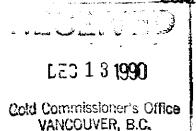
RD. LUG NO: April 19 ACTION: Date received back from amendment FILE NO:

LOG NO: 12-31	RD.
ACTION:	
FILE NO:	


BUFFALO RESOURCES LTD. -

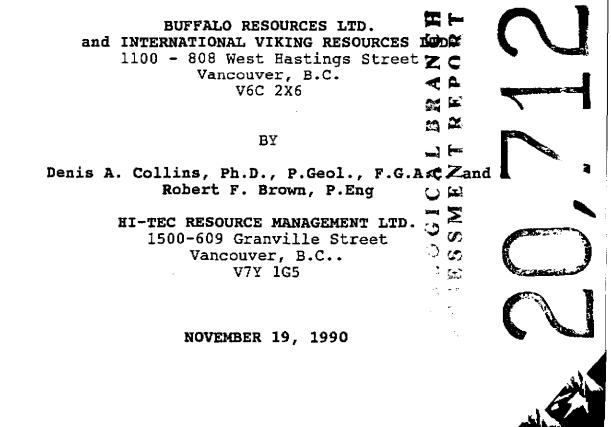
INTERNATIONAL VIKING RESOURCES LTD.

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT

ON THE PALMIERE SOUTH PROJECT

COMPRISED OF THE ARC 3 & 4 CLAIMS

ESKAY CREEK AREA


LIARD MINING DIVISION

BRITISH COLUMBIA

NTS 104 - B / 10E

W. Longitude: 130⁰ 31' N. Latitude: 56⁰ 40'

FOR

TABLE OF CONTENTS

1.0

, .

•

INTRO	DUCTION	•		•	•	•	•	1	
1.2 1.3	Location and Access	•	•	•	•	•	•	2 3	
GEOLO)GY	•	•	•	•	•	•	6	
2.1	Regional Geology and Mineralization	•	•	•		•		б	

2.0	GEOLOGY	•	٠	٠	6
	 2.1 Regional Geology and Mineralization. 2.2 Stratigraphy of the Eskay Creek 21 Zone. 2.3 Property Geology and Mineralization. 	•	•		11
3.0	GEOCHEMISTRY	•	٠	•	17
4.0	DISCUSSION	•	•	٠	20
5.0	REFERENCES	•		•	22

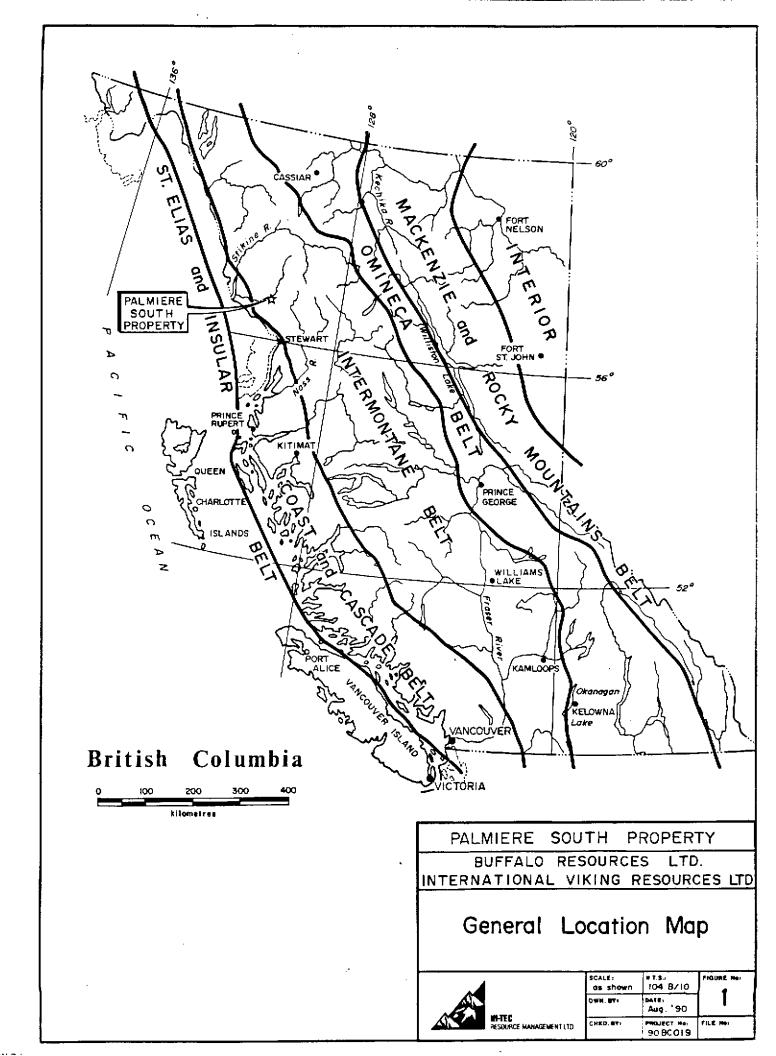
LIST OF APPENDICES

APPENDIX I:	Statements of Qualifications
APPENDIX II:	Sample Preparation and Analytical Procedures
APPENDIX III:	Rock Sample Descriptions
APPENDIX IV:	Analytical Data
APPENDIX V:	Statement of Costs

LIST OF ILLUSTRATIONS

	-	<u>After Page</u>
Figure 1:	General Location Map	1
Figure 2:	Claim Map	3
Figure 3:	Regional Geology & Mineral Deposits	7
Figure 4:	Property Geology	in pocket
Figure 5:	Equal Area Stereoplot of Bedding	17
Figure 6:	Sample Locations	in pocket

1.0 INTRODUCTION


This summary and evaluation of the Palmiere South project has been completed at the request of the Directors of Buffalo Resources Ltd. and International Viking Resources Ltd. The main purpose of the report is to evaluate the precious metal and/or base metal potential of the property and to propose a further exploration program designed to test this potential, if warranted.

This report is based on the results of a \$100,000 work consisting of bulk stream sampling, programme 1:5,000 geological prospecting, scale mapping, trenching and rock sampling which was conducted by Hi-Tec Resource Management Ltd. and upon a review of public and private reports pertinant to the area, government geological and topographical maps and claim data from the mining recorder's office. The authors, D.A. Collins and R.F. Brown, worked on the Arc 3 and Arc 4 claims during the 1990 field season.

1.1 Location and Access

The Arc 3 and 4 claims are located within the eastern boundary of the Coast Range Mountains (Figure 1). The property is approximately 300 air kilometers northwest of Smithers, British Columbia, 125 air kilometers east of Wrangell, Alaska and 35 air kilometers east from the Bronson Creek airstrip. The northwest corner of the claims is approximately 7 kilometers southeast of the Iskut River. The claims lie within the Liard Mining Division, on NTS Map 104-B/10E.

The area can be accessed by using fixed wing aircraft from Smithers, Wrangell, Terrace or Stewart to gravel

airstrips at Bronson Creek, Snippaker Creek and Johnny Mountain, located on the southern side of the Iskut River. The most economic access to the subject property is by truck from Smithers for a distance of 275 kilometers to Bell II on Highway 37 at the Bell Irving Creek crossing. At the present time, a 205 Helicopter is stationed at Bell II and the claims can be reached by air, a distance of 33 air kilometers to the southwest.

The Provincial Government of British Columbia is to establish a corporation to own, build and maintain an access road into the Iskut River-Eskay Creek area. A proposed link road between the main access road and the Eskay Creek 21 Zone Deposits would pass through the Palmiere Creek valley which crosses the Palmiere South property.

1.2 Property and Ownership

The property consists of two (2) contiguous mineral claims totalling 30 units, held in the name of Buffalo Resources Ltd.

The property is recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:

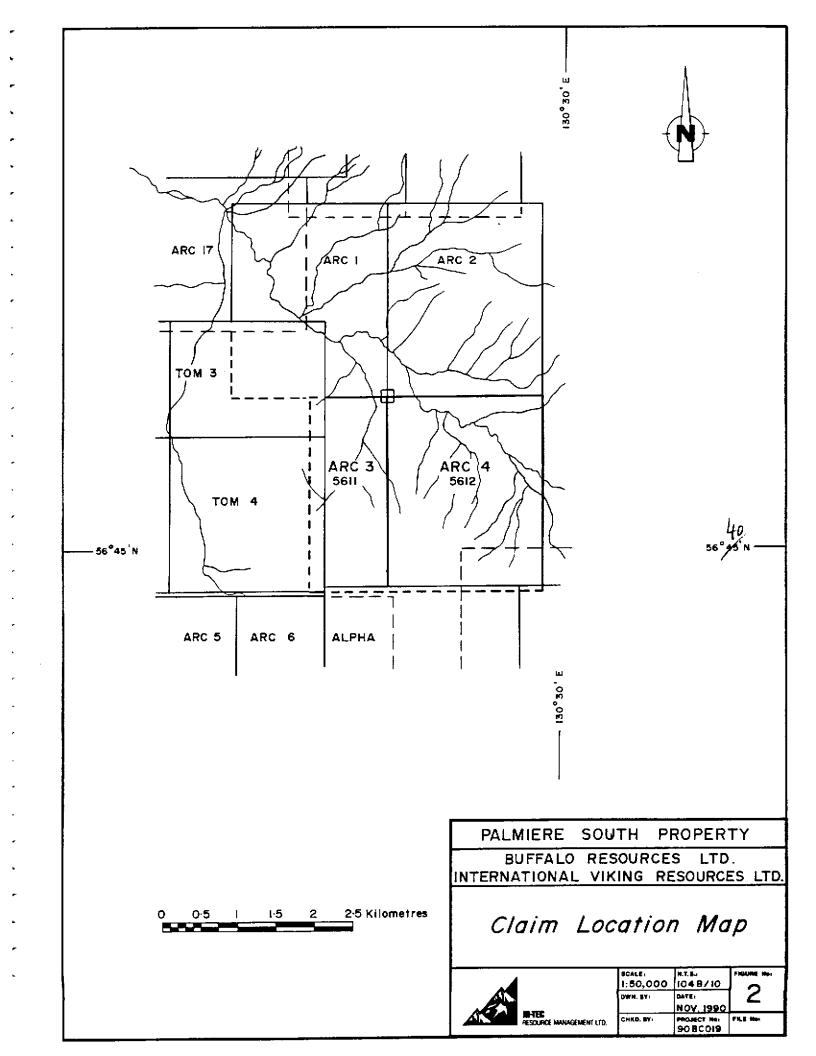
CLAIM	UNITS	RECORD No.	RECORD DATE	EXPIRY DATE*
Arc 3	10	5611	Dec. 31/88	Dec. 31/91
Arc 4	20	5612	Dec. 31/88	Dec. 31/91

* Prior to filing the 1990 assessment work.

The entire property is located on the Mineral Claim Map 104-B/10E (Figure 2).

1.3 Physiography

The Arc 3 and 4 claims are situated in mountainous, heavily glaciated terrane. Relief ranges from 670 meters above sea level along the northern boundary to approximately 1,710 meters ASL along the southern boundary. The Richard Glacier lies immediately to the southwest of the claim area.


Tree line is at approximately 1,200 meters ASL. Dense vegetation below this consists predominantly of spruce, fir and hemlock with an undergrowth of devil's club and stinging nettles. Steep, erosional side creeks provide the best access and geologic control in the area. The Palmiere Creek valley bottom is blanketed by recent unconsolidated sediments and Pleistocene basalt flows.

Snow cover is a limiting factor on the exploration field season. The period of least snow cover occurs between July and mid-September.

1.4 History and Previous Work

Exploration for precious metals in the Iskut River-Sulphurets Creek area dates back to the late 1800's when placer gold was discovered in the upper reaches of the Unuk River. By 1898, several prospectors had entered the area and the first mineral claims, the Cumberland and Globe Groups, were staked by H.W. Ketchum and L. Brant. These claims proved to be attractive and by 1901, the Unuk River Mining and Dredging Company had purchased them and established a stamp mill on the Globe group. A road between

Burroughs Bay and Sulphurets Creek was also begun by this company but was never completed.

The region was quiet again until 1960 when a search for porphyry copper deposits led Newmont Mines to conduct a helicopter borne magnetic survey in the Sulphurets area. Claims were staked on behalf of Granduc Mines Ltd. at the Sulphurets Creek headwaters.

In the period of 1975-1979, Texasgulf, Granduc Mines and Esso Resources Canada conducted exploration in the Sulphurets area. Lacana Mining Corp. and Newhawk Gold Mines subsequently optioned the Granduc sulphurets claims. Drilling on the sulphurets deposit has outlined mineral reserves of 720,000 tonnes grading 0.826 ounces gold equivalent per tonne (silver:gold ratio = 50:1). This deposit is located 30 kilometers southeast of the Arc 3 and 4 claims. In addition to these mineral reserves, the 1985 Lacana/Newhawk project located the new Snowfields Zones which is believed to have probable reserves of over 7,000,000 tonnes grading 0.083 oz Au/tonne. Catear Mines, Gold Wedge Property, located 2 kilometers east of the Brucejack Lake Zone, has published reserves of 373,224 tons grading 0.753 oz Au/t and 1.07 oz Ag/t.

The Reg property on Johnny Mountain was restaked by Skyline in 1980 and was optioned to Placer Developments Ltd. in 1982, who then formed a joint venture program with Anaconda Canada Ltd. to carry out various surveys in addition to trenching and diamond drilling in 1983. Exploration was continued on the property by Anaconda in 1984, after which season it reverted to Skyline Explorations Ltd. who later brought it into production. During June 1989 production figures for the Reg deposit were 4,230 oz gold, 7,487 oz silver and 134,960 lb

copper from 9,364 tons of ore (312 ton/day). This mine is scheduled to halt production at the end of 1990.

Prime Resources Group Inc., in joint venture with Cominco Exploration Ltd., plans to go into production on the SNIP deposit near Bronson Creek in 1990. The Arc 3 and 4 claims are located approximately 35 kilometers northeast of the Stonehouse and SNIP gold deposits.

In the Unuk River area, the Eskay Creek property, located 7 kilometers southeast of the Buffalo-Viking property, was discovered in 1932 bv Tom MacKay. Exploration since then has been principally directed to location of high-grade precious metal the mineralization. In 1985, Kerrisdale Resources Ltd. carried out diamond drilling on the #21 and #22 zones, and in 1987 Consolidated Stikine Silver Ltd. conducted a soil sampling and trenching program on the Eskay Creek property.

During the period 1988 - 1990, the Eskay Creek property has been extensively drilled by Prime Resources Inc. (formerly Calpine Resources Inc.) and Stikine Resources Extremely promising results continue to be Ltd. reported from the #21 zone since hole 88-6 hit 96.5 feet grading 0.73 oz gold and 1.1 oz silver (Northern Miner, Nov. 7, 1988). Surface drilling has outlined probable and possible reserves (at a cutoff grade of 0.25 oz. gold) totalling 1.55 million tons grading 1.3 oz. gold and 36.2 oz. silver per ton in the 21A and 21B zones (Northern Miner, August 6, 1990). The first phase exploration, bulk sampling and underground of development has recently commenced on the 21B deposit which contains 1.3 million tons grading 1.4 oz. gold, This silver, 2.2% lead and 5.4% zinc. 40.6 oz.

discovery has provided the impetus for extensive further exploration in the vicinity. The authors visited the Eskay Creek property in August 1990 and inspected drill core and geological sections relating to the 21 zone deposits.

The British Columbia Regional Geochemistry Survey # 18 (1988) shows four silt samples which were collected nearby the northern boundary of the Arc 3 and Arc 4 claims (Figure 6). The following table presents the results recorded in these samples.

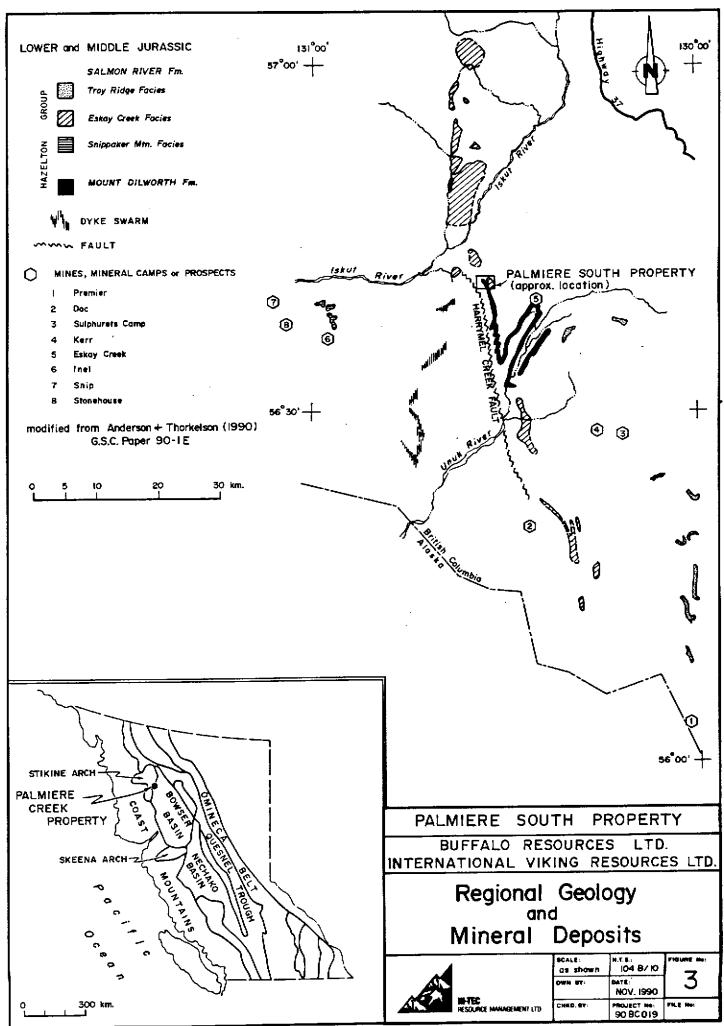
Sample #	Zn	Cu	Pb	Ag	As	Ħg	Sb	Au
873211	146	36	11	.1	9	130	0.7	4
873212	140	40	15	.2	15	160	0.9	1
873213	120	39	9	.1	5	65	0.4	1
873214	225	54	14	• 2	13	125	1.6	3

(Note: Results in ppm, except Au in ppb)

Kuran's (1989) "Assessment Report on the Arc 3 and Arc 4 claims" for Buffulo Resources Ltd. gives a brief account of the property geology along with the analytical results from eleven stream sediment and three rock samples. The stream sediment results had up to 2.8 ppm Ag (sample VSO8) reflecting high background silver values (sample 14803, 3.4 ppm Ag) in the black siltstone county rock.

2.0 GEOLOGY

2.1 Regional Geology and Mineralization


The property lies within the western most part of the Intermontane Tectonic Belt, close to its boundary with the Coastal Crystalline Tectonic Belt. As a result of the proximity of this area to a regional tectonic

boundary, geologic relationships tend to be quite complex. The geology of this area (Figure 3) has been studied by many people including Kerr (1930, 1948), Grove (1986), Gunning (1986), Alldrick et al. (1989) and Anderson & Thorkelson (1990) and is represented in Geological Survey of Canada Maps 9-1957, 1418A, 1505A, 2094 and B.C.G.S. Open file 1989-10.

The western portion of the Intermontane Belt is formed by the Stikine Terrain. During the Late Triassic period this Terrain was the site of active volcanism which resulted in the deposition of calc-alkaline plagioclase rich andesitic sequences along with which are now collectively termed the sediments Stuhini Group. The volcanism was accompanied by granitic intrusives. At the end of the Triassic this assemblage of volcano-plutonic rocks was uplifted to form the Stikine Arch. Additional uplift in the Cache Creek Terrain to the east resulted in the formation of the Hazelton Trough in north central British Columbia. This trough was infilled by Early Jurassic volcanics and sediments now termed the Hazelton Group.

During the Lower to Middle Jurassic, Bajocian age, the Hazelton Trough was divided into both the northern Bowser and southern Nechako Basins (Figure 3) by the emplacement of the Topley intrusions which cored the Skeena Arch. Erosional material from the Stikine Arch and Skeena Arch infilled the Bowser Basin up to the Late Jurassic Kimmeridgian age.

The principal component of the Intermontane Tectonic Belt in the Iskut River area is a Mesozoic volcanic and sedimentary sequence, correlative with the time equivalent Stuhini Group; a theory which is supported by the presence of Monotis fossils on the north slope

of Snippaker Peak and to the west of Newmont Lake. Grove (1986), however, correlates this unit with the Middle Jurassic Unuk River Formation of the Stewart Complex.

The Stuhini Group is characterized in the west section of the Iskut district by limestone and polymictic conglomerate which underlie a bimodal volcanic suite and in the east by feldspathic greywacke and siltstone which interdigitate with mafic and intermediate volcanics.

The contact of the Stuhini Group and the overlying Lower Jurassic Hazelton Group is gradational in the Stewart area and is marked by an unconformity in other areas. Granitoid- and dacite-bearing polymictic conglomerate and greywacke are characteristic of the transitional unit south of John Peaks area (Anderson & Thorkelson, 1990).

The Hazelton Group is comprised of four formations, namely, the Unuk River, Betty Creek, Mount Dilworth and The basal Unuk River Formation is Salmon River. composed of andesitic breccia, tuff and siliceous This is overlain by the Betty Creek siltstone. Formation which contains massive, thick- or mediumbedded green/maroon volcaniclastics, greywackes and The Mount Dilworth Formation is the third breccias. It is a regional marker formation in the Group. horizon in the Eskay Creek/Iskut River area. The Mount Dilworth Formation consists of siliceous white, maroon or green weathering, felsic tuff and commonly has flow dacitic rhyolitic units interbedded. banded to Frequently there is a disseminated pyrite content of from 5-15% within the felsic volcanics. The Mount Dilworth Formation in the Eskay Creek 21 zone deposits

is largely composed of K-feldspar-rich felsic flow breccia with interbedded tuffs and lapilli tuffs. In the Eskay/Iskut region the Mount Dilworth Formation is probably of Upper Early Jurassic Pliensbachian to Toarcian age and is thought to mark the penultimate and regionally extensive eruption of Hazelton Group felsic pyroclastics that included welded tuffs and flows.

The Lower Middle Jurassic, Bajocian age, Salmon River Formation overlies the Mount Dilworth Formation. Three important facies occur within this formation on a regionally mappable scale.

In the east of the Eskay/Iskut region the (1) Troy Ridge Facies is characterized by rhythmic alternating thin shale and tuff beds of turbiditic origin. (2)West of John Peaks, limestone, limy and cherty siltstone and shale interdigitate or overlie thick pillow lava and pillow lava breccias. According to Grove (1986) and Anderson & Thorkelson (1990) the interpillow matrix is locally composed of limestone. This unit has been termed the Eskay Creek facies as it hosts the rich stratabound mineralization of the Eskay In the west of the region a third Creek deposit. facies termed the Snippaker Mountain facies is not well mapped but appears to consist of andesitic, calcalkaline volcaniclastics.

In places there is a transition from the Salmon River Formation to the overlying Middle to Upper Jurassic Bowser Lake Group. This contact is also marked by an unconformity in some areas. In the Storie Creek area this transitional unit is a 10 meter wide calcareous, nonfossiliferous siltstone bed which directly underlies the shales of the Ashman Formation of the Bowser Lake Group (Gunning, 1986). The siltstones of the Salmon

River Formation in the Eskay Creek 21 zone deposit area are also calcareous but contain belemnite fossils (G. McArthur, Eskay Creek Field Manager, Pers. Comm.). The base of the Bowser Lake Group has been dated between Tom Mackay Lake and Eskay Creek as Bathonian to Callovian in age. Basal greywackes and non-calcareous siltstones grade upwards to thick bedded white quartz arenite and chert pebble conglomerate. This latter unit is overlain by rhythmically interbedded siltstone and greywacke.

Recent and Pleistocene basalt flows and tephra blanket much of the Iskut River and subsidiary drainages. Extinct volcanic domes are exposed, but severely eroded, for example in the Snippaker Creek and Palmiere Creek areas. The flows predominantly occupy valley bottoms and are commonly olivine rich basalts.

In the Coast Crystalline Tectonic Belt, Paleozoic and Mesozoic sequences are commonly intruded by plutonic diorite rocks of quartz monzonite to quartz composition. These intrusions are Late Cretaceous to Early Tertiary in age. To the east of the main intrusive complex, Intermontane Stikine Terrain smaller granitic plugs and stocks are prevalent. Mesocratic medium-grained meta-diorite and meta-gabbro intrusions occur in the Palmiere Creek area. The recently identified Lehto porphyry is a granodiorite to syenite intrusive with large, pink euhedral potassium feldspar phenocrysts and is now known to extend across Snippaker Creek approximately 10 km south of the Iskut River.

The area is complicated by major faults such as the easterly dipping Harrymel Creek (or Melville) fault and by regional folding such as doubly plunging, northeast trending, synclinal folds and numerous parasitic folds in Hazelton and Bowser Lake Group rocks. The Harrymel Creek fault juxtaposes older stratigraphy to the west (footwall block) with younger strata to the east (hangingwall block) and appears to form the western boundary to the Mount Dilworth Formation exposures in the district.

2.2 Stratigraphy of the Eskay Creek 21 Zone

A geological cross section of the Prime/Stikine Eskay Creek property, 8 kilometers to the southeast of the Palmiere Creek property, in the Unuk River Area described by G.McArthur is included for comparative purposes and is as follows. The hanging wall consists of interbedded breccias, pillow lavas and andesites up The contact zone, to 100 meters thick. a black argillite containing felsic fragments up to 5 cm across, is 10 to 15 meters thick with mineralization occurring at the base of the unit. In the north section of thecontact #21 Zone, mineralization of consists electrum. aktashite (Cu-Pb-Zn-Aq-Hq sulphosalt) and honey colored blebs of sphalerite rimmed with chlorite alteration. Free gold was observed in the Disseminations and core. needles of arsenopyrite predominate in the south section of the #21 contact zone with sections of massive stibnite, veinlets of stibnite and blebby realgar. Gold assays from this contact zone vary from 0.25 oz Au/t to several oz Au/t. Mineralized textures throughout the core vary from structurally controlled to layered syngenetic units but to date no firm control has been agreed upon.

The footwall belongs to the Mount Dilworth Formation and consists of a 100 to 150 meters thick rhyolite breccia lapilli tuff. Along strike to the north the

lapilli fragments are finer grained. Alteration observed is silicification, strong K-spar and white mica. Gold assays from this section vary up to 0.25 oz A 10 to 20 meters thick argillite layer Au/t. separates the lapilli tuffs from a felsic lithic tuff which varies from 60 to 100 meters thick. This latter unit, which may be the equivalent of the Betty Creek Formation, forms large gossans of pyritic material assaying from 0.15 to 0.25 oz Au/t. The bottom of the footwall is formed by thickly bedded siltstone containing pelecypods (dating in progress) and locally developed conglomerates. Drill intersections of the north part of the #21 Zone (hole 89-109) were reported in the Northern Miner (Aug. 28, 1989) as follows: "682 foot interval grading an average of 0.875 oz gold, 0.97 oz silver, 1.12% lead and 2.26% zinc. Within this interval is a 200.1 foot section averaging 2.877 oz gold, 0.85 oz silver, 1.86% lead and 3.44% zinc". The South Zone has been outlined for 300 meters along strike and 200 meters down dip and reserves have been calculated at 2.8 million metric tonnes at 0.25 oz Au/t and 3.0 oz Ag/t were reported. This South Zone is to be mined by open pit methods.

Idziszek et al. (1990 a, b) have described this Hazelton Group sequence in the following manner, from the base to the top:

Unuk River Formation: volcano-sedimentary unit. Betty Creek Formation: Footwall Dacite unit. Mount Dilworth Formation: Rhyolite unit Contact Unit: transition zone basal rhyolite-mudstone breccia grading upwards to carbonaceous mudstone.

Stibnite-realgar-orpiment rich. Hangingwall Andesite Unit: pillowed andesite flows and breccias with thin carbonaceous mudstone interbeds. Thin bedded siltstone & sandstone

To date, surface drilling on the Prime Resources Group Inc.-Stikine Resources Ltd. Eskay Creek property has outlined probable and possible reserves (at a cutoff grade of 0.25 oz. gold) totalling 1.55 million tons grading 1.3 oz. gold and 36.2 oz. silver per ton in the 21A and 21B zones. Results from the ongoing stepout drilling program, beyond the reserves area, are extremely encouraging with drill intersections of hole 90-327 reported as 39.4 feet grading an average of 0.65 oz/ton gold, 32.06 oz/ton silver including a 13.1 foot section averaging 1.27 oz/ton gold and 288.63 oz/ton silver (Northern Miner, April 9, 1990). Two new zones, the Pumphouse Lake and 21C, were discovered during early 1990. No reserves have been outlined for either zone to date (Northern Miner, Aug. 6, 1990).

2.3 Property Geology and Mineralization

mapping by Read et al. (1989) shows Geological Mesozoic meta-diorite and meta-gabbro in contact with Middle Jurassic volcanics, which in turn are in fault contact with Middle to Upper Jurassic Bowser Lake Group Alldrick's (1989) mapping extended just sediments. onto the south portion of the claims on Mount Shirley. He divided the area into western most Lower Jurassic Betty Creek Formation volcanics in contact with, to the east, Middle Jurassic Salmon River sediments. Mount Dillworth Formation volcanics are shown at this contact immediately to the south, towards Tom MacKay Lake.

Geological mapping of the property by Hi-Tec has shown that the upper part of the north flank of Mount Shirley (UTM 406200E/6281000N Figure 4) is underlain by a sequence of aphanitic green andesitic units (formation Jvb, Figure 4) in association with some gabbroic-like

and plagioclase phyric units which on weathered surfaces appear dioritic. This area has been mapped by Read et al. (1989) as a meta-diorite and meta-gabbro intrusion (formation Mdi, Figure 4) in contact with Middle Jurassic andesites. No distinct contact was mapped during the current work. There are abundant dacitic siliceous felsites, white/grey very as dykes/sills(?) dispersed laterally discontinuous throughout this portion of the sequence (formation Jfp, Northwards the white/grey dacitic felsite Figure 4). the predominates and forms inaccessible unit precipitous northeast and north facing upper slopes of The western and portions of the Mount Shirley. northern flanks of Mount Shirley contain a disrupted sequence of green altered volcanics and large (< 5m) lenticular pods of brown weathering mafic(?) volcanics. The latter may be xenoliths of altered country rock along the margins of the meta-diorite intrusion.

Dispersed fine pyrite is occasionally visible in the volcanics and meta-diorite in this area. In places trace pyrite mineralization is found within the felsite units adjacent to minor fractures.

Along the extreme western boundary of the Arc 3 claim, UTM 404950E/6281900N, siliceous gossanous altered andesites with up to 7% pyrite are exposed at the toe of Richard's Glacier. This zone is probably associated with the adjacent Harrymel Creek fault, or Melville fault of Read et al. (1989). The altered siliceous, white weathering felsite or silicified andesite(?) unit, mapped higher up on Mount Shirley, outcrops in this area.

Much of the area down to an elevation of 1300 meters is inaccessible and snow covered. The northeastern lower

reaches of Mount Shirley, 1300 to 1200m, are underlain by well preserved pillow lavas, interbedded black cherty siltstones and massive andesitic units (formation Jvb, Figure 4). The cherty black siltstone is frequently Fe/Mn stained and appears very gossanous in outcrop. The siltstones are commonly brecciated and contain quartz/carbonate veinlets. The pillows are chaotic and of variable sizes ranging from 5 cm to 2 m in length and are composed of medium grained, green andesitic volcanics. The interstitial matrix of the pillows is fine grained, dark grey limestone (micritic) in places (UTM 406300E/6282000N, samples 90SPR34, 35). This matrix can contain up to 5% pyrite. In many areas the interstitial matrix is completely oxidized and weathered.

In the deep ravine centered at UTM 406500E/6281600N, the pillow lavas appear to dip steep/subvertically east(?). The interstitial matrix of the chaotic pillow lavas is of variable composition. Occasionally this matrix is a fine black siliceous siltstone breccia hosted by a whitish very calcareous matrix. The main type of matrix is a deeply weathered, slightly The pillow lavas appear slumped calcareous volcanic. in some exposures and are interlayered with andesitic flows (<5 m thick) which have flow-top vesicles in places. Trace pyrite is sometimes evident. There are gossanous patches within the pillow lavas which contain up to 5% pyrite. These appear to be fault related.

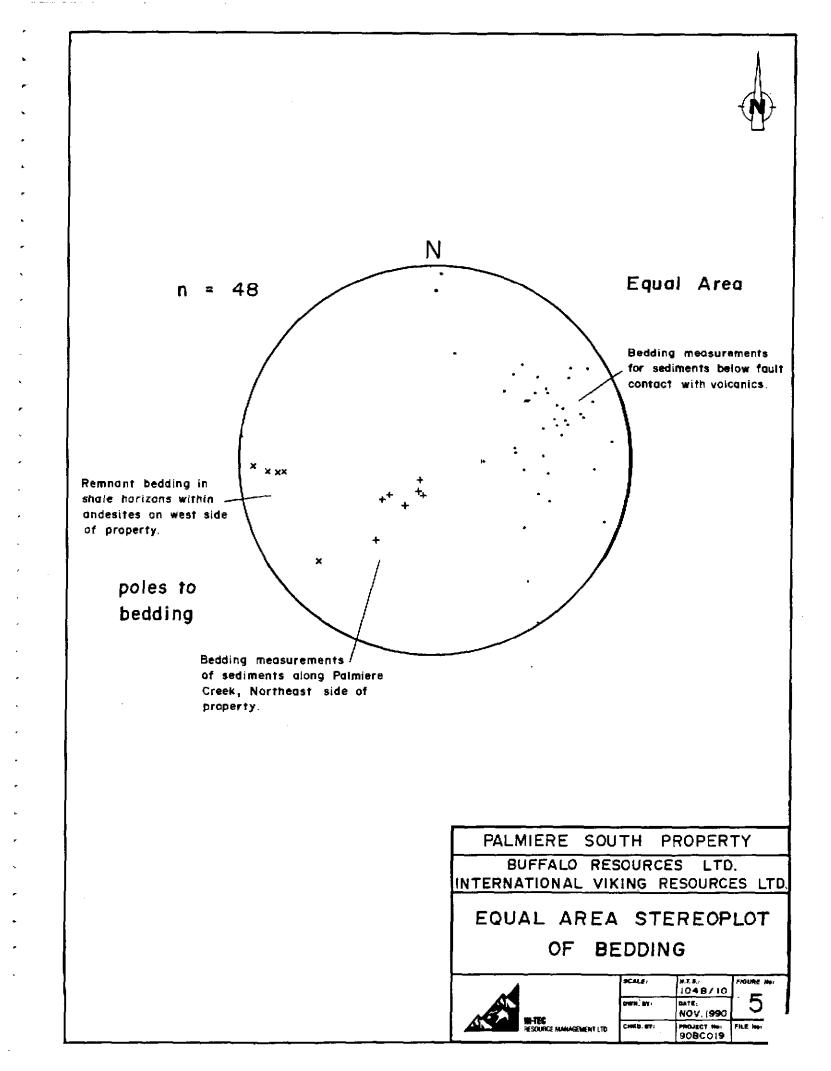
This unit is lithologically similar to the Eskay Creek facies of the Salmon River Formation as described by Anderson & Thorkelson (1990). Alldrick et al. (1989) also mapped andesitic pillow lavas with minor siltstone interbeds within the Betty Creek Formation but do not

describe any limestone interstitial matrix associated with them.

The pillow lava sequence is partially underlain by massive andesite which is exposed in faulted contact with a black intensely cleaved siltstone/argillite(?) at the 1300 to 1200m level on the steep east slope of Mount Shirley. This contact is well exposed in a ravine at an elevation of 1178m on the east slope of Mount Shirley (UTM 406698E/6281320N). Here the contact is vertical to 88^0 W and strikes 156⁰. A 0.5 m chip sample across the contact (sample 90SDR009) showed felsic fragments, which may be remnants of other volcanics, and abundant calcite veins incorporated within the volcanics at the contact. There also appears to be some epidote alteration in the volcanics along the contact.

The black argillitic unit is very tectonized but appears unmineralized at the contact zone. Down slope the ravine becomes very steep and largely inaccessible. Outcrop is visible from the sides of the ravine and the sequence appears to be thin, well bedded siltstone with interlaminated, brown weathering, more competent Bedding dips approximately 40° to the west in layers. the sediments and appears to be right-way-up and the strike is approximately 152°. Minor faulting has resulted in steepened bedding (60° W) approximately 40 meters east of the contact zone.

At a distance of approximately 75 meters east of the contact brown weathering slightly calcerous sandstones come into the sequence. In fresh exposure this is a grey, medium grained sandstone. A polymictic quartz chert pebble (pebbles <1 cm diameter) conglomerate is exposed approximately 100 m, along the ridge, to the


south of the ravine. Underlying the conglomerate, the sandstone beds contain abundant quartz veins which appear unmineralized. The sequence underlying this is predominantly black siltstone unit sandstone rhythmically interbedded with brown weathering thin (3-5 cm) sandy "dolomitic like" units. However, the latter effervesce very strongly in dilute HCL. There is a change in strike associated with the incoming of these siltstones into the sequence from 1520 to 0080 with dips of from 35^0 to 55^0 W. Further down section towards Palmiere Creek the strike changes to 0550 and dips are to the north. Bedding on the east side of Palmiere Creek dips to the east (Figure 5). Although these appear similar to the Salmon River sediments found on the northeast side of Palmiere Creek, Read et al. (1989) have classified them as Bowser Lake Group based on one fossil locality (F166) on the east side of the Arc 4 claim (Figure 4).

In other parts of the property the fault contact of the volcanics and the sediments is not exposed but its location can be inferred from mapping. The contact is in the position as shown by Read et al. (1989) and Alldrick et al. (1989).

3.0 GEOCHEMISTRY

A total of 2 bulk stream samples, 2 stream sediment samples and 262 rock samples were collected during the 1990 program.

Rock samples are grab samples of specific features, the exception being a small trench with five 1 m long chip samples. T.S.L. Laboratories Ltd. of Saskatoon, Saskatchewan was contracted to prepare and analyze the

samples for Au and Hg by specific techniques and 25 other elements by the ICP method (Appendix II). The sample descriptions are listed in Appendix III and all the analytical data is compiled in Appendix IV.

Stream sediment samples 90SJL001, 002 and bulk stream sediment sample 90SPH001 returned, respectively, 10 ppb, 5 ppb and <5 ppb Au, with no anomalous ICP values.

Rock samples taken from the felsites, andesites and meta-gabbro or meta diorite on Mount Shirley returned no anomalous values.

On the west side of Mount Shirley a sample of a aphanitic felsite (dacite?) with quartz veinlets and 2% disseminated pyrite returned 460 ppm Zn.

On the north flank of Mount Shirley rock sample 90SJR113, a flow breccia with carbonate interstices, returned 1200 ppm Ba. Nearby rock sample 90SJR074 of a coarse grained diorite with quartz veinlets and 5% pyrite returned 250 ppm Cu. Down the north flank of Mount Shirley, closer to the volcanic-sediment fault contact in the northern most tributary creek, rock sample 90SJR086 a basalt with iron stain, slickensides and quartz veinlets returned 510 ppm Zn.

Along the northeast flank of Mount Shirley, near a small moraine, in an area of gossanous outcrop and faulting rock samples 90SJR063 and 065 yielded, respectively, 250 ppm As and 120 ppm As, 40 ppb Au. These were from outcrop of altered gossanous pillow lava with 2% pyrite and some quartz and carbonate veinlets. In the same area rock sample 90SJR093 of a shear with <1% pyrite and quartz carbonate veinlets returned 25 ppb Au. From a side gulch in the same area

rock sample 90SDR022 is a grab specimen of altered gossanous volcanic from a fracture zone, it returned 80 ppb Au. Down stream a float specimen of altered volcanic with 3% pyrite and 1% chalcopyrite(?) returned 70 ppb Au, 780 ppm Zn and 1500 ppb Hg, while a boulder of altered volcanic with 10-20% pyrite (sample 90SDR020) returned 5500 ppm Zn, 140 ppm As and 4000 ppb Hg.

At the head of this creek-gulch at the base of an ice field is a large gossanous area. Rock samples 90SPR073-076 of this bleached, limonitic area with 1-2% pyrite and quartz-carbonate veinlets returned no anomalous values.

On the south side of the property west of the volcanicsediment fault contact float sample 90SDR002 of volcanic breccia with 10% pyrite returned 1100 ppm Cu, 120 ppm Pb and 830 ppm Zn.

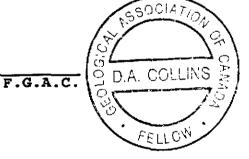
To the west of the fault zone within the pillow lavas is a discontinuous cherty siltstone horizon which is particularly gossanous with up to 5% pyrite. Rock samples 90SPR033 and 90SJR011, 012 from this horizon recorded no anomalous values.

The fault zone between the pillow lavas and turbiditic sediments is marked by a steep dipping highly sheared black argillite-siltstone with quartz-carbonate None of the samples from this contact veinlets. including those from a blasted trench (rock samples 90SKR001-005) returned anomalous values. Samples from shale with interbedded the well bedded siltstone, sandstone and conglomerate sequence were for the most A few part uninteresting in their analytical results. exceptions are from rock samples along the southern

contact of the Arc 4 claim. Samples 90SPR018 and 023 returned, respectively, 460 and 950 ppm Ba from weakly limonitic outcrops of siltstone with carbonate veinlets.

4.0 DISCUSSION

Detailed mapping by Hi-Tec Resource Management Ltd. personnel on the Arc 3 and 4 claims essentially agrees with the regional mapping of Read et al. (1989) on G.S.C. Open File 2094. The southwestern portion of the property is underlain by meta-gabbro and meta-diorite intruding massive andesite, forming Mount Shirley, subsequently intruded by aphanitic felsite dykes. Flanking this Mesozoic core(?) are andesite lava flows, breccias and pillow lavas with minor cherty siltstone beds of Middle Jurassic age. The slump and flow textures associated with the andesites and pillow lavas in places suggests that they both formed part of active These flows may be related to the emplacement flows. of the Mount Shirley core of meta-diorite. The intrusion of this unit may have controlled the alteration and silicification on the Arc 3 claim and the steeply oriented faults in the area. The outcrop pattern on the west part of the property is in a series of cliff and terrace sections. This implies that there may be a northwest trending fault between the pillow lavas and more massive volcanics and meta-diorite higher up in the inaccessible portions of Mount Shirley. The strike swing in the siltstones from $152^{0}/35^{0}$ to 55^{0} west to 055^{0} with variable dips north further down section towards Palmiere Creek may be related to fault drag motion along a blind fault in the Palmiere Creek valley.


The stratigraphic position of the pillow lavas is problematic. If the lavas are Betty Creek Formation (Alldrick, 1989) then there is a normal fault contact between the pillow lavas and the overlying westerly dipping Bowser Lake Group sediments which has faulted out the Mount Dilworth Formation. The fault may be related to the intrusion emplacement on Mount Shirley.

The lithological description of pillow lava sequences with limestone matrix in the Eskay Creek facies of the Salmon River Formation by Anderson & Thorkelson (1990) and the stratigraphic position of pillow lavas in Read et al. (1989) Open File 2094 (within the Mid Jurassic Jvb unit) suggests that the pillow lavas on the Arc 3 claim could be Eskay Creek facies. If so then they would be hangingwall or upsection from the Eskay Creek mineralized horizon.

Respectfully submitted,

HI-TEC RESOURCE MANAGEMENT LTD

P.Geol., DENIS A. COLLINS, Ph.D.,

November 19, 1990

REFERENCES

- Alldrick, D.J. (1984) Geological Setting of the Precious Metal Deposits in the Stewart Area. BCDM Fieldwork 1983, Paper 1984-1, pp. 149-163.
- Alldrick, D.J., Britton, J.M, Webster, I.C.L. and Russell, C.W.P. (1989). Geology and Mineral Deposits of the Unuk area; BCGS Open File Map 1989-10.
- Anderson, R.G. & Thorkelson, D.J. (1990) Mesozoic Stratigraphy and setting for some mineral deposits in Iskut River map area, Northwestern British Columbia. GSC Paper 90-1E, p 131.
- Britton, J.M. (1989) Geology and Mineral Deposits of the Unuk Area, British Columbia. GSC Open File Map 1989-10.
- Britton, J.M., Blackwell, J.D. and Schroeter, T.G. (in press) #21 Zone Deposits, Eskay Creek, Northwestern British Columbia.
- Geological Survey of Canada (1957) Stikine River Area, Cassiar District, British Columbia, Map 9-1957.
- Geological Survey of Canada (1988) GSC Open File 1645; BCRGS # 18

Gunning, M.H. (1986)

Late Triassic to Middle Jurassic (Norian to Oxfordian) volcanic and sedimentary stratigraphy and structure in the southeastern part of the Iskut map sheet, northcentral British Columbia. Unpubl. B.Sc. thesis, UBC, 85p.

Harris, C.R. (1985)

Report on Kay & Tok Claims, Eskay Creek, Unuk River, B.C., Skeena M.D. Unpublished Report for Golden Coin Resources Ltd. prepared by C.R. Harris.

Harris, C.R. (1985)

Report on Kay & Tok Claims, Eskay Creek, Unuk River, B.C., Skeena M.D. Unpublished Report for Kerrisdale Resources Ltd. prepared by C.R. Harris.

- Idziszek, C., Blackwell, J., Fenlon, R., McArthur, G. and Mallow, D. (1990a) The Eskay Creek Discovery; Abstract of Talk to Mineral Exploration Group, Vancouver, 28 Feb., 1990.: Prime Explorations Limited.
- Idziszek, C., Blackwell, J., Fenlon, R., McArthur, G. and Mallow, D. (1990b) The Eskay Creek Discovery; Mining Mag., March 1990, p 172-173.
- Kerr, F.A. (1930)
 Preliminary Report on the Iskut River Area, B.C. GSC
 Summary Report, 1929, Part A, pp. 30-61.

Kerr, F.A. (1948) Lower Stikine and Western Iskut Rivers Area, B.C. GSC Memoir 246.

Kirkham, R.V. (1963)

The Geology and Mineral Deposits in the vicinity of the Mitchell and Sulphurets Glaciers, Northwest British Columbia. Unpublished M.Sc. Thesis, University of British Columbia.

Kuran, V.M. (1985)

Assessment Report on the Unuk River Property, Kay, Tok and GNC Claims, Skeena Mining Division, British Columbia. B.C.M.E.M.P.R. Assessment Rpt. #14099

Kuran, V.M. (1989)

Assessment Report on the Arc 3 and Arc 4 Claims, Liard Mining Division, British Columbia. B.C.M.E.M.P.R. Assessment Report (not public record)

Peatfield, G.R. (1975)

Final Report 1975 Geology - Geophysics Programme, Eskay Creek Option. Unpublished Report for Texasgulf Inc.

Read, P.B., Brown, R.L, Psutka, J.F., Moore, J.M., Journeay, M., Lane, L.S., and Orchard, M.J. (1989) Geology, More and Forrest Kerr creeks (parts of 104B/10, 15, 16 and 104G/1, 2), northwestern British Columbia. GSC Open File 2094.

Schink, E.A. and Peatfield, G.R. (1976) Final Report 1976 Diamond Drilling Programme, Eskay Creek Property. Unpublished Report for TexasGulf Inc.

Shroeter, T.G. (1983)

Bruce Jack Lake (Sulphurets Prospects), BCDM Fieldwork, P 1983-1; pp. 171-174.

Seraphim, R.H. (1983)

Summary Report Tok and Kay Claims, Unuk River, Skeena M.D. Unpublished Report for Stikine Silver Ltd. N.P.L. prepared by R.H. Seraphim.

APPENDIX I

STATEMENTS OF QUALIFICATIONS

•

.

e

STATEMENT OF QUALIFICATIONS

I, DENIS A. COLLINS, of the City of Vancouver, Province of British Columbia, hereby certify:

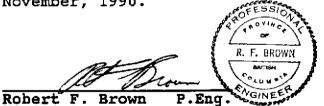
- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd. with offices at 1500-609 Granville Street, Vancouver, British Columbia.
- THAT I obtained a Bachelor of Science degree in Geology from University College Cork, Ireland in 1980 and a Ph.D. in Structural Geology from the same university in 1985.
- 3. THAT I have been practising my profession as a geologist in Ireland, South Africa and Canada since 1980.
- 4. THAT I am a Fellow, in good standing, with the Geological Association of Canada.
- 5. THAT I am a registered Professional Geologist, in good standing, with a license to practice with the Association of Professional Engineers, Geologists and Geophysicists of the NorthWest Territories.
- 6. THAT this report is based upon a thorough review of published and private reports and maps on the subject property and the surrounding area and upon the results of an extensive field program of geological mapping and sampling supervised by the author.
- 7. THAT I have no interest in the Arc 3,4 claims described herein, nor in securities of Buffalo Resources Ltd. or International Viking Resources Ltd. or any company associated with the property, nor do I expect to receive any such interest.

Dated in Vancouver, British Columbia, this 19th day of November, 1990.

\$00:4;

D.A. COLLINS

FELLOW


010

Denis A. Collins, Ph.D., P. Geol., F.G.A.C.

STATEMENT OF QUALIFICATIONS

- I, Robert F.Brown, of the City of Vancouver, Province of British Columbia, hereby certify :
- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd., of Vancouver, British Columbia, Canada.
- THAT I obtained a Bachelor of Science (Engineering) degree in Geology from Queens University at Kingston, Ontario, Canada in 1975.
- 3. THAT I have been practising my profession as a geologist since 1975.
- 4. THAT I am a registered Professional Engineer, in good standing, with the Association of Professional Engineers of British Columbia.
- 5. THAT this report is based upon a thorough review of published and private reports and maps on the subject property and the surrounding area and upon the results of an extensive field program of geological mapping and sampling supervised by the author.
- 6. THAT I have no interest in the Arc 3,4 claims described herein, nor in securities of Buffalo Resources Ltd. or International Viking Resources Ltd. or any company associated with the property, nor do I expect to receive any such interest.

Dated in Vancouver, British Columbia, this 19th day of November, 1990.

APPENDIX II

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

.

×.

RECEIVED OCT 2 5 1990 T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

- 1 SAMPLE PREPARATION PROCEDURES Rock and Core
 - Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.
 - Soils
 - Sample is dried and sieved to -80 mesh.
- 2 FIRE ASSAY PROCEDURES Geochem Gold (Au ppb) -A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

Assay Silver (Ag oz/ton) -A 2.00g sample is digested with 15mls HCl plus 5mls HN03 for 1 hour in a covered beaker: diluted to 100

HNO3 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HC1. The solution is then run on the Atomic Absorption.

- 3 BASE METALS
 - Geochem A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the Atomic Absorption.
 - Assay A 0.500g sample is taken to dryness with 15mls HC1 plus 5mls HN03, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution is run on the Atomic Absorption.

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

7. Mercury Analysis -

A 1 gram subsample is digested with 4mls of nitric acid plus 1ml of sulfuric acid in a water bath for 1 1/2 to 2 hours, diluted with DI water. A couple of drops of a potassium permangante solution are then added to each sample solution. An aliquot of each solution is then analyzed on the A.A. by a cold vapor procedure.

Yours truly,

Bernie Di

Bernie Dunn

BD/vh

APPENDIX III

1

ROCK SAMPLE DESCRIPTIONS

PC-XPLOR VERSION 1.30	## Ŧ	BUFFALO/VIKING PALMIERE SOUTH PROPERTY	***	HI	-TEC RES MN	GT LTD.
Exploration Data Manager	***	1990 EXPLORATION DATABASE.	***	15:45:31	Serial no	: 22357
By GEMCOM SERVICES INC.				22/11/90	Page :	1

·

.

SAMPLE DESCRIPTIONS PALMIERE SOUTH PROPERTY 908C019

SAMPLE #	ROCK TYPE	SAMPLE TYPE	MINERALIZATION	FEATURE	CLAIM	RECORD #
90SDR001	Gr wold v. tect, abund gtz/cb vilts, ss	-			Arc 4	5612
90SDR002	Vol breccia, qtz matrix	Float	107 py		Arc 4	5612
30SDR003	 Gy/blu volc1, altered, minor qtz veinlet D12 siltetere brassis, siltetete 	-	3% dissa py Fo/Mar abaining	Task	Arc 4	5612 5612
90SD8004	Blk siltstone breccia, sil/chrty	Rock grab	Fe/Mn staining	Tect zone	Arc 4	5612 5612
90SDR00S	Volcl, gy/gr may be pillowed? overly 004	-			Arc 4	56 12
905DR006	Volcl, gy/gr underlying 004	Rock grab	F-ON	T	Arc 4	5612
90SDR007	Blk siltst breccia, cherty/sil	Rock grab	Fe/Mn staining	Tect zone	Arc 4	5612
90SDR00B	Volcl, gy/gr similar to 005	Rock grab	Ou shuissa is falsis	Fourth and	Arc 4	5612
905DR003	Blk si, frags of felsic volc, remnants?		Py strings in felsic		Arc 4	5612 5612
905PR001	Sil brecciated shale qtz vnlts	Rock grab	<17 py	Fe/Mn stain		
90SPR002	- Gry fin-med gr and xcutting qtz/cb volts	-	trace py	gossanous Ce (Me et et e	Arc 4	5612
905PR003	Sil brecciated shale qtz vnlts	Rock grab	0	Fe/Mn stain		5612
905PR004	Grn fine gr sil and, cb valts, calc	Rock grab	21 py concentrated		Arc 4	5612
905P8005	Gry med gr and tuff?, calc, qtz vnlts	Rock grab	11 py		Arc 4	5612
905PR006	Gry/grn sil and slightly calc qtz vnlts	Rock grab	37 disseminated py		Arc 4	5612 5612
905PR007	D. gry fine-med gr sil and, qtz valts	Rock grab	27 py around volts		Arc 4	5612
905PR008	Purp/gry aph-fine gr sil dac	Rock grab	37 disseminated py	qtz/cb vnlts		5612
905PR009	Sil blk sh almost brecc, highly altered	Rock grab		qtz vnlts	Arc 4	5612
90SPR010	0 gry fine gr and, calc, qtz volts	Rock grab	1I py		Arc 4	5612
905PR011	D gry fine gr sil and, calc,	Rock grab	1I ру	qtz/cb vnlts		5612
905PR012	Thin bds sh/si very altered w qtz vnlts	Rock grab			Arc 4	5612
905PR013	Gry fine gr sil and, cb vnlts	Rock grab	11 ру		Arc 4	5612
3052R014	D gry sil and, slightly calc, cb volts	Rock grab	<iz py<="" td=""><td></td><td>Arc 4</td><td>5612</td></iz>		Arc 4	5612
90SPH001		Bulk stream			Arc 4	5612
90SPR015	ntbdd sh/si, sil	Rock grab		fracture	Arc 4	5612
90SPR016	Matrix supp congl, oligon sh clasts calc	Rock grab			Arc 4	5612
90SP8017	Intbdd sh/si/ss, qtz vein 2c# & vnlts	Rock grab	2I dissem py	bedding	Arc 4	5612
905DR010	Mafic volc, gr aphanitic ands.	Rock grab	<31 py in blebs		Arc 3	5611
905DR011	V. sil aphan gr volc-ands.	Rock grab	<3I py in blebs		Arc 3	5 611
905DR012	Sil gr aphan volc with calcite veinlets	Rock grab	Tr py blebs 11	Shear W dip	Arc 3	5611
905D8013	Altered mafic volc w felsic volc pods	Chip, 0.5 🖬		Fault	Arc 3	5611
905PR018	Thin intbds sh/si/ss, sil, Fe rust	Rock grab		bedding	Arc 4	5612
905PR019	D gry/purp fine gr sil and, qtz veinlets	Rock grab			Arc 4	5612
905PR020	Gry/purp fine gr and, slightly calc	Float	71 ру, 31 сру	qtz/cb volts	Arc 4	5612
905PR021	Gry aph sil dacite?, qtz veinlets	Rock grab		•	Arc 4	5612
905PR022	D gry/grn sil altered and slightly calc	Rock grab		cb valts	Arc 4	5612
905PR023	Intadd sh/si, sil	Rock grab	(11 dissem py		Arc 4	5612
905PR024	L gry sil fel tuff? qtz/cb vnlts (imm	Float	5% py along volts		Arc 4	5612
905PR025	Gry/grn fine gr sil and, calc, cb veins	Rock grab	trace py in veins		Arc 4	5612
905PR025	Intbdd sh lenses from shearing, Fe rust	Rock grab			Arc 4	5612
905PR027	D gry/grn sil and, calc, cb veins 3cm	Rock grab	<11 py		Arc 4	5612
905PR028	D gry/grn fine gr sil and slightly calc	Rock grab	II py along veinlets	cb volts	Arc 4	5612
9052R029	Fractured sh, Fe rust & slickensides	Rock grab		qtz/cb volts		5612
905PR030	Gry med gr sil and slightly calc	Rock grab	<1I	cb volts	Arc 4	5 612
905PR030	Cb/gtz vein .5-2cm in and host	Rock grab	1 * 4	gtz x15 .5cm		5612
90SPR031	D gry w blk spots and tuff slightly calc		! py disseminated</td <td>qt2/cb veins</td> <td></td> <td>5612</td>	qt2/cb veins		5612
905PR032	Cherty sh/si intods xcutting qtz vnlts	Rock grab		bdg k cleav		5612
		Rock grab	trace py	pillow	Arc 4	5612
905PR034	- Gry fin gr sil and very calc, cb whits	-		pillow edges		5612
90SPR035	Ls xcut by qtz wnlts very calc 10cm lens	ROLK YIGU	51 py	billion codes	ai 1, 7	1011

Exploration	RSION 1.30 Data Manager ERVICES INC.	***	199	O EXPL	LORATION	E SQUTH PROPERTY Database.	***		15:46: 27 22/11/90	Page :	
90SP8036	Gry/grn and				grab			Arc		5612	
905P8037	- Gry fin gr and	d gtz stringers	Fe/Mn stain	Rock	grab	<1% py	pillow	Arc	4	5612	
905PR038	Gry fin gr mas	sive and Fe/Mm	stain	Rock	grab		_qtz/cb_vnlts	iArc	4	5612	
905PR039	Gry fin-med gr	r and slightly c	alt	Rock	grab		_qtz/cb_vnlts	Arc	4	5612	
30SPR040	Gry/gra intmed	i volc slightly	calc	Rock	grab	1% disseminated py	qtz vein 1cm	Arc	4	5612	
90SPR041		' and w gtz stri		Rock	grab	(II py		Arc	4	5612	
30SP8042	Sil sh/si, qtz	•	-	Rock	•		bdg & cleav	Arc	4	56 12	
905PR043		and tuff qtz/c		Rock	-		-	Arc		5 612	
905PR044		d and, Fe/Mn/ch			grab	11 py along volts	ątz vnlts	Arc	4	56 12	
905PR045		nd chlorite stai		Rock			gtz/cb volts			5612	
305PR046		sh/si qtz vnlts			-	31 py along volts	•			5612	
90SPR047		up congl, calc, q			grab	<11 py	1	Arc		5612	
9052R049	r	ell-sorted ss, q		Rock	-			Arc		5612	
90SPR049		gr and slightly		Rock	-	31 py on fractures	ntz/ch wnits			5611	
90SPR050		gr and, calc, s			-	21 py	ch vnlts			5611	
						r. hi	ch vnlts			5611	
90SPR051		'grn rhy(dac?) c				<12 disseminated py				5611	
90SPR052		aph sil rhy Fe			-					5611	
905PR053	L gry/grn/purp	• •		Rock	-	17 py	qtz vnlts				
90SPR054	L-d gry/grn di	orite(gabb?) Fe				11 disseminated py	CO VRITS	Arc		5611 5610	
905PH002					stream			Arc		5612	
905JL001				Silt				Ar c		5612	
905J1002				Silt				Arc		5612	
90SPR055		s, cale ss v qt		Rock	grab	trace py	aedding	Arc		5612	
90SPR056	Fin gr lithic	ss, calc, qtz v	nlts (2mm	Rock	grab	trace py		Arc	4	5612	
905JR001	Oligon matrix-	supp congl, sh	clasts calc	Nock	grad	<1I py		Arc	4	5612	
905JR002	Lithic ss (ory	wke) slightly c	alc	Rock	grab	<12 disseminated py		Arc	4	5612	
905JR003		volc xcut by gt		Float	-	2-31 disseminated py		Arc	4	\$612	
90S JR004		si, qtz vnlts l		Rock	grab	trace py		Arc	4	5612	
905JR005		rhy, qtz volts		Float		31 dissem by, 31 cpy		Arc	4	5612	
905JR006		d gr calc Fe/Mn				1Z py	gtz/cb volts	Arc	4	5612	
905JR007		il and Fe/Nn st		Rock		+;	qtz/cb valts			5612	
905JR008	Intbdd sh/si/s			Rock	-		4	Arc		5612	
905JR009		sil and slight		Rock	-		qtz/cb valts			5612	
905J8010		<pre>i] and, qtz vei</pre>	1		•		410700 70110	Arc		5612	
								Arc		5612	
905JR011		Fe/Nn stain otz						Arc		5612	
90SJR012		Fe/An stain qt					shearing			5612	
90SJR013		and slightly c		Rock -	-		qtz/cb vnlts				
90SJR014		tuff? slightly		Rock	-	17 py	cb vnits	Arc		5612	
90SJR015		and, gtz vnlts		Rock	-			Arc		5612	
90SJR016		d tuff? slightly		Rock	-	3I py along volts	qtz/cb valts			5612	
90SJR017		il and, cb walt		Rock	-	11 disseminated py	flow banding			5612	
905JR018		s and tuff Fe/M		Rock	-	<1% py	cb valts	Ar c		5612	
90SJ8019	D gry/blk spots	s and tuff slig	htly calc	Rock	grab	<12 py	cb volts	Arc		5612	
90SJR020	L gry fin gr s:	il thy, qtz voli	5	Float		52 py dissem & conc		Arc	4	5612	
90\$JR021	Gry fin gr sil	and very calc	to-valts	Rock g	grab	trace py	pillows	Ar c	4	5612	
90SJR022	Gry/grn and	-		Rock (grab			Ar c	4	5612	
90SJR023	Cb veins 3-10m	∎ in and host		Rock g	-	21 py along veins		Arc	4	5612	
905 JR024		d tuff? qtz/cb (Rock g	-	17 disseminated py		Arc		5612	
305JR025		and slightly c		Rock (-		cb stringers			5612	
9053R026	• •	d gr and slight!		Rock	-	11 disseminated py	qtz/cb vnlts			5612	
		and Fe/Mn stail	•	Rock g	-	412 py		Arc.		5612	
				-	-	••	qtz/cb vnlts			5612	
BOSJRO2B	Grn/blk spots i	-		Rock (-	II py	•				
		d Fe/Mn stain sl		-	-	<11 py		Arc		5612	
90SJR030	Gry/grn sil bre	ecciated and FeJ	'Nn stain 👘	Rock g	grab			Ar c	4	5612	

. .

. . . .

	ERSION 1.30 n.Data Manager	636 81%				E SOUTH PROPERTY DATABASE.	±+* ±+*		15:47:34	-TEC RES MI Serial Au	
By GENCON	SERVICES INC.								22/11/90	Page :	
905JR031		sh Fe rust qtz			grab		red eu qtz	Arc	4	5612	
905JR032	Cherty brecc :	sh Fe rust qtz	vnlts	Rock	grab		beds evident	Arc	4	5612	
90518033	Gry/grn fin g	r and slightly	calc	Rock	grab	<1% py along whits	qtz volts	Arc	4	5612	
90SJR034	Cherty brect	shale Fe rust	gtz vnlts	Rock	grab			Arc	4	5612	
90538035	Lithic ss with		•	Rock	grab	<17 py	gtz va 7ee	Ar c	4	5612	
90512036	Calc lithic s	s with qtz vei	alets	Rock	grab	(11 py		A۲c	4	\$612	
905J8037	Sil intbdd sh.	/si		Rock	grab	trace py	bedding	Ar c	4	5612	
905JR038	L gry/grn aph	rby(dac?)		Rock	grað	11 py	gtz valts	Å? C	4	5612	
905JR039	Sil intbdd sh.	/si		Rock	grab	trace py	bedding	Ar c	4	5612	
905 JR040	Sil intbdd sh	/si/ss		Rock	grab	trace py	bedding	År c	4	5612	
90SJR041	Intadd sh/si/	ss gtz veinlet	5	Rock	grab	trace py	cb vos 8mm	Arc	4	5612	
30SJR042	Intbdd sh/si/:	ss qtz veinlet	5	Rock	grab	17 py along volts	bedding	Årc	4	5612	
90SJR043	Gtz vein 2cm :				grab		•	Åτ (4	5612	
90SJR044	Lithic ss w xi	cutting qtz ve	ins 2-10mm	Rock	grab	trace py		Arc	4	S612	
90SCR001	Arenite (sand:				grab	>1∑ phy		Arc	4	5612	
90SDR014	Altered tuffa	ceous volc.		Float	-	5I py		Arc	4	5612	
90SDR015	Altered volc.			Float		31 py, 17 cpy?		Ar c	4	5612	
90SDR016		ava, calc, bre				Tr py in calc matri	x	Arc	4	5612	
90SDR017		gr aphan, pro				27 py		Arc	4	5612	
90SDR018	•	in gr pillow la	•	Rock	-	11	25cm v vein			5612	
90SDR019		lc vein in And				37 py dissm in volc				5612	
90SDR020	Volc boulder o		, have vere	Float	-	10-201 dissa py+gy?		Are		5612	
90SDR021		ered volc. Teci	topized			Tr dissa py		Arc		5612	
90508022		ered volc, Teci		Rock		10I py, 3I cpy		Arc		56 12	
905DR023		c. underlie pi		Rock	-	51 py dissm & module	90 contact	Arc		5612	
		lSca vide si in				Fe/Mn	Shear zone	Arc		5612	
90508024 905P8057	This intbdss		II VUIC.			trace py	bedding	Arc		5612	
					-	trace py	bedding	Arc		5612	
90SP8058	This intadd sh					••	bedding	Arc		5612	
905PR059	Thin inthdd sh		f		-	trace py	bedding	Arc		5612	
9052R060		ss calc along f			-	trace py	-	Arc		5612	
90SPR061		ss gtz veinlet:			*	trace py	bedding	Arc		5612	
30SPR062		nd calc qtz/cb		Float		418 m	pillows	Arc		5612	
90SPR063		nd very calc q		Float		<11 py	pillows				
90SPR064		stact slknside:		Rock	-		folded		4	5612	
90SPR065		dg, fractured,		Rock	-			Ar c		5612	
90SPR066		s fel volc cb		Rock		(П ру	floy banding			5612	
90SPR067		ts fel volc cb	& qtz valts	Rock	-	27 py	flow banding			5612	
90SPR068	Sil gry/grn ar			Rock	-	gy (11 py)	cb veinlets			5612	
90SPR069	Intbdd sh/si/s			Rock	-		bedding	Arc		5612	
90SPR070		ke 2m thick Fe		Rock		11 ру		Å٢Ç		5612	
905PR071	- Gry/grn sil in	ntmed volc call	c cb-vnlts	Rock	grab	31 disseminated py	dyke	At c		5612	
90SP8072	latbdd sh/si/s	is v Sce dyke o		Rock				Arc		5612	
905P8073	L gry/grn/blk	spots intmed w	rolc Fe-rust	Rock	grab	3-51 py	qtz vnlts	Arc	4	5612	
905P8074	L gry/blk spot	s altered/blea	ached and	Rock	grab		cb-veinlets	Arc	4	5612	
905PR075	Grn/blk specks	altered and F	e-rust	Rock	grab	II disseminated py	cb volts	År c	4	5612	
90SPR076	Sry/grn and qt	z/cb vnlts cal	lc borders	Rock	grab	3Ipy 1I ga in border		Ar c	4	5612	
9052R077	Coarse gr blk/			Rock	grab	21 mag 11 py		Arc	4	5612	
9052R078	0 gry fin gr s	-		Rock	-	22 py in cd veinlets	pillows	Arc	3	5611	
905PR079	Sry/purp sil a			Rock	-	<11 py	cb-vnlts	<u>Ar c</u>	3	5611	
90SPR080		ind Fe-Xn stair		Rock		31 py along veinlets	qtz/cb vnlts	Arc	3	5611	
30SPR081	Cherty sh xcut			Rock	-			Arc		5611	
90SPR082	Gry sil and qt			Rock	-	CII py		Arc		5611	
	• •				-	(II py	qtz vnlts	Arc		5611	
BOSPRO83	Gry/purp and t	uff ralc-sever	I SIKNSMAS	Rock	arau	CIL DY	ALPX ALITER	n t	1	1011	

.

.

· #

BOSPR086Bry/putBOSPR087ChertyBOSPR087ChertyBOSPR088BreccisBOSPR089LBOSPR090HighlyBOSPR091Grn allBOSPR092Gry/graBOSPR093Gry andBOSPR094Sil sh/BOSPR095Brecc aBOSPR096Brecc aBOSPR097Sil sh/BOSPR098Sil gryBOSPR099Altrd gBOSPR099Altrd gBOSPR099Altrd gBOSPR101Sry silBOSPR102Gry/graBOSPR103ChertyBOSPR104Btz vnBOSPR105Sil gryBOSPR106Dtz vnOSPR107Brecc cBOSPR108Bry/graOSPR109Altrd gDOSPR109Altrd gDOSPR109Bry/graDOSJR045IntbddOSJR045IntbddOSJR055Sil gryDSJR056D gry/grDSJR057D gry/grDSJR058Sry/grnDSJR059Gry/grnDSJR061IntbddDSJR062Altrd gDSJR063Gry/grnDSJR064Gry/grnDSJR065Gry/grnDSJR066Gry/grnDSJR067Bry/grnDSJR068Gry/grnDSJR068Gry/grnDSJR068Gry/grnDSJR068Gry/grnDSJR068Gry/grnDSJR068Gry/grnDSJR068Gry/grnDSJR068	CES INC.	+++ [S	440 EXPLO	RATION I	YATABASE.	ŧŧŧ		15:48:41 22/11/90	
NOSPR087ChertyNOSPR088BrecciaNOSPR089L gry/HNOSPR090HighlyNOSPR091Grn allNOSPR092Gry/graNOSPR093Gry andNOSPR094Sil shiNOSPR095Brecc allNOSPR096Brecc allNOSPR097Sil shiNOSPR098Sil gryNOSPR099Altra grNOSPR099Altra grNOSPR099Altra grNOSPR099Altra grNOSPR099Altra grNOSPR101Gry/graNOSPR102Gry/graNOSPR103ChertyNOSPR104Gtz vnNOSPR105Sil gryNOSPR106Gtz vnNOSPR107Brecc clNOSPR108Sil gryNOSPR109Altra grNOSPR109IntbddNOSJR051IntbddNOSJR053Sil gryNOSJR054Gry/grnNOSJR055Sil gryNOSJR055Sil gryNOSJR056D gry/gNOSJR057D gry/gNOSJR058Gry/grnNOSJR059Gry/grnNOSJR050L gry/wNOSJR061IntbddNOSJR062Altrd gNOSJR063L gry/wNOSJR064Gry/grnNOSJR065Gry/grnNOSJR066Gry/grnNOSJR067Gry/grnNOSJR068Gry/grnNOSJR068Gry/grnNOSJR068Gry/grnNOSJR068Gry/grnNOSJR068 <th></th> <th>Fe/Mn stain slknsdes</th> <th></th> <th>rab (</th> <th>llΣ βγ</th> <th>cb veinlets</th> <th>Arc</th> <th>3</th> <th>5611</th>		Fe/Mn stain slknsdes		rab (llΣ βγ	cb veinlets	Arc	3	5611
NOSPROBBBrecciaNOSPROBBL gry/lNOSPRO90HighlyNOSPR091Grn allNOSPR092Gry/grdNOSPR093Gry andNOSPR094Sil shiNOSPR095Gry/grdNOSPR096Brecc allNOSPR097Sil shiNOSPR098Sil gryNOSPR099Altrd grdNOSPR099Altrd grdNOSPR099Altrd grdNOSPR101Gry/grdNOSPR102Gry/grdNOSPR103ChertyNOSPR104Gtz vnNOSPR105Sil gryNOSPR106Gtz vnNOSPR107Brecc coNOSPR108Sil gryNOSPR109Altrd grdNOSPR109LithicNOSPR109Sil gryNOSPR109Sil gryNOSPR109LithicNOSJR045IntbddNOSJR045IntbddNOSJR045Sil gry/grNOSJR055Sil gryNOSJR055Sil gry/grNOSJR055Sil gry/grNOSJR055Sil gry/grNOSJR055Sil gry/grNOSJR055Sil gry/grNOSJR056Gry/grNOSJR057Gry/grNOSJR058Gry/grNOSJR059Gry/grNOSJR050L gry/wNOSJR055Gry/grNOSJR056Gry/grNOSJR055Gry/grNOSJR055Gry/grNOSJR055Gry/grNOSJR055Gry/grNOSJR055Gry/grNOSJ		Fe/Mn stais slknsdes			1 ру	cb veinlets	Arc	3	5611
IOSPR089I gry/1IOSPR090HighlyIOSPR091Grn allIOSPR092Gry/graIOSPR093Gry andIOSPR094Sil shIOSPR095Gry/graIOSPR096Brecc aIOSPR097Sil shIOSPR098Sil gryIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR101Sry silIOSPR102Gry/graIOSPR103ChertyIOSPR104Gtz vnOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR051IntbddOSJR053Sil gryOSJR054Gry/grnOSJR055Sil gryOSJR055Sil gryOSJR056D gry/gOSJR057G gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR061IntbddOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grnOSJR068Gry/grnOSJR068Gry/grnOSJR068<	· ·	-volts Fe-rusted surface	-				Å۶c		5611
IOSPR090HighlyIOSPR091Grn allIOSPR092Gry/graIOSPR093Gry andIOSPR094Sil shIOSPR095Gry/graIOSPR096Brecc aIOSPR097Sil shIOSPR098Sil gryIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR101Gry griIOSPR102Gry/graOSPR103ChertyOSPR104Gtz vnOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048Gry/graOSJR049IntbddOSJR051IntbddOSJR052IntbddOSJR053Sil gryOSJR054Gry/graOSJR055Sil gry/graOSJR056D gry/graOSJR057Gry/graOSJR058Gry/graOSJR059Gry/graOSJR061IntbddOSJR063L gry/wOSJR064Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR065Gry/graOSJR066Gry/graOSJR067Gry/graOSJR068<		ale, qtz vein let s	Rock ga				Ar c	3	561:
IOSPR091Grn allIOSPR092Gry/grsIOSPR093Gry andIOSPR094Sil shiIOSPR095Gry/grsIOSPR096Brecc andIOSPR097Sil shiIOSPR098Sil gryIOSPR099Altro gryIOSPR099Altro gryIOSPR099Altro gryIOSPR099Altro gryIOSPR099Altro gryIOSPR099Altro gryIOSPR101Gry/groIOSPR102Gry/groIOSPR103ChertyIOSPR104Gtz vnOSPR105Sil gryOSPR106Gtz vnOSJR045IntbddOSJR045IntbddOSJR045IntbddOSJR045IntbddOSJR045IntbddOSJR055Sil gryOSJR056D gry/grnOSJR057G gry/grnOSJR058Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR053Gry/grnOSJR054Gry/grnOSJR055Gry/grnOSJR064Gry/grnOSJR065Gry/grnOSJR064Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grnOSJR068Gry/grnOSJR068Gry/grn		il dacite? altered on volt				cà-veinlets			5611
IOSPR092Gry/grdIOSPR093Gry andIOSPR094Sil shiIOSPR095Gry/grdIOSPR096BreccIOSPR097Sil shiIOSPR098Sil gryIOSPR099Altrd grIOSPR099Altrd grIOSPR099Altrd grIOSPR101Gry/grdIOSPR102Gry/grdIOSPR103ChertyIOSPR104Gtz vnOSPR105Sil gryOSPR106Gtz vnOSPR107BreccOSPR108Gtz vnOSJR045IntbddOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/grOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR055Sil gryOSJR056D gry/grOSJR057G gry/grOSJR058Gry/grnOSJR061IntbddOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grnOSJR068Gry/grn		d cherty sh in lenses	Rock gr			cb-veinlets			
IOSPR093Gry and OSPR094Sil sh/ IOSPR095IOSPR095Gry/grrIOSPR096Brecc (OSPR097IOSPR097Sil sh/ 		nd Fe/Mn stain slknsdes				- qtz veinlets	Arc	3	5611
NOSPR094Sil sh/ Brecc 4NOSPR095Gry/grnNOSPR096Brecc 4NOSPR097Sil sh/ NOSPR098NOSPR098Sil gryNOSPR099Altrd grNOSPR099Altrd grNOSPR099Altrd grNOSPR099Altrd grNOSPR099Altrd grNOSPR100Very fcNOSPR101Gry/grcNOSPR102Gry/grcNOSPR103ChertyNOSPR104Gtz vnNOSPR105Sil gryNOSPR106Gtz vnNOSPR107Brecc crNOSPR108B gry/grNOSJR045IntbddNOSJR045IntbddNOSJR046Gtz vnNOSJR047LithicNOSJR048B gry/grNOSJR050Gtz vnsNOSJR051IntbddNOSJR053IntbddNOSJR054Gry/grnNOSJR055Sil gryNOSJR058Bry/grnNOSJR059Gry/grnNOSJR059Gry/grnNOSJR054Gry/grnNOSJR055Gry/grnNOSJR054Gry/grnNOSJR055Gry/grnNOSJR056Gry/whtNOSJR057Gry/grnNOSJR058Gry/grnNOSJR054Gry/grnNOSJR055Gry/grnNOSJR056Gry/grnNOSJR057Gry/grnNOSJR058Gry/grnNOSJR054Gry/grnNOSJR055Gry/grnNOSJR056Gry/grnNOSJR057Gry/grn <td>'grn/blk s</td> <td>pots and Fe/Mn stain slkns</td> <td>id Rock gr</td> <td>rab l</td> <td>I ру</td> <td>qtz/cb_vnlts</td> <td>Ar c</td> <td>3</td> <td>5611</td>	'grn/blk s	pots and Fe/Mn stain slkns	id Rock gr	rab l	I ру	qtz/cb_vnlts	Ar c	3	5611
HOSPR095 Gry/grn HOSPR096 Brecc HOSPR096 Brecc HOSPR097 Sil sh/ HOSPR097 Sil sh/ HOSPR097 Sil sh/ HOSPR098 Sil gry HOSPR099 Altrd gry HOSPR100 Very fc HOSPR101 Gry gry HOSPR102 Gry/grn HOSPR103 Cherty HOSPR104 Gtz vn HOSPR105 Sil gry HOSPR106 Gtz vn HOSPR107 Brecc cr HOSPR108 B gry/gry HOSPR109 Intbdd HOSJR048 B gry/gr HOSJR050 Gtz vns HOSJR051 Intbdd HOSJR052 Sil gry HOSJR053 Gry/grn HOSJR054 Gry/grn <tr< td=""><td>and brecc</td><td>? calc slknsdes fractured</td><td>Rock gr</td><td>rab (</td><td>11 ру</td><td>cb-veinlets</td><td>Arc</td><td>3</td><td>5611</td></tr<>	and brecc	? calc slknsdes fractured	Rock gr	rab (11 ру	cb-veinlets	Arc	3	5611
NOSPR096BreckNOSPR097Sil sh/NOSPR097Sil sh/NOSPR098Sil gryNOSPR099Altrd gryNOSPR099Altrd gryNOSPR099Altrd gryNOSPR099Altrd gryNOSPR100Very fcNOSPR101Sry silNOSPR102Gry/graNOSPR103ChertyNOSPR104Gtz vnNOSPR105Sil gryNOSPR106Gtz vnNOSPR107Breck cNOSPR108Gry/graNOSPR109IntbddNOSJR046Gtz vnsNOSJR047LithicNOSJR048Gry/grnNOSJR049IntbddNOSJR050Gtz vnsNOSJR051IntbddNOSJR053IntbddNOSJR054Gry/grnNOSJR055Sil gryNOSJR056D gry/gNOSJR058Gry/grnNOSJR059Gry/grnNOSJR051IntbddNOSJR053IntbddNOSJR054Gry/grnNOSJR055Gry/grnNOSJR064Gry/whtNOSJR065Gry/whtNOSJR066Gry/grnNOSJR067Gry/grnNOSJR068Gry/grn	sh/si qtz	-veinlets	Rock gr	rab		bedding	Arc	3	5611
IOSBR001PillowIOSPR097Sil sh/IOSPR098Sil gr)IOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR100Very foIOSPR101Sry silIOSPR102Gry/groIOSPR103ChertyIOSPR104Gtz vnOSPR105Sil gryOSPR106Gtz vnOSPR107Brecc cOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR052Altrd gOSJR053Gry/grnOSJR054Gry/grnOSJR055Gry/grnOSJR064Gry/grnOSJR065Gry/whtOSJR065Gry/whtOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR068Gry/grn	'grn alter:	ed and, slkndes	Rock gr	rab		-	Arc	3	561 t
IOSBR001PillowIOSPR097Sil sh/IOSPR098Sil gr)IOSPR099Altrd gIOSPR099Altrd gIOSPR099Altrd gIOSPR100Very foIOSPR101Sry silIOSPR102Gry/groIOSPR103ChertyIOSPR104Gtz vnOSPR105Sil gryOSPR106Gtz vnOSPR107Brecc cOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR052Altrd gOSJR053Gry/grnOSJR054Gry/grnOSJR055Gry/grnOSJR064Gry/grnOSJR065Gry/whtOSJR065Gry/whtOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR068Gry/grn		sh Fe-rust qtz-veinlets				bedding	Are	3	5611
NOSPR097Sil sh/NOSPR098Sil gryNOSPR099Altrd gNOSPR100Very foNOSPR101Sry silNOSPR102Gry/groNOSPR103ChertyNOSPR104Gtz vnNOSPR105Sil gryNOSPR106Gtz vnNOSPR107Brecc coNOSJR045IntbddNOSJR045IntbddNOSJR046Gtz vnNOSJR047LithicNOSJR048B gry/gNOSJR049IntbddNOSJR050Gtz vnsNOSJR051IntbddNOSJR052IntbddNOSJR053Sil gryNOSJR054Gry/grnNOSJR055Sil gry/gNOSJR056D gry/gNOSJR057G gry/grnNOSJR058Gry/grnNOSJR059Gry/grnNOSJR051IntbddNOSJR052Altrd gNOSJR053Gry/grnNOSJR054Gry/grnNOSJR055Gry/grnNOSJR061IntbddNOSJR063L gry/wNOSJR064Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR066Gry/grnNOSJR067Gry/grnNOSJR068Gry/grn		steep dipping ands	Rock gr		.1% py dissa	-	Arc	4	5612
NOSPR09BSil gryNOSPR099Altrd grNOSPR100Very fcNOSPR101Sry silNOSPR102Gry/grcNOSPR103ChertyNOSPR104Utz vnNOSPR105Sil gryNOSPR106Utz vnNOSPR107Brecc cNOSJR046Utz vnNOSJR047LithicNOSJR048D gry/gNOSJR049IntbddNOSJR049IntbddNOSJR049IntbddNOSJR049IntbddNOSJR050Utz vnsNOSJR051IntbddNOSJR052IntbddNOSJR053Sil gryNOSJR054Gry/grnNOSJR055Sil gry/grNOSJR056D gry/gNOSJR057G gry/grNOSJR058Gry/grnNOSJR059Gry/grnNOSJR051IntbddNOSJR052Altrd gNOSJR053Gry/grnNOSJR054Gry/grnNOSJR055Gry/grnNOSJR063L gry/wNOSJR065Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR065Gry/grnNOSJR068Gry/grn		altrd gtz-vnlts Fe-rust	-			bedding	Ατ ε	3	5611
IOSPR099Altrd gIOSPR100Very fcIOSPR101Gry groIOSPR102Gry/groIOSPR103ChertyIOSPR104Gtz vnIOSPR105Sil gryOSPR106Gtz vnOSPR107Brecc cOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR049IntbddOSJR049IntbddOSJR051IntbddOSJR052IntbddOSJR053Sil gryOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR057G gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR061IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn		pots and cb/qtz-valts calc			1 disseminated py	sh contact	Arc	3	5611
OSPR100Very for orspR101OSPR101Sry sillOSPR102Gry/groOSPR103ChertyOSPR104Gtz vnOSPR105Sill gryOSPR106Gtz vnOSPR107Brecc cOSJR045IntbddOSJR045IntbddOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR049IntbddOSJR050Gtz vnOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR055Sill gryOSJR056D gry/grnOSJR057O gry/grnOSJR058Sry/grnOSJR059Gry/grnOSJR050IntbddOSJR051IntbddOSJR053Sill gryOSJR054Gry/grnOSJR055Sill gryOSJR061IntbddOSJR062Altrd gOSJR063L gry/wtOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn		and slknsds Fe/Mn-stain	Rock gr		race py	gtz/cb-volts			5611
OSPR101Sry silOSPR102Gry/grnOSPR103ChertyOSPR104Gtz vnOSPR105Sil gryOSPR106Gtz vnOSPR107Brecc cOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR049IntbddOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR057O gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR060IntbddOSJR061IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn		herty sh, qtz-vns <1-20mm	-			1		3	5611
OSFR102Gry/groOSFR103ChertyOSFR104Gtz vnOSFR105Sil gryOSFR106Gtz vnOSFR107Brecc cOSFR107Brecc cOSFR107Brecc cOSJR045IntbddOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053Sil gryOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR057O gry/gOSJR058Bry/grnOSJR059Gry/grnOSJR060IntbddOSJR061IntbddOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn		qtz-vnlts (2mm	Rock gr		I along veinlets			3	5611
OSPR103ChertyOSPR104Gtz vnOSPR105Sil gryOSPR106Gtz vnOSPR107Brecc cOSJR045IntbddOSJR046Gtz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR058Gry/grnOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR061IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grnOSJR068Gry/grnOSJR068Gry/grn	•	and, slight brecc, slknsd	-		• ••••••	gtz vas 7aa			5611
OSPR104Otz vnOSPR105Sil gryOSPR106Otz vnOSPR107Brecc cOSJR045IntbddOSJR046Otz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Gry/grnOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grnOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR068Gry/grn		-volts, slightly brecc	Rock gr			dar 192 (mm		3	5611
OSPRIOSSil gry OSPRIOGOSPRIOFDiz vnOSPRIOFBrecc cOSJR045IntbddOSJR046Giz vnOSJR047LithicOSJR048D gry/gOSJR049IntbddOSJR050Giz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR055Sil gry/gOSJR058Gry/grnOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR053L gry/wOSJR054Gry/grnOSJR055Gry/grnOSJR064Gry/grnOSJR065Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grnOSJR068Gry/grn		ru sh/and contact	Rock gr				Arc		5611
OSPRIOGDiz vnOSPRIO7Brecc cOSJR045IntbddOSJR046Diz vnOSJR047LithicOSJR048B gry/gOSJR049IntbddOSJR049IntbddOSJR050Diz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR050IntbddDSJR061IntbddDSJR062Altrd gDSJR063L gry/wDSJR064Gry/grnDSJR065Gry/grnDSJR066Gry/grnDSJR067Bry/grnDSJR068Gry/grn			-		T ev plans uplts		Art		5611
05PR107Brect of0SJR045Intbdd0SJR046Gtz vn0SJR047Lithic0SJR048B gry/g0SJR049Intbdd0SJR050Gtz vns0SJR051Intbdd0SJR052Intbdd0SJR053Intbdd0SJR054Gry/grn0SJR055Sil gry0SJR056D gry/g0SJR0570 gry/grn0SJR058Gry/grn0SJR059Gry/grn0SJR059Gry/grn0SJR061Intbdd0SJR062Altrd g0SJR063L gry/w0SJR064Gry/grn0SJR065Gry/grn0SJR065Gry/grn0SJR066Gry/grn0SJR067Gry/grn0SJR068Gry/grn0SJR068Gry/grn		ph brecc dac? qtz/cb-vnlts			I py along volts				
0SJR045Intbdd0SJR046Gtz vn0SJR047Lithir0SJR048D gry/g0SJR049Intbdd0SJR049Intbdd0SJR050Gtz vns0SJR051Intbdd0SJR052Intbdd0SJR053Intbdd0SJR054Gry/grn0SJR055Sil gry0SJR056D gry/g0SJR0570 gry/grn0SJR058Gry/grn0SJR059Gry/grn0SJR059Gry/grn0SJR050Intbdd0SJR051Intbdd0SJR052Altrd g0SJR053Gry/grn0SJR054Gry/grn0SJR055Gry/grn0SJR056Gry/grn0SJR057Gry/grn0SJR058Gry/grn0SJR059Gry/grn0SJR054Gry/grn0SJR055Gry/grn0SJR056Gry/grn0SJR058Gry/grn0SJR059Gry/grn0SJR058Gry/grn		ntexd w and, Fe/Mn stain	Rock gr			vein	Are		5611
OSJR046Gtz vnOSJR047LithicOSJR048D gry/gOSJR049IntbddOSJR050Gtz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR057O gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR050IntbddOSJR051IntbddOSJR052Altrd gOSJR053Gry/whtOSJR054Gry/grnOSJR055Gry/whtOSJR056Gry/whtOSJR056Gry/grnOSJR057Gry/grnOSJR058Gry/grnOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn	•	sh qtz-vnlts Fe-rusted	Rock gr				Arc		5611
OSJR047LithicOSJR048Dgry/gOSJR049IntbddOSJR050BtzOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR055Gry/grnOSJR056DOSJR057OOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR052Altrd gOSJR053Gry/grnOSJR054Gry/grnOSJR055Gry/whtOSJR064Gry/grnOSJR065Gry/whtOSJR066Gry/grnOSJR067Bry/grn		ss locally folded	Rock gr			bedding	Arc		5611
0SJR048Dgry/g0SJR049Intbdd0SJR050Btz0SJR051Intbdd0SJR052Intbdd0SJR053Intbdd0SJR054Gry/grn0SJR055Sil0SJR055Gry/grn0SJR057O0SJR058Gry/grn0SJR059Gry/grn0SJR059Gry/grn0SJR059Gry/grn0SJR051Intbdd0SJR062Altrd0SJR063L0SJR064Gry/grn0SJR065Gry/wht0SJR066Gry/grn0SJR067Bry/grn0SJR068Gry/grn		<pre>/ fold along local fault</pre>	Rock gr				Arc		5612
05JR049Intbdd05JR050Btz vns05JR051Intbdd05JR052Intbdd05JR053Intbdd05JR054Gry/grn05JR055Sil gry05JR057Gry/gr05JR058Gry/gr05JR059Gry/gr05JR059Gry/gr05JR059Gry/gr05JR050Intbdd05JR051Intbdd05JR052Altrd g05JR063L gry/w05JR064Gry/grn05JR065Gry/wht05JR065Gry/wht05JR066Gry/grn05JR067Bry/grn05JR068Gry/grn		phtly calc	Rock gr		race py		Arc		5612
OSJR050Biz vnsOSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/whtOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn		and very calc	Rock gr		Z disseminated py	dyke 1.5m	Årε		5612
OSJR051IntbddOSJR052IntbddOSJR053IntbddOSJR054Gry/grnOSJR055Sil gryOSJR056D gry/gOSJR057O gry/bOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR051IntbddDSJR062Altrd gDSJR063L gry/wDSJR064Gry/grnDSJR065Gry/grnDSJR066Gry/grnDSJR067Gry/grnDSJR068Gry/grnDSJR064Gry/grnDSJR065Gry/grnDSJR066Gry/grnDSJR068Gry/grn	dd sh/si/s	ss gtz-vnlts (Sam	Rock gr	ab 71	🛿 py along veins 👘		Arc	4	5612
05JR052Intbdd0SJR053Intbdd0SJR054Gry/grn0SJR055Sil gry0SJR056D gry/g0SJR0570 gry/b0SJR058Gry/grn0SJR059Gry/grn0SJR059Gry/grn0SJR060Intbdd0SJR061Intbdd0SJR062Altrd g0SJR063L gry/w0SJR064Gry/grn0SJR065Gry/grn0SJR065Gry/grn0SJR066Gry/grn0SJR067Bry/grn0SJR068Gry/grn	vns 1-10mm	e xcutting sh/si/ss	Rock gr	ab			Arc	4	5612
OSJR053IntbddOSJR054Gry/grnOSJR055Sil gry/grnOSJR056D gry/gOSJR057O gry/bOSJR058Gry/grnOSJR059Gry/grnOSJR060IntbddOSJR061IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/whtOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR066Gry/grnOSJR068Gry/grn	dd sh/si/s	ŝs	Rock gr	ab		bedding	Arc	4	S 612
OSJR054Gry/grnOSJR055Sil gryOSJR055D gry/gOSJR057D gry/gOSJR058Gry/grnOSJR059Gry/grnOSJR050IntbddOSJR061IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/grnOSJR066Gry/grnOSJR067Gry/grnOSJR068Gry/grn	dd sh/si		Rock gr	ab		bedding	Arc	4	5612
OSJR054Gry/grnOSJR055Sil gryOSJR055D gry/gOSJR057D gry/bOSJR058Gry/grnOSJR059Gry/grnOSJR059Gry/grnOSJR060IntbddOSJR061IntbddOSJR062Altrd gOSJR063L gry/wOSJR064Gry/grnOSJR065Gry/whtOSJR066Gry/grnOSJR067Bry/grnOSJR068Gry/grn	dd sh/si/s	is qtz-volts			race py	bedding	Arc	4	5612
OSJR055 Sil gry OSJR055 D gry/g OSJR057 O gry/b OSJR058 Bry/grn OSJR059 Gry/grn OSJR050 Intbdd OSJR060 Intbdd OSJR061 Intbdd OSJR062 Altrd g OSJR063 L gry/w OSJR064 Gry/grn OSJR066 Gry/grn OSJR068 Gry/grn		d very calc otzach volts	Float		1Σ py	pillows	Arc		5612
OSJR056 D gry/g OSJR057 O gry/b OSJR058 Gry/grn OSJR059 Gry/grn OSJR060 Intbdd OSJR061 Intbdd OSJR062 Altrd g OSJR063 L gry/w OSJR064 Gry/grn OSJR065 Gry/grn OSJR066 Gry/grn OSJR068 Gry/grn		nd slighly calc cb-vnlts	Float		race py	pillows	Arc		5612
OSJR057 0 gry/b OSJR058 Gry/grn OSJR059 Gry/grn OSJR060 Intbdd OSJR061 Intbdd OSJR062 Altrd g OSJR063 L gry/w OSJR064 Gry/grn OSJR065 Gry/grn OSJR066 Gry/grn OSJR068 Gry/grn			Float		II py	P 20000	Arc		5612
OSJRO58 Gry/grn OSJRO59 Gry/grn OSJRO50 Intbdd OSJRO51 Intbdd OSJRO52 Altrd g OSJRO53 L gry/w OSJRO55 Gry/grn OSJRO55 Gry/grn OSJRO55 Gry/grn OSJRO58 Gry/grn		slightly calc cb-volts	Rock gr.		L py	pillous	Arc		5612
DSJR059 Gry/grn DSJR060 Intbdd DSJR061 Intbdd DSJR062 Altrd g DSJR063 L gry/w DSJR063 Gry/grn DSJR065 Gry/grn DSJR065 Gry/grn DSJR068 Gry/grn			Rock gr		• •)	p111005	Arc		5612
DSJR060 Intbdd DSJR061 Intbdd DSJR062 Altrd g DSJR063 L gry/w DSJR064 Sry/grn DSJR065 Gry/grn DSJR065 Gry/grn DSJR067 Gry/grn DSJR068 Gry/grn	-		Rock gr		Еру		Arc		5612
DSJROGI Intbdd DSJROG2 Altrd g DSJROG3 L gry/w DSJROG4 Gry/grn DSJROG5 Gry/wht DSJROG5 Gry/grn DSJROG7 Gry/grn DSJRO68 Gry/grn.			-		r hà		Arc		5612
DSJR062 Altrd g DSJR063 L gry/w DSJR064 Gry/grn DSJR065 Gry/wht DSJR066 Gry/grn DSJR067 Gry/grn DSJR068 Gry/grn			Rock gra			-total units			5612
DSJR063 L gry/w DSJR064 Gry/gra DSJR065 Gry/wht DSJR066 Gry/gra DSJR067 Gry/gra DSJR068 Gry/gra.		alc qtz-vn icm	Rock gri			qtz/cb vnlts			
DSJR064 Gry/gra DSJR065 Gry/wht DSJR066 Gry/gra DSJR067 Gry/gra DSJR068 Gry/gra	• •	slknsds/shear cb-valts	Rock gra		are py	- • •	Arc		5612
DSJR065 Gry/wht DSJR066 Gry/gra DSJR067 Gry/gra DSJR068 Gry/gra		s and vesickamygd Fe-rust	_		disseminated py	pillows	Arc		5612
DSJR066 Gry/grn DSJR067 Gry/grn DSJR068 Gry/grn	• •	ots and qtz/cb vn 2cm	Rock gra		ace py	pillovs	Arc ·		5612
DSJR067 Bry/grn DSJR068 Gry/grn		and tuff Fe-rust	Rock gra		disseminated ppy	qtz&cb vnlts			5612
53R068 Gry/grn.	-	ecc qtz-valts gossanous	Rock gra		ру	•	Ar c		5612
		ecc qtz/cb vnlts gossan.	Rock gra		ру	-	Arc -		5612
· · · · · · · · · · · · · · · · · · ·	grn/blk am	d qtz vnlts gossanous	Rock gra	ab 21	ру	pillo v s	Ar c 🗉	4	5612
)SJR069 Gry/grn.	grn/blk an	d qtz-vnlts gossanous	Rock gra		ру	pillows	Arc -	4	5612
	-	z/cb valts (5mm	Rock gra			•	Arc 4		5612
•	• •	z/cb vnlts	Rock gra		py along volts		Årc -		5612
		b (dior?) slightly brecc	Rock gra		ate py		Arc 4		5612
		r calc (cb-volts?)	Rock gra		I py		Arc ·		5612
	ieo de nin	or gtz vns 2-20mm	Rock gra		ιργ py in blebs		Arc 4		5612

.

	RSIDN 1.30 Data Manager ERVICES INC.	#E1 EE1				SDUTH PROPERTY ATABASE.	### ###		HI 15:49:47 22/11/90	-TEC RES M Serial n Page :	
90SJR075	•	z vnlts altrd Fe-r		ock gra			dior contact			5612	
905JR076		:ò-vnlts slknsds c		ack gri		I py vns & fracs	qtz vns 1cm	Ar c	4	5612	
9 05 J R077	-Sry/grn and a	qtz∕cb vns I-10ea		ock gra		ї ру	qtz vn 12cm	Arc	4	5612	
90SJ8078		recciątz vo 3cm, P		ock gra	ab		qtz volts	År c	4	5612	
90538079	Cherty sh xcu	it cb-volts slight	ly brecc – Re	ock gra	ap			Arc	3	5611	
905JR080		s and slightly cal		ock gra		race py	ca~a≋ygd	År c		5611	
00508081	Dlk/wht/grn c	lior calc qtz-velt	s slknads Ro	ock gra	ab t	race py		Ar c		5511	
00512082		qtz∕cb volts (1-20		ock gra	ab 1	ї ру		År c		55:1	
905J R08 3	-Grγ/grn sil a	and qtz/cb-apygd s	lknsds Ro	ock gra	ab			Ar c		5611	
90SJR084	Gry sil and o	b-valts sikasds F	e-rust <i>R</i> a	ock gra	ab 1	I py		År c		5611	
005 JR085	Altrd gry and	i qtz-volts slkosd	s Re	ock gra	ab			Arc		5611	
OSJR086	81k sil basal	t Fe/Nn/blue stai	n slknsds Ro	ock gra	ab		qtz-vnlts	Arc		5611	
OSJROB7	Gry/grn sil a	and gtz & cb-vnlts	slknsds Re	ock gra	ab			Arc	3	5611	
DSJR088	L gry sil fel	volc (dac?) vnlt	skica Ro	ock gra	ab (17 gy	qtz/cb-vnlts	٨rc	3	5611	
IOSJR089	Gry/grn sil a	and slightly calc	slknsds Ro	ock gra	ab <	1 % py	qtz/cb-vnlts	At c	3	5613	
90SJR090		esds Fe/Nn stain		ock gra	ab t	race py	qtz-vnits	Årς	3	5611	
IOSJR091		-vnlts Fe/Mn stai		ock gra		race py		Ar c	3	5611	
FOS JR092		-volts Fe/Mo stai		ock gra		race py		Arc	3	5611	
IOSJR093		slknsds/shear Fe-s		nek gra		11 py	qtz/cb-vnlts	Ar c	3	5611	
10SJR034		il and slknsds		ock gra		race py	gtz/cb-vnlts			5611	
05JR095		-vnlts Fe/Mn stai		ock gra		I py along surface	-	Arc		5611	
0518036	• •	(dac?) gtz-vnlts)ck gra		11 py		Arc		5611	
0538097		ik banding Fe-sta)ck gra		I py diss & blebs	atz/ch_volts			5611	
05JR038		ind gtz/cb-volts s		ek gra		race py	derien inter	Arc		5611	
IOS JAO 30		il and qtz/cb-vnl		-		1I py diss & blebs		Arc		5611	
				-		••		Arc		5611	
OSJR100		aph sil dac qtz/		ock gra ock gra		I py -2I py along volts		Arc		5611	
0SJR101		fel volc gtz/cb-		-		I disseminated py		Arc		5611	
0SJR102		ts sil aph dar gt:		ick gra			qtz/cb-volts			5611	
OSJR103		volc(dar?) blk s		ick gra		I ру	derien auten	Arc		5611	
OSJR104	• •	ph dac qtz valt 34				Ι ργ					
OSJR105		gr and gtz & cb-ve		ick gra				ATC		5611	
0518106		gr and gtz & cb-vi		ick gra				Arc.		5611	
IOS JR107		and gtz/cb vnlts +		ick gra		II py	pillows	Arc		5611	
BOIRLOB		and cb-vnlts (2m				_	pillovs	Arc		5611	
05J8109		b-interstices qtz.		-		I рү	pillows	Arc		5611	
		nd gtz/cb-blebs si		ck gra		l py SI graphite	cb-vns (4cm	Arc		5611	
05JR111	Blk/wht/gry s	ed gr dior qtz 🛃	ch-vnlts Ro	ick gra		Гру		Arc		5611	
OSJR112	Gry/grn and q	tz/cb-vnlts(brecc)) slknsds Ro	ck gra	ւն 22	, py in b lebs		Arc		5611	
10SJR113	Flow brect si	l and clasts cb-in	nterstices Ro	ek gra	10		qtz&cb-vnlts			56.1	
OSJR114	Flow brecc si	l and clasts cb-in	aterstices Ro	ck gra	15		qtz&cb vnlts	Àr c	3	5811	
0SJR115	Gry sil and s	lknsds/shear Fe/Mr	n-stain Ro	ck gra	ib 57	l py in blebs	cb-vnlts	Ar c	3	5611	
OSKROO1	Highly sheare	d sh altrd to clay	, Fe-rust Tr	ench g	irab		gtz-volts	Arc	4	5612	
OSKR002		d sh altrd to clay	-	-			atz-vnlts	Ă٢c	4	5612	
		d sh altrd to clay					gtz-volts	År c	4	5612	
05KR004		and slknsds/shear			, Irab 1–	-21 ov	•	Arc	4	5612	•
		/grn and siknsds F		-	irab 27			Arc		5612	
		ed; dacite,altered		ck gra	-			Arc		5611	
	Volcanic, dac			ck gra		-31py		Arc		5611	
	Tuff ,fault s			ck gra		-4Ipy		Arc		5611	
				ck gra		-3Ipy		År c		5611	
	Shear zone	Sa sta saab		-				Arc.		5611	
		, 2m, qtz.,carb.		ek gra		-71 py -21 py		MEL. Arc		5611	
	•	ive, dk.grey-green		ck gra		-3Ipy /				5611	
		. grey-bl., carb.		ck gra		ίργ		Arc			
0SL 8008	Volcanic, alt	., siliceous	Ro	ck gra	D 3-	47ру	fault	Arc	3	5611	

. .

PC-XPLOR VERSION 1.30	# ##	BUFFALD/VIKING PALMIERE	SDUTH PROPERTY	₽₹+	HI	-TEC RES HNG	T LTD.
Exploration Data Manager By GEMCOM SERVICES INC.	***	1990 EXPLORATION	DATABASE.	ŧŧŧ	15:50:54 22/11/90	Serial no: Page :	2235
90SLR009 Volcanic, fau	lt zone	Rock grab	3-4Іру	År (: 3	\$611	

.

.

.

APPENDIX IV

ANALYTICAL DATA

.

.

•

.

.

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITE

2 - 302 - 48th STREET, EAS SASKATOON, SASKATCHEWAT S7K 64 (306) 931-1033 FAX: (306) 242-471

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd 10th Floor,Box 10-808 West Hastings St.	REPORT No.
	Vancouver, B.C.	\$9572
	V6C 2X6	

SAMPLE(S) OF		INVOICE	#: 14777
	Silts	P.O.:	R-2186

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resources

Au ppb

90SJL001 10 90SJL002 5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 21/90

Runne (SIGNED

ΤSL	LABOF	ATDRIE5 2-302-48TH	TELEPHONE #:	00N, SASKATCHEWAN (306) 931 - 1033 (306) 242 - 4717	57K 6A4
		I.C.A.P. PLAS		New Jackie Disastra	
			ź	Aoua-Regi≥ Digest∶an	
PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V	0 5 5t.				T.S.L. REPORT No. : 5 - 9572 - 1 T.S.L. File No. : T.S.L. Invoice No. : 15020
ATTN: J. FOSTER		SECT: 90-EC-019	- HI-TEC	P.O. R-2186	ALL RESULTS PPM
		905JL001	905JL002		
ELEMENT					
Aluminum	[A1]	16000	19000		
	(Fe]	33000	37000		
	ECal	4100	4500		
tachesium Machesium		5300	5500		
	[N3]	9000 90	110		
Potassium		540	700		
Titanium	LN 1 [Ti]	350	260		
я трантик Малодалеве		570	640		
Phosphorus		470	540		
Bariua	tr u (Bal	190	270		
Chromium	[Cr]	33			
	[Ze]	6			
	[£u]	45	53		
Cooper No de la	[Ni]	61	71		
Nickel	EPb3	8	10		
Lead Zi	(Zn]	100	120		
Zinc	EV 3	56	61		
Vanadium Strontium		21	27		
	(Gri (Ca)	1B	20		
Cobalt		< 2	< 2		
Molybdenum Silver	(10) [Ag]	$\langle 1 \rangle$	< 1		
511ver Cadæium	[Cq]	< 1	< 1		
	[Be]		< 1		
Beryllium Denso	CB 3	< <u>1</u> 0	< 10		
Boron Antiaaov	LE J [Sb]	< 5	× 5		
Antimony Xtenium	EAC2	۰. ج	10		
Yttrium Secondium	(Sc]	,	B		
Scandium Tunosten	[₩]]	< 10	< 10		
Nichium	EN63	< 10	< 10		
Thorica	CTh 3	30	20		
Arsenic	{A5]	5	25		
Bismuth	(Bi)	< 5	< 5		
Tin	[So]	< 10	(10		
Lithium	[Li]	25	30		
Holaium	[Ho]	< <u>10</u> < 10	< 10		

* DATE : AUG-30-1990

.

-

· · · · · · · · · · · · · · · ·

SIGNED : ____ Bernie Dunn /

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN 57K 6A4 (306) 931-1033 FAX, (306: 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd 10th Floor,Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	REPORT No. S1146
----------------	---	---------------------

INVOICE #: 15879 P.O.: R2153

SAMPLE(S) OF Heavy Sediment

D. Collins Project: 90-BC-019

REMARKS: Hi Tec Resources

Au ppb

<5

90SPH 002

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Oct 12/90

Bernie . Dum SIGNED . 1 of 1 Page

TSL	LABGRATERIES
-----	--------------

1	2	÷.

TELEPHONE #: 3061 931 - 1032 FAX #: (306) 242 - 4717

I.C.A.P. FLASMA SCAN

Aqua-Regia Digestion

FRIME EXPLORATION LTD.

- 10th Floor Box 10
- BDE West Hastings St.
- Vancouver B.C. VeC 2Xe
- ATTN: J. FOSTER PROJECT: 90-BD-019 H- TEC REEGURCES
- .

.

,

he.

2

.

•

ALL REBULTS FPM

7.E.L. File Ma. : M - E114

T.S.L. Invoice No. : 19879

T.B.L. REFEREND. : 5 - 1146 - 1

505PH 002

ELEMENT

Álumirus	[A1]	10600
Iran	[Fe]	34000
Calcium	(Ca)	6900
ที่สอุกครามพ	(# <u>p</u> }	5000
€ວຊີ່1ິຟໜ	[Hz]	70
Potassium	EK I	60
Titanium	[]i]	3900
Manganese	(mai)	290
^o hoseacrus	[P]]	240
Sarium	(Ba)	31
Chroatum	(Cr)	34
liconius	[2:]	16
Copper	(Cu)	67
hickel	[11]	36
1932	[[0]]	15
Zin⊂	[Zn]	49
Vanadium	<u>[</u>]	120
Stroat160	(Sr]	17
Cobalt	(Co)	22
⊼olybdenum	(ho]	< 2
5:lver	€Ag]	< 1
Cadmium	[Cd]	< 1
Berylliu⊅	[Be]	≤ 1
80800	[8]]	< 10
Antimony	[55]	< 5
¥ត្រុក ខេរា	[Y]	10
Scandium	(Be)	5
Tunosten	(W 1	< 10
พี ่เป็มแล	(Mb)	< 10
Thorium	[Th]	20
Arsenic	[Ae]	15
Essnuth	{Bi]	< 5
Tin	i an I	~ 10
Lithium	[[1]	< 5
Heimium	(- <u>-</u> 0)	< 10

DATE : 307-11-1950

SIENED : Bernie Oum

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Exploration Ltd. 10th Floor,Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6	REPORT No. S9332

INVOICE #: 14562 P.O.: R-2090

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi - Tec Resources

	Au ppb	Hg ppb	
90-SPR-001	15	390	
90-SPR-002	15	190	
90-SPR-003	10	830	
90-SPR-004	5	50	
90-SPR-005	<5	10	
90-SPR-006	5	170	
90-SPR-007	10	220	
90-SPR-008	15	20	
90-SPR-009	15	690	
90-SPR-010	<5	<10	
90-SPR-011	<5	<10	
90-SPR-012	5	40	
90-SPR-013	<5	<10	
90-SPR-014	10	10	
90-SPR-015	5	10	
90-SPR-016	5	50	
90-SPR-017	5	100	
90-SPR-018	10	400	
90-SPR-019	<5	<10	
90-SPR-020	<5	<10	
COPIES TO: INVOICE TO:	C. Idzis Prime -		

Aug 13/90

Bernie Que 1 of 2 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

2 - 302 - 48th STREET, EAST SASKATCON, SASKATC-EWAN STK 6A4 Ø (306) 931-1033 - FAX, (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Exploration Ltd. 10th Floor,Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6	REPORT No. S9332

INVOICE #: 14562 P.O.: R-2090

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi - Tec Resources

	Au ppb	Hg ppb
90-SPR-021	<5	60
90-SPR-022	5	<10
90-SPR-023	5	150
90-STR-001	5	30
90-STR-002	5	50
90-STR-003	5	10
90-STR-004	5	10
90-STR-005	<5	10
90-STR-006	5	100

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

Bernie Dur SIGNED Page 2 of 2

T E L LABORATORIES

Ε

Γ

ZH302-4ETH STREET. EASKATEON, BAEKATEHEWAN ETK 644 (TELEPHONE #: (306) 901 - 1030 Fax =: (306/ 242 - 4717

1.5.A.F. PLASMA SEAR

```
Acus-Regis Bigestian
```

	PRIME EXFLIRATION LTD. 10th Floot Box 10 E08 west Histings Bt. Vanceuver P.S. V65 2X6						7.8.2. 7.8.2. 7.8.2.	File	No. : 8 - No. : No. : 147		
Γ		JECT: 90-BC	-019 -	HI-TEC	P.2. 3-209	0		ALL REEU	LTS PPM		
		90-5FR	90-SFR	90-SFR	S-122	RV-878	90-15R	<u>0(-</u>]22	90-32 <u>5</u>	90-27R	70-5FF.
	<u>ELEMENT</u>	001	002	003	004	605	30ê	007	.)(S	())?	010
L	Aluminum [Al]	9 200	25000	12000	25000	21000	20000	14009	11000	14000	2000
	Iron [Fe]	25000	54000	22000	37060	35000	Ja000	35000	12060	32000	42:300
Γ	Galcium (Cal	24 00	24000	4000	17000	13000	.c	4100	14000	5700	15006
	Magnesiun (Mg)	5100	97 00	5300	7000	5100	5200	=000	2500	4500	<u>83</u> 00
	Economic (No.1	100	310	160	160	170	230	190	130	110	250
	Potaseium (K 1	326	240	:100	210	130	400	550	110	:200	<u>.</u>
L	7itanica (Til	530	:200	2000	1200	: 700	1500	2000	450	2000	2700
_		120	490	330	±70	370	520	410	:40	120	1 90
	•	420	220	370	250	540	550	440	50	420	460
Γ	Phosphorus IF 1	17	16	3,0	15	13	20	25	5	24	. 5
			64 15	52	:30	19	30	53	100	37	110
	Caromium (Cr)	35			19		23	26	ę	18	27
	Zirconica (Zel	10	17	25		 47	10 47	52	ç	1	24
C	Copper (Cul	<u>ن</u> ت	47	47	34				3	11	
-	Nizsel (Nil	20	à5	17		21	39			11	vu (]
~	Leac (Pb)	10	< 1	12		. 1		14			70
	Zinz (Znl	:50	4 <u>0</u>	130	65	<u>74</u>	46	170	16	54	70 97
L	Vanazium IV I	110	65	75	54		53		23	51	
	Streation (Bri	4	10	Ę	7	3	10	-	3	21	10
	Cosait (Col	ų,	13	5	20	:7	19	:)	3	2	22
	Molyocenum (Mol	: 2	. 2	4	< 2	. 2	1 2	4	2	15	< 2
-			$\langle 1$	< 1	1		1	•	:		< 1
-	Silver (Agl				. I	1	< 1	-	1	< 1	
	Cadalus (Col	2				· •	1		(1		< :
L		1	< 1		10		< 19		(10	10	< 10
	Eerca (E-1	∖ 10	< 10	10				-		÷	
	Antiachy [55]	5	< 5	5	5	-	1 1 1 1	× : -		=	11
	Yttrica IY I	5	ć	Ş	3	5		17			Ē
	Scansium (Sci	£	3	9	9	5	¥		-	-	
~	· • • • • • •	< 10	< 10	< 19	< 10	< 15	< 10	< 10	< 10	< 10	(10
C	Nicolua (Nol	< 10	< 10	< 10	< 10	< 10	< 10	< iû	< 10	 № 10 	< 10
L	Thorical [Th]	30	50	30	20	20	20	1	< 10	< 10	20
		< 5	< 3	√ 5	. 5	κ Ξ	< 5	. =	< 1	10	< 5
C	Arsenic [As]	\	16	₹.	÷	Κ.Ξ		. 5	< E	κ 5	< 3
Ľ	Piemuth (B1)		10	10		: 19	A 10	× 10	< 10		× 16
		< 10		10	14				< ∃		:
_	Lithian (Li)	ζ.Ξ.	10		. 12			 	< 10	10	10
Г	Holaine [Hol	< 10	< 1 0	< 10		1.19	V	× ≜ ¥			

DATE : AUG-12-1990

SIGNED : _ Gernie Uum

T E L LABORATORIEE

•

Ľ

с-102-48ТН ВТЕЕТ, ЕАЕКАТСЕМ, ВАЕКАТСНЕКАМ 97: ±А4 ТЕСЕРНОМЕ =: (306) F31 - 1033 F4: =: — 1065 142 - 47.7

I.C.A.F. PLASMÁ SCAN

Azza-Regia Digestica

					-	-					
_	FINE EXFLORATION	75.					T.E.L.		% ⊏. : E -		
E	1975 Floor How 10						T.E.L.		ia.:		
L	BVB West Histings	2+						Invoice		₹. <u>-</u>	
	Vancouver B.C. V60									•	
Γ	ATTN: J. FEETER		50-EC-019	_ <u>∆7⊺ж</u> ытц	P.C. 8-3	then		ALL FEEL	1 TS 25#		
L	96106 24 CLB166	. : \u	,								
-		? 0 −5!	:p ≈0-677	90-5FR	90-8FR	70-37	₽0-8 7 8	0,-225	40-272	9(-151	=(- <u>-</u> ==
Г	ELEXENT	01	11 012	013	<u>01</u> 4	015	11ć	Q17	913	019	<u>.</u>
-	Aluancua (A	NII 220(x) 11000	:7600	24000	23000	11000	6600	24600	31000	14000
C		aj 4500	o 29000	24000	37000	13000	21000	20000	41000	19000	55000
		ai 1300		17000	38000	1E00	1200	3700	1600	37000	:4000
L		loj 55(7900	6200	-310	3500	5 300	2200	E100
_	•	al 19			140	120	170	120	160	30	210
Γ			70 1200		10/3	1100	57ŵ	775	77¢	zoj	270
L		il 240			3400	110	1 3	- 2	15	-30	2200
		ti 54			£10	740	75.0 21.0	100	350	••••	1 00
Γ	Phoestatus (F)) 44(550			260	5 70	150	
Ľ			. 35			50	100	200	460	23	27
					85	54		72	78	52	24
~			20 19 20 19		15	3	1	Ę	19	11	
			12 17 16 28		22		:2	23	55		52
L					70	73	-5		140	17	7
_		hi k			:	-	3	5	11		5
			1 16 71 4 <u>6</u>		±±	100	- 	- 	140	51	40
L			70		100	52	23		50	4:	45
			10 04 12 3		:2	· _	-;	17	20	Ē	5
Γ			11 1		 21	-	-	3	14	5	21
L					2	1	-		< 2	< ž	: 2
_	Molybeanum IM					· ·		< 1	(<u>1</u>		<
		•				· · ·	. 1		< 1		· ·
			•			· ·				$\langle \cdot \cdot \rangle$	
	• •	el <	1 (1					< 10	< 10	χ. 10 Κ. 10	
~		-	10 < 10 E < E		12		< 5	 	< 5	× 5	- 1 -
L	•				.3	:		-	15	ά. Δ	20
L		-	10 4	· · · · · · · · · · · · · · · · · · ·		E	-	4	12	· -	2
			2 7		3		3 7 10	10	< 10	< 10	- - 10
	•		10 (10		< 10	:0 < :0	(10 < 10	< 10	< 10 < 10	× 19	< 10
L		16] < 1			< 10 	N 19 20	< 10 < 19	- 10 20	ر 10 40	< 19	10 40
			20 30		30			20 20		× 12 < 3	
С		is] 🔇			₹ 2 =				< 5 < 3	N 2 •N	
[5 (5		=	5	5	< 3 < 10			10
-					10 A		< 14 •=		< 10 50	× 10 E	· 10
-			10 E		10		15	15 	 < 10	I (10	0
	Holaiun []	52 (1	10 - 10	- 10	- 10	10	< 10	< 10	N 19	V 1V	1.

14TE : A18-1E-1990

STENED : _ Bernie Oum

CHEMICHAETH ETREET, BASKATEDN, BASKATEHEMAN - ETK 644 7ELEPHONE #: (306) #31 - 1033 F44 #: (306) 242 - 4717

1.1.4.F. PLASMA EDAW

Acus-Pagis Digestion

J	FRIME EXPLORATION 10th Floor Box 10 508 west Hastings R Vancouver 3.0. V60	.					7.3.L 7.3.L 7.3.L	. File	No. : E - No. : No. : 147	- 7322 - 3 794
	ATTN: J. FOSTER	PROJECT: 90-E0	-017 -	HI- TEC	P.O. R-209(9		ALL FEE	JLTS PPM	
Ľ	<u>el ement</u>	90-5PR 021	90- <u>899</u> 022	90-8PR 023	°0-57R 001	%-5TR 002	90-STR 003	70-STR 004	90-878 005	70-1 73 001
_	Aluminua (A)		30000	24000	12000	14000	2400	13000	6300	21000
	Iron (Fe		36000	40000	17600	22000	23000	22000	23000	32000
L	Calcium (Ca		21000	2100	3700	1900	2400	3700	1400	10000
	Magnesium (Mg		9000	6100	5208	5400	400	5200	3500	81 00
Г	Sociam INa		150	100	140	180	340)	200	350	170
	Potassium IK		50	1200	790	P (4)	200	£10	:50	<u>440</u>
	Fitanium (Ti		1000	51	15	22	우드는	50	620	:900
-	Manganese IMm		570	130	260	150	23	220	200	320
	Paescharts (F		3 20	760	300	310	88	270	200	3 50
	Barium (Ba		27	7 50	120	120	15	150	17	€.∆ -+-1
	Careates EDa		150	55	52	62	73	190	54	ĒE
Γ	Eirconica (Er	1 (3	13	7	4	: ::	:1	5	2	
L	Cooper COe		59	53	12	:3	2	17	30	45
	Mizzel (Mu	10	.78	÷3	24	74	Ę	71	5	
C	Lead (Fb	1 11	0.1	14	7	ę.	3	3	4	• 2
	Zinc (Zn		6 <u>9</u>	95	Ξé	77	:0	59	37	17
	Vanadium EV		64	49	25	29	:0	30	4	135
-	Streatium (Sr		11	25	57	1 =	5	10	4	• • •
	Copalt (Co		22	ĝ	7	Ş	2	9	2	2
	Molyocanum IMo		1 2	. 2	• 2		< 2	< 2	-	3
	Silvet (Ag		4 1	1	< 1	1	< 1	$\langle 1$	< 1	
Γ	Saamium 20d			(<u>1</u>	< <u>1</u>	(<u>1</u>	< 1	< 1	$\langle 1$	•
L	Beryllium (Be		1	< 1			< 1	< 1	< 1	
	Boren (B		10	< 10	10	0	: :0		< 10	-
	Antimery ISa		5	5					x 1	
	Yttrium EY S		Ē	5						-
	Scancium (Sci		4	10		4		1	2	=
-	Tungsten (W)		10	: 10	(10	10	× 10	< 10	< 10	: :0
Ľ	Niabium ENG		< 10	< 10	< 10	(1)	< 10	 10 	< 10	 10
L	Thorium Ethi		20	30	10	10	< 10	< 10	< 10	10
	Arseniz [As]		20 4 5	< 5 (5	10 10	40 (3	(5	\ 10 \ 3	× 10 (5	•¥ 5 5
n n			5	1 U 1 3			 { _ ∎	\ - \ ₹	< € < 5	
					11					: :
	Tin (Sa)		< 10 .5	< 10		∖ 19 •⊼	< 10 =		- 10 -	
	Eitarua (Ell		15	40	20	20		-= 4-	< <u>-</u>	
Ľ	Holmium [Ho]	10	10	< 10	10	< 19	N 19	< 10	< 10	•

2ATE : 465-18-1870

E

ELENE : Bernie Vin

TSL LABORATORIES

DIV. BURGENER TECHNICAL ENTERPRISES UMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 - FAX (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9463

INVOICE #: 14548 P.O.: R-2153

SAMPLE(S) OF ROCK

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resource Samples

Au ppb

90SDR 90SDR 90SDR 90SDR 90SDR	002 003 004	<5 <5 <5 10 <5
90SDR 90SDR 90SDR 90SDR 90SDR	007 008 009	<5 5 <5 <5 <5
90SDR 90SDR 90SDR 90SJR 90SJR	012 013	<5 <5 <5 <5 5
90SJR 90SJR 90SJR 90SJR 90SJR	010 011	<5 5 10 10 <5
COPIES	TO:	C. Id

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

Bunie Du SIGNED. Page 1 of 5

DIV BURGENER TECHNICAL ENTERPRISES UMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. F Vancouver, B.C. V6C 2X6

REPORT No. S9463

INVOICE #: 14548 P.O.: R-2153

SAMPLE(S) OF ROCK

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resource Samples

Au ppb

90SJR 014	<5
90SJR 015	<5
90SJR 016	<5
90SJR 017	<5
90SJR 018	<5
90SJR 019	<5
90SJR 020	5
90SJR 021	<5
90SJR 022	<5
90SJR 023	<5
90SJR 024	<5
90SJR 025	<5
90SJR 026	<5
90SJR 027	<5
90SJR 028	<5
90SJR 029	<5
90SJR 030	<5
90SJR 031	5
90SJR 032	<5
90SJR 033	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Aug 13/90

SIGNED .

Bernie Vu

Page 2 of 5

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd 10th Floor,Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	REPORT No. S9463
Vancouver, B.C.	

INVOICE #: 14548 P.O.: R-2153

SAMPLE(S) OF ROCK

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resource Samples

Au ppb

		ppl
90SJR 90SJR 90SJR 90SJR 90SJR	035 036 037	10 <5 <5 5 5
90SJR 90SJR 90SJR 90SJR 90SJR	040 041 042	10 <5 <5 <5 5
90SPR 90SPR 90SPR 90SPR 90SPR	026 027 028	<5 5 <5 <5 <5
90SPR 90SPR 90SPR 90SPR 90SPR	031 032 033	<5 <5 <5 10 <5
COPIES INVOIC		C. I Prim

C. Idziszek, J. Foster Prime - Vancouver

Aug 13/90

Bernie Uc SIGNED

DIV. BURGENER TECHNICAL ENTEPPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9463

INVOICE #: 14548 P.O.: R-2153

SAMPLE(S) OF Rock

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resource Samples

Au ppb

90SPR 035	<5
90SPR 036	<5
90SPR 037	<5
90SPR 038	<5
90SPR 039	<5
90SPR 040	<5
90SPR 041	<5
90SPR 042	5
90SPR 043	<5
90SPR 044	<5
90SPR 045	<5
90SPR 046	15
90SPR 047	5
90SPR 048	<5
90SPR 049	<5
90SPR 050	<5
90SPR 051	<5
90SPR 052	<5
90SPR 053	5
90SPR 054	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Aug 13/90

SIGNED _

Bernie Vu 4 of 5 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON SASKATCHEWAN S7K 6A4 (306) 931-1033 - FAX. (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd									
SAMPLE(S) FROM	10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	REPORT No S9463								

INVOICE #: 14548 P.O.: R-2153

SAMPLE(S) OF ROCK

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resource Samples

Au ppb

90slr	001	<5
90slr	002	<5
90SLR	003	<5
90SLR	004	<5
90SLR	005	<5
90slr	006	<5
90SLR	007	<5
90SLR	008	<5
90SLR	009	<5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

Cernie Vun Page 5 of 5

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED __

- 💽

T & L LABGRATORIES

•

т.: С

e

ы

*

μ.

-

2-302-46TH STREET, BAEKATGON, BAEKATCHEMAN 57K 6A4 TELEFHONE #: (306) 931 - 1003 FAX #: (306) 242 - 4717

I.C.A.P. FLAEMA ECAN

Aqua-Regia Sigestion

91ME EXPLORATI Oth Floor Eex						7.5.c. 7.6.c.		a.: 5 - 94	62 - 1
Wth Floer ED? Rest mastic							, invoide No		
anequver B.C.	-					մ։։⊒սև,	TUNOTLE AG	N i 17€7V	
TTN: 7. FOSTS		ROJECT: 90 EC	019 HI-T	ed resource (YANAGEMENT	8-2153	ALL REBULT	5 22%	
ELEMENT		905DR 001	9050R 002	9050R 003	9098R 004	9053R 005	905DR 006	7080R 007	ROSDR 00
Aleminem	EAE3	27000	12900	25000	32000	43000	42600	41000	21000
Iren	[Fe]	33000	29000	9 2000	46000	52000	64000	39000	52000
Calcium	(Ca)	35660	3600	32990	21066	27000	11000	35000	12000
Мадлевичы	Chai	7300	6700	5590	6600	74 00	4300	6700	8700
Sodi⊒n	(Na)	760	9 0	170	210	120	210	60	4 <u>2</u> 0
Potassium	57 I	620	44()	99	210	4 <i>0</i>	60	69	350
Titanua	(11)	2260	14(k)	5100	3500	2600	5100	2200	3700
Mangenese	(Ma)	TER	6 5 0	986	360	650	1100	420	84Q
Fhosonorus		520	120	776	520	<u>35</u> 0	1200	350	370
5ar∶um	[81]	32	5 0	53	29	22	33	12	:3
Chromius	(Cr]	160	150	ól.	66	260	31	6 0	51
Linconium		+	11	52	35	25	42	24	35
Copper	(Ca)	ĩa	1100	75	56	86	10	20	54
Nicle:	CN11	130	22	28	23	63	12	21	
Lead	[65]	< 1	120	4	36	17	1	17	< 1
Zinc	[2n]	41	830	120	P3	47	110	51 74	67
Vanaalua	EV 1	55	90	240	260	150	260	160	170
Strontium		31	3	22	200	 9	5		12
		24	13	16	••• !	11	18	5	24
Cobait	(Eo)		< 2		: 20	< 2	10 < 2	3	< 2
Moivodenua		4 2						_	
Silver	(Ao)	< <u>1</u>	2	< 1	$\langle 1$		< 1	< 1	< <u>1</u>
Cadation	[[2]	-	Ţ	× 1	1	(1	< 1	< 1	< 1
Beryllium		4 1	1. 1		< 1	< 1	< 1	$\langle 1 \rangle$	< 1
Beren	{E 1	< 15	< 19	10	< 1Q	< 10	< 10	< 10	< `0
AND MODIV	[85]	5	< 5	< ∃	< 5	< 5	5	< 5	< 5 1
Yttrium	EY]	5	â	25	12	15	35	10	17
Scandium	(Sc)	1	ė	20	18	13	12	9	9
Tungeren	CW]	< 10	< 10	< 10	< 10	< 10	< 10	$\langle 10 \rangle$	< 10
Nichium	CNB 3	< 10	< 10	$\langle 10$	< 10	< 10	< 10	< 10	< 10
Thorica	(Th]	< 10	10	άÚ	30	30	80	30	4)
Arsenic	(As)	< 5	25	< 5	10	15	< 5	× 5	< 5
Bismush	[21]	< 5	< 5	 5 	< 5	5	20	< 5	5
	(Sa 1	< 10	< 10	< 10	- 10	< 10	< 10	< 10	K 10
Lithium	ELii	, Įų		13	10	15	15	5	10
Holaius	(Ho)	< 10	< 10	$\langle 10 \rangle$	< 10	< 10	< 10	< i0	< 10
ACTALLS	1102	N 12	· · · · ·	X ▲Y			• ••		

DATE : AUG-13-1990

•

SIGNED : ____ Bennie Chenn

•	TEL LAP	OPATORIES							
		2+3()2-4	BTH STREET,	EASKATOON.	SASKATCHENA	N 57K 6	<u>.</u>		
-			TELEP) 931 - 163				
κ.			FAX #	: (20å) 242 - 4717				
		1045	FLASNA SCAN						
,		110101 1	հաներությ երերչ։	<u>Å<u>a</u>a:</u>	Regia Digest	138			
•									
-	FRIME EXPLORATION UPD.					7.8.4.	REFERT NO.	,: 3 - 740	57 - I
	10th Field Eox 10					7.5.1.	File No	: 1	
•	308 West Histings St.					7.5.1.	invato: No.	.: 14650	
	Vancouver B.C. V6C 2Xc								
•	ATTN: J. FOSTER	FROJECT: 90	E 017 HI-	TEC REEGURCE	MANAGEMENT	8-2153	ALL RESULTS	E Bow	
•		905BR 669	905DR 010	90523 011	90858 012	905ER 013	905JR 007	9055R 003	903JA 009
	ELEMENT	TVQ66, 997	945R9 AIA	Wash New	/seath Via	ander ato	n wegen ne hydri	100111 202	COMPLEX VICT
•	Alemined [Al]	28060	17060	22000	25 660	26000	30006	31060	22000
	Iron [Fe]	40000	31000	4 7000	<u>35090</u>	41000	36000	72000	45000
	Calcium (Cal	61000	(1000	16000	32000	21000	25000	3000	28000
	Magnestum [Mg]	E700	5 50)	5300	7300	7800	9100	7600	7500
	Eddila [Na]	200	470	190	260	238	240	160	250
	Potassium (M. 2	600	390	179	450	300	70	1760	140
	Titanium (Ril	670	18 00	3700	2000	3169	2100	:40	4000
	Manozoese (Mal	730	520	980	750	776	590	1100	720
-	Phoseporus IP 1	270	250	516	246	420	360	540	1030
	Barius (Bal	64	26	26	33	37	27	400	27
•	Chremium (Er3	190	62	21	110	43	160	72	÷ć
	Zirczaium (Zrl	16	40	35	42	26	20	12	29
	Copper (iu)	58	10	20	14	34	50	58	10
•	Nickel [Nil	á9	11	20	25	31	87	14)	18
_	Lead [Pb]	< 1	10	× 1	10	3	< 1	5	< 1
•	Zinc (Zel	57	120	55	73	52	55	170	110
•	Vanadium EV 3	150	<u> 68</u>	153	72	120	7 0	60	230
	Strontium (Sr)	97	9	15	20	12	11	18	15
•	Cobalt [Co]	24	5	18	12	15	26	13	15
	Malybaenum [Ma]	< 2	ć	< 2	<. <u>I</u>	< 2	< 2	Κ 2	< 2
	Silver (Ag)	< 1	< 1	à	< 1		< 1	< 1	× 1
*	Cadmann (Ed)	< 1	2	< 1	< 1	< 1	< 1	1	1
	Beryllium (Bel	< 1	< 1	K 1	× 1	< 1	$\langle 1$	< 1	< 1
•	Baran (E-1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Antiseny [Eb]	16	< 3	5	15	< 5	10	< 5	. 5
	Yttriem IV 1	12	22	13	17	17	11	16	27
•	Scandiga [Ec]	14	7	5	9	6	é	14	17
	Tungsten (W)	< 10	< 10	< 10	< 10	< 10	<10	< 10	< 10
	Niobium [No]	< 10	< 10	< 10	< 19	< 10	< 10	< 10	< 10
•	Thorium (Thi	20	16	40	20	40	10	50	40
	Arsenic [As]	< 5	Κ 5	12	20	< 5	< 5	< 5	< 5
•	Bismuta (Bil	< 5	< 5	45	N 3	N 5	5	15	< 5
	Tia (En)	< 10	< 10	$\langle 0 \rangle$	× 10	< 10	< 10	く 10	< 10
	Lithium [Li]	15	< 5	구드	5	5	15	4)	5
٠	Holaiga [Hol	< 10	< 40	120	< 10	< 10	s 10	20	< 10

DATE : AUG-25-1990

.

×.

r

STONES : Bunie Aun

TISIC LAECPATCALES

.

١.

,

`

.

2-302-48TH STREET, SASKATOON, SABHATCHEMAN S7K 644 TELEPHONE \$; (306) 931 - 1033 FAX \$; (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Bigestica

1	RIME EXPLORATION Oth Floer Box OB West Hesting	16					7.3.1. 7.8.1. 7.3.1.			4I - I
Ų.	ancouver 2.2. TTN: J. FOSTE	VeC 2%) PROJECT: 90 80	: 019 - HI-7	EC REEQURCE	MANAGEMENT	8-2153	ALL REBULT		
			90EJR 010	90857 ()11	908JR 012	9083R 013	905JR 014	905/R 015	908JR 016	90EJR 017
	ELEMENT									
	Aleminem	[A]]	25000	22000	19060	35600	6500	23600	30000	9100
	Iran	{Fe]	36000	52000	42000	53000	14000	47000	53000	19660
	Ealcium	[Ea]	15000	6700	5800	26000	3500	25000	25 660	4606
	Марлестия	[ha]	6300	6900	4700	5 400	3200	6500	5100	4400
	Scaiua	{Nz]	140	150	- 150	<u>710</u>	430	190	210	210
	Potassium		390	280	1300	120	70	50	t20	870
	Titanium	1713	3800	3200	3700	3500	850	3500	3600	1300
	Маподлева		<u>civ</u>	620	510	790	200	740	750	220
	Phosphorus		3EV	450	460	430	200	7 50	2 60	210
	Eanua	{Ba]	53	41	63	<u>3</u> 9	42	15	25	93
	Shreatia	{Cr]	44	33	2B	51	62	23	30	56
	Zirconum		24	Ξá	34	38	10	22	36	17
	Ceocer	{Cu]	Zà	31	2B	47	23	31	46	16
	Nictel	€ki]	12	17	17	32	6	10	25	6
	Lead	(P51	17	17	23	2	ş	< 1	< 1	4
	Zinc	(Za)	65	120	130	82	50	83	75	19
	Vanadium	₹V 3	110	140	97	200	25	160	160	36
	Strontium		5	12	7	13	4	10	13	5
	Esbalt	{Ea3	2	10	9	25	4	18	22	4
	Maivbaenum		4	< 2	2	< 2	2	< 2	< 2	< 2
	Silver	[Ag]		< <u>1</u>	$\langle \tilde{1}$	< 1	$\langle 1$	$\langle 1$	$\langle 1$	< 1
	Cadatus	(Cd)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Geografia Beryllium		<	< !	< 1	< 1	< 1	< 1	< 1	
	Banon	(B]	< ið	$\langle \mathfrak{N} \rangle$	< 10	< 10	< 10	(10	< 10	× 10
	Antiseny	18 J [50]	< 5	< 5	< 5	5	5	< 3	5	5
	Yttries	(¥]	15	14	29	18	7		17	14
	Scandiam		17	17	11	15	4	4	÷.	5
		(W]	10	< 10	< 10	< 10	< 16	< 10	< 10	< 10
	Tungsten		< 10	× 10	< 10 < 10	< 10 < 10	< 16	< 10	< 10	< 10
	Nichius	(36) (76)		× 10 50	50	50 50	< 10	àŬ	4Q	44)
	Thorium Associa	ETei Mai	36 5 >		- 10 - 10	< 5	5	ين ج 2	۵۷ ۲	10
	Areanic	(A∈l			-	< 5 < 5	< 5	< 5	< 5	5
	Bismuth The	(B1)	× 3 × 10		< 1 < 10	< 10 < 10	< 10	< 10	< .10	< 10
	Tin	1503	(10		× 10 10	10	< .0 < 5	< 5 < 5	10	× 10 × 5
	Lithiam		15	10 7 - 10		< 10 < 10	< 10	< 10	< 10	< 10
	Hoimium	(Ha]	< 16	< 10	< 10	•••	N 17	× •¥	5 4 9	1 AV

DATE : AUG-25-1990

SIGNED : _ Bunne Vum

•									
ь.	T 5 1 LA80	RATORIES							
			ты стерат.	EASKATEEN,	FAELATCHENAN	v E7K &	44		
				-345 #: (306)					
			FAX #:		242 - 4717	-			
*			1 C A - 1						
		TRAT	PLASMA ECAN						
		1.Langer -	6 26 003 2363	<u>0</u> −115=4	keçis Digest:				
				5401	,eñto - tipor :				
						7 3 1	REFERT WO.	: C - R.	
•	PRIME EXPLORATION LTD.					 			
	16th Fleer Ees 10						lavaice %2.		
•	208 West Hestings St.						10-0122	• • • i= rv	
	Vancouver B.C. V6C 2X5				- MANACTUM		ALL REFULTS	5 50M	
	ATTN: J. FUSTER	PHOJECI1 79	ср. 017 н.	I-TEO REEGURO	NE CHARGENERI	RT1100	HUL RECOLD		
κ.				PARTO 100		BUCTS ARR	F0238 023	9085R 024	9083R 025
		PGEIR 018	40518 019	F05JR 020	70307 VII	70505 V22	70218 VII	70318 VL4	TV327 V23
*	ELEMENT								
						- ,		35 4444	57666
	Alumiaum (All	29060	27000	4500		24000			
-	Iron (Fel	42000	41000			35000		33000	47000
	Calcium (Cal	12000	16000	2400		25000		24369	
•	Nachesium (Mol	91 03	B1 65	2200	7700	7200		7230	
_	Ecclem LN31	ÉÓ.	EEQ	4E0		240	50	189	180
-	Potassium (K I	107) 1	5 2 0	400		90		10	20
	Titanina (Til	25 00	2600	2050		3400		<u>2400</u> 430	5500
	Manganese IMal	560	520	<u>6</u> 2	550	520	4 00	-20	€00
1	Phosonorus (P)	563	546	310	170	530	200	270	
	Earrigh (Ear	32	27	15	25 67	20		lė	13
`	Chromium [Er]		41	55	Ċ1.		76	71	25
	Zircentum (Zrl	20	15	23 12	32	27	12	16	29
	Comper (Du)		57	12	50	47	49	60	64
•	Nickel [Ni]		62	5	43	39	41	50	18
	Lead CFbD	< 1	< 1	5	< 1	< i	< 1	10	₹ 1
1	Zinc [Zn]	52	55	25	£	57	42	50	<u>á</u> 4
	Vanadius (V)	120	110	11	14 ()	10	94	B1	140
	Strontium (Sr)	15	20	\$	5		15	5	28
		22		• र ्	27	26	17	24	25
		< 2	< 2	2	$\langle 2$	< 2	< 2	< 2	< 2
•	Maiyaderum (Mal	N 2 2 4	N 4 7 1	$< \frac{1}{1}$	× = × 1	1	< 1	< 1	< I
	Silver [Ao]			\ ·	· •	< 1	< 1	< 1	< 1
	Caceius (Cd)		× 1 7 1	< 1	× • Z 1	2 L	< 1	· •	< L
	Eeryilium (Bel	$\langle 1 \rangle$	< 1 (1)		$\langle 10$	< 10	< 10	< 10	< <u>10</u>
	Baran (El I	< 10	< 10			< 5	 < 5 	、 、 5	< 5 < 5
	Antimosy [55]	10	< 5	< 5			N 0 Ç	11	15
	Yttrium (Y-1	13	12	15	16	14		11 4	4
,	Scanding (Scl	5	3	t	5	5	0		
	Tungsten (# 1	4 10	< 10	< 10	14	< 10	< 10	< 10	
	Nicolum [Nb]	< 10	< 10	〈 10	< 10	< 10	< 10	< 10	< 10 FA
•	រីឯទ ាយ (រីឯ)	40	40	$\langle 10 \rangle$	4:	40	20	20	50
	Arsenic [As]	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5
٢	Bismuth [Bi]	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
÷	Tin [Sn]	< 10	< 10	$\langle -\Omega $	<10	< 10	× 10	10	< 10
	Litaion [Li]	10	5		< B	< 5	< 5	< 5	5
-	Hoimium (Hoi	< 10	< 10	< 10	< 10	$\langle 10 \rangle$	< 10	< <u>1</u> 0	× 10
	n name af the angeline of the state								

* DATE : AUS-25-1990

•

•

SIGNED : _____ Bernie Orenn

۲	TIS LI LABO	RATORIES							
		2-302-48			SASKATCHERAN		44		
			TELEP: FAX #	HEME #: (306 : (306) 931 – 1033 ; 242 – 1717	-			
-									
٠		1.C.A.P.	PLASMA SCAN		linari				
				FCUET	Regis Digesti	1 <u>2</u> 11			
_	PRIME EXPLEMATION LTD.					7.8.2.	REPORT No	.: 5 - 94	67 - 5
	10ta Floor Eck 10					Τ.Ξ.Δ.	File No	. :	
٠	808 West Hestings St.					7.8.E.	Invoice No	.: 14890	
	Vancouver B.C. V6D 2%6								
	ATTN: J. FORTER	PROJECT: 90	BC 019 HI	-TEC RESOURC	e managenent	R-2153	ALL RESULT	e pea	
•		905JR 026	905JR 027	905JR 028	9083R ()29	908JR 030	RCEIR OIL	905JR 032	905/R 033
,	ELENSMI								
	Aluminum IAII	30000	25000	23000	34000	35000	33000	40000) 71 000	25000 77000
•	Iran [Fe]	61000	66000 NGCC0	55000 4 0 000	39000 47000	33066	25000 7 2 000	31000 X 0000	33000 1.6000
	Dalcium [Da]	21000	13000	12000	17060	33000	32000	30000	14000 c=co
	Hagnesium [Mg]	8100	5700	690) 770	9300 570	6700 00	4900 50	5500 100	6500 *44
r	Boditan ENal	130	270	270 70	276 170	80 70	60 160	100 260	4 60 370
	Potassium IK 1	40 	140	70 ****	130 2000	30 ===>>		260 2100	170 1E30
•	Titanium (Til	6200 200	6200 770	4 <u>6</u> 00 	2560 Exit	2300 410	1500 220	2100 <u>1</u> 70	1600 400
	Manganese (Mn)	920 • 200	850 NGCA	600 600	510 390	410 310	240 340	420	410 410
	Phosoporus (P 1	1200 72	8290 20	13	250 26	16	0 ب ان 11	*20 22	-10
•	Bartum (Bal	32 22	28 30	21	130	10 46	59	22 60	110
	Chromium (Cr) Zirconium (Zr)	14 54	20 44	44 47	100	-0 19	18	26	20
	Copper (Cu)	41	 !1	27	40 40	55	74	55	54
•	Nickel [Ni]	7	5		100	26	23	37	94
	Lead (Pb)	1	< 1		< 1	1	15	27	< 1
	Zinc (Zn)	50	57	139	53	57	77	75	60
•	Vanadium (V J	160	280	170	9 8	9 5	100	150	75
	Strontium [Sr]	34	24	5	5	5	7	8	11
	Cobait (Col	23	21	13	25	15	5	1	24
•	Maiyadenum (Mai	ζ Ζ	< 2	< 2	ν Ζ	< 2	(2	4	< 2
	Silver (Aq]	< 1	< 1	< 1	≤ 1	$\langle 1 \rangle$	< 1	< 1	< 1
	Czemium (Cel	< 1	< 1	2	$\langle 1 \rangle$	< 1	< 1	1	< 1
•	Beryllium (Bel	$\langle 1 \rangle$	< 1	< !		< 1	< 1		
	Baran (B.)	< 10	< 10		< 10 / •	< 10 / E	< 10 < 5	< 10 / =	< 10 < 5
•	Antimeny (Eb)	< 5	< 5	< <u>5</u>	< 5 • 5	< 5 10	< 5 7	< 5 6	10
	Yttrium CF I	28	25	20 E	12	10		в 10	10 1
	Scancium (Scl	14	É	5 2 46	5	5 < 10	5 < 10	10 (10	ت 10 ک
-	Tungsten (W 1	< 10	< 10 70	< 10 2 15	< 10 < 10	$\langle 10 \\ \langle 10 \rangle$	< 10 < 10	< 10 < 10	< 10 < 10
	Nicolus [No]	160 14	70 40	く 10 40	< 10 30	< 10 30	10	× 10 30	30
	Thorium [Th]	60 / 5	40 / 3	육년 경흥 강향		30 (5	10 < 5	49 (5	. 5
•	Arsenic [As]	< 5	< 5 20	20 (5		\] \]			5
	Bismuth (B:)	23 ≺ 10	20 < 10	< 10	< <10	< 10	< 10	< 10	< 10
-	Tin (En)	< 10 < 5	< 10 < 5	× 10 5	N 20 E	< 10 5	(5	5	5
٠	Lithium (Lif	320	< 10	< 10	<_10 ↓	< 10	< 10	< 10	< 10
	Holaina (Hol	20	\ 10 \	N 4V	x ▲¥				

DATE : AUS-25-199)

.

·

•

SIEVED : _ Bunie Ann

•	TSL LAB	TRATURTEE							
. .					SAGNATCHERAN		44		
			TELEPI) 9 31 - 1033	<u>.</u>			
•			三百笑 新	: (306) [42 - 4717				
*		E.C.A.₹.	PLASMA SCAN						
•				9003 ~	Regia Sigesti	ion			
									-
•	FRIME EDFLOFATION LTD.					7.5.1.		. : 5 - <i>9</i> 40	50 T 6
	10th Figer Eex 10					T.3.1.			
	808 West Hastings Bt.					1.0.0.	Invoice No.	.: 14890	
	Vancouver E.C. V6C 2%6					1		5 55W	
	ATTN: J. FOSTER	PROJECT: 90 B	SC 019 HI-	- (El KEEdüku)	ES MANHSELTEN	T R-2153	ALL REBULTS	3 5779	
`		a.a.ta 151				908JR 038	9053R 039	905JR 040	90SJR 041
,		908JR 034	905JR 033	905JR 036	7053R 037	70518 003	70238 VG7	19390, 979	ICTON CAT
	ELEMENT								
•		17400	60 66	(2000	19000	5100	22000	15000	12000
,	Aluminus (All	13000 75000	9900 98000	12000 26000	19000 31000	5190 14600	22000 39000	29000	32006
	Iron (Fel	35006	27000 ceann	25000	1±00	9(9) 19999	1200	11000	2±000
~	Calcium (Cal	3000 1000	28000 6200	20000 6000	1500 5500	2600	5900	6100	6100
	Мадлевіюм (Мо)	4 906 120	6200 180	140	140	490	140	240	(4Ú
-	Sociem (Nel	120 770	120 600	140 670	1560	-50 250	1700	940	270
	Potassida CK 1 Trince (Tri	2800	500 150	22	21	500	47	22	23
	Titanium (Til) Monora (Met	270	100 510	650	170	:80	260	350	660
	Manganese [Mn] Phosonorus [P]]	270 44()	220	210	310	52	370	310	279 279
		-40 66	170	130	4 90	29	480	130	260
	Barium [Ea] Chroanum [Cr]	71	79	63	52	120	67	120	74
,	Ziscentum (Is)	19	5	5	é		ę	4	S.
	Epoper [Eal	56	11	10	51	5	59	20	22
	Nickel [Nil	25	47	46	ò7	Ę	110	91	73
	Lead (Fb)	26	Ë	8	13	5	11	9	Ĵ
	Zinc [Zn]	140	51	41	77	32	110	59	56
•	Vanasium (V 3	160	30	25	46	4	49	37	31
	Stronviue [Sr]	11	130	83	15	4	19	88	229
	Cobait (Col	٤. ٤	5	7	7	1	16	11	9
	Malybdenun (Mal	10	< 2	< 2	× 2	6	< 2	< 2	< 2
	Silver (Ag]	< 1	< 1	< 1	< 1	< 1	< i	< 1	$\langle 1 \rangle$
1	Cadminin (CC)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Beryllium (Fel	< 1	$\langle 1 \rangle$	< I	1	$\langle 1$	< i	$\langle 1$	< 1
	Boron (6-1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
-	Antimony [Eb]	< 5	< 5	< 5	< 5	< E	3 5	5	< 5
	Yttrium IY 1	8	11	7	4	8	7	7	8
	Ecandiem (Sci	10	4	5	ş	3	Ŷ	7	6
•	Tungsten [W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Niobium (Nol	< 10	< i 0	< 10	< 10	< 10	< 10 To	< <u>10</u>	≺ 10 • •
•	Therium [Th]	20	20	40	30	< 10	30	< 10	10
۲	Arsenic [As]	20	5	< 5	. 5	19	< 5 / 2	< 5 / s	(5)
	Biseath [Pi]	Κ 5	< 5	< 5	4 5	× 5	< 5	(5)	< 5 (10
•	Tin (Bn)	< 10	< 10	< lû	1 10 at	t 18 -	< 10 70	< 10 20	< 10 20
	Lithics [1]	5	15	20	25	. 5	30 7 KA		10 K 10
	Holanda (Hol	< 40	₹ 10	< 10	< 10	< 10	< 10	< 10	χ 10

DATE : AUG-23-1990

"

SIGNED : Benne Arm

.

T B L LABORATORZES

.

·

۰.

۴

λ.

2-302-487H. STREET. SASKATOGN, SASKATCHEXAN 37K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. FLAEMS STAN

Aqua-Regia Sigastion

- -	FRIME EXPLORATION LTD. 10th Floot Box 10 808 West Hastings Bt. Vancouver B.C. V&C 2%6					7.8.6. 7.8.6. 7.8.6.	File No. Invoice No.	: 14850	
ŕ	ATTN: J. FOSTER	PROJECT: 90	3C 017 HI-7i	EZ REEGURGE	MANAGE/ENT	R-2163	ALL RESULTS	29M	
۰.		903JR 043	905PR 024	90EPR 025	90853 ()26	90879 027	905PR ()28	F06F5 027	905FR 030
	ELEMENT								
`	Aluminum (All	12000 15000	26000 55000	24000 7 4000	22000 40060	17000 25000	23000 33000	37 000 51000	2 4 000 44 000
	Iron [Fe]	45 000	25000	3:000			54 000	25000	+10000 10000
L.	Calcium (Cal	9 5000	14000	Б7000	14(()) (Taa	130600			7109
	Magnesium (Mg]	10000	EIGO	6300	6500	650) 50	8200 710	10000	110
٠	Sodiam (Nal	330	2300	170	150	50 •=•	310	190 170	
	Potassium (K 3	1100	1200	410	1500	489	170	160	9 50
•	Titanium (Til	19	2100	170	21	1260	2000	2160	120
	Manganese (Mn)	1400	1500	750	370	760	620	670 	<u>61</u> 0
	Phosphores (P]	2400	246	56	4 3 5	ΕŪ	250	370	740
•	Pariua (Bal	240	79	40	150	240	20	90	93
	Chremium [Cr]	22	£4	170	6 3	120	120	110	61
•	Zirconium (Zrl	11	20	Ę	Ę	là.	21	26	7
	Cooper (Cul	12	3	32	55	24	12	37	14
	Michel Edil	25	33	55	57	4 <u>7</u>	à4	78	74
-	Lead [Fb3	< 1	7	< 1	7	< 1	< 1	< 1	ė
	Zinc [[n]	37	110	36	74	72	47	51	<u>100</u>
L	Vanadium IV I	36	61	110	60	110	¢Ą	[井)	ėò
,	Strontiga [Sr]	5 60	54	120	Sù	67	29	31	ăî
	Cobalt [Co]	4	18	21	12	15	20	27	11
	Molybdenum (Mol	< 2	< 2	< 2	< 2	< 2	< 2	< 2	1, 2
	Silves [Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	t 1
	Cadmium (Cd)	< 1	< 1	$\langle 1 \rangle$	× 1	< 1	< 1	(1	
	Beryllium (Bel	$\langle \hat{1} \rangle$	< <u>1</u>	< 1	< 1	< 1	< 1	< <u>1</u>	< 1
	Boron (6.)	< 10	< 10	(<u>1</u> 0	< 10	< 10	< 16	< 10	< <u>1</u> 0
	Antimeny [Sb]	20	< 5	5	< 5	< 5	10	5	: 5
	Yttrium (V)	15	Ş	1Ū	7	13	10	16	12
`	Scandiga [Sc]	7	Ē	12	E	12	7	17	8
		< 10	< 10	< 10	< 10 	< 10	< 10	< 10	< 10
	-	< 10 < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
•		N 10 60	20	10	20	< 10	10	50	50
	Therium (Thi	5 (5	< 5	< 5	5	< 5	< 5	< 5	Ş
1	Arsenic (As)		< 5 < 5	< 5	< 5	< 5	< 5	16	10
	Bismuth [Bi]		$\langle 10$	< 10	$\langle 0 \rangle$	< 10	< 10	< <u>16</u>	: <u>1</u> 0
-	Tin [Sn]		10	20	30	15	5	 35	25
	Lithum [Li]	20 20	< 10 < 10	< 10		< 10	< 19	< <u>1</u> 0	< <u>1</u> 0
	Holmium (Hol	20	N 19	A 4V		5 8 5			

DATE : AUG-25-1990

Bunie Du SIGNED :

T 5 L LABORATORIES

, ١.,

.

\$

E.

ε.

2-3V2-48TH STREET, EABKATCON, BAENATCHEMAN STR 644 TELEFHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

L.C.A.F. PLAEMA ECAN

Aque-Regis Digestion

-	FRIME EXPLORATION LTD.				<u>9 - 7463 - 3</u>
	10th Floor Box 10		File		
	808 West Hastings St. Vestouves B.C. VAC 276	7.5.L.	Invoice	ко . :	14870

TN: J. FOSTER	L P	ROJECT: 90 BC	019 HI-TEC	REBOURCE MAI	AGEMENT R	-2153	ALL RESULTS	1997 1997	
		905PR 031	908PR 032	905FR 033	905FR 034	908FR 035	90SFR 036	908PR 037	9089R 03
ELEMENT									
Alemenum	[A1]	33000	29 000	16000	27009	5500	18090	28000	24949
Irca	[Fa]	33000	32000	3E000	37000)	7900	21000	42 000	4 7(p)i)
Calciem	[Ca]	27000	22000	4900	50000	120000	34000	15000	12000
Maonesium	(Mol)	8100	7360	6400	6206	2500	5000	7800	62.2)
Socia	[Na]	50)	1560	310	440	29	60	580	750
Fatasaium	15. T	90	663	9 50	370	4 0	30	830	6 <u>6</u> 0
Fitanium	1713	2100	3300	2800	22:0	190	1700	0200	42.0
Напозлеве		510	540	310	716	620	340	550	ć: D
Phosonotus		326	460	500	1 50	< 2	{ 4 Q	_1 0	17 9
Barcum	(Bal	15	34	31	20	7	10		le.
Chreatua	(Cr]	110	47	45	120	19	66	14	1
Zirconius	(2r]	18	30	25	21	3	ić	34	
Capper	(Cul	27	52	30	±5	3	21	51	45
Niceel	CNI]	53	57	28	100	16	16	26	27 27
	(P51	< 1	2	15		(1	< 1	< 1	÷ 1
1910 T	(201 (201	53	55	¢Į.	49	10	30	48	៍
Zinc		56	179	130	<u>c</u> =	15	75	130	162
Vanacium	EV 1	5 2	35	i i	20	52	9	19	17
Strontian	[5r]	19	20 22	5	25	5	13	21	21
Cobalt	[Co]		< 2		4 2	$\langle \tilde{2}$	< 2	< 2	× 2
Malvacenua		< 2		ه (1	\sim	< 1	< 1	$\langle 1 \rangle$	
Silver	(Ag]	$\langle 1 \rangle$	< 1	× 1 2	× 4 × 1	1	č 1	$\langle 1 \rangle$	
Cadmium	(Cd)	$\langle 1 \rangle$	× 1	_	N +		< !	2 · ·	
Beryllium	(Bel	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1	< 10	< 10	× 10	< 1 0	× 10
Baros	CB 1	< 10	< 10	< <u>10</u>	< 29 < 1	< 5	< 5	< 5	< 3
Antimeny	(Sb]	< 3	< 5	< 5		× 0 3	6	17	13
Yttrium	E¥ 1	10	14	12	11 =	_	6	7	
Scandius	(Sc)	é	3	13	•	2	< 10	< 1 0	< 10
โปกอุธระก	(W 1	< 10	< 10	< 10	< 16	< 19		< 10 < 10	
Nichium	(No)	< <u>1</u> 6	< 10	< 10	< 10	< 10	< 10		50
Thorius	[Th]	36	40	30	20	< 10	10	, 4 0	00 5 }
Arsenic	(As)	< 5	< 5	20	< 1	< 5	< 5	< 5	
Bismuth	(Bil	15	< 5	< 5	1 8	< 5	(5	< 5	
Tin	(Sn]	< 10	< 10	< 10	$< \Omega$	< 10	< 10	< 10	< 14 N
Lithian	CL13	10	tõ	5		 ₹ 	< 5	1.5	1
Hoimium	(Ha]	< 10	< 10	< 10	< 12	20	< 10	< 10	< 13

BATE : AUG-23-1990

STENED : <u>Fernie Dunn</u>

T E L LAEDRATORIES

•

r L.

E.

١.

٠

.

2-302-48TH STREET, SASKATEEN, SASKATCHEWAN STK 644 TELEPHEME #: (306) F31 - 1033 FAX #: (306) 242 - 4717

L.C.A.F. FLASMA SCAN

Aqua-Regiz Bigestion

	PRIME EXPLORATI 10th Floor Box 208 West Hastin	10					T.S.L. T.S.L. T.S.L.			63 - 9
•	Vancouver B.C. ATTN: J. FOBTE		: PROJECT: F0 E	10 019 HE	-TEC REEQUAC	e Managemen t	R-2153	ALL REGULT	5 2 5%	
v			905PR 039	908FR ()40	905PR 041	90858 942	908FR 043	905PR 044	908PR 045	905FR 046
	ELEMENT	-								
	Aluainua	[A1]	27600	35000	24666	28000	36000	54000	35000	20000
	[ron	[Fe]	44000 • *****	0093 2	43660 13000	60000 500	46000 20000	34000 48000	33000 27600	37000 12600

	LT DB	LC 24	4.4.9.9.9	44000	12114					
	Calcium	(Ca)	14000	25000	13000	<u>65</u> 30	20000	45000	27600	12606
	daonesium	(Ma]	ნსპს	5160	7500	7500	7400	6500	71 00	5800
	Endium	(Ma)	310	1B0	270	130	120	50	360	184)
	Potassium	G . 1	50	50	60	610	70	6Ú	2 20	5 <u>c</u> ú
	Tisanum	1713	4 4()()	2600	3400	140	2509	1500	1300	19 .0
	Мапралеве	[kn]	610	540	580	1000	660	470	370	250
,	Phosenarus		290	440	45Ù	3500	510	350	360	510
	Barium	[Ea]	23	12	21	160	17	15	23)÷
	Chroniua	E 703	43	77	42	44	97	129	150	32
•	Zirconsum	(Zn]	34	$\overline{30}$	29	17	lá	13	13	22
	Socen	(Cu)	54	63	42	23	57	53	57	17
	Nickel	EN1]	30	27	40	63	70	77	116	23
	Lead	[Pb]	< 1	< :	< 1	10	I	3	4 +	22
	Zinc	(Inl	48	51	72	110	<u> 1</u>	57	51	97
·	Vanadium	[V]]	150	120	110	67	120	91	57	270
	Strontium	(Sel	7	9	Ģ	220	12	11	18	Ę
,	Copalt	[[]]	26	21	27	ò	26	21	24	4
	Molycaenum		< 2	< 2	< 2	Κ 2	< 2	< 2	< 2	10
	Silver	(Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
•	Cagnium	[Ūd]	< 1	< 1	< 1	ž	< 1	1 1	< 1	< 1
	Beryllium	(89]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Berco	(B-)	< 10	< 10	< 10	< 10	<10	< 10	< 10	< 10
•	Antimony	(Sol	< 5	< 5	< 5	< 5	10	< 5	15	5
	Yttrium	EY 1	15	13	12	31	14	10	7	9
•	Scandium	(Sc]	ė	9	6	12	5	6	1	12
	Tunneter	Ew 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Nicoium	(18)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
•	Thorium	[តែ	50	40	40	50	50	30	30	10
_	Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	20
•	Bisauch	(Eij	< 5	< 5	< 5	15	10	< 5	< 5	< 5
•	โร	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Lithium	(Li]	5	10	< 5	4 _	10	16	10	10
•	Holarum	(Ho]	< 10	< 10	s 10	10	< 10	< 10	< 10	< 10

DATE : AUG-25-1990

SIGNED : _ Bernie Dum

-

k	T S L LAB	BOSATORIES							
		2-302-4	STH STREET,				A4		
) 931 - 103 1 940 - 1713				
•			Fêl e	:) 242 - 4717				
-			FLASMA SCAN						
		1 slasher s	ELHONH OUR -	àaa≠-	Ragia Bigaas	193			
•									
-	PRIME EXFLORATION UTD.					τ.ε.ε.	REFERT No	.: E - 94	62 - 10
	- tóta Fleer Bax 10					T.E.A.			
٠	809 West Hastings St.					7.5.6.	Invoice Ma	. (14890	
_	Vancouver E.C. V6C 2X8						_		
-	ATTN: J. FEBTER	FREJEST: 90	EC 019 - HI-1	TEC RESOURCE	MANAGEMENT	8-2153	ALL REENLT	E 68M	
`						erett (***	00573 453	04000 487	04875 AS*
		905FR 047	90525 045	905PP 049	905FR 050	90EFR 051	905FR 052	905PR 053	905FR (54
	ELEPENT								
		1844	4 0 0A	19000	26000	7700	9000	E-300	Z1000
	Alaminum (Al3	6800 20006	4900 22008	19000 53000	22000 60000	1700	19000 19000	23000	27000
	Iron [Fe] Calcium [Da]	20000 7600	22006 43000	11006	20000	5900	1700	220	12000
	Calcium (Dal Maoneerum (Mg)	7600 3700	42000 5900	7066	6200	4 <u>7</u> 00	4100	<u>2200</u>	6100
	magneerum ung: Sødium [Na]	150 150	140	600	260	510	470	400	710
•	Potassium EK B	4 <u>6</u> 0	776	550	240	340	600	580	370
	Titanium [Ti]	160	22	5200	4700	F00	750	54	3100
	Manganese SMn3	270	970	789	74 <u>i</u> j	350	490	720	군식습 금북인
r	Phosphorus (P 3	270	236	710	710	110	88	62	259
	Barium (Bal	200	100	47	24	18	44	160	
	Chromium (Crl	110	65	17	17	73	77	48	26
-	Zirconium (Zr]	5	4	32	18	11	6	2	12
	Copper ICul	17	11	37	5	2	3	2	90) 90
•	Nickel [Ni]	30	38	17	4	2	3	î 	29
-	tead (Pb)	10	6	< 1	3	4	4 20	37 38	5 55
	Zinc [Zn]	25	41	70	73	48 20	28 16	30 5	110
	Vanadium (V 3	24	14	246	360	20 7		2	24
-	Streatien [Sr]	53	190	21 19	11 22	2	< 1	< 1 (1	14
	Cobait (Col	6 / 7	5 < 2	47 < 2	< 2	<u>-</u> 1	< 2	4	< 2
•	Molyggenum (Mol	< 2 < 1	< <u>4</u> < 1	× 4 7 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	< <u>1</u>	$\langle 1$	< 1	< 1
	Silver (Aq) Caomium (Co)	$\langle 1$	< 1	< 1 < 1	$\langle 1 \rangle$	< 1	$\langle 1$	$\langle \hat{1} \rangle$	< 1
	Beryllium (Bel	< 1	< i	< 1	$\langle 1 \rangle$	< 1	< 1	< i	× 1
	Baron (5.1	< 10	< 10	< 10	< 1 0	< 16	< 10	< 10	< 10
F	Antiacey (Sb)	< <u>5</u>	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	Yttrium (Y)	5	8	22	17	12	23	7	9
•	Scandium (Sc)	3	5	4	7	3	4	Ž	2
	Tungsten (W 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Nicolus [No]	< 10	< <u>1</u> 0	< 10	< 10	< 10	< 10	< 10	< 10
•	Thorius (Thl	< 10	<u>40</u>	40	40	< 10	10	< 10	40
	Arsanic [As]	10	< 5	< 5	< 5	5	< 5	1 E	K 5
	Bisaush [Bi]	< 5	< 5	< 5	< 5	< 5	5	< 5 / 10	5
	Tin (Sn)	< 10	< 10	< 10 •	< 10	< 10	< 10 / =	< 10 5	< 10 、 5
	Lithium [Li]	10	5	5	10	< 5 < 10	< 5 < 10	2 K 10	× 10
-	Holaiua [Ho]	< 10	< 10	< <u>10</u>	< 10	N 19	× 10	1 10	5 IV

DATE : AUG-25-1990

•

٠

SIGNED : <u>Bernie Aun</u>

TISIL LARGRATERIES

. -

-

s.

P

ь.

Π.

.

2-302-48TH STREET, SASKATGON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1032 FAX #: (306) 243 - 4717

ELELANS. PEASEA SCAN

Acos-Regia Digestion

•	PRIME EXPLORATION LTD 10th Floor Box 10 808 West Hastings Bt. Vancouver B.C. V&C 2X					7.3 7.5.L. 7.5.L.	File No Invoice Na	.: 14870	12 + 11
	ATTN: J. FOSTER	PEDJECT: 90	EC 019 H	I-TEC REEGUR	ce management	R-2153	ALL RESULTS	5 FFM	
_		90SLR 001	903LR 002	905LE 663	908LR 004	905LR 005	908LR 006	905LR 007	70SUR 005
	ELEXENT								
	Aluannua [Al]	17000	10000	2400	<u>27</u> 00	2300	22600	29600	18000
	Iron [Fe]	29000	51000	63000	34000	34000	61000	44660	64000
	Calcium (Ca)	32060	15000	Ê0006	37000	30000	15600	25600	45000
	Magnesium [Mg]	5400	6000	9300	670ù	6000	7900	£000	4400
	Socium (Nai	556	450 ⁽	160	170	110	320	270	70
	Potassium (K 3	930	1000	1500	1300	1200	250	180	50
•	Titaniwa (Til	1700	52	6	6	4	2560	3680	830
	Manganese (Mn)	460	1100	1900	1100	910	970	570	130
,	Phoschorus (P)	450	1160	360	170	160	716	510	110
	Barium (Bal	47	140	1100	260	150	45	25	3
	Chroatum (Cr)	40	34	40	51	44	36	199 107	çq
•	Zircenium (Zr)	e e	11	14	ç	6	53	 نن	17
		70	5	11	2	- 6	19	52	36
•	Copper (Cu3)		J 4	17	ę	3	11	57	18
	Nickel (Nil	24	7 8	2	1	< 1	< 1	1	 6
	Lead (PS)	5			EL .	75	110	63	340 3
	Ziac (Zn)	44	100	110	51 34	70 34	180	150	160
	Vanadium IV 1	84	14	78		43 43	157	100	100
•	Strontion [Sr]	71	28	200	65			21	12
	Cobalt [Co]	13	8	15	1	7	17		Ē
	Malyeesum [Mal	< 2	< 2	Κ 2	κ 2	< 2	< 2	< 2	
	Silver iHu:	$\langle 1 \rangle$	< 1	< L	< 1	< 1	< 1	< 1	< 1
	Cadeice [Cd]	< <u>t</u>	< 1	< 1	< 1	< 1	< 1	< 1	3
•	Beryilium (Bel	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Boren [S]	< 16	< 10	K 10	< 10	< 19	< 10	< 10	< 10
-	Antigery [Eb]	< 5	< 5	15	5	U 2	(5	10	< 5
	Yttries [7]	8	22	25	13	10	31	18	Ó
	Scandium (Sc]	2	ę	18	łQ	7	12	4	4
	Tungsten (W)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Niabium (Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
•	Thoriua (Th)	40	30	70	20	40	60	5 0	30
	Arsenic (As)	< 5	< 5	< 5	Ę	< 5	< 5	< 3	15
	Bismuta (Bil	< S	5	< 5	< 5	< 5	10	< 5	< 5
•	Tia Enl	< 10	< 10	$\langle 10$	(10	× 10	< 10	< 10	< 10
		· •v	10	< 5	5	(3	10	10	5
-		< 10	< 10	20	< 16	< 10	< 10	< 10	< 10
	Helmium [He]	\ I U	V 1V	F .					

DATE : AUG-25-1990

.

SIGNED : Remie Dunn

-	7 S 2 - 2AB	NERATORIES		
•		2+302-48TH 9	TREET, SASKATGEN. SASKATCHEWAN	S78. 644
-			TELEFHOME #: (306) 931 - 1033	
			FAX \$t (306) 242 - 4717	
		1,5,2,2, PLAS		
			Aqua-Recia Diçestic	ā
REIS	E EXECTENTION UTB.			T.E.L. REFERE No. € 8 - 9463 - 12
	Flaar Bax 10			T.E.L. File No. (
503	West Histings St.			7.5.1. Invoice No. (1457)
Vanc	юшует Б.С. 96С 2%8	3		
ATTR	a J. Foster	PEOJEET: 90 BC 019	HI-TEC REECLACE MANAGEMENT	R-2153 ALL REPULTS FFM
		905LR 009		
	ELEMENT			
	Alumnoum (All	2500		
		23000		
,		23666		
	Magnesium (Mgl			
	Sodiua (Na)			
	Potassium ERS			
*	Titaniwa [Ti]	26		
•	Manganese [Ma]	410		
	Pha⊴onorus (P)	12		
-	Banium [Ea]	75		
	Chronies (Cr3	72		
	Eirconium [7r]	5 2 4		
*	Cooper (Cul	2		
	Nickel (bil	4 < 1		
	Lead [Pb] Zirc [Zn]	× 1 72		
•	Vanadium IV J	6		
	Strontium (Sr)	38		
	Cobalt (Col	1		
r	Malyadenum [Ma]	< 2		
	Silver (Agl	< 1		
	Cadmium (Cdl	< E		
	Beryllium (Bel	< <u>1</u>		
	Baran (8-1	< 10		
•	Antimeny [Eb]	5		
•	Yttries (Y I	É		
	Scandium (Sci	3		
•	Tungsten [W]	< 10 (10		
,	Nichium [Nb]	< 10		
	Thorson (Th)	20		
•	Arsenic (As)	< 5 < 5		
	Bismuth (Bi)	< 3 < 10		
	Tin (En)	< 10 < 5		
•	Lithium (Li) Holmium (Hol	< 10		
r	Holmium (Hol	N - N		
•				-

EATE : AUG-15-1990

STONED : Bernie Dana

٠

2 - 302 - 48th STREET, EAST SASKATOON: SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX 306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9532

SAMPLE(S) OF ROCK

INVOICE #: 14691 P.O.: R-2180

D. Collins Project: 90-BC-019

REMARKS: Hi-Tec Resource

Au ppb

90SJR043 <5 90SJR044 <5 90SPR055 <5

90SPR056 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 17/90

τ.

SIGNED _

Buniel

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 1 of 1

•											
	7 5	L LAB	SORATORIES								
•			2-30	2-46TH 51	REET, SASK	ATSON, SABLAT	ST LWHN	37° 6:	4		
-					TELEPHONE	▶: (306) 971 - (366) 242 -	- 1033				
					÷∺x #:	(264) 242 -	4717				
•				5. <u>61.65</u> 45							
			1.0.51	P. FLASMA	I SUAR						
						Pase-Regis Is	19887130				
٠	FRIME EXFLORATE	775) 77						T T :		·	
	10th Floor Eck										- 9532 - 1
	806 West Hastin									Mait E	
	Vancouver 8.5.							11010	mones	No.: 1	474 <u>.</u>
_	ATTN: 2. FORTE			90 BC 019		e refource mana	LIVENT . T	5 1_5100	A. 577	UNTE SER	
		-				e nervenue nati	Sector de 1933 - La c	5.RT1100	HLL ALS	aris 449	
			POSJR043	905JR044	9052 8055	90866056					
						· · · · · · · · · · · · · · · · · · ·					
	Alecipua		10006	7200	14000	11006					
		[Ee]	28060	14000	31000	30000					
<i>,</i>	Caltium	(Ca]	28000	19000	9600	31600					
	Magnesium			3400	5000	6300					
	Sectur			9 0	70	100					
•	Patessium			450	660	490					
	Titaniga		14	8	17	15					
	Manganese		710	370	490	S4 0					
-	Phosesones		150	176	420	220					
	Barice		5=	85	250	74					
	Earsaius		55	41	58	36					
-	Zirzonium		4	3	6	5					
	Coorer		14	6	27	11					
	Kickel		31 3		73	43					
	Lead Zinc		ن جد	7	8	7					
	Vanadium			3: 12	35 35	45 51					
•	Stroatium		430)	12 60	30 79	21 140					
	Cobalt	(Co)		É	11	140					
	holyacenum		· •	< 2	< 2	< 2					
		IAq]	· · ·	< <u>1</u>	< 1	1					
,		[24]	< 1	< 1	× 1	1 I					
		681		< 1	< 1						
•	Boron	[3]]	< 10	(10	< <u>10</u>	10					
	Astisony	1561	ş	< 5	. 5	5. 2					
,	Yttrium	EY 3	é	5	7	10					
		[85]	4	3	7	5					
	•	[¥]	< 1 0	< 10	< 10	< 10					
•		[No]	≤ 40	< 10	< 10	< 10					
		(Tn1	2 0	< 10	30	20					
		[45]	10	10	5	< 5					
•		[]]]	20	< 5	10	15					
		1251	< 10 55	10	< 10	< 10 					
		1967 1997	25 Z IA	15 . (5	30	25					
•	ngtaras, (l-cI	< 10	÷ 10	s 10	$^{\circ}$ 10					

DATE : AUB-27-1990

•

.

SIGNED : Beinie Dunn

•

TSL L ABOR

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 4815 STREET, EAST SASKATOON SASKATCHEWAN S7K 6A4 🐼 (306) 931-1033 - FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9573 V6C 2X6

SAMPLE(S) OF ROCK

INVOICE #: 15082 P.O.: R-2202

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

> Au ppb

90SJR045	<5
90SJR046	<5
90SJR047	<5
90SJR048	5
90SJR049	<5
90SJR050	10
90SJR051	5
90SJR052	<5
90SJR053	<5
90SJR054	<5
90SJR055	<5
90SJR056	<5
90SJR057	<5
90SJR058	<5
90SJR059	<5
90SJR060	<5
90SJR061	<5
90SJR062	<5
90SJR063	15
90SJR064	<5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 30/90

Run o Du SIGNED

1 of 7 Page

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATORIES

OIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🚱 (306) 931-1033 - FAX (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9573

INVOICE #: 15082 P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	Au ppb
90SJR065	40
90SJR066	<5
90SJR067	<5
90SJR068	15
90SJR069	5
90SJR070	<5
90SJR071	<5
90SJR072	<5
90SJR073	<5
90SJR074	<5
90SJR075	15
90SJR076	<5
90SJR077	<5
90SJR078	<5
90SJR079	<5
90SJR080	<5
90SJR081	<5
90SJR082	5
90SJR083	<5
90SJR084	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Aug 30/90

Bernie Ou SIGNED .

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

Page 2 of 7

DIV BURGENER TECHNIC. IMITED

2 - 302 - 48th STREET, EAST SASKATOON SASKATCHEWAN S7K 6A4 🞯 (306) 931-1033 - FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9573 V6C 2X6

SAMPLE(S) OF ROCK

INVOICE #: 15082 R-2202 P.O.;

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	Au ppb
90SJR085 90SJR086	<5 5
90SJR087	<5
90SJR088 90SJR089	<5 <5
90SJR090	5
90SJR090	5
90SJR092	5
90SJR093	25
90SJR094	<5
90SJR095	5
90SJR096	<5
90SJR097	<5
90SJR098	<5
90SJR099	<5
90SPR057	5
90SPR058	5
90SPR059	<5
90SPR060	5
90SPR061	5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Aug 30/90

SIGNED

Bernie Dun 3 of 7

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report,

DIV. BURGENER TECHNICA SES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9573 V6C 2X6

> INVOICE #: 15082 **P.O.:** R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

Au ppb 90SPR062 <5 <5 90SPR063 <5 90SPR064 90SPR065 <5 90SPR066 <5 90SPR067 <5 90SPR068 <5 90SPR069 5 90SPR070 <5 90SPR071 <5 90SPR072 <5 90SPR073 <5 90SPR074 <5 90SPR075 <5 90SPR076 <5 90SPR077 <5 90SPR078 <5 90SPR079 <5 90SPR080 <5 90SPR081 <5

C. Idziszek, J. Foster COPIES TO: INVOICE TO: Prime - Vancouver

Aug 30/90

SIGNED .

Gernie Vi

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306: 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9573 V6C 2X6

> INVOICE #: 15082 P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	Au ppb
90SPR082	<5
90SPR083	<5
90SPR084	<5
90SPR085	<5
90SPR086	<5
90SPR088 90SPR087 90SPR088 90SPR089 90SPR090 90SPR091	<pre> 5 <5 <5 <5 <5 <5 <5 </pre>
90SPR092	<5
90SPR093	<5
90SPR094	<5
90SPR095	5
90SPR096	5
90SPR097	5
90SPR098	<5
90SPR099	<5
90SPR100	5
90SPR101	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Prime - Vancouver

Aug 30/90

SIGNED

Bernie Ou

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

Page 5 of 7

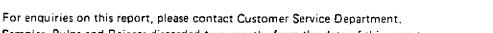
2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 5A4 🞯 (306) 931-1033 - FAX (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9573 V6C 2X6

INVOICE #: 15082 P.O.: R-2202

SAMPLE(S) OF ROCK


P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	Au ppb
90SPR102	<5
90SPR103	<5
90SPR104	<5
90SPR105	<5
90SCR001	<5
90SBR001	<5
90SJR100	<5
90SJR101	<5
90SJR102	Not Rec'd
90SJR103	<5
90SJR104	<5
90SJR105	<5
90SJR106	<5
90SJR107	<5
90SJR108	<5
90SJR109	<5
90SDR014	10
90SDR015	70
90SDR016	<5
90SDR017	<5
COPIES TO: INVOICE TO:	C. Idziszek, J. Fo Prime – Vancouver

Aug 30/90

Renie Cu SIGNED _

J. Foster

Page

6 of 7

Samples, Pulps and Rejects discarded two months from the date of this report.

2 - 302 - 48th STREET, EAST 2-302-400 STREET CAST SASKATOON SASKATCHEWAN S7K 6A4 🕝 (306) 931-1033 - FAX. (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9573

INVOICE #: 15082 P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

> Au ppb

90SDR018 <5 90SDR019 < 5 90SDR020 <5

90SDR021 <5 90SDR022 80

90SDR023 <5

90SDR024 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 30/90

Benie Dun SIGNED

7 of 7

Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

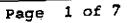
ON SURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM REPORT No. 10th Floor, Box 10-808 West Hastings St. S1563 Vancouver, B.C. V6C 2X6

> **INVOICE #: 16263** P.O.: R-2202


SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	нд ррр	
90SJR045 90SJR046 90SJR047 90SJR048 90SJR049	50 20 30 20 20	
905JR050 905JR051 905JR052 905JR053 905JR054	30 80 20 70 10	
90SJR055 90SJR056 90SJR057 90SJR058 90SJR059	<10 <10 <10 <10 10	
90SJR060 90SJR061 90SJR062 90SJR063 90SJR064	40 60 40 2400 60	
COPIES TO: INVOICE TO:	C. Idziszek, J. Foster Prime – Vancouver	

Nov 07/90

DRY BURGENER TECHNICAL EN LEMPHISES LIMITED

2 - 302 - 48th STREET, EAST SASKATCON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

TOUL FIGHT DOX TO DOO WOOD	SEPORT No. S1563
----------------------------	---------------------

16263 INVOICE #: P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

Hi-Tec Resources REMARKS :

	Hg ppb
905JR065	480
90SJR066	400
90SJR067	180
90SJR068	230
90SJR069	140
AAA #8070	10
905JR070	<10
90SJR071	<10
905JR072	20
90SJR073	30
90SJR074	30
905JR075	280
905JR076	10
905JR077	10
90\$JR078	180
90SJR079	20
905JR080	10
905JR081	<10
90SJR082	20
90SJR083	<10
90SJR084	50
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Nov 07/90

SIGNED _

2 of 7 Page

For enquiries on this report, please contact Customer Service Department. and a second second second second

NOV 12 '90 10:13

6046872309

. . . .

DIV. BURGENER TECHNICAL INTERMISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATOHEWAN \$7X 6A4 🕝 (306) 931-1033 - FAX: (306) 242-1717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X5	REPORT No. S1563
---	---------------------

INVOICE #: 16263 P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

Hi-Tec Resources REMARKS :

	нд ррр
905JR085	10
90SJR086	160
905JR087	30
90SJR088	10
90SJR089	10
905JR090	60
90SJR091	60
90SJR092	70
905JR093	6 0
90sjr094	40
90SJR095	530
90SJR096	90
90\$JR097	<10
90SJR098	<10
905j r09 9	40
90SPR057	50
905 PR05 8	30
90SPR059	40
90SPR060	50
90SFR061	60
COPIES TC:	C. Idziszek, J. Fo
INVOICE TO:	Prime - Vancouver

Nov 07/90

SIGNED .

J. Foster

3 of 7 Page

For enquiries on this report, please contact Customer Service Department.

NOV 12 '90 10:14

6046872309

ES TSL LABOR INV. BURGENER TECHNICAL ENTERPRISES LIMITED

> 2 - 302 - 48IN STREET, EAST SASKATOON, SASKATCHEWAN S7K 8A4 G (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C.	REP(S]
	V6C 2X6	

PORT NO. 1563

INVOICE #: 16263 P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	Hg
90SPR062	30
90SPR063	<10
90SPR064	50
90SPR065	50
90SPR066	10
90SPR067	20
90SPR068	20
90SPR069	150
90SPR070	80
90SPR071	110
90SPR072	40
90SPR073	40
90SPR074	<10
90SPR075	10
90SPR076	10
905PR077	<10
905PR078	60
905PR079	10
905PR080	100
905PR081	40
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Nov 07/90

SIGNED ...

Page 4 of 7

PAGE.06

NOV 12 '90 10:14

For enquiries on this report, please contact Customer Service Department,

. 6046872309

IES TSL LABOR ON BURGENOR TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🚱 (306) 931-1033 - FAX. (306) 242 4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings Vancouver, B.C. V6C 2X6	St.		PORT No. S1563	
		TNUCTOR	#•	16263	

INVOICE #: P.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	нд ррр
90SPR082	20
90SPR083	30
90SPR084	20
90SPR085	<10
90SPR085	10
90SPR087	140
90SPR088	30
90SPR089	40
90SPR090	20
90SPR091	10
905PR092	20
905PR093	10
905PR094	40
905PR095	10
905PR096	420
90SPR097	170
90SPR098	30
90SPR099	30
90SPR100	110
90SPR101	60
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Nov 07/90

SIGNED __

Page 5 of 7

For enquiries on this report, please contact Customer Service Department,

NOV 12 '90 10:15

6046872309

PAGE.07

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX. (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) PRUM	Prime Explorations Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	REPORT No. \$1563
		4. 16763

INVOICE #: 16263 P.O.: R-2202

SAMPLE(S) OF ROCK

.5.

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

	д Ц
90SPR102	70
90SPR103	70
90SPR104	20
90SPR105	10
90SCR001	10
90SBR001	<10
90SJR100	<10
90SJR101	<10
90SJR102	Not Rec'd
90SJR103	<10
90SJR104	10
90SJR105	<10
90SJR106	<10
90SJR107	<10
90SJR108	<10
90SJR109	<10
90SDR014	20
90SDR015	1100
90SDR016	20
90SDR017	30
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Nov 07/90

SIGNED -

Page 6 of 7

NOU 12 '90 10:15

RIES TSL LABOR DIV. BURGENER TROMMCAL ENTERPRISES UNITED

2 - 302 - 48th STREET EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd 10th Floor,Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	REPORT No. \$1563
	TNVO	TCE #: 16263

アポイハウアウ F.O.: R-2202

SAMPLE(S) OF ROCK

P. Daigle Project: 90-BC-019

REMARKS: Hi-Tec Resources

Нg ppb

905DR018	10
905DR019	20
905DR020	4000
905DR021	190
905DR022	150
90SDR023	40
90SDR024	20

COPIES TO: C. Idziszek, J. Foster Prime - Vancouver INVOICE TO:

Nov 07/90

SIGNED _

Page 7 of 7

For enquiries on this report, please contact Customer Service Department. المنسب وريا

NOV 12 '90 10:16

6046872309

*	TSL	LABG	RATORIES							
•			2-302-481	TELEPH	SASKATOON, 3 ONE #: (306)	931 - 1033		4		
				FAX #:	(305)	242 - 4717				
1			I.C.A.9. F	H AGMA COAN						
•			1.0.4.()		Agua-R	egia Di <u>c</u> esti	an			
•	PRIME EXPLORATION	έτ Β					T.S.L.	REPERT No.	: 5 - 957	3 - 1
	10th Floor Box 10						T.5.L.	File No.		
	B08 West Hastings							Invoice No.		
•	Vancouver B.C. Vo									
×	ATTN: J. FOSTER		WECT: 90-BC-0:	19 - HI-T	EC P.O. R	-2202		ALL RESULTS	PPM	
			905JR045	905JR046	9053R047	905JR048	9053R049	905JR050	905JR051	905JR052
	ELEMENT									
	Alumiกแล C	A11	22000	87 00	8900	16000	21000	24000	32000	17000
		Fe]	45 00 0	21000	37000	31000	40000	35000	53000	24000
•		Cal	12000	26000	1800	14000	7500	10000	15000	2500
		Maj I	6100	5B00	3200	6500	6100	6300	7000	5200
		Na]	260	210	110	630	190	140	160	160
	Potassium [1000	1300	610	530	1200	710	7 B0	1600
		Ti]	23	14	10	85	22	24	27	10
•		Ma I	720	1100	1400	640	350	540	920	220
	Phosphorus {		360	290	250	770	2000	B70	4700	290
		Bal	260	170	140	320	£10	200	250	230
,		[cs]	68	64	120	32	75	71	50	60
	Zirconium [Zrl	5	4	3	4	5	5	В	4
•	Copper [Cu 3	18	14	19	29	32	26	28	42
		Ni 3	110	54	55	15	69	70	64	41
	Lead [Pb 3	12	12	9	17	12	10	11	6
·	Zinc [[Zn]	80	46	63	34	63	80	82	90
	Vanadiu s [V 3	43	24	18	85	51	45	70	44
	Streatium [[Sr]	37	67	23	80	100	70	310	31
•	Cobalt C	[Co]	11	9	5	8	8	7	7	5
	Molyadenum (< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
•		Ho]	$\langle 1 \rangle$	< 1	< 1	$\langle 1 \rangle$	< 1	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1 < 1
		[64]	< 1	< 1	< 1		< 1	$\langle 1 \rangle$	< 1 < 1	< 1
	•	[Be]	< 1	$\langle 1 \rangle$	$\langle 1$	< 1 < 10	< 1 < 10	< 1 < 10	< 10	< 10
1		B 1	< 10	< 10	< 10	< 10	< 10 < 5	< 5	< 5	< 5
	•	[56]	< 5	< 5	< 5	< 5	15	13	32	L
		[Y]]	11	9	6	۶ د	7	7	9	7
		[5c]	6	6	3	5		< 10	< 10	< 10
	•	[W]	< 10 (10	< 10 (10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10
		[Nb]	< 10	< 10 20	< 10 < 10	× 10 30	20	20	50	10
		[Th]	20 / F	20	< 5	< 5	< 5	< 5	< 5	< 5
		[As]	< 5	< 5 5	< 5 < 5	10	10	10	15	< 5
•		[Bi]	20	/ 10	< 10 < 10	< 10	< 10 < 10	< 10	< 10	< 10
-		[So]	< 10 75	< 10 10	15	× 1V 45	40	45	55	25
		[Li]	35		< 10	.< 10	< 10	< 10	10	< 10
•	Holmium ([Ho]	< 10	< 10	V 1V	-X - 1V	10	x 1V	£.4	

SIGNED : Demis Piliziak

- DATE : AUG-29-1990

λ.

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA BCAN Aqua-Regia Digestion	. .	TSL	LABO	DRATORIES	11 OTRET		CARVATRUCHAM	I 57K 66	14		
L.C.A.P. PLASHA BCRM Aduat-Regis Bigestion PRIME EXPLOBATION LTD. 10th Floor Box 10 10th Floor Box 10 1	•			2-302-481	TELEPH	IONE #: (306)	931 - 1033		(4		
Aqua-Regia Digestion PRIME EXPLIGATION LTD. T.S.L. BEPORT No. 1 S - 9573 - 2 10th Floor Box 10 T.S.L. Fruite No. 1 SVE Vancouver B.C. VAC 226 ALL REDUIT: 90-BC-019 - HE-TEC P.O. R-2202 ALL REDUIT: FORMULT: 90-BC-019 - HE-TEC P.O. R-2202 ALL REDUIT: FORMULT: FORMUL	.				186 8 1	(2007	242 - 4717				
Aqua-Regia Digestion PRIME EXPLIGATION LTD. T.S.L. BEPORT No. 1 S - 9573 - 2 10th Floor Box 10 T.S.L. Fruite No. 1 SVE Vancouver B.C. VAC 226 ALL REDUIT: 90-BC-019 - HE-TEC P.O. R-2202 ALL REDUIT: FORMULT: 90-BC-019 - HE-TEC P.O. R-2202 ALL REDUIT: FORMULT: FORMUL				1.C.A.P. P	Lasma Scan						
PRINE EXPLORATION UT0. T.S.L. FILE No.: 5 - 573 - 2 10th Floor Box:00 BX0 West Hastings St. T.S.L. File No.: 5 - 507 Not Mast Hastings St. Vancouver B.C. VEC 236 ATTN: J. FOSTER PROIECT: 90-BC-019 - HI-TEC P.G. R-2202 ALL RESULTS PPM ALL RESULTS PPM 905/R057 905/R057 905/R057 905/R058 905/R059 905/R0	•					Aqua-R	egia Digesti	ло			
TICH Floor But 10 T.S.L. File Mo.: I 15082 SIG West Hastings St. Yancouver S.C. VMC 236 ATTN: J. FOSTER PROJECT: 90-EC-019 - HI-TEC P.G. R-2302 ALL FEILE MO.: I 15082 YOSJR052 90SJR055 90SJR055 90SJR057 90SJR058 90SJR059 90SJR059 PROJECT: 90-EC-019 - HI-TEC P.G. R-2302 ALL FEIL FROM All minus fail ALL FEIL FROM	-										
DOW Hest Hesting Bt. T.S.L. Invoice No. 1 15062 Vancouver B.C. VAC 2266 ATTN: J. FOSTER PROJECT: 90-8C-019 - HI-TEC P.G. R-2202 ALL RESULTS PPM 90578052 90578055 90518055 90518055 90518058 90518058 90518058 90518059 90518059 90518059 ELEMENT All mainue [A1] 21000 23000 19600 22000 20000 20000 25000 20000 31600 90000 31600 16000 90000 35000 81000 90000 35000 8000 81000 90000 5200 1600 750 270 170 90 1400 90000 5500 1000 90000 5200 1100 1000 90000 5200 1100 1000 90000 5200 1100 1100 750 220 1200 1800 760 44 Manganese [Nn] 250 330 370 550 380 556 266 160 1700 900 1100 760 44 Manganese [Nn] 250 330 370 550 380 566 266 160 100 760 44 Manganese [Nn] 250 330 370 550 380 566 266 160 100 770 72 52 Drhonum [Dr] 58 100 86 100 110 170 72 52 Drhonum [Dr] 58 100 86 100 110 170 72 52 Zircconima [Zn] 6 9 9 6 17 9 177 6 5 Copper [Du] 46 47 44 50 460 471 33 462 Nickel [Ni] 78 91 88 70 469 71 33 42 5 122 Zircconima [Zn] 6 26 26 22 27 24 9 24 92 Vancium [Dr] 3 4 3 4 2 5 122 Zircconima [Zn] 6 5 5 5 10 (5 5 5 10 (5 5 5 10 (5 5 5 5 10 (5 5 5 5 10 (5 5 5 5 5 5 10 (5 5 5 5 5 5 10 (5 5 5 5 5 5 5 5 5 5 10 (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		PRIME EXPLORATIO	№ LTO.								3 - 2
Notes intermining Notes intermining ALL RESULTS PPM Yancover B.C. VEC 235 YOSIROS1 YOSIROS2 YOSIROS4 YOSIROS5 YOSIROS5 YOSIROS7 YOSIROS8 YOSIROS9		10th Floor Box 1	6								
Vancouver B.C. V/CC 2X6 ATTN: J. F0STER PROJECT: 90-6C-019 - H-TEC P.D. R-2202 ALL RESULTS PPM 90SJR052 90SJR053 90SJR055 90SJR055 90SJR055 90SJR057 90SJR058 90SJR059 90SJR050 22000 LEMENT Alusinus [A1] 21000 23000 22000 27000 43000 22000 LORNT [Ca] 33000 22000 20000 33000 65000 81000 90S000 65000 Magnesius [Ca] 3000 22000 27000 45000 90S000 65000 81000 90000 65000 Bodium [Na] 150 2100 1400 750 270 170 90 140 Potassius [K] 1500 2300 1200 1400 720 740 74 4 2 380 566 260 160 Potassius [F] 310 230 340 120 160								F.S.L.	Invoice No.	: 15062	
Product Product <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td><td></td><td></td><td>004</td><td></td></t<>							A			004	
ELPENT Alusinus (A11) 21000 23000 19000 23000 22000 27000 43000 22000 Iron [Fs] 33000 22600 20000 22500 16000 25000 10000 31000 Calciua [C11] 3000 22600 23600 33060 65000 81000 7000 5000 31000 Sodius [N1] 150 7100 6600 7700 5700 7300 3900 5100 Sodius [N1] 150 240 290 460 120 280 40 1700 Titanua [T11] 17 1300 1200 1000 1600 760 410 Magnese [P1] 310 230 140 130 74 74 74 2 380 Barius [B1] 350 42 28 130 27 30 9 190 Dchronus [C1] 58 100 86 100 110 176 72 52 Zir		ATTN: J. FOSTER	PRO.	JECT: 90-BC-019	- HI-1	EC 9.0.R	-2202		ALL RESELIS	r Kru	
Alusinus[Ai]21000230002300022000<				905JR053	905JR054	9051R055	90SJR054	905JR057	90SJR05B	905JR059	905JR060
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ELEMENT									
Iron[Fa]300022000220002200022000220002500026000260002600026000260002600026000260002600026000260002600026000260002600026000260		Aluminus	[A1]	21000	23000	19000	23000	28000	27000	43060	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						20000	28000	16000			
IndiferentialItige2000140075027017090140Potassiua[K]1600240290460120280401700Titanian[Ti]17130020001200160076044Manganese[Mi]290330370550330566260160Phosphorus[P]3102301401307474<2					28000	23000	33000	65000	81000		
Sodius(Nai)1502100140075027017090140Potassius(K 1)1600240290460120280401700Titanius(Ti)171300130020001200160076044Manganese(M1)290330370550380560260160Phosphorus(P 1)3102701401307474 $<$ 2380Barius(Ba)330422813027309190Dhrosius(Cr)58100861001101707252Zirconus(Cr)58100861001101707252Lead(W1)7891887048713342512Lead(Pb)1034342512Linc(Zn)9528373431292388Vanatius(V 1)4545377356744344Strontius[Sr)24262227492419Cobalt[Co3]10171719151999MolybderusMol4041414141414141Cobalt[Co3]414141414		Magnesium	[Mg]	5600	7100	6660					
processing		•	{Na]	150	2100						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Potassium	EK 1	1800	240						
Hangarese Phosphorus [P]130 310230 230140 44130 30 2774 7474 22 2380 199Bariua Chronium (Cr)58 40100 4486 40100 44110 170 7272 52 52 52 72 72 72 73074 7474 74 7272 52 52 52 72 72 730 730 7474 74 72 72 72 72 72 7477 72 72 74 74 74 74 74 77 74 77 74 77 74 77 74 74 74 74 77 74 74 77 74 77 74 74 74 74 74 74 74 77 74 74 74 77 74 74 74 74 77 74 74 74 77 74 74 74 74 74 74 77 74 <b< td=""><td></td><td>Titanium</td><td>[Ti]</td><td>17</td><td>1300</td><td></td><td></td><td></td><td></td><td></td><td></td></b<>		Titanium	[Ti]	17	1300						
Phosphorus LP 1 310 230 140 130 74 74 \langle 2 330 Barius(Bal) 330 42 28 130 27 30 9 190 Chrosium(Cr) 58 100 86 100 110 176 72 52 Zirconus(Cr) 68 9 6 17 9 17 6 5 Copper(Cu) 46 47 44 50 40 44 37 49 Nickel(Ni) 78 91 88 70 448 71 33 62 Lead(Fb) 10 3 4 3 4 2 5 12 Zinc(Zn) 95 28 37 73 56 94 43 44 Stontium(Fr) 24 36 26 22 27 49 24 19 Vandium(V) 45 45 37 73 56 94 43 44 Stontium(Fr) 24 36 26 22 27 49 24 19 Cobalt(Coli 10 17 17 19 15 17 9 9 Molybdenus(Mo) 42 5 45 27 22 <		Manganese	[Mn]	290	330						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				310							
LitroniumCitil3.31.31.41.791.765CopperCull4647445040443749NickelNil7891887048713362LeadIPb11034342512ZincIZn19528373431292388VanadiumIV4545377356944344StrontiumISF2436262227492419CobaltICol10171719151999MolybdenumIMol2222222222SilverIAg34144144144BerylliumIBe141414444BoronIE41041041041044AntimonyISO155510455555ScandiumIKS1445586855ScandiumISO155510446655ScandiumISO15555104 <t< td=""><td></td><td>Barium</td><td>(Ba]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Barium	(Ba]								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Chromium	(Cr]	58							
Cupper Nickel (Nii)78918070445713362Lead Lad IPD1034342512Linc Linc Lind Vanadiua (V)4545373431292386Vanadiua Vanadiua (V)4545377356944344Strontiua Cobalt (Co110171719151999Molybdenus Molybdenus (Mo1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 $< $		Zirconium	(Zr]			_					
NucleiINIINININININLeadIPb11034342512ZincIZn19528373431292386VanadiumIV 14545377356944344StrontiumISr12436262227492419CobaltICol10171719151999MolybdenusIMol< 2		Copper	[Cu]								
LeadL		Nickel									
LineL		Lead									
Vandulus IV IV <thiv< th=""> IV IV</thiv<>											
Structure (SF) 24 33 17 17 19 15 19 9 9 Molybdenus (Mol) $\langle 2$ <td></td>											
Losalty Losalty <thlosalty< th=""> Losalty</thlosalty<>											
Horyotental (101) $\langle 1 \rangle$ $\langle $											
Silver LHQJ $\langle 1$ <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		•									
Caunitum LCal $\langle 1 \rangle$			-						• •		
Berylinda (b) (1)											
Baron(b) 1(c) 10(c) 10		-				-					-
Hittingity LSDJ C G S G											
Hitpitua (1) 3 0 <th< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		•									
Scattering Loc 7 Loc 7 <thloc 7<="" th=""> <thloc 7<="" th=""> <thloc 7<="" th=""></thloc></thloc></thloc>											
Hungsten LW I $\langle 10 \rangle$ \langle					-						
Number line Line <thline< th=""> Line Line<td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thline<>		-									
Intropendia Linitia 20 10 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5											
Arsenic Instant 10 10 5 10 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5											
Bismith LSI1 $\langle 3 \rangle$ 10 $\langle 10 \rangle$ </td <td></td>											
Lithium [Li] 35 10 10 15 5 15 < 5 30 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 $<$											
Holmium [Ho] < 10 < 10 < 10 < 10 < 10 < 10											
		Holmium	(Ha)	< 10	< 10	< 10	× 10	N 1V	10	× 10	1 10

- DATE : AUG-29-1990

SIGNED : Denis Piliziak

	TSL	LAB	Bratories 2-302-48ti		GNE #: (306)	5askatchewan 931 - 1033 242 - 4717	57K 6A	4		
			I.C.A.P. P	Lasma scan		•				
					HOU3-N	egia Bigestic)El			
	PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V ATTN: J. FOSTER	0 s St. 68 2%6		9 - HI-TI	EC P.S. R-	7202	T.S.L. T.S.L. T.S.L.	REPORT No. File No. Invoice No.	: 15082	3 - 3
	Miliati J. Fusien	r II		, 112 -						
	ELEMENT		90SJR061	90SJR062	905JR06J	905JR064	905JR065	9053R066	90518067	9053R068
	Aluainua	[A1]	17000	39000	15000	27800	20000	34000	25000	32000
		[Fe]	28000	53000	49000	37000	45000	45 000	43000	43000
		[Ca]	22000	25000	3900	14000	18000	14000	8300	28000
			6400	9600	B100	6000	6100	8400	8200	E000
	•	[Na]	110	220	130	270	220	1800	7 60	180
	Potassium		1300	220	670	150	150	700	370	50
		[11]	36	2200	1700	2000	2500	3600	2200	2700
		[Mn]	550	870	600	470	480	510	440	550
	Phosphorus		790	340	260	270	350	320	200	250
	Barium	[Ba]	120	50	10	36	18	34	34	13
		(Da) [[r]]	54 	370	110	110	120	110	130	160
	Chromium Zirconium		6	27	17	22	30	38	24	29
		(Cu)	38	<u>.</u>	42	50	22	46	47	50
	7.1		50 67	170	57	45	22	33	47	43
	Nickel	[Ni]		< 1	190	10	28	4	3	В
	Lead	[Pb]	6	55	93	47	48	67	48	56
	Zinc	[Zn]	71 42	160	150	100	110	160	110	140
	Vanadium	(V)	42 84	180 40	5	9	6	29	15	6
	Strontium		04 9	38	25	20	19	23	27	25
	Cobalt	(Cal			< 2	< 2	< 2	< 2	< 2	< 2
	Molybdenum		< 2 < 1	< 2 < 1	< 1	< 1	< 1	< 1	< 1	< 1
	Silver	[Ag]		< 1	$\langle 1$	< 1	2	< 1	< 1	t
	Cadmium	{C4]	$\langle 1 \rangle$	< 1	< 1	$\langle 1$	< 1	< 1	< 1	< 1
	Beryllium	[Be]	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Baron	{B}	< 10 < 5	15	10	< 5	< 5	5	10	< 5
	Antimony	[Sb]	14	16	8	10	12	17	11	15
	Yttrius	[Y]]	7	18	14	9	12	22	12	14
	S⊂andiu≊	[Sc]		< 10	< 10	< 10	< 10	< 10	< 10	< 10
	โ นกฎรรงก	{₩] [363]	< 10 < 10	< 10 < 10	< 10	< 10	< 10	< 10	< 10	< 10
	Nichium	[Nb]	30	< 10	10	30	10	30	30	20
-	Thorium	[Th] [A=]	< 5	< 5	250	< 5	120	50	15	60
	Arsenic	[As]	10	ঁজ	10	15	10	25	15	20
	Bismuth	[Bi]	10 (10	دد 10	< 10 < 10	< 10	< 10	< 10	< 10	< 10
	Tin	[Sol	20	45	15	10	5	5	10	5
	Lithium			43 < 10-	< 10	< 10	< 10	(10	(10	< 10
	Holsius	[Ho]	< 10	10-	× 10	× 1V	· • ·		-	

SIGNED : Dom's Piloniak

DATE : AUG-29-1990

•	T 5 L	LABOI	RATORIES							
			2-302-48	TH STREET, !	SASKATOON,	SASKATCHEWAN	57K 6A	4		
F .			-			931 - 1033				
•				FAX #:	(206)	242 - 4717				
~			I.C.A.P.	Plasma Scan						
					Adua-R	egia Bigestic	л			
-										
- FRIME	EXPLORATIO	N LTD.					T.S.L.		: S - 957	3 - 4
	Floor Box 1						T.S.L.	File No.		
` 608 ₩	lest Hasting	s St.				••	T.S.L.	Invoica No.	: 15082	
	wwwer B.C. V	6C 2X6							0.54	1
ATTN:	1 FOSTER	PRO	JECT: 90-BC-0	19 – HI-TE	C P.O. 8-2	202		ALL RESULTS	89M	د
•									04070475	0001007/
			905JR069	905JR070	905JR071	905JR072	90SJR073	905JR074	90SJR075	90SJR076
^	ELEYENT									
、										56400
	Alumiภยอ	(A11	25000	9400	20000	24000	20000	22000	11000 TE 000	20000
•	Iron	[Fe]	37000	17000	36000	36000	41000	57000	35000	54000
	Calcium	[Ca]	12000	E 600	13000	4900	5500	95 60	2000	15000
	Hagaasiย∎	[Mg 3	8100	4600	64 00	7400	6400	7000	3500	5900
	Sodium	[Na]	1100	730	430	500	330 570	930 700	120	460 230
	Potassium	EK 1	400	470	130	510	520	360	2100	5500
•	Titanium	[Ti]	2300	1100	1100	1300	1400	3200	2200	520
	4	(?n]	550	270	440	300	440	310 M 0	130	660
-	Phaspharus	(P 1	240	156	360	190	370	460 17	460 38	27
•	Barium	(Bal	30	32	11	41	16	220	28	14
	Chromium	[Cr]	140	120	37	42	28	8	17	42
r	Zirconiam	[Zr]	23	15	8	8	9 12	250	36	16
	Copper	[Cu]	53	5	41	1	7	200 370	18	10
	Nickel	[Ni]	45	9	15	6 4	< 1	3	13	5
-	Lead	[Pb]	6	5	5	48	61	54	53	60
	Zinc	[[n]	53	29	42 DS	40 33	150	330	54	260
	Vanadium	ני עז	110	48	95	ند 5	6	15	6	17
-	Strontium	[Srl	14	6	4	5 4	17	62	2	19
	Cobalt	[Co]	25	4	20 ∢ 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< 2	< 2	8	< 2
	Molybdenua		< 2	<u> </u>			$\langle 1$	< 1	< 1	< 1
-	Silver	[Ag]	< 1	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1 < 1	$\langle 1$	< 1	< i	< 1
	Cadaica	[[b]]	2	$\langle 1 \rangle$		$\langle 1 \\ \langle 1 \rangle$	< 1	< 1	< 1	< 1
	Beryllium	[Be]	< 1	$\langle 1 \rangle$	< 1 < 10	< 10	< 10	< 10	<`10	< 10
	Baron	[B]	< 10	< 10	< 10 < 5	< 5	< 5	< 5	5	(5
,	Antimony	[Sb]	5	5	8	22	10	11	6	29
	Yttrius	(Y)	12	11 4	6	5	3	2	6	4
	Scandiua	[5c]	12			< 10	< 10	< 10	< 10	< 10
•	Tungsten	[W]]	< 10 (10	< 10 < 10	< 10 < 10	< 10 < 10	< 10	< 10	< 10	10
	Nicolum	(Nb)	< 10		40	40	40	< 10	30	40
-	Thorium	[Th]	20		40 15	< 5	< 5	< 5	35	< 5
,	Arsenic	[As]	50		10	15	< 5	20	< 5	30
	9ismuth -	(Bil	15	< 5 < 10	< 10	< 10	< 10	< 10	< 10	< 10
•	Tin	[Sn]	< 10	< 10 5	10	15	5	10	5	5
<i>r</i>	Lithium	(Li)	10		× 10	< 10	< 10	< 10	< 10	< 10
	Holmium	[Ho]	< 10	< 10	10	× 4V	\ 6 ¥		-	

DATE : AUG-29-1990

Ŀ.

SIGNED : Denis Pilipiak

T 5 L LABORATORIES

2-302-487R STREET, SASKATEON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

. .

An and a second second second

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9573 - 5
10th Floor Box 10	T.S.L. File N⊡. :
808 West Hastings St.	T.S.L. Invoice No. : 15082
Vancouver B.C. V&E 2X6	
ATTN: J. FOSTER PROJECT: 90-EC-019 - HI-TEC P.D. R-2202	ALL RESULTS PPM

	_	905JR077	905JR078	90SJR079	905JR080	905JR081	905JR082	905JR083	905JR064
ELEMEN	T								
Aluminum	[4]]	23000	23000	4400	25000	15000	14000	25000	23008
Iron	{Fe]	42000	32000	11000	36000	28000	25000	53000	39000
Calcium	[Ca]	17000	11000	71000	32000	48000	51000	20000	54000
Magnesiua	(Ma)	5700	5100	3200	7800	6100	3800	5700	5900
Sodium	[Na]	260	140	320	450	250	80	220	150
Potassium	EK I	100	1100	160	500	120	1000	90	50
Titanua	(Ti]	4600	2700	160	61	38	8	5000	2300
Manganese	(Mn)	450	310	680	620	8 60	640	B60	390
Phosphorus	5 (P 3	460	300	250	1000	1500	450	1400	230
Barium	[Ba]	1B	42	27	200	37	73	22	12
Chroniu n	[Cr]	27	39	56	110	17	56	17	150
Zirconium	{Zel	22	35	5	9	6	2	25	26
Capper	(Cu)	14	43	19	9	16	19	10	36
Nickel	[Ni]	6	22	15	41	7	10	5	160
Lead	[Pb]	5	19	3	4	3	7	4	4
Zinc	[Zn]	61	110	230	50	44	62	79	61
Y anad iบต	[V]	160	85	100	140	150	32	200	120
Strontium	(Sr]	8	17	480	130	220	9 8	18	20
Cobalt	[Co]	13	5	3	17	9	5	12	18
Molyodenua	E [Ma]	< 2	2	ζ 2	< 2	< 2	< 2	< 2	4
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	{Cd}	< 1	< 1	2	< 1	< 1	< 1	< 1	< 1
Beryllium	(Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	(B)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antisony	[Sb]	< 5	< 5	< 5	5	< 5	< 5	< 5	< 5
Yttrium	EY 3	19	13	10	14	16	9	26	11
Scandium	[Sc]	2	10	5	13	8	2	4	8
Tungsten	EW I	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	END 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	40	20	< 10	30	30	10	30	10
Arsenic	(As)	< 5	15	5	< 5	< 5	< 5	< 5	15
Bisauth	[Bi]	10	5	< 5	10	< 5	< 5	- 15	< 5
Tin	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	(Li]	< 5	10	5	45	20	15	5	< 5
Holmium	[Ha]	< 10	< 10	< 10	< 10	< 10	< 10	< 16	< 10

DATE : AUG-29-1990

,

÷

Denn Pilpink

T S L LAEGRATORIES

r

2-302-48TH STREET, SASKATOON, SASKATCHEWAN STK 6A4 TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10	T.S.L. 8EPORT ₩0. : S - 9573 - 6 T.S.L. File №0. :
BOB West Histings St. Vancouver B.C. V6C 2X6	T.S.L. Invoice No. : 15082
ATTN; J. FOSTER PROJECT: 90-BC-019 - HI-TEC P.O. R-2202	ALL RESULTS PPM

		90SJR085	905JR086	905JR087	905JR088	90SJR089	9051R090	90SJR071	905JR092
ELEMENT									
Alusinus	[A]]	23000	24000	22800	4300	18000	12000	13000	12000
Iron	[Fe]	53000	36000	49000	250 00	53000	32000	30000	31000
Calcium	[Ca]	12000	23000	21000	5700	11060	3200	5100	2600
Magnesium	(Ng1	5700	4 600	5200	3200	5760	4500	5700	3700
Sodius	[Na]	200	60	150	270	170	150	150	50
Potassium	C K (1	100	70	50	1100	120	770	600	2100
Titanium	[Ti]	4300	2400	4400	220	4200	2300	1900	1900
สัสกฎสกรรษ	(Mn i	810	260	540	550	560	250	450	150
Phosphorus	[F]]	1400	340	600	76	620	490	390	410
Barius	{Ba]	31	17	34	64	16	24	31	38
Chroasum	(Cr]	14	32	14	64	12	47	56	26
Zirconiua	[Zr]	20	36	2t	5	20	18	18	12
Copper	[Cu]	10	93	15	5	14	65	42	50
Nickel	EN£3	6	43	9	5	8	36	30	16
Lead	[95]	4	29	6	4	4	19	15	13
Zinc	[]a]	83	510	5 0	66	78	210	110	150
Vanadium	EV 1	220	300	230	23	240	130	120	54
Strontium	[Sr]	17	7	9	8	9	4	5	5
Cobalt	[Co]	13	5	15	1	17	3	В	4
No Lyodensia	[Mo]	< 2	28	< 2	2	< 2	16	2	2
Silver	[Aq]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	(CJ)	< 1	8	< 1	< 1	< 1	2	< 1	2
Beryllium	{Be]	< 1	< 1	< 1	< 1	< 1	1 < 1	< 1	< 1
Baron	(F]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	5	< 5	< 5	< 5	5	< 5	< 5
Yttrium	EY 1	25	12	23	7	21	8	9	6
Scandium	[Sc]	5	12	4	3	5	B	9	7
Tungstan	EW 3	< 10	10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
horiun	[Th]	40	30	40	< 10	30	30	20	30
ir senic	{As}	< 5	35	< 5	< 5	< 5	15	10	15
Sismuth	(Bil	15	10	15	< 5	15	< 5	< 5	< 5
lin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithius	[Li]	5	< 5	< 5	< 5	5	10	10	10
lolaiua	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

Υ.

κ.

SIGNED : Dem's Piloniak

TSŁ LABORATORIES

٠

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHENE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Adua-Regia Digestion

9652R057

7 9 052R0	0512099	70	98	90SJR(905JR097	905JR096	9053R095	90SJR094	90518093		
	4	PP	ULTS	ALL RES		202	9.9. R-2	19 - HI-TEC	PRBJECT: 90-BC-0	ATTN: J. FOSTER	
									2X6	Vancouver S.C. V6C	
	15082	:	Na.	Invoice	T.S.L.				t.	808 West Hastings S	•
		3	Na.	File	T.S.L.					10th Floor Box 10	
9573 - 7	5 - 953	:	€ No.	REFOR	T.S.L.				TD.	PRIME EXPLORATION L	

		LEVINGUE	70010074	7032R070	70010070	770347077	7721072	70517077	705676037
ELEMENT									
Aluainua	[A1]	28000	21000	14000	6600	5100	41000	33000	25600
Iron	[Fe]	37000	23000	31000	12000	13000	35000	35000	36000
Calcium	[Ca]	27000	33000	11000	3160	2B00	16000	20000	3900
ฟัสอุกลรเยต	(Hg)	6400	8200	5100	J 000	1800	9700	7600	6400
Sodium	[]ta]	1000	180	200	590	230	600	1700	250
Potassium	Ω. 1	400	270	650	450	1700	280	420	2200
Titanium	[Ti]	2800	1600	1700	1160	9 90	B10	2800	96
Manganase	[Min 3	650	320	220	170	160	630	500	350
Phosphorus	[P]]	340	220	430	130	210	230	400	460
Barium	[Ba]	66	29	23	27	86	27	68	360
Chromium	{Cr}	83	78	47	91	69	190	52	67
Zirconium	[28]	24	12	19	15	21	5	20	6
Capper	{Cu]	43	26	49	9	12	12	47	51
Nickel	[Ni]	60	32	31	5	8	170	64	80
ead	[Fb]	3	3	11	9	13	1	5	14
Linc	[Zn]	54	29	130	32	70	38	50	96
/anadiu a	EV 3	130	73	100	17	18	40	97	52
Strontium	[Sr]	24	22	Б	6	6	19	35	31
Cobalt	[Co]	19	9	7	2	2	26	17	12
Malybdenum	[Ho]	< 2	< 2	6	< 2	ζ 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	$\langle 1$	< 1	< 1	$\langle 1$
Cadmium	(C4)	< 1	< 1	1	< 1	< 1	< 1	< 1	< 1
Beryllium -	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	[B]	< 10	< 10	< 10	< 1 0	< 10	< 10	< 10	< 10
Antimony	(Sb)	10	< 5	< 5	Κ 5	< 5	10	< 5	< 5
(ttrium	[Y]]	13	6	9	5	7	4	11	7
Candium	[5c]	12	2	B	4	3	2	2	10
lungsten	EW 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	(Nb)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
horius	(Th)	20	20	20	< 10	< 10	< 10	30	30
irsenic	[As]	< 5	< 5	5	< 5	10	< 5	< 5	< 5
	[Bi]	15	10	5	< 5	< 5	20	15	< 5
	(Sn 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	(Li]	20	15	10	< 5	< 5	35	15	20
		< 10	< 10	< 10	< 10	< 10	< 10	K 10	< 10

ς.

, k

SIGNED : Denn Piloriak

T S L LABORATORIES 2-302-48TH STREET, SASKATODN, SASKATCHENAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. T.5.L. REPORT No. : 5 - 9573 - 8 T.S.L. File No. : 10th Floor Box 10 608 West Hastinos St. T.S.L. Invaice No. : 15082 Vancouver B.C. V6C 2%6 ATTN: J.FOSTER PRBJECT: 90-BC-019 - HI-TEC P.O. R-2202 ALL RESULTS PPM 70528060 9052R061 905FR058 905PE059 905PR062 90SFR063 905PR064 9052R065 ELEHENT Aluainua [A1] 2300026000 £3000 22000 27000 24000 17060 44000 {FeI 44000 47000 Iron 37000 34000 26000 27000 38000 47000 ECa] **95**00 36000 Calcium 3600 67000 7300 45000 32000 32800 6000 B000 7300 7400 Maonesium [Mo] 6800 5600 6600 9200 Sodium [Na] 210160 £0 160 180 310 160 70 1660 1500 Potassium [K] 810 2000 260 1500 360 430 Titanium [Ti] 47 23 19 18 1200 2200 7B 520 220 1100 Manganese [Mn] 4500 510 680 500850 780 Phosphorus (P) 460 380 1000520 170 160 310 280 Багіыл (Bal 330 420 200 420 36 51 150 100 Chromius [Cr] 58 B1 27 48 110 1B0 53 340 8 5 5 Zirconium [Zr] 6 6 14 6 16 Cooper [[1]] 64 52 14 47 49 45 3B 35 Nickel [Ni] 110 100 24 45 59 100 67 190 {Pb} 7 12 5 2 11 6 7 Lead < 1 £7n1 100 100 32 92 46 43 74 77 Zinc 33 Vanadium [V] 54 63 50 59 87. 42 140 Strontius [Sr] $\mathbf{30}$ B٤ 420 44 30 25 320 65 13 13 4 B 16 21 B 33 Cobalt [Ca]

< 2

< 1

< 1

< 1

< 10

< 5

7

11

10

20

15

50

10

< 10

<

< 10

< 5

< 2

< 1

< 1

< 1

< 10

<

< 10

< 5

6

9

10

30

< 5

< 5

< 10

< 10

45

< 2

< 1

< 1

< 10

< 10

<

10

60

< 5

< 5

< 10

30

20

10

5

4

1

< 2

< 1

< 1

< 1

< 10

< 10

< 10

5

В

7

30

5

35

< 5

< 10

< 10

< 2

< 1

< 1

< 1

< 10

< 5

< 10

< 10

20

10

10

< 5

< 10

< 10

7

5

< 2

 $\langle 1$

 $\langle 1 \rangle$

< 1

< 10

< 10

< 10

< 5

< 10

< 10

5

10

< 10

5

9

5

2

Ć

< 1

< 1

< 1

< 10

< 5

< 10

< 10

6

7

20

10

25

10

< 5

< 10

< 2

< 1

< 1

< 1

<

10

5

12

18

10

< 10

< 10

< 10

< 5

25

50

20

<

•

.

Molybdenum [Mo]

Beryllium [Be]

[Aq]

{Cd}

CB 1

[\$51

[¥]

[Sc]

EW J

ENb]

[Th]

[As]

{Bi]

[5n]

[Li]

(Ho)

Silver

Cadatua

Boron

Antiaony

Yttrium

Scandius

Tunosten

Nichium

Thoriua

Arsenic

Bismuth

Lithium

Holaiua

Tin

SIGNED :

Dennis Pilipiak

T S L LABORATORIES

,

.

.

,

.....

.

\$

2-302-48TH STREET, SASKATGON, SASKATCHEMAN S7K 6A4 TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

90SPR066

```
Adua-Regia Digestion
```

90SPR070

90SFR071

905PR072 905FR073

-	PRIME EXPLORATION L 10th Floor Box 10	TD.						REFORT File		S - 9 573 - 9
•	808 West Hastings S	it.					T.S.L.	Invoice	No.:	15082
	Vancouver E.C. V&C	2X6								
^	ATTN: J. FOSTER	PROJECT: 9	0-80-019	-	HI-TEC	P.B. R-2202		ALL RES	JLTS PP	M

90SPR067 90SPR068 90SPR069

ELEMENT									
Alusinum	[A]]	32008	37000	25000	21000	11000	16000	20000	22008
Iron	[Fe]	43660	40000	23000	35000	30000	27000	39000	46000
Calcium	[Ca]	43000	45000	63000	5900	15000	16000	21000	14600
Magnesium	[Mg]	85 00	8100	66 00	5700	48 00	6500	6200	6900
Sodiua	[Na]	150	110	290	240	410	610	1B0	270
Potassium	€K 1	540	1200	140	2060	1100	650	92 0	240
Titanum	(Til	2900	2300	1700	160	220	120	30	4560
Manganese	[Mn]	720	660	430	250	600	640	590	500
Phosphorus	[P]	240	220	70	510	790	B40	580	970
Barium	[Ba]	50	49	18	250	1200	240	69	39
Chromium	[Cr]	240	220	120	44	55	27	40	53
Zirconium	{Zr}	29	24	t3	8	5	4	4	25
Capper	{Cul	44	46	50	45	4	28	24	11
Nickel	{Ni J	95	90	63	57	15	8	57	27
Lead	{Pb]	< 1	1	< 1	17	3	3	11	7
Zinc	[[n]	49	50	32	92	35	- 27	45	56
Vanadium	[V]]	170	140	64	55	70	77	55	130
Stroatium	[Sr]	71	40	36	28	55	51	93	14
Cobait	[Co]	23	23	18	11	10	9	9	18
Molybdenuæ	[Ma]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$
Cadoium	[[4]]	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1
Beryllium	{Be}	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	{B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antieony	(Sb)	< 5	< 5	< 5	< 5	< 5	< 5	5	< 5
Yttriua	£Y 1	14	13	В	7	10	8	7	18
Scandium	[Sc]	21	16	5	7	6	5	5	6
Tungsten	C# 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nichium	EN61	< 10	< 10	< 10	< 10	く 10	< 10	< 10	< 10
Thorium	[Th]	< 10	< 10	< 10	20	20	30	40	30
Arsenic	[As]	< 5	< 5	< 5	10	< 5	< 5	< 5	< 5
Biseuth	[Bi]	20	15	< 5	5	5	5	10	15
Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithiua	(Li]	35	25	5	35	10	35	35	10
Holmium	CHo1	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10
		• ••		• ••					

SIGNED : Denis Piliniak

TSE LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (366) 242 - 4717 I.C.A.P. PLASKA SCAN Agua-Regia Digestion PRIME EXPLORATION LTD. T.S.L. REPORT No. : S - 9573 - 10 T.S.L. File No. : 10th Floor Box 10 T.S.L. Invoice No. : 15082 608 West Hastings St. Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PR0JECT: 90-8C-019 - HI-TEC P.O. R-2202 ALL RESULTS PPM 90SPR076 90SFR077 90SFR078 90SPR079 905FR0B0 90SPR081 70SPR074 905PR075 ELEMENT 29000 19000 21000 Aluainum [A1] 29000 220:00 27000 17000 36600 24060 28000 48000 30000 48000 48000 32000 [Fe] 18000 Iron 40000 15000 50000 54000 14000 16000 [Ca] 72000 73000 Calcium 6700 7700 6700 4700 Magnesium [Mo] 4700 6200 7700 5(X)() 250 260 380 460 BCO. 350 110 Sodium [Na] 140 180 220 170 Potassium [K] 60 280130 500 450 1900 5660 5000 2600 2400 20002400Titanium [Ti] 1700 950 520 510 360 320 400 300 $4(\lambda)$ Manganese [Mn] 1000 350 470 410 260 Phosphorus [P]] 130170 240 22 10 25 12 36 5B 34 21 Barium [Ba] 22 75 150 45 79 36 70 130 Chromium [Cr] 16 10 16 32 37 40 10 15 Zirconium {Zrl 53 23 46 21 35 25 41 63 Copper (Cu] 48 54 14 24 Nickel {Ni] 24 41 67 7 3 1 В 4 5 3 6 16 [Pb] Lead 62 49 77 56 120 20 34 61 {Zo] Zinc 220 :20 60 160 73 160 Vanadium (V] 60 76 31 Strontium [Sr] 27 34 21 9 25 9 6 15 21 15 17 20 15 6 9 [Co] Cobalt < Ζ < 2 2 < 2 2 < 2 < 2 < 2 Molybdenua [Mo] < < 1< 1 < 1 < 1 < 1 < 1 < 1 $\langle 1 \rangle$ Silver [Aq] < 1 < 1 < 1 $\langle 1 \rangle$ $\langle 1 \rangle$ < 1 {Cd} < 1 < 1 Cadaiua < 1 < 1 < 1 < 1 < 1< 1< 1 < I Beryllium [Be] < 10 10 < 10 < < 10 < 10 < 10 < 10 < 10 {B} Boron < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 [Sb] Antimony 17 7 22 9 17 11 8 10 CY 1 Yttrius 3 24 6 10 4 4 4 6 {Sc] Scandiua < 10 < 10 < 10 < 10 < 10 < 10 < 10 [W] < 10 Tunosten 10 < 10 < 10 < 10 ٢. < 10 < 10 < 10 10 €мь1 < Niobiua 40 < 10 10 20 < 10 20 20 (ħ1 10 Thorium

/

DATE : AUG-29-1990

Arsenic

Bisauta

Lithium

Holmius

Tia

Dinis Vilinink SIGNED :

< 5

< 5

< 10

< 10

5

< 5

< 10

< 10

15

25

< 5

< 10

< 10

10

5

< 5

< 10

< 10

5

5

< 5

< 5

< 10

< 10

5

< 5

< 5

< 10

< 5

< 10

[As]

[Bi]

(Sal

{LiJ

[Ho]

< 5

< 10

15

5

< 10

< 5

< 10

< 10

10

5

T S L LABORATORIES

2-302-48TH	STREET, SASKATI	DDN, SASKATCHEWAN	57K	644
	TELEPHONE #:	(306) 931 - 1033		
	FAX #:	(306) 242 - 4717		

I.C.A.P. PLASMA SCAN

```
Aqua-Regia Bigestion
```

	PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9573 - 11
-	10th Floor Box 10	⊺.S.L. Fil∉ No. :
	808 West Hastings St.	T.S.L. Invoice No. : 15082
	Vancouver B.C. V&C 2X&	
~	ATTN: J. FESTER PROJECT: 90-BC-017 - HI-TEC P.D. R-2202	ALL RESULTS PPM

ELEMENT Aluminum [A1] 16000 20000 24000 25000 23000 17000 28000 Iron [Fe] 38000 48000 61000 61000 60000 37000 18000 Calcius [G1] 7600 12000 10000 16000 6000 37000 18000 Bagesius (Mg] 5900 350 320 490 270 310 1100 Potassius (K1) 160 130 40 170 110 330 250 Titanua (Til 4600 4000 5300 5500 4700 2800 700 Manganese (Mi) 470 780 640 730 610 460 300 Phosphorus [P] 440 1160 680 640 850 510 360 Barium [B1] 24 27 17 23 26 24 17 Chronus [Cr] 24 14 31 30 18 30 8	905PR089	905PR088	90SPR087	905PR086	9052R085	905PR084	90SPR083	905PR082		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										ELEMENT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5600	28000	17000	23000	25000	24000	20000	16000	[A]]	Alumរ៍រាមគ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24000	18000	39000	60000	61000	61000	46000	38000	(FeI	Iran
Sodiua(Nal5003303204902903101100Potassiua(K 116013040170110330250Titanua(Ti)460040005300550047002800700Manganese(Mn)470780640730610460300Phosphorus(P)4401100660640850510260Bartua(Ba)24291923262417Chromua(Cr)37452219114312Zirconiua(Zr)2414313018308Copper(Cu)25211134439Nickel(Ni)122682243Lead(Pb)765433211Zinc(Zn)6310092809010046Vanadiua(V)14013022024019014023Strontiua(Sn)977159543Cobalt(Co)121417171542Molybdenua(Mo)<10	24000	15000	7300	9000	15000	10000	12000	7600		
Solus(Na)5003503204902903101100Potassiua(K 116013040170110330250Titaniaa(Ti1460040005300550047002800700Manganese(In1477)780640733610460300Phosphorus(P)4401100660640850510360Bariua(Ba)24291923262417Chreniua(Cr)37452219114312Zirconiua(Zr)2414313018308Copper(Cu)25211134439Nickel(Ni)122682243Lead(Pb)765433211Zinc(Zn)6310092809010046Vanadiua(V)14013022024019014023Strontias(Sr)977159543Cobalt(Co)121417171542Holybdenus(Ho)<10	5300	4700	5700	6400	6300	6800	5100	5700	(Mg]	Maonesium
Titaniua Tit 4600 4000 5300 5500 4700 2800 700 Manganese Um1 470 780 640 730 610 460 300 Phosphorus IP 1 440 1100 6E0 640 856 510 360 Barsua (Ba) 24 29 19 23 26 24 17 Chroniua (Cr) 37 45 22 19 11 43 12 Zirconiua (Zr) 24 14 31 30 18 30 8 Copper Cui 25 2 11 13 4 43 9 Nickel (Ni) 12 2 6 8 2 24 3 32 11 Zinc (Zn) 63 100 92 80 90 100 46 Vanadiua (V) 140 130 220 240 190 140 23 Strontiua (Sn) 9	250	1100	310	290	490	320	350	500	-	
ManganeseUni470780640730610460300PhosphorusIP 14401100660640850510360BariusIBal24291923262417ChreniusICr137452219114312ZirconiusIZr12414313018308CopperICul25211134439NickelIN11122682243LeadIPb1765433211ZincIZn16310092809010046VanadiusIV114013022024019014023StrontiusISr1977159543CobaltICol121417171542SilverIAg3<1	1000	250	330	110	170	40	130	160	(K 1	Potassium
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	700	2800	4700	5500	5300	4000	4600	(Ti]	Titaniua
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	860	300	460	610	730	640	780	470	[Mn]	Manganese
Barius(Ba) 24 29 19 23 26 24 17 Chronius(Cr) 37 45 22 19 11 43 12 Zirconius(Zr) 24 14 31 30 18 30 8 Copper(Cu) 25 2 11 13 4 43 9 Nickel(Ni) 12 2 6 8 2 24 3 Lead(Pb) 7 6 5 4 3 32 11 Zinc(Zn) 63 100 92 80 90 100 46 Vanadius(V) 140 130 220 240 190 140 23 Strontius(Sr) 9 7 7 15 9 5 43 Cobalt(Co) 12 14 17 17 15 4 2 Holydoenus(Mo) < 2 < 2 < 2 < 2 10 2 Silver(Ag) < 1 < 1 < 1 < 1 < 1 < 1 < 1 Cobalt(Co) 12 14 17 17 15 4 2 Holydoenus(Mo) < 2 < 2 < 2 < 2 < 2 10 2 Silver(Ag) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 Cobalt(Ed) < 1 < 1 < 1 < 1 < 1	82	360	510	850	640	6E0	1100	440	[P]]	
Linconius [Zr] 24 14 31 30 18 30 8 Copper [Lu] 25 2 11 13 4 43 9 Nickel [Ni] 12 2 6 8 2 24 3 Lead [Pb] 7 6 5 4 3 32 11 Zinc [Zn] 63 100 92 80 90 100 46 Vanadiua [V] 140 130 220 240 150 140 23 Strontiua [Sr] 9 7 7 15 9 5 43 Cobalt [Co] 12 14 17 17 15 4 2 Molybdenus [Mo] < 2	840	17	24	26	23	19	29	24		
CopperILul25211134439Nickel[Ni]122682243Lead[Pb]765433211Zinc[Zn]6310092809010046Vanadiua[V]14013022024015014023Strontiua[Sr]977159543Cobalt[Co]121417171542Molybdenus[Mo]<2	55	12	43	11	19	22	45	37	[Cr]	Chronium
Nickel INI 12 2 6 8 2 24 3 Lead [Pb] 7 6 5 4 3 32 11 Zinc [Zn] 63 100 92 80 90 100 46 Vanadiua [V] 140 130 220 240 190 140 23 Strontiua [Sr] 9 7 7 15 9 5 43 Cobalt [Co] 12 14 17 17 15 4 2 Molybdenus [Mo] $\langle 2$ $\langle 2$ $\langle 2$ $\langle 2$ $\langle 2$ 1 $\langle 1$ <td< td=""><td>5</td><td>8</td><td>30</td><td>18</td><td>30</td><td>31</td><td>14</td><td>24</td><td>[Zr]</td><td>Zirconius</td></td<>	5	8	30	18	30	31	14	24	[Zr]	Zirconius
Lead [Pb] 7 6 5 4 3 32 11 Zinc [Zn] 63 100 92 80 90 100 46 Vanadiua [V] 140 130 220 240 190 140 23 Stroatiua [Sr] 9 7 7 15 9 5 43 Cobalt [Co] 12 14 17 17 15 4 2 Molybdenus [Mo] < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 10 < 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 </td <td>5</td> <td>9</td> <td></td> <td>4</td> <td>13</td> <td>11</td> <td>2</td> <td>25</td> <td>[Cu]</td> <td>Copper</td>	5	9		4	13	11	2	25	[Cu]	Copper
LineL	6	3	24	2	8	6	2	12	[Ni]	
VanadiusIV14013022024019014023StrontiusISr3977159543CobaltICol121417171542MolybdenusIMol < 2 < 2 < 2 < 2 < 2 < 2 102SilverIAg3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 CadaiusICd3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 BerylliusIBe3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 BoronIB < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 AntisonyISb1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 YttriusIY18332625291316ScandiusISc1 3 7 5 4 4 10 5 TungstenIW < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 NibiusINb1 < 10 < 10 < 10 < 5 < 5 < 5 < 5 < 5 < 5 BissuthIBi1101520201510 < 5 < 5 BissuthIBi110 < 10	6	11	32	5	4	5	6	7	[Pb]	Lead
Strontium Use of the second seco	110	46	100	9 0	80	92	100	63	[Zn]	Zinc
Cobalt ICol 12 14 17 17 15 4 2 Molybdenum Mol $\langle 2 < \langle 2 < \rangle \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 1 \\ 1 \\$	12	23	140	170	240	220	130	140	EV 3	Vanadiua
Molybdenus [Mo] $\langle 2 \rangle$ $\langle 1 $	51	43	5	9	15	7	7	9	[Sr]	Strontium
Silver [Ag] \langle 1 \langle 10	3	2	4	15	17	17	14	12	[Co]	Cobalt
Silver [Aq] $\langle 1$ <t< td=""><td>2</td><td>2</td><td>10</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>[Ma]</td><td>Hoi yodenua</td></t<>	2	2	10	< 2	< 2	< 2	< 2	< 2	[Ma]	Hoi yodenua
Cadmium [Cd] $\langle 1$ <	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		•
Beryllium[Be] $\langle 1$ Boron[B] $\langle 10$ Antimony[Sb] $\langle 5$ Ytrium[Y]18332625291316Scandium[Sc]37544105Tungsten[W] $\langle 10$ Nibium[Nb] $\langle 10$ Thorium[Th]30404050604050Arsenic[As] $\langle 5$ Bismuth[Bi]101520201510 $\langle 5$ Tin[Sn] $\langle 10$	< 1	< 1	2	< 1	< 1	< 1	< 1	< 1		Cadaius
Boron[B] $\langle 10 \rangle$ <	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	[Be]	
Antiaony[Sb] $\langle 5 \rangle$ $\langle 6 \rangle$ $\langle 5 \rangle$ $\langle 6 \rangle$ $\langle 5 \rangle$ $\langle 6 \rangle$ $\langle 6 \rangle$ $\langle 10 \rangle$ $\langle 5 $	< 10	< 10	< 10	< 10	< 10	< 10	. < 10	< 10		•
Yttrium[Y]18332625271316Scandium[Sc]37544105Tungsten[W]<10	< 5	< 5	Κ 5	< 5	< 5	< 5	< 5	< 5		
ScandiumISc137544105TungstenIW 1 $\langle 10$ NiobiumINb1 $\langle 10$ NiobiumINb1 $\langle 10$ ThoriumITh130404050604050ArsenicIAs1 $\langle 5$ $\langle 5$ $\langle 5$ $\langle 5$ $\langle 5$ 20 $\langle 5$ BismuthIBi1101520201510 $\langle 5$ TinISn1 $\langle 10$	12	16	13	29	25	26	33	18		-
Tungsten[W] 1 $\langle 10$ $\langle $	4	5	10	4	4	5	7	3	[Sc]	
Nicbium [Nb] < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <5 <5 <5	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	[W]]	
Thorium[Th]30404050604050Arsenic[As] $\langle 5 \rangle$ Bismuth[Bi]101520201510 $\langle 5 \rangle$ Tin[Sn] $\langle 10 \rangle$	< 10		< 10	< 10	< 10	< 10	< 10	< 10		
Arsenic [As] < 5 < 5 < 5 < 5 20 < 5 Bismuth [Bi] 10 15 20 20 15 10 < 5 Tin [Sn] < 10 < 10 < 10 < 10 < 10 < 10	30		40	60	50	40	40	30		
Bismuth [Bi] 10 15 20 20 15 10 < 5 Tin [Sn] < 10	< 5		20	< 5	< 5	< 5	< 5	< 5		
Tin [5n] $\langle 10 \rangle \langle 10 $	< 5		10	15	20	20				
	< 10		< 10	< 10	< 10	< 10				
	< 5	10	10	5	5	5				
Holmium [Ho] < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			

DATE : AUG-29-1990

Denis Pilizial

TSL LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

r	PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.	T.S.L. REPORT No. : S - 9573 - 12 T.S.L. File No. : T.S.L. Invoice No. : 15082
	Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: 90-8C-019 - HI-TEC P.G. R-2202	ALL RESULTS PPM

		9052R090	905PR091	90SPR092	905PR093	905FR094	90SPR095	905PR096	905F8097
ELEVENT									
Aluminum	[A]]	98 00	16000	19000	46000	15000	32000	20000	18000
Iran	{Fel	20000	40000	470 00	21000	23000	48000	35000	32000
Calcium	[Ca]	53000	14000	17000	61000	7100	27000	8600	6600
Maonesium	[กัญ]	5100	5600	6000	6600	4800	S100	4300	4400
Sodiua	ENa]	310	630	430	310	690	1200	350	240
Potassium	(X]	610	360	310	120	140	490	1800	2200
Titanium	[Ti]	120	4500	44(%)	1500	1400	2700	2200	1500
Manganese	(Ma]	600	540	520	200	310	860	260	190
Phosphorus	[P]	470	550	710	200	340	430	530	460
Bariu a	[Ba]	120	110	36	16	12	37	34	46
Chroaiua	[Cr]	79	50	35	66	87	170	35	29
Zirconium	[Zr]	5	19	22	8	9	19	13	10
Copper	(Cu)	20	12	13	35	35	55	54	38
Nickel	ENi]	2B	9	12	63	27	78	29	17
Lead	[Pb]	5	4	4	7	9	3	15	14
Zinc	[[n]	77	78	78	38	200	74	180	5
Vanadium	(V)	37	160	200	48	100	1B0	82	51
Strontium	(Sr 1	140	11	23	19	13	29	25	18
Cobalt	(Ca)	7	15	17	14	5	27	8	4
Malybdenua	(Ma]	< 2	< 2	< 2	< 2	< 2	< 2	10	6
Silver	{Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	(1)
Cadmium	[Cd]	< 1	< 1	< 1	$\langle 1$	< 1	< 1	1	< 1
Beryllium	(Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	(B)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antiaony	(Sb]	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5
Yttrism	EY J	7	22	23	6	8	14	7	6
Scandium	[Sc]	4	5	4	2	6	17	10	6
Tunostan	EW 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobisa	EN63	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	10	30	40	30	< 10	10	20	30
Arsenic	[As]	< 5	< 5	< 5	< 5	10	< 5	< 5	₹ 5
Bismuth	[Bi]	< 5	15	15	10	10	25	10	10
Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	10	< 5	10	< 5	10	25	15	tõ
Holmism	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : AUG-29-1990

ŝ,

SIGNED :

Dinin Pelinink

		E GVL 13	ITH STREET, TELEPH FAX #:	ENE #: (305)					
		τράρ	Plaska scan						
		1.6		Aqua-R	legia Digesti	ion			
PRIME EXPLORAT						T.S.L.	REPORT No.	: 5 - 751	73 - 13
10th Floor Box						7.S.L.	File No.		
- BOS West Hastin							Invoice No.		
Vancouver B.C.									
ATTN: J. FOSTE		JECT: 90-8C-0	19 - HI-TE	C P.O. R-2	202		ALL RESULTS	S PPM	
		905PR098	90SPR099	905PR100	9052R101	70528102	905PR103	705PR104	905FR105
ELEMEN	Т	10411070	nanan sami s						
6 1	5417	16000	24000	24000	7700	28000	17000	17000	5700
Alumisยด ไลกา	[A]] [Fe]	27000	24000 59000	24000 80000	27000	26000 26000	40000	23000	20000
Iron Calcium	(Cal	52000	16000	11000	4400	23000	57000	79000	15000
		52000 6000	6200	5200	3000	7800	7100	6400	1300 1300
Magnesium Sodium	[Na]	390	440	190	640	120	460	150	590
Potassium		320	350	960	310	270	170	50	510
Titanium	{Ti]	1500	4900	3700	1500	720	2700	1800	870
Mandanese		580	780	450	230	290	570	360	220
Phospharus		250	790	540	220	230	350	290	38
Bariua	{Ba}	21	29	26	16	18	40	10	66
Chronium	[[[]]]	100	1B	27	130	250	160	110	5 7
Zirconium		10	18	23	12	4	26	15	50
Copper	[Cu]	27	1B	34	12	60	44	29	là
Nickei	ENII	3B	10	19	14	120	75	38	7
Lead	(Fb]	4	3	13	8	5	4	J	9
Zinc	(Zn 1	52	100	130	40	110	65	65	200
Vanadium	{V }	110	250	190	5B	铅	140	81	18
Strontium		31	16	26	В	12	24	24	12
Cobalt	(Col	13	17	11	5	22	24	11	2
Molybdenu	a [No]	< 2	< 2	20	4	< 2	< 2	< 2	2
Silver	(Agl	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1	< 1
Cadmius	{{J}}	< 1	< 1	1	$\langle 1$	1	< 1	< 1	1
Beryllium	[Bel	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1
Boron	{B }	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	< 5	< 5	< 5	< 5	< 5	5	< 5	< 5
Yttrium	[Y]	9	28	14	7	4	13	6	30
Scandium	[Sc]	11	3	13	3	2	13	7	2
Tungsten	EW]	< 10	< 10	< 10	< 10	< 10 (10	< 10 / 10	< 10	< 10
Nicolum	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (10	< 10 < 10
Thorium	ETh3	10	40	50	< 10	< 10	< 10	< 10	< 10 5
Arsenic	[As]	< 5	< 5	< 5	10	< 5	< 5	< 5	5 5
Bisauth	[Bi]	5	25	30	5	20	15	< 5	
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10 10	< 10 10	< 10 5	< 10
Lithium	[Li]	15	10	10	< 5	10	- 19 ∢ 18	√ 10	× 5 < 10

DATE : AUG-27-1990

Holaiua

(Ho]

10 < 10

15 < 10

• .

.

~ ĸ.

F

.

,

.

.

, .

٠

< 10

< 10

SIGNED : Denis Pilinik

10 < 10

10 < 10

5 ≺ 10

< 10

	TSL	LABOR	ATORIES							
			2-302-48			SASKATCHEWAN	57K <i>6</i> A	4		
•					ONE #: (306)					
				FAX ₩:	(206)	242 - 4717				
			7 C A B 4	PLASMA SCAN						
F 1			1.4.24.5	THOMA SURV	Aqua-R	egia Digestin	nn:			
					11244 1.					
	PRIME EXPLORATIO	N ⇒TD.					T.S.L.	REPORT No.	: 5 - 957	3 - 14
-	10th Floor Box 1						T.S.L.	£ile No.	:	
	808 West Hasting						T.S.L.	Invoice No.	: 15682	
	Vancouver B.C. V	/6C 2X6								
-	ATTN: J. FOSTER	PRO.	JECT: 90-8C-0	19 - HI-T	EC 9.0. R-	2202		ALL RESULTS	PPM	
					848 1 54 66	03010+01	000 (D1 07	905JR104	00010105	70SJR106
			905CR001	905BR001	90SJR100	905JR101	90SJR103	700311204	905JR105	79248190
•	ELEMENT									
,	Aluminum	(A1)	B 560	17 000	9600	3E00	3600	5800	24000	17000
	Iron	{Fe]	15000	36000	26000	13000	16000	22000	37000	27000
•	Calcium	[[2]]	2360	17000	9900	6000	6600	1300	11000	15000
	Magnesium	(Mg)	4000	6000	4100	1700	2500	2400	8200	6 800
	Sođius	[Na]	220	310	400	720	460	810	270	306
•		EK 1	620	70	570	1300	1200	840	260	160
	Titanium	[Ti]	42	2300	1300	220	30	36	1700	1300
	Manganese	[ăn]	94	420	650	270	500	630	610	460
•	Phasphorus		200	490	100	80	64	82	410	310
	Barium	[Ba]	45	11	66	61	43	58	36	41
•	Chromium	{ C r]	97	36	120	110	76	150	47	48 10
		[[r]	4	14	17	7	4	6	19 51	10 40
	Copper	(Cu)	10	22	4	3 4	3 3	2 4	31	40
•	Nickel	[Ni]	53	11	3	÷ 5	د 4	7	4	5
	Lead	(Pb)	B	4 60	5 87	51	- 30	61	50	47
	Ziac	[Zn]	32 27	100	12	51	1	< 1	87	65
•	Vanadius Charatius	[V] [Sr]	8	13	12	12	12	5	11	13
	Strontiu a Cobalt	[Co]	7	19	2	2	< 1	< 1	20	15
	Molybdenua		< 2	< 2	< 2	- 6	< 2	2	< 2	< 2
•	Silver	[Ag]	$\langle 1$	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Cadarum	[[6]]	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	$\langle 1 \rangle$	< 1	$\langle 1$
	Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1
•	Baran	EB 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Anticonv	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	10	< 5
	Yttrium	EY 1	3	10	21	6	8	16	11	8
,	Scandium	[Sc]	3	3	5	3	3	4	5	3
	Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 < 10
•	Niobium	(Nb]	< 10	< 10	< 10 (10	< 10	< 10 (10	< 10 < 10	< 10 40	< 10 30
	Thorium	[Th]	< 10	40	< 10	< 10	< 10 / 5	< 10 < 5	40 < 5	
	Arsenic	(As]	< 5	< 5	< 5	< 5	< 5 < 5	< 5	20	15
-	Bismuth	(Bil	< 5	15	10	< 5 < 10	< 10	< 10	< 10	< 10
	Tin	[Sn]	< 10	< 10 / 5	< 10 < 5	< 10 < 5	< 5	< 5	15	5
	Lithium	ELiI CU-1	10	< 5 < 10	< 10	< 10	< 10	< 10	< 10	< 10
٢	Holmium	(Hol	< 10	N 10	X 10	× 1V	1 41	\ 4 ♥		

DATE : AUG-29-1990

SIGNED : Denis Pilpink

T S L LABORATORIES

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aaua−Regia	Digestion
------------	-----------

10 B00	IME EXPLORATION th Floor Box 3 8 West Hasting Accuver B.C. 4	10 gs St.					T.S.L. T.S.L. T.S.L.	REPORT No. File No. Invoice No.	: : 15082	3 - 15
^ AT	TN: J. FOSTER	PROJE	ET 90-BC-019	- HI-TEC	P.8. R-220	2		ALL RESULTS	PPM	
	ELEMENT		90SJR107	905JR108	905JR109	905DR014	905BR015	905DR016	90SDR017	9050R018
· · · · · · · · · · · ·	Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Chromium Copper Nickel Lead Zinc Vanadium Strontium Cobalt	(A13 (Fe) (Ca) (Mg) (Na) (K 3 (Ti) (Mn) (P 3 (Ba) (Cr) (Cr) (Cr) (Cr) (Cr) (Cr) (Cr) (Cr	27000 36000 21000 7700 930 570 2500 550 460 43 54 43 54 43 54 17 51 65 5 49 87 24 20	19000 27000 36000 7300 470 150 2100 430 210 36 84 11 43 52 5 36 65 13 18	32000 37000 40000 8300 640 210 2900 630 340 27 130 22 50 65 3 50 65 3 53 97 22 23	22000 46000 7100 8700 250 400 1700 820 290 31 140 23 41 53 12 81 120 6 21	23000 56000 14000 7700 340 460 2790 630 280 20 130 37 130 37 130 37 130 37 130 37 130 4 21	19000 21000 88000 6100 140 90 1300 450 140 28 110 10 30 56 3 42 54 25 16	20000 40000 17000 470 140 3400 460 600 21 34 13 41 14 5 88 110 7 20	12006 12000 3600 70 40 820 276 < 2 8 66 5 16 24 1 21 30 81 7
-	Cobait Molybdenum		20 < 2	18 < 2	< 2 (2	< 2	4	< 2	< 2	< 2
	Silver	[Ag]	< 1	< 1	< 1	2	4	< 1	< 1	< 1
r	Cadaiu s Beryllium	(Cd] [Be]	< 1 < 1	< 1 < 1	< 1 < 1	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	5 <1		< 1 < 1	< 1
	Baron Antimony Yttrium	(B) (Sb) (Y)	< 10 < 5 11 3	< 10 < 5 7 4	< 10 < 5 10 10	< 10 10 12 8	< 10 10 13 12	< 10 < 5 6 5	< 10 < 5 14 3	50 く 5 5 2
,	Scandium Tungsten Niobium	[5c] [W]] [N5]	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	10 < 10 20	< 10 < 10 < 10	< 10 < 10 30	< 10 < 10 < 10
	Thorium Arsenic Bismuth	(Th] [As] (Bi]	40 < 5 20 < 10	30 ≺ 5 10 ≺ 10	20 < 5 20 < 10	30 25 20 < 10	20 140 20 < 10	<pre>< 10 < 5 < 5 < 10</pre>	 √ 5 15 √ 10 	<pre>< 5 < 5 < 10</pre>
•	Tin Lithium Holmium	(Sn] (Li] (Ho]	< 10 10 < 10	< 10 10 < 10	₹ 1020₹ 10	10 10 (10	5 < 10	5 < 10	< 5 < 10	< 5 10

- DATE : AUG-29-1999

.

SIGNED : Dinis Piliniak

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. FLASMA SCAN

```
Aqua-Regia Digestion
```

•	PRIME EXPLORATIO	DN LTD.					T.S.L.	REPORT No.	: S - 9573 - 16
۴	10th Floor Box 3						T.5.L.	File No.	:
	808 West Rastin						T.S.L.	Invoice No.	: 15062
-	Vancouver B.C.	-							
•	ATTN: J. FOSTER		NECT: 90-BC-019	3 - HI-TE	C P.O. R-2	202		ALL RESULTS	S PPM
			90SDR019	90SDR020	90SBR021	9050R022	90568023	90SB8024	
-	ELEMENT								
	07.uninum	[A1]	31000	17000	30000	26000	21000	31000	
	Alumiกแก โ	(Fe]	31000	74000	65000	58 000	53000	52000	
•	Iron			17000	12000	12060	15000	15000	
	Calcium	[Ca]	59000						
·	Magnesium	(Mg)	6000	7400	7400	7300	5800	7800	
	Sodiua	[Na]	90	120	230	340	250	400	
1	Potassium	CK 1	20	88 0	50	220	50	400	
	Titanium	[Ti]	2800	38 00	3500	5000	3200	2600	
	Manganese	EMn]	410	5 50	62 0	690	440	640	
r	Phosphorus	(P]	470	850	690	750	510	410	
	Sariua	{Bal	8	17	13	36	9	48	
•	Chronium	{Cr]	60	77	28	30	20	59	
	Zirconium	{Zrl	17	34	22	23	28	28	
	Cooper	{ £ u1	65	130	23	35	26	61	

	Copper	{£u]	62	130	<u>23</u>	-12	20	01
	Nickel	ENi3	28	21	21	15	20	130
	Lead	(Pb]	10	42	11	12	21	15
·	Zinc	[Zn]	64	5500	140	1 90	81	150
	Vanadiua	[V]]	130	190	190	190	150	170
	Strontium	[Sr]	20	9	5	9	5	21
-	Cobalt	[Co]	16	21	22	28	14	27
	Molyadenuæ	[Ma]	< 2	. 4	4	< 2	6	< 2
•	Silver	(Ag)	< 1	5	< 1	< 1	< 1	< 1
	Cadmium	[Cd]	< 1	17	< 1	< 1	< 1	1
	Beryllium	[Be]	< 1	< 1	< 1	. < 1	< 1	< 1
•	Baron	{B]	< 10	< 10	< 10	< 10	< 10	< 10
	Antimony	[56]	< 5	25	< 5	< 5	< 5	10
	Yttrium	[Y]]	13	18	19	22	11	15
	Scandium	[Sc]	6	13	7	11	7	9
	Tungsten	EW 3	< 10	70	< 10	< 10	< 10	< 10
	Nibbium	[Nb]	< 10	· · · · · · · · · · · · · · · · · · ·	< 10	〈 10	< 10	< 10
	Thorius	[Th]	20	40	50	50	30	20
	Arsenic	[As]	< 5	. 140	< 5	5	10	< 5
•	Bismuth	[Bi]	5	30	30	30	20	30
	Tin	[Sn]	< 10	i K 10	< 10	< 10	< 10	< 10
-	Lithium	[Li]	< 5	i 5	< 5	< 5	(5	10
-	Holmium	(Ha]	< 10	i (10	< 10	< 10	< 10	< 10

DATE : AUG-29-1990

SIGNED : Don's Pilmink

• •

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🕝 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. \$9666

INVOICE #: 15028 P.O.: R-2258

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 019

Hi-Tec Resource Management REMARKS:

> Au ppb

90SKR001	<5
90SKR002	<5
90SKR003	<5
90SKR004	<5
90SKR005	<5
90SPR105	Not Rec'd
90SPR106	<5
90SJR102	<5
90SJR110	<5
90SJR111	<5
90SJR112	<5
90SJR113	<5
90SJR114	<5
90SJR115	<5
90SPR107	<5

C. Idziszek, J. Foster COPIES TO: Prime - Vancouver INVOICE TO:

Aug 29/90

Bernie Du SIGNED

1 of 1 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

6046872309

PAGE.02

Page 1 of 1

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Exploration Ltd. 10th Floor,Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	EPORT No. \$1564	

INVOICE #: 16264 P.O.: R-2258

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 019

Hi-Tec Resource Management REMARKS:

> Нg ppb

905KR001	60
905KR002	10
905KR003	40
905KR004	<10
905KR005	10
90SPR105	Not Rec'd
90SPR106	<10
90SJR102	400
90SJR110	<10
90SJR111	10
905JR112	10
90SJR113	20
90SJR114	<10
90SJR115	30
90SPR107	900

C. Idziszek, J. Foster COPIES TO: INVOICE TO: Prime - Vancouver

Nov 07/90

SIGNED -

(306) 931-1033 FAX: (306) 242-4717

S7K 6A4

T S L LABORATORIES

...

·

e

.

÷

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASHA SCAN

Aqua-Regia Digestion

-	PRIME EXPLORATION LTD.	7.5.L.	REPORT Na. : S - 9666 - 1
	10th Floor Box 10	T.S.L.	File No. : M - 7774
•	BOB West Hastings St.	T.S.L. 3	Invoice No. : 15161
	Vancouver B.C. V&C ZX6		
	ATTN: J. FUSTER PROJECT: 90 BC 019 HI-TEC RESOURCE MANAGEMENT	P.O.: R-2258	ALL RESULTS FPM

905KR001 905KR002 905KR003 905KR004 905KR005 905PR105 905PR106 905JR102 905JR110 905JR111 ELEMENT

	Aluminus	[A]]	16000	20000	20000	35000	32000	1800	19000	7800	20000	17600
	Iron	[Fe]	29000	32000	34000	47000	41000	2100	10000	23000	52000	52000
	Calcium	[Ca]	1600	2900	2300	10000	30000	1700	21000	2700	11000	9800
	តីរចូពesium	[Hg]	5600	5500	5B00	8600	B300	1300	2700	2700	5600	5400
	Sodium	[Nia]	B0	80	70	100	50	< 10		370	260	410
	Potassium	EK 1	750	1200	960	860	160	10	90	420	100	210
	Titaniua	[Ti]	17	16	16	1200	1900	110	630	i20	5400	5800
	Manganese	[Mn]	220	310	330	860	760	47	140	260	590	520
	Phosphorus	CP 3	430	460	490	350	330	22	110	90	710	660
	Barium	[Ba]	59	110	120	62	52	2	6	35	18	26
	Chronium	[Cr]	57	54	50	210	180	11	160	Π	24	18
	Zirconium	[Zr]	1	3	3	17	21	< 1	7	4	35	28
	Copper	[Cu]	47	54	4B	62	47	2	11	5	5	13
	Nickel	[Ni]	79	60	70	74	69	5	14	4	l	4
	Lead	[Pb]	₿	8	8	≤ 1	< 1	< 1	< 1	15	1	< 1
	Zinc	{Zn]	110	110	99	69	\$7	4	23	460	120	73
	Vanadium	EV 1	41	41	48	160	160	7	38	5	230	270
,	Strontium	[Sr]	18	25	23	12	19	1	2	4	7	11
	Cobalt	[Co]	11	12	11	27	25	2	4	< 1	13	14
	Holybdenua		< 2	< 2	. < 2	< 2	< 2	< 2	< 2	26	< 2	< 2
	Silver	[Ag]	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1	< 1
	Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	3	< 1	< 1
	Beryllium	{Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Baron	(B)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
•	Antiaony	[Sb]	< 5	< 5	< 5	15	15	< 5	< 5	< 5	< 5	< 5
	Yttrium	[Y]	6	7	7	14	12	< 1	3	14	27	24
	Scandium	[5c]	4	5	5	17	15	< 1	3	2	4	4
r	Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	30	< 10	< 10
	Nichian	[No]	< 10	< 10	< 10	〈 10	< 10	< 10	< 10	< 10	10	K 10
	Thorium	[Th]	20	20	30	30	10	< 10	< 10	< 10	40	30
-	Arsenic	[As]	15	15	15	< 5	10	10	< 5	45	< 5	< 5
	Bisauth	[Đi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
•	โก	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
•	Lithium	(Li)	35	40	40	45	40	< 5	20	25	25	30
	Holmium	[Ho]	< 10	< 10	< 10	10	< 10	< 10	K 10	< 10	20	10

DATE : SEP-01-1990

۰.

SIGNED : Bernie Que

T S L LABORATORIES

2-302-48TH STREET, SABKATCON, SABKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Acua-Regia Digestion

PRIME EXPLORATION LTD.
 10th Floor Bax 10

T.S.L. REPORT No. : S - 9666 - 2 T.S.L. File No. : M - 7774

T.S.L. Invoice No. : 15161

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: 70 BC 019 HI-TEC RESOURCE MANAGEMENT P.O.: R-2258 ALL RESULTS PPM

, se

90SJR112 90SJR113 90SJR114 90SJR115 90SPR107

- E	LEMENT

808 West Hastings St.

				~~			1000	~ 1	306	w.	200	<u>^^</u>
	Aluminum	[A1]	200		2600		4000		1300 1500		200 320	
	Iron	[Fel	410		3000	-	4300	-	600 600			00 00
	Calcium	[[a]	130		7100		4000		600 640		- 56 - 56	
	Magnesium	[Mg]	56		700		930	-	ани 29			00 00
,	Sodius	(Na)		40	20		47		15			50 80
	Potassium	CK 1	_	90	83		62					ev 60
•	Titanium	{Ti]		00	32		97		560			
	Manganese	EMn 3		50	T		73		.60			10
	Phosphorus			70	17		25		-67			00 57
	Barium	[Ba]		23	120		12			6		57
	Chromium	[Cr]		14	13		- 24		_	[4		4B
·	Zirconium	[[r]		20		0	-	7		1		17
	Copper	[Cu]		18		53		0		5		38
	Nickel	[Ni]		22		6	11		-	4		21
r	Lead	[Pb]		2		1		1	۲.	•		12
	Zinc	[Zn]		65		77		8		5		75
•	Vanadium	EV 3	1	60		12	12		28			30
,	Strontium	[Sr]		17	-	4		5		15		10
	Cobalt	(Cal		15		8		7		19		3
`	Holybdenum	{Mo}	<	2	<	2	<	2	<	2	_	8
	Silver	[Ag]	<	1	<	1	<	1	<	1	<	1
r	Cadmium	{Cd}	<	1	<	1	<	t	<	1		1
	Berylliua	[Be]	<	1	<	1	<	1	<	1	<	1
	Baran	{B]	<	10		0		0 <		10	<	10
<i>.</i>	Antimony	(Sb)		20		10		99		10		10
	Yttrium	[Y]		16		0		3	2	26		7
•	Scandium	[5c]		3		3		21		5		10
-	Tungsten	EW J	<	10		10		-		10	<	10
	Niobium	END]	<	10		10				10	<	10
•	Thorium	[Th]		40	1	20		.0		10		20
	Arsenic	[As]		45	<	5	<	5	<	5	_	5
-	Bismuth	(Bi]	<	5	<	5	<	5	<	5	<	5
•	Tin	(Sal	<	10		10				10	<	10
	Lithius	(Li)		25		10		5		25		25
-	Holaius	(Ho)	<	10		10	-	20	1	10	<	10

DATE : SEP-01-1990

Bernie Dum

STATEMENT OF COSTS

STATEMENT OF COSTS

BUFFALO RESOURCES LTD./INTERNATIONAL VIKING RESOURCES INC. Project 90BC019 PALMIERE SOUTH PROJECT Period of Field Work: July 18, 1990 to August 22, 1990

Salaries

D.Collins, Geologist, 11.5 days @ \$400/day 4,600.00 R.Brown, Geologist, 4.5 days @ \$400/day 1,800.00 P.Daigle, Geologist, 22.0 days @ \$300/day 6,600.00 D.Hebditch, Temp.Replacement Cook, 2.50 days @\$225/day 562.50 1,900.00 J.P.Sorbara, Vice Pr., 3.5 days @ \$400/day 1,400.00 T.Kennedy, Prospector/Blaster 2.5 days @ \$300/day 750.00 T.Kelemen, Technician, 3.0 days @ \$225/day 675.00	
J Cooper, Cook, 7.58 days @ \$225/day(salary prorated)1,705.50 J.Himmelright, Technician, 19.0 days @ \$225/day 4,275.00	\$23,068.00
<u>Project Expenses</u> Project Preparation	3,918.55
Base Map Preparation 1:5,000 digital manuscript	3,120.00
Mobilization/Demobilization	12,142.39
Domicile 78.08 man days @\$115/man/day	8,979.20
Geochemistry and Laboratory Service Silts	
2 Samples \$1.00/sample preparation 2.00	
2 Samples \$8.00/sample Au Geochem 16.00	
1 Samples \$8.40/sample 35 element ICP 8.40 Bulk Stream	
2 Samples \$30.00/sample preparation 60.00 2 Samples \$16.40/sample Hvy Min. Pkg; Au FA/AA Hg 32.80 2 Samples \$8.00/Hg 16.00	
Rocks	
262 Samples \$4.00/sample preparation 1,048.00	
262 Samples \$8.40/35 element ICP 2,200.80	
262 Samples \$8.00/sample Au Geochem 2,096.00	
169 Samples \$6.30/ Hg Geochem 1,064.70	C 905 05
Freight charges from Smithers <u>340.35</u>	6,885.05

 Trenching
 960.00

 Plugger drill rental
 960.00

 Powder
 175.65
 1,135.65

Page one (1) of two (2) pages

Helicopter Support 20.27 hours @ \$654.35/hour	13,263.69
Beach Fixed Wing support	1,599.27
Radio Rental 0.5 months @ \$175/month	87.50
Walkie talkie rental 78.08 Man Days \$5.00/unit/man/day	390.40
Field Supplies	1,677.78
Equipment rental 68 man days @ \$25.00/man day	1,700.00
Generator fuel and propane	185.08
Computer rental	240.00
Expediting	589.08
Government filing	350.00
Accounting, Communication and freight	2,370.74
Report Writing, drafting and compilation	6,500.00
15% Management Fees	13,230.36
TOTAL	\$ <u>101,432.74</u>

Page (2) of two (2) pages

-

-

-

.

.

۲ د

~

.

•

~

,

*

-

,

`

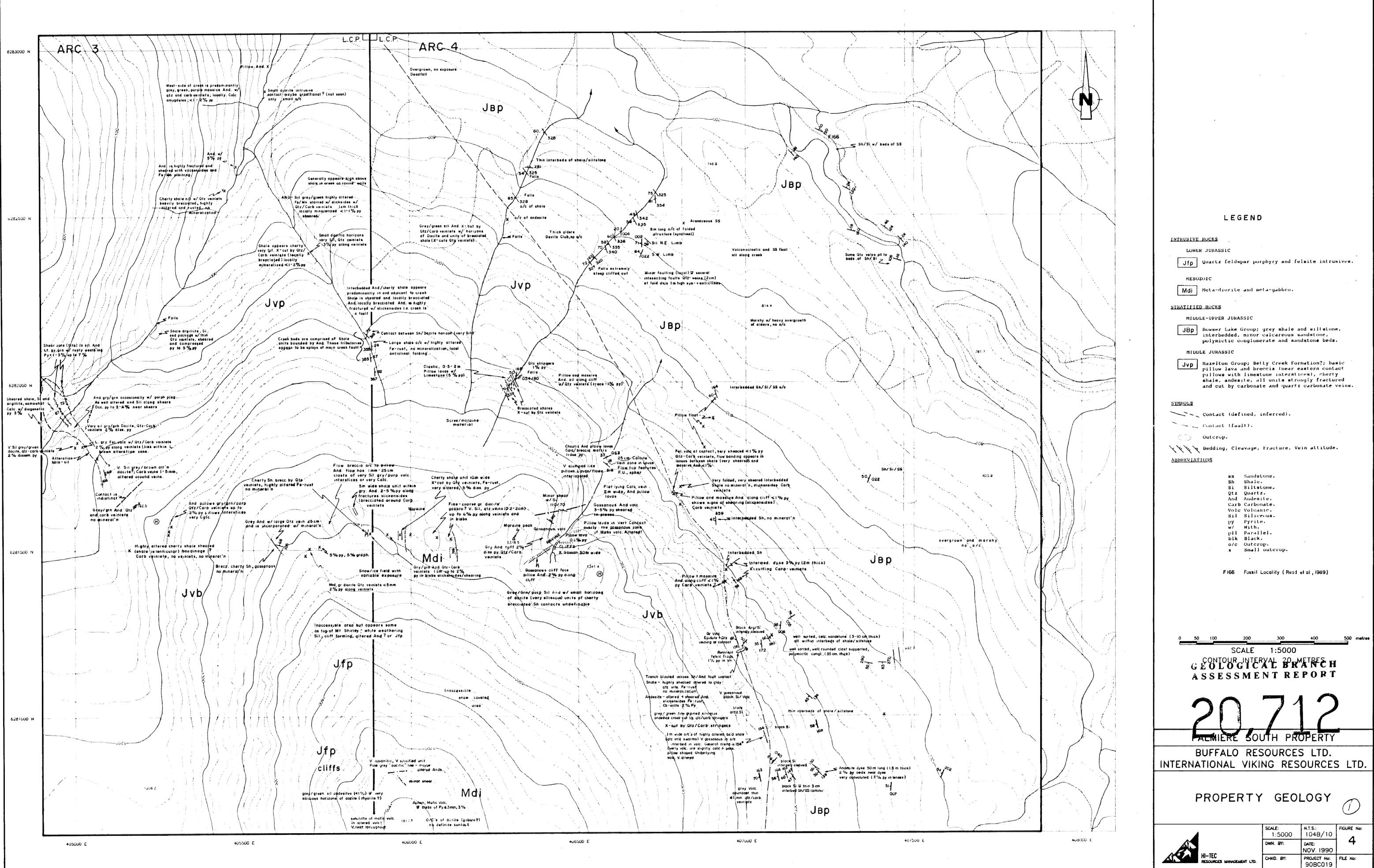
•

.

٠

.

•

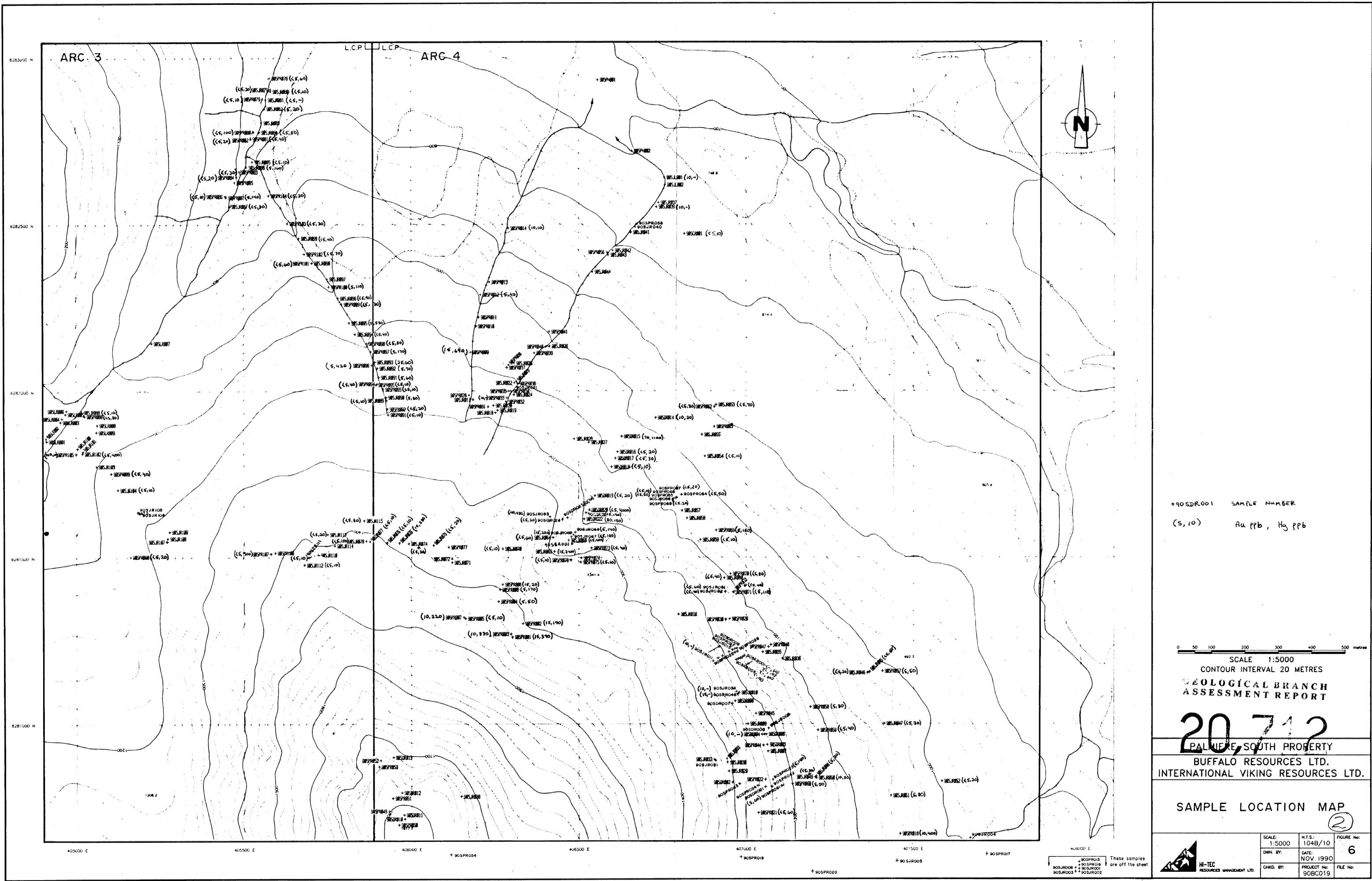

•

.

.

-

×.



. .

.

•

•

