
LOG NO: 12-	31 RD.
ACTION:	
FILE NO:	

ASSESSMENT REPORT ON THE GOLDEN TRUMP RESOURCES LTD.'S MT. EATON PROJECT

B. Dewonck, F.G.A.C. P. Brucciani, B.Sc.

September 30, 1990

T [mod \bigcirc ZO < A. 89 **2**2 and free < Z **(**) 🖼 2 -9 5 0 0 -00 国の 3

OREQUEST

SUMMARY

Between July 10 and August 5, 1990 exploration was completed on the ACE 1 - 6 mineral claims belonging to Golden Trump Resources Ltd. These claims, comprising 103 units, lie on previously unexplored ground, on the eastern side of the Tulsequah River valley.

Work entailed regional geological mapping, prospecting, and collection of 56 rock and 7 silt samples.

The main lithologies on the property are chloritic tuffs, volcaniclastics and calcareous sediments. These have been intruded by a body of quartz monzonite in the northeast and cut by several large leucocratic dykes. Similar rocks host Suntac's Polaris-Taku gold deposit and Cominco's Tulsequah Chief base metal deposit located 4 km west and 10 km southwest of the property, on the west and east sides of the Tulsequah River respectively.

Production from the Polaris-Taku Mine, since 1938 has totalled 231,000 ounces of gold from 760,000 tons of ore at an average grade of 0.3 oz/ton gold. Remaining reserves may be as high as 1,124,000 tons grading from 0.33 to 0.49 oz/ton gold.

The Tulsequah Chief deposit is currently undergoing sub-surface exploration. Together with the Big Bull deposit to the south they were mined for gold, silver, copper, lead and zinc from 1951 to 1957. They produced a total of 94,254 ounces of gold, 3,400,000 ounces of silver and 89,000 tons of copper, lead and zinc; from 1,029,089 tons of ore. Both deposits contain classic "Kuroko style" massive sulphide mineralization.

Sulphide mineralization on the property is associated with dykes, shear zones, silicified fractures, brecciated quartz-goethite veins and quartz-epidote veins which have undergone varying degrees of limonitic and jarositic alteration.

The highest gold value in the rock samples is 50 ppb. Several more samples returned gold values up to 25 ppb. Base metal results were up to 360 ppm copper, 360 ppm zinc, 180 ppm nickel and 860 ppm arsenic. Seven silt samples were also collected which produced no values of significance.

TABLE OF CONTENTS

SUMMARY	
INTRODUCTION	· 1
PROPERTY DESCRIPTION	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	2
GENERAL AREA HISTORY	3
GEOLOGY	6
Regional Geology	6
Property Geology	7
PROPERTY GEOCHEMISTRY	10
STATEMENT OF EXPENDITURES	12
STATEMENT OF QUALIFICATIONS	
B. Dewonck, F.G.A.C.	
P. Brucciani, B.Sc., Geologist	

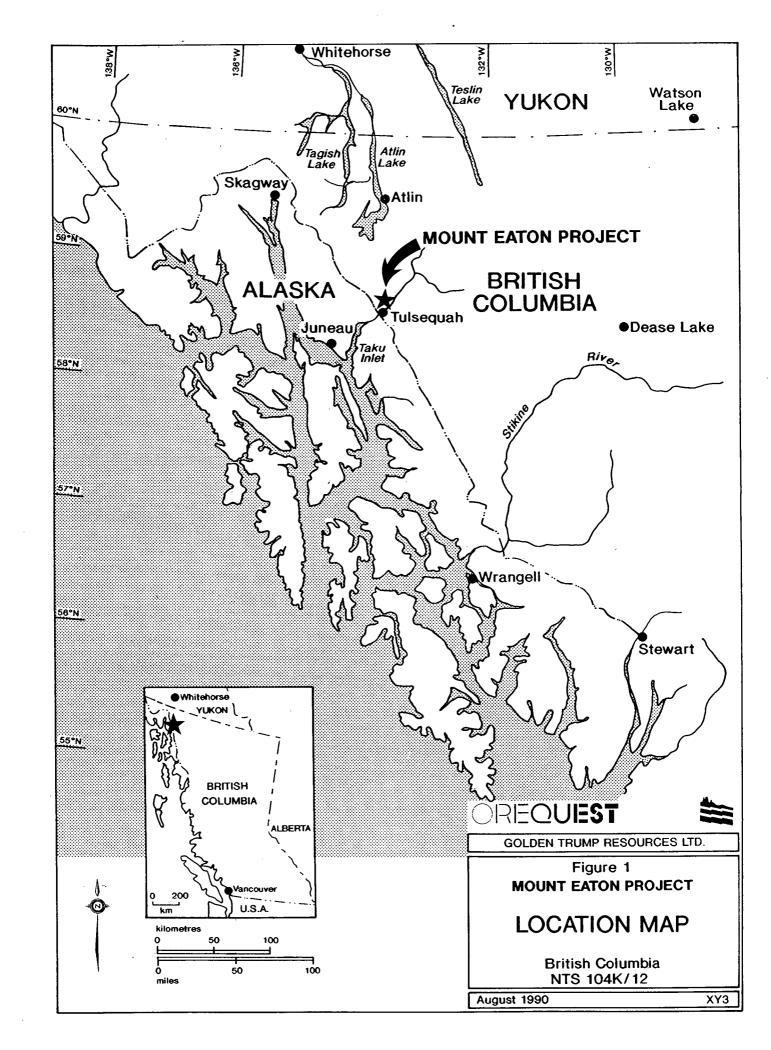
BIBLIOGRAPHY

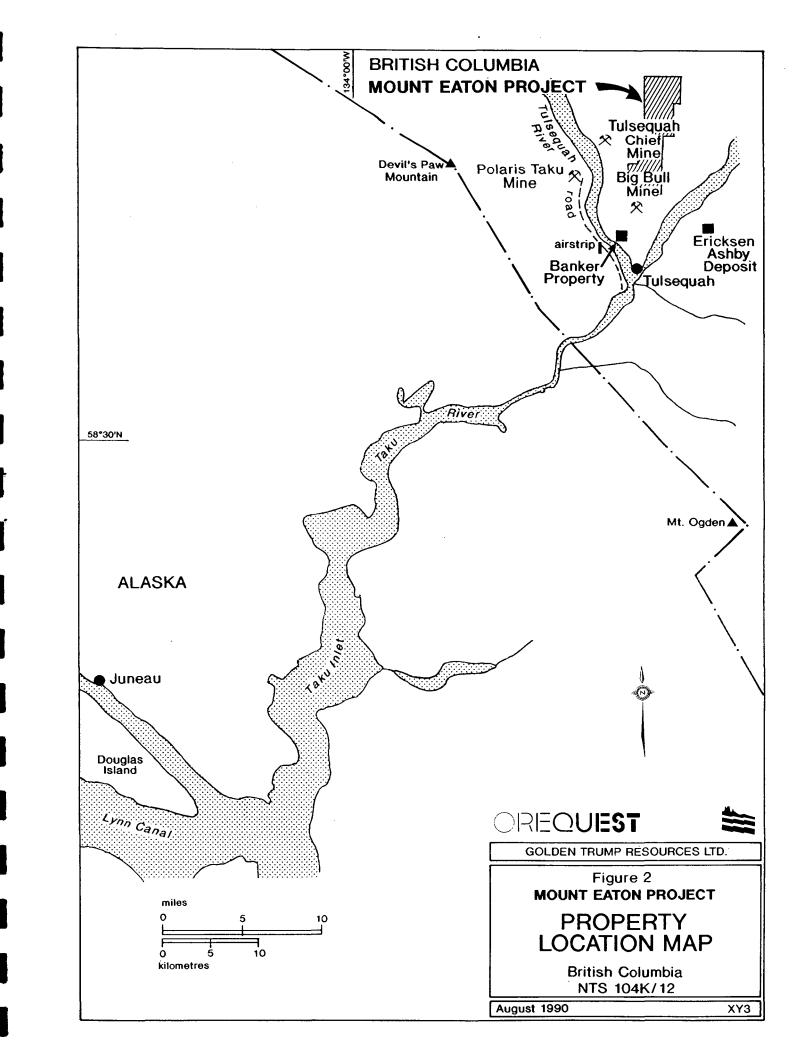
LIST OF FIGURES

Figure 1	Location Map; 1:2,000,000	Following Page 1
Figure 2	Location Map (Local)	Following Page 1
Figure 3	Claim Map	Following Page 2
Figure 4	Regional Geology	Following Page 6
Figure 5	Property Geology	Following Page 7
Figure 6	Rock and Silt Sample Locations	In Pocket
	Gold Geochemistry	

LIST OF APPENDICES

Appendix I Rock Sample Descriptions Appendix II Assay Certificates Appendix III Analytical Procedures INTRODUCTION


This report, prepared at the request of Prime Explorations Ltd. on behalf of Golden Trump Resources Ltd., summarizes the exploration to date on the ACE 1 - 6 claims, and presents the results of this program, known as the Mt. Eaton Project. Work was carried out in July and August of 1990.


PROPERTY DESCRIPTION

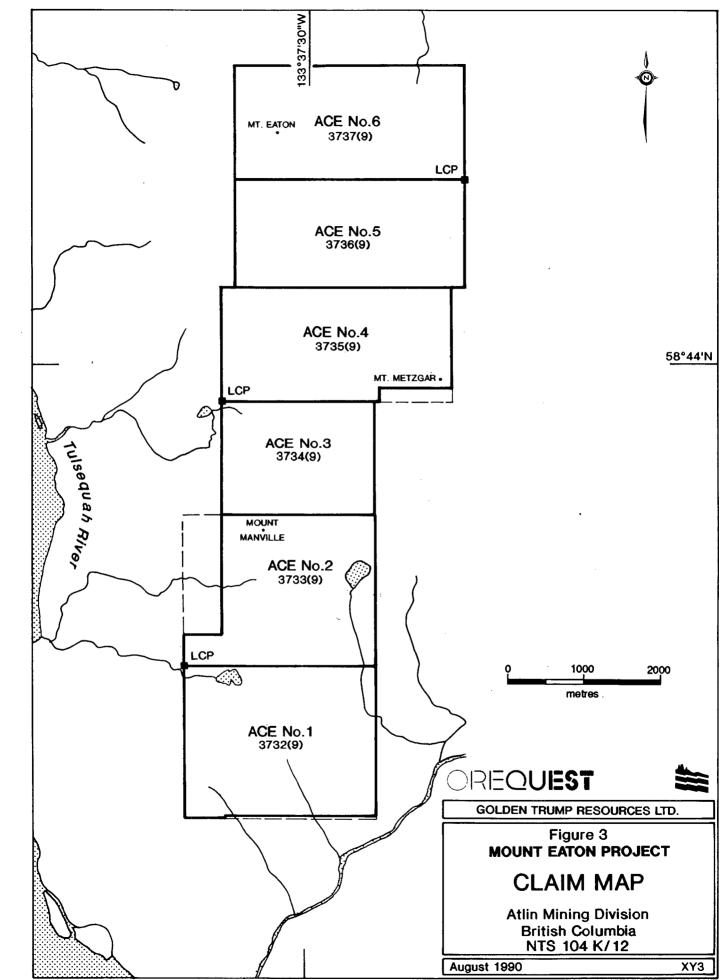
Location and Access

The ACE claims are located on elevated ground to the north of the confluence of the Tulsequah and Taku Rivers and approximately 10 km from the B.C. - Alaska International Boundary. The property also lies on the eastern flank of the Pacific Coast Range Mountains in northwestern British Columbia approximately 64 km northeast of Juneau, Alaska and 96 km south of Atlin, B.C. (Figures 1 and 2). The claim area lies immediately north of the Big Bull Mine, 4 km east of the Tulsequah Chief Mine and 10 km northeast of the Polaris-Taku Mine. The centre of the claim group is located at 58°44'N latitude, 133°33'W longitude.

Access to the site is by fixed or rotary wing aircraft, from either Juneau, Alaska or Atlin, B.C. A 500 metre gravel strip at the Polaris-Taku minesite provides access for STOL equipped aircraft up to the size of a Twin Otter. Five kilometres south of the minesite a 1220 metre gravel strip is capable of handling heavier aircraft such as DC-3's, Caribou and Bristol Freighters. The road connecting this

strip with the minesite is in need of several bridges but is generally passable by skidder or other terrain adapted vehicles.

Exploration work for this project was carried out from a base camp at the Polaris-Taku minesite. Daily setouts required helicopter support.


Physiography and Vegetation

The claim area is typical of a glaciated mountainous terrain. Elevations range from 30 m in the southeast corner of the property, at the edge of the Taku River, to 1850 m at the summit of Mt. Metzgar.

Elevations below 1000 m are densely timbered with spruce, hemlock and cedar, making the vegetation generally typical of the west coast rainforest. At higher elevations snowfields, glaciers and alpine vegetation are present.

Claim Status

The property consists of 6 mineral claims comprising 106 units known as the ACE 1 - 6 claims (Figure 3). These are situated in the Atlin Mining Division, and held by Golden Trump Resources Ltd. Claim information is listed in Table 1 as follows:

}

TABLE 1: CLAIM STATUS

CLAIM	NAME	RECORD NO.	NO. OF UNITS	RECORD DATE	EXPIRY DATE
ACE	1	3732	20	Sept 23/89	Sept 23/91
ACE		3733	20	Sept 23/89	Sept 23/91
ACE	3	3734	12	Sept 23/89	Sept 23/91
ACE	4	3735	18	Sept 23/89	Sept 23/91
ACE	5	3736	18	Sept 23/89	Sept 23/91
ACE	6	3737	18	Sept 23/89	Sept 23/91

The expiry date indicated above reflects assessment filed on the basis of work described in this report.

GENERAL AREA HISTORY

Mineralization was first discovered in the area on the southwest side of the Whitewater Creek close to the Polaris-Taku Mine. It was staked in 1929 by Dedman, Walker, Race and Associates of Juneau, Alaska. The owners followed up the discovery with some open cut work during 1929 and 1930.

The Whitewater group and several adjoining claims were optioned in 1931 by N.A. Timmins Corporation of Montreal, which undertook surface trenching, open cutting and 5300 feet of diamond drilling in 19 holes during 1931 and 1932. This covered a large area of the hillside between the 200 and 800 foot elevations. Timmins subsequently relinquished the option.

Further investigation was carried out in 1934 by H. Townsend of Seattle and D.C. Sharpstone of Duluth which resulted in the property being bonded by E.C. Congdon and Associates. Additional exploration work was undertaken by these interests and by 1935 the upper parts of the vein system had been developed on several levels.

The Polaris-Taku Mining Company was incorporated in British Columbia in October, 1936, and in November of that year it acquired the interest previously held by E.C. Congdon of Duluth, Minnesota. A 250 tpd flotation mill was erected on the property in 1937, and mining and milling operations were conducted from late 1938 until 1942, when production was curtailed due to wartime restrictions.

Operations resumed in 1946 and continued until March, 1951 when the mine closed down because of high operating costs. During the 11 years of operation the mine produced a total of 760,000 tons of ore, yielding some 231,000 ounces of gold at an average grade of 0.30 oz/t.

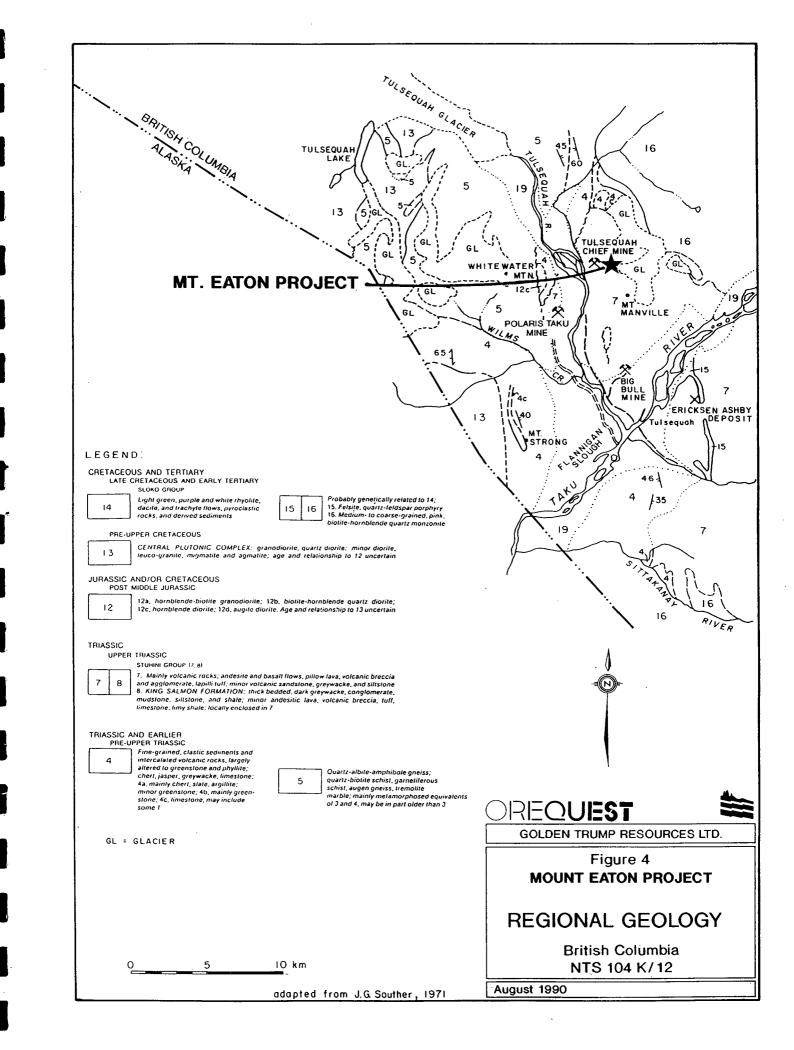
Shortly after closing, the Polaris-Taku mill was leased by Tulsequah Mines Ltd., a subsidiary of Consolidated Mining and Smelting Company of Canada Ltd., who made modifications to the mill in order to process the gold-silver-copper-lead-zinc ore from the nearby Tulsequah Chief and Big Bull mines. The mill re-opened in late July, 1951 and began treating 200 tons of ore per day, six days per week. The mill was later expanded to process 500 tons per day. It continued to treat ore from both mines until 1956 when the Big Bull mine closed, and ceased operations altogether in September, 1957 when the Tulsequah Chief mine closed down.

During the late 1970's many of the major mine and mill components were salvaged and shipped out by barge, down the Taku River.

The Polaris-Taku Mine remained virtually as it was left in 1951, when it shut down, until an option agreement between the present owner, Rembrandt Gold Mines Ltd., and Suntac Minerals Corporation was signed in the fall of 1988. Under the terms of the agreement Suntac may earn a 60% interest in the property by funding exploration and completing an evaluation of the property. Suntac began drilling immediately in 1988 and continued into 1989. By the end of 1989, 26 holes had been completed with a total footage of 16,750 feet. Nearly all of these drill holes were confined to the lower elevations of the property and were designed to test the "Y-vein" system down dip or along strike from the old workings. This vein system historically produced a large portion of the ore from the mine and work to date suggests that an additional 520,000 tons of ore grading 0.45 oz/ton gold, remains.

During the first two months of 1990 a further ten holes, totalling 9,391 feet were drilled around the relatively unexplored "C" vein system. Suntac calculations outline 366,000 short tons of new reserves averaging 0.49 oz/ton gold at a cut off grade of 0.25 oz/ton gold.

Further drilling is planned to test the "Y" and "C" vein structures at depth with the aim of defining additional reserves.

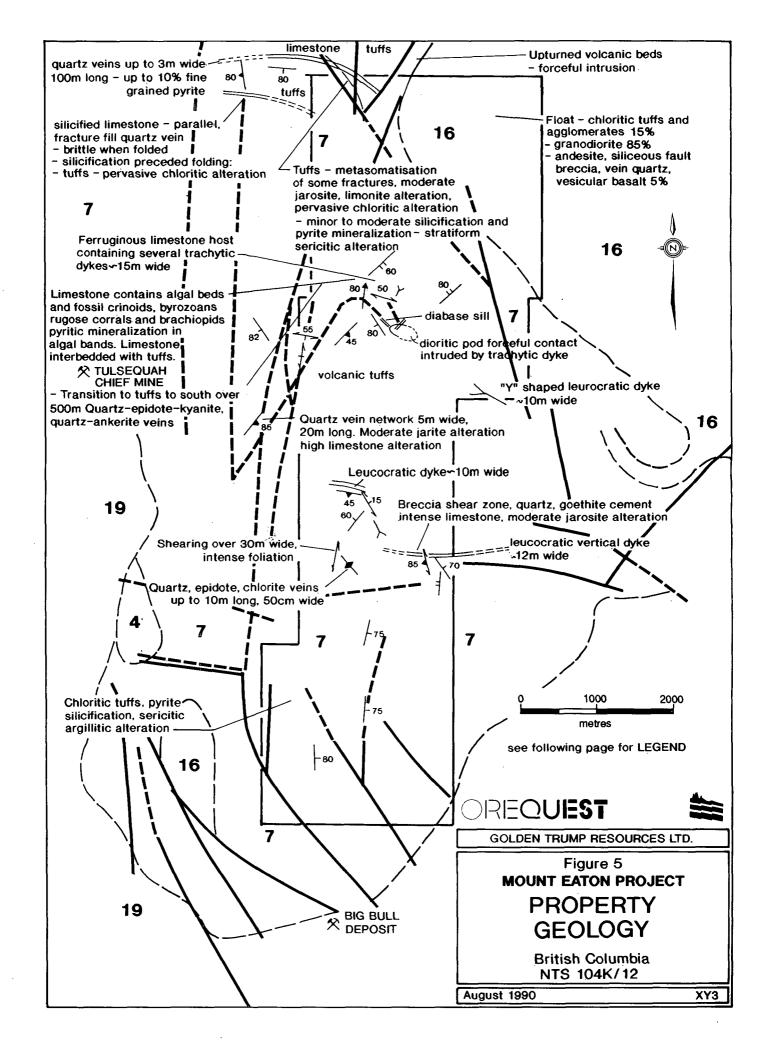

GEOLOGY

Regional Geology

The Tulsequah area includes a portion of the westernmost Stikine Terrain where it abuts against the gneisses and plutonic bodies of the Coast Plutonic Complex (Figure 4). The area around the Polaris-Taku Mine lies in what has been described as a northwesterly trending synclinorium in which a series of quartzites and schists are overlain by limestones and a thick volcanic unit. This volcanic unit is the host for mineralization at the Polaris-Taku Mine as well as for the syngenetic massive sulphide deposits such as the Tulsequah Chief, Big Bull, and Ericksen Ashby. Although this volcanic unit was originally considered to be of the Stuhini Group ie. Upper Triassic in age (Souther, 1971), more recent work by Nelson and Payne (1984) suggests a late Palaeozoic age based on fossil evidence.

Structural deformation of the volcanic units underlying the Tulsequah area may incorporate some components of folding, however because of the scarcity of obvious marker beds and rapid lateral facies changes these are difficult to evaluate. Block faulting with attendant rotational and drag features are probably more significant on a local scale.

Three mines have achieved production in the Tulsequah area and several other significant deposits have had considerable work done on them. Besides the Polaris-Taku, Cominco Ltd. operated the classic "Kuroko type" Big Bull and Tulsequah Chief mines from 1951 to 1957 and



produced 94,254 ounces of gold, 3,400,000 ounces of silver, 13,603 tons copper, 13,463 tons lead and 62,346 tons zinc from 1,029,089 tons The Ericksen Ashby deposit consists of zinc-silver of ore. mineralization and is in all likelihood a volcanogenic massive sulphide deposit. A drill indicated reserve of 1 million tons grading 7.0% zinc and 6 oz/T silver has been developed. During 1988 and 1989 Redfern Resources and Cominco Ltd. have been exploring the Tulsequah Chief deposit on a joint venture basis. Drill indicated reserves now stand at 5.8 million tons grading 1.6% copper, 1.3% lead, 7.0% zinc, 0.08 oz/T gold and 2.9 oz/T silver. Though largely undeveloped, the Banker property, currently being explored by Sunport Metals Corporation, shows considerable promise. It has some similarities to the Polaris-Taku deposit 3 miles to the northwest in that gold bearing arsenopyrite stringer zones have been encountered in drilling. The geological setting and the presence of base metals (copper, lead and zinc) also suggest some similarities with the Kuroko deposits described above.

Present geological information would place all these deposits in the Upper Paleozoic, probably pre-Permian. The proximity of these deposits to each other and the fact that they seem to be hosted in similar aged rocks suggests the possibility of a genetic relationship.

Property Geology

The following description of property geology as well as information appearing in Figure 5 is based on published references,

GEOLOGY LEGEND for Figure 5

STRATIGRAPHIC COLUMN

Image: State of the state	(QUATERNAP	TY DOEN AND RECENT		
0000 LATE FERTILARY AND PLESTOCENE 10 Jatufi Johns Datali, reside processinc rocks, in gair paunger line, inner data in some dita 11 MEANS COMMANDER LASSED processinc rocks, indirective indirecting inschrife and transmissions 11 MEANS COMMANDER LASSED Processinc rocks, indirective indirecting inschrife and transmissions 12 MEANS COMMANDER LASSED AND EENTARY 13 SLOD COMP 14 Means and anite ingolata, indirective indirective relations 15 Filler, Guiner Bassen, purple and anite ingolata, indirective relations 15 Centrale relations in gains and agmanite: and agmanite: and agmanite: and anite ingolata, indirective relations in the ingolata, ingolata indirective relations and relations and relations and rolation and agmanite: and anite relations in the ingolation agemanite and agmanite: and and relationships to 10 Juncertain 13 Centrale Relations 14 Filler Bassed 13 Centrale disorder ingolata, ingolate disorder ager and relationships to 10 Juncertain 14 Filler Bassed 14 Filler Bassed 15 Centrale Bassed Bassed ingolation: ingolata and relationships to 10 Juncertain 14 Takassed Bassed Bass		1	Fluviatile graver sand, sill, glacial outwast	h, lill, alpine mo	raine and
17 If ALT FACK JORNALION Using weather ing tachyse and hydroles in a constant ing tachyse and hydroles in a constant ing tachyse and hydroles in a constant ing tachyse and taches ing tachyse and tachyse and tachyse ing tachyse and tachyse	DIZOIC	TERTIARY A	ERTIARY AND PLEISTOCENE		
11 Introduct Ideal, processing notes, and related infinusions CREINCEOUS AND TERTINEY LATE CREATE ACENDS AND END IN and mane hypolog. Societ, and records and endre hypolog. Societ, and records and endre hypolog. Societ, and records and endre hypolog. Image: Societ Acend Societ Aceend Societ Acend Societ Acend Societ Acend So	CENC	18		rocks, in part	yaunger
USEC CARLY TERTARY SLOC GOUP Inging erem, purple and white involution USEC Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white involution Inging erem, purple and white indow Inging erem, purple and white indow indow Inging erem, purple and white indow Inging erem, purple and white indow Inging erem, purple and indow Inging erem, purple and indow inter, purple and ind		17			ie and
PRE-UPPER CRETACEOUS 1 CENTRAL PLUTONIC COURCES gunadiante, quartit donie, immor donie, meco donie, too, support donie, meco donie, too, support donie, support, donie, suport, donie, support, donie, support, donie, support,	1	LATE C	RETACEOUS AND EARLY TERTIARY		
13 CENTAL PLUTONIC COMPLEX. granodiarde, quarts darine minor diarite, fuel agrinate, single and relationship to 12 uncertain fuel agrination and signature and signature agrination and signature agrination. 13 CENTAL PLUTONIC COMPLEX. granodiarde, quarts daries minor diarite, fuel agrination and signature agrination. 13 CENTAL PLUTONIC COMPLEX. granodiarde, quarts daries agrination. 14 Stranober, agrination agrination. 15 Ranoberge bionie: 120, budite-normalishe quarts daries agrination. 19 Stranoberge bionie: 120, budite daries. 19 Takestic Group (no. 11) 10 Takestic Group (no. 11) 11 Takestic Group (no. 11) 12 Takestic Group (no. 11) 13 Takestic Group (no. 11) 14 Takestic Group (no. 11) 15 Takestic Group (no. 11) 16 Takestic Group (no. 11) 17 Takestic Group (no. 11)	1	14	decite, and trachyte llows, pyroclastic	15 16	15 Felsile, quartz-feldspar porphyry 16. Medium- to coarse-grained, pink,
13 #uco-granite. migmatile and agmatile: age and relationship to 12 uncertain JURASSIC AND/OR CRETACEOUS POST MODEL 2008/2011 12, nonnbende biolite granodonire: 120, bolite-hornbiende quarts diolite 120, nonnbende biolite granodonire: Age and relationship to 13 uncertain JURASSIC LOWER AND MODLE JURASSIC LOWER AND MODLE JURASSIC Compomerate, gramatic quartost andstone, statistione, thate Image: Compomerate, gramatic quartost andstone, graded substone and sing tandatione, beoby mudsione, limp pebble conglomerate, Cheri-toebble conglomerate, gramatic and substone, limp pebble conglomerate, IOA, limestone Image: Compomerate, gramatic quartost andstone, stratistione, shake Image: Compomerate, gramatic quartost andstone, arguite, Cheri Umage: Compomerate, gramatic and sing pebble conglomerate, IOA, limestone Image: TRIASSIC Image: Strum GROUP 11, pl Triadstone, beoby mudsione, immor sandstone, arguite, cheri Strum GROUP 11, pl Triadstone, instane, and sing and basist float, privates, and struture mustione, strum, struct, grange, strange related triad, and can graveste, conglomerate mustione, immorphate, locality enclased in T Image: Compomerate splittly, mode volcane, durater, durate, and minor granodionter; grange; strange; strange; related durine, guarts donte, and minor granodionter; and splittly follated durine, guarts donte, and minor granodionter; grange persitione and physice, doard graessione and physice, doard graessione and physice, more decine more strate, graftile, isone 4. (mestone, mary include ione 1. Percenta constructer, graftile, isone 4. (mestone, mary include ione 1. Percenta constructer, graftile, isone 4. (mestone and dolomuic intercenta doute	i	PRE-UP	PER CRETACEOUS		
12. nonnbende binite grandwirt: 12. bolite nanobarde querts doute 12. nonnbende diante: 123, supile diante. Age and retainants to 13 Juncertain 13. None of the supervised grandwirt: 120, bolite nanothing to 13 uncertain UNRASIC 10. UNER AND MIDULE JURASSIC LARGED GROUP 10. 11 10. If XewANDMI FORMATION: grante-boulder conglomerate. Cherit gebote conglomerate. grandwirte: 3 andstone, sitistone, shate 10. If XeWANDMI FORMATION: grante-boulder conglomerate. Cherit gebote conglomerate. grandwirte: 3 andstone, sitistone, shate 10. If XeWANDMI FORMATION: well bedded granwate. graded suffstone and sitist transformet. grandwirte: 3 andstone, sing gebote conglomerate. [0.9, limestone] 10. If XeWANDMI FORMATION: the stone: minor sandstone, arguitter, cherit 11. TRIASSIC 12. Martin volcance toots, andestine and bistif flows, pullow time, volcance breeces musione mis shate, mod state and bistif flows, pullow time, volcance breeces musione mis shate, mod state and bistif flows, pullow time, volcance breeces musione missione and state; minor sandstone arguitter, cherit 13. Martin volcance, toots, andestine and bistif flows, pullow time, volcance breeces musione missione and state; mod state and dister diamite, quartiz diatite, and minor musione missione, state state and material flows, guardet diatite, and minor for nodeborter: age uncertain 14. Martin State, califie acconents and minor diversioner in state, anglitte, more granestone: too, maintergrane stone, etc. (mestione califies stonesting and minor diversioner and dolonuic interchance more califies stonesting stone, etc. (mestione and dolonuic interchance more califies and stone and bother inter 3. PERMIAN (1) 11. Martin Stone and dolonuic	ļ	13	CENTRAL PLUTONIC COMPLEX, grano leuco-granile, migmatile and agmatile; a	diorite, quartz o ige and relation	Gorile minor diorite, hship to 12 uncertain
12. nonnbende binite grandwirt: 12. bolite nanobarde querts doute 12. nonnbende diante: 123, supile diante. Age and retainants to 13 Juncertain 13. None of the supervised grandwirt: 120, bolite nanothing to 13 uncertain UNRASIC 10. UNER AND MIDULE JURASSIC LARGED GROUP 10. 11 10. If XewANDMI FORMATION: grante-boulder conglomerate. Cherit gebote conglomerate. grandwirte: 3 andstone, sitistone, shate 10. If XeWANDMI FORMATION: grante-boulder conglomerate. Cherit gebote conglomerate. grandwirte: 3 andstone, sitistone, shate 10. If XeWANDMI FORMATION: well bedded granwate. graded suffstone and sitist transformet. grandwirte: 3 andstone, sing gebote conglomerate. [0.9, limestone] 10. If XeWANDMI FORMATION: the stone: minor sandstone, arguitter, cherit 11. TRIASSIC 12. Martin volcance toots, andestine and bistif flows, pullow time, volcance breeces musione mis shate, mod state and bistif flows, pullow time, volcance breeces musione mis shate, mod state and bistif flows, pullow time, volcance breeces musione missione and state; minor sandstone arguitter, cherit 13. Martin volcance, toots, andestine and bistif flows, pullow time, volcance breeces musione missione and state; mod state and dister diamite, quartiz diatite, and minor musione missione, state state and material flows, guardet diatite, and minor for nodeborter: age uncertain 14. Martin State, califie acconents and minor diversioner in state, anglitte, more granestone: too, maintergrane stone, etc. (mestione califies stonesting and minor diversioner and dolonuic interchance more califies stonesting stone, etc. (mestione and dolonuic interchance more califies and stone and bother inter 3. PERMIAN (1) 11. Martin Stone and dolonuic					
UNMER AND WIDDLE JURASSIC LAREAGE GOUP 10:11 TARWAHDMI FORMATION: grante-boulder conglomerate, Chert-bedoir conglomerate, grepwacke, gualitose sandstone, sitistone, sinate 10 INKLIN FORMATION: well bedded grepwacke, graded sitistone and siny tandstone, beddy mudsione, limy bebde conglomerate, 104, limestone 10 INKLIN FORMATION: mell bedded grepwacke, graded sitistone and siny tandstone, beddy mudsione, limy bebde conglomerate, 104, limestone 11 INKSIC 12 INK LIN FORMATION: mesione: minor sandstone, argittile, cheri Stimm GROUP 17, BI 7 7 Manifer of sand single and basall flows, policy link, wolcand breck- imestone, instance, and single minor sandstone grewaske, and shillore megione: linking, and single endosed in 7 1 Manifer of sand, linking precision in mesione, instance, and single endosed in 7 1 American medium-grained, strongly foliated dionite, guarts dionite, and minor vandobret: ge uncertain 1 Americane may singlife, interegregetione and phylife, endiginget operatione and phylife, and interegregetione and phylife, store, tupen gives frequest uore, etc., finestione and dolomic, finestione; minor cell, singlife, isong finestore 1 May optil bo of the same app I, periodicite, strantingular, podies of gabbor and phylife and fuel of and phylife. 1 May optil bo of the same app I, periodine, s			12s, nornblende-biotite granodiorite; 12t	a, biolite-hornb Age and relativ	iènde quartz diorite passità la 13 uncertain
Image: Complementer, greywacke, gua/itose sandstone, silisione, shale Image: Complementer, greywacke, gua/itose sandstone, silisione, and siliy tandstone, beobly mudstone, timy pebble conglumerate, 104, timestone Image: Complementer, tanging pebble, conglumerate, and siligner tanging pebble, conglumerate, conglumerate, tanging pebble, conglumerate, tanging pebble, conglumerate, tanging pebble, conglumerate, conglumerate, conglumerate, tanging pebble, conglumerate, conglu					
W Landstone: bebbly mudstone, limy pebble conviourersie. 104. limestone TRIASSIC Image: Sinter and the sinter and		11	TAKWAHONI FORMATION; granile-bouko congkomerale, greywacke, guarizose san	ler conglomere dstone, sillston	ie, cheri-debbie e, shaie
Open Halassic 9 Sinwar FORMATION: Imesione: minor sandstone, argillute, cheri 9 Sinwar FORMATION: Imesione: characterize preview solution of the cherical cherical characterize preview solution of the cherical characterize preview solution of the cherical characterize preview solution of the cherical cherical preview solution of the same solution of the cherical chericherical cherical cherical cherical cherical cherich	02010	10			
Organization Shiwa FORMATION: timestone: minor sandstone, argittite; Cheri Stumm GROUP 17, el Stumm GROUP 17, el Total Signification: Standstone, greywacke, and utilizer Intercent and standstone Signification: Standstone, greywacke, subtant Intercent and standstone Signification: Sign	VES				
Stumm GBOUP 12, 81 F. Manin volcanc cocks, andeside and baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch a solo Sai wolf of black flow in the becaded baself flows, prilow taxe, volcanc brecch intercontent in the sole sole sole and baself flows, prilow taxe, volcanc brecch and flow for modum graves, standy to floated dionite, quarts double, and minor francestere volcance costs, target intercenter volcance costs, target intercentercenter volcance costs intercenter volcance costs inte	•				
7 Work A Manin volcane bocks, andexist and basis filmer line of line and canned buckshill and origination of the analysis of the second dark grewwate, and with gree bocks, and grew at a grewwate, and with gree bocks, and gre		9	SINWA FORMATION: Imesione: minor sa	indstone. argilli	e, chert
7 We are aggiometeric leginitioti; minor voicanic standatone, greywakke, and utilizone and adjugtometaric leginition. 8 exist of SALWON FORMATION inche beded, dara greywakke, congiometarie mudsione, sinsane, and sinse; minor andesine legi, voicanic breeca, suit inservate, conginance and south exists and utilizone and phyline. 1 1 New York and a south exists and phyline. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 4 1 1 4 1 1 5 1 1 6 1 1 7 1 1					
IOVER OR MIDDLE TRIASSIC (7) 6 Ane: To medium-graned, strongly foliated diorite, guartz diorite, and mnoving grandborite: ge uncertain 7 Press, Strongly foliated diorite, guartz diorite, and mnoving grandborite: ge uncertain 7 Press, Strongly foliated diorite, guartz diorite, and mnoving grandborite: ge uncertain 7 Press, Strongly foliated diorite, guartz diorite, and mnoving grandborite: ge uncertain 7 Press, Strongly, Strongly, Strongly, Tollated diorite, guartz diorite, and mnoving grandborite: gardite, foreignamed, costs, largely 1 Press, represence, foreignaming grandborite, intergrandborite, strongly, foreigname, and phytice, strongly, foreigname, strongly, foreigname, strongly, foreigname,		7 8	and aggiomerate, lapitli tull; minor voicani B. KING SALMON FORMATION: thick be mudsione, sillstone, and shale; minor a	c sandslone, gr dded, dark grei Indesilic, lava,	www.sche.aud.chr.com
6 Ane: to medium-gramed, strongly foliated diorite, guariz diorite, and mnov grandborite: ge uncertain 7 RASSIC AND EARLIER sequence tain 9 Begungers InsiSic 1 Ane regramed, custic storments and interest or generics, timetone, data store, store, store, store, store, store, store, store, movie, cost, storegilite, store, store, store, store, store, store, store, and store and dolomic line interone: mnoi chert, argilite, store, store, argilite, store, fine store, and line and dolomic line isone; movie, chert, argilite, store, store, store, store, store, argilite, store, store, movie, chert, argilite, store, store, store, store, store, argilite, store, store, movie, chert, argilite, store, store, movie, chert, argilite, store, store, store, movie, chert, argilite, store, store, store, movie, chert, argilite, store, argilite, store, store		LOWER OR			
TRIASSIC AND EARLIER Begunster Thready and Costs largely Image under the systemed costs is added to prevent and physic. American and physic. <td></td> <td>, 1</td> <td>Fine- to medium-grained, strongly toliar</td> <td>ed diarite, qua</td> <td>rtz diorite, and minur</td>		, 1	Fine- to medium-grained, strongly toliar	ed diarite, qua	rtz diorite, and minur
PER_UPPER TRIASSIC PER_UPPER TRIASSIC A fine-graved.custic sequenciss and ininecestated volcanic rocks, largely associal operanized and phymice. cherri, tapper, paywacke, limetione, mong versioner 4, mainly preen mong versioner 4, mainly preen mong versioner 4, mainly preen initiane, 4, limetione, may include some 1 PERMIAN PERMIAN PERMIAN PERMIAN My not all do of the same app porcent draite Some 4 and porcent draite PERMIAN My not all do of the same app		ليت ا	granouloine; age uncertain		
4 Nine-graned, custic seconents and ninecelate originic costs, largely altered to greensione and phytic. Chert, jabor, greywacks, limetione. 4.4. manify chert, iste, argilite: minor greensione; do, mainly green sione 4.6. limestone, may include sione 1 Ouarts-stoles-amonipole greets, duarts-boile schist garnetierous schist, largen greets, lizenoite schist, largen greets, lite schist, largen greets, lizenoite schist,		TRIASSIC A	ND EARLIER		
A served to greenisone and phytic: Cherty Jaker, spreakete, kimestone, And and a served server server with the server se		· · · · · · · · · · · · · · · · · · ·	Fine-grained, clastic sediments and		
A a, mainly cheri, issle, argitale: moro greensione; 36, mainly green sione, 42, imestione, may include some 12, imestione and dolomius Imestione; minor cheri, argillire, Issard 4, may be in basis features of 3 and 4, may be in basis features		4	altered to greensione and phyllite.		
Chiefly Limestone and dolomiuc limestone: minor Cherl, argulite, sandy limestone PERMIAN (7) I Jeridatile, stophile, small virequiar Dodies of gabbio and Dyrotened Gonte		, ! !	4a, mainly chert, state, argititle; minor greenstone; 4b, mainly green- stone, 4c, limestone, may include	35 B	schist, augen gneiss, tremolite marble, mainly metamorphosed equivalents
3 limesione: mmory cherl, argillire, sandy immesione 9 PERMIAN (2) 1 May not all be of the same age by control in the same age to provide me donite		PERMIAN			
Dyraxene diorite	010	3	limestone; minor chert, argillite,		
Dyraxene diorite	503	PERMIAN I	71		
pyraxene diorite	PAL			dies of gabbro	end.
			pyraxene diorite		

	Air photo lineaments
	Geological contact
~	Shear zone (strike and dip)
7	Direction of younging
_	Fold azimuth and plunge
T	Jointing (strike and dip)
\checkmark	Bedding (strike and dip)
\checkmark	Foliation (strike and dip)
\checkmark	Vein (strike and dip)
15	Dyke (strike and dip)

a brief study of air photos of the general area and observations made during limited reconnaissance traverses. Budget constraints precluded mapping on a sufficiently detailed scale to provide outcrop detail. Government topographic maps were used as base maps. Work was directed primarily at recording general observations and sampling prospective areas of alteration, mineralization, veining and/or structure.

The claims are predominantly underlain by agglomerates, tuffs, volcaniclastics and calcareous sediments of the Stuhini Group.

This group was originally considered to be of Upper Triassic age (Souther, 1971), however, recent work by Nelson and Payne (1984), suggests a late Palaeozoic age based on fossil evidence.

Tuffs and volcaniclastics are the dominant lithology forming 80% of rocks. They are typically, fine grained, light to dark grey or green in colour and intermediate in composition. Primary depositional structures are present in the form of planar beds <1 cm to 3 m in thickness. North of Mt. Metzgar lapilli tuffs and agglomerates are present over large areas. They are punctuated by conformable bands of limestone up to 20 m in thickness and visible over 500 m along strike. The contact with the limestone is typically gradational consisting of a zone, of intercalated beds, up to 10 m wide.

The limestone horizons are composed mostly of fine grained calcareous mudstone, although beds of algal and bioclastic limestone

are often seen. Bioclastic limestone may contain crinoid, brachiopod, rugose coral and bryozoan fossils forming up to 70% of the rock, in a fine grained calcareous matrix.

The structure and composition of the rocks on the property suggests volcanic deposition may have occurred in a warm shallow submarine environment with limestone horizons representing periods of lapsed volcanic deposition and the development of lagoonal and reef environments.

To the east of Mt. Eaton the rocks of the Stuhini Group have been intruded by a large pluton of coarse grained massive pink, hornblende, quartz monzonite. This body is late Cretaceous to early Tertiary in age and genetically related to the acidic volcanics of the Sloko Group (Souther, 1971). The upturned volcanic beds at the contact suggest the intrusion was a forceful, rather than passive, event. Striking roughly perpendicular to the contact are a series of dykes, up to 10 m wide, which dip vertically or steeply to the south. They are leucocratic, and of trachytic or felsic composition. Also seen are occasional small plugs and sills of diabasic composition. These have been intruded by the later acidic intrusives.

To the south the overturned volcanics and sediments dip steeply to the east. In the centre of the property, they form an open syncline striking westerly and plunging at approximately 30° . South of Mt. Eaton the rocks dip steeply to the south. Shears and faults

on a local scale which strike north-south to northwest-southeast, are similarly oriented to air photo lineaments, up to 10 km long, that cross the property.

Limonitic staining derived from sulphide oxidation can be seen in gossanous areas around Mt. Manville, and northwest of Mt. Metzgar and Mt. Eaton. Gossans are associated with areas of moderate quartz, quartz-epidote or quartz-ankerite veins, up to 3 m wide and 100 m long. Sulphide mineralization, predominantly in the form of pyrite, rarely exceeds 5% within the veins. The host rocks may show varying degrees of silicic, sericitic or jarositic alteration superimposed on the pervasive chlorite alteration observed on a regional scale. In the vicinity of the monzonite contact moderate metasomatic activity along fractures within the volcanics has created up to 10% porosity. Pervasive sericitic and epidote alteration is present up to 150 m from the contact.

Silicified rocks associated with quartz veins show evidence of brittle deformation around the contact. This may suggest vein formation predates the intrusion of the monzonite and may be associated with the earlier emplacement of the "Central Plutonic Complex".

PROPERTY GEOCHEMISTRY

A total of 60 rock grab samples and 7 silt samples were gathered from traverses through northern, central and southern parts of the

property (Figure 6). Of these, seven rock samples contained between 10 and 50 ppb gold with the remainder being 5 ppb or less.

Four of the rock samples showed weakly anomalous values in copper, zinc, nickel and arsenic, Samples 29811 and 29812 returned values of 360 and 120 ppm zinc with #29811 also having 180 ppm nickel. These were samples of quartz vein material containing minor pyrite peripheral to a shear zone. An arsenic value of 820 ppm was obtained from a quartz vein within an agglomeratic host rock showing abundant limonite and jarosite alteration (#28151). The maximum copper value obtained from the sampling was 360 ppm in sample #28101 - also in a limonitic quartz vein. These veins are generally narrow and of limited strike extent.

All silt samples returned less than 5 ppb gold. Copper values of 120 ppm and 110 ppm are recorded for samples S19 and S20 respectively, with the latter sample also producing 190 ppm arsenic. These were collected by hand, into kraft paper bags, from active drainages.

All samples were shipped to TSL Labs in Saskatoon, Saskatchewan for analysis for gold by atomic absorption plus 35 elements by inductively coupled plasma (ICP) spectrophotometry. Rock sample descriptions are found in Appendix I followed by assay certificates in Appendix II and analytical procedures in Appendix III.

STATEMENT OF EXPENDITURES

Mobilization/Demobilization (prorated from Tulsequah Project)	\$ 751.21
Wages: P. Brucciani (geologist) K. Goerlitz (field asst) A. Maj (") F. Moyle (") *G. Cavey (consulting geologist) *J. Chapman (") *B. Dewonck (") *P. Brucciani(prospector) 2.25 days @ \$330/day 2.25 days @ \$220/da 1.5 days @ \$220/da 75 days @ \$220/da 6.55 days @ \$450/day 6 days @ \$330/day	y 165.00 y 375.00 y 165.00 x 10% x 10% y 294.75 x 10% 290.25
Transportation and Communication (prorated from Tulsequah Project)	\$ 320.76
Support Costs: Camp, Cook Expediting, Fuel, Food, Etc. (prorated fro Tulsequah Project)	\$2533.36
Helicopter	\$2722.28
Analyses	\$1088.74
Report (partial) Total	<u>\$1077.74</u> \$10882.09

CERTIFICATE OF QUALIFICATIONS

I, Bernard Dewonck, of 11931 Dunford Road, Richmond, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1974) and hold a BSc. degree in geology.
- I am an independent consulting geologist retained by OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. This report is based on work performed on the Mt. Eaton Project by OreQuest Consultants Ltd. in July and August, 1990, and a review of material listed in the bibliography.
- 7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property or in the securities of Golden Trump Resources Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

BERNARD DA A.C. Bernar Dewond Consult ng rGe

DATED at Vancouver, British Columbia, this 30th day of September, 1990

CERTIFICATE OF QUALIFICATIONS

I, Paul Brucciani, of 15 Knighton Park Road, Stoneygate, Leicester, U.K., hereby certify:

- I am a graduate of the University of Aberdeen, Scotland (1987) and hold a B.Sc. Honours degree in Geology and Mineralogy.
- 2. I am presently employed as a geologist with OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various companies since graduation and have worked on projects in Canada, Australia, Cyprus and the United Kingdom.
- 4. The information contained in this report was obtained by direct onsite supervision of the work done on the property by OreQuest Consultants Ltd. in 1990 and a review of all data listed in the Bibliography.
- 5. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct of indirect interest in the property or in the securities of Golden Trump Resources Ltd. or any of their subsidiaries.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts of other public document.

Paul Brucciani, B.Sc. Geologist

DATED at Vancouver, British Columbia, this 30 th day of September 1990.

BIBLIOGRAPHY

BACON, W.R. 1942: M.Sc. Thesis: The Economic Geology of the Polaris-Taku Mine. BEACON HILL CONSULTANTS LTD. Suntac Minerals Corporation Polaris-Taku Mine, Atlin B.C. 1988: Geology Review and Exploration Program (Company Report), September. 1989: Suntac Minerals Corporation Polaris-Taku Mine, Atlin B.C. Conceptual Study (Company Report), August. FORBES, J., CLOUTHIER, G. 1990: Report on Suntac Minerals Corporations Polaris-Taku Project, 1990 Diamond Drilling Program, (Company Report), April. HALTON, F.E. 1972: New Taku Mines Ltd. Polaris-Taku Mine, B.C. Investigation Into Future Gold Potential of the Mine, August. KERR, F.A. 1948: Geological Survey of Canada Memoir 248, Taku River Map Area, B.C. MOSHER, G. 1989: Review of Mine History and Exploration Potential, November. NELSON, JOANNE, PAYNE, JOHN, G. Paleozoic Volcanic Assemblages and Volcanic Massive Sulphide 1984: Deposits Near Tulsequah, B.C. PARLIAMENT, J.H. The Geology and Ore Deposits of Polaris-Taku Mine with 1949: Particular Reference to the Lower Levels (Company Report). SHARPSTONE, D.C. 1938: The Development and Geology of the Polaris-Taku Mine CIMM Bulletin, November 1938. SMITH, A. Report on the Surface Geology of the Polaris-Taku Mine and 1939: Adjacent Area, Tulsequah, B.C. (Company Report). 1941: Geology of the Polaris-Taku Mine (Company Report). 1950: Report on the Polaris-Taku Mine Geology and Exploration Development Program (Company Report). SOUTHER, J.G. Geological Survey of Canada Memoir 362, Geology and Mineral 1971: Deposits of the Tulsequah Map Area.

SUNTAC MINERALS CORPORATION 1989: February 28 Statement of Material Facts.

VARIOUS MAPS, Plans, Sections, Etc. in Company Files.

APPENDIX I

ROCK SAMPLE DESCRIPTIONS

Mt. Eaton Provect

Sample		Location:	Lithology:	Remarks / Alteration / Structure: Mineralization:	Analysis:
28101	July 14/90	NW A Mt. Eaton	quarta vein	applomenate host, Limorte signosite alteration minor pyrite	
102	0 "	/ //	<u> </u>	limestone " "	
103	July 15/90	S of Mt. Manville	chlaitie tuff	Limestone """"""""""""""""""""""""""""""""""""	
104	Y',,'	1 1/		anally sear the attention clark cation	
105	11	4	CLARAT	1 No. 100 IMOSITE S/IMAGITE ATTENTION NUMBER ALL TE	
28 106	July 16/90	11	chloritic tul	pervasive sincification, Nuggy te vuggy linestone, 24 dyke contact	
28/20	July 20/90	S O Mt. Eaton	Fe limestone trachi	te vuos Vinestone at dyke contact	
121	V''_{η}	· · · · · · · · · · · · · · · · · · ·	Fe limestone.	calcite filled diffation practures	
122	4	¥.	4	quasta vein, mina herratite	
123	4	<u> </u>	· · · ·	Provided at anter te più in shore	
124	11	11	algal limestone.	quartz veins parallal to tradding massive enhedral pyrit	ē.
125	11	11	limestone/digite	quartz veins parallal to tradding massive enhedral pyrit intrusive contact, how filled linestone minor pyrite	
126	4	4	limestone Hull	gtz-aukenite-calcite Jein network moderate pyrite	
127	11	4			
128	4	<i>4</i>	chloitic tuff	gtz-epidote - Kyanite Vein,	
129	4	4	· · · · · · · · · · · · · · · · · · ·	Rimoniti- alteration of postures gasin dyke	
130	4	4	1,	high linon te alteration oxidized sulphides	
28 131	4 1	1/	"	quarta-enidate- l'anite vein	-/
28 151	July 15/90	NW & Mt. Eaton	quarta vein	agglomeratic host, high limonite & parosite alteration moderate print	18,
28/52		4		in the the law of the	
/53_		SSW Q Mt. Eaton	chloritic tul	gta ven netural " " moderate printe	
180		S.J. Mt. Manvill		Bevasive chlaitic attention	
[8]	V_{i}	0	4	penvasive chlatic & limaitic alteration	
/82	4	1/2	17	sheared moderate limonite minor serieste attention	
183	4	'r	и	pervasive chlortic mina knowtic attention	
184	4	4	11	sheared, maderate limonitic angillic alteration	
185	4	<u> </u>	, (<i>.</i>	the state of the trave prate	
186	17	k	quarta Vein	moderate limante, mind prosite attention mino prite	
187	4	'/) // // // // // // // // // // // // //	Il noderate linatic carsitic alteration miderate duri	2
28 188	1,	.,	11	D siliceous Tuffaceous host moderate pyrite tracehalco	voite.

Mf. Eaton Pravec

Sample:	Date:	Location	Lithology	Remarks / Alteration / Structure:	Mineralization:	Analysis:
28189	July 20/90	5 of Mt. Mayilla		sheared limonite in fractures		
190	0^{\prime}	1	· · · · · · · · · · · · · · · · · · ·	quarta veinlets		
191	11	9	1,	quarte epidate, win notifork		
192	11	11	ata vein chloritic tall	1 Sta Series parallel to tedding.	mina pyrite	
28/93	4	"	chloritic tal	moderate limmite trace parosite all	Pration	
29807	July 29/90	E J M. Eaton	guarta vein	ata voin in chloitic tull boulder lina	te attention trac pyrite	
803	0.1.1	1 17	naciated cher	Moderate prosite linouite alterat	Ton Moderate phi	É.
309	<u> </u>	NW of Mt. Eaton	chlaiti-tuff	metasomethed, Juggy silicified, serici	e attention	
810			÷	11 11 11 11 11		
		E 9 Mt Manville		Excited Vugar ata Amonte vein in the	an, mind pyrite	
BUL		4		gto veining parallel to shear moderate l	insite alter there pyrite oxidized sulphides in fra	
B(3	<u> </u>	4	<u>'</u>	Righ angillic attention & Elicification	oxidized sulphider in fra	Tures
BIY	4	N. J. Mt. Manulk		gtz vein, moderate lina te alteration	- 0	
815	Ŷ	11	<u>4</u>	De high limonite attention & bo	ereigtion	
29816		4		appomenate host at epidate veining of veinlets & jegosite attention in t	9	
31 694	"	E of Mt. Eaton		gtz kindets & jerosite attention in 1	oulders trace pyrite	
695		(grausodisite	Rina quarta vaining Dimensitic atteration in fractur high Limon to alteration in she		
698		د.	<u> </u>	Cinquitic attention in pactur	<u>و</u>	
699	4	E J Mt. Marvill	e chlaitis tall	high limon tic attenation in she	ar	ļ
31700	4	· · · · · · · · · · · · · · · · · · ·	<i>" №</i>	moderate " " "	trace pyrite	
35000	· · · · · · · · · · · · · · · · · · ·	14	4	······································		
	4	4	K	sheared - quartz vein lets		
002	<u>"</u>	4		shoped the chicking		<u> </u>
003	*	······································	gupata spidite ver			
35004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥	chla fin tuf	gt vein mind limonitic altera	lian	
	ļ		(0)		·	
ļ						
l						

, 1 APPENDIX II

ľ

3

ASSAY CERTIFICATES

.

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9736

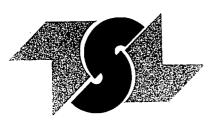
INVOICE #: 14454 P.O.: R-2093

SAMPLE(S) OF ROCK

P. Brucciani Project: Mt. **F**aton

REMARKS:

Suntac Camp Kawdy Ventures


Au ppb 28101 <5 28102 10 28103 5 28104 <5 28105 <5 28106 <5 28151 25 28152 <5 28153 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: OreQuest Consultants-Vancouver

Aug 26/90

Beinie a SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 1 of 1

Л,

TSL LABORATORIES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9732

INVOICE #: 14435 P.O.: R-2103

SAMPLE(S) OF ROCK

P. Brucciani Project: Mt. **F**aton

REMARKS:

Suntac Camp Kawdy Ventures

		u pb
28120 28121 28122 28123 28123 28124	< < <	5 5 5 5 5 5
28125 28126 28127 28128 28129	< < <	5 5 5 5 5
28130 28131 28180 28181 28182	<	5 5 5 5 5
28183 28184 28185 28186 28187	< < <	55555
COPIES	TO:	С

COPIES TO: C. Idziszek, J. Foster INVOICE TO: OreQuest Consultants-Vancouver

Aug 26/90

SIGNED .

Remie 1) Page 1 of 2

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14435 P.O.: R-2103

SAMPLE(S) OF ROCK

P. Brucciani Project: Mt. Gaton

REMARKS: Suntac Camp Kawdy Ventures

Au ppb 25 <5

28190 <5 28191 <5 28192 <5

.

28188 28189

28193 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: OreQuest Consultants-Vancouver

Aug 26/90

Bernie U SIGNED Page 2 of 2

INVOICE #:

P.O.:

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9469

R-2166

14551

SAMPLE(S) OF Rock

...

Project: Mt. Eaton

REMARKS: OreQuest Consultants

	Au ppb
29807 29808 29809 29810 29811	<5 <5 <5 40
29812	50
29813	<5
29814	<5
29815	<5
29816	<5
31694	<5
31695	5
31698	<5
31699	<5
31700	<5
35000	<5
35001	<5
35002	<5
35002 A	<5
35003	25
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Aug 13/90

SIGNED

Bernie Vun Page 1 of 2

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9469

INVOICE #: 14551 P.O.: R-2166

SAMPLE(S) OF Rock

Project: Mt. Gaton

REMARKS: OreQuest Consultants

Au ppb

<5

35004

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

Bernie Di SIGNED .

Page 2 of 2

..

2-302-48TH STREET. SASKATOON, SASKATCHEWAN S78 5A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LT 10th Floor Box 10 808 West Hastings St Vancouver B.C. V&C 2 ATTN: J. FOSTER	•	MT. GATON	I OREQ	JEST CONSUL	TANTS LTD.	T.S.L. T.S.L. T.S.L. R-2093	9333
1	26101	28102	28103	28104	28105	28106	
ELEMENT							
Aluminum [Al]	2400	1400	11000	4700 ⁻	2200	9900	
Iron [Fe]	19000	26000	19000	6800	32000	26000	
Calcium [Ca]	2000	4200	17000	1200	320	640	
Maonesium [Mo]	700	1700	5800	2900	1100	6100	
Sodium [Na]	30	40	340	300	550	170	
Potassium [K]	1700	300	840	710	.940	840	
Titanium [Ti]	100	10	75	11	1300	190	
, Manganese [Mn]	19	30	710	210	35	150	
Phosphorus (P)	700	120	160	280	270	360	
Barium [Ba]	18	4	140	22	21	120	
• Chromium (Cr)	94	110	68	40	60	26	
Zirconium [Zr]	7	5	4	2	4	4	
Copper ECu3	360	61	43	8	10	17	
Nickel [Ni]	74	69	12	5	ů,	4	
Lead [Pb]	2	Č.	Z	2	Ž	2	
Zinc [Zn]	22	19	44	13	3	8	
Vanadium [V]	10	4	16	7	27	23	
Strontium [Sr]	8	36	53	5	13	6	
Cobalt [Co]	31	9	2	3	3	á	
Molybdenum [Mo]	6	10	< 2	< 2	36	< 2	
Silver [Ao]	< 1	< 1	< 1	< 1	< 1	< 1	
Cadmium [Cd]	2	1	< 1	< 1	< 1	< 1	
Beryllium [Be]	< 1	< 1	< 1	< 1	< 1	< 1	
Baran [B]		< 10	< 10	< 10	< 10	< 10	
Antimony [Sb]	60	10	< 5	< 5	< 5	< 5	
Yttrium [Y]	4	1	3	2	1	3	
Scandium (Sc)	$\langle 1 \rangle$		5	3	2	3	
Tungsten [W]	< 10 < 10	< 10	< 10 7 10	< 10	< 10	< 10	
Niobium [Nb] Thorium [Th]	< 10 < 10	< 10 < 10	< 10 10	$\begin{pmatrix} 10 \\ 10 \end{pmatrix}$	10 < 10	< 10 30	
Arsenic [As]	250	100	10 10	< 10 10	× 10 5	(5	
Bismuth (Bi)	250 10	100	10 25	10 10	э 10	ка 15	
Tin [Sn]	< 10	< 10	< 10	< 10	< 10	$\langle 10 \rangle$	
Lithium [Li]	< 5	< 5	× 10 15	< 5	< 5	10	
Holmium (Hol	< 10	< 10	< 10	< 10	< 0 40	10 < 10	
noimium (HU)	\times 1V	× 10	\ 1V	\ 1V	412	$\times 10$	

DATE : AUG-25-1990

SIGNED : Beinie Dunn

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Adua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9736 - 2	
10th Floor Box 10	T.S.L. File No. :	
808 West Hastings St.	7.S.L. Invoice No. : 14757	
Vancouver B.C. V6C 2X6		
ATTN: J. FOSTER PROJECT: MT. GATON OREQUEST CONSULTANTS LTD.	R-2093 ALL RESULTS PPM	

FI	FMENT	

. .

28151 28152 28153

A	ในสากปล	[A1]	760) 610	1900
Ι	กอก	[Fe]	37000) 63000	23000
С	alcium	(Ca)	13000) 560	1000
М	aonesium	[Ma]	3900) 370	200
5	odium	[Na]	·) 30	190
p	otassium	EK]	2504) 230	1200
T	itanium	[Ti]	170) 81	1600
M	anganese	(an]	130) 12	8
ş	hosphorus	[P]]	4300) 190	240
В	arium	[Ba]	54	6 6	37
C	hromium	[Cr]	₿4	4 65	22
Z	irconium	[2r]	-	<u> </u>	4
C	dooer	(Cu]	23	7 2	ę
N	ickel	[Ni]	7() 130	21
L	ead	[Pb]	-	7 5	Z
2	inc	[Zn]	24	4 6	2 2 13
V	anadium	[V]	1		13
S	trontium	(Sr)	3	9 5	5
C	obalt	[Co]	14	l 12	8
М	olybdenum	[Ma]	$\langle \cdot \rangle$	2 44	8
5	ilver	(Ag)	$\langle \rangle$	1 < 1	< 1
C	admium	[Cd]	14		< 1
В	eryllium	[Be]	$\langle \cdot \rangle$	1 < 1	< 1
	noran	[B]	< 10) < 10	< 10
A	ntimony	[Sb]	15		< 5
Y	ttrium	[Y]		7 1	2
S	candium	(Sc)	-	2 < 1	< 1
T	unosten	[W]	1() < 10	< 10
N	iobium	(Nb)	< 10		< 10
T	horium	[Th]	< 10		< 10
A	rsenic	[As]	82() 140	30
B	ismuth	[Bi]	2(< 5
T	in	[Sn]	< 10		< 10
	ithium	[Li]	15		< 5
Н	olmium	[Ho]	60) 20	50

SIGNED : Beine Ourn

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 644 TELEPHONE #: (306) 931 ~ 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V Attn: J. Foster	0 s St. 6C 2X6	Project:	MT. ATON		R-2103	T.S.L. T.S.L. In	File	No. : No. :	
ELEMENT		28120	28121	28122					
	[A1] [Fe]	12000 27000	9700 23000	1200 7600					

21.0211		E1000	23000	7000
Calcium	[Ca]	26000	14000	11000
Magnesium	[Ma]	3800	3200	520
Sodium	[Na]	140	130	50
Potassium	[K]	1000	1100	170
Titanium	[Ti]	34	10	15
Manganese	[Mn]	320	170	120
Phosphorus	[P]	400	210	130
Barium	[Ba]	72	70	380
Chromium	{Cr]	31	37	94
Zirconium	[]]	3	2	< 1
Copper	(Cu)	29	15	2
Nickel	[Ni]	17	13	4
Lead	(Pb]	1	4	c,
Zinc	[Zn]	64	69	5
Vanadium	[V]	32	16	4
Strontium	[Sr]	110	240	86
Cobalt	(Co)	6	5	1
Molybdenum	[Mo]	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1
Cadmium	[Cd]	1	< 1	< 1
Beryllium	(Be)	< 1	< 1	~ 1
Baron	[B]	< 10	< 10	< 10
Antimony	(Sb)	5	< 5	< 5
Yttrium	[Y]	6	4	< 1
Scandium	[Sc]	5	2	< 1
Tungsten	[W]	< 10	< 10	< 10
Niobium	(Nb)	< 10	< 10	< 10
Thorium	[Th]	20	20	< 10
Arsenic	[As]	100	10	< 5
Bismuth	[Bi]	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10
Lithium	[Li]	10	15	< 5
Holmium	[Ho]	< 10	< 10	< 10

SIGNED : Beinie Dunn

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATI 10th Floor Box 808 West Hastin Vancouver B.C.	10 os St.						T.S.L. T.S.L. T.S.L.	File (ko. : S - ko. : ko. : 146)	9732 - 2 B0
Attn: J. Foste	٢	Project	t: MT. GAT	DN		R-2103		all resu	TS PPM	
ELEMENT		28123	28124	28125	28126	28127	28128	28129	28130	28131
Aluminum	[A]]	5700	7200	12000	13000	8900	4800	3400	9000	3300
Iron	[Fe]	17000	15000	27000	31000	45000	7600	8900	20000	5100
Calcium	[Ca]	45000	27000	73000	41000	11000	7900	1000	83000	19000
Magnesium	[Mg]	5900	5200	6200	6400	3200	3200	840	2900	1100
Sodium	[Na]	90	80	120	110	130	80	130	60	140
Potassium	EK]	370	350	220	64Ú	1300	9 0	1100	260	200
Titanium	[Ti]	11	91	20	Ь	7	370	19	8	130
- Manganese	[Mn]	330	190	770	340	190	130	290	500	220
Phosphorus		130	530	1200	700	220	160	98	320	320
Barium	[Ba]	37	14	15	- 33	59 -	41	60	690	40
• Chromium	[Cr]	26	72	15	26	27	76	39	35	41
Zirconium		2	2	3	4	4	2	<u>4</u>	7	i
Copper	[Cu]	14	12	2	35	30	11	1	35	4
Nickel	[Ni]	16	18	3	21	11	5	< 1	7	2
Lead	[Pb]	6	1	1	13	19	9	31	3	< 1
Zinc	[Zn]	29	26	47	30	31	11	38	54	8
Vanadium	[V]	25	23	18	25	20	17	< 1	28	11
Strontium	(Sr)	120	100	260	100	29	33	7	72	49
Cobalt	[Co]	6	7	4	13	8	4	< 1	3	2
Molybdenum		< 2	< 2	< 2	< 2	12	< 2	< 2 	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[b]]	11	< 1	< 1	< 1	1	< 1	< 1	< 1	< 1
Beryllium		< 1	< 1	< i	$\langle 1 \rangle$	< 1	(1		$\langle 1 \rangle$	< 1
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	15	5	5	5	5	< 5	< 5 -	< 5	< 5
Yttrium Coording	[Y]	5	4	15 c	7	2	< 1	3	20	2
Scandium	[Sc] [W]	2 < 10	2 < 10	5 < 10	4 < 10	2 < 10	1 < 10	< 1 < 10	8 < 10	< 1 < 10
Tungsten Niobium	twi [Nb]		< 10 < 10							
Thorium	[Th]	< 10 20	10	< 10 30	< 10 30	< 10 30	< 10 < 10	< 10 < 10		< 10 < 10
Arsenic	(As)	20	< 5	30 25	-30 45	30 65	× 10 < 5	< 10 35	10 10	
Bismuth	(Bi)	< 5	< 5 < 5	20 < 5	40 < 5	60 (5	< 5 < 5	35 (5	10 < 5	< 5 < 5
Tin	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Lithium	(Li]	< 10 10	< 10 15	× 10 20	< 10 30	< 10 10	< 10	< 10 < 5	< 10 15	< 10 5
Holmium	(Ho]	< 10	$\langle 10 \rangle$	< 10	< 10	< 10	< 10		10 < 10	、 (10
	CHO1	< 10 	× IΫ	× 10	× 10	\ 1V	\ 1V	< 10	× 10	V 1V

DATE : AUG-16-1990

SIGNED : _____ Bernie Ourn

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

28181

28180

Aqua-Regia Digestion

PRIME EXPLORATION LTD.			T.S.L.	REPORI	No.:	8 -	9732 - 3
10th Floor Box 10			7.S.L.	File	No.:		
808 West Hastings St.			T.S.L.	Invoice	No.:	1468()
Vancouver B.C. V6C 2X6							
Attn: J. Foster	Project: MT. GATON	R-2103		ALL REE	WLTS PP	m	

ELEMENT

Aluminum	[A]]	4700	8500
Iron	{Fe]	14000	23000
Calcium	{Ca}	6300	3500
Magnesium	[Mg]	2700	3600
Sodium	[Na]	130	80
Potassium	[K]]	1100	460
Titanium	[Ti]	17	12
Manganese	[Mn]	270	840
Phosphorus	(P)	240	150
Barium	[Ba]	71	23
Chromium	{Cr]	20	12
Zirconium	[Zr]	< 1	2
Copper	[Cu]	14	4
Nickel	[Ni]	3	3
Lead	[Pb]	1	13
Zinc	[Zn]	18	73
Vanadium	[V]]	10	7
Strontium	[Sr]	17	5
Cobalt	[Co]	4	4
Molybdenum	[Mo]	< 2	< 2
Silver	(Aq)	< 1	< 1
Cadmium	(Cd]	< 1	< 1
Beryllium	[Be]	< 1	< 1
Baran	(B)	< 10	< 10
Antimony	[Sb]	< 5	< 5
Yttrium	[Y]	3	2
Scandium	(Sc]	1	< 1
Tungsten	[W]	< 10	< 10
Niobium	[No]	< 10	< 10
Thorium	[Th]	< 10	50
Arsenic	[As]	< 5	15
Bismuth	[Bi]	< 5	< 5
Tin	[Sn]	< 10	< 10
Lithium	[Li]	< 5	5
Holmium	[Ho]	< 10	< 10

DATE : AUG-16-1990

. .

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X& Attn: J. Foster	0ih-	MT. GATON			3 3467	T.S.L. T.S.L. T.S.L.	File * Invoice *	Ho. : 5 - Ho. : Ho. : 1466		
- MINI J. POSLER	LLOJEC1:	ni. CHIUN		Ĩ	R-2103		ALL RESUL	.15 FFR		
ELEMENT	28182	28183	26184	28185	28186	28187	28186	28189	28190	28191
Aluminum [Al] Iron [Fe] Calcium [Ca] Magnesium [Mg] Sodium [Na] Potassium [K]	7500 15000 17000 2400 50 1500	14000 27000 5200 4300 50 770	2400 11000 360 1400 30 220	18000 29000 11000 6500 90 2300	1300 2900 520 960 20 120	270 1800 200 170 40 50	7000 9600 1100 4600 40 530	19000 21000 4300 7400 400 100	14000 15000 28000 5700 710 1600	18000 20000 6200 7400 350 380
Titanium (Ti) - Manganese (Mn) Phosphorus (P)	68 590 260	42 360 380	6 84 98	260 580 440	12 39 48	6 50 32	13 140 74	900 520 440	810 710 540	690 540 400
Barium [Ba] Chromium [Cr] Zirconium [Zr] Copper [Cu]	51 12 2 26	57 25 2 49	130 26 1 18	76 24 5 12	11 69 < 1 2	6 130 < 1 2	2000 69 < 1 19	93 75 3 38	100 35 3 44	48 140 3 32
Nickel [Ni] Lead [Pb] Zinc [Zn]	3 14 37	9 9 69 -	22 4 31	11 < 1 45	2 2 5	3 2 2	13 3 44	46 2 43	22 < 1 28	64 < 1 35
Vanadium (V) Strontium [Sr] Cobalt [Co] Molybdenum [Mo]	5 31 4 < 2	10 17 8 < 2	10 2 2 < 2	60 46 13 < 2	3 3 < 1 < 2	< 1	16 61 < 2	36 12 20	35 34 10	38 10 15
Silver (Ag) Cadmium [Cd] Beryllium [Be]	< 1 < 1 < 1	< 1 < 1 < 1		$\begin{array}{c} & & 2 \\ & < & 1 \\ & < & 1 \\ & < & 1 \end{array}$		< 1 < 1 < 1	< 2 < 1 < 1 < 1	< 2 < 1 < 1 < 1	< 2 < 1 < 1 < 1	< 2 < 1 < 1 < 1
Boron [B] Antimony (Sb] Yttrium [Y]	< 10 < 5 3	< 10 < 5 3	< 10 < 5 < 1	< 10 < 5 4	< 10 < 5 < 1	$\begin{array}{c} \langle 10 \\ < 5 \\ < 1 \end{array}$	< 10 < 5 1	< 10 < 5 2	< 10 < 5 3	< 10 < 5 2
Scandium (Sc) Tungsten (W) Niobium [Nb] Thorium [Th]	<pre> < 1 < 10 < 10 < 10 < 10 < 10 < 20</pre>	1 < 10 < 10 20	1 < 10 < 10 < 10	10 < 10 < 10 30	< 1 < 10 < 10 < 10	<pre> < 1 < 10 < 10 < 10 < 10 < 10 </pre>	<pre>< 1 < 10 < 10 < 10 < 10 < 10</pre>	1 < 10 < 10 30	2 < 10 < 10 < 10	1 < 10 < 10 < 10
Arsenic (As] Bismuth (Bi) Tin (Sn) Lithium (Li) Holmium (Ho)	$\begin{array}{ccc} 20 \\ < & 5 \\ < & 10 \\ < & 5 \\ < & 10 \end{array}$	<pre>< 5 < 5 < 10 15 < 10</pre>	5 < 5 < 10 < 5 < 10	< 5 < 5 < 10 10 < 10	<pre> < 5 < 10 < 10 < 10 < 10 </pre>	<pre> < 5 < 10 < 10 < 10 < 10 < 10 </pre>	<pre></pre>	15 < 5 < 10 10 < 10	<pre></pre>	5 . < 5 < 10 15 < 10 ·

DATE : AUG-16-1990

İ

SIGNED : Bernie Our

. .

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

28193

28192

Aqua-Regia Digestion

PRIME EXPLORATION LTD.		T.S.L.	REPORT	No.:	<u> 9</u> -	9732 - 5	ļ
10th Floor Box 10		T.S.L.	File	No.:			
808 West Hastings St.		T.S.L.	Invoice	No.:	1468	Q	
Vancouver B.C. V6C 2X6							
Attn: J. Foster Project: MT. GATON	R-2103		ALL RESI	ULTS PP	M		

		20172	20173
ELEMENT			
Aluminum	[A]]	1500	11000
Iron	[Fe]	3400	18000
Calcium	[Ca]	1000	8300
Magnesium	[Mg]	960	6400
Sodium	[Na]	50	110
Potassium	[K]]	140	910
Titanium	[Ti]	29	780
Mandanese	(Mn)	280	350
Phosphorus	[P]	74	550
Barium	[Ba]	34	17
Chromium	[Cr]	94	19
Zirconium	[25]	< 1	2
Copper	{Cu}}	8	4
Nickel	[Ni]	8	12
Lead	(Pb]	5	3
Zinc	[[n]	7	31
Vanadium	[V]]	3	27
Strontium	[Sr]	5	9
Cobalt	[Co]	1	11
Molybdenum		< 2	< 2
Silver	(Ag)	< 1	< 1
Cadmium	[[6]]	< 1	< 1
Beryllium	[Be]	< 1	< 1
Boron	[B]	< 10	< 10
Antimony	(Sb)	10	< 5
Yttrium	[Y]	< 1	2
Scandium	(Sc)	< 1	1
Tungsten	[W]	< 10	< 10
Niobium	[Nb]	< 10	< 10
Thorium	[Th]	< 10	20
Arsenic	[As]	15	< 5
Bismuth	[Bi]	< 5	< 5
Tin	[Sn]	< 10	< 10
Lithium	[Li]	< 5	20
Holmium	(Ho)	< 10	< 10

Berie Vum

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 ATTN: J. FOSTER ELEMENT Aluminum [A1] Iron [Fe] Calcium [Ca] Magnesium [Mg] Sodium [Na] Potassium [Mg] Sodium [Na] Potassium [K] Titanium [Ti] Manganese [Mn] Phosphorus [P] Barium [Ba] Chromium [Cr] Zirconium [Cr] Zirconium [Cr] Copper [Cu] Nickel [Ni] Lead [Pb] Zinc [Zn] Vanadium [V] Strontium [Sr] Cobalt [Co] Molybdenum [Mo] Silver [Ag]	29807 7300 16000 1100 3800 110 530 60 170 240 11	MT. ZATON 29808 2600 6500 420 680 50 610 30 180 100	OREQUEST 29809 7000 5300 9200 1000 70 60 1300	CONSULTA) 27810 10000 10000 14000 2800 580	NTS LTD. 29811 20000 33000 7200 6900	R-2166 29812 30000 45000 21000	File 1 Invoice 1 ALL RESU 29813 2900 11000 860	No.: 149	204 29815 3200 17000	29815 5900 9800
ATTN: J. FOSTER ELEMENT Aluminum [A1] Iron [Fe] Calcium [Ca] Magnesium [Mg] Sodium [Na] Potassium [K] Titanium [Ti] Manganese [Mn] Phosphorus [P] Barium [Ba] Chromium [Cr] Zirconium [2r] Copper [Cu] Nickel [Ni] Lead [Pb] Zinc [Zn] Vanadium [V] Strontium [Sr] Cobalt [Co] Molybdenum [Mo]	29807 7300 16000 1100 3800 110 530 60 170 240 11	29808 2600 6500 420 680 50 610 30 180	29809 7000 5300 9200 1000 70 60	27510 10000 10000 14000 2800 580	29811 20000 33000 7200	29812 30000 45000 21000	29813 2900 11000 860	29814 11000 17000	3200 17000	3900
Aluminum[Al]Iron[Fe]Calcium[Ca]Magnesium[Mg]Sodium[Na]Potassium[K]Titanium[Ti]Manganese[Mn]Phosphorus[P]Barium[Ba]Chromium[Cr]Zirconium[Zr]Copper[Cu]Nickel[Ni]Lead[Pb]Zinc[Zn]Vanadium[V]Strontium[Sr]Cobalt[Co]Molybdenum[Mo]	7300 16000 1100 3800 110 530 60 170 240 11	2600 6500 420 680 50 610 30 180	7000 5300 9200 1000 70 60	10000 10000 14000 2800 580	26000 33000 7200	30000 45000 21000	2900 11000 860	11000 17000	3200 17000	3900
Iron [Fe] Calcium [Ca] Magnesium [Mg] Sodium [Na] Potassium [K] Titanium [Ti] Manganese [Mn] Phosphorus [P] Barium [Ba] Chromium [Cr] Zirconium [Cr] Zirconium [Cr] Copper [Cu] Nickel [Ni] Lead [Pb] Zinc [Zn] Vanadium [V] Strontium [Sr] Cobalt [Co] Molybdenum [Mo]	16000 1100 3800 110 530 60 170 240 11	6500 420 680 50 610 30 180	5300 9200 1000 70 60	10000 14000 2800 580	33000 7200	45000 21000	11000 860	17000	17000	
Sodium [Na] Potassium [K] Titanium [Ti] Manganese [Mn] Phosphorus [P] Barium [Ba] Chromium [Cr] Zirconium [Zr] Copper [Cu] Nickel [Ni] Lead [Pb] Zinc [Zn] Vanadium [V] Strontium [Sr] Cobalt [Co] Molybdenum [Mo]	110 530 60 170 240 11	50 610 30 180	60	560		8500	1300	4700	37000 6000	8200 2700
Phosphorus (P) Barium (Ba) Chromium (Cr) Zirconium [Zr] Copper (Cu) Nickel (Ni) Lead (Pb) Zinc (Zn) Vanadium (V) Strontium (Sr) Cobalt (Co) Molybdenum (Mo)	240 11			450 1400 200	100 710 240	60 900 .64	320 1400 24	150 540 11	210 800 2	100 220 150
Zirconium [Zr] Copper [Cu] Nickel [Ni] Lead [Pb] Zinc [Zn] Vanadium [V] Strontium [Sr] Cobalt [Co] Molybdenum [Mo]	110	15 94	180 360 5 54	200 480 13 49	2000 240 110 58	2900 250 180 21	170 64 140 43	1300 280 170 62	760 160 84 33	290 130 11 84
Zinc [Zn] Vanadium [V] Strontium [Sr] Cobalt [Co] Molybdenum [Mo]	2 12 9	3 5 2	6 3 5	10 22 5	5 57 180	9 75 66	3 7 7	3 17 7	3 50 5	1 22 4
Cobalt [Co] Molybdenum [Mo]	2 25 36 4	93 31 2	31 22 17 31	7 16 35 31	29 360 73 18	34 120 69 23	10 11 4 6	3 24 29 69	2 28 16 43	3 13 24 14
waarer enga	+ 5 4 < 1	1 62 5	3 4 < 1	4 < 2 < 1	16 8 10 < 1	23 11 2 1	0 1 4 < 1	67 7 < 2 < 1	43 4 2 (1	14 3 (2 (1
Cadmium [Cd] Beryllium [Be] Boron [B]	$\langle 1 \\ \langle 1 \\ \langle 10 \rangle$	< 1 < 1 < 10	$\langle 1 \\ \langle 1 \\ \langle 10 \rangle$	$\begin{pmatrix} < & 1 \\ < & 1 \\ < & 10 \end{pmatrix}$	2 < 1 < 10	< 1 < 1 < 10	< 1 < 1 < 10	$egin{array}{ccc} < & 1 \ < & 1 \ < & 10 \end{array}$	< 1 < 1 < 10	$egin{array}{ccc} < & 1 \ < & 1 \ < & 10 \end{array}$
Antimony (Sb) Yttrium [Y] Scandium [Sc] Tungsten [W]	< 5 3 1 < 10	< 5 4 < 1 < 10	< 5 3 1 < 10	< 5 4 3 < 10	10 8 4 < 10	10 6 < 10	< 5 2 < 1 < 10	< 5 3 3 < 10	10 6 3 (10	< 5 2 < 1 < 10
Tungsten [W] Niobium [Nb] Thorium [Th] Arsenic [As]	< 10 < 10 < 10 < 5	<pre> 10 < 10 < 10 < 10 <10 <10 <15 </pre>	$\begin{array}{c} \times & 10 \\ < & 10 \\ < & 10 \\ < & 5 \end{array}$	< 10 < 10 < 10 5	< 10 < 10 < 40 70	<pre> < 10 < 10 < 50 70 </pre>	$\begin{array}{c} \times & 10 \\ < & 10 \\ < & 10 \\ & 10 \end{array}$	$< 10 \\ < 10 \\ < 10 \\ < 10 \\ < 5 $	<pre>< 10 < 10 < 30 30</pre>	$\begin{array}{c} 10 \\ < 10 \\ < 10 \\ < 10 \\ < 5 \end{array}$
Bismuth [Bi] Tin [Sn] Lithium [Li] Holmium [Ho]	< 5 < 10 20	<pre></pre>	< 5 < 10 15 50	< 5 < 10 30 50	10 < 10 40 40	20 < 10 70 20	 < 5 < 10 15 < 10 	5 < 10 35 < 10	10 < 10 20 10	< 5 < 10 20 < 10

DATE : AUG-25-1990

SIGNED : Beince Dim

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V ATTN: J. FOSTER	0 s St. 6C 2X6		. Gaton	OREQUES	t consulta	VTS LTD.		File	No. : S - No. : No. : 1490 LTS PPM		
ELEMENT		31694	31695	31698	31699	31700	35000	35001	35002	35003	35004
Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium	(A1) (Fe) (Ca) (Na) (K) (Ti) (Mn) (P) (Ba) (Cr) (Cr) (Cr) (Cu)	7500 14000 83000 4200 100 710 21 410 180 40 37 3 30	22000 31000 54000 50 660 90 680 2700 110 120 6 42	12000 15000 5500 370 470 1300 290 870 15 40 5 11	11000 7900 15000 50 90 1100 310 450 8 50 9 4	20000 26000 15000 830 1000 1400 470 350 13 29 11 44	26000 5600 16000 2400 3600 240 580 78 450 10 32 3 3 3	28000 34000 23000 9200 310 980 1100 770 290 60 36 14 80	19000 32000 31000 7700 190 830 110 850 420 280 26 8 56	27000 34000 25000 8400 180 380 710 730 300 25 21 9 43	29000 55000 12000 530 900 950 620 300 72 32 10 42
Nickei Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Beryllium Boron Antimony Yttrium	[Ni] (Pb] [Zn] [V] [Sr] [Co]	$6 \\ < 1 \\ 33 \\ 26 \\ 66 \\ 4 \\ < 2 \\ < 1 \\ < 1 \\ < 1 \\ < 10 \\ < 5 \\ 8 \\ 3 \end{bmatrix}$	65 < 1 36 79 120 19 < 2 < 1 < 1 < 1 < 10 5 13 4	$\begin{array}{c} 10\\ 3\\ 86\\ 34\\ 57\\ 8\\ < 2\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 4\\ 2\end{array}$	5 24 26 28 39 6 2 2 4 1 4 1 4 1 4 10 5 3 2	7 1 46 51 39 12 < 2 < 1 < 1 < 1 < 10 < 5 5 5	5 5 16 15 98 5 2 4 1 4 1 4 10 5 3 1	26 $\langle 1$ 45 110 63 20 $\langle 2$ $\langle 1$ $\langle 1$ $\langle 1$ $\langle 10$ 5 16	15 < 1 46 84 90 16 < 2 < 1 < 1 < 1 < 1 < 10 10 7 12	$ \begin{array}{c} 137 \\ < 1 \\ 45 \\ 130 \\ 50 \\ 200 \\ < 2 \\ < 1 \\ < 1 \\ $	+2 15 14 49 88 23 14 < 23 14 < 23 14 < 23 14 < 13 < 1 < 10 < 5 5
Tungsten Niabium Thorium Arsenic Bismuth Tin Lithium	(W) (W) (Nb) (Th) (As) (Bi) (Sn) (Li) (Ho)	<pre></pre>	4 < 10 < 10 10 < 5 25 < 10 40 20	< 10 < 10 < 20 < 5 < 5 < 10 50 50	$\begin{array}{c} 2\\ { m i0}\\ <\ { m i0}\\ <\ { m i0}\\ <\ { m 5}\\ <\ { m 5}\\ <\ { m 10}\\ 20\\ 40\\ \end{array}$	5 < 10 < 10 < 5 < 5 < 10 55 50	$\begin{pmatrix} 1 \\ < 10 \\ < 10 \\ < 10 \\ < 5 \\ < 5 \\ < 10 \\ 25 \\ 20 \\ \end{pmatrix}$	14 < 10 < 50 < 5 15 < 10 30 50	$\begin{array}{ccc} 12 \\ < 10 \\ < 10 \\ < 5 \\ 15 \\ < 10 \\ 35 \\ 10 \end{array}$	10 < 10 < 10 < 10 < 5 = 5 = 15 < 10 < 30 = 30 = 30	5 < 10 < 10 80 10 < 10 < 10 40 40

SIGNED : Bernie Arm

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

35002-A

12000

Aqua-Regia Digestion

PRIME EXPLORATION LTD.T.S.L. REPORT No. : S - 9469 - 310th Floor Box 10T.S.L. File No. :808 West Hastings St.T.S.L. Invoice No. : 14904Vancouver B.C. V6C 2X6Vancouver B.C. V6C 2X6ATTN: J. FOSTERPROJECT: MT. GATONOREQUEST CONSULTANTS LTD. R-2166ALL RESULTS PPM

ELEMENT

Aluminum [Al] Iron [Fe]

	a din a tridini		IL000
Ī	ron	(Fe]	16000
Ē	alcium	[Ca]	22000
۲ ۲	laonesium	[Mg]	4600
9	lodium	ENa]	50
F	otassium	[K]	290
T	itanium	(Ti]	1000
ř	langanese	[Mn]	400
F	hosphorus	[P]	550
E	arium	[Ba]	15
C	hromium	(Cr]	52
2	irconium	[2r]	5
C	opper	[Cu]	17
ĥ	lickel	ENi]	14
Ł	ead	[Pb]	< 1
2	inc	[Zn]	25
V	anadium	[V]	46
ŝ	Strontium	[5r]	200
£	obalt	[Co]	12
۲	lolybdenum	(Mo)	< 2
5	lver	[Ag]	< 1
C	admium	[Cd]	< 1
E	eryllium	{Be]	< i
E	loron	[B]	< 10
f	Intimony	[Sb]	< 5
ł	(ttrium	[Y]	4
E	Scandium	[Sc]	3
1	ungsten	[₩]	< 10
Ą	liobium	[Nb]	< 10
T	horium	[Th]	10
£	Irsenic	[As]	15
Ę	ismuth	[Bi]	< 5
1	in	(Sn]	< 10
ί	ithium.	[Li]	20
ł	lolmium	(Ho)	40

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

OreQuest Consultants Ltd. SAMPLE(S) FROM REPORT No. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2T5

S9646

INVOICE #: 14877 P.O.: R-2240

SAMPLE(S) OF Silts

P. Brucciani

Au ppb

	S-1	Not	Rec'd
	S-2	Not	Rec'd
_	<u> </u>	<5	
	S-4	<5	
	S-5	<5	
	S-6	<5	
_	S-7_	<5	
-	S-19	<5	
	S-20	<5	
	S-21	<5	
			MT. EATON PROJECT
	S-22	<5	
	S-23	<5	
	S-30	<5	

COPIES TO: B. Dewonck, J. Chapman OreQuest - Vancouver INVOICE TO:

Aug 25/90

Beince Vien SIGNED .

Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9569

INVOICE #: 14780 P.O.: R-2179

SAMPLE(S) OF Silts

Golden Trump

Project: Mt. Eaton

REMARKS: OreQuest Consultants

Au ppb <5

5

S46

S45

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 21/90

Bernie Di SIGNED .

Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASMA SCAN P

Aqua-Regia Digestion

					напа-кедт	a projection)				
PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V ATTN: J. FOSTER	10 2s St. 766 286		SUNTAC CAMP	OREQU	est consul'	rants R-:	T.S.L. T.S.L. T.S.L. 2240	File Invoice	No.: E:	- 9646 - 1 M7746 1156	
							1				
ELEMENT		S-3	5-4	5-5	S~6	S-7	S-19	5-20 MT. 3	S-21 EATON	S-22 PROJECT	S-23
Aluminum	[A]]	23000	17000	12000	17000	6100	29000	31000	24000	15000	20000
Iron	[Fe]	24000	28000	40000	31000	32000	45000	42000	30000	27000	32000
Calcium	[Ca]	23000	19000	7400	4400	4000	5300	3700	4400	19000	5300
Magnesium	(Mg)	6500	7200	6800	5800	2500	7 8 00	7900	6600	6500	7000
Sodium	[Na]	1500	1000	470	600	370	290	200	. 110	120	150
Potassium	(K - J	1900	2500	2300	1800	970	640	1400	720	520	340
Titanium	[Ti]	1300	1200	1100	560	500	410	470	590	680	400
Manganese	(Mn]	450	290	310	660	160	830	1100	840	490	590
Phosphorus		750	900	1100	590	600	500	500	510	780	580
Barium	(Ba)	120	110	120	160	55	51	190	220	36	39
Chromium	[0]	29	60	93	250	39	55	69	46	36	35
Zirconium -	[[r]	4	4	7	5	3	8	ዮ	5	6	5
Copper	[£u]	45	44	34	52	14	120	110	49	35	32
Nickel	[Ni]	17	29	38	120	10	28	41	27	31	27
Lead	[Pb]	12	< 1	2	4	39	4	25	9	4	11
Zinc	[2n]	170	100	37	190	49	84	88	86	58	69
Vanadium	[\]	68	68	130	62	110	130	110	62	47	54
Strontium	[Sr]	68	57	46	36	22	24	22	24	44	19
Cobalt	[Co]	10	10	16	14	5	21	22	12	10	11
Molybdenum	(Mo)	< 2	Κ 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	{Ag}	< 1	< 1	< 1	< 1	< 1	× 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	2	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	10	5
Yttrium	[Y]	6	6	3	5	4	5	11	10	7	- 7
Scandium	[Sc]	4	4	5	5	2	9	11	5	4	5
Tungsten	{W}]	< 10	< 10	< 10	< 10	20	< 10	< 10	< 10	< 10	< 10
Niobium	(Nb)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	(Th]	30	20	20	< 10	110	30	40	40	30	
Arsenic	(As)	35	10	15	40	5	10	190	70	40	25
Bismuth	[Bi]	5	< 5	< 5	< 5	10	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	20	15	25	5	20	25	25	20	30
Holmium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 < 10	< 10
					•••		*				

DATE : SEP-03-1990

SIGNED : Beince Arm

_~

TSL LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #: I.C.A.P. PLASMA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. REPORT No. : 5 - 9569 - 1 T.S.L. 10th Floor Box 10 T.S.L. File No. : 808 West Hastings St. T.S.L. Invoice No. : 15017 Vancouver B.C. V6C 2X6 EATON ATTN: J. FOSTER PROJECT: MT. BADON OREQUEST P.O. R-2179 ALL RESULTS PPM S45 546 ELEMENT Aluminum [A]] 5700 32000 Iron (Fe] 43000 30000 Calcium [Ca] 2600 13000 Maonesium [Mo] 2700 6000 Sodium [Na] -90 3300 Potassium [K] 690 5800 Titanium [Ti] 710 1800 Manganese [Mn] 360 340 610 590 Phosphorus (P] Barium 27 [Ba] 210 Chromium (Cr) 14 -57 Zirconium [Zr] 3 6 Copper (Cu) 11 74 Nickel [Ni] 4 19 17 Lead [Pb] < 1 49 Zinc [[n] 56 [V] 54 Vanadium 110 Strontium [Sr] 10 86 3 Cobalt [Co] 11 Molybdenum [Mo] 4 < 2 < 1 Silver [Ao] $\langle 1$ < 1 Cadmium [[b]] < 1 Beryllium [Be] < 1 < 1 < 10 < 10 Boron [B] < 5 < 5 Antimony [Sb] Yttrium [Y] 20 6 Scandium -2 6 [Sc] Tunasten [₩] 20 < 10 < 10 Niobium < 10 [Nb] Thorium [Th] 110 30 < 5 Arsenic [As] 15 Bismuth [Bi] 20 10 < 10 Tin [Sn] < 10 Lithium 10 [Li] 25 Holmium [Ho] < 10 < 10

DATE : AUG-30-1990

ر

SIGNED : Bernie Dann

APPENDIX III

ANALYTICAL PROCEDURES

P

ľ

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Jan.9/90

OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver, B.C. V6C 2T5

1 - SAMPLE PREPARATION PROCEDURES Rock and Core

- Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.

Soils and Silts - Sample is dried and sieved to -80 mesh.

2 - FIRE ASSAY PROCEDURES

Geochem Gold (Au ppb) -

A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -

A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

Assay Silver (Ag oz/ton) -A 2.00g sample is digested with 15mls HCl plus 5mls HNO3 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCl. The solution is run on the Atomic Absorption.

BASE METALS
 Geochem - A lg subsample is digested with 5mls of aqua rega
 for 1 1/2 to 2 hours, then diluted with DI H20.
 The solutions are then run on the Atomic Absorption.

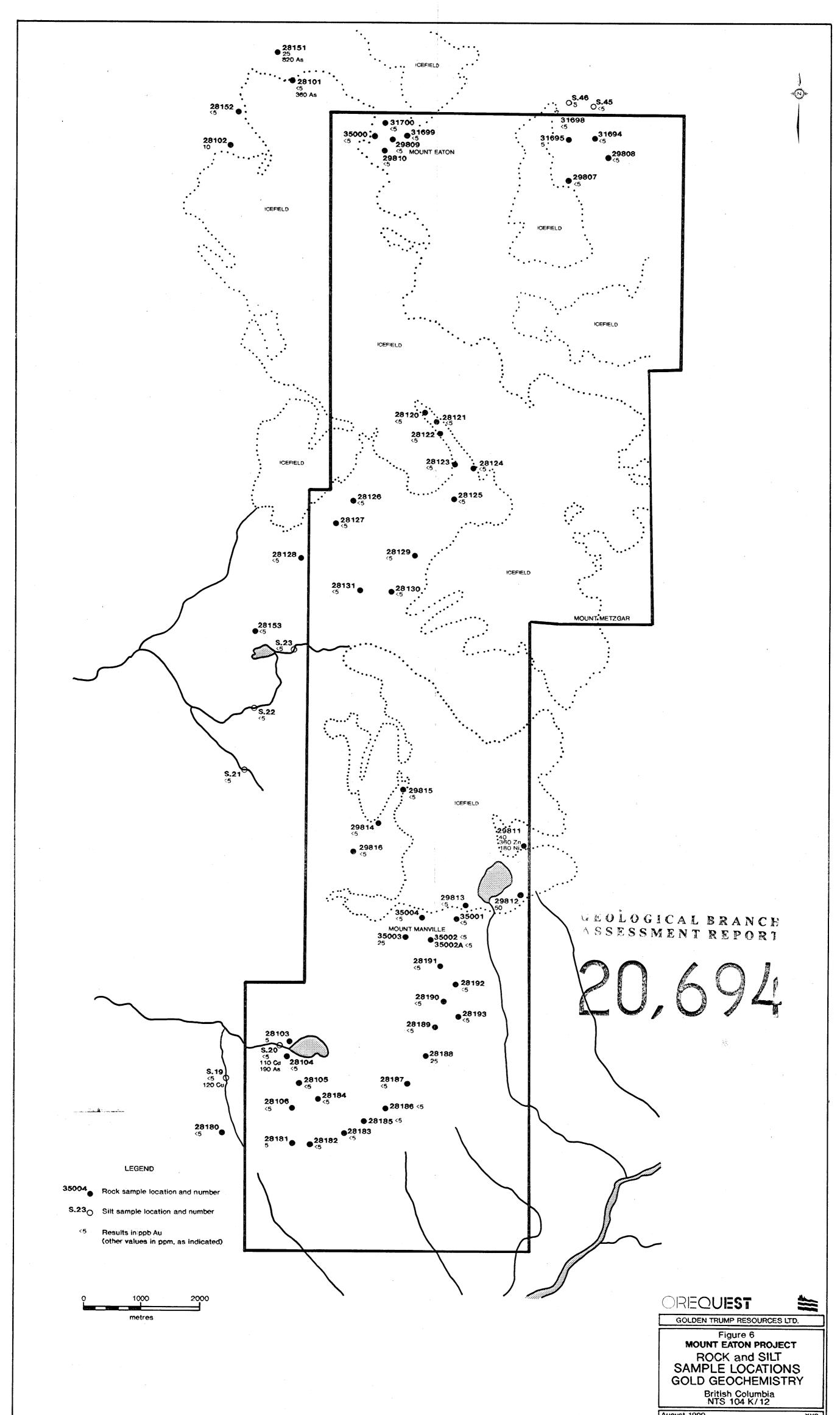
Assay - A 0.500g sample is taken to dryness with 15mls HCl plus 5mls HN03, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution is run on the Atomic Absorption.

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 ☑ (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the ICAP.


6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

Yours truly,

Bernie Dunn

Bernie Dunn BD/vh

