RD. LOG NO: LOG NO: RD. 2-31 the received ACTION: ACTION: from amendment black -FILE NO: FILE NO: Nightout Creek Project Report on DEC 1 3 1990 Geological / Geochemical Programs Gold Commissioner's Office VANCOUVER, B.C. on the Canyon 53, Gran 15 and Dayin 1 Claims Liard Mining Division N.T.S. 104 G/14 Latitude: 57°42'N Longitude: 131°17'W Owner: Equity Silver Mines Limited Suite 13 - 1155 Melville Stree ZC Vancouver, B.C. V6E 4C4 ◀ 🌬 2 Operator: 22 24 NAME AND A DESCRIPTION Apex Energy Corp. #717 - 620 West Hastings St Vancouver, B.C. () E V6B 1P2 Z Author: \mathbf{S} David St. Clair Dunn, F.G.A.C. HI-TEC RESOURCE MANAGEMENT LT හ #1500 - 609 Granville St. 2 0 Vancouver, B.C.) < V7Y 1G5 November 13, 1990

TABLE OF CONTENTS

1.0	INTRODUCTION	1 /
2.0	GEOLOGY	2 ,
	2.1 REGIONAL GEOLOGY 2.2 PROPERTY GEOLOGY	2 (3)
3.0	GEOCHEMISTRY	4
4.0	CONCLUSIONS	4 /
5.0	RECOMMENDATIONS	5 /
6.0	BIBLIOGRAPHY	6 /

_

~~

APPENDICES

APPENDIX A:	ANALYTICAL RESULTS /
APPENDIX B:	ANALYTICAL METHODS
APPENDIX C:	STATEMENT OF COSTS \checkmark
APPENDIX D:	STATEMENT OF QUALIFICATIONS \checkmark
APPENDIX E:	SAMPLING METHODOLOGY $$
APPENDIX F:	SAMPLE DESCRIPTIONS \checkmark

LIST OF FIGURES

AFTER PAGE

PAGE

FIGURE	1:	GENERAL LOCATION MAP	1
FIGURE	2:	CLAIM LOCATION MAP	1
FIGURE	3:	REGIONAL GEOLOGY	1
FIGURE	4:	TRENCH MAP-914 SHOWING	4 /

LIST OF MAPS

MAP	1	GEOLOGY	AND	SAMPLE	LOCATIONS	IN	POCKET	

1.0 INTRODUCTION

A reconnaissance geological, geochemical, trenching program was carried out on the Canyon 53 claim from 5th to the 8th of September, 1990 by a two person crew. Three pan concentrate and 10 rock samples were taken. The object of this program was to follow - up an anomalous stream sediment sample taken by Homestake Mineral Development Company in 1989 (silt sample # 31202 - 80 ppb Au).

The Canyon 53 claim is part of a larger block of claims Canyon 53 (4739) Dayin 1 (116250), and Gran 15 (4672). The claims were recorded June 28, 1988 and will be in good standing until June 28, 1991 on acceptance of this report. This group consists of 58 units (1450 hectares) and is collectively called the Nightout Creek Project. The claims are located in the Stikine River drainage, approximately 18 kilometers southwest of Telegraph Creek. (See Figures 1 and 2). Access was achieved by daily helicopter set-outs from Telegraph Creek. Alternatively, horse trails from Glenora Guest Ranch cross the property.

The claim group covers moderate to rugged topography with elevations ranging from 800 metres to 1700 metres. Treeline is at approximately 1375 metres with mature spruce and balsam with moderate undergrowth below this.

There are two references by Kerr (1948) to the area of the property. On page 74 he described a shatter zone in granodiorite filled with pegmatite, largely quartz and orthoclase. Bornite and chalcopyrite locally fill fractures in the quartz. This showing is recorded as Minfile occurrence 104 G 103 and was not visited during the present program. The other reference by Kerr is

LEGEND

Con a

1

MESOZOIC

CENOZOIC

QUATERNARY -
29 Fluvintile gravel; sand, silt; glacial outwash, till, alpine moraine and colluvius
28 Hot-soring deposit, tufa, arazonite
Olivine basalt, related pyroclastic rocks and loose tephra; younger than
27 some of 29
TERTIARY AND QUATERNARY UPPER TERTIARY AND PLEISTOCENE 26 Fayolite and dacite flows, lava domes, pyroclastic rocks and related sub- volcanic intrusions; minor basalt
25 Basalt, olivine basalt, dacito, related pyroclastic rocks and subvolcanic intrusions; minor rhyolite; in part younger than some 25
CRETACEOUS AND TERTIARY UPPER CRETACEOUS AND LOWER TERTIARY
24 Light green, purple and white rhyolite, trachyte and dacite flows, pyroclastic rocks and derived sediments
22 23 22. Biotite leucogranite, subvolcanic stocks, dykes and sills 23. Porphyritic biotite andesite, lava domes, flows and (?) sills
SUSTUT GROUP Chert-pebble conglomerate, granite-boulder conglomerate, quartzose sandstone, arkone, silistone, carbonaceous shale and minor coal
20 Felsite, quartz-feldspar porphyry, pyritiferous felsite, orbicular rhyolite; in part equivalent to 22
19 Medium-to coarse-grained, pink biotite-bornblende quartz monzonite
JURASSIC AND/OR CRETACEOUS POST-UPPER TRUSSIC PRE-TERTIARY
18 Hornblende diorite
T7 Granodiorite, quartz diorite; minor diorite, leucogranite and migmatite
JURASSIC
MIDDLE (?) AND UPPER JURASSIC BOWSER GROUP
16 Chort-pubble conglomerate, grit, greywacke, subgreywacke, siltstone and shale; may include some 13
MDDLE JURASSIC Basalt, pillow lava, tuff-breecia, derived volcaniciastic rocks and related subvolcanic intrusions
LOWER AND MIDDLE JURASSIC Shale, minor silistone, siliceous and calcareous silistone, greywacks and ironatone
LOWER JURASSIC Conglomerate, polymiotic conglomerate; granite-boulder conglomerate, grit, greywacke, silistone; basalite and andesitic volcanic rocks, peperites, pillow-breecia and derived volcaniciastic rocks
TRIASSIC AND JURASSIC POST-UPPER TRIASSIC PRE-LOWER JURASSIC
12 Syenite, orthoclase porphyry, monzonite, pyroxenite
HICKMAN BATHOLITH 10. Hornblende granodiorite, minor hornblende-quartz diorite 11. Hornblende quartz diorite, bornblende-pyroxene diorite, amphibolite and pyroxene-bearing amphibolite
TRIASSIC
9 Undifferentiated volcanic and sedimentary rocks (units 5 to 8 inclusive)
Augite-andesite flows, pyroclastic rocks, derived volcaniclastic rocks and related subvolcanic intrusions; minor greywacks, silistone and polymictic conglomerate
7 Siltstone, thin-bedded siliceous siltstone, ribbon chert, calcarsous and dolomictic silistone, greywacke, volcanic conglomerate, and minor limestone
6 Limestone, fetid argillaceous limestone, calcareous shale and reefold limestone; may be in part younger than some 7 and 8
5 Greywacke, siltsione, shale; minor conglomerate, tuff and volcanic sandstone
MIDDLE TRIASSIC Shale, concretionary black shale; minor calcareous shale and silistone

	Commenter
	MIDDLE AND UPPER PERMIAN
	3 Limestone, thick-bedded mainly bloclastic limestone; minor siltstone, chert
0	
. 00	DEPARTAN AND OLDER
LEO	Phyllite, argillaceous quartzite, quartz-sericite schist, chlorite schist,
AA	greenstone, minor chert, schistose tuif and limestone
	MISSISSIDDIAN
	Limestone, crinoidal limestone, ferruginous limestone; marcon tuff, chert
	and phyllite
	B Amphibolite, amphibolite gneiss; age unknown probably pre-Upper Jurassic
	Ultramafic rocks; peridotite, dunite, serpentinite; age unknown, probably
	pre-Lower Jurassic
	Anticline
de	Syncline
	Fault (defined and approximate, assumed)
	Thrust fault, teeth on hanging-wall side (defined and approximate, assumed).
	Fossil locality
	Mineral property
	Glacter
; in	
rit.	
lende.	
	and the second
lo	

also on page 74 and refers to a gold deposit at the junction of Nightout and Tsikhini Creeks, from which free gold was recovered by crushing and panning the This showing was not found by Kerr. rock. There is a very good possibility the showing described later in this report is the showing Kerr referred to. Other past work on the property consists of a program of geological mapping and rock sampling, carried out by Bart Mines Ltd. on the B and BM claims in 1973 (B.C. Assessment Report #4717), a reconnaissance geological / geochemical program carried out by Homestake Mineral Development Company (Marud, 1989), and further geological mapping carried out by Equity Silver Mines Limited in 1990. (Dynes, 1990).

The property is owned by Equity Silver Mines Limited and is under option to Apex Energy Corp.

2.0 GEOLOGY

2.1 Regional Geology

The property lies on the boundary between the Coast and Intermontane tectonic belts. This area is underlain by rocks of the Stikine Terrane (Stikinia) consisting of Paleozoic schists, phyllites and greenstones of the Stikine Assemblage, Mid to Upper Triassic sedimentary and volcanic rocks of the Stuhini Group (Kerr, 1948), and Late Cretaceous to Tertiary continental volcanic arc assemblages of the Sloko Group (Logan and Koyangi, 1989).

Three stages of plutonism are recognized in the area. The Hickman batholith is composed of Early to Middle Triassic quartz diorites and Middle Jurassic quartz monzonites. The third series of intrusive rocks are alkalic, generally syenitic, rocks of Early Jurassic age. These Early Jurassic rocks are associated with mineralization in the area, including the Galore Creek and Schaft Creek porphyry deposits.

The bedded rocks have undergone multiple stages of deformation, forming a complex structural pattern which is complicated by large differences in the competence of the different units. North and northwesterly trending normal faults are dominant with narrow westtrending extensional fault zones postdating them (Souther, 1972).

The most economically important exploration targets are porphyry copper-gold-silver deposits and peripheral mesothermal and shear zone-hosted precious metal veins (Logan et al, 1989).

2.2 Property Geology

The Nightout property is underlain by phyllites, chlorite and sericite schists, and volcanics of Permian age. These rocks strike northwesterly and dip moderately west. They have been intruded by a zoned Jurassic/Cretaceous granodiorite, quartz diorite, diorite and migmatite. This intrusive outcrops in the southwest portion fo the Gran 15 claim.

A strong northeast trending, quartz-pyrite bearing, carbonate altered shear zone was located and sampled at an elevation of 914 metres on Nightout Creek. This zone is twelve metres wide and is located 40 metres upstream from a silt sample which returned 80 ppb Au. The shear zone is hosted by andesite tuff, probably

part of the Permian Stikinia assemblage. Within the shear zone, this rock has been altered to an orange weathering schist composed largely of siderite and talc.

There are four quartz stringers ranging from 5 cm to 10 cm in the shear. These stringers are composed of milky white quartz with 0.5% to 1.0% pyrite. The attitude of the stringers and the schistosity range from a strike of 35° to 46° with a dip of 90° . The zone was hand trenched and chip sampled at 2.0 metre intervals for 12 meters (See Figure 4). No values of economic interest were returned.

3.0 GEOCHEMISTRY

Three pan concentrate samples were taken on Nightout Creek in an attempt to verify a silt sample taken by Homestake Mineral Development Company which ran 80 ppb Au. Analysis of these samples did not return any values of economic interest.

Analytical Results are included in Appendix A and Sampling Methodology in Appendix E.

4.0 CONCLUSIONS

The carbonate altered shear zone discovered at 914 metres elevation on Nightout Creek is a verv interesting new showing. The presence of abundant quartz stringer and pyrite in the zone is encouraging, even though samples to date have not returned any values of interest. This showing is probably the source of the 80 ppb Au silt anomaly reported by Homestake.

The copper showing located on the Gran 15 claims has not been worked on since 1973. This showing has good potential to host precious metals mineralization.

5.0 RECOMMENDATIONS

Further work on the Nightout Creek Project should consist of detailed prospecting, contour soil sampling and trenching in the area of the shear zone located at 914 metres elevation on Nightout Creek.

Detailed geological mapping and rock sampling should be carried out in the area of the copper showings on the Gran 15 claim.

This work should take a geologist and assistant two weeks and cost approximately \$25,000.

Respectfully Submitted,

David St. Clair Dunn, F.G.A.C.

- Brown, D.A. and Gunning, M. (1989): "Geology of the Stikine River Area, Northwestern B.C.", B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Field Work, 1988, Paper 1989-1, pp. 251-267.
- Dynes, W.J. (1990) 1990 Assessment Report on the Nightout Creek Project.
- Holbek, P.M. (1988): "Geology and Mineralization of the Stikine Assemblage, Mess Creek Area, Northwestern British Columbia". University of British Columbia MSc thesis.
- Kerr, F.A. (1948): "Lower Stikine and Western Iskut River Areas, B.C.", GSC Memoir 246.
- Logan, J.M. and Koyanagi, V.M. (1989): "Geology and Mineral Deposits of the Galore Creek Area, Northwestern B.C.", B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Field work, 1988, Paper 1989-1, pp. 269-284.
- Souther, J.G. (1972): "Telegraph Creek Map Area, B.C.", GSC Paper 71-44.
- Marud, Darcy (1989): "1989 Geological Report on the Nightout Creek Property, B.C.", Homestake Mineral Development Company.

APPENDIX A

_

.....

.....

ANALYTICAL RESULTS

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: HI-TEC RESOURCE MANAGEMENT LTD.

1500 - 609 GRANVILLE STREET VANCOUVER, B.C. V7Y 1C6

1

1

}

)

1

ſ

##

1

1

Page Number : 1-A Total Pages : 1 Invoice Date: 23-OCT-90 Invoice No. : I-9024994 P.O. Number :

Project : 90-BC-056 Comments: ATTN: D. DUNN CC: APEX ENERGY CORP.

									CERTI	FICATE	OF AN	ALYSIS		\90249 9	94	
SAMPLE DESCRIPTION	PI C(rep Ode	ли ррб Гл+лл	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Beppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
#04 #05 #06 #07 #08	205 205 205 205 205	294 294 294 294 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.68 8.05 9.15 7.27 7.58	110 1010 1080 900 710	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 < 2 < 2 < 2	8.51 3.13 2.19 5.59 1.80	0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	3 15 14 16 14	390 53 112 66 52	11 46 70 80 62	0.95 4.67 4.74 4.12 4.93	0.07 1.43 1.53 1.22 0.97	0.39 1.78 1.90 1.76 2.07
#09 #10 #11 #12 #13	205 205 205 205 205	294 294 294 294 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.11 0.85 5.34 6.59 4.88	1030 220 810 1120 600	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> 2 < 2 2 < 2 < 2 < 2 < 2 2 </pre>	2.76 1.27 5.61 6.51 2.90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 2 11 13 8	78 445 187 187 103	52 24 47 52 53	4.18 0.92 3.07 4.15 2.86	1.31 0.20 0.85 1.26 0.91	1.73 0.33 1.14 1.43 0.68
]		<u> </u>	<u> </u>]	l	<u> </u>		CEF		 N:	R.		L.

Chemex Labs Ltd. Analytical Chemists ¹ Geochemists ² Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

.

To: HI-TEC RESOURCE MANAGEMENT LTD.

1500 609 GRANVILLE STREET VANCOUVER, B.C. V7Y 1C6

Page Number : 1-B Total Pages : 1 Invoice Date: 23-OCT-90 Invoice No. : I-9024994 P.O. Number :

1

##

CERTIFICATION:_

Project : 90-BC-056 Comments: ATTN: D. DUNN CC: APEX ENERGY CORP.

									CERTI	FICATE	OF AN	ALYSIS	; 4	902499	94	
SAMPLE DESCRIPTION	PRI Col	ep De	Min ppin (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm (ICP)	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
#04 #05 #06 #07 #08	205 205 205 205 205 205	294 294 294 294 294 294	1735 1310 1075 1835 755	< 1 < 1 1 < 1 < 1 < 1	0.06 0.66 0.86 0.66 0.67	4 10 10 9 9	120 780 820 1330 1220	38 10 4 12 2	540 313 359 423 262	0.03 0.42 0.47 0.42 0.46	15 144 153 149 148	< 10 < 10 < 10 < 10 < 10 < 10	16 92 86 84 102			
#09 #10 #11 #12 #13	205 205 205 205 205 205	294 294 294 294 294 294	890 430 1200 1360 705	< 1 1 2 < 1 1	0.79 0.08 1.42 1.47 0.51	9 10 12 10 6	1160 150 770 860 450	2 4 10 6 2	347 82 413 482 229	0.45 0.03 0.24 0.28 0.19	139 14 104 124 74	< 10 < 10 < 10 < 10 < 10 < 10	82 10 60 68 42			
		·													C	
							ļ					l	ļ			

Chemex Labs Ltd. Analytical Chemists ' Geochemists ' Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

.

To: HI-TEC RESOURCE MANAGEMENT LTD.

1

١

##

3

Page Number : 1-A Total Pages : 1 Invoice Date: 23-OCT-90 Invoice No. : I-9024995 P.O. Number :

1500 - 609 GRANVILLE STREET VANCOUVER, B.C. V7Y 1C6

Project : 90-BC-056 Comments: ATTN: D. DUNN CC: APEX ENERGY CORP.

-		<u> </u>						CERTI	FICATE	OF AN	ALYSIS	5 <i>1</i>	4902499	95	
SAMPLE DESCRIPTION	PREP CODE	ли ррб Fл+лл	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bippm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppra (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
#1 #2 #3	235 23 235 23 235 23	2 < 5 2 < 5 2 < 5 2 < 5	0.6 0.8 < 0.2	5.04 5.70 6.07	890 690 760	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	3.93 4.38 3.30	< 0.5 < 0.5 < 0.5	35 12 14	1020 856 760	< 1 < 1 < 1	17.40 15.10 13.45	0.85 0.95 1.19	2.54 2.81 2.44
				Î					2						
	<u> </u>		<u> </u>	l	I	<u> </u>	<u> </u>	<u>I</u>	<u>.</u>	L		N:	B.	Car	d.

1

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: HI-TEC RESOURCE MANAGEMENT LTD.

)

1

##

1500 - 609 GRANVILLE STREET VANCOUVER, B.C. V7Y 1C6

Page Number : 1-B Total Pages : 1 Invoice Date: 23-OCT-90 Invoice No. : I-9024995 P.O. Number :

90-BC-056 Project : Comments: ATTN: D. DUNN CC: APEX ENERGY CORP.

			· · · · · · · · · · · · · · · · · · ·				CERTIFICATE OF ANALYSIS A9024995								
SAMPLE DESCRIPTION	PREP CODE	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Nippan (ICP)	P ppm (ICP)	Pb ppm (ICP)	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
#1 #2 #3	235 232 235 232 235 232	1790 1635 1395	3 3 3	1.26 1.39 1.66	78 77 69	1160 1330 1400	2 2 2	408 471 397	2.24 3.67 2.85	401 397 354	50 50 40	150 138 130			
								2							
			u												
			2						i i						
						•									
						[
			l												
			ĺ												
										r					
		<u> </u>											\mathbb{Z}		0
										CER	TIFICATIO	N:	\mathcal{D} . (and and	eX:

APPENDIX B

Γ

-

-

ANALYTICAL METHODS

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: HI-TEC RESOURCE MANAGEMENT LTD.

1500 - 609 GRANVILLE STREET VANCOUVER, B.C. V7Y 1C6

A9024994

-

Comments: ATTN: D. DUNN CC: APEX ENERGY CORP.

CERTIFICATE

A9024994

HI-TEC RESOURCE MANAGEMENT LTD.

Project: 90-BC-056 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 23-OCT-90.

	SAMPLE PREPARATION										
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION									
205 294 232	10 10 10	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) PERCHLORIC-NITRIC-HYDROFLUORIC D									

ANALYTICAL PROCEDURES CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 983 10 Au ppb: Fuse 30 g sample FA-AAS -5 10000 578 10 Ag ppm: 24 element, rock & core AAS 0.5 200 Al %: 24 element, rock & core 573 10 ICP-AES 0.01 25.0 Ba ppm: 24 element, rock & core 565 10 ICP-AES 10 10000 575 10 Be ppm: 24 element, rock & core ICP-AES 0.5 10000 561 10 Bi ppm: 24 element, rock & core ICP-AES 2 10000 576 10 Ca %: 24 element, rock & core ICP-AES 0.01 25.0 562 10 Cd ppm: 24 element, rock & core ICP-AES 0.5 10000 563 10 Co ppm: 24 element, rock & core ICP-AES 1 10000 569 10 Cr ppm: 24 element, rock & core ICP-AES 10000 1 577 10 Cu ppm: 24 element, rock & core ICP-AES 1 10000 566 10 Fe %: 24 element, rock & core ICP-AES 0.01 25.0 584 10 K %: 24 element, rock & core ICP-AES 0.01 20.0 570 10 Mg %: 24 element, rock & core ICP-AES 0.01 20.0 Mn ppm: 24 element, rock & core 568 10 ICP-AES 5 10000 554 10 Mo ppm: 24 element, rock & core ICP-AES 1 10000 583 10 Na %: 24 element, rock & core ICP-AES 0.01 5.00 564 10 Ni ppm: 24 element, rock & core ICP-AES 1 10000 559 10 P ppm: 24 element, rock & core ICP-AES 10 10000 560 10 Pb ppm: 24 element, rock & core ICP-AES 2 10000 582 10 Sr ppm: 24 element, rock & core ICP-AES 10000 1 579 10 Ti %: 24 element, rock & core ICP-AES 0.01 10.00 572 10 V ppm: 24 element, rock & core ICP-AES 10000 1 556 10 W ppm: 24 element, rock & core ICP-AES 10000 10 558 10 Zn ppm: 24 element, rock & core ICP-AES 2 10000

APPENDIX C

[]

STATEMENT OF COSTS

STATEMENT OF COSTS

APEX ENERGY CORP. Project 90BC056 NIGHT OUT PROJECT Period of field Work: October 05 to October 08, 1990

Salaries

D.Dunn, Geologist, 4.0 days @ \$350/day J.McGregor, Prospector, 1.0 days @ \$250/day	1,400.00 \$	1,650.00
Domicile 6.0 man days @\$115/man/day		690.00
Geochemistry and Laboratory Service Pan Concentrate 3 Samples @\$22.50/sample analyzed for Au: /24 element ICP Rocks	67.50	
10 Samples @\$24.00/sample analyzed for Au; /24 element ICP	240.00	307.50
Helicopter Support 1.3 hours @ \$571.50 plus oil and	fuel	857.35
Truck Rental		350.00
Travel expenses		135.67
Communications, freight and Accounting		105.83
Report writing, Data Compilation, Drafting		1,200.00
15% Management Fees(Not on field salaries)		546.95
TOTAL COSTS	Ś	5,843.30

Dae Dum

APPENDIX D

Γ

ſ

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, David St. Clair Dunn, with a business address of #1500 - 609 Granville Street, Vancouver, B.C. to hereby certify that:

- 1. I am a consulting geologist registered with the Geological Association of Canada (Fellow #4943).
- 2. I am an Affiliate member of the Association of Exploration Geochemists.
- 3. I hold a B.Sc. degree (1980) in geology from the University of British Columbia.
- 4. I have been practising my profession as a prospector and geologist for over 20 years.
- 5. I personally supervised the work on Equity Silver Mines Limited's Canyon 53 Dayin 1, & Gran 15 claims.
- 6. I am a Director and Exploration Manager of Apex Energy Corp. and hold equity interest in that company.
- 7. I do not hold any direct interest in the Canyon 53, Gran 15 and Dayin 1 claims or in Equity Silver Mines Limited.

La Dum

APPENDIX E

Γ

-

SAMPLING METHODOLOGY

31.6

APPENDIX F

SAMPLE DESCRIPTIONS

SAMPLE DESCRIPTIONS

- Sample N.O. 4 Grab 40 m upstream from Homestake 31202. Qtz streingers from 5 cm to 10 cm cross creek in a rusty schistose Andesite Tuff. Qtz stringers are present over 5 m. Schistosity Att. S 35° D 90°
- Sample N.O. 5 2.0 m. chip, N.W. S.E. up Cr. 3000' Elevation Schistose And. - Dac. Tuff. Minor qtz - minor pyrite - Weak carb. alt. Schistosity Att. S46° D90° Considerable talc.
- Sample N.O. 6 20 m chip continuing S.W. from N.O. 5. cf. N.O. 5 10% quartz
- Sample N.O. 7 2.0 m chip continuing S.W. from N.O. 6 cf. N.O. 5 5% quartz
- Sample N.O. 8 2.0 m chip cont. from N.O. 7 minor quartz
- Sample N.O. 9 2.0 m chip cont. from N.O.8
- Sample N.O. 10 Quartz only Mainly from N.O. 6 + 7.
- Sample N.O. 12 50 cm chip 🖘 1.0 m SE of N.O. 11 30% qtz w/ minor pyrite in shear Att. S22° D56°S
- Sample N.O. 13 Grab of 10 m wide. Carb. Alt. shear zone Elev 3100' N.O. Cr. shear Att. S64° D90° Qtz sericite schist

