											_ <u></u>						
		· · · · ·	L														
																	 · <u> </u>
				_													
	•																
			ľ														_
	<u> </u>																
					·												
															·		
		· · · · · · · · · · · · · · · · · · ·															
		· · · · · · · · · · · · · · · · · · ·			ŀ												
					1												1
	·		1	1	1		1	11			I						

APPENDIX VIII

Tuk Rock Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICHOLS/M.BOBYN MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0236-RJ1+2 DATE: 90/08/10 * ROCK * (ACT:F31)

		PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPB	
90Y 152 R 024 //A 90Y 152 R 025 //A	61 95	3.7 3.4	143 118	8 8	63 51	1	1 1	1	110 85	
90Y 152 R 027 NA	32	1.8	74	16	55	1	1	1	210	
90Y 152 R 028 NA	41	1.8	72	16	36	1	1	1	265	
90Y 152 R 029 NA	72	2.4	70	8	48	1	1		285	
90Y 152 R 030 NA	41	1.9	43	20	24	1	1	1	220	
90Y 152 R 031 NA 90Y 152 R 032 NA	6400 21	2.5 2.5	104 170	8 8	52 19	1	1	1	310 140	
900 152 R 028 NA	11	2.3	1103	8	65	. 1	1	i	95	
900 152 R 029 NA	23	13.3	344	364	7127	1795	37	56	13000	
900 152 R 030 NA	6400	32.1	65080	84	123	1	68	12	145	,
900 152 R 031 NA	3300	5.5	10105	28	181	52	13	12	430	
900 152 R 032 TUK	5800	11.7	74919	81	16	1	80	51	90	
900 152 R 033 TUK	82	2.7	907	25	21	1	1	1	110	
90U 152 R 043 NA	236	13.4	65465		20	1	65	4	240	
90U 152 R 044 NA	61	1.9	1687	44	45	1	1	20	400	
90U 152 R 045 NA	83	2.9	639	8	74	1	1	1	140	
90U 152 R 046 NA 90U 152 R 047 NA	17000	7.4	605	33	36	22593	5	1	75	
900 152 R 047 MA	164 280	2.7 2.8	220 116	8 8	58 57	81 326	1	1	160 130	
90U 152 R 049 W	481	14.3	327	3287	2826	774	14	1	1750	
900 152 R 050 W	2150	264.7	2720	15026	41107	431	81	5	16625	
90U 152 R 051 W	1420	133.7	33723	277	1420	262	3883	1	1490	
90U 152 R 052 W	150	6.4	1034	90	220	1	65	65	270	
90U 152 R 053 TUK	841	5.3	2168	68	80	17	41	2	220	
900 152 R 054 TUK	111	4.3	794	63	64	52	17	3	175	
90U 152 R 055	24000	8.7	870	38	44	45	7	1	190	
90U 152 R 056	781	1.5	129	19	84	1	1	1	155	
90U 152 R 057 90V 152 R 005 א	132 154	1.6 1.9	106 102	20 10	37 82	1	1	1	120 100	
90V 152 R 006 NA	495 92	5.3 2.6	12114 387	41 76	16 295	18 1	11 1	8 1	135 125	
90V 152 R 008 NA	112	2.1	298	18	293	1	1	1	140	
90V 152 R 009 NA	96	1.5	85	25	68	1	i	14	125	
90V 152 R 010 TUK	87	6.3	9096	30	10	7	10	1	180	
90V 152 R 011 TUK	74	2.7	1414	26	4	25	4	1	110	
90V 152 R 012 TUK	121	4.2	7035	20	5	1	7	1	120	
90V 152 R 013 TUK	1810	7.5	29928	46	12	84	34	16	190	
90V 152 R 014A 90V 152 R 014B	126 101	1.2 64.4	683 237	13 86	65 62	1 445	1 8	1	125 1310	
90V 152 R 015	54	1.8	141	11	13	632	1	1	185	
90V 152 R 016 90V 152 R 017	91 283	1.5 2.8	66 249	24 37	1 <u>5</u> 9	11 143	1 8	1 7	150 470	
90F 152 R 050 W	2350	139.5	2099	3540	71259	264	44	8	21375	
90F 152 R 051 W	176	3.8	72	83	1212	1	1	1	565	
. 90F 152 R 052 W	1200	3.6	107	55	81835	550	19	10	21750	······
90F 152 R 053 TUK	21	6.0	4164	20	1192	1	í í	1	595	
90F 152 R 054 TUK	33	4.1	85	10	665	1	1	1	315	
90F 152 R 055 TUR	163	1.2	3435	20	163	14	4	1	185	
90F G7 001	1400	.9	47	10	151	1	1	1	820	
90F G7 002	2	1.2	32	10	44	1	1	4	740	
									·	
1										

APPENDIX IX

Tuk Rock Sample Descriptions

Keewatin Engineering Inc.

			,	KE	E W	ATT	N E	NGINEER	ING TINC.	
Project:	Ascot 152					ł	ROCK	SAMPLES	Results Plotted By: T. Shepherd.	
Area (Grid):_					-					<u></u>
Collectors:		2	•		_				Map:NTS: Date:JUy 1990Surface VIndergro	ound
	· · · · · · · · · · · · · · · · · · ·	REP.	SAM	PLE -	TYPE		атн)		1	
SAMPLE	LOCATION NOTES	SAMPLE		T	r		1	ROCK	SAMPLE DESCRIPTION	MAP
NUMBER	•	NUMBER	GRAB	CHIP	HANNEL	CORE	LOAT	T YPE		SHEET
90V152R		· · · ·		<u> </u>	<u> </u>		ŭ.			
011	Eler 6150, talen	<u> </u>		┥				Quartz.	50 cm mide avertz vain with controls	
TUK	an edge of plateau So-100m north of 010								Chalco protion tolebs (22)	
	T								21 - 1	
017	Elev. 6050. Laken below R-011				<u> </u>		V	· ·	2 cm wide avaits veining on	
- TUF	below K-UII.								and (1.6(?) bouldres. Molorite Staining	
013	Elev, 5870; Sampled								and >5% chalcopyrite blebs	
	Disnut Shile Grea			1					2-5cm with Augite when combaining	
	below R-Oll.			· ·					on est-crior of Vain & willing	
OIYA	Elev. 6100, takin			1	 .			·····		
	on nut sille across			1	· .				Chalco more a muit in carbonale offered andicite.	
	from Tenafon's Propuly			<u>}</u>					Diffed and the	
014B	Elev. 1660m, takn			1				<u> </u>	Quartz a Gelsic conglomerate with	
	next to creek								pycite blebs, Angular Float.	
	above 9001525-050									
015	Elev. 1680 m.						V		Blue-gray quartz, Purple-speed	
<u></u>	Felsic boulder 12" ocross,								Stump on outside, Magsive purite	
· · · · · · · · · · · · · · · · · · ·	above creek.								a disserimentel . Well roundard	
016	Elev 1710m taken		V						Quarte/carbonale breering with andirite	
	abive DAR-15 (1989)								Fragments. Tiper of pyrite and succular	
	50m.								hanstite. Vain 7= 10 cm wide	
017	Elev. 1740m. talan	•	V				·		Gossanova quartz/carbonale zone. Pust.	
	on Apphelly of	 							oyellow showed with disseminated blacks	
•	r lateur across from Tengion.	· · ·							of chalse min & dism privite.	
018	Elev. 1630m Locald		V						Dark Brownish weathered. Dark greenish	
, 	next to V-5-051. North			<u> </u>					arry rock fresh. Mn. stain, Fire grain	
	of Wolf on Axe claims		<u> </u>	·					Saft. Pyrik Fracture Rik 2-38.	
020	Elev. 1720. Localed		$\mathbf{\nabla}$					Quartz.	Fine grained smuky gray quartz, High Graded	
·	south of V-S- 158.				 	<u> </u>			Strongly bulled very quartz. 3-5% chalco Ry.	•
	North of wolf platean.	L		L	L		L		2-32 sphaleist. Maleute-azerite stain.	

and a second second

Project	Ascot #152			ΝĒ	. C. V V			SAMPLES	RING INC. Results Plotted By:
Vrog (Grid):		·			-				Map: NTS: Date: July 1990 Surface Underground
Collectors:	trevor Shephad,				_				Date: Underground
		REP.		PLE 1		(LEN)		ROCK	ма
SAMPLE NUMBER	LOCATION NOTES	SAMPLE NUMBER	I <	CHIP	CHANNEL	CORE	FLOAT	TYPE	SAMPLE DESCRIPTION SHE
101152 R				0	В		Ē		
001	On such barnk of								Silicified intermediate volcanic with
NA	South Axe creek							<u> </u>	disseminited pyrite. 3-58 pyrite blebs.
	Elev, 1150m							•	
002	Flev. 1590 m. located.	 	V					- 1764 .	Galena, Chalco pyrite - pyrite in
	above 0175 on			·			· · ·		hearihy altered matic volcanics.
	90V1525-010 Soilstation								
003	Same as R-002		V						Galena & pyrite with carbonate
									Veining & quartz veining through
									fractures. Chlorite present
004	Cocates at 3+20						ļļ		Pisseminiated avrite in chief
	on above soil line.	<u> </u>							Grachical with carbonate,
005	Elev. 1585 m	<u>.</u>	N.		<u>.</u>				5-78 pyrite,
	Elev 5400' Located	 							Silicified conglomerate with much Finelis dissaminated rock, Baute veining
NA	aboue 90F152L-005	ļ							
	on trib to Kiniskin LK	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	in Zone
006	Elev. 1640 m on	· · · · · · · · · · · · · · · · · · ·		<u> </u>		ļ		<u></u>	Carbonate verning in mafir
NA	creek east of 005					i			volcanic containing cholcopyrite.
	running into Kinishan LK					ļ			Marble work Corbonate veins
007	1400 m. Axe	·							Purifile blebs in chief.
NA	claims					<u>.</u>		·	
• •		· · · · · · · · · · · · · · · · · · ·							
008	1500 m. talan				·		├ 		Silicions Volcanic, Blebs, veins
NA_	on ridge to east	 		i					à disseminated tron printe.
	0+F 007	 						. <u></u>	
009	Elev. 1620: Talen	· · · ·	\checkmark				↓		Pool & disseminated prints in silicitiest
NA.	on north facinu							<u>_</u> _	volcanic Quarte pieces in host rock.
	side of idee on Axecl.	 	7				┼╌╌╴┨		
010	Elev. 6150; Lakon	<u> </u>				<u></u>	┟╌╍╌┨	· · · · · · · · · · · · · · · · · · ·	2 cm wide quartz/carboniete vien
TUK	on roih way of	 			L	L	<u> `</u>		Containing chalco pyrite (28). Green and with

roject: NE	EW AXE CLAIMS (#152)	2 SHAN	(A					NGINEERI SAMPLES	Results Plotted By: JASON MILLER
rea (Grid):	•	(· · · · · ·	-				
collectors:	TASON MILLER		_		-				Map:NTS: Date: LATE JULY ,1990SurfaceUnderground.
		REP.	REP. SAMPLE TYPE (LENGT]	
SAMPLE NUMBER	LOCATION NOTES	SAMPLE NUMBER	GRAB	СНІР	CHANNEL	CORE	FLOAT	ROCK TYPE	SAMPLE DESCRIPTION
10-0-152R-027	north edge of plateau.		V		<u> </u>			Slightly,	Silicitied anderite (?) with ~ 1% differint
NA	0,0,							Silicitied.	ated pyrite, as well as abundant
	, 5363/ 1635m							volconic land	
0.0.152R-028	north bank of ridge.		~					slightly	, Quartz-carb attenation none. Veins average
N.A		· · · ·						metamorphos	
	6160° 18 68 m							andesite	associated with dark quartz ?
0.0.152R-029	north trank of vidge		\checkmark					andesite (?)	Fine guartz veinlets, in & rusty guartz-
NR_									carb altered rock. No visable sulphider.
	6120 1855m								Sample taken in subcrop.
10.0.152R-030	south frank of vidge		~					andesite (?)	Vuggy guartz veining with alrundant
-NA									malachite, minor aguite, and tilets of
001020071	ipith what of ridge.								Cpa(~4-5%)'- Vein is #3cm wiele . Subcrop.
NA	north eagl of ridge.		-					andeiete.	Blartz van stockwork. Veins are 520m (Wide ; average Icm, Abundant malachte
N	5445 1650m							· ·	and ~2-3% Nervey CAY (interstitio), 2-030
0.0.152R-032	Certur of to bowl-small	/						andesito	Small quarta veinlets with carequate to min
	00559m. Northern Clarm			· · · · ·				www.sup	1-2 cm. wide wat siderite and imonite Nov
-40-	(Nav Are) 6/80' 1875								Visable Aule/lidles.
0.0.1528-033	East corner of bowl.		\checkmark					anderite	A guartz ven (3-20cm wroc), containt ~4-5%
KUK.	Northern clarm (of New								Cpy with abundant, malachite and minor onuit.
101	Axe) . 5860' 1775m								Continues applore how FSmt. At least 3 veins windled.
10.0.152R-034	LID CLAIMS . South of		V					anuar 12	30 cm wide rusty quartz vein in amound
	Terrajon. possibley the							Vein	a quarty-rand some ~ 2 in wide. Small
	oration of 89 DAK-16. Mar of							unknown host	villes are tilled with tim frem or kine pur (dis)
	Shar Area. talus on		V					precciated	Antquelay, talus boulder. 50cm × 30cm. Siliciting
	South Side of CLER.							volcanic	carbonate altered volganic lireccia, ~3%
	5330'LL.							crystal twite	diss. Cpy Keby Limonite + niner ralachete on surprises.
	Frost heave? Talus slope.		V					quartz	Rusty grantz very with vugs and ~2% pyrite.
· <u> </u>	Shar area.							vein	Abundant limonite throughout Groud boxwork

KEEWATIN ENGINEERING INC.

ROCK SA	MPLES
---------	-------

Project: ____ Area (Grid): __ Collectors: ___

Results	Plotted By:
Map: _	NTS:
Date: _	

-	ĹЯ	1	3.	
				(

.Surface	Underground	_

	الم	REP.	SAMPLE TYPE (LENGTH)						· .	
SAMPLE NUMBER	LOCATION NOTES	SAMPLE NUMBER		CHIP	CHANNEL	CORE		ROCK TYPE	SAMPLE DESCRIPTION	MAP SHEE
HUNISZROSI	1610 m " w "		1					CAN + AS DIEDS	BLebbing along bedding planes, matres	
	•								is siltstone shight malachitestains	
··.									1-2=1/2011 3-5% cpy 2-3% As	
GOURCE	1540m NW"		V					siltstone	conviened zone with zine stain 2950	
a ko <u>na</u> tatata				ļ					5-10% isy no disciple somal prive , trage	· · ·
	· · · · · · · · · · · · · · · · · · ·						ļ	· · · · · · · · · · · · · · · · · · ·	Arseno	ļ
BUILTER OST	Tuk claim						1	cathingtr	Looks to be 1-21 A Uten material	I
TOX-	· · · · · · · · · · · · · · · · · · ·		ļ			:		Uien	1-2900001	
(0					ļ	<u> </u>				
THISEKON	1774 1 11		·				~	culaite	Looks to be from a vien, malachite	
			ļ				· ·		stained 1-240 cpy + calcocite	
	· · · · · · · · · · · · · · · · · · ·		· ·	ļ	<u> </u>		· .			ļ
404162 R055	· SUN Phat		~	ļ	L			945200,350	Strikin APROX 58° 2-496 CHY 2-390 AV	
		·		<u> </u>		<u> </u>			resample of AAR33, erack + Fill mineralize	4100
			ļ				-			
TOAISEROSE	1830 11 11		1				·	Hornblade diors	e 3-5% py 2:53, slightly calcareous	
· · ·						-			possibly feldspars in it maybe a porphery	
			 	ļ	<u> </u>	· .				
904 52 205	1800 11 11		1		. *			Alt Upleanic	Fracture Fill py 3% extremely gaussened.	
· · · ·	· · · · · · · · · · · · · · · · · · ·		· ·		ļ	4				
			<u> </u>	·		· · ·			· · · · · · · · · · · · · · · · · · ·	
10 UN2. (2 058			<u> </u>					Atz viening.	Ice heave material; 75% cpy 43% py 72% spholaily	
			_	ļ					, seens to be a whole host of posselicit wichs.	.`.
0			 		ļ	Ļ	 		here some seem to be more soussened than	atte
HOWISZR059	1180		·/_				ļ	arz viewing	same as unosp except so mus strike	/
									of view, a little more cov + treer Palchocit	¢ :
	· · · · · · · · · · · · · · · · · · ·				 ,			·		+
MULCICAL COLO	120 ELECK DOTTOM	<u> </u>				·	1	DAZ EATD ALL	Arrayman Floct found in creek holdom 2	1 T
	Seester		ļ						Louiders 25% (D) >3% py, Fracture fill	• •

APPENDIX X

Britt Silt Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGRG.

.

MIN-EN LABS - ICP REPORT

FILE NO: 0V-1206-LJ1+2 DATE: 90/08/22 • SILTS • (ACT:F31)

PROJ: 152 ATTN: R.NICHOLS/D.MEHNER 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

SMPLE AU AG CU PB PM				(00177						0.2.1	(
ODANISZLOUG BRITT 9 1.6 79 21 116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 205 304 32 30 1 <th1< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th1<>											
DDAALSLODG BRITT 9 1.6 79 21 116 1	00441521 003 BRITT	20	27	107	14	142	1	1		00	
DDAALSLODS & IT 2 1.7 67 1 85 1 1 1 205 DDAALSLOOG NA 18 2.0 112 1 101 1 1 1 100 DDAALSLOOF NA 1 1.7 127 1 74 1 1 100 DDAALSLOOR 1 1.3 90 24 106 1 1 1 110 DDAALSLOOR 1 1.3 84 9 79 1 1 1 145 DDAALSLOOD BEITT 1 2.8 94 1 65 1 1 1 145 DDAALSLOOLD BEITT 1 2.4 102 1 101 1 1 150 DDAALSLOID SENTT 1 2.4 102 1 101 1 1 150 DDAALSLOID SENTT 1 2.4 102 1 101 1 1 1 1 1 1.5 1 1 1 1 1 1 1 1<								-			
DDAALSLOUG NA 18 2.0 112 1 101 1 <th1< th=""> 1 1</th1<>	0041521005 4011							•			
DOAA152L007 NA 1 1.7 127 1 74 1 1 1 160 DOAA152L008 1 1.3 90 24 106 1 1 1205 DOAA152L009 1 1.3 84 9 79 1 1 145 DOAA152L010 B&177 1 2.8 94 1 65 1 1 50 DOAA152L012 B&1177 6 1.7 85 1 107 1 1 95 DOAA152L013 B&1177 1 2.4 102 1 101 1 1 95 DOAA152L014 NA 1 1.9 76 3 104 1 1 105 DOAA152L016 NA 1 1.9 136 81 1 1 105 DOAA152L017 NA 1 2.8 12 17 1 1 100 DOAA152L017 N								•			
DDAA152L008 1 1.3 90 24 106 1 1 1 205 DDAA152L009 1 1.3 84 9 79 1 1 1 145 DDAA152L010 B&ITT 1 2.8 94 1 65 1 1 1 150 DDAA152L010 B&ITT 1 2.4 102 1 101 1 1 195 DDAA152L013 B&ITT 1 2.4 102 1 101 1 1 195 DDAA152L013 B&ITT 1 1.4 84 14 106 1 1 195 DDAA152L016 NA 1 2.8 152 11 157 1 1 110 DDAA152L017 NA 2 1.4 16 7 79 1 1 150 DDAA152L018 NA 1 1.7 107 4 61 1 1					-			•			
200A152L009 1 1.3 84 9 79 1 1 1 145 200A152L010 84/77 1 2.8 94 1 65 1 1 150 200A152L010 84/77 1 2.4 102 1 101 1 1 95 200A152L012 84/17 1 2.4 102 1 101 1 1 95 200A152L015 84/71 1 1.4 84 14 106 1 1 1 95 200A152L015 MA 1 1.9 76 3 104 1 1 80 200A152L016 MA 1 1.9 136 1 81 1 1 100 200A152L017 MA 2 1.4 116 7 79 1 1 1 150 200A152L018 MA 1 1.7 107 4 61 1 1 150 200A152L028 6 11 1.7 103 1											
DOAA152L010 $B2177$ 1 2.8 94 1 65 1 1 1 50 DOAA152L011 $B \times 177$ 6 1.7 85 1 107 1 1 1 95 DOAA152L012 $B \times 177$ 1 2.4 102 1 101 1 1 1 95 DOAA152L013 $B \times 177$ 1 1.4 84 14 106 1 1 1 95 DOAA152L014 NA 1 1.9 76 3 104 1 1 1 100 DOAA152L016 NA 1 2.8 152 11 157 1 1 110 DOAA152L017 NA 1 2.8 152 167 1 1 180 DOAA152L020 MA 1 1.7 107 4 61 1 1 150 DOAA152L020 MA 1 1.7 107 4 61 1 1 105 DOAA152L020 MA 1		1					1	1	1		
DOAA152L011 B & 1.7 B5 1 107 1 1 1 95 DOAA152L012 BEITT 1 2.4 102 1 101 1 1 1 95 DOAA152L013 BEITT 1 1.4 84 14 106 1 1 1 95 DOAA152L014 NA 1 1.9 76 3 104 1 1 180 DOAA152L015 NA 1 2.8 152 11 157 1 1 110 DOAA152L016 NA 1 1.9 136 1 81 1 1 195 DOAA152L018 NA 1 1.7 107 4 61 1 1 155 DOAA152L020 GEITT 1 2.9 152 1 75 1 1 155 DOAA152L020 GEITT 1 2.9 152 1 75 1 1 155 DOAA152L020 GEITT 1 2.9 152 1 <t< td=""><td></td><td>1</td><td></td><td>84</td><td>9</td><td>79</td><td>1</td><td>1</td><td>1</td><td>145</td><td></td></t<>		1		84	9	79	1	1	1	145	
DOAA152L012 BEIT 1 2.4 102 1 101 1 1 1 95 DOAA152L013 ΘR^{1T1} 1 1.4 84 14 106 1 1 1 195 DOAA152L013 ΘR^{1T1} 1 1.4 84 14 106 1 1 1 195 DOAA152L015 $M A$ 1 2.8 152 11 157 1 1 110 DOAA152L016 $M A$ 1 1.9 136 1 81 1 1 195 DOAA152L018 $M A$ 1 1.7 107 4 61 1 1 155 DOAA152L020 $BeitTT$ 1 2.9 152 1 75 1 1 105 DOAA152L021 $BeitTT$ 1 2.2 96 18 110 1 1 155 DOAA152L023 $BeitTT$ 1 1.6 75	DOAA152LO10 BRITT	1	2.8	94	1	65	1	1	1	50	
DOAA152L013 G R IT 1 1.4 84 14 106 1 1 1 195 DOAA152L014 NA 1 1.9 76 3 104 1 1 1 80 DOAA152L015 NA 1 2.8 152 11 157 1 1 1 100 DOAA152L016 NA 1 1.9 136 1 81 1 1 1 100 DOAA152L017 NA 2 1.4 116 7 79 1 1 150 DOAA152L019 NA 1 1.7 107 4 61 1 1 155 DOAA152L020 BEITT 1 2.9 152 1 75 1 1 1 105 DOAA152L020 BEITT 1 2.9 152 1 75 1 1 1 105 DOAA152L023 BEITT 1 2.2	20AA152L011 BRITT	6	1.7	85	1	107	1	1	1	95	
DOAA152L014 NA 1 1.9 76 3 104 1 1 1 80 DOAA152L015 NA 1 2.8 152 11 157 1 1 1 10 DOAA152L016 NA 1 1.9 136 1 81 1 1 1 95 DOAA152L017 NA 2 1.4 116 7 79 1 1 1 150 DOAA152L018 NA 18 2.1 99 9 167 1 1 1 150 DOAA152L019 WA 1 1.7 107 4 61 1 1 1 155 DOAA152L020 GETT 1 2.9 152 1 75 1 1 1 105 DOAA152L023 GETT 1 2.2 96 18 110 1 1 105 DOAA152L023 GETT 1 1.6 75 11 103 1 1 105 DOAA152L023 GETT 1 2.2 165 1 106 1 1 10	20AA152L012 BRITT	1	2.4	102	1	101	1	1	1	95	
DOAA152L014 NA 1 1.9 76 3 104 1 1 1 80 DOAA152L015 NA 1 2.8 152 11 157 1 1 1 10 DOAA152L016 NA 1 1.9 136 1 81 1 1 1 95 DOAA152L017 NA 2 1.4 116 7 79 1 1 1 150 DOAA152L018 NA 18 2.1 99 9 167 1 1 1 150 DOAA152L019 WA 1 1.7 107 4 61 1 1 1 155 DOAA152L020 GETT 1 2.9 152 1 75 1 1 105 DOAA152L021 geTT 1 2.2 96 18 110 1 1 105 DOAA152L022 geTT 1 2.1 84 1 86 1 1 100 DOAA152L023 GETT 1 2.2 165 1 106 1 1 105	0AA152L013 BRITT	1	1.4	84	14	106	1	1	1	195	
DOAA152L015 NA 1 2.8 152 11 157 1 1 1 10 DOAA152L016 NA 1 1.9 136 1 81 1 1 1 95 DOAA152L017 NA 2 1.4 116 7 79 1 1 1 95 DOAA152L018 NA 18 2.1 99 9 167 1 1 1 150 DOAA152L019 NA 1 1.7 107 4 61 1 1 1 155 DOAA152L020 Bertr 1 2.9 152 1 75 1 1 105 DOAA152L022 Bertr 1 2.2 96 18 110 1 1 105 DOAA152L023 Bertr 1 2.2 96 18 110 1 1 105 DOAA152L023 Bertr 1 2.2 165 1 106 1 1 1 105 DOAA152L024 NA		-									
DOAA152L016 NA 1 1.9 136 1 81 1 1 1 95 DOAA152L017 NA 2 1.4 116 7 79 1 1 1 150 DOAA152L018 NA 18 2.1 99 9 167 1 1 1 150 DOAA152L019 NA 1 1.7 107 4 61 1 1 1 155 DOAA152L020 66:177 1 2.9 152 1 75 1 1 105 DOAA152L021 86:177 1 2.2 96 18 110 1 1 105 DOAA152L023 86:171 1 1.6 75 11 103 1 1 100 DOAA152L023 86:171 1 2.2 165 1 106 1 1 110 DOAA152L024 MA 1 2.2 165 1 106 1 1 105 DOAA152L024 MA 1 2	00441521.015 4/4	1			-			1			
200A152L017 NA 2 1.4 116 7 79 1 1 1 150 200A152L018 NA 18 2.1 99 9 167 1 1 1 180 200A152L019 NA 1 1.7 107 4 61 1 1 1 155 200A152L020 6£177 1 2.9 152 1 75 1 1 1 105 200A152L022 8£177 1 2.2 96 18 110 1 1 1 105 200A152L022 8£177 1 2.2 96 18 110 1 1 105 200A152L022 8£177 1 1.6 75 11 103 1 1 1 105 200A152L024 /A 1 2.2 165 1 106 1 1 1 105 20AA152L025 2 3.6	0041521016 114							•			
DOAA152L018 NA 18 2.1 99 9 167 1 1 1 180 DOAA152L019 NA 1 1.7 107 4 61 1 1 1 155 DOAA152L020 $Beitt 1 2.9 152 1 75 1 1 1 155 DOAA152L021 Beitt 1 2.2 96 18 110 1 1 105 DOAA152L022 Beitt 1 1.6 75 11 103 1 1 105 DOAA152L023 Beitt 2 1.8 84 1 86 1 1 1 100 DOAA152L024 NA 1 2.2 165 1 106 1 1 1 100 DOAA152L024 NA 1 2.2 165 1 106 1 1 100 DOAA152L025 2 3.6 73 1 93 1 1 1 105 DOAA152L026 1 $	DAA1521 017 NA							•			
DOAA152L019 NA 1 1.7 107 4 61 1 1 1 155 DOAA152L020 $Be177$ 1 2.9 152 1 75 1 1 1 105 DOAA152L021 $Be177$ 1 2.2 96 18 110 1 1 1 105 DOAA152L022 $Be177$ 1 2.2 96 18 110 1 1 130 DOAA152L023 $Be177$ 1 1.6 75 11 103 1 1 160 DOAA152L023 $Be171$ 2 1.8 84 1 86 1 1 1100 DOAA152L024 NA 1 2.2 165 1 106 1 1 1105 DOAA152L025 Λ 2 3.6 73 1 93 1 1 1 105 DOAA152L026 1 2.0 149 1 1 1 1 165 DOAA152L028 NA 7 1.3									·		
DOAA152L020 $6E_{17T}$ 1 2.9 152 1 75 1 1 1 105 DOAA152L021 BEITT 1 2.2 96 18 110 1 1 1 130 DOAA152L022 BEITT 1 1.6 75 11 103 1 1 1 105 DOAA152L022 BEITT 2 1.8 84 1 86 1 1 1 100 DOAA152L023 BEITT 2 1.8 84 1 86 1 1 1 100 DOAA152L024 NA 1 2.2 165 1 106 1 1 1 100 DOAA152L025 2 3.6 73 1 93 1 1 1 50 DOAA152L026 1 2.0 149 1 88 1 1 1 165 DOAA152L027 54 2.4 132 173 507 1 1 1 155 DOAA152L029 15					-			-			
DOAA152L021 Bent 1 2.2 96 18 110 1 1 1 1 130 DOAA152L022 BENT 1 1.6 75 11 103 1 1 1 130 DOAA152L022 BENT 2 1.6 75 11 103 1 1 1 100 DOAA152L023 BENT 2 1.8 84 1 86 1 1 1 100 DOAA152L024 NA 1 2.2 165 1 106 1 1 1 105 DOAA152L024 NA 1 2.2 165 1 106 1 1 1 105 DOAA152L025 M 2 3.6 73 1 93 1 1 1 105 DOAA152L026 1 2.0 149 1 88 1 1 1 165 DOAA152L027 54 2.4 132 173 507 1 1 1 155 DOAA152L029 15 1.4 144 61 158 <td>-</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	-	•						-			
POAA152L022 BRITT 1 1.6 75 11 103 1 1 1 160 POAA152L023 \mathcal{R} LITT 2 1.8 84 1 86 1 1 1 100 POAA152L023 \mathcal{R} LITT 2 1.8 84 1 86 1 1 1 100 POAA152L024 NA 1 2.2 165 1 106 1 1 1 105 POAA152L025 1 2.3.6 73 1 93 1 1 1 50 POAA152L026 1 2.0 149 1 88 1 1 1 70 POAA152L027 54 2.4 132 173 507 1 1 1 165 POAA152L028 NA 7 1.3 71 8 103 1 1 1 155 POAA152L029 15 1.4 144 61 158 1 1 1 1555 POAA152L030 5		•			-						
DOAA152L023 $ge 1 \pi^{1}$ 2 1.8 84 1 86 1 1 1 110 DOAA152L024 NA 1 2.2 165 1 106 1 1 1 105 DOAA152L025 1 2 3.6 73 1 93 1 1 1 105 DOAA152L026 1 2.0 149 1 88 1 1 1 50 DOAA152L027 54 2.4 132 173 507 1 1 1 165 DOAA152L028 NA 7 1.3 71 8 103 1 1 1 155 DOAA152L029 15 1.4 144 61 158 1 1 1 155 DOAA152L030 5 1.3 115 5 49 1 1 1 170 DOAA152L031 1 1 1.5 92 4 51 1 1 1 85 DOAA152L050 NA 4 <											
DOAA152L024 NA 1 2.2 165 1 106 1 1 1 105 DOAA152L025 1 2 3.6 73 1 93 1 1 1 50 DOAA152L026 1 2.0 149 1 88 1 1 1 50 DOAA152L026 54 2.4 132 173 507 1 1 1 165 DOAA152L027 54 2.4 132 173 507 1 1 1 155 DOAA152L028 NA 7 1.3 71 8 103 1 1 1 155 DOAA152L029 15 1.4 144 61 158 1 1 1 55 DOAA152L030 5 1.3 115 5 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 30 DOAA152L031 V 1 1.5 121 2	20AA152L022 BEITT	7	1.6	75	11	103	1	1	1	160	
DOAA152L024 NA 1 2.2 165 1 106 1 1 1 105 DOAA152L025 1 2 3.6 73 1 93 1 1 1 50 DOAA152L026 1 2.0 149 1 88 1 1 1 50 DOAA152L026 54 2.4 132 173 507 1 1 1 165 DOAA152L027 54 2.4 132 173 507 1 1 1 155 DOAA152L028 NA 7 1.3 71 8 103 1 1 1 155 DOAA152L029 15 1.4 144 61 158 1 1 1 55 DOAA152L030 5 1.3 115 5 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1	DAA152LO23 BEITT	2	1.8	84	1	86	1	1	1	110	
20AA152L025 2 3.6 73 1 93 1 1 1 50 20AA152L026 1 2.0 149 1 88 1 1 1 70 20AA152L027 54 2.4 132 173 507 1 1 1 165 20AA152L027 54 2.4 132 173 507 1 1 1 155 20AA152L028 NA 7 1.3 71 8 103 1 1 1 155 20AA152L029 15 1.4 144 61 158 1 1 1 555 20AA152L030 5 1.3 115 5 49 1 1 170 20AA152L031 1 1 1.5 121 23 203 1 1 1 130 20AA152L051 NA 4 1.5 121 23 203 1 1 1 130					1		1	1	1		
200AA152L026 1 2.0 149 1 88 1 1 1 70 200AA152L027 54 2.4 132 173 507 1 1 1 165 200AA152L027 7 1.3 71 8 103 1 1 1 155 200A152L028 NA 7 1.3 71 8 103 1 1 1 155 200A152L029 15 1.4 144 61 158 1 1 1 555 200A152L030 5 1.3 115 5 49 1 1 1 170 200A152L031 1 1 1.5 92 4 51 1 1 1 85 200A152L050 NA 4 1.5 121 23 203 1 1 1 130 200A152L051 NA 1 1.3 148 3 66 1 1 1 130					•			•			
POAA152L027 54 2.4 132 173 507 1 1 1 165 POAA152L028 NA 7 1.3 71 8 103 1 1 1 155 POAA152L029 15 1.4 144 61 158 1 1 1 555 POAA152L030 5 1.3 115 5 49 1 1 1 170 POAA152L031 1 1 1.5 92 4 51 1 1 1 85 POAA152L050 NA 4 1.5 121 23 203 1 1 1 130											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					•			-			
DOAA152L029 15 1.4 144 61 158 1 1 1 555 DOAA152L030 5 1.3 115 5 49 1 1 1 170 DOAA152L031 V 1 1.5 92 4 51 1 1 1 85 DOAA152L050 N A 4 1.5 121 23 203 1 1 1 130 DOAA152L051 N A 1 1.3 148 3 66 1 1 1 130	20441521.028 4/0	7		71	8	103	1	1	1	155	
DOAA152L030 5 1.3 115 5 49 1 1 1 170 DOAA152L031 V 1 1.5 92 4 51 1 1 1 85 DOAA152L050 NA 4 1.5 121 23 203 1 1 1 130 DOAA152L051 NA 1 1.3 148 3 66 1 1 1 130								1			
DOAA152L031 1 1 5 92 4 51 1 1 1 85 DOAA152L050 N A 4 1.5 121 23 203 1 1 1 130 DOAA152L051 N A 1 1.3 148 3 66 1 1 1 130								1			
POAA152L050 N A 4 1.5 121 23 203 1 1 1 130 POAA152L051 N A 1 1.3 148 3 66 1 1 1 130											
POAA152L051 NA 1 1.3 148 3 66 1 1 1 130		-			•						
					···						
								<u>u</u> , p.			
								•			
					<u></u>		<u></u>				
		<u>. </u>					<u></u>	<u> </u>			<u> </u>
								<u> </u>			

COMP: KEEWATIN ENGINEERING PROJ: 152

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 ATTN: R.NICHOLS/D.MEHNER (604)980-5814 OR (604)988-4524

FILE NO: OS-0550-SJ4 DATE: 90/09/27 • SILT • (ACT:)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	HG PPB			
90-NN-152-L-500 BRITT	9	1.0	175	32	106	1	1	240			
							•	,			
	<u>.</u>										
								<u></u>			
				÷							
							<u> </u>				
						_				-	
									<u></u>		
· · · · ·											
						<u>, , , , , , , , , , , , , , , , , , , </u>					
	1										

APPENDIX XI

1

Britt Silt Sample Descriptions

Keewatin Engineering Inc.

1590 200	KEEWATIN E STREAM			ITS	Resu	lts P	lotted				.T.S.:) "[· · · · · · · · · · · · · · · · · · ·
			SEDI					STRE								
Sample Number	NOTES	Gravel	T			Organic	Bank				Celo- city	SPRING	DRY GULLY			
(<u>152</u> 1 <u>0</u> 20	dark hrenn silt	(RC	30	10				V	3m	£	ΗŢ			 		
AA 152	Perin deste line on pilt	20	50	30				~	5m	30	ΗТ					
<u>LO21</u> AA 152	-fore Prost acount	10	30	60	· · · ·			V	. 1 ~	30	112					
<u>14</u> 152	1365m	10	icC	30					2m	125	:			 		
LCZ3	16ECND			37.2												
NACE NOR														 		
11:52	1920 m RIGHT CK	12		': <i>C</i>							 			 		
131									2m	2	<u>(1917)</u>			 		
AA 192 152 LO27	date buienen alle	20	<u>4</u> C	40				V	10	30	×τŋ					
<u>152</u> 152 L029	Light-invenue		ЬĊ	30				V	Im	30	NCL					
174 NF 152 NF	1520m dry led light and land	10	30	60									V	 		

ect: a (Grid):	Ascot # 152 STREAM					its Pi :							- <u></u>			
lectors:_					•	:		4 <u>va</u>	ust	/	990)			<u> </u>	
			SEDIMEN				STREAM DA					<u>u</u>	~			
umber	NOTES	Gravel	Sand	Silt	Clay	Organio	Bank	Active	Width	Depth	Ceto- city	SPRING	GULLY			
3	Elev 1530m Blans to 230°. Les hand fork		50	50				>	200	55	<u>H;</u>					
)14	BRIT. Lef - hand in of which cannot	80	 	20				>	100	2	100					
<u>•</u> Pt			 ==													
15 λρ	Eley 1780m Jught hand hold	30		70					100	1	<i>H</i> ;					
15 N.P	Elev. 1780 le Et hand Mike		<u>ч</u> о	60				>	200	5	H;					
*	Elev 12/20 point and rais	50	30	20				V	300	15	Hi					
	ray 1-60 - 10 Di siyan tan late	20		30	L ,			~	105	60	1 rd					
3	Elev 1242m (var Contraction		50	50	 				100	3	4;					
														<u> </u>		
														·		
							-									\square

	Ascot #152 KEEWATIN E STREAM			ERII ITS	NG	INĊ.	lotted			Ď	M						
	n U Ava																
Area (Grid):	Dave Mahner Kurt Causs, They Sheribal				мар	:			<u>A</u>	N	.1:5.: 10					•	
Collectors:_	Dave Manner Cur Juss, 110 Stantest	8			_		-					<u> </u>	1				
Comple										ATA		Ş	>				
Sample	NOTES	Gravel	Sand	Silt	Clay	Organic	Bank	ctiv	2 E E E E E E	Depth	elo- t V	BR	DAY GULLY				
Number 10 AA 152	L	U	ů	ŝ	ΰ	0	8	<	<u>~</u> <u>-</u>	~_	ט <	N N	00			_	
003																	
	PRII																
											_						
004					<u> </u>		ļ										
	· · · · · · · · · · · · · · · · · · ·	<u> </u>							ļ								
		ļ					<u> </u>										
005		ļ										 					
		 															
		ļ							<u> </u>			<u> </u>					
006 NR											·						
NA																	
		1								<u> </u>							
~ 7		 			<u> </u>												
PAR A													╏╴╴┨				<u></u>
						<u> </u>					'					=+	
DOR NA	· · · · · · · · · · · · · · · · · · ·			•						<u> </u>							<u> </u>
pire								- <u></u> -									
୦୬୩											<u> </u>				+	+	
0.99																	
010	Elev 1520 m - Elimina martin		40	30	30			1.1	190	50	41	••••••••••••••••••••••••••••••••••••••			-		<u></u>
4 . I					[
3RIT																	
011	Elev 1390m. Color, Daily grou			100				V	100	35	H:						
3711	Ving Con also at sille Lab boundary						,										
3717	NE MARTIN NE																
212	Fler 1530 Lib to main this Anna Land	4.7		$Q_{\rm C}$		27		V	100	1.7	14						
217	trib Class 12 100										1						

APPENDIX XII

Britt Rock Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGINEERING PRCJ: 152

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0527-RJ1+2 DATE: 90/09/22 * ROCK * (ACT:F31)

IN: R.NICHULS/D.MEHNE	ĸ		(804)9	00-2014 0	K (004)90	6-4724				ROCK	(ACT.F.
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90 BR 152R-001 BPITT 90 BR 152R-002 BRITT 90 BR 152R-003 BRITT 90 DR 152R-003 BRITT 90 DO 152R-007 T.PK 90 DO 152R-008 T.PK.	40 5 6 2000 255	4.6 1.9 1.9 9.2 2.5	1926 987 132 8660 1003	31 6 14 33 17	27 97 46 144 29	49 1 1 2295 175	8 1 1 25 5	1 1 1 78 3	245 115 440 240 60		
90 U 152R-082 NA 90 U 152R-083 BEITT 90 F 152R-085 BEITT 90 NN 152R-200 BEITT 90 152 R29201	15 10 2 1 3	106.8 2.1 3.8 .9 1.3	33382 514 692 1249 127	51 184 9 20 10	80 112 91 53 47	1 1 1 1 1	28 1 1 1 1	2 1 1 1 1	155 385 120 85 65		•
90 152 R29202 90 152 R29203 90 152 R29203 90 152 R29204 90 152 R29205 90 152 R29206	9 8700 252 47 12	1.1 9.6 2.1 .9 .7	319 36698 4974 411 265	26 48 23 22 16	30 17 27 51 52	1 1 1 1 1	1 41 1 1 1	1 1 1 1 1	85 25 65 75 65		
90 152 R29207 90 152 R29208 90 152 R29209 90 152 R29210 90 152 R29211	4 27 2 5 3	1.0 2.6 2.0 1.5 1.5	133 5987 3212 156 117	22 36 22 29 31	52 50 59 28 41	1 7 6 2 23	1 10 4 2 1	1 1 1 2 1	80 45 55 140 210		
90 152 R29212 90 152 R29213 90 152 R29213 90 152 R29214 90 152 R29215 90 152 R29216	4 3 4 346 10	1.0 1.8 1.0 13.3 .6	70 139 109 26168 244	33 31 42 68 21	48 81 52 100 45	26 1 1 13 1	1 1 1 30 1	3 2 1 1 1	60 195 85 235 60		· · · · ·
90 152 R29217 90 152 R29218 90 152 R29218 90 152 R29219 90 152 R29220 90 152 R29221	2 2 1 3 2	1.0 .9 .6 .9 1.4	759 263 20 136 730	27 15 10 10 27	46 68 96 98 98	1 1 1 1 8	1 1 1 1 1	1 1 1 1 1	105 130 95 85 130		
90 152 R29222 90 152 R29223 90 152 R29223 90 152 R29224 90 152 R29225 90 152 R29226	1 5 1 2 1	1.1 1.7 1.4 1.2 1.3	132 921 80 274 66	22 29 27 31 33	56 87 34 49 32	1 15 19 8 32	1 1 1 1 1	1 1 1 1 1	145 245 65 105 120		
90 152 R29227 90 152 R29228 90 152 R29229 90 152 R29230 90 152 R29231	2 4 1 78 60	1.7 1.7 1.7 1.5 1.5	102 58 79 1418 1122	25 22 21 23 28	108 87 67 29 32	20 37 15 25 1	1 1 1 1 1	1 1 1 1 1	215 200 75 140 100		
90 152 R29232 90 152 R29233 90 152 R29234 90 152 R29234 90 152 R29235 90 152 R29236	3 1 730 1000 2200	1.2 1.5 7.9 1.6 2.6	237 64 18295 2341 3616	26 22 55 13 25	49 40 17 44 39	28 1 7 1 1	1 1 20 1 1	1 1 3 1 1	145 85 160 35 110		

APPENDIX XIII

Britt Rock Sample Descriptions

Keewatin Engineering Inc.

				ĸF	FW	۸τι	\ F	NGINEER	
	152 BRIT CLAI	<u>m5</u>						SAMPLES	Results Plotted By: M. BOBYN Map:
ectors:	M. BOBYN / G. N	IAGY			•				Date: SEFT. 14 1990 Surface Underground
			SAM	IPLE TYPE (LENGTH)				ROCK	
UMBER	LOCATION NOTES	SAMPLE		CHIP	CHANNEL	CORE	FLOAT	TYPE	SAMPLE DESCRIPTION
: =152 R	5260'; 190° to Creek		~					Silicified	Fig. light grey wix; greenion black Forslighty
<u></u>	Y across Quesh Creek							Andrester Tutf	Fig. light grey Wix; greenion black For Slightly cilicified; Norrow calcite tension gaskes 1-3 mm width - crosscutting, 2% Py
·									
	4970; Chute of N facing		1					Silicified	
200	slope into mein tris							Andesite	Small angular boulder 30cm diam
	of Quash Freek				ļ				1-2% Cay blebs; 2 2% Py
• <u></u>							+		
							1		
							+		
·				+	+		+		
			+	1.	+	+	+		
			<u> </u>	1	1		1		
						ľ			
			_	<u> </u>					
						_			
				+	+				
	· · · · · · · · · · · · · · · · · · ·			+	+				
				-	+		+		

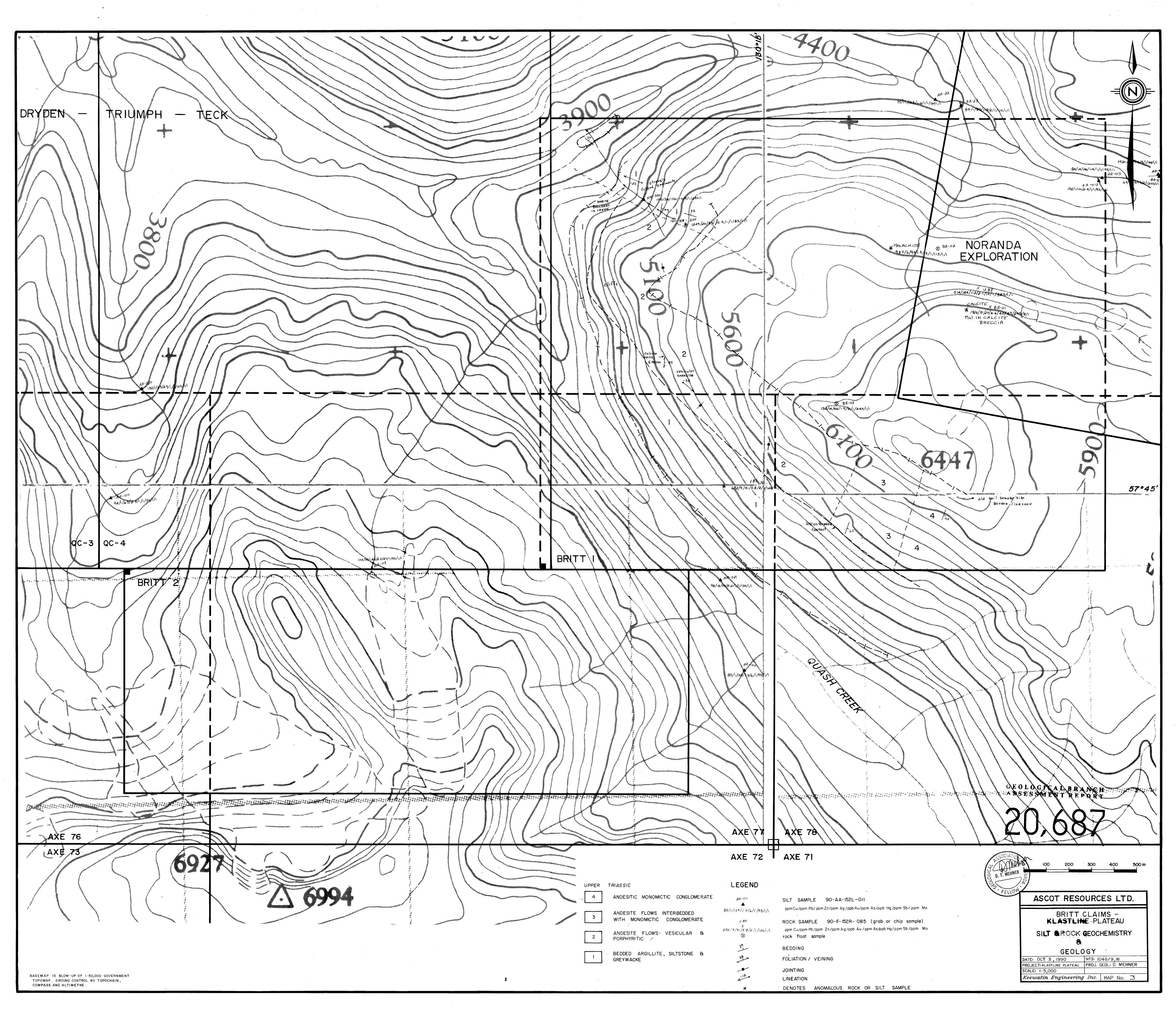
•

APPENDIX XIV

Statement of Qualifications

Keewatin Engineering Inc.

STATEMENT OF QUALIFICATIONS

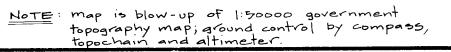

I, DAVID T. MEHNER, of 333 Scenic Drive, in the Municipality of Coldstream, in the Province of British Columbia, do hereby certify that:

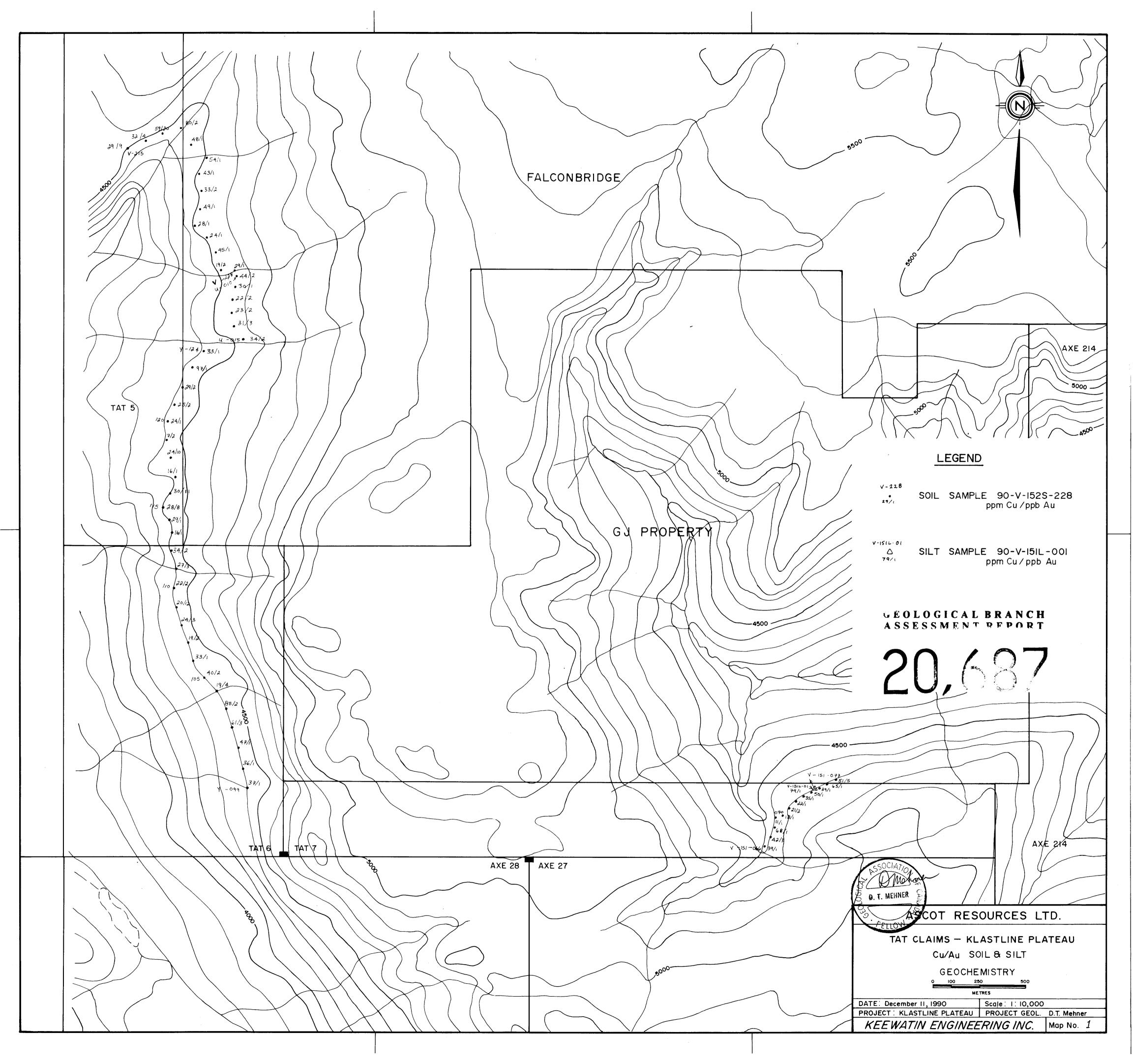

- 1. I am a Consulting Geologist with Keewatin Engineering Inc., with offices at 800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I am a graduate of the University of Manitoba, B.Sc. Honours, 1976, M.Sc. Geology, 1982.
- 3. I have practised my profession continuously since 1979.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. During the period of June to October, 1990, I managed and carried out the exploration program on the Britt 1 & 2, Tuk and Tat claims near Kinaskan Lake on behalf of Ascot Resources Ltd.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the properties described herein, nor in the securities of Ascot Resources Ltd. in respect of services rendered in the preparation of this report.

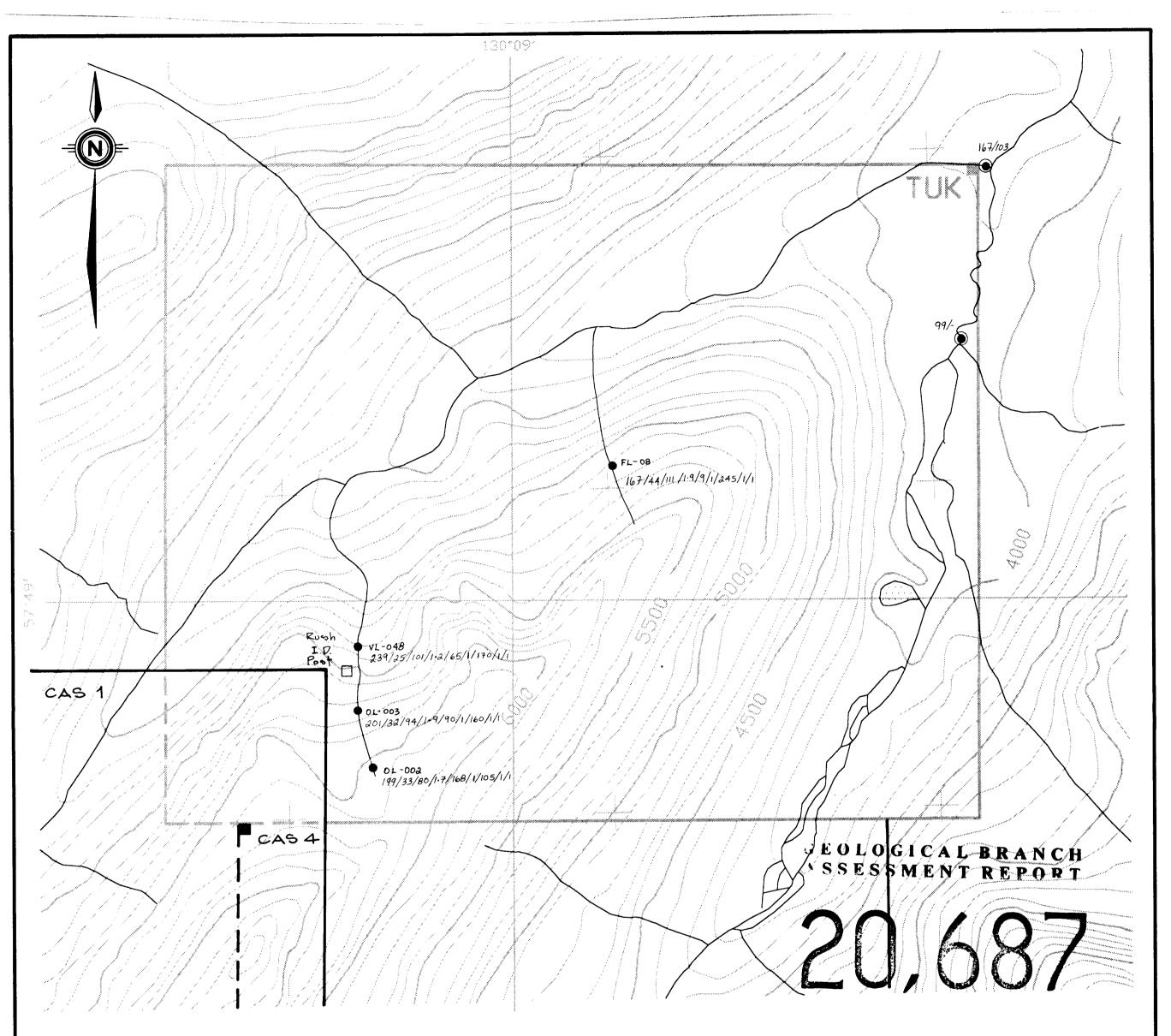
Dated at Vancouver, British Columbia, this <u>17th</u> day of <u>December</u>, A.D. 1990.

Respectfully submitted,

MEHNER David T Mehner, M.Sc., FGAC FELLOW



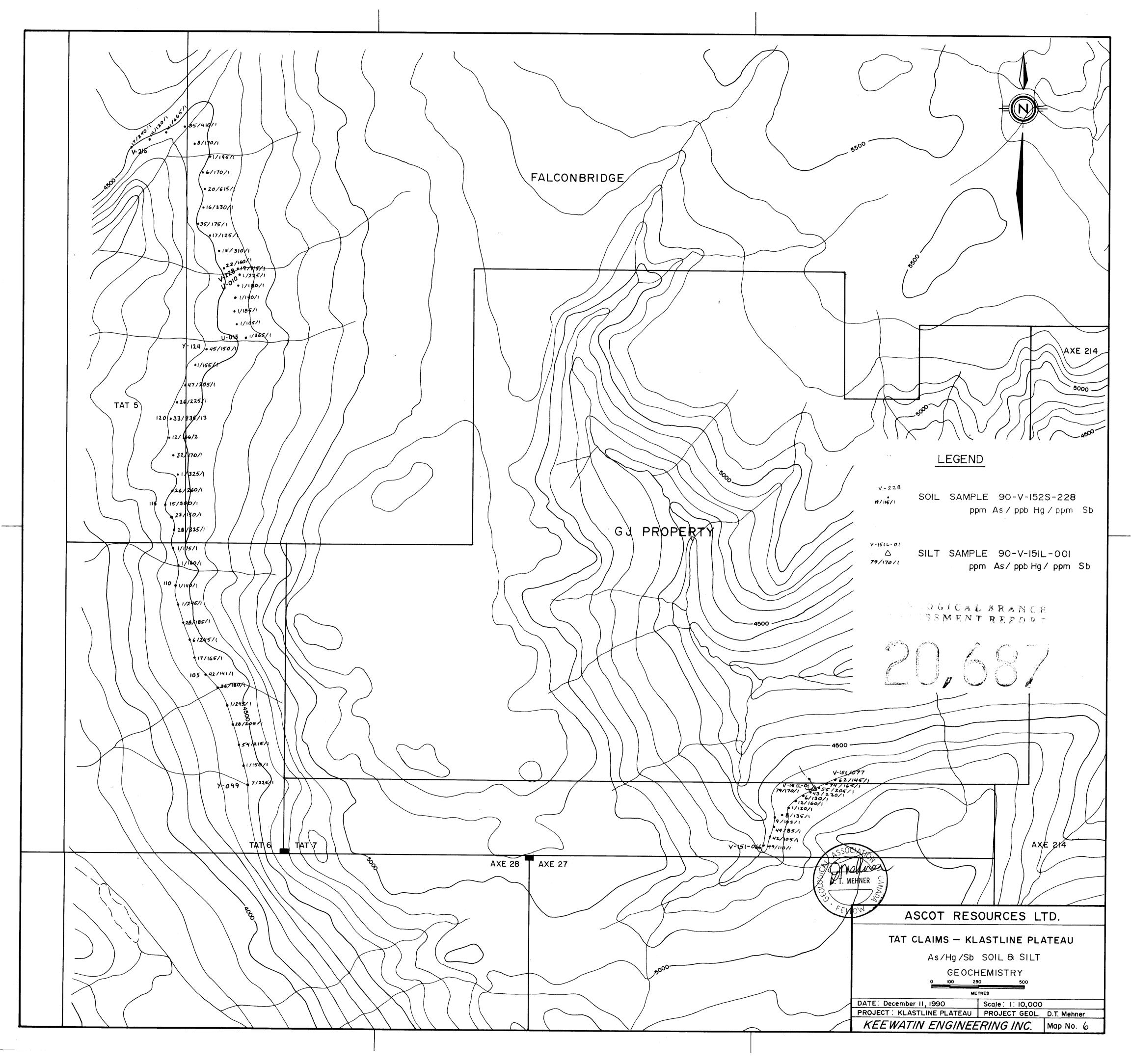


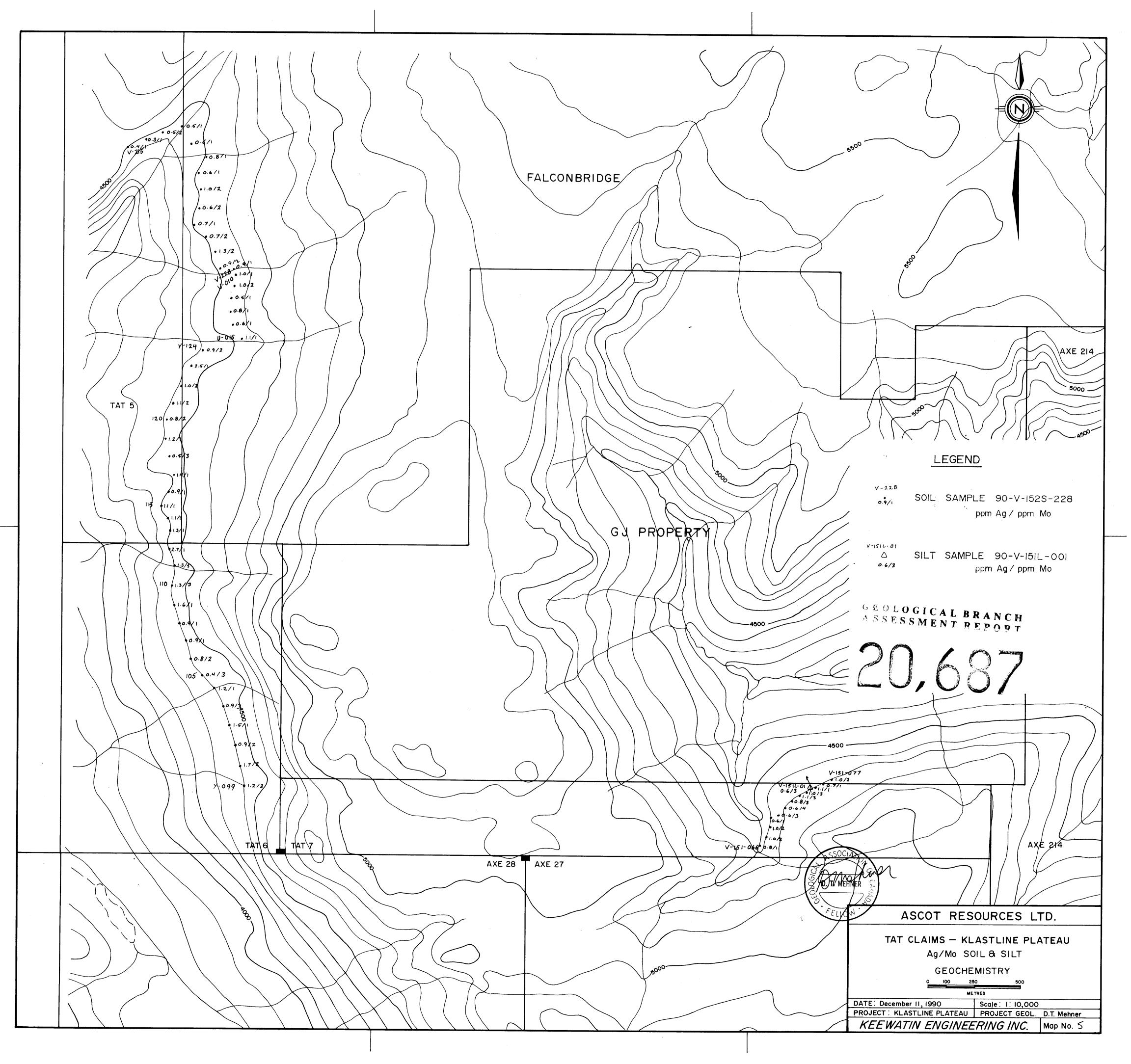


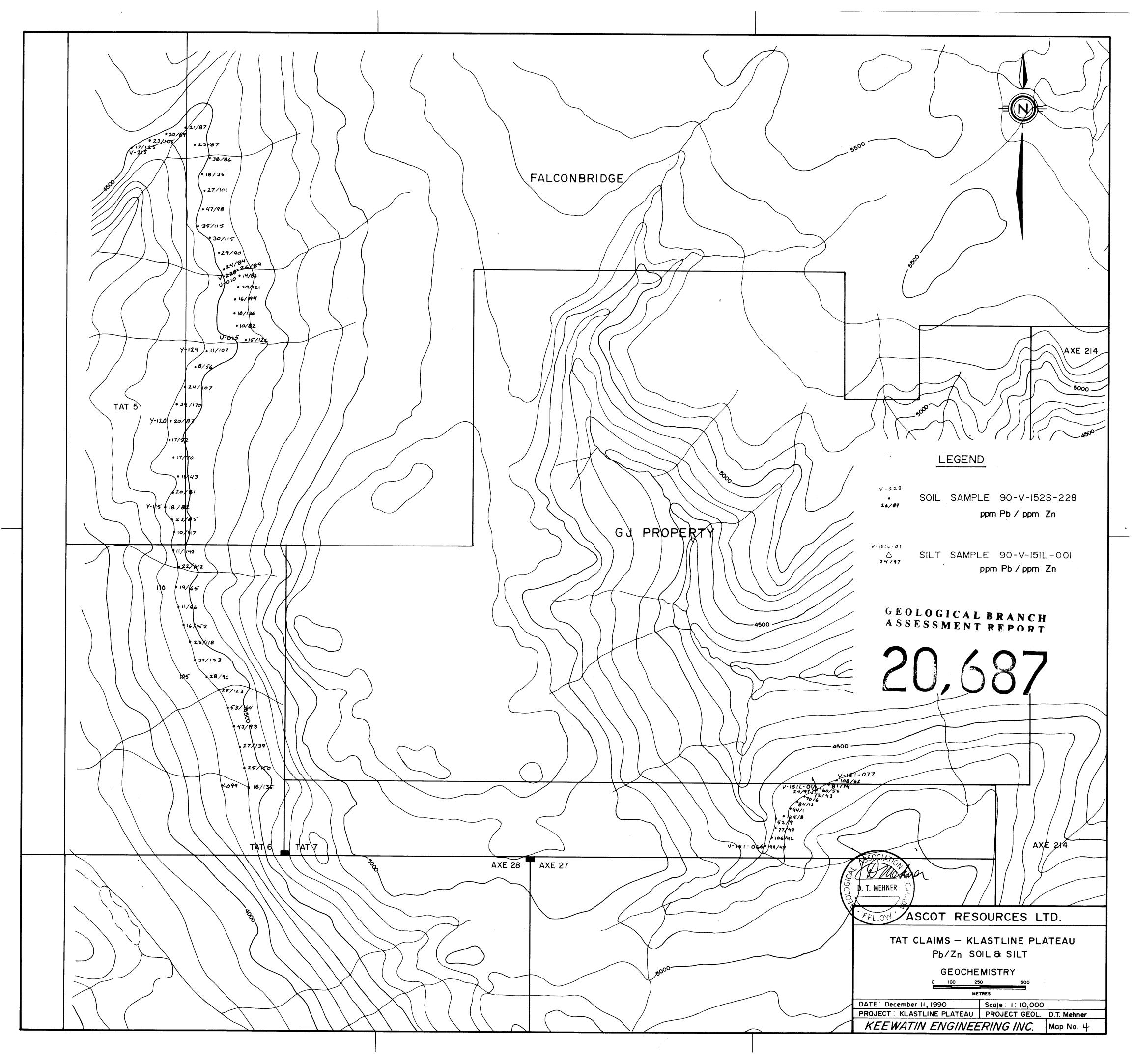
EXPLANATION

Silt sample 90-V-152L-048 ۲ VL-048

 \bigcirc


Geochemistry Results


239/25/101/12/65/1/170/1/1 cu/ Pb/Zn/Ag/Au/As/Hg/Sb/Mo Au and Hg values in ppb; remaining results in ppm.


GSC Reconnaissance Geochemical Gurvey. Anomalous, cu-Au values From 1988, Map sheet 10Arg. 199/103 PPM Cu/ PPB Au

NOTE: Map is blow-up of 1:50000 govern topography map; ground control by compass, topochain and altimeter

SOCIATION A	0 200 400 600 800 1000m
FELLOW	ASCOT RESOURCES LTD.
FELLOW	TUK CLAIM / KLASTLINE PLATEAU
	SILT GEOCHEMISTRY
	DATE: DCT 30, 1990 NTS: 104G/16E
government	PROJECTIKLASTLINE PLATEAU BYI D. MEHNER
rol by imeter.	Keewatin Engineering Inc. MAP No. 7

