LOG NO: 12-31	RD.
ACTION:	
FILE NO:	

ASSESSMENT REPORT

ON GEOLOGICAL MAPPING AND SOIL SAMPLING

OF THE AXE CLAIMS SOUTH BLOCK

(AXE 1, 5, 6 CLAIMS)

Liard Mining Division, British Columbia NTS 104G/9W Latitude 57° 36' N Longitude 130° 13' W

for

ASCOT RESOURCES LTD. Vancouver, B.C.

H F U A ZO **22** 22 22 < Z C B 2 1 5 0 0 して 0.0 5 **O** ----

6

by

David T. Mehner, M.Sc., FGAC **KEEWATIN ENGINEERING INC.** #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

December 10, 1990

TABLE OF CONTENTS

Page No.

SUMMARY	1
LOCATION	1
Location and Access	2
Topography	2
Property and Ownership	2
Previous Work	3
GEOLOGY	3
Regional Geology	3
Property Geology	4
GEOCHEMISTRY	5
Stream Silt Sampling	5
Soil Sampling	5
Rock Sampling	8
CONCLUSIONS	8
REFERENCES	9

•

LIST OF FIGURES

Following Page No.

Figure 1.	Location Map
Figure 2.	Regional Location Map
Figure 3.	Axe Claim Map
Figure 4.	Regional Geology/Bowser Basin
Figure 5.	Regional Geology

LIST OF MAPS

Map 1.	Geology and Rock Geochemistry	In Pocket
Map 2.	Cu-Au Silt and Soil Geochemistry	
Map 3.	Ag-Mo Silt and Soil Geochemistry	Ħ
Map 4.	Pb-Zn Silt and Soil Geochemistry	"
Map 5.	As-Hg-Sb Silt and Soil Geochemistry	Ħ

LIST OF APPENDICES

APPENDIX A	Statement of Expenditures
	oracement of Expenditures

- APPENDIX B Summary of Personnel
- APPENDIX C Analytical Procedures Used by Min-En Laboratories Ltd.
- APPENDIX D Soil Geochemistry Results for Axe Claims, South Block
- APPENDIX E Soil Sample Descriptions
- APPENDIX F Rock Geochemistry Results for Axe Claims, South Block
- APPENDIX G Rock Sample Descriptions
- APPENDIX H Statement of Qualifications

INTRODUCTION

The Axe claims are located on the Klastline Plateau within the Stikine Arch of northwestern British Columbia. They were originally staked to cover ground thought to have excellent potential for hosting porphyry Cu-Au mineralization or precious metal rich veins which commonly occur peripheral to these deposits.

Initial exploration carried out on the property in 1989 was limited to stream silt sampling, prospecting and rock sampling. This work identified an anomalous drainage related to a diorite plug where elevated Cu, Au, Ag and Zn values were obtained in silt, soil and rock samples. A second drainage 2 km to the west yielded elevated Au, Ag and Zn values in silts and soils.

In 1990, Keewatin Engineering Inc. was contracted by Ascot Resources Ltd. to carry out further exploration on the two target areas identified from 1989 work and further evaluate the property for Cu-Au mineralization. Field work was carried out from a camp established on the Klastline Plateau 1.0 km north of the property.

Location and Access

The Axe claims are located in the Stikine region of northwestern British Columbia approximately 180 km north of Stewart, B.C. (Figure 1). They are centred 4 km west of Kinaskan Lake and 31 km southwest of Iskut Village at about 57° 36' North latitude and 130° 13' West longitude on NTS map sheet 104G/9E (Figure 2).

Access is via helicopter from Tatogga Lake Lodge, a resort located 15 km south of Iskut Village and 18 km northeast of the property. Both the lodge and Iskut Village are situated on the Stewart-Cassiar Highway. The proposed B.C. Rail extension to Dease Lake is about 32 km east of Kinaskan Lake.

<u>Topography</u>

The axe claims are situated on the south edge of the Klastline Plateau and are characterized by steep, south facing slopes. Elevations vary from 3,400 feet above sea level on the southeast corner of the claims to 5,400 feet above sea level along the Plateau (Map 1).

Vegetation consists of swamp grass in the low areas with spruce and pine common elsewhere. Sub-alpine scrub meanders through the property at about the 4,300 foot level. The tree line is about 4,500 feet above sea level.

Precipitation is moderate, averaging 100 cm per year. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

Property and Ownership

The Axe claims are located in the Liard Mining Division (Figure 3) and consist of the following:

	n			
	кесога	140.01		
Claim Name	I NO.	linits	Date Kecorded	in the Date
A wa 1	5202	20	Samtam has 26 1000	Contombor 26 1001*
	3303	20	September 20, 1988	September 20, 1991 ·
· -		• •		
Axe 5	1 5387	20	September 26, 1988	I Sentember 26, 1991≢ I
	5501	=0	Deptember =0, 1900	00ptomoor =0, 1991
Awa 6	5200	20	Contom hon 26 1000	Contombor 26 1001*
	2200	20	3eptember 20, 1988	Schremner 70, 1991.
	I			

* Due date after filing this report.

The claims are owned 100% by Ascot Resources Ltd. with offices at 800 - 900 West Hastings Street, Vancouver, B.C. V6C 1E5.

Previous Work

No mineral showings are known to exist on the claims discussed in this report nor is there any record of exploration work having taken place on them.

The GJ, Cu-Au porphyry deposit is located on the Klastline Plateau, about 5.5 km north of the Ascot claims. Although insufficient drilling has taken place to put firm numbers on grade or tonnage, there are strong indications that the deposit contains in excess of 30 million tons grading 0.30% Cu equivalent or better with mineralization open in all directions. This deposit was initially discovered by Conwest Exploration in 1964. Since then, Amoco, Norcen Energy and Canorex Minerals have all worked on the property. The ground is now owned by International Curator

CLAIM MAP

Resources Ltd. of Vancouver and is under option to Ascot Resources Ltd. Work and results from this property in 1990 are discussed in a separate report.

Immediately west of the GJ deposit is Falconbridge Ltd.'s Groat Creek porphyry copper prospect. Work on this property was carried on between 1976 and 1977.

In 1988, the Klastline Plateau and area including the Axe south block of claims was covered by a regional stream silt sampling program (National Geochemical Reconnaissance, 1988).

GEOLOGY

Regional Geology

The Axe property is located on the southwest portion of the Klastline Plateau within the Intermontane-Tectono-Stratigraphic Belt of the Canadian Cordillera (Figure 4). The claims lie within the northeast half of the Stikine Arch near the contact with the unmetamorphosed sediments of the Bowser Basin.

The northern half of the Klastline Plateau (Figure 5) has been mapped as Upper Triassic augite-andesite flows, pyroclastics and derived volcaniclastics ranging from conglomerates down to siltstones (Souther, 1971). Minor limestone and chert occur within the stratigraphy. Related coeval intrusives cut all rock types. A regional fault trending northeasterly passes through the centre of Kakiddi Lake and intersects the Iskut Valley fault zone at the north end of Kinaskan Lake. To the south of the fault the G.S.C. mapped the rocks as a downthrown sequence of Middle Jurassic basalt pillow lavas, fragmentals and proximal volcaniclastic rocks intruded by coeval plutons. Subsequent K-Ar and Rb-Sr age dating (Schmitt, 1977) has yielded intrusive ages of 185 to 195 million years for the intrusive rocks south of the fault, suggesting the volcanic rocks are similar in age to the Upper Triassic stratigraphy north of the fault.

South of the volcanic units are chert pebble conglomerate, grit, greywacke and siltstone of the Middle to Upper Jurassic Bowser Group.

Capping Upper Triassic stratigraphy on the southern portion of the Plateau are Upper Tertiary basalt and olivine basalt flows. These often exhibit excellent columnar jointing.

Property Geology

Preliminary mapping in 1989 indicated the Axe 1, 5 and 6 claims are underlain by Upper Triassic basalt flows interlayered with clastic sediments. A small diorite plug, likely Upper Triassic in age, cuts the flows and sediments. Bowser Group sediments occur to the south and Upper Tertiary basalt flows unconformably overlie all units.

Follow-up mapping by Jason Miller in 1990 revised the geology of the claims (Map 1) by changing contacts and eliminating the diorite unit. The new interpretation has Upper Triassic clastics consisting of interbedded siltstone, greywacke, grit and polymictic conglomerate being interlayed with similar age augite basalt porphyry and andesite porphyry flows. Unconformably overlying these rocks are shale, siltstone, grit and greywacke of the Middle to Upper Jurassic, Bowser Group. Unconformably overlying all units are Upper Tertiary basalt and olivine basalt flows.

Mineralization

Observed mineralization within the property is restricted to local disseminated pyrite measuring less than 1% within sedimentary units. Near contacts with the Triassic flows and where faults were observed, very weak and local pyrite fracture filling and disseminated pyrite can be found.

Weak limonite fracture coating occurs within the Triassic and Jurassic flows and sediments.

Alteration

Upper Triassic rocks have been subjected to low grade regional metamorphism with minor calcite fracture filling being the extent of alteration.

The overlying Bowser assemblage appears unmetamorphosed and undeformed.

Structure

Two major angular unconformities occur on the property. The older one separates Upper Triassic Stratigraphy from Middle to Upper Jurassic, Bowser Group rocks. The younger unconformity separates Tertiary flows from all underlying lithologies.

Within the Triassic rocks, bedding generally strikes east to east-southeast with southerly dips of 30° to 55°. Two small shears cut the sediments and flows at east-west and northeast-southwest orientations.

GEOCHEMISTRY

Sampling

During the 1990 field season, 44 soil and 7 rock samples were collected from the property. Soils were taken at 100 metre and 50 metre intervals along flagged contour lines with a mattock and collected in brown, kraft sample bags. Rock samples include grabs and chips from prospective looking material within the claims.

<u>Analysis</u>

All samples were sent to Min-En Laboratories Ltd. in Smithers, B.C. where they were processed and analyzed for gold. Pulps were forwarded to Min-En Laboratories in Vancouver, B.C. for 7 element ICP plus Hg analysis.

Analytical procedures used by Min-En are outlined in Appendix C. Soil geochemistry results are listed in Appendix D and sample descriptions are in Appendix E. Sample locations and results are plotted on Maps 2 to 5. Rock geochemistry results are listed in Appendix F and sample locations are shown on Map 1. Descriptions are in Appendix G.

<u>Results</u>

<u>Soils</u>

Soil geochemistry results are relatively low for all elements analyzed and although some elevated Zn and Mo values were obtained, no significant soil anomalies were identified. A more complete summary of results is as follows:

Copper: (Map 2)	Range 15-96 ppm
Lead: (Map 4)	Range 6 - 36 ppm
Zinc: (Map 4)	Range 21 to 978 ppm; three samples in a row had elevated

5

	values of 451 to 978 ppm.
Silver: (Map 3)	Range 0.10 to 1.7 ppm
Gold: (Map 2)	Range 1 to 22 ppb
Arsenic: (Map 5)	Range 1 to 23 ppm
Mercury; (Map 5)	Range 45 to 510 ppb
Antimony: (Map 5)	Range 1 to 5 ppm; only two samples had values >1 ppm
Molybdenum: (Map 3)	Range 1 to 63 ppm; the same three soils that yield anomalous
	zinc are also anomalous in molybdenum.

6

<u>Rocks</u>

Geochemistry results are quite low for all elements analyzed from six of the rocks collected. The seventh sample, number 90-0-152R-049 yielded elevated Ag (3.2 ppm), Au (142 ppb) and As (1,921 ppm) values. Ore grade values were not obtained from any specimens. A summary of results is as follows:

Copper:	Range 5 - 96 ppm
Lead:	Range 5 - 72 ppm
Zinc:	Range 6 - 246 ppm
Silver:	Range 0.1 - 3.2 ppm
Gold:	Range 1 - 142 ppb
Arsenic:	Range 1 - 1,921 ppm
Mercury:	Range 175 - 730 ppb
Antimony:	Range 1 - 14 ppm
Molybdenum:	Range 1 - 4 ppm

CONCLUSIONS

Follow-up exploration work carried out in 1990 failed to identify any base or precious metal mineralization on the property nor did it identify any altered zones which could lead to locating mineralized centres on the property.

RECOMMENDATIONS

No further work is recommended for the Axe 1, 5 and 6 minerals claims.

Respectfully submitted,

David T. Mehner, M.Sc., FGAČ

REFERENCES

- Forsythe, J.R., Peatfield, G.R., Gasteiger, W.A. and Donnelly, D.A. 1977. Report on Geochemical and Geophysical Surveys, Diamond Drilling and Supporting Work on the Groat Creek Claims, Liard Mining Division. B.C. Dept. of Mines and Petroleum Resources, Assessment Report 6541.
- McInnes, M.D. 1981. Drilling Report on the GJ and Spike 1 and 2 Claims. B.C. Department of Mines and Petroleum Resources, Assessment Report 9773.
- Mehner, D.T. 1989. Assessment Report on Geological Mapping, Prospecting and Stream Silt Sampling of the Axe Claims South Block, Liard Mining Division, B.C.
- National Geochemical Reconnaissance, 1:250,000 Map Series, 1988. Geological Survey of Canada, Open File.
- Nichols, R.F. 1989. Geological Report on the GJ Property, Liard Mining Division. Unpublished Company Report for Ascot Resources Ltd.
- Panteleyev, A. 1977. Red-Chris Deposit (104H/12W) in Geology in British Columbia, 1976. British Columbia Department of Mines and Petroleum Resources, Victoria, pp. 125-127.
- Schmitt, H.R. 1977. A Triassic-Jurassic Granodiorite Monzodiorite Pluton South-East of Telegraph Creek, B.C. Unpublished B.Sc. Thesis, University of British Columbia, Vancouver, 91 pp.
- Souther, J.G. 1971. Telegraph Creek Map-area, British Columbia. Geological Survey of Canada, Paper 71-44.

APPENDIX A

Statement of Expenditures

STATEMENT OF EXPENDITURES

For work on the Axe 1, 5, and 6 Claims

<u>Salaries</u>

David Mehner, Senior Geologist	1.5	days @ \$400/day	\$ 600.00	
Jason Miller, Geologist	3.0	days @ \$275/day	825.00	
Keith Louis, Sampler	1.0	days @ \$175/day	175.00	
Trevor Shepard, Sampler	1.0	days @ \$175/day	175.00	
Newton Carlick, Sampler	1.0	days @ \$175/day	175.00	
Verna Jordan, Cook/First Aid	2.0	days @ \$250/day	500.00	
				\$ 2,450.00
Accommodation and Food	9.5	man days @ \$60/da	у	570.00
<u>Equipment Use</u>	9.5	man days @ \$15/da	у	142.50
Helicopter (including fuel)	0.4	hours @ \$670/hour		268.00 •
Motorbikes (including fuel)	2.0	days @ \$50/day		100.00*
<u>Geochemistry</u>				
Soil samples (includes sample preparation, A 7 element ICP)	44 u fire	samples @ \$10.00 es geochem, Hg analysi	ach \$ 440.00 s and	
Rock samples (includes analysis similar to abo	7 ve)	samples @ \$12.50 ea	ach <u>87.50</u>	527.50*
Camp Construction & Maintenance				
Pro-rated share based on projects	s work	ed from camp		802.50
Freight and Miscellaneous				150.00*
Report Writing Costs				
D. Mehner Typing, drafting, blueprints, bin	1.5 ding, e	days @ \$400/day etc.	\$ 600.00 <u>500.00</u>	
				1,100.00
			Sub-Total:	\$ 6,110.50
Handling Fee - 10% on 3rd Party Invoice	es by I	Keewatin Engineerin	g Inc.	
(denoted by *)				104.55
		TOTAL EXPEN	DITURES:	<u>\$ 6,215.05</u>

APPENDIX B

Summary of Personnel

Keewatin Engineering Inc.

•

SUMMARY OF PERSONNEL

<u>Name</u>	<u>Position</u>	Sampler <u>Code</u>	Dates Worked
David Mehner	Senior Geologist	"AA"	August 9; September 5, 9, 10
Jason Miller	Geologist	"O"	August 9, 18; September 5
Keith Louis	Sampler	"CL"	September 5
Trevor Shepard	Sampler	۳V ⁿ	August 9
Newton Carlick	Sampler		August 9
Verna Jordan	Cook/1st Aid Attendant		August 9; September 5

.

APPENDIX C

Analytical Procedures Used by Min-En Laboratories

ANALYTICAL PROCEDURES USED BY MIN-EN LABORATORIES

<u>Hg Analysis</u>

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, B.C., employing the following procedures.

After drying the samples @ 30°C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for two hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable dilutions made if necessary.

ICP Analysis for Cu, Pb, Zn, Ag, As, Sb, Mo

After drying the samples at 95°C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for two hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

Au Fire Geochem

A suitable sample weight; 15.00 or 30.00 grams is fire assay pre-concentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

APPENDIX D

Soil Geochemistry Results for the Axe Claims, South Block

2

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICHOLS/D.MEHNER .

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: DS-0500-SJ4 DATE: 90/09/21 * SOIL * (ACT:F31)

~ [SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
Ş	90CL 152 S 220 90CL 152 S 221 90CL 152 S 222 90CL 152 S 223 90CL 152 S 224	1 2 3 2 2	.2 .9 .4 1.2 .7	24 39 43 47 24	20 10 18 8 15	131 83 104 95 77	1 1 1 1 1	1 1 1 1	1 1 1 1 1	120 180 75 135 120	_	
									·			
				<u></u>		-						
										<u> </u>		
				<u></u>								
										<u> </u>		
	· · · · · · · · · · · · · · · · · · ·						·					
											. <u></u>	
									-			

COMP: KEEWATIN ENGINEERING

PROJ: 152

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0S-0500-SJ2+ DATE: 90/09/2

* SOIL * (ACT:F31

TTN: R.NICHOLS/D.MEHNER			(604)9	80-5814 0	R (604)98	8-4524			* \$011	*	(ACT:F3
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90CL 152 VS 500	1	.9	122	7	142	1	1	1	85		
90CL 152 VS 501	2	1.1	195	37	134	1	1	1	125		
90CL 152 VS 502	2	2.6	65	6	87	1	1	1	45		
90CL 152 VS 503	4	1.7	158	11	122	1	1	1	105		
90CL 132 VS 304	<u> </u>		109	13					0		
90CL 152 VS 505	1	.4	66	6	92	1	1	1	80		
90CL 152 VS 506	16	.4	547	15	ده ۲۲	1	1	1	67 55		
90CL 152 VS 508	40 R	.4	126	10	90	1	1	1	40		
90CL 152 VS 509	3	.1	146	19	85	1	1	1	60		
90CL 152 VS 510	2	1.1	126	6	101	1	1	1	55		
90CL 152 VS 511	29	.4	177	16	131	1	1	1	60		
90CL 152 VS 512	1	.8	233	17	110	1	1	1	85		
90CL 152 VS 513	1	.3	352	18	117·	1	1	1	60		
90CL 152 VS 514	1	.5	157	16	50	1	1	1	75		
90CL 152 VS 515	2	.1	167	15	66	1	1	1	70		
90CL 152 VS 516	5	.2	106	16	60	1	1	1	50		
90CL 152 VS 517	1	.2	130	6	60	1	1	1	90 50		
90CL 152 VS 518	2	3 1	184	20	45	1	1	1	50		
	·		477			·					
90CL 152 VS 520	3	./	170	10	/5 97	1	1	1	55		
90CL 152 VS 521	3	.4	130	16	60	1	1	1	55		
90CL 152 VS 523	2	1.3	130	10	87	1	1	1	65		
90CL 152 VS 524	1	2.0	61	6	93	1	1	1	90		
90CL 152 VS 525	1	1.2	126	7	85	1	1	1	75		
90CL 152 VS 526	1	1.6	199	6	110	1	1	1	80		
90CL 152 VS 527	2	2.3	104	6	91	1	1	1	90		
90CL 152 VS 528	2	1.5	100	8	87	1	1	1	100		
90CL 152 VS 529	1	.8	169	6	76	1	1	1	80		
90CL 152 VS 530	2	.6	133	15	74	1	1	1	105		
90CL 152 VS 531	1	.7	106	21	81	1	1	1	135		
90CL 152 VS 552	1		129	دا ∡	00 8/	1	1	1	90		
90CL 152 VS 534	3	1.1	96	6	81	1	1	1	80		
00CL 152 VC 535			04	B		1		1	85		
90CL 152 VS 536	1	.0	97	6	90	1	1	1	60		
90CL 152 VS 537	ź	.6	113	13	87	1	1	1	85		
90CL 152 VS 538	4	.8	107	6	86	1	1	1	95		
90CL 152 VS 539	10	.8	109	6	101	1	1	1	80		
90CL 152 S 200	3	.9	27	17	133	1	1	1	75		
90CL 152 S 201	1	.5	26	10	113	1	1	1	90		
90CL 152 S 202	2	.5	31	15	124	1	1	2	85		
90CL 152 S 203	2	1.7	52 66	27	204	10	1	10	220		
0001 152 0 205				12	107				165		
90CL 152 S 205	12	.4	20 41	12	163	1	1	4	100 80		
90CL 152 S 207	2	.1	25	19	178	1	1	1	310		
90CL 152 S 208	4	.1	16	18	122	1	1	1	110		
90CL 152 S 209	1	.1	19	15	95	1	1	1	65		
90CL 152 S 210	1	1.7	77	6	92	1	1	1	55		
90CL 152 S 211	2	1.6	66	6	79	1	1	1	60		
90CL 152 S 212	3	.5	36	6	186	1	1	1	45		
90CL 152 S 213	2	1.1	58	21	162	1	1	1	75		
90CL 152 S 214	1	.5	29	9	106	1	1	1	100		
90CL 152 S 215	1	1.3	96	6	97	1	1	1	65		
90CL 152 S 216	1	.6	30	15	112	1	1	1	285		
YULL 152 S 21/	2	.5	44	21	451	1 77	1	14	500 510		
90CL 152 5 210	ו ג	15	7/.	32	710 K0/.	25 8	2 5	כט דד	410		
700L 1JE 3 617	ر ر	1.7	74	21	074	U	,		-10		

.

COMP: KEEWATIN ENGRG.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 0V-1210-SJ3+4+5 DATE: 90/08/29 • SOIL • (ACT:F31)

PROJ:	152
ATTN:	R.NICHOLS/M.BOBYN

(604)980-5814 OR (604)988-4524

	······										•
· .	SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
	90V152 \$ 159 90V152 \$ 160 90V152 \$ 161 90V152 \$ 161 90V152 \$ 162 90V152 \$ 163	106 600 182 117 70	1.9 1.6 4.6 2.2 1.4	616 482 2845 1147 503	6 11 23 8 8	51 58 229 49 64	22 10 29 23 28	1 1 3 1 1	2 4 6 6 2	95 100 125 80 85	
	90v152 s 164 90v152 s 165 90v152 s 166 90v152 s 166 90v152 s 167 90v152 s 168	169 158 24 56 23	1.8 2.6 1.5 1.9 1.5	1174 624 159 122 161	15 20 15 8 10	72 279 85 113 72	35 33 19 15 12	1 1 1 1 1	4 1 1 2 1	95 90 85 80 50	
	90v152 \$ 169 90v152 \$ 170 90v152 \$ 171 90v152 \$ 171 90v152 \$ 172 90v152 \$ 173	18 51 4 2 10	1.3 1.3 .9 1.2 1.4	116 107 88 239 209	8 <u>8</u> 10 8 5	76 123 104 68 63	21 23 1 22 1	1 1 1 1 1	1 3 2 1 2	60 105 100 65 55	
an " . Dhurganer its sea , sea .	90v152 \$ 174 90v152 \$ 175 90v152 \$ 175 90v152 \$ 176 90v152 \$ 177 90v152 \$ 178	3 8 1 46 128	1.4 .4 .9 1.3 1.0	152 199 255 330 2298	11 32 14 16 18	98 76 89 67 70	1 1 13 12 28	1 1 1 1 1	2 6 4 5 4	105 90 95 110 60	
	90V152 S 179 90V152 S 180 90V152 S 181 90V152 S 182 90V152 S 182 90V152 S 183	165 10 2 1 1	.9 .6 .9 .9 1.1	1159 204 177 239 198	17 14 22 9 8	56 65 65 59 64	18 4 1 4 6	1 1 1 1 1	11 5 7 6 4	65 75 90 55 105	 <u> </u>
	90V152 S 184 90V152 S 185 90V152 S 185 90V152 S 186 90V152 S 187 90V152 S 188	2 67 2 1 3	1.0 1.1 1.0 1.7 1.1	322 172 119 121 185	5 13 14 19 12	65 89 73 109 83	1 1 14 1 1	1 1 1 1 1	4 4 3 3	70 75 155 145 135	
	90V152 S 189 90V152 S 190 90V152 S 191 90V152 S 191 90V152 S 192 90V152 S 193	9 71 24 51 6	1.1 1.4 1.2 .6 .8	332 993 528 338 481	13 9 8 13 11	58 43 39 36 50	1.9 1 7 11 14	1 1 1 1 1	4 2 9 6 11	145 105 125 175 145	
	90v152 s 194 90v152 s 195 90v152 s 195 90v152 s 196 90v152 s 197 90v152 s 198	228 32 15 6 5	.3 1.1 1.4 .4 .8	798 827 793 32 25	18 21 21 16 17	51 45 48 133 93	1 3 1 1 13	1 1 1 1 1	12 38 37 1 2	105 120 100 95 135	
17 C- H)	90V152 S 199 90V152 S 200 90V152 S 201 90V152 S 202 90V152 S 202 90V152 S 203	2 1 6 1 4	.8 .5 .7 .4 .6	35 25 37 30 28	15 25 7 8 13	102 91 92 74 99	26 1 38 29 34	1 1 1 1 1	1 2 2 1 2	95 100 110 70 100	
NEW 7	90V152 S 204 90V152 S 205 90V152 S 206 90V152 S 207 90V152 S 208	2 6 1 2 1	.7 .9 .7 1.0 .8	50 36 69 56 18	19 12 13 7 11	135 132 113 67 58	15 21 23 24 15	1 1 1 1 1	3 2 2 1 2	90 100 85 105 80	
	90V152 S 209 90V152 S 210 90V152 S 211 90V152 S 212 90V152 S 213	1 2 2 1 1	.8 1.1 1.0 1.1 1.2	31 37 48 29 17	15 15 9 5 9	62 83 134 61 87	34 15 35 16 20	1 1 1 1 1	2 2 12 24 2	75 80 120 80 55	
	90v152 s 214	2	.6	25	12	150	1	1	6	70	-

APPENDIX E

Soil Sample Descriptions

Keewatin Engineering Inc.

•

KEEWATIN ENGINEERING INC.

Project:	ASCO	t South	SOIL SA	АМР	LES		Resu	ults I	Plot	ed B	v:			•	•						
Area (Grid)	•																				
Collectors	: JASON N	AILLER AND	KCLOUIE				Date	S	EDT	5	199	N	1, 1, 3,	, • 							
	Somple L	ocation		T٥	pogr	aphy			v	egeta	otlan			Soll Data							
Sample			Notes	tottom	of slope		round	Wooded	Wooded			P		S ampl ed	Horizon Die	Horizon	Develop - ment	Parent	Material		
Number Documents	FLEV Line	Station	•••	Vailey B	Orection o	HIII TOP	Level G	Heavily	Sporsely	Burnt	Logged	Grasslan	Swompy	Horlzon	Depth to Somp	Good	Poor	Dritt	Bedrock	Colour	
700	1240	0 top	20 SAND SOBNA FRAGS 30 ORGANICS		S					· · ·		•		A	10		1	r +	7	I.B.	
201	1340	0+50	20 SAND GOROUNDED FRAGS 20 CLAY		5		1	V		· ·				A	10	1	V		7	LR	
202	. 1340	1+00	50 SAND 30 ROUNDED FRAGE INSILT 10 ORGANICS		NE			V						B	20				V	LB	
203.	1340	1+50	100 ORGANIC		SE			V.			: :			A	95		V		7	BLAC	
204	1340	2+00	20 SAND 40 ANGULAR FRAG 40 ORGANICS		SE			V		ŀ				B	35		マ		∇	GREY	
205	1340	2+50	40 SAND 30 ANGULAR FRAGE 30 ORGANICS		E			V						B	45	·	∇		7	LB	
206	1340	3+00	600 SAND 10 SILT- 30 CLAY		NE			1		<u> </u>				A	50	V	1		$\overline{\mathcal{N}}$	PB	
207	1340	3+50	60 SANDIO ANGULAR ERACIS LOGRAVEL LOORG LOSILT		NE	1		11						B	55		V		V	DB	
208	1390	4100	605AND 105/14 20 ANGULA FRAGS 10 ORGANICS		SW			11						A	60	7				pe	
209	1340	4150	40 SANDIDSILT 40 ANG FRAGS 10 SILT 10 ORGANICS		S									R	45		V		マ	BL	
210	1340	5100	60 SAND LO SILT 30 ANGULAR FRASS		S									Ĥ	60		V		V	Df	
211	1340	5+50	50 SAND 10 SILT 40 ANGULAR FRAGS		SE					· .				A	45	•.	V		V	DB	
212	1340	6+00	60 SAND 10 SILT 30 ANGULAR FRAGS		Ş£		I					ŀ		A	35		V		7	DB	
213	1340	6150	80 ORGANICS 20 ANGULOR FRAGS	·	SE			<u>.</u>						B	30				1	DB	
214	1350	7+00	50 SAND 30 ORGANICS 20 ROUNDED FRAGE		E	ŀ.				T				A	30	17	T		7	LB	
215	1340	7+50	50 ORGANICS 50 ANGULAR FRAGS		E			1.						A	35		V		1	DR	
216	1260	8400	60 ORGANICS 10 SAND 30 ANGULAR FRAGS		SE			$\mathbf{\nabla}$						A	45		N		V	DE	
217	1260	8+50	50 DRGANICS 50 ANGULAR FRAGS		SE				·					A.	30		17	1	1	BU	
218	12.60	9400	TO GRAVEL 10 SAND 20 ORGANICS		S		ŀ	1						A	60		17	1	V	64	
219	1260	9150	20 SAND 10 GRAVEL 10 ORGANICS 60 ANG FRI	55	Sw			1				1		ß	45		V		V	LE	
220	12.60	10.100	BO ANGULAR FRAGS LOS AND LO ORGANICS		S			\bigvee						E	50		V		V	RU	
221	12.60	10+50	100 CLON		N			V.					V	B	50	∇	Τ.	1	V	GRE	
222	1260	11100	100 SAND 105:15 20 ANEWLAR FAIGIO ORG		N		1	V					∇	B	40		IV	1	V	LB	
223	12.60	11+50	BO SAND 20 SILL		N		1	TV	1	1		ŀ	<u> </u>	A	40]	V	1	Ń	BL	
224	12.60	12100	TO SAND LOSIET TO ANGULAP FRAG TO CLEY		N			V						n	40		-	<u> </u>	V		
	ļ		· · · · · · · · · · · · · · · · · · ·		1		<u> </u>		1	1	·										
1	1.			1	1	1	1	- F	1	1	1	1	1	1		1	1	1	1	1	

Name Note N.T.S.: Collectors: Traver Shaphard / Newton Carlick Note Name Nam Name <th colspa<="" th=""><th>Project:</th><th>Asu</th><th>st #15</th><th>2 Axe ool soils</th><th>GIN AMP</th><th>EE LES</th><th>RIN</th><th>IG Resu</th><th>INC ults </th><th>• Plotte</th><th>ed B</th><th>у:</th><th></th><th>T.S</th><th>•</th><th>•</th><th></th><th></th><th>-<u></u>, , , ,</th><th></th><th></th></th>	<th>Project:</th> <th>Asu</th> <th>st #15</th> <th>2 Axe ool soils</th> <th>GIN AMP</th> <th>EE LES</th> <th>RIN</th> <th>IG Resu</th> <th>INC ults </th> <th>• Plotte</th> <th>ed B</th> <th>у:</th> <th></th> <th>T.S</th> <th>•</th> <th>•</th> <th></th> <th></th> <th>-<u></u>, , , ,</th> <th></th> <th></th>	Project:	Asu	st #15	2 Axe ool soils	GIN AMP	EE LES	RIN	IG Resu	INC ults	• Plotte	ed B	у:		T.S	•	•			- <u></u> , , , ,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	rea (Grid)):						Map	:			۸.	N	T.S.	:							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Collectors	:	sation	A: availar	То	poor	ophy	Date	;			Mau	<u>ç 1</u>	1110			Sol		Date		_	
Number E low. pacters state	Sample			SA - sub angular SR - sub rounded R - rounded Notes	ottom	(slope		round	vooded	Wooded			7		S ampl ed	Horizon 1. CM.	Horizon	Develop - ment	Parent	Material		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Number OVIS2S	Elev. Meters.	meters Station	•••	Volley B	Direction 9	Hill Top	Level G	Heavily 1	Sparsely	Burnt	Logged	Grasslan	Swampy	Horizon	Depth to Samp	g ood	Poor	ori t i	Bedrock		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	196	1490	0+06	silf/sand/bry. 50/20/30 SR.		¥,	·			ア					B	30		\square		Ž.	ļ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	197	1480	1100	SILLICIAY 50/50 SK		N				$\left \right\rangle$					D B	30	$\frac{\sqrt{2}}{\sqrt{2}}$	$\left - \right $		5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	199	1480	3100	Sillicley Solso SR	1	N				۲Ť		: :	$\overline{}$		r	30	V			0	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200	1480	4100	rocky soil. 20140 org/Gag A		N							V		B	40		∇	· .	$\overline{\mathbf{V}}$	•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201	1470	5100	SIHKlay 20% clay SA		NW						-	く		ß	30	~			Z		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	460	6t00	Organic weky soil org 202 SA.	. 	<u> </u>		V.	ļ				\sim		ß	35		1 Y		4	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	14.50	7:00	rilt/fraglorg 20/50/30 A		 	 	V,							B	30		\mathbb{M}		14		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	204	1460	8400	517/11/14/14:00 50/30120 SA.		 			 				·		B	30	<u> </u>	+ -		Ľ,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205	1450	4400	Organic Soil 208 org. A				K-							R	30	1	\vdash		1×	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000 2017	1430	11-100	clay cail 402 SH SA		<u> </u>	<u> </u>	1.5	†	<u> </u>					12	25	Ž	+	<u> </u>	Ť	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	208	1460	12400	sandy silt 702 silt R + A	1.	İ		1/	1	~			·		B	35	V	+		∇		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	209	1460	13-150	silficion 102 Gan 209 clay. SA.		290			<u> </u>				く		R	35	.V		-	V	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	210	1455	14100	Sandy Silt. A - R.		S			· ·				V		ß	15	· 🗸			~		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	211	1450	15+00	Sillions Iclay 40/10/50		 		V V		V					K <u>S</u>	30	V	-		レマ	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	212	1450	16400	Silt Klay / Forg 50/10/20/20 SA		<u> </u>	ļ			~				<u>.</u>	B	30	4		 	Ľ	-	
	213	1445	17400	Silt/samply clay SA		 	 	۲×	 	 		ļ			B.	130	Υ,	 	<u> </u>	Ķ		
	214	1450	12-100	<u>silt/clay</u> 50/50											rs_	30		\pm		Ľ		
						<u> </u>	-								·		ļ	+		\vdash	•	
		·						1	1									1		F		
	· · · · · · · · · · · · · · · · · · ·								<u> </u>									<u>+</u>			•	
		<u> </u>	<u>}</u>	J	I	1	1	1	1	1		1			1	1		1	1	1		

APPENDIX F

Rock Geochemistry Results for the Axe Claims, South Block

COMP: KEEWATIN ENGRG. PROJ: 152 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 0V-1206-RJ1 DATE: 90/08/22 * ROCK * (ACT:F31)

(604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90AD152R011 900152R048 900152R049 AXE SOUTH	1400 30000 142	64.3 36.7 2.9	2518 1645 96	1866 143 72	12917 1174 246	111111 3773 1921	503 6 14	1 1 3	575 1070 235	
									<u></u>	
					<u></u>					<u> </u>
	1									
				wi						
		<u>. </u>								
			<u></u>							
	ļ							···· ··· ··· ···		<u></u>

.

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICHOLS/D.MEHNER

 u_{l_k}

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0500-RJ1 DATE: 90/09/21 * ROCK * (ACT:F31)

	SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
•••	90F 152 R079 90F 152 R080 90F 152 R081 90F 152 R082 90F 152 R083	416 135 75 36 42	3.3 5.1 .4 2.2 5.2	2703 432 108 959 2953	6 5401 66 72 15	59 7837 54 123 99	1 12 31 1 1	1 5 1 1 1	1 1 1 1 1	40 1875 40 65 55		
) 	90DP 152 R15 90DP 152 R15A 90DP 152 R16 90DP 152 R16 90DP 152 R17 90DP 152 R18	360 115 21 72 39	7.3 7.0 1.9 1.6 2.3	14352 5033 5482 6646 2365	44 19 16 17 29	13 25 10 7 8	49 49 60 45 63	20 3 5 5 4	2 2 1 1	60 45 75 70 60		
i	90DP 152 R19 90DP 152 R20 90 0 152 R059 Ахе South	38 44 21	2.2 .7 .1	4437 233 51	31 16 5	14 8 14	67 234 1	4 3 1	1 1 1	50 145 720		
				····· .	<u></u>				<u></u>			
			 -								······	
						<u> </u>						
			·									
												-
			·····									
							<u></u>			<u> </u>	<u></u>	
							*** · · · · · · · · · · · · · · · · · ·	<u></u>				
			x							. <u></u>		

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: DS-0328-RJ1 DATE: 90/08/23 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90-0-152R-050 90-0-152R-051 Аує 90-0-152R-052 _{South} 90-0-152R-053 90-0-152R-054	2 2 3 2 1	3.2 1.5 1.5 1.4 1.3	6 5 7 9 8	22 36 34 26 27	51 15 6 36 32	1 26 33 30 12	3 10 10 7 3	1 4 2 1 1	180 710 730 230 175	
				<u></u>				<u></u>		
				· ·					-	
					<u> </u>					
	<u></u>								<u> </u>	
				·······						
								_		
						· · · · · · <u>·</u> · · · · ·	-,			

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay	<u>/ Certi</u>	ficate		0V-12	06-RA1						
Company: KEEWATIN Project: 152 Attn: R.NICHOLS/I	ENGRG.		Copy 1. KEEW 2. KEEW	Date: AUG-22-90 Copy 1. KEEWATIN ENGRG., VANCOUVER, B.C. 2. KEEWATIN ENGRG., C/O JAYCOX							
He hereby certif submitted AUG-20	y the foll -90 by D.M	owing Assay (EHNER.	of 3 ROCK sam	ples							
Sample Number	*AU g/tonne	*AU oz/ton									
90AD152R011 90D152R048	1.67 30.70	.049 .895									
· · · · · ·					· · · · · · · · · · · · · · · · · · ·						
*AU - 1 ASSAY TO	ON		A	7 . 1							
		Certifie	а Бу	m mark							

MIN^LÉN LABORATORIES

APPENDIX G

Rock Sample Descriptions

ojeci: _/TĂl		#157)	. ,				יו יא- ה	NOCK	SAMPLES	TASON MILLER
ea (Gria) 💶	SOUTH AVE	<u>CLAIMS</u>				-			Fi N	Map:NTS:
llectors:	JASON MIL								C	Date: <u>MUG 9, 10/90 ISEPT. S/90</u> Surface V Underground
			REP.	SAM	PLE T	YPE (LENG	<u>тн}</u>	ROCK	
NUMBER	LOCATION	NOTES	NUMBER	GRAB	CHIP	CHANNE	CORE	FLOAT	T YPE	SAMPLE DESCRIPTION
10.0.152R-049	AXE 6 CLAIN	1. 5180'aer.			•				Fe-stained	Vugar crustihorn Fe-stained quartz vein
			 .					 	quartz vein	No gisable sulfiter. Float, d'lacine ?)
10 0.152R-050	AXE I CLAI	M. 4400 ELEV	<u>+</u>	V					grey fire	5m X10m de of arey bine or grouwache sst.
	UCUVE SOUTH	ren		┼───	<u> </u> i				meniarka	No supposed but Contains calcut caren the Aver
0.0.1528-051	AXE. I CLAIM	4. 4250' ELEV.	1	+	V	<u> </u>		<u> </u>	limed Line	25 m chie along the length of o/c. Small
· · · · · · · · · · · · · · · · · · ·	UDSIGAE OF DA	nomalous sitt							mained,	pockets of finally diss, dyrite occur along
	in south	Cheek	<u> </u>	<u></u>	<u> </u>	<u> </u>		<u> </u>	greywacke	practures. Abundant botry oidal subates
10-10-152 R-052	AXE I CLAII	M. 4250' EVEN		V	<u> </u>	<u> </u>	ļ	ļ	as above.	Hi-grade grate of silver-grey purite pools
· _	AS above :			<u> </u>		┣╌━	┫	<u> </u>	<u> </u>	mentioned above Low S.G. jabundant
100 100 000	AVE I CIM	4 426 20	,	+		┨────		<u> </u>	les above	Salphales.
WW-15415-055	FILE I CLAI	M. 9 CO ELEI			+	+			as above.	a an in the state of the the the the
	45 anove		+	+	+	+		+	· · ·	Repetitived that not mineralined
0.0.152R-054	AXE I CLAI	M. 4140'ELEV		+		1		~	Breccisted	Float Breccipted Simey SSt with Calcite
Z / /	down slope o	6 R-051 TO 05	3.						sandstone	punite cube stringers. Fragments are
						<u> </u>		<u> </u>		mostly in site (no votation).
		···			+	+	+ 	+		
10.0.152 Rog	AXE ICI AIN	aloon coox		+		+	+		Availe	NID-15% punte of yoins blacks and accumulation
0 1301(001	4200'ELEV.	HIGKNOE		+		+			porphuru.	the diageninations calcine verning occurs
	GRAB SAMPL	<i>Е</i>							(anderte)	as well (pyr calcile are some wide), Host 25 carbonato
				+		+	+	+		When the war and the
					1.	1	1	-		
				1						

APPENDIX H

Statement of Qualifications

Keewatin Engineering Inc.

÷

STATEMENT OF QUALIFICATIONS

I, DAVID T. MEHNER, of 333 Scenic Drive, in the Municipality of Coldstream, in the Province of British Columbia, do hereby certify that:

- 1. I am a Consulting Geologist with Keewatin Engineering Inc., with offices at 800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I am a graduate of the University of Manitoba, B.Sc. Honours, 1976, M.Sc. Geology, 1982.
- 3. I have practised my profession continuously since 1979.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. During the period of June to October, 1990, I managed and carried out the exploration program on the Axe claims near Kinaskan Lake on behalf of Ascot Resources Ltd.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the properties described herein, nor in the securities of Ascot Resources Ltd. in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia, this <u>10th</u> day of <u>December</u>, A.D. 1990.

Respectfully submitted SOCIA S D. T David T. Mehner, M.Sc., FG F LIOV

CLS - 200	SOIL
1.6/3	!

