	LOG	NO: /2 - 3/	RD.
	ACTIC	·····	
	FILE	NO:	
	ONSOLIDATED REGAL RESOURCE ONSOLIDATED RHODES RESOURC		
	GEOLOGICAL, GEOPHYSICAL	AND	
	GEOCHEMICAL ASSESSMENT R	EPORT	
SUP PERMIT	ON THE VIRGINIA LAKE PROP	PERTY	
6.3161~) ^I	SKUT RIVER AREA, BRITISH C	OLUMBIA	
s s	SKEENA MINING DIVISIO	N	
х. - с.	NTS : 104 - B / 7 & 1	0	• 1
W.Long	itude 131 ⁰ 32′ N.Latit	ude 56	()
		2 C X A	
	FOR		
c	ONSOLIDATED REGAL RESOURCE		
c	and DNSOLIDATED RHODES RESOURC		Contraction of the second
	1100-808 West Hastings St Vancouver, B.C.	ireet U H	
	V6C 2X6	3 5	
	BY	· · ·	
DENIS	ROBERT F. BROWN, P.Eng. A. COLLINS, Ph.D., P.Geol		
	HI-TEC RESOURCE MANAGEMENT 1500-609 Granville Stre Vancouver, B.C. V7Y 1G5		
	November 6, 1990		

TABLE OF CONTENTS

,

.

			<u></u>
1.0	INTR	ODUCTION	1
	1.2 1.3 1.4 1.5	Location and Access Physiography Claim Status Regional Exploration History Previous Property Work 1990 Grid	1 2 3 3 5 7
2.0	GEOL	OGY	8
	2.2 2.2	Regional Geology, Stratigraphy, Structure and Metamorphism Property Geology Property Structure	8 13 15
3.0	ROCK	GEOCHEMISTRY, ALTERATION AND MINERALIZATION	15
4.0	GEOPI	HYSICS	17
5.0	DISCU	USSION	20
6.0	REFE	RENCES	24

Page

LIST OF FIGURES

۴

,

.

· .

-

.

AFTER PAGE

FIGURE 1:	: LOCA	TION MAP.				1
FIGURE 2:	CLAI	M MAP				2
FIGURE 3:	торо	GRAPHIC MAP				2
FIGURE 4:	REGI	ONAL GEOLOGY	MAP.			3
FIGURE 5:		1990 PROPERTY SAMPLE LOCAT				5
FIGURE 6:		1990 PROPERTY AIRBORNE GEOD			TATION	5
FIGURE 7:	1990	SAMPLE SITE	МАР		in	pocket
FIGURE 8:	1990	GEOLOGY MAP			in	pocket
FIGURE 9-	1: 1990	MAGNETOMETEF	SURVEY,	GRID 1	. in	pocket
FIGURE 9-	2 1990	MAGNETOMETER	SURVEY,	GRID 2	. in	pocket
FIGURE 10		VLF - EM SUR ION 24.8 kHz,			in	pocket
FIGURE 10		VLF - EM SUR ION 24.8 kHz,			in	pocket
FIGURE 11	-1: 1990 STAT:	VLF - EM SUR CON 21.4 kHz,	VEY, GRID 1.		in	pocket
FIGURE 11	-2: 1990 STATE	VLF - EM SUR ION 21.4 kHz,	VEY, GRID 2.		in	pocket
FIGURE 12	: 1990	COMPILATION	MAP.		in	pocket

LIST OF APPENDICES

APPENDIX I: STATEMENT OF QUALIFICATIONS

APPENDIX II: SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

- APPENDIX III: ROCK SAMPLE ANALYTICAL DATA
- APPENDIX IV: ROCK SAMPLE DESCRIPTIONS
- APPENDIX V: STATEMENT OF COSTS

LIST OF TABLES

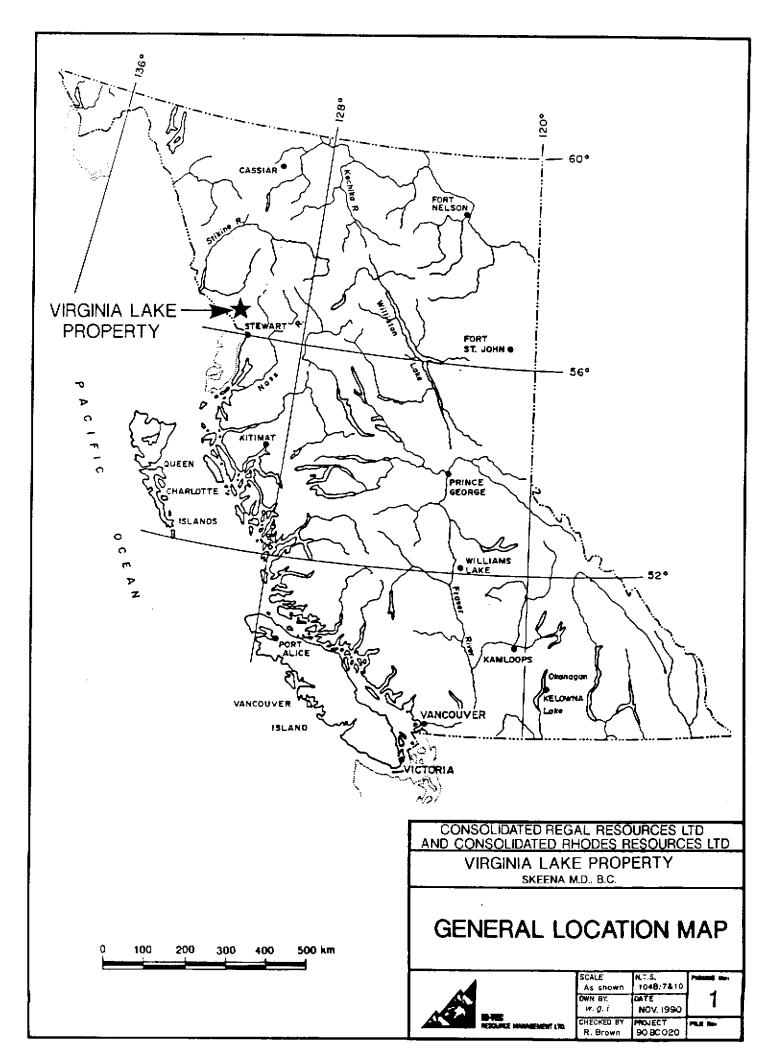
AFTER PAGE

TABLE	#1	SUMMARY OF MAJOR SHOWINGS IN THE ISKUT RIVER - UNUK RIVER AREA	3
TABLE	#2	LEGEND FOR REGIONAL GEOLOGY (FIGURE 4)	3
TABLE	#3	SYMBOLS FOR REGIONAL GEOLOGY (FIGURE 4)	3
TABLE	#4	LEGEND FOR FIGURE 5 AND 6	5

1.0 INTRODUCTION

Pursuant to a request by the Directors of Consolidated Regal Resources Ltd. and Consolidated Rhodes Resources Ltd., an exploration program consisting of geological mapping, rock sampling, grid establishment and ground geophysical surveying was carried out on the Virginia Lake property by Hi-Tec Resource Management Ltd.

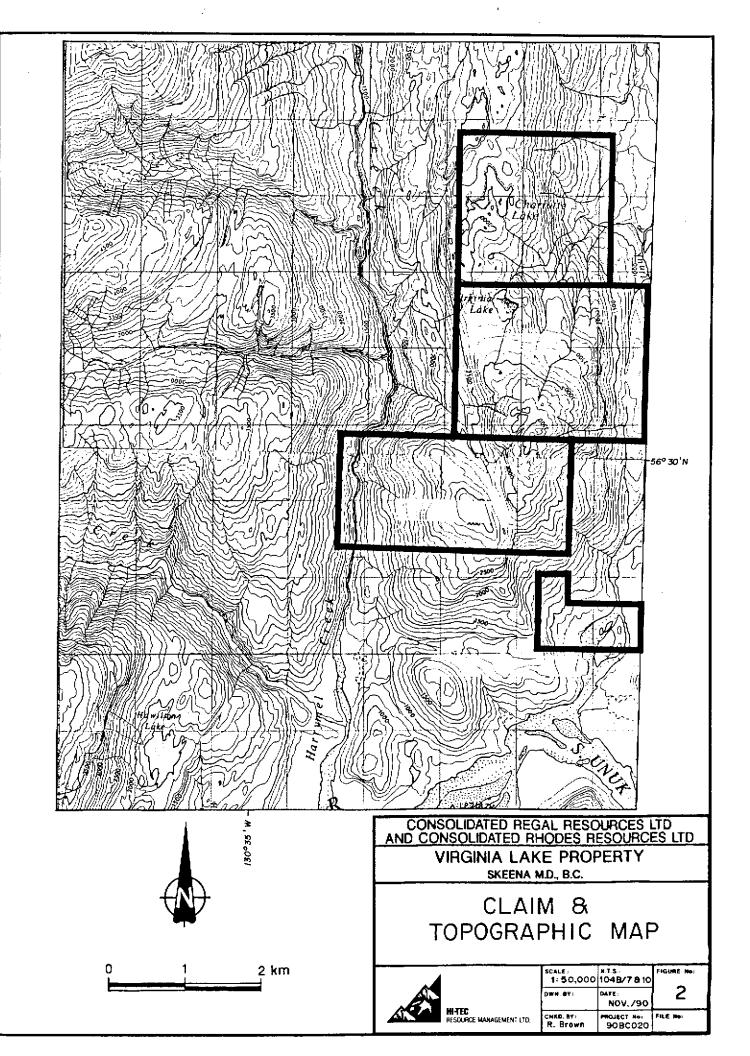
The purpose of the exploration program was to evaluate airborne magnetic and resistivity features and interpreted lineaments, shears and faults for their precious metal and or base metal potential.

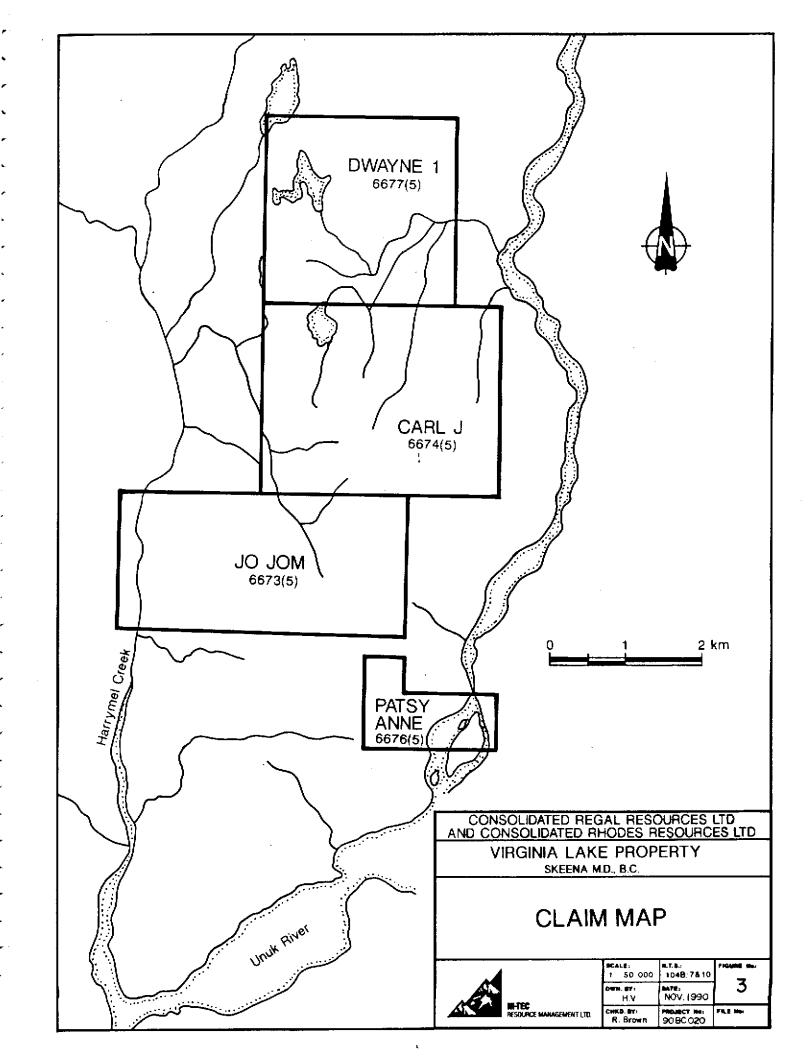

This report is based on the results of the geological and ground geophysical surveys conducted during July -September, 1990, which were integrated with the Aerodat airborne geophysical survey (Dvorak, 1989), previous work on the property (Arnold, 1989) and available literature pertaining to the area.

The authors supervised the 1990 exploration program in the field between July and September of 1990. A total of 180 rock samples were collected and 19,400 m of line were established.

1.1 Location and Access

Province: Area: Mining Division: NTS: Longitude: Latitude: Size of Area: Disposition Holders: British Columbia Iskut River Skeena 104 - B / 7 & 10 131 degrees 32' West 56 degrees 31' North 1525 hectares (3768.28 acres) Consolidated Regal Resources Ltd. and Consolidated Rhodes Resources Ltd.


The Virginia Lake property is located approximately 300 kilometers northwest of Smithers, British Columbia and 125 air kilometers east of Wrangell, Alaska, in the Unuk River Area (Figure 1). claims The can be accessed by truck from Smithers for a distance of 275 kilometers to Bell II on Highway 37 at the Bell Irving Creek crossing and from here by helicopter for а distance of 38 air kilometers to the southwest. An alternate route is via fixed-wing aircraft to Bronson Creek airstrip, approximately 35 air kilometers northeast of the Virginia Lake property and then by The 1990 fieldwork was helicopter to the property. carried out from Hi-Tec's base camp at the Snippaker Creek airstrip using Trans North's Hughes 500D or 206 Jet Ranger helicopters based respectively at Forrest Kerr and the Inel camps.

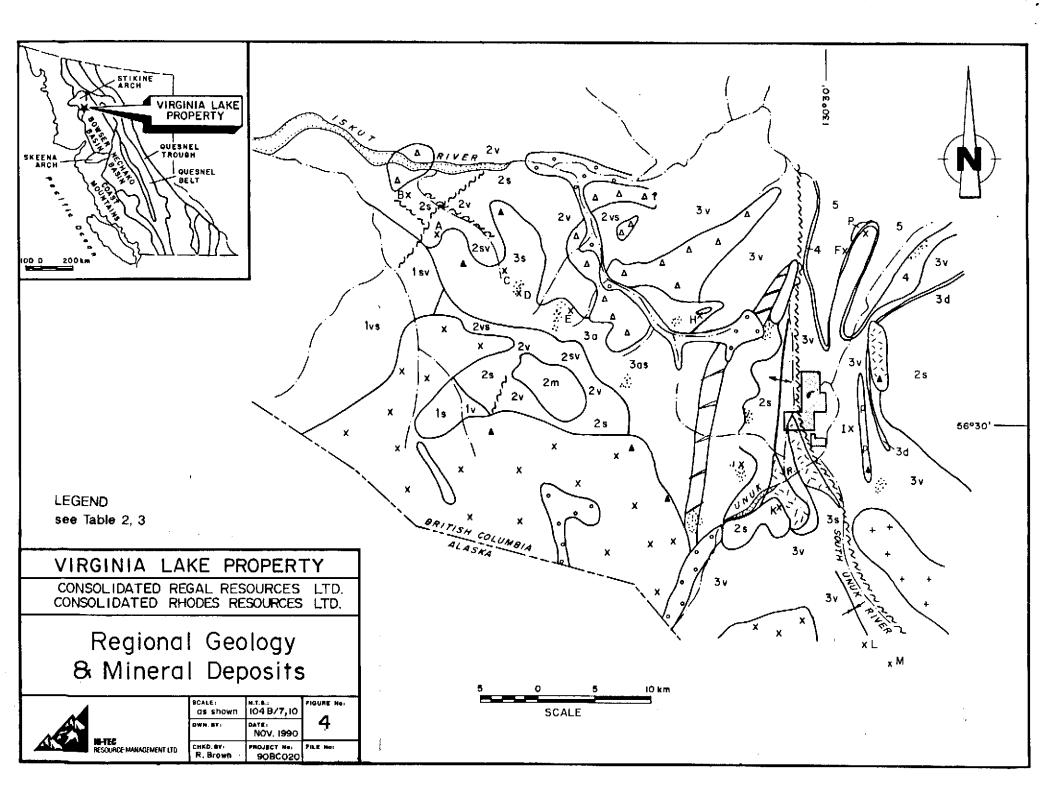

1.2 Physiography

Local topographic relief is moderate to very steep with elevations ranging from approximately 240 meters (less than 800 feet) along Harrymel Creek to over 1110 meters (over 3,600 feet) in the south central part of the claims (Figure 3).

Vegetation consists mainly of dense alder, willow, devil's club and mature conifers such as spruce, fir and hemlock along the valley slopes. At higher altitudes above timberline, approximately 1,050 meters ASL (3,450 feet), the vegetation changes to subalpine and alpine vegetation. The period of least snow cover occurs between July and mid-September and summers are relatively cool and wet.

1.3 Claim Status

The property is recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:


<u>CLAIM</u>	UNITS	RECORD No.	<u>EXPIRY DATE</u> *
Jo Jom	18	6673	May 13, 1993
Carl J	20	6674	May 13, 1993
Dwayne I	16	6677	May 13, 1993
Patsy Anne	6	6676	May 13, 1993

* Before filing the 1990 exploration work.

The property consists of four mineral claims located in the Skeena Mining Division on NTS sheet 104B-7&10 (Figure 2). The Patsy Anne claim (6 units) is not contiguous with the three other claims. The current owner of the claims is Mr. Terry Heinricks and the property was optioned by Consolidated Regal Resources Ltd. subject to a 2% Net Smelter Return in favor of the owner, as well as some cash and share considerations. In August 1989, 50% of the interest was assigned to Consolidated Rhodes Resources Ltd.

1.4 Regional Exploration History

The earliest work in the district (Figure 4, Table 1-3) was by placer miners in the Unuk River/Sulphurets Creek area in the late 1800's. Hardrock mining ventures began around the turn of the century on Au, Ag, Pb veins of the Globe and Cumberland / Daly prospects in the Sulphurets Creek area and on Au, Ag, Cu, Pb veins of the Iskoot and Red Bluff claims (1907) on lower Bronson Creek. In 1932, Ag and Au bearing Pb, Zn, Cu deposits were found east of Tom MacKay Lake on the Tok

A to be a second s

TABLE # 1 SUMMARY OF MAJOR SHONINGS IN THE ISKUT RIVER - UNUK RIVER AREA

	SHOWING/DEPOSIT	LOCATION	<u>OHNER</u>	WORK_HISTORY#	RESERVERS OR COMMODITIES PRESENT	<u>DEPOSIT_TYPE</u>
1)	Sulpurets: Bruce Jack Lake Zones	104B/B	Granduc/Corona	E,D,1	720,000 tonnes @ 28.4g/t Au Equiv.	veins
2)	Sulphurets Snovfield	1048/9	Granduc/Corona	E,2	7,000,000 tonnes @ 2.85 g/t Au	disseminated
3)	EŁL	1048/10	Silver Standard Sumitomo	E,D,2	2,300,000 tonnes @ 0.7% Ni, 0.6% Cu tonnes	intrusive contact
4)	Johnny Mtn.	104B/11	Skyline Expi.	E,0,H (1987-69),1	Au, Cu	veins
5)	Sníp	1048/11	Coainco/Delavare	E,D,M (1990-?),1	1,100,000 tannes @ 24.0 g/t Au	veins
6)	Doc	1048/8	Silver Princess	£,D,1	425,000 tonnes @ 9.25g/t Au 4.91g/t Ag (P5, Zu, Cu)	veins
7)	Eskay	1048/9	Prime/Stikine	E,D,1	5,025,000 tonnes @ 15.8 g/t Au, 441g/t Ag (Pb, Zu, Cu, Sb, As, Hg)	stratabound
8)	ชิงรระก	1048/10	Lonestar/Western Canadian	E,1	Âu	disseminated, vein
3)	Inei	1048/10	Inel Resources	E,D,I	Au, Zu	stockwork, veins
10)) VV	104B/10	Crest/ Corptack	E,2	Cu, Mo (Au, Ag)	porphyry type diseas- inated and stockwork
11) Max	1048/7		E,2	9,900,000 tonnes 45% Fe	skarn

- E surface exploration and drilling D underground development
 - M Mine Mill complex
 - 1 current expl. (development)
 - 2 dormant

۰.

ь.

.

.

AN A SHA

TABLE # 2 (See Figure 4)

REGIONAL GEOLOGY

<u>Legend</u> (from Britton 1988, 1989)

INTRUSIVE ROCKS

TERTIARY	111	King Creek dyke swarm
	x ^x x ^x	Coast Plutonic Complex
	+ ⁺ + ⁺	Lee Brant stock
JURASSIC	۵ ⁴ ۵ ^۵	Lehto porphyry and Iskut River Plutons
LATE TRIASSIC	人令	Diorite and Gabbro

STRATIFIED ROCKS

TERTIARY	Basalt flows and Tephra
MIDDLE JURASSIC 5	Marine Basin Turbidites
4	Felsic Pyroclastics
LOWER JURASSIC D	Dacite Marker
3 V	Andesite Volcanics
2 S	(with <40% sediments)
UPPER TRIASSIC V	IntermedAnds Volcanics
2 S	Sediments
M	Basalt
PALEOZOIC 1	Metamorphosed sediment(s) and Tuffs(v)

TABLE #3 (See Figure 4)

REGIONAL GEOLOGY SYMBOLS

ANTICLINE, SYNCLINE X X

MOUNTAIN PEAK

CONTACT AIRSTRIP CREEK, RIVER GOSSAN MINE, PROSPECT • A PILLOW LAVAS P

PROSPECTS AND MINES

A B	JOHNNY MOUNTAIN SNIP		Cu, Cu,	_	Pg,	Zn
С	INEL	Au,	Ag,	Cu,	Zn,	Pb
D	KHYBER PASS (GOSSAN)	Au,	Cu,	Ζn		
Ε	PINS	Au,	Αg,	Cu,	Zn,	Pb
F	MACKAY	Au,	Ag,	Pb,	Zn,	Cu
G	COPPER KING	Cu,	Fe			
H	E & L NICKEL	Ni,	Cu			
I	CUMBERLAND / DALY	Au,	Ag			
J	VV	Cu,	Mo,	Au,	Ag	
K	MAX	Fe,	Cu			
\mathbf{L}	DOC	Au,	Ag,	Pb,	Cu	
М	GLOBE	Au,	Ag,	Pb,	Cu	

and Kay claims (now Eskay Creek). Initial work on the gossans at the upper reaches of Sulphurets Creek (Brucejack Lake) started in 1935. The Halport (now Doc) Au, Ag quartz vein was discovered in 1946 by Tom McQuillan, along the south fork of the Unuk River.

With the discovery in 1953 of the Granduc deposit south-east of the region on Leduc Creek, exploration in the Unuk - Iskut River area increased with the subsequent discovery by Hudson's Bay Mining of the Pick Axe Au, Cu zone and high grade Au, Ag, Pb, Zn float zone on Johnny Mountain (now Skyline Explorations Reg property, Johnny Mountain mine). In 1958 the E & L Ni, Cu deposit on Nickel Mountain was discovered followed by the Max Cu, Fe skarn on McQuillan Ridge in 1960.

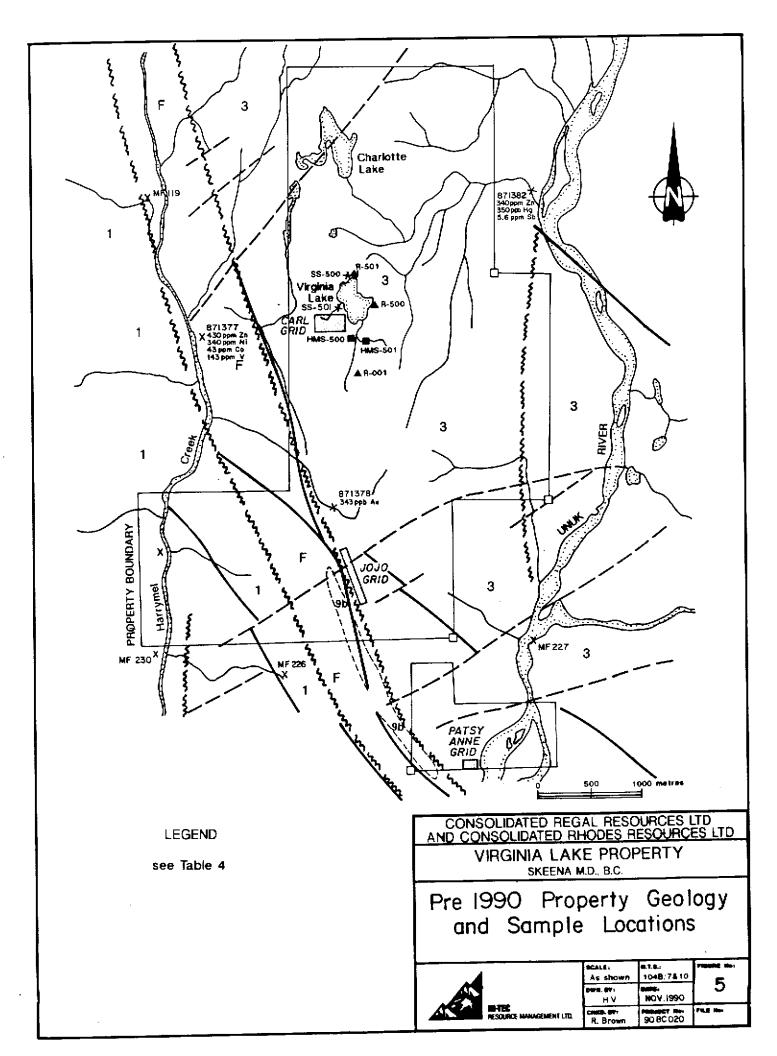
The search for porphyry copper deposits in the 1960 -1970's led to the re-evaluation of the Sulphurets and Johnny Mountain area. Cu bearing skarns were discovered in 1962 by Newmont Mining Corp. at the head waters of Forrest Kerr Creek. The VV and Cole porphyry prospects south and north of King Creek were discovered in the early 1970's. The Inel property east of Johnny Mountain was restaked in 1969 after massive sulfide float was discovered at the toe of Bronson Glacier. The McClymont property was staked in 1980 by Dupont Canada Explorations Ltd. as a result of stream sediment sampling; these claims are now controlled by Gulf International Minerals Ltd. The Gossan claims were staked in 1983 subsequent to reconnaissance mapping and geochemical sampling by Lonestar Resources Ltd.

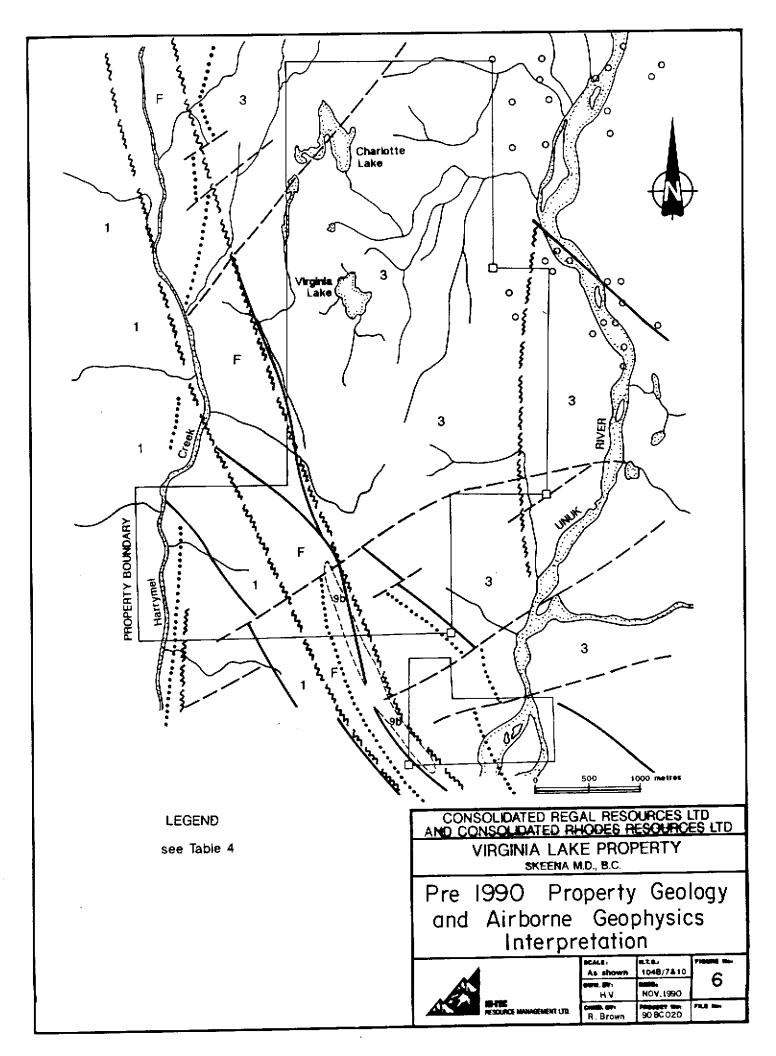
The SNIP deposit of Cominco - Delaware was discovered in 1981 in the active area at the lower reach of Bronson Creek.

All the above areas have undergone intermittent mineral exploration over the years to present, some include underground development and definition of ore reserves (see Table 1). Production from Skyline Resource's Johnny Mountain Mine ceased in 1990.

1.5 Previous Property Work

Research at the mineral titles office in Vancouver disclosed four Minfile documentations neighboring the They include two showings Virginia Lake property. (Minfile 119,230) along Harrymel Creek, one showing south of the Jo Jom claim (Minfile 226) and placer mine workings at the mouth of Sulphurets Creek (Minfile 227) which are plotted on Figure 5. The three showings are related to alteration and mineralization along the west side of Harrymel Creek fault zone near the contact with The Stuhini Group sediments. Triassic Upper mineralization may be related to diorite intrusions with disseminated magnetite and (Minfile 226) chalcopyrite, or shears at a diorite contact with the fault zone (Minfile 230) with Creek Harrymel sphalerite, pyrite, magnetite, specular hematite, or in sheared epidotized greywackes in the Harrymel fault zone with sphalerite, pyrrhotite, pyrite, galena and chalcopyrite.


Mapping in the Virginia Lake area by Grove (1986) and Alldrick (1989) gives the geological framework, but no previous detail mapping is available (Figure 5).


Three samples from the 1987 Regional Stream Sediment Geochemical Survey (G.S.C. Open File 1645) were collected from creeks draining the Virginia Lake property (Figure 5). Sample 871378 taken from the

<u>TABLE #4</u>

LEGEND for Figure 5, 6

UNUK RIVER DIORITE SUITE: MAX 9b Biotite-hornblende diorite: quartz diorite LOWER JURASSIC (Pliensbachian to Toarcian) 3 Betty Creek Formation: heterogeneous pyroclastic-epiclastic sequence; pillow lava UPPER TRIASSIC (Camian to Norian) 1 Lower Volcanosedimentary Sequence: mixed sediments interbedded with mafic to intermediate volcanics and volcaniclastics METAMORPHIC EQUIVALENTS OF 1, 3 F Strongly sheared rocks within the Unuk -Harrymel Fault Zone Lineament Contact Approx. Proposed fault Assumed fault Specifically for Figure 5: MF 230X MINFILE REPORT FROM B.C. M.E.M.P.R. GEOLOGY BRANCH. grids, rock and soil sampling (Arnold, 1989) rock, silt, heavy mineral sample site , X, (Arnold, 1989) X 871377 stream sediment sample site from G.S.C. O.F. 1645, values > 90th percentile Specifically for Figure 6: dyke like magnetics anomaly EM anomaly 0 - 2 mhos from Dvorak (1989) EM anomaly 2 - 4 mhos from Dvorak (1989)

north central area of the Jo Jom claim had 343 ppb Au. A second sample (871377), draining the west side of the Carl J claim, had 430 ppm Zn, 340 ppm Ni, 43 ppm Co and 143 ppm V. Draining the east side of the Dwayne 1 claim, sample 871382 had 340 ppm Zn, 350 ppb Hg and 5.6 ppm Sb. All the values just quoted are >90 percentile for their rock type classification except >80 percentile for the 5.6 ppm Sb.

An airborne geophysical survey by Aerodat (Dvorak, 1989) over the Virginia Lake property is summarized on It contains a prominent linear magnetic Figure 6. anomaly paralleling the east side of Harrymel Creek which is interpreted as a dyke being terminated by a lineament (fault) near the north end of the Jo Jom claim. Several dyke like magnetic anomalies trending northwest are mapped along the central south side of the Jo Jom claim. They may represent dykes or magnetic concentrations along the contact of the Harrymel Creek fault zone. Linear features defined by magnetics may reflect geological contacts or tectonic features of terminations, regional character. Numerous interruptions and offsets trending northeast are interpreted as structural features.

There are no significant EM anomalies on the claim block, although a few exist on the Patsy Ann claim which probably reflect conductive river sediments.

Resistivity features are believed to be caused by bedrock sources and are governed for the most part by structures defined by the magnetics. A prominent resistivity break trending almost due east-west occurs in central Jo Jom claim. No prominent resistivity lows are in the claim block.

In September 1989 a reconnaissance geological and geochemical sampling program was carried out by R. Arnold (1989) of Hi-Tec Resource Management Ltd. Three small grids were flagged and soil sampled (Figure 5). Rock, stream sediment silt and heavy mineral samples were collected where possible on these grids and from limited further traversing. Arnold stated that special attention should be paid to the Jo Jom grid to find the source of the 5200 ppb Au in heavy mineral sample HM-502 and to the Carl grid in the vicinity of the heavy sample HM-503 which contained 12,300 ppb Au. Soils on these grids and on the Patsy Ann claim were analyzed for Au, Ag, Cu, Pb, Zn, Ba and Sb; and were for the most part uninteresting.

1.6 1990 Grid

The grid work on the Virginia claims focused on the Jo Jom claim as it was the focus of coincident airborne geophysical and airphoto lineament features.

Due to the presence of cliffs, two grids were established. The cross lines and baselines are marked with orange flagging with 50 m stations on lines and base lines being marked with orange and blue flagging. Grid locations of the stations were written on the flagging with a felt pen. In total, 2,850 m of base line and 16,550 m of grid line were established (Figure 12).

The grids were easily tied into the orthophoto maps as there are an abundance of ponds, gulches and hills.

The west grid's base line was oriented at 320°; cross lines were established every 100 m and oriented at

050°. This grid covers the north northwest trending major lineament, with associated "dyke like magnetic features" (Dvorak, 1989) (Figure 6).

The east grid's base line was oriented at 013°, cross lines were established every 100 m and oriented at 103°. This grid covers oblique northeast trending lineaments as well as north-northwest trending lineaments.

2.0 GEOLOGY

2.1 Regional Geology, Stratigraphy, Structure And Metamorphism

Geological mapping in the area (Figure 4) began with Forrest Kerr in the 1920's (Kerr, 1948); this work is incorporated into Operation Stikine (G.S.C. 1957). E.W. Grove (1971, 1986) mapped in the area incorporating early 1960's mapping by Newmont Mines The Bronson Creek area was mapped in 1987-Limited. 1988 by Lefebure and Gunning (1989) while the east and west halves of Figure 4 were mapped by Alldrick et al (1989) and Alldrick et al (1990) between 1987 - 1989. is re-mapping the entire 104B sheet The G.S.C. (Anderson, 1989; Anderson and Bevier, 1990).

The map area is situated in the southern Boundary Ranges of the Coast Mountains physiographic belt, on the western edge of the Intermontaine Tectonic belt. The northern three quarters of the area is Stikine Terrain; the rest is part of the Coast Plutonic Complex.

The four main tectonostratigraphic assemblages (Anderson 1989) bounded by unconformities are:

- 1) Tertiary Coast Plutonic Complex
- Middle and Upper Jurassic Bowser overlap assemblage
- Triassic Jurassic volcanic plutonic arc complexes.
- 4) Paleozoic Stikine assemblage.

Most at the area (Figure 4) is underlain by a thick succession (more than 5 km) of sedimentary and volcanic rocks of Upper Triassic to Lower Jurassic age. These volcano - sedimentary arc - complex lithologies are characterized by rapid facies changes. Pleistocene and recent basaltic flows and tephra are preserved along Snippaker Creek, Iskut River, Unuk River and at Lava Lakes. The strata have been cut by at least four intrusive episodes spanning Late Triassic to Quaternary, including synvolcanic plugs, dykes, dyke swarms and the batholitic Coast Plutonic Complex. The stratigraphic sequence has been folded, faulted and metamorphosed mainly during Cretaceous time, but earlier Paleozoic strata are polydeformed, probably recording an earlier deformational event.

The volcanic and sedimentary rocks may be subdivided into four packages. Stratigraphic correlations are complicated by a combination of facies changes and north trending high angle regional faults across the Unuk River valley.

PALEOZOIC

Paleozoic rocks extensively outcrop west of the Craig River. They are characterized by thick, platformal

carbonate sequences, coralline reefs and mafic to felsic volcanics. Gneisses, meta-wacke, meta-tuff and marbles in the Mt. Zara area are tentatively assigned to the Paleozoic.

MESOZOIC

Upper Triassic

Upper Triassic rocks which are believed to be equivalent in age to the Stuhini Group of Souther (1971) outcrop throughout the region. Volcanic rocks (unit 2V Figure) are the most common and comprise basaltic to dacitic pyroclastics to flows. Plagioclase and pyroxene form characteristic phenocrysts.

Sedimentary rocks (unit/2S) are mostly rhythmic bedded siltstone with minor fine grained wacke, associated limestone lenses and volcaniclastic material (andesitic ash tuff to volcanic sandstone).

Various local volcanic units have been identified including chloritized pyroxene crystal tuffs in the Olatine Mountain area (unit 2M); dacitic pyroxene plagioclase tuffs on Winslow Ridge; and andesite to dacite pyroclastics with locally distinguishing coarse (lcm) hornblende phenocrysts in the McQuillan Ridge area.

Lower Jurassic

Lower Jurassic rocks are extensively exposed and are mainly andesitic to dacitic fragmental volcanics with minor basaltic tuffs, siltstone, wacke and conglomerate. Pillow lavas and felsic pyroclastic units may serve as markers even though the package is marked by lateral facies changes, variable colors and lithologic heterogeneity.

Three subdivisions exist in the Lower Jurassic including from oldest to voungest а Norian to Sinemurian andesitic sequence (Unuk River Formation), a Pliensbachian to Toarcian pyroclastic to epiclastic sequence (Betty Creek Formation) and to the east of the Harrymel Creek fault zone the upper unit felsic volcanic sequence (Mt. Dilworth Formation) of Toarcian age.

The Unuk River Formation is characterized by porphyritic andesites of massive to tuffaceous nature with interbeds of immature siltstones (turbidites), conglomerates and limestone.

The Betty Creek Formation is a pyroclastic - epiclastic sequence. Andesitic to rhyolitic, variably colored, well bedded lithic tuff to lapilli tuffs dominate with minor interbeds of siltstone, shale and argillite.

West of the Harrymel Creek fault zone the Lower Jurassic is terminated by the Mt. Dillworth Formation, a regionally extensive blanket of felsic pyroclastics, which include welded tuffs and rare flows.

Middle Jurassic sedimentary rocks mainly outcrop to the northwest of the property in the Prout Plateau area. These Salmon River Formation sediments are mainly turbiditic siltstones and fine sandstones.

Quarternary

Pleistocene and Recent basalt flows and tephra are locally preserved on Copper King, Snippaker and King Creeks and are evident throughout the area aging from 70,000 years to as recent as 130 years old.

Intrusive Rocks

The stratified rocks have been intruded by dyke swarms, dykes, sills and plutons of differing compositions and texture during at least four episodes from the Triassic to Eccene.

Triassic dykes, sills and plugs are hornblende diorites contemporaneous with Triassic host volcanics, which are typically located north of the Iskut River.

Intrusive dykes, sills and plugs, believed to be of Jurassic age, range from dioritic stocks on McQuillan Ridge and near Melville Glacier, to gabbroic stocks at John Peaks and Nickel Mountain and to felsic stocks on Johnny Flats and on the Inel property. The Lehto batholith is a monzonitic to dioritic porphyritic mass which trends east-west across Snippaker Creek 10 km south of the Iskut River. The Lee Brant stock located east of the south Unuk River covers 40 square km and is a hornblende - biotite quartz monzonite. Both the Lehto and Lee Brant intrusions have potassium feldspar phenocrysts and are similar to the Summit Lake and Texas Creek plutons of the Stewart, B.C. region.

Plutonic Complex underlies the The Eocene Coast ranges southwest corner of the region. It in composition from biotite granite to biotite hornblende are thermally quartz diorite. Country rocks metamorphosed.

2.2 Property Geology

The mapping and prospecting on the Virginia claims focused on the Jo Jom claim as it was the focus of coincident airborne geophysical and airphoto lineament features (Figure 8).

As the surface expression of the property consists of lineament bounded blocks, mapping was clustered in areas of easier access away from the bounding cliffs.

Outcrops to the west of the major north-northwest lineament demarking the east edge of the Harrymel Creek fault zone are foliated intermediate to andesitic volcanics. The more intermediate volcanics may have been pyroclastics as stretched, sheared clasts(?) have been observed. These outcrops are layered green-grey in a north-northwest orientation with steep variably east or west dips. Andesites are dark green, fine grained to feldspar phyric, layered and often with chloritic alteration and minor siliceous streaks.

A few outcrops of diorite, limestone and siltstone were observed along the south side of the west grid. The diorite is coarse grained, equigranular to hornblende phyric, variably magnetic, unfoliated and occurring in sills parallel to foliation. One limestone unit was located on Line 10 + 00N, at Station 8 + 00E. It is cream colored with grey bands and strikes northnorthwest, dipping 85° E to vertical.

From Alldrick's (1989) mapping of the area these Harrymel Creek Fault bounded outcrops may be equivalent to rocks of Upper Triassic Stuhini to Lower Jurassic Hazelton Group age.

One traverse made from L15 + 00N west-southwest to Harrymel Creek encountered mostly intermediate to andesitic foliated volcanics with several large sills(?) of diorite being variably magnetic and pyritic. Grove (1986) mapped the diorites as the Unuk River intrusives of Upper Triassic age. Near Harrymel Creek, a limestone and a tuffaceous siltstone outcrop were mapped. These outcrops are regarded as part of the Upper Triassic Stuhini Group (Britton, 1989).

Two traverses were made from the Jo Jom claim south down the steep hill onto the Patsy Ann claim. Little outcrop is exposed with one outcrop of siltstone and one of andesite (<1% pyrite) sampled. Analysis of these samples (90VCR012,013) returned <5 ppb Au and no anomalous ICP results.

In the gulch (lineament) paralleling the east side of the west grid and to the east, outcrops are jointed and fractured with some strong lineaments but are not strongly foliated as in the west. These rocks are mapped as Lower Jurassic Hazelton Group Betty Creek Formation. For the most part they have been classified as intermediate to dacitic tuffs and applomerates. They vary subtly in composition and more markedly in color from pale cream-green to green grey to buff to purplish. On rare occasions bedding in these chaotic pyroclastics is definitive, being east-westerly striking and dipping moderately north (35°-42°). Auto brecciated layers have been observed in the outcrops. One of the knolls on the east grid is underlain by a coarse breccia which is clast supported, vesicular and intermediate in composition with <1% quartz eyes (L4 + 00S, 0 + 50 E); it may represent an extrusive vent.

Although these rocks undoubtedly represent Betty Creek Formation they are not the archetypical well bedded epiclastics to volcaniclastics.

2.3 Property Structure

Two distinct structural regimes exist on the Virginia Lake property. Within the Harrymel Creek fault zone the rocks are strongly foliated with a north-northwest trending fabric. West of the gulch marking the east edge of the Harrymel Creek fault zone, airphoto lineaments (Figure 12) are close spaced, parallel, northwest trending fault splays.

East of the gulch the lineaments show a more open pattern with north-northwest or west-northwest lineaments. Short north-northeast lineaments occur along the north-northwest lineaments south side. Rock outcrops are fractured and jointed, but are not penetratively deformed. As well there are several east to east-southeast trending lineaments cross cutting both regimes.

3.0 ROCK GEOCHEMISTRY, ALTERATION AND MINERALIZATION

A total of 180 rock samples were collected. Localized grab samples were taken of mineralized features such as joints and shears. In addition, wide spaced grab samples were taken as representative of outcrop areas. This sampling encompasses several of the 1990 located VLF-EM conductors (Figure 7).

Analyses were done by T.S.L. Laboratories of Saskatoon, Saskatchewan, their sample preparation and analytical procedures are outlined in Appendix II. The rocks were analyzed for Au, Hg by special techniques and for 35 elements by ICP (Appendix III). Sample descriptions are detailed in Appendix IV.

Due to a lack of significant values a statistical study of the various elements analyses was not done. Values referreed to in the following text were the highest values obtained.

On the west grid, the rocks are affected by the Harrymel Creek fault zone. Intermediate - andesitic volcanics and are sheared weakly dynamically metamorphosed with guartz segregations, quartz and carbonate veinlets and variable low amounts (<1%-5%) of Irregular fracture and joint controlled pyrite. silicified areas with disseminated pyrite are scattered through the grid area. Except for one area the silicified pyritic areas are analytically uninteresting. Au values are usually <5 ppb, rarely will any of ICP elements be anomalous.

The best mineralization is located between L15 + 00N to L16 + 00N at 10 + 70 E. Exposed on a cliff face are 5-10% silicified andesites with pyrite. At the (000°/40°E, junction of several fracture sets 050°/85°S) are pods of chalcopyrite (1-5%) with 10% pyrite and supergene minerals including limonite and Typical of select samples from this area malachite. are 90VDR001 (<5 ppb Au, 540 ppm Cu, 1300 ppm Zn), 90VTR010 (<5 ppb Au, 1100 ppm Cu, 440 pm Zn) and 90VTR013 (<5 ppb Au, 2800 ppm Cu, 5400 ppm Zn). The best gold values were from 90VDR002 with 25 ppb and 90VLR011 with 35 ppb.

At the south end of the west grid the limestones are unaltered and unmineralized. The diorites have epidote quartz veinlets and up to 1-2% disseminated pyrite and are variably magnetic. Andesites are chloritic near the diorite. Samples (90VCR055, 024, 025, 029) from this area including mineralized diorite ran <5 ppb Au with no anomalous ICP results.

In the east grid area the pyroclastics were weakly pyritic, with <1%-2% pyrite as disseminations. With only one exception all the rocks returned <5 to 5 ppb Au, along with no anomalous ICP analysis in precious metal, base metal or indicator elements. Float sample 90VDR009, an altered grey fine volcanic with 8% pyrite, yielded 110 ppb Au and 360 ppm As.

4.0 GEOPHYSICS

The geophysical survey was conducted by Tim Kelemen, a geophysical technician, using an Omni Plus magnetometer and VLF-EM system. Transmitting stations for the VLF survey were from Jim Creek, Washington, USA (24.8 k Hz) and Annapolis, Maryland, USA (21.4 k Hz). The data was processed using "Geosoft", a geophysical computer software program and plotted as contoured magnetic data (Figures 9-1, 9-2) or VLF profile's on plan maps (Figures 10-1, 10-2, 11-1, 11-2).

Syd Visser, consulting geophysicist, has reviewed the data and his remarks are as follows:

" LOWER GRID (Grid 1)

The VLF-EM anomalies marked on the profile map of the dip angle are described separately as follows.

Anomaly A

This anomaly which extends from approximately line 1400N to line 1800 N between approximately 1100E and 1300E appears to be a conductive bed or layer dipping down the slope (likely close to parallel) of the hill. The extent of this anomaly is shown by the hatched outline on the profile map of the dip angle from frequency 24.8 (Seattle).

Anomaly B

Anomaly B appears to be the continuation of the western contact of anomaly A but the rocks to the east do not appear to be as conductive. This is somewhat affected by the topography and if the dip of the conductive bed became shallow it would not be as noticeable.

Anomaly C

Anomaly C which is located at approximately 1050E between lines 1500N and 1700N and is open to the north and is a very good conductor. This conductor does not appear to have very good depth extent although the signature is somewhat complicated by the conductive zone to the east and the change in topography in this area.

Anomaly D

Anomaly D which strikes across the grid at approximately 900E is a weak conductor and is like a fault zone or contact anomaly which appears to be at least partly due to topography.

Anomaly E and F

Anomalies E and F are very weak anomalies and are likely due to either topography, a contact zone or fault.

Magnetics

There appears to be a very weak magnetic high directly to the east of both anomalies C and D. These anomalies are only of the magnitude of a few hundred Nt and appear to be mainly single station anomalies therefore not very reliable.

Summary

The VLF anomalies A, D and C should be investigated further for possible mineralization. The magnetic data should be plotted on profiles to see if there is a better correlation with the VLF and to see if any of the anomalies are more than one point anomalies. Contouring the magnetics at 10 Nt intervals when the accuracy of a survey in this type of terrain is likely less than +/- 20 Nt is not advisable. Surveying with a station spacing of 12.5 m is also advisable with the magnetometer and VLF-EM in this type of terrain especially when looking for narrow targets.

<u>UPPER GRID (Grid 2)</u>

There is no indication of any anomalies in the VLF or magnetic data on the upper grid with the exception of a possible weak VLF anomaly at approximately 125E on line 900S. All the weak crossovers seen in the VLF data are long wavelength and appear to be entirely due to

topography. Because of the conductive background rocks in this area the dip angle closely follows topography."

5.0 DISCUSSION

Three airborne magnetic, dyke-like features were noted by Dvorak (1989) on the southern part of the Jo Jom claim. All three features are in cliff areas.

The western dyke-like magnetic feature parallels Harrymel Creek, 150-200 m to the east. The area was not traversed, but a traverse to the south and east revealed magnetic, pyritic diorite intruding andesites.

The central dyke-like magnetic feature also defines a cliff. A traverse along the cliff top revealed weakly magnetic diorite intruding foliated tuff and andesite with nil-3% pyrite. Three rock samples of variably pyritic and silicified host rocks were geochemically uninteresting returning <5 ppb Au (samples 90VCR027, 028, 029).

The eastern dyke-like magnetic feature forms a cliff edge in the south east corner of the Jo Jom claim. Samples from the immediate location were not taken, but rock samples taken just to the east were andesites with up to 1% pyrite and silicified shears (sample 90VCR012). Analytical results for rock samples in this area (samples 90VCR012-90VCR017) all ran <5 ppb Au with no anomalous ICP values.

Visser's interpretation of the ground VLF-EM, magnetometer survey focused on VLF anomalies A, C and D (Figure 10-1, 11-1, 12) which he felt may be geological contacts or mineralized structures. Rock samples were taken and geological mapping was carried out on three traverses over VLF anomaly D. In the south on L10 + 00N the VLF crossover coincides with a limestone-andesite contact. On L12 + 00N silicified, pyritic banded tuffs were located near the crossover. Rock sample 90VCR033 of the above material yielded 5 ppb Au and 297 ppm Cu. On L14 + 00N several rock samples were taken near the crossover, namely samples 90VCR014 and 90VPR019; the former was an intermediate tuff and the latter was a rhyolite (silicified?) with carbonate veinlets and 3% pyrite. Analytically, both samples returned <5 ppb Au and no anomalous ICP values.

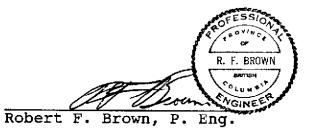
Further north VLF anomaly D is unsampled and north of L17 + 00N where the grid ends the VLF anomaly is open.

VLF anomaly C located between L17 + 00N to L15 + 00N and 25-75 m east of the base line is a strong Many rock samples have been taken in this conductor. area of foliated, banded tuffs with variable silicification and up to 5% pyrite. Typical samples close to the crossover are intermediate foliated tuffs with 1-2% pyrite and carbonate-quartz veins. Rock samples 90VPR010, 011, 013, 026, 027, 028 and 90VJR015 represent this area. All samples had < 5 ppb Au, while only the ICP of 90VPR011 had anomalous values with 270 ppm Zn and 100 ppm Cu.

Immediately east of VLF anomaly C is a small cliff which is limonitic with fracture controlled silicification and associated pyrite and chalcopyrite. Grab samples 90VPR014-017 taken at location L16 + 00N, 9 + 25E typically yielded <5 ppb Au with anomalous Cu and Zn (710 ppm and 4000 ppm respectively) in sample 90VPR015.

No outcrop was mapped within the cross hatched area (Figures 10-1, 10-2) indicating VLF anomaly A. This area has a steep slope to the west giving way eastward to a swampy bowl; no mineralized float or outcrop was seen in this area. Anomaly B is the north continuation of the west flank of VLF anomaly A. It marks the base of a hill side with no outcrop. Outcrops up hill are weakly silicified and pyritic (1-2%) andesites to foliated tuffs.

The VLF anomalies trend north-westerly following the geological fabric of the Harrymel Creek fault zone. Linear features, taken from an airphoto interpretation show a subparallel nature (Figure 12).


Stream sediment heavy mineral concentrate sample HM-502 (Arnold, 1989) and stream sediment sample 871378 (G.S.C. O.F. 1645) returned values of 5,200 ppb Au and 343 ppb Au respectively. Both of these samples were taken in the main gulch along the east side of the Harrymel Creek fault zone. Soil sampling by Arnold (1989) did not return anomalous values and the 1990 VLF-EM and magnetometer surveys did not indicate a conductor in the main gulch. Rock sampling and geological mapping in 1990 of abundant outcrop flanking the gulch located one gossanous zone previously described in the L15+00N to L16+00N, 10+75E area, with the highest rock sample value being 35 ppb Au. The author's believe that pit profile sampling may be

beneficial in disclosing the source of the gold values (fault zone?) from the stream sediment sampling.

Respectfully Submitted,

HI-TEC RESOURCE MANAGEMENT LTD.

COCIAT/ ବୁ d.a. collens Denis A. Collins, Ph.D., P. Geol., F.G.A.C.

November 6, 1990

FEILLON

6.0 REFERENCES

- Alldrick, D.J. Britton, J.M., Webster, I.C.L. and Russell, C.W.P. (1989a): Geology and Mineral Deposits of the Unuk Map Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-10.
- Alldrick, D.J. Britton, J. M., MacLean, M.E., Hancock, K.D., Fletcher, B.A., Hiebert, S.N.(1990): Geology and Mineral Deposits of the Snippaker Area (N.T.S. 104B/6E.7W, 10W, 11E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-16.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia, Current Research, Part E; Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Anderson, R.G. and Bevier, M.L. (1990): A Note on Mesozoic and Tertiary K-Ar Geochronometry of Plutonic Suites, Iskut River Map Area, Northwestern British Columbia, Current Research, Part E; Geological Survey of Canada, Paper 90-1E.
- Arnold, R.R., (1990): Geological and Geochemical Report on the Virginia Lake Property, Iskut River Area, British Columbia for Consolidated Regal Resources Ltd. and Consolidated Rhodes Resources Ltd., 26 pages.
- Britton, J.M., Webster, I.C.L. and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., Fletcher, B.A., Alldrick, D.J.,(1989): Snippaker Map Area (104B/6E, 7W, 10W, 11E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1, pages 115-125.
- Dvorak, Z. (1989): Report on a Combined Helicopter Borne Magnetic, Electromagnetic and VLF Survey, Unuk River -Area 2, British Columbia, 26 pages.

Grove, E.W. (1971): Geological and Mineral Deposits of the Stewart Area, British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 58, 219 pages.

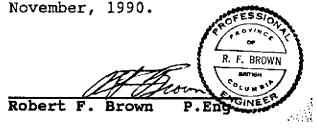
- (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63, 152 pages.

Hardy, J.L. and Chapman, J. (1989)

Compilation Report on the Virginia Lake Property (Dwayne I, Carl J, Patsy Anne, and Jo Jom Claims), Iskut River Area, British Columbia. Unpublished Report for Consolidated Regal Resources Ltd. and Consolidated Rhodes Resources Ltd.

- Hawkins, P.A. (1987): Report on Reconnaissance Mapping and Prospecting in the Unuk River Area, Skeena and Liard Mining Divisions, Northwestern B.C., B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 16858, 73 Pages.
- Lefebure, D.V. and Gunning, M.H. (1989): Geology of the Bronson Creek Area, (104B/10W, 11E), B.C. Ministry or Energy, Mines and Petroleum Resources, Open File 1989-28.
- National Geochemical Reconnaissance 1:250 000 Map Series (1988): Iskut River, British Columbia (NTS 104B), Geological Survey of Canada, O.F. 1645, B.C. Ministry of Energy, Mines and Petroleum Resources, RGS-18.

APPENDIX 1


STATEMENTS OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- I, Robert F.Brown, of the City of Vancouver, Province of British Columbia, hereby certify :
- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd., of Vancouver, British Columbia, Canada.
- THAT I obtained a Bachelor of Science (Engineering) degree in Geology from Queens University at Kingston, Ontario, Canada in 1975.
- 3. THAT I have been practising my profession as a geologist since 1975.
- 4. THAT I am a registered Professional Engineer, in good standing, with the Association of Professional Engineers of British Columbia.
- 5. THAT this report is based upon the results of an extensive field program of geological mapping, geochemical sampling and geophysics supervised by the author between July September, 1990. All published maps and reports on the Virginia Lake property and the surrounding area have been thoroughly reviewed.
- 6. THAT I have no interest in the Virginia Lake property, nor the securities of Consolidated Rhodes Resources Ltd. or Consolidated Regal Resources Ltd. or any company associated with the property, nor do I expect to receive any such interest.

Dated in Vancouver, British Columbia, this 6th day of

STATEMENT OF QUALIFICATIONS

I, DENIS A. COLLINS, of the City of Vancouver, Province of British Columbia, hereby certify:

- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd., of Vancouver, British Columbia, Canada.
- 2. THAT I obtained a Bachelor of Science degree in Geology from University College Cork, Ireland in 1980 and a Ph.D. in Structural Geology from the same university in 1985.
- 3. THAT I have been practising my profession as а geologist in Ireland, South Africa and Canada since 1980.
- 4. THAT I am a Fellow, in good standing, with the Geological Association of Canada.
- 5. THAT I am a registered Professional Geologist, in good standing, with a license to practice with the Association of Professional Engineers, Geologists and Geophysicists of the Northwest Territories.
- б. THAT this report is based upon the results of an field program of geological mapping, extensive geochemical sampling, and geophysics supervised by the author between July - September, 1990. All published maps and reports on the Virginia Lake property and the surrounding area have been thoroughly reviewed.
- 7. THAT I have no interest in the Virginia Lake property claims of described herein, nor in securities Consolidated Rhodes Resources Ltd. or Consolidated Regal Resources Ltd. or any company associated with the property, nor do I expect to receive any such interest.

Dated in Vancouver, British Columbia, this 6th day of November, 1990.

Denig Collins Collins, Ph.D., P. Geol., F.G.A.C.

APPENDIX II

۲ د

.

.

.

.

·

.

•

.

GEOCHEMICAL PREPARATION AND ANALYTICAL PROCEDURES

DIVISION OF BUHGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

1 - SAMPLE PREPARATION PROCEDURES Rock and Core

- Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.

Soils - Sample is dried and sieved to -80 mesh.

2 - FIRE ASSAY PROCEDURES Geochem Gold (Au ppb) -A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

Assay Silver (Ag oz/ton) -A 2.00g sample is digested with 15mls HC1 plus 5mls HN03 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HC1. The solution is then run on the Atomic Absorption.

- 3 BASE METALS Geochem - A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the Atomic Absorption.
 - Assay A 0.500g sample is taken to dryness with 15mls HCl plus 5mls HN03, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution is run on the Atomic Absorption.

DIVISION OF RUHGENER LECHNICAL ENTERPHISES I. MITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

7. Mercury Analysis -

A 1 gram subsample is digested with 4mls of nitric acid plus 1ml of sulfuric acid in a water bath for 1 1/2 to 2 hours, diluted with DI water. A couple of drops of a potassium permangante solution are then added to each sample solution. An aliquot of each solution is then analyzed on the A.A. by a cold vapor procedure.

Yours truly,

Bernie Dunn

BD/vh

APPENDIX III

۲ د

.

1

.

ANALYTICAL DATA FOR ROCK SAMPLES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S9338

INVOICE #: 14564 P.O.: R-2089

SAMPLE(S) OF ROCK

D. Lucas Project: 90-BC-20

REMARKS: Hi - Tec Resources

		Au ppb	Hg ppb	
90-VTR-00 90-VTR-00 90-VTR-00 90-VTR-00 90-VTR-00	2 3 4	<5 <5 <5 <5 <5	20 10 <10 10 10	
90-VTR-000 90-VTR-000 90-VTR-000 90-VTR-000 90-VTR-010	7 B 9	<5 <5 <5 <5 <5	40 10 10 10 10	
90-VTR-012 90-VTR-012 90-VTR-012 90-VTR-014 90-VTR-015	2 3 4	<5 <5 <5 <5 <5	10 <10 90 <10 <10	
90-VTR-016 90-VTR-015 90-VTR-018 90-VTR-019 90-VJR-001	7 3 9	<5 <5 <5 <5 <5	<10 <10 10 <10 <10	
		Transaral	-	-

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

SIGNED

Bernie Vie Page 1 of 4

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATOR DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🕝 (306) 931-1033 - FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. \$9338

SAMPLE(S) OF ROCK

INVOICE #: 14564 P.O.: R-2089

D. Lucas Project: 90-BC-20

REMARKS: Hi - Tec Resources

	Au ppb	Hg ppb	
90-VJR-002 90-VJR-003	<5 <5	<10 <10	
90-VJR-004 90-VJR-005	<5 <5	<10	
90-VJR-006	<5	<10 <10	
90-VJR-007	<5	<10	
90-VJR-008	<5	<10	
90-VJR-009	<5	<10	
90-VJR-010	<5	<10	
90-VJR-011	<5	<10	
90-VJR-012	<5	<10	
90-VJR-013	<5	<10	
90-VJR-014	<5	<10	
90-VJR-015	<5	<10	
90-VJR-016	<5	<10	
90-VPR-001	<5	<10	
90-VPR-002	<5	10	
90-VPR-003	<5	90	
90-VPR-004	<5	<10	
90-VPR-005	<5	<10	
COPIES TO:	C. Idzisze	k. J.	Foster
INVOICE TO:	Prime - Va	ncouve	r

Aug 13/90

SIGNED

Cernie Du Page 2 of 4

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. \$9338

INVOICE #: 14564 P.O.: R-2089

SAMPLE(S) OF ROCK

D. Lucas Project: 90-BC-20

REMARKS: Hi - Tec Resources

	Au ppb	Hg ppb	
90-VPR-006	<5	<10	
90-VPR-007	<5	<10	
90-VPR-008	<5	<10	
90-VPR-009	<5	. <10	
90-VPR-010	<5	<10	
90-VPR-011	<5	<10	
90-VPR-012	<5	<10	
90-VPR-013	<5	<10	
90-VPR-014	<5	<10	
90-VPR-015	<5	70	
90-VPR-016	<5	<10	
90-VPR-017	5	<10	
90-VPR-018	<5	<10	
90-VPR-019	<5	<10	
90-VPR-020	<5	<10	
90-VPR-021	<5	<10	
90-VPR-022	<5	<10	
90-VPR-023	<5	<10	
90-VPR-024	<5	<10	
90-VPR-025	<5	<10	
COPIES TO:	C. Idzisz	ek J B	'oster
THUCKOF MO.		,	COLET

INVOICE TO: Prime - Vancouver

Aug 13/90

SIGNED

Bernie (Page 3 of 4

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEVAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B. C. V6C 2X6

> INVOICE #: 14564 P.O.: R-2089

SAMPLE(S) OF ROCK

D. Lucas Project: 90-BC-20

REMARKS: Hi - Tec Resources

	Au ppb	Hg ppb
90-VPR-026	<5	<10
90-VPR-027	<5	<10
90-VPR-028	<5	<10
90-VPR-029	<5	<10
90-VCR-010	5	<10
90-VCR-011	20	10
90-VLR-001	<5	40
90-VLR-002	<5	<10
90-VLR-003	<5	10
90-VLR-004	<5	<10
90-VLR-005	5	20
90-VLR-006	<5	10
90-VLR-007	<5	10
90-VLR-008	<5	40
90-VLR-009	<5	10

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

Remie V SIGNED 4 of 4 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 S7K 684

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9338 - 1
10th Floer Box 10	T.E.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 14679
Vancouver B.E. V6C 2X6	
ATTN: J. FOSTER PROJECT: 90-BC-20 - HI-TEC P.O. R-2069	ALL REBULTS PPM

90-VTR-001 90-VTR-002 90-VTR-003 90-VTR-004 90-VTR-005 90-VTR-006 50-VTR-007 90-VTR-009

بعرابيهم وبرابيه والاوا ليمتنيهم وتمعمون والرزار

ELEMENT

ลิโปสายเปล	[A]]	26000	19000	16000	17000	9100	17000	19000	14000
Iron	[Fe]	49 000	51000	37000	37000	21000	21000	34000	28000
Calcium	(Ca)	16000	6600	9E000	8200	6700	11000	17000	6300
Magnesium	[Mg]	B400	6000	6000	6 500	5400	5500	6700	6100
Sodium	[Na]	210	220	63	150	190	E0	170	260
Potassium	[K]	180	130	580	150	330	240	430	340
Titanium	[]]	2400	2400	270	1400	360	990	68	49
កំណុចនាទទទ	EMnl	75 0	4 E0	1700	580	320	290	870	510
Phospharus	[P]	560	870	420	910	270	730	630	520
Barium	[Ba]	86	34	45	15	23	10	30	27
Chroniua	[Cr]	77	15	30	20	47	34	13	17
Zirceniua	[2]]	27	14	11	7	4	10	7	4
Coper	{Cu]	31	31	17	1é	6	11	34	24
Nickel	[Ni]	27	В	10	11	7	12	5	4
Lead	[96]	2	< 1	₹ 1	< 1	5	9	1	2
Zinc	[In]	87	76	31	120	24	27	51	42
Vanadium	{V]	180	190	100	62	29	42	110	83
Strontium	(Srl	40	16	840	34	34	11	36	13
Cobait	[Co]	19	20	12	47	6	5	12	9
Molybdenus	[%]	< 2	< 2	< 2	< 2	< 2	Κ 2	< 2	< 2
Silver	[Ao]	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1
Cadmium	[[d]	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	$\langle 1 \rangle$	< 1	< 1
Berylliuæ	[Be]	< 1	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1
Barca	(B 1	< 10	< 10	< 1 0	< 10	< 10	< 10	< 10	< 10
Antizony	(Sb)	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrica	[Y]	15	16	17	17	8	5	7	6
Scandium	[5c]	20	6	17	4	3	2	7	4
Tungsten	EW 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nisbium	(ND)	K 10	< 10	く 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	40	40	30	30	20	20	30	30
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5	10	< 5
Bisouth	[Bi]	< 5	< 5	Κ 5	< 5	< 5	< 5	< 5	< 5
Tin	[<u>5</u> n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	(Li)	110	160	90	65	60	50	55	45
Holaiua	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

Bernie Vum

.

2-302-48TH	STREET, SASKATOON, S	Baskatchewan	S7K 6A4
	TELEPHONE #: (306)	931 - 1033	
	FAX #: (306)	242 - 4717	

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9338 - 2
10th Flaor Box 10	₹.S.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 14679
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: 90-BC-20 ~ HI- TEC P.B. R-2089	ALL RESULTS PPM

90-VTR-007 90-VTR-010 90-VTR-011 90-VTR-012 90-VTR-013 90-VTR-014 90-VTR-015 90-VTR-016

ELEMENT

Aluainsa	[A]]	19 600	17000	24000	17000	25000	8900	4 B00	49(x)
Iron	[Fe]	26000	41000	56000	45000	83000	14000	9700	11080
Calcium	(Ca)	67000	11000	5200	5000	2000	110000	100000	12000
ฟังอุณะระบบต	[Mg]	7200	6900	7800	7100	7700	5100	3200	2700
Sodius	[Na]	60	180	140	220	100	30	20	336
Potassium	CK 1	190	140	120	200	140	50	30	290
Titanium	[]i]	47	190	1800	560	980	300	360	420
Manganese	ដីភា]	960	540	580	490	480	490	610	210
Phosphorus	IP 1	500	700	670	790	64 0	210	240	430
Barius	[8:1	28	21	27	28	24	14	12	14
Chromium	(Cr)	290	53	110	32	59	27	10	24
Zirconium	[7]	6	6	10	6	14	3	2	1
Cooper	(Cu)	51	1100	700	920	2800	96	53	16
Nickel	[Ni]	170	19	33	7	20	10	6	2
Lead	[25]	< 1	4B	< I	< 1	$\langle 1 \rangle$	< 1	< 1	$\langle 1 \rangle$
Zinc	[Za]	27	440	1400	490	5400	250	9 1	25
Vanadium	[V]]	9B	100	130	150	120	41	29	24
Strontius	[5r]	130	20	9	9	3	180	110	16
Cobait	(Ca)	15	11	6	8	9	5	3	2
Mo lybdenua	(No]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
	(Ag 3	< 1	< 1	1 >	< i	< 1	< 1	< 1	< 1
	[23]	< 1	4	20	5	65	3	< 1	< 1
	(Be]	$\langle 1 \rangle$	< 1	< 1	(1	< 1	1 >	< 1	(I
•	CB 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Anticenv	(SP)	10	< 5	5	< 5	Κ 5	< 5	< 5	< 5
•	[Y]	ę	7	6	6	4	9	6	3
	[Sc]	ę	7	10	11	13	4	1	< 1
	[#]	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10
÷	[Nb]	< 10	< 10	< 10	< i0	< 10	< 10	< 10	< 10
	[Th]	< 10	30	30	30	50	30	50	< 10
+	[As]	< 5	20	< 5	< 5	15	< 5	< 5	< 5
	[Bi]	< 5	< 5	< 5	< 5	(5	< 5	< 5	< 5
	[Sn]	< 10	< 10	(10	< 10	< <u>10</u>	< 10	< 10	< 10
	(Li)	55	55	60	45	60	45	40	30
	[Ho]	10	< 10	< 10	< <u>10</u>	č 10	20	20	< 10

SIGNED : Beince Ounn

TEL LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

E.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

. •

T.S.L. REPORT No. : S - 9338 - 3

10th Floor Box 10	T.S.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 14679
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: 90-BC-20 - HI-TEC P.O. R-2089	ALL RESULTS FPM

90-VTR-017 90-VTR-018 90-VTR-017 90-VJR-001 90-VJR-002 90-VJR-003 90-VJR-004 90-VJR-005

. . .

ELEMENT

Al	យារំពយា	[A]]	60	(6)	2766) 9700	19008	11000	19000	17000	16000
In	00	[Fe]	130	0.Ú	470X) 23000	32000	30000	36000	42000	
£3	ໄຊເບດ	[[1]]	200	00	4006	3500	8200	800	3B60	3600	
Mac	ผู่ถ€รเนณ	£Mo 1	34(90	1600) 5300	7300	2900	7000	6700	6700
	⊆ ฉ£บก	(Na)	2	20	35(120	260		170
Po	tassium	EK 3	3	00	17() 380	300	1200	430		t30
Ţi	taniua	[71]	21	80	41() 530	150	41	470	980	
Ma	nganese	[Mn]	34	00	11() 220	680	120	600	490	430
Pho	oschorus	{P]	4	70	S1 () 720	6 20	720	620	690	400
	าเปล	{Bal		12	10) 17	31	110	20	26	11
Cha	roaium	[Cr]		17	18	63	11	15	22	28	56
Zis	າວວາເພ	[Ic]		1	1	. 2	5	3	4	7	4
	oper	[Cu]		22	ç	98	19	37	16	170	49
	ckel	[Ni]		2	1	15	4	3	6	5	12
Le	ad	(Pb3		2	5	; 5	2	25	6	15	1
Zie	ຄວ	[]a]		25	ç	, 1 <u>1</u>	53	81	65	300	40
Vai	nadius	[V]		23	19	7 52	110	30	93	140	79
Sti	rentium	(Sr1	4	22	10) 13	17	11	7	5	4
Col	balt	{Col		2	2	2 5	12	3	10	12	9
Mai	lybdenua	[Mol	<	2	(2	2 < 2	< 2	< 2	< 2	< 2	< 2
Si	iver	[Ag]	<	1	< 1	L < 1	- < <u>i</u>	< 1	< 1	< 1	< 1
Cas	ปีดเปล	[[d]]	<	1	< 1	L < 1	< 1	< 1	< t	2	< 1
Bei	rylliu≋	[Bel	<	1	< 1	. < 1	< i	< 1	< 1	< 1	< 1
Be	הסת	EB 3	X	10	< 10			< 10	< 10	< 10	< 10
An	tisoay	(Sa 1	K	5	< 5		10	< 5	< 5	< 5	< 5
Yt	trium	[¥]		4	7	2 2		3	3	4	4
Sc	ancium	[5c]	ζ.	1	< 1		-	2	ţ	10	5
ស្រ	ngsten	EW 1		10	< 10			< 10	< 10	< 10	< 10
Ni	obies	{Nb}}	<	10	< 10			< 10	< 10	< 10	< 10
The	oriun	[Th]	< 1	10	< 10			60	40	30	20
Ar:	senic	[As]	<	5	< ₹			15	15	20	< 5
Bis	south	[Bi]	<	5	(5		-	< 5	< 5	< 5	< 5
Tir		(Sn)		10	< 10			< 10	< 10	< 10	< 10
	111 <u>1</u> 11	l		20	20			20	. 30	25	20
He	商記に改	[Ho]	< 1	10	< 10) < 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Bernie Dum

ELEMENT

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SEAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9335 - 4
10th Floor Box 10	T.S.L. File No. :
808 West Rastings St.	T.S.L. Invoice No. : 14679
Vancouver E.C. V&E 2X6	
ATTN: J. FUSTER PROJECT: 90-BC-20 - HI-TEC P.D. R-2089	ALL RESULTS PPM

90-VIR-006 90-VIR-007 90-VIR-008 90-VIR-009 90-VIR-010 90-VIR-011 90-VIR-012 90-VIR-013

Aluaioua	[A]]	9E00	18000	25000	21000	28000	9700	12000	6700
Iroa	[Fe]	24000	4B000	56000	45000	52000	11000	17000	15000
Calcium	(Cal	63000	4000	9300	6200	5900	110000	110000	14060
Magnesium	(Mg)	4800	6400	7900	7400	E4 00	5400	5900	3700
Sodiua	[NL]	110	190	120	350	260	20	56	250
Fotassium	EK 3	6 0	110	210	160	140	30	180	490
Titanius	[Ti]	2 9 0	340	B50	7B0	1700	430	510	350
Малфалеве	(Ha)	5 50	500	670	590	700	580	520	139
Phosoharus	[9]	300	350	650	600	960	140	330	630
Barium	[Ba]	10	12	34	34	27	17	17	15
Chroniua	[[r]]	30	51	79	40	100	27	45	14
Zirconium	[[5]	4	6	13	11	14	3	5	2
Cooper	(Cul	640	2700	720	370	200	18	13	35
Nickel	{Nil	6	6	28	10	35	10	25	2
Lead	[Pb3	10	7	< 1	< 1	< 1	(1	< 1	$\langle 1 \rangle$
Zinc	[26]	200	180	750	25 0	430	36	31	17
Vanadium	(V 1	63	66	160	160	210	35	55	36
Strontius	[Srl	88	7	15	11	6	260	170	23
Copalt	[Co]	8	11	14	14	21	3	8	6
Noiyadenua	[Mol	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ao]	< 1	ą.	8	< 1	$\langle 1$	$\langle 1 \rangle$	< 1	< 1
Cadaium	[[1]]	3	2	5	1	2	< 1	< 1	< 1
Bervllium	(Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	5	10	< 5	15	< 5
Yttrium	EY 1	4	4	5	6	7	8	7	2
Scandium	[Scl	4	5	15	14	20	2	6	< 1
Tungsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 1 0	< 10
Nicoium	(NB3	< 10	< 10	K 10	< 10	< 10	K 10	< 10	< 10
Thorium	[Th]	30	30	30	30	20	20	20	ZO
Arsenic	(As)	35	< 5	< 5	5	< 5	< 5	25	< 5
Bisauth	[Bi]	< 5	< 5	< 5	< 5	Κ 5	< 5	< 5	< 5
Tin	{Sn}	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithism	(Li]	23	25	25	25	20	20	20	10
Hoiaiua	ĭHo}	< 10	< 10	< 10	K 10	< 10	20	10	< 10

SIGNET : ____ Bernie Dunn

2-302-48TH STREET, SASKATOON, SASKATCHENAN 57% 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Repia Digestion 👘

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9328 - 5
10th Floor Box 10	T.S.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 14679
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: 90-EC-20 - HI-TEC P.O. R-2087	ALL RESULTS PPM

ELEMENT

90-VJR-014 90-VJR-015 90-VJR-016 90-VPR-001 90-VPR-002 90-VPR-003 90-VPR-004 90-VPR-005

Alusinum	[AI]	4900	6300	4900	20000	6200	14000	18000	13000
ไรวล	[Fel	14000	16000	13000	43000	16006	30000	28000	31000
Calcium	[Ca]	6200	3900	4800	31000	4000	12000	15000	9200
Maonesium	[Mo]	2300	3300	32 00	7100	3806	6200	8000	5660
Sodiua	[Na]	390	4 00	290	120	270	190	140	250
Potassium	CK 1	680	320	190	210	5û	150	190	100
Titanica	[Ti]	520	550	290	820	340	490	320	670
Manganese	(Mn)	110	170	170	830	290	580	590	520
Phaspharus	[P]	520	77 8	850	530	300	450	460	1000
Barium	[Ba]	26	10	15	200	20	81	57	38
Chromius	[[r]	16	25	20	22	40	59	120	35
Zirconium	[Ze]	2	2	2	12	4	8	7	8
Copper	[Ca]	26	57	59	11	4	43	27	8
Nickel	E Nil	3	8	7	10	4	16	61	13
Lead	(Pb)	i	< 1	< 1	7	6	1	2	1
Zinc	(Zn î	12	11	13	100	58	BSO	76	82
Vanadium	[¥]	50	44	40	150	36	87	77	57
Strontium	[Sr]	12	9	6	100	10	24	45	ìò
Cobalt	(Co)	4	7	9	17	4	15	16	11
Molybdenua	(Mol	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ao]	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1
Cadmius	(63)	< 1	< 1	< 1	< 1	< 1	7	< 1	< 1
Beryllium	[Be]	< 1	< 1	< i	< 1	< 1	< 1	$\leftarrow 1$	< 1
Baran	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[55]	< 5	< 5	< 5	< 5	< 5	< 5	10	< 5
Yttrium	[Y]	3	3	1	13	11	ម	8	17
Scandium	(Scl	i	ł	1	10	3	8	7	5
โนก ุร\$ยก	(W)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nicbius	[秭]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorius	[Th]	< 10	50	< 10	40	< 10	20	30	20
Arsenic	[As]	< 5	< 5	< 5	< 5	10	< 5	10	5
Bisauth	(Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	(Sn)	く 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	{Li]	10	10	10	15	10	10	15	16
Holaiua	í∺o]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

Bernie Oum SIENED : _

.

2-J02-48TH STREET, SASKATOON, SASKATCHEWAN S7K 644 TELEPHONE #: (J06) 931 - 1033 FAX #: (J06) 242 - 4717

1.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9338 - 5
10th Ficor Box 10	T.S.L. File No. :
808 West Kastings St.	T.S.L. Invoice No. : 14679
Vancouver B.C. V6C 2X6	
ATTN: J. FESTER \$R0JECT: 90-80-20 - K1-TEC P.8. R-2089	ALL REBULTS PPM

90-VPR-006 90-VPR-007 90-VPR-008 90-VPR-019 90-VPR-010 90-VPR-011 90-VPR-012 90-VPR-013

ELEMENT

Aluminum	(A1)	17000	15006	20000	31000	15000	6000	13600	22000
Iron	[Fe]	27000	25000	34000	41000	32000	11000	24000	51000
Calcium	iCal	4500	7000	6000	9900	8400	100000	13000	15000
Magnesium	[Mg]	6500	6500	7300	85(4)	6500	3800	6300	7700
Sodium	[Na]	190	240	320	150	270	20	310	260
Potassium	[K]	280	630	350	210	360	30	50	110
Titanium	(Ti)	750	340	43	7E0	610	190	870	1300
កំណព្វភាទទទ	[Mn]	530	490	730	900	410	770	376	470
Phosphorus	{P_}	900	580	660	770	490	110	590	1200
Barium	[84]	35	65	39	61	16	10	5	9
Chroaius	[[n]]	41	41	14	130	12	8	38	66
Zirconium	[2:]	9	6	5	15	5	2	4	3
นิชออยก	(Cui	13	13	25	67	52	100	33	25
Nickel	ENi]	23	14	6	68	6	4	16	49
Lead	(Fb]	ę	B	< 1	< 1	2	< 1	1	< 1
Zinc	[Zal	55	50	62	49	21	270	39	45
Vanadium	[V]]	43	46	55	170	Ģ 4	30	54	83
Strontium	[S:]	15	41	19	22	13	130	14	14
Cooalt	[Ca]	10	8	11	20	11	5	7	15
Halvbdenum	(Mol	< 2	< 2	₹ 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	(1
Cadmium	[[b]]	< 1	< 1	< 1	< 1	< 1	5	く 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1
Soran	[\$]	< 10	< 10	< 10	< 10	< i0	< 10	< 10	< 10
Antimony	(55)	< 5	< 5	< 5	5	< 5	< 5	5	< 5
Yttrium	(Y 1	É	6	5	9	4	5	4	4
Scandium	[Sc]	3	5	6	17	В	2	4	2
Tungsten	[¥]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nichium	[ND]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thoriua	(Th1	20	30	40	20	30	30	30	20
Arsenic	[As]	< 5	< 5	< 5	< 5	5	< 5	10	< 5
Bisouth	(Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[ອິດ]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	15	25	20	10	10	10	10
Holaium	(Ka)	< 10	< 10	< 10	< 10	< 10	20	< 10	< 10

_ Bernie Oum SIENED

2-302-48TH STREET, SASKATCON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

.....

L.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

90-VPR-014 90-VPR-015 90-VPR-016 90-VPR-017 90-VPR-018 90-VPR-019 90-VPR-020 90-VPR-021

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9338 - 7
10th Floor Box 10	T.S.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 14679
Vancouver B.C. V&C 2%6	
ATTN: J. FUSTER PROJECT: 90-BC-20 - HI-TEC P.O. R-2089	ALL RESULTS PPM

ELEMENT

Aluminum	[A]]	23000	24000	25000	15000	7800	7500	10000	7 E 00
Iroa	[Fe]	32000	62000	36000	35000	17000	15000	22000	15000
Calcium	(Ca)	40000	6500	17000	2100	3700	3100	4200	2600
Macnesium	{Moli	7500	7400	7700	6 200	4200	3800	4300	37(x)
Sodiua	[Na]	110	1 50	140	150	300	240	460	340
Potassium	[K]	2B0	160	420	70	270	470	1200	390
Titanium	(Ti]	1200	430	780	45 0	540	270	1100	61 6
Manganese	(Mn)	940	740	8 00	360	290	260	240	240
Phospharus	[P]	760	730	690	510	430	530	670	430
Barium	[83]	27	34	54	12	13	19	42	15
Chroniua	[Cc]	50	24	41	19	i 9	17	16	29
Zirconium	EZrl	8	8	6	5	2	1	3	2
Copper	[Cu]	32	710	110	270	15	40	59	15
Nickel	[Ni]	20	20	23	5	2	1	5	1
Lead	[Pb]	2	4	< 1	3	$\langle 1 \rangle$	1	< 1	1
Zinc	[ไก]	200	4000	45 0	210	34	26	28	21
Vanadium	[V]]	120	140	100	91	57	29	Bi	33
Strontium	[Sr]	70	13	25	3	11	5	5	13
Cobalt	[Co]	7	16	15	e	4	4	7	ŝ
Holyodenum		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Au]	< 1	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1
Cadalua	[[5]]	2	24	7	2	< 1	< 1	< 1	$\langle 1 \rangle$
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baren	[B]	< 10	< 10	< 10	く 10	< 10	< 10	< 10	< 10
Antimony	[55]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttsi <u>um</u>	£Y 1	7	7	5	3	3	4	4	3
Scandium	{Sc}	7	8	5	7	1	1	4	1
Tungsten	[¥]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nicolum	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorico	[Th]	40	40	30	40	40	50	10	30
Arsenic	[As]	ζ 5	30	5	10	< 5	< 5	< 5	< 5
Bismuth	(Bi3	₹ 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	20	15	< 5	< 5	(5	< 5	< 5
Holaium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	· < 10

Beince Oum SIGNED :

T S L LADDRATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Adua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9338 - 8
10th Floor Box 10	F.E.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 14679
Vancouver B.C. V6C 2X6	
ATTN: J. FESTER PROJECT: 90-BC-20 - HI-TEC P.B. R-2089	ALL RESULTS PPM

ELEMENT

90-VPR-022 90-VPR-023 90-VPR-024 90-VPR-025 90-VPR-026 90-VPR-027 90-VPR-028 90-VPR-029

Iron [Fe] 17000 29000 33000 17000 60000 33000	26000	70444
		39000
Calcium (Ca) 5500 5700 2800 8600 2800 3700	3700	4700
Magde≤ium [Mo] 3100 5600 6800 4000 6800 5300	7600	6900
Sodium (Na) 420 490 230 290 150 350	210	200
Potassium (K 1 580 430 480 320 90 340	140	220
Titanium [Ti] 1200 960 1700 480 950 730	830	77 0
Manganese [Mn] 160 270 250 320 630 460	46 0	420
Phosphorus (P) 1100 580 410 550 670 580	970	1400
Barium [Ba] 14 11 13 13 12 19	10	20
Chromium [Cr] 16 13 33 27 14 22	100	53
Zirconium IIrii 3 4 3 2 9 b	3	5
Capper (Cu) 41 14 Bi 33 51 61	19	11
Nickel (Nil) 5 6 13 2 7 6	41	28
Lead [Pb] <1 1 <1 <1 <1 <1	< 1	$\langle 1 \rangle$
Zinc [Zn] 11 13 11 9 43 31	42	43
Vanadium [V] 60 100 120 44 130 120	84	140
Strontium [Sr] 15 11 4 9 4 B	5	5
Cobalt [Co] 7 12 13 3 21 11	13	17
Malyadenuus (Na) < 2 < 2 < 2 < 2 < 2 < 2	< 2	< 2
Silver [Aq] <1 <1 <1 <1 <1	< i	< t
Cadmium [Cd] <1 <1 <1 <1 <1	< 1	< 1
Beryllium (Be) < 1 < 1 < 1 < 1 < 1 < 1	< 1	< 1
Baron EB1 < 10 < 10 < 10 < 10 < 10 < 10	< 10	< 10
Antizeny [Sb] < 5 < 5 < 5 < 5 < 5	10	< 5
Yttrium [Y] 5 3 3 3 4 4	3	4
Scandium [Sc] 2 4 4 2 12 B	3	3
Tunosten [W] < 10 < 10 < 10 < 10 < 10 < 10	< 10	(10
Nimbius (Nb) < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10	< 10
Thorium [Th] 10 30 30 20 40 20	10	- 30
Arsenic [As] < 5 < 5 < 5 < 5 < 5	< 5	< 5
Bismuth (Bi) < 5 < 5 < 5 < 5 < 5	< 5	< 5
Tin ESn] < 10 < 10 < 10 < 10 < 10 < 10	< 10	< 10
Lithium [Li] < 5 < 5 5 < 5 5 < 5	5	5
Holmium [Ho] < 10 < 10 < 10 < 10 < 10 < 10	< 10	< 10

DATE : AUG-16-1990

.

SIGNED : Bernie Ann

.

ELEMENT

2-J02-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Bigestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 7338 - 9
10th Floor Box 10	T.S.L. File No. :
808 West Hastings St.	T.5.1. Invoice No. : 14679
VANCOUVER, B.C. VAC 2XA	
ATTN: J. FOSTER PROJECT: 90-BC-20 - HI-TEC P.O. R-20B9	ALL RESULTS PPM

90-VCR-010 90-VCR-011 90-VLR-001 90-VLR-002 90-VLR-003 90-VLR-004 90-VLR-005 90-VLR-066

Aluminum	[A]]	28000	9800	18000	14000	21000	22000	2800	8760
Iron	[Fe]	86000	18000	69000	26000	61000	42000	13000	16000
Calcium	[Ca]	3200	2700	1500	1700	7600	25000	2700	22000
Magnesium	[Mo]	7200	5000	6700	6300	69(x)	7200	1200	2400
Sadiua	(Na]	50	320	240	169	150	100	270	£ 50
Potassium	{K]	50	350	640	350	140	110	330	660
Titanium	[]i]	540	610	560	140	800	630	46	150
Малдаляве	[ทีก]	600	190	360	360	570	680	290	430
Phosphorus	{P]	520	540	800	410	560	650	300	530
Barium	[Ba]	i 1	22	88	25	28	24	35	190
Chroaiua	[23]	42	45	28	35	45	49	32	26
Zirconium	[2]]	10	2	ዮ	2	8	6	2	4
Cooper	(Շայ	1800	65	320	130	550	550	34	10
Nickel	{Ni]	15	7	6	8	13	15	2	< 1
Lead	[95]	5	< 1	18	F	37	16	13	9
Zinc	[ໄຄ]	370	25	94	73	540	820	91	50
Vanadium	٤٧ 1	95	62	160	6 0	120	120	7	13
Strontium	[Srl	5	a	5	4	15	37	E	35
Cobalt	[£a]	17	5	4	5	13	12	2	2
Molyódenum	[Ko]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	3	< 1	< 1	< 1	< 1	< 1
Cadaiun	(C #3	4	< 1	1	< 1	5	6	< 1	< 1
Bervilium	(Be3	< 1	< 1	< 1	< 1	< t	₹ 1	、 1	< 1
Berca	[B]]	< 10	< 10	< 10	< 10	く 10	< t0	< 1 0	< 10
Antimony	[55]	< 5	< 5	5	< 5	< 5	10	< 5	< 5
Yttrium	(Y 1	3	3	4	4	5	5	3	6
Scansium	{Sc}	6	2	7	4	7	7	î	2
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nicbium	[]6]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Tհ]	50	20	50	20	40	30	< 10	< 10
Arsenic	(As]	60	10	15	< 5	20	5	< 5	5
Bisauth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[5n]	< 10	< 10	< 10	K 10	< i0	< 10	< 10	< 10
Lithium	f Li3	15	< 5	5	10	10	15	< 5	15
Hoimium	[Ho]	· < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : ALG-15-1990

SIGNED : _ Bernie Arm

•

. .

2-302-48TH STREET, SASKATOON, SASKATCHEXAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

L.C.A.P. PLASKA SCAN

90-VLR-007 90-VLR-008 90-VLR-009

Aqua-Regia Digestion

.

ана на се **с**

PRIME EXPLORATION LTD.		T.S.L. REPERT No. : S 9336 - 10
10th Floor Box 10		T.S.L. File No. :
808 West Hastings St.		T.S.L. Invoice No. : 14675
Vancouver B.C. V6C ZX6		
ATTN: J. FOSTER PROJECT: 90-90-20	- HI-TEC P.D. R-2089	ALL REPULTS PPH

ELEMENT

Alumicum	[A1]	16	300	12	00	230	00
Iron	(Fe]	140)00	83	00	350	00
Calcium	[Ca]	17	100	6	00	120	60
Magnesium	(Mg)	3	120	1	60	66	
Spaiua	[Na]	- 2	7 Ú	1	50	1	20
Potassium	tK 1	5	170	6	30		00
Titanion	{Til		13		10	16	00
Малодлеве	[Mn]	3	20	2	10		50
Phosohorus	(P]	3	\$70	- 2	10		00
Barium	[Ba]		22		23		42
Chromium	(Cr]		43		59		45
Zirconium	[Źr]		2		i		17
Copper	[[3]		3		2		14
Nickel	[Ni]	<	1		2		14
Lead	{Fb]		13		22		8
Zinc	{In}		63	1	60		68
Vanadiuæ	[V]]		2		1		79
Strontium	[Sr]		7		3		32
Coosit	(Col		2	<	1		10
Holybdesua	EMo I	<	2		6	<	2
Silver	[Ao]	<	1	<	1	<	1
Cadmium	[[1]]	<	1		1	<	1
Beryllium	(Bel	<	i	<	1	<	1
50r0n	{8 }	<	10	<	10	<	10
Antiaony	[55]	\langle	5	<	5	<	5
Yttrium	EY 1		3		2		11
Scandisa	[Sc]		1	<	1		5
Tungsten	EW 3	<	10	<	10	<	10
Nicoium	[16]	<	10	<	10	<	10
Thorium	[ih]	<	10	<	10		40
Arsenic	[As]		10	<	5	<	5
Bisnuth	[Bi]	<	5	<	5	<	5
Tin	[5n]	<	10	<	10	<	10
Lithium	<u>ELiI</u>		5		5		20
Holaiua	[Ho]	<	10	۲	10	ζ.,	10

SIGNED : _ Bernie Chim

TSL LABORAT DIV BURGENER

CHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9462 V6C 2X6

INVOICE #: 14547 P.O.: R-2152

SAMPLE(S) OF ROCK

D. Collins Project: 90-BC-020

REMARKS: Hi - Tec Resource Samples

		Au ppb
90VCR 90VCR 90VLR 90VLR 90VLR		<5 <5 35 <5
90VLR	013	<5
90VLR	014	<5
90VLR	015	<5
90VLR	016	<5
90VLR	001	<5
90VDR	002	25
90VDR	003	<5
90VDR	004	<5
90VDR	005	<5
90VDR	006	<5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 13/90

Bernie (SIGNED Page 1 of 1

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

2-302-48TH STREET, SASKATOON, SASKATCHENAN S7K 6A4 TELEFHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASMA SEAN

••• ------

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 BOB West Hastings St. Vancouver B.C. VEC 2X6

ELEMENT

÷ ...

1

T.S.L. REPORT No. : S - 9462 - 1 T.S.L. File No. : T.S.L. Lavoice No. : 14908

~

.

ATTN: J. FOSTER PROJECT: FO EC 020 HI-TEC RESOURCE MANAGEMENT LTD. R-2152 ALL RESULTS PPM

•

and a proper and the second second

Algainsa	EA1]	14000	23000	26000	24000	20000	13090	16600	21000	24000	23000
Irea	(Fe]	29000	39000	39000	65000	36060	25000	28000	40000	56600	49000
Calcium	(Ca)	1500	6600	17000	9000	5560	6000	2100	11000	5800	3900
ที่สอกครายก	[Mo]	3600	7000	8100	7900	7300	5900	6800	7000	7200	5000
Sodium	[Na]	P0	260	170	170	410	5 50	360	286	180	290
Potassium	[K]	680	820	230	110	230	236	390	280	290	180
Titanium	[[i]	12	47 6	590	2000	1400	790	130	2000	2000	1700
Manganese	ដិMn 3	440	580	800	610	510	4E0	450	710	890	670
Phosphorus		\$E0	(060)	740	780	61Ū	5 50	530	450	1200	640
Barium	[Ba]	58	:20	22	24	15	13	25	330	62	40
Chroalum	[[::]	7	20	50	76	26	35	25	35	23	51
Zircenium	[[r]	3	5	6	18	9	3	3	17	15	12
Coccer	[Cu]	10	25	450	260	79	15	33	34	11	540
Nickel	INII	3	23	29	23	7	4	3	16	8	19
Lead	{P5]	10	3	3	6	2	3	2	3	6	2
Zinc	[Zs]	47	51	BE00	340	130	39	65	74	99	1300
Vanadium	CV 1	19	74	120	200	170	49	97	120	170	160
Stroatium	(Sr3	5	34	40	14	8	17	8	17	8	.0%
Cooalt	[Ca]	7	13	13	13	12	7	S	16	16	14
Molybaenum	{Mo}	Κ 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	(Aq)	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	$\langle 1$	$\langle 1$
Cadmium	(Cd)	< 1	$\langle 1 \rangle$	38	1	< 1	< 1	< 1	< 1	< 1	7
Beryllium	[Be]	< 1	$\langle 1 \rangle$	$\langle 1$	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1	< 1
Beron	[6]]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antisonv	ISb J	< 5	< 5	5	5	5	< 5	< 5	5	5	< 5
Yttrium	{Y]	3	9	8	7	9	3	5	17	21	8
Scandium	[Sc]	2	4	8	17	11	2	4	9	13	10
Tunosten	EW 1	< 10	K 10	100	< 10	< 10	< 10	< 10	< 10	< 10	20
Nicoium	[N5]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorses	[Th]	50	20	40	30	40	30	30	40	50	30
Arsenic	[As]	15	< 5	< 5	20	< 5	< 3	< 5	< 5	< 5	5
Bisauth	{Si]	5	10	10	20	10	to	10	10	15	15
Tis	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	× 10	< 10	< 10
Lithium	(Li]	10	15	20	15	10	5	15	10	13	20
Holaium	(Ho)	< 10	< <u>10</u>	10	20	16	< 10	< 10	10	20	10

DATE : AUG-25-1990

•

Beinie Ama \$16NED :

2-302-487H STREET, SASKATOUN, SASKATOHEWAN S7K 6A4 TELEFHUNE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASMA SCAN

Acua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X& ATTN: J. FOSTER

• /

÷

T.S.L. REPORT No. : S - 9462 - 2 T.S.L. File No. : T.S.L. Invoice No. : 14908

PROJECT: 90 BC 020 HI-TEC REEOURCE MANAGEMENT LTD. R-2152 ALL RESULTS PPM

90VDR 002 90VDR 003 90VDR 004 90VDR 005 90VDR 006

ENENT	

A1 ·						
Aluminum T		18000	20000	1B000	22000	16000
Iron	[Fe]	40000	37000	22000	42000	45000
Calcium	[Ca]	12000	4100	7 2 00	7700	5200
Magnesiu		7200	7900	6700	7500	6100
Sodiua	[Na]	210	350	570	280	220
Fotassicu		3B00	330	47 0	220	410
Titanium	[Ti]	1600	1700	1700	2508	3500
Manganes		50r)	470	470	790	710
Phosonaru		1000	450	490	430	740
Баг ыл	(Ba)	150	25	33	77	41
Chroaiua	[Cr]	61	43	22	53	29
Zirconium		7	5	6	26	25
Coper	(Cy]	150	120	43	18	6
Nickel	[Ni]	43	19	6	17	6
Lead	(F5]	16	1	5	2	5
Zinc	{Zn}}	590	140	50	77	70
Vanadium	(V 3	73	160	140	110	110
Stroatium	[5r]	37	7	43	41	6
Cobalt	[Co]	13	15	B	12	7
Moiybdenu	∎ [#s]	< 2	< 2	< 2	₹ 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< <u>1</u>
Cadmium	(Cd)	4	< 1	< 1	< 1	< 1
Beryllium	[Ee]	$\leftarrow 1$	< i	< 1	< 1	< 1
Boran	(B]	< 10	< 10	र छ	< 10	< 10
Antimony	(553	20	5	(5	< 5	< 5
Yttrium	[Y]]	8	4	3	22	22
Scandium	[5c]	6	7	4	12	12
Tungsten	[N]]	10	< 10	< 10	< 10	12 < 10
Nicbium	(Nb)	< 10	< 10	< 10	< 10	< 10 < 10
Thorius	[75]	40	30	50	30	20
Arsenic	[As]	50	< 5	< 5	< 5	- 30 - < 5
Bismuth	[Bi]	10	15	10	10	-
Tin	[Sn]	< 10	< 10	< 10	10 < 10	10
Lithium	ELI]	10	10	10	10	< 10
Holaiua	[Ho]	20	20	20		10
		27	20	20	< 10	20

DATE : AUG-25-1990

•

F

.

Bernie Dunn SIGNED :

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9555

INVOICE #: 15031 P.O.: R-2197

SAMPLE(S) OF Rock

D. Collins Project: 90-BC-020

REMARKS: Hi-Tec Resource Management

Au ppb 90VLR 017 <5 90VLR 018 <5 90VLR 019 <5 90VLR 020 <5 90VLR 021 <5 90VLR 022 <5 90VLR 023 <5 90VLR 024 <5 90VLR 025 <5 90VLR 026 <5 90VLR 027 <5 90VLR 028 <5 90VLR 029 <5 90VLR 030 <5 90VLR 031 <5 90VLR 032 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 29/90

Bernie Uun SIGNED Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORAT OV. BURGENER TECHNICAL ENTERPRISES LIMITED

P. 2

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN \$7K 6A4 🕲 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor-Box 10, 808 West Hastings Vancouver, B.C. V6C 2X6

REPORT No. S1458

INVOICE #: 16080 P.O.: R-2197

SAMPLE(S) OF ROCK

D. Collins Project: 90-BC-020

Hi-Tec Resource Management REMARKS:

	Hg ppb
90VLR 017	30
90VLR 018	20
90VLR 019	10
90VLR 020	20
90VLR 021	20
90VLR 022	20
90VLR 023	20
90VLR 024	20
90VLR 025	20
90VLR 026	100
90VLR 027	40
90VLR 028	60
90VLR 029	10
90VLR 030	70
90VLR 031	20
90VLR 032	10

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Oct 29/90

z

SIGNED _

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

1 .

7 S.L. LAEDRATCRIEE 2-302-46TH STREET, SASKATOON, BASKATCHEWAN 87K - 664 TELEPHONE #: (306) 931 - 1033 FAX #: (206) 242 - 4717

I.C.A.P. PLASMA BOAN

Adua-Reola Disestion

PRIME EXPLERATION LTD. 10th Floor Box 10 808 West Histings St. Vancouver B.C. V6C 2%6 ATTN: J. FUETER PROJECT: F0-BC-020 - H1-TEC P.O. R-2197

T.E.E. REPORT No. : M - 7671 - 1 T.E.L. File No. : T.S.L. Invaice No. : 15031

ALL RESULTS FPM

1== <

the second second second

90VLR 017 90VLR 018 90VLR 019 90VLR 020 90VLR 021 90VLR 022 90VLR 023 90VLR 024 90VLR 025 90VLR 026

ELEXENT

Aluminum	(A)]	3360	6200	5000	24000	14600	5800	13000	15600	46006	3600
Irca	(Fe]	(300)	14000	11000	36000	24000	17000	23000	29000	64000	12000
Calcium	[Ca]	:100	500	540	15000	7300	3700	5600	4400	2900	<u>540</u>
Magnesium	[řo]	620	1400	1300	6500	5300	2900	5000	5700	6600	15/30
Sodium	(Mal	450	530	710	400	400	670	719	1000	250	510
Potassium	EK 1	1399	1560	460	500	4(¥)	570	260	660	250	1100
Titaarum	[[]]	42	47	17	4606	2100	1200	1660	1900	1460	:40
Mangamesa	€Mn I	420	310	200	510	49 0	219	370	270	1100	74
Phosonarus	: I7 1	220	360	250	1100	570	550	500	570	620	320
Eartum	(31]	75	61	31	92	63	44	20	36	17	56
Chromaum	1071	110	92	\$10	74	51	72	51	51	91	62
Zirconium	[2r]	2	J	2	29	14	5	8	5	15	2
Copean	(Ca)	ŕ	÷	2	14	11	27	65	77	62	4
Niczel	Ekti 3	2	4	2	18	14	4	6	6	23	3
Le so	[Fo]	17	20	7	ę	7	4	5	2	< :	12
Zinc	€Zn 3	57	9 7	34	76	52	14	28	22	62	ė
Vanacium	ί¥ 3	4	6	3	110	73	34	110	7 6	200	12
Strentium	(Srl	11	13	5	23	14	25	8	27	5	á
Cobait	(Ca)	1	2	< 1	11	8	3	8	8	15	-
Halybdenum	imai	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	$\langle 2 \rangle$	< 2
Silver	[Ro]	< 1	< i	< i	< 1	< 1	< 1	< 1	< 1	< :	$\langle 1 \rangle$
Cadmium	[66]		< 1	< 1	< i	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1
Perylliam	(Bel)	< 1	t t	< 1	< 1	₹ 1	< 1	< 1	< 1	< :	< 1
Beron	C9 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Anticony	CS6 2	< 5	< 5	< 5	Κ 5	< 5	: 5	< 5	< 5	< 5	5
Yttruc	EY E	5	5	2	11	6	6	6	é	5	4
Scandium	[Sc]	[1	< 1	9	4	2	6	5	19	1
Tungsten	[]]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	K 10	< 10	< 10
Niccius	(Nb]	< 10	< 10	< 10	< i 0	< 1 0	< 10	< 10	$\langle 10 \rangle$	< 10	< 10
โกอร์เปล	(Th]	< 10	< 10	< 10	30	< 10	< 10	10	30	50	< 10
Arsenic	(As)	< 5	15	< 5	< 5	< 5	5	10	< 5	< 5	15
Eissuin	(B(1	< 5	< 5	< 5	5	< 5	< 5	< 5	< 5	15	< 5
Tia	(En]	< 10	< 10	< 10	< 30	< 30	< 10	< 10	< 10	< 16	< 10
Lithiam	F1 2 1	< 5	< 5	< 5	< 5	0.5	< 5	< 5	< 5	< 5	< 5
G 1 91 1 2 (00)	[Li]	< j < 10	< 10	< 5 < 10	< 5 < 10	· · ·	× 2	< 10	< <u>10</u>	N D	< 5

DATE : AUS-27-1990

.

SIGNED :

Bernie Du

TIS LI LABORATORIZE

.-

2-302-48TH STREET, SAEKATODN, SAEKATOHEWAN S7K 544 TELEFHONE #: (306) 731 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Bigestion

P.O. 8-2197

PRIME EXPLORATION LTD. 10th Floor Eox 10 300 West Hastings St. Vancouver B.C. V6C 2X6 ATTN: J. FORTER PROJECT: 90-BC-020 - HI-TEC T.S.L. REFORT No. : M - 7671 - 2 T.S.L. File No. : T.S.L. Invoice No. : 15031

ALL REBULTS RPM

90VLR 027 90VLR 028 90VLR 029 90VLR 030 90VLR 031 90VLR 032

ELEMENT

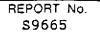
Aluainum	[A]]	2466	2966	12060	<u>32</u> 00	14000	32000
Iron	[Fe]	6 ±00	7660	26000	8600	23000	45000
Calcium	E33	429	3E0	:5000	6 <u>8</u> 0	6400	23600
Кадпестию	Cto I	420	310	6500	430	5000	8400
Eagium	[Na]	200	590	480	410	350	250
Potassium	7 Y -	1460	1 90 0	1100	1800	1300	1100
Titanium	[Ti]	86	32	630	24	38	77
Manganese	{Mn∃	<u>64</u>	33	530	J ()	570	6 10
Phosohorus	(P. 1	260	300	810	340	440	600
Bariem	(Ea]	100	130	61	160	75	61
Chronium	(Cal	91	9 0	75	63	71	140
Zircanium	(Zc)	2	2	9	< i	4	7
Cooper	[[u]]	4	2 2 3	15	2	23	<u>46</u>
Nicxel	[ki]	2	3	17	2	33	71
Leac	[Pb]	13	10	- 5	ą	7	1
Zinc	[26]	5	Ģ	55	4	92	62
Vanadiea	EV 1	4	2	42	< 1	35	140
Streasium	[Sr]	6	8	42	7	61	85
Cobalt	[Co]	< 1	< 1	9	< 1	4	25
Maivàdenus	(Ma)	$\langle 2$	< 2	< 2	< 2	< 2	$\langle 2 \rangle$
Silver	(Ag]	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1
Cadmium	[[6]]	< 1	< 1	$\langle 1 \rangle$	< 1	1	< 1
Beryilium	[Ee]	< 1	< 1	< 1	< 1	< 1	< 1
Baron	[5]]	< 10	< 10	< 10	< 10	< 1 0	< 10
Antizonv	(Eb)	< 5	< 5	< 5	5	< 5	5
Yttrium	EV 3	3	4	9	5	5	11
Scandium	(Sc)	< i	$\langle 1 \rangle$	6	< 1	3	11
โนธอุธระก	[#]	< 10	< 10	< 10	< 10	< 10	< 10
Nichium	(10)	< 10	< 10	(16	< 10	< 10	< 10
Thorium	[<u>7</u> 6]	< 10	< 10	20	< 10	< 10	30
Arsenic	[Ae]	15	15	10	20	15	10
Bisauth	[Bi]	< 5	< 5	< 5	< 5	< 5	10
Tia	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	10	< 5	15	15
Holaiua	[Ho]	< 10	< 10	< 10	< :0	< 10	< 10

DATE : AUG-29-1990

SIGNED :

Bernie Dunn

TSL LABORATO ES



OIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 15029 P.O.: R-2257

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 020

REMARKS: Hi-Tec Resource Management

> Au ppb

90VCRC		•	<5
90VCR0			<5
90VCR0			<5
90VCR0			<5
90VCR0	30	•	<5
90VCR0	31	•	<5
90VCR0	32	•	<5
90VCR0			5
90VCR0		•	<5
90VCRC	35	•	<5
90VCR0	36		<5
90VCR0	37	•	<5
90VCR0	38	•	<5
90VCR0	39	•	< 5
90VCR0	40	•	<5
90VCR0	41		<5
90VCR0	42	•	<5
90VCR0	43	•	<5
90VCR0	44	•	<5
90VCRC	45	•	<5
COPTES	ΨO:	C.	Iđzi

C. Idziszek, J. Foster COPIES TO: INVOICE TO: Prime - Vancouver

Aug 29/90

SIGNED .

Bernie Du

2 of 3

Page

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report,

2 - 302 - 48th STREET, EAST SASKATOON SASKATCHEWAN 57K 6A4 🚱 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

card and a second second of

Prime Exploration Ltd. SAMPLE(S) FROM REPORT No. 10th Floor, Box 10-808 West Hastings St. S9665 Vancouver, B.C. V6C 2X6

INVOICE #: 15029 **R-2257**

P.O.:

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 020

Hi-Tec Resource Management REMARKS:

Au ppb 5 90VJR020 <5 90VJR021 <5 90VJR022 90VJR023 <5 <5 90VJR024 <5 90VJR025 <5 90VCR012 <5 90VCR013 <5 90VCR014 <5 90VCR015 90VCR016 <5 <5 90VCR017 <5 90VCR018 <5 90VCR019 <5 90VCR020 <5 90VCR021 90VCR022 <5 <5 90VCR023 <5 90VCR024 <5 90VCR025 C. Idziszek, J. Foster COPIES TO: Prime - Vancouver INVOICE TO:

Aug 29/90

Beince Du SIGNED . 1 of 3 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9665 V6C 2X6

> INVOICE #: 15029 P.O.: R-2257

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 020

REMARKS: Hi-Tec Resource Management

Au ppb

90VCR046<5</td>90VDR007<5</td>90VDR008<5</td>90VDR009110

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 29/90

Bernie Che SIGNED

Page 3 of 3

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

. ~ •

TSL LABORATORIES

2 - 302 - 48ih STREET, EAST SASKATOON, SASKATCHEWAN STK 6A4 (306) 331-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 16262 P.O.: R-2257

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 020

REMARKS: Hi-Tec Resource Management

	Hg DDD
90VJR020	30
90VJR021	20
90VJR022	<10
90VJR023	20
90VJR024	10
90VJR025 90VCR012 90VCR013 90VCR014 90VCR015	10 <10 <10 <10 <10 10
90VCR016	20
90VCR017	<10
90VCR018	10
90VCR019	<10
90VCR020	20
90VCR021	30
90VCR022	40
90VCR023	10
90VCR024	10
90VCR025	<10
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver
Nov 07/90	SIGNED

V

For enquiries on this report, please contact Customer Service Department.

NOV 12 '90 10:16

6046872309

SIGNED _

Page 1 of 3 PAGE.10

_ _ - - - -

- - -

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEVAN STK 644 (306) \$31-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

NUV .

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. \$1562

INVOICE #: 16262 P.O.: R-2257

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 020

REMARKS: Hi-Tec Resource Management

	Hg ppb
90VCR026 90VCR027	10 20
90VCR028 90VCR029	10 20
90VCR030	30
90VCR031	10 <10
90VCR032	30
90VCR033	40
90VCR034	10
90VCR035	TO
90VCR036	10
90VCR037	30
90VCR038	30
90VCR039	20
90VCR040	10
90VCR041	20
90VCR042	10
90VCR042	<10
90VCR044	<10
90VCR045	<10
30701040	
COPIES TO:	C. Idziszek, J. Fo
INVOICE TO:	Prime - Vancouver

Nov 07/90

SIGNED .

J. Foster

2 of 3 Page

For enquiries on this report, please contact Customer Service Department.

NOV 12 '90 10:17

TSL LABORAT ES

OIV, EURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 G (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. SAMPLE(\$) FROM Vancouver, B.C. V6C 2X6

REPORT No. \$1562

INVOICE #: 16262 P.O.: R-2257

SAMPLE(S) OF ROCK

R. Brown Project: 90 BC 020

REMARKS: Hi-Tec Resource Management

Hg ppb

<10 90VCR046 30 90VDR007 50 90VDR008 370 90VDR009

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

NOV C	17/	'91	0
-------	-----	-----	---

SIGNED -

Page 3 of 3

NOV 12 '90 10:17

6046872309

TOTAL P.12 PAGE.12

TSL LABORATORIES

.

2-302-48TH STREET, SASKATDON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

90VJR020 90VJR021 90VJR022 90VJR023 90VJR024 90VJR025 90VCR012 90VCR013 90VCR014 90VCR015

T.S.L. REPORT No. : S - 9665 - 1 PRIME EXPLORATION LTD. T.S.L. File No. : E:M7786 10th Floor Box 10 T.S.L. Invoice No. : 15163 808 West Hastings St. Vancouver B.C. V&C 2X6 PROJECT: 90 BC 020 HI-TEE RESOURCES R-2257 ALL RESULTS PPM ATTN: J. FOSTER

ELEMENT											
នាំ៤ឆេះតែមក	(A)]	10150	10250	2860	10270	18420	18220	24550	25230	27460	19710
Iron	[Fe]	25030	27110	27220	36700	33170	47320	55590	34190	36590	52790
Calcium	[[]]	5720	4120	3140	4260	12760	7040	10060	12420	9440	B320
กังการเปล	[Ma]	6000	5900	1160	3240	7810	6730	8430	8740	5010	7450
Sodium	[Na]	340	360	600	250	240	320	2B0	270	230	250
Potassium	[(]	450	680	400	970	100	160	70	310	210	120
Titanius	[Ti]	1439	1284	1647	2135	2251	2683	2566	1320	1119	3498
Manganese	[Mn]	325	222	34	127	562	647	864	693	612	575
Phosphorus		932	1010	586	934	405	822	554	786	458	1098
Barium	(Ba]	43	49	42	36	10	17	25	45	25	10
Chromium	(Cr])	7B	51	70	37	125	25	56	71	76	12
Zirconium	{Zrl	14	12	11	22	20	12	16	10	10	27
Caoper	{Cu]	1B	29	13	22	55	18	31	34	2B	11
Nickel	(Ni]	16	17	15	14	45	12	13	43	84	B
Lead	[Fb]	16	21	8	13	< 1	3	< 1	2	1	< 1
Zinc	[Zn]	74	294	32	28	94	73	90	60	61	94
Vanadium	[V] 3	63	52	31	26	74	190	161	95	73	192
Strontium	[Sr]	15	18	9	17	14	3	11	23	12	7
Cobalt	[Co]	7	8	9	7	17	17	27	17	23	19
Nolybdenua	(Mol	< 2	< 2	< 2	2	10	< 2	< 2	< 2	< 2	< 2
Silver	[Aŋ]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[[b]]	< 1	3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	く 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	$\langle 1 \rangle$
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	10	5	< 5	< 5	5	5	15	15	10	10 22
Yttrium	£Y 1	5	6	3	5	10	13	18	10	10	
Scandium	[Sc]	3	3	2	3	2	3	6	6	2	4 < 10
Tungsten	{¥]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 < 10
Niobium	[) ,]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 40	× 10 40
Thorium	[75]	< 10	20	< 10	20	< 10	40	40	30		+0 (5
Arsenic	(As]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		20
Bisauth	(Bil	15	15	10	20	25	20	30	25	25	
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 5
Lithium	{Li]	10	10	< 5	10	10	5	15	30	20	5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-04-1990

SIGNED : Bernie Dum

T S L LABORATORIES

.

2-J02-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

.....

Aqua-Regia Digestica

 PRIME EXPLORATION LTD.
 T.S.L. REPORT No. : S - 9665 - 2

 10th Floor Box 10
 T.S.L. File No. : E:M7786

 B08 West Hastings St.
 T.S.L. Invoice No. : 15183

 Vancouver B.C. V6C 2X6
 T.S.L. Invoice No. : 15183

 ATTN: J. FUSTER
 PROJECT: 90 BC 020
 HI-TEC RESOURCES R-2257

 ALL RESULTS PPH
 90VCR016 90VCR017 90VCR018 90VCR019 90VCR020 90VCR021 90VCR022 90VCR023 50VCR024 90VCR025

ELEVENT											
Aluninua	[A1]	5350	10870	18210	9560	11780	15120	1010	10020	15590	24900
Iron	[Fe]	11200	31950	36760	22780	32200	29630	3370	15560	26020	39910
Calcium	[Ca]	2260	5440	6200	4100	5820	8620	110640	47280	16980	10280
Magnesius	[Ma]	2620	4450	6600	5190	5160	5560	1900	3380	6050	6750
Sodium	ENa]	470	440	5£0	580	550	480	50	360	1400	1470
Potassium	EK 1	270	360	330	510	490	210	100	80	900	390
Titanium	(Ti)	704	1377	704	925	1331	1660	91	1802	1163	1150
Manganese	[Mn]	186	466	562	332	190	362	129	351	35B	457
Phosphorus		142	508	115B	624	944	516	< 2	346	342	418
Barium	[Ba]	42	25	17	95	18	13	8	14	31	25
Chromium	[{r]	35	41	31	38	26	32	4	1B	18	22
Zirconiua	[Zr]	7	11	8	3	5	6	< 1	11	7	9
Сарет	(Cu)	7	6	134	7	16	21	3	1	73	205
Nickel	EN:]	5	4	7	2	5	8	2	< 1	6	11
Lead	(Pb]	13	1	l	2	< 1	1	< 1	8	2	$\langle 1 \rangle$
Ziac	[Zn]	109	65	34	13	14	25	11	28	25	38
Vanadium	[V] J	10	83	142	59	97	97	5	23	122	164
Strontius	(Sr)	8	15	14	23	21	31	114	23	34	43
Cobalt	[Ca]	3	8	13	7	18	13	< 1	1	11	20
Holyodenua	(Mo)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ao]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	(Cd)	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	(1	< 1
Beryllium	[Bel	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	(B)	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10	< 10	< 10
Antimony	[56]	< 5	< 5	5	5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY 1	9	16	6	4	4	4	8	5	2	3
Scandium	(Sc)	1	3	6	2	2	3	< 1	2	5	6 < 10
Tungsten	CW]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 < 10	< 10 < 10
Niobius	[]]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 20	30
Thorium	{Th]	< 10	20	30	20	10	20	< 10	50		< 5
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 75	< 5 20	25
Bisauth	[Bi]	< 5	10	15	10	15	15	66	25		< 10 < 10
Tin	[5a]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 10	15
Lithius	[Li]	< 5	< 5	15	< 5	5	5	5 < 10	10 < 10	< 10	{ 10
Holaiue	(Ha]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1 0	N 10	(10

DATE : SEP-04-1990

. ...

Reinie Dunn SIGNED :

LABORATORIES T S L

•

1

S7K 6A4 2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Dicestion

يت الما من الم

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V ATTN: J. FOSTER	0 5 5t. 6C 2X6	DJECT: 90	BC 020	HI-TEC RES	ources R-	2257	T.S.L. T.S.L. T.S.L.			766	
ELEMENT		90VCR026	90VCR027	90VCR028	90VCR027	90VCR030	90VCR031	90VCR032	90VCR033	70 VER034	70VCR035
ELEMENT Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chremium Zirconium Copper Nickel Lead Zinc Vanadium Strentium Cobalt Molybdenum Silver Cadmium Boron Antimony Yttrium Scandium Tungsten	(Ba) (Cr) (Zr) (Cu) (Ni) (Pb) (Zn) (Zn) (Y) (Sr) (Co)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22250 35280 8160 230 1631 561 96 28 25 6 19 12 < 1 43 125 46 24 < 2 < 1 < 10 15 1 4 < 10 15 1 4 < 10	$18750 \\ 39200 \\ 3820 \\ 6970 \\ 300 \\ 160 \\ 1456 \\ 520 \\ 574 \\ 14 \\ 24 \\ 10 \\ 54 \\ 8 \\ 1 \\ 38 \\ 146 \\ 9 \\ 14 \\ < 2 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 10 \\ 5 \\ 6 \\ 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 1$	$\begin{array}{c} 20560\\ 40840\\ 5300\\ 7220\\ 350\\ 240\\ 1373\\ 645\\ 552\\ 25\\ 30\\ 12\\ 55\\ 7\\ 1\\ 36\\ 131\\ 9\\ 13\\ < 2\\ < 1\\ < 1\\ < 1\\ < 10\\ 7\\ 12\\ < 10\\ < 10\end{array}$	$\begin{array}{c} 10300\\ 22510\\ 4720\\ 5470\\ 540\\ 460\\ 1121\\ 298\\ 608\\ 14\\ 35\\ 5\\ 33\\ 7\\ < 1\\ 29\\ 75\\ 15\\ 11\\ < 2\\ < 1\\ < 10\\ < 3\\ < 3\\ < 10\\ < 10\\ \end{array}$	9020 18620 2700 4760 580 390 B1B 523 526 27 43 3 4 3 43 33 40 9 5 \langle 1 \langle 10 \langle 5 2 \langle 10 \langle 5 2 \langle 10	$\begin{array}{c} 11430\\ 47970\\ 6080\\ 4170\\ 470\\ 360\\ 1989\\ 190\\ 748\\ 9\\ 17\\ 7\\ 204\\ 6\\ 2\\ 14\\ 84\\ 22\\ 14\\ 84\\ 22\\ 17\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 3\\ 4\\ < 10\\ < 10\\ < 10\\ \end{array}$	$\begin{array}{c} 4000\\ 33470\\ 5260\\ 1880\\ 110\\ 100\\ 354\\ 445\\ 196\\ 24\\ 112\\ 4\\ 297\\ 6\\ 3\\ 42\\ 16\\ 8\\ 11\\ < 297\\ 6\\ 3\\ 42\\ 16\\ 8\\ 11\\ < 10\\ < 5\\ 3\\ < 1\\ < 10\\ < 10\\ < 10\\ \end{array}$	$\begin{array}{c} 12720\\ 27300\\ 860\\ 3780\\ 120\\ 1210\\ 23\\ 271\\ 434\\ 62\\ 28\\ 2\\ 36\\ 4\\ 20\\ 50\\ 17\\ 4\\ 5\\ < 2\\ < 36\\ 4\\ 20\\ 50\\ 17\\ 4\\ 5\\ < 2\\ < 1\\ < 1\\ < 10\\ 5\\ 4\\ 2\\ < 10\\ < 10\\ < 10\end{array}$	223B0 38670 11460 7960 330 560 715 1214 780 42 24 11 47 6 6 105 137 21 13 < 2 < 1 < 10 B 7 < 10 < 10 B 7 < 10 < 10 B 7 < 10 < 10 C < 10 C
Nicbium Thorium Arsenic Bismuth Tin Lithium Holmium	(N5) [Th] [As] [Bi] [Sa] [Li] [Ho]	<pre>< 10 20 < 5 15 < 10 10 < 10</pre>	<pre>< 10</pre>	<pre>< 10</pre>	<pre>< 10 40 < 5 25 < 10 10 < 10 < 10</pre>	<pre>< 10 20 < 5 15 < 10 10 < 10 < 10</pre>	<pre>< 10 20 < 5 10 < 10 < 10 < 5 < 10</pre>	<pre>< 10 30 < 5 15 < 10 < 5 < 10</pre>	< 10 < 10 < 5 < 5 < 10 < 5 < 10 < 10	<pre> 20 20 < 5 < 10 10 < 10 </pre>	40 < 5 25 < 10 25 < 10

DATE : SEP-04-1990

Benie Dum 516NED :

. . . .

LABORATORIES TSL

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

L.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

						-					
PRIME EXPLORATION 10th Floor Box 1 808 West Hasting Vancouver B.C. V	0 s St. 6C 2X6						T.S.L. T.S.L. T.S.L.	File N Invoice N		786	
ATTN: J. FOSTE	r pro	JECT: 90	BC 020	HI-TEC RES	ources r	-2257		ALL RESUL	15 PM		
ELEMENT		90VCR036	90VCR037	90VCR038	90VCR039	90VCR040	90VCR041	90VCR042	90VCR043	70VCR044	90VCR045
			60 9 64		17000	28350	16210	24960	14400	27800	11070
	[4]]	18380	20380	24690	17990		29170	38570	222B0	39140	23130
	(Fel	32200	42790	37750	34260	40790			1063B0	37140	8 650
	[Ca]	10320	7560	22340	5160	31620	11520	12660		-36740 9040	5540
Magnesium	[Ho]	68 20	8160	8400	49 B0	6410	6570	8160	6250		580
Sodium	[Na]	$_{310}$	300	310	160	230	360	240	170	210	585 270
Potassium	€K 1	1020	680	460	1240	730	410	1050	320	350	
Titanium	(Til	22	738	1451	5B	90	52	11B	32	334	1049
Manganese	[76]	764	742	1077	662	907	661	837	823	759	424
Phosphorus		574	822	870	730	1802	572	699	490	776	487
Barium	[Ba]	31	42	28	94	52	23	56	29	42	17
Chroniua	[Cr]	17	15	22	20	B3	21	15	40	155	24
Zirconius	[[r]	4	15	16	3	8	4	16	4	14	7
Capper	(Cu)	30	32	36	33	32	19	33	56	59	78
Nickel	[Ni]	10	6	7	7	49	5	8	14	103	10
	EP5]	2	2	2	5	< 1	8	4	< 1	2	$\langle 1 \rangle$
Lead	[2n]	5B	62	70	97	80	79	67	230	62	26
Zinc		73	116	143	32	99	85	104	71	126	83
Vanadium	(V]	13	16	37	20	110	1B	22	109	47	15
Strontium	(Sr)	13	10	13	12	1B	10	17	9	23	10
Cobalt	{Ca}			< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Notybdenua		< 2	< 2		< 1 < 1	< 1	< 1	$\langle 1$	$\langle 1$	{ 1	< 1
Silver	[Ag]	< 1	< 1		< 1	< 1	- X I	< 1	2	< 1	< 1
Cadmium	[C d]	< 1	< 1	< 1				< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10
Boron	EB 1	< 10	< 10	< 10	< 10	15	10	10	5	20	< 5
Antimony	(5b)	15	10	10	< 5		7	1V 9	8	B	3
Yttriuæ	£Y 1	6	8	9	6	11	-	7 5	5	15	6
Scandium	{Sc]	3	6	B	3	8	5	-		< 10	< 10
Tunosten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10		< 10 < 10	< 10 < 10
Nicbium	[16]	く 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 10	20
Thorius	(Th1	30	40	50	30	30	30	50	20		20 (5
Arsenic	[As]	< 5	< 5	< 5	10	< 5	< 5	< 5	< 5	< 5	
		50	50	रम	10	35	20	25	40	35	15

35

35

< 10

< 10

20

30

< 10

< 10

20

25

< 10

< 10

10

25

< 10

< 10

35

30

< 10

< 10

DATE : SEP-04-1990

Bismuth

Lithium

Holaius

Tin

[Bi]

[5n]

[Li]

(Ho]

Brine Quan SIGNED :

20

(10

t5

< 10

5

< 10

< 10

35

< 10

< 10

40

20

< 10

< 10

25

25

< 10

< 10

T S L LABORATORIES

• . •

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

HI-TEC RESIDURCES R-2257

I.C.A.P. PLASHA SCAN

.

90VCR046 90VDR007 90VDR00B 90VDR009

Aqua-Regia Digestion

واري المنتخبة محتد بالرزار وا

PRIME EXPLORATION LTD. 10th Flaar Box 10 808 West Hastings St. Vancouver B.C. V&C 2X6 ATTN: J. FOSTER PROJECT: 70 BC 020

ELENENT

.

T.S.L. REPORT No. : 5 - 9665 - 5 T.S.L. File No. : E:M7786 T.S.L. Invoice No. : 15163

ALL RESULTS PPH

Aluainua	[A]]	12500	4940	7640	78 20
Iron	[Fe]	29410	22090	17840	111160
Calcium	[Ca]	4600	6660	1920	740
Magnesium	EMg 3	6330	1010	2000	3850
Sodiua	[Na]	360	3B)	160	260
Potassium	£K 1	320	1670	1230	430
Titanium	(Ti]	1345	69	25	30
Manganese	[Mn]	329	762	335	160
Phasphorus	(P]	458	734	770	308
Barium	[Ba]	24	82	81	11
Chronius	[Cr]	53	59	88	65
Zirconium	[Ir]	6	4	3	17
Copper	(Cul	12	4	4	20
Nickel	ENil	14	6	6	12
Lead	{Pb]	3	18	17	26
Zinc	[ไ ก]	22	147	86	28
Vanadium	EV 3	67	10	10	70
Strontiue	(5r1)	7	19	8	4
Cobalt	[Co]	12	5	4	38
Molybdenua	[Mo]	< 2	2	4	< 2
Silver	[Ao]	< 1	1	< 1	3
Cadmium	[[63]	< 1	1	< 1	2
Beryllium	[Be]	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10
สถารัฐสาวอาจ	[56]	5	5	< 5	20
Yttriua	EY 1	7	6	6	4
Scandiua	{Sc]	5	3	2	5
Tunosten	C¥ 3	< 10	< 10	10	< 10
Nicoiua	[Nb]	< 10	< 10	< i0	< 10
Thorium	[Th]	20	< 10	< 10	40
Arsenic	[As]	< 5	20	< 5	360
Bismuth	[Bi]	15	5	< 5	20
Tin	[Sn]	< 10	< 10	< 10	< 10
Lithium	[Li]	10	< 5	5	15
Holaium	[Ho]	< 10	< 10	< 10	< 10
· · · · · · · · · · · · · · · · · · ·					

DATE : SEP-04-1990

SIGNED : ____ Renie Arm

TSL LABORATOR ES DIV. BURGENER TECHNICAL ENTERPRISES UMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7X 6A4 🙆 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9772

INVOICE #: 15135 P.O.: R-2422

SAMPLE(S) OF ROCK

R. Brown Project: 90BC020

REMARKS: Hi-Tec Resources

> \mathbf{Au} ppb

90VCR-047 90VCR-048 90VCR-049 90VCR-050 90VCR-051	<5 <5 <5 <5
90VCR-055 90VJR-026 90VJR-027 90VJR-028 90VJR-029	<5 <5 <5 <5 5
90VJR-030 90VJR-031 90VJR-032 90VJR-033 90VJR-034	<5 <5 <5 <5 <5
90VJR-035	<5

COPIES TO: C. Idziszek, J. Foster

INVOICE TO: Prime - Vancouver

Sep 04/90

Beine Du SIGNED Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATO ES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

P. 1

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 8A4 🚱 (306) 931-1033 - FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S1459

INVOICE #: 16081 P.O.: R-2422

SAMPLE(S) OF ROCK

R. Brown Project: 90BC020

REMARKS: Hi-Tec Resource Management

	Hg ppb
90VCR-047	40
90VCR-048	20
90VCR-049	<10
90VCR-050	<10
90VCR-051	10
90VCR-055	10
90VJR-026	10
90VJR-027	<10
90VJR-028	10
90VJR-029	30
90VJR-030	20
90VJR-031	20
90VJR-032	<10
90VJR-033	20
90VJR-034	10
90VJR-035	10

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Oct 29/90

SIGNED __

LABORATORIES TSL

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7% 6A4 TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

90402-050

90408-055

90VCR-051

90VJR-026

90VJR-027

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.		T.S.L.	REPORT No. : 5 - 9772 - 1 File No. : E:M7837 Invoice No. : 15353
Vancouver B.C. V&C 2X& ATTN: J. FOSTER PROJECT: 90 BC 020	HI-TEC RESEURCES	R-2422	ALL RESULTS PPM

76VCR-049

90VCR-048 90VCR-047 ELEMENT 9500 4000 4500 15000 17000 9700 18000 [A]] 11000 Alemiaua 97(%) 14000 27000 17000 14000 2506024000 [Fe] 19000 Iroa 6760 26005500 25602800 9000 4300 6400 {Ca] Calcium 2900 1900 1400 4900 3300 4100 4600 4800 Maonesium (Moj 320 1100 440 240 510210 400 240 ENa 3 Sodiua 650 510 540 950 350640 240 200 Potassium [K] 760 1600 1100 53 13001900 16001260 Titanium (Til 430 460 140 **4E**0 430 510 520 430 Manganese (Mn) 280 380 44 3604.70 740 670 580 Phosphorus (P) 50 16 6Û 62 41 42 32 22 Bariua (Bal 70 27 63 40 34 40 2638 {Cr3 Chronium 8 12 3 6 11 24 1014 Zircanium [Ir] 4 1 58 < 1 $\langle 1 \rangle$ В 7 6 (Cu3 Cooper 2 4 3 3 1 3 3 4 Nickei [Ni] 11 10 . 1 13 12 11 21 11 {Pb} Lead 37 48 12 58 51 52 [In] 51 56 Zinc 3 19 71 5 66 16 46 44 CV 1 Vanadium 9 26 26 9 5 10 7 10 Strontium (Srl $\langle 1$ 2 7 2 2 6 6 5 [Col Cobalt < 2 < 2 < 2 < 2 < 2 < 2 < 2 4 Molybdenum [Mo] $\langle 1 \rangle$ < 1 < 1 < 1 < 1 < 1 $\langle 1 \rangle$ < 1 Silver [Aŋ] < 1< 1< 1 < 1 < 1 < 1 < 1 < 1 CC43 Cadaiua < 1 $\langle 1 \rangle$ < 1 $\langle 1$ < 1 $\langle i \rangle$ < 1 < 1Beryllium (Be3 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 (B_] Baron < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 **(5**5) Astimony 4 ŝ 2 S 8 5 6 5 {Y 3 Yttrium 2 < 1 2 2 1 4 2 2 [Sc] Scandium < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 [[]] Tungsten < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 (Nb.) Nichiua < 10 30 20 < 10 50 30 30 20{Th] Thorium < 5 < 5 < 5 < 5 < 5 < 5 5 < 5 Arsenic [As] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 EBi] Bisauth < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 [Sn] Tin 50 55 50 55 40 50 55 45 [Li] Lithium < 10 < 10 < 10

< 10

< 10

< 10

< 10

DATE : SEP-08-1990

Holmium

[Ho]

Dim's Pilisink

< 10

T S L LABORATORIES

2-302-46TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

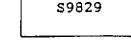
L.C.A.P. PLASMA SCAN

Anna-Regia Digestion

PRIME EXPLORATION & 10th Floor Box 10 BOB West Rastings S	ŧ.					T.S.L.	REPORT N File N Invoice N	o. :	E:M7837	2 - 2
Vancouver B.C. V&C ATTN: J. FOSTER	2X6 PRDJECT:	90 BC (020 HI-T	ec resolrces	R-2422		ALL REFUL	TS PP	M	
	9071	R-02B	90VJR-029	90718-030	90VJR-031	90VJR-032	90WJR-03	3 9	XOVJR-034	90VJR-035

ELENENT 3100 5960 28000 17000 12000 19000 9000 [A13 11000 ลไปสเอบส 9800 17000 23000 32000 15000 27000 32000 (Fe) 15000 Irco 240020000 3000 18000 B700 10000 7700 [Ca] 5700 Calcium 1200 3000 4700 5800 5600 3000 30005100Magnesium [Mol 370 300 210 210 420 40.0 **44**0 310Sedium $\{N_1\}$ 973 40 490 220 140 320350 Potassium (K J L_{+0} 11001200 140018002800 120 1500 1100Titanium [Ti] 490 570 160620 650 Manganese [Mn] 490 530600 380 340 1100 650 380 1600 950 410 Phosphores (P] 29 51 27 12 72 23 140 61 Barius [Ba] 46 65 71 45 51 55 40 32 [Cr]] Chromium 14 12 22 10 17 2B 11 4 Zirconium [Ir] 3 1 17 5 16 29 2 3 Соррег {£u3} 3 17 14 17 3 3 4 6 [Ni] Nickel 9 11 11 1 3 9 13 10 [P5] Lead 35 46 60 83 65 65 58 [[ភា] 52 Zine В 73 6 94 39 76 13 14 Vanadium £V] 8 iá 7 17 16 12 21 11 Streatium [Sr] < 1 1 10 10 6 $\overline{2}$ 2 Ŀ Cobalt {Ca} < 2 < 2 < 2 2 < 2 < 2 < 2 < 2 < Molvadenum [Mo] $\langle 1$ < 1 < 1 < 1 < 1 $\langle 1 \rangle$ < 1 < 1 Silver [Ao] < t ζ. 1 < 1 { 1 < 1 < 1 < 1 $\langle 1 \rangle$ Cadmium [CJ] < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 Beryllium (Bel < 10< 10 < 10 < 10 < 10 < 10 < 10 < 10 Boron (B] 5 < 5 5 < 5 (5 < 5 < 5 Ś < 5 (Sb1 Antimony 7 6 9 7 10 ę Ļ 5 {Y] Yttrium 2 1 3 6 5 6 ł 1 Scandius [Sc] < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 [₩] Tunosten < 10 < 10 < 10 < 10 10 < 10 < 10 < 10 < Nicoium [計版] < 10 $\overline{30}$ 20 20 $\overline{20}$ 20 < 10 20[Th] Thorium < 5 < 5 < 5 < 5 < 5 < 5 5 < 5 [As] Arsenic < 5 < 5 < 5 < 5 10 < 5 < 5 10 [Bi] Bismuth < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 [Sn] Tin 40 5050 ÷0 45 50 50[Li] 50 Lithiua < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 Holaiua (Ho]

DATE : SEP-08-1990


Dim Viliniak SIGNED :

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

> 2 - 302 - 48th STREET. EAST SASKATOON. SASKATCHEWAN S7K 6A4 Ø (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No.

INVOICE #: 15207 P.O.: R-2451

SAMPLE(S) OF ROCK

R. Brown Project 90BC20

REMARKS: Hi-Tec Resources

分 型	Au
	ppb
90VTR036	<5
90vtr037	<5
90VTR038	<5
90VTR039	<5
90VTR040	<5
90VTR041	<5
90VTR042	<5
90VTR043	<5
90VTR044	<5
90VTR045	<5
90VTR046	<5
90VTR047	<5
90VTR048	<5
90VTR049	<5

COPIES TO: P. Lougheed, J. Foster INVOICE TO: Prime - Vancouver

Sep 06/90

Rennie SIGNED Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

a construction of the second second

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 30 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St. Vancouver, B. C. V6C 2X6

REPORT No. S1525

INVOICE #: 16192 P.O.: R-2451

SAMPLE(S) OF ROCK

R. Brown Project 90BC20

REMARKS: Hi-Tec Resources

	Hg ppb
90VTR036	20
90VTR037	<10
90VTR038	<10
90VTR039	<10
90VTR040	20
90VTR041	10
90VTR042	20
90VTR043	10
90VTR044	10
90VTR045	20
90VTR046	<10
90VTR047	<10
90VTR048	<10
90VTR049	<10

COPIES TO: P. Lougheed, J. Foster INVOICE TO: Prime - Vancouver

Nov 02/90

Binie Vian SIGNED Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. TIS LI LABORATORIES

2-302-48TH STREET, EASKATOON, SASKATCHEWAN STK 644 (TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Adua-Regia Digestica

				•	•					
PRIME EXPLORATION L 10th Floor Box 10 808 West Hastinos S						T.E.L. T.S.L. T.E.L.	File N	o.: S - o.: E:M7 s.: 1591	567	
Vancouver S.C. V6C	.Xt									
ATTN: J. FOSTER	PREJET: 70	BC 20	HI -	TEC RESOUR	CES		ALL REEVE			
	ゴ 90VTR036	5 90VTR037	7 9007R038	5 90VTR039	テ 90VTR040	ゴ 90vtr041	T 90VTR042	ح 90VTR043	J 90VTR044	5 90VTE045
ELEMENT										
Alumanum [Al	9460	29000	25000	36000	32000	27000	47 000	27000	25000	5300
Iran (Fe	1 23000	44 00s)	38000	30000	37000	39000	46000	28000	41000	22090
Calcium (Ca	.2 1500	25000	9300	36600	22006	12000	31000	17600	16600	13660
Magnesium [Mg		7100	7300	5000	6600	7300	7600	6600	7100	3000
Sodium ENa	.5 350	430	250	480	280	410	110	240	420	270
Potassium (K		460	378	90	80	230	18 6	110	280	1460
Titaniwa ETi] 37	3600	24 00	36400	2500	3360	2000	3200	3700	:30
Manganese [Mo	420	740	720	500	46 0	720	1100	6 50	620	320
Phosphorus (P] 410	1100	720	B10	920	700	1200	E40	1200	550
Bertum (Ba		<i>6</i> 5	46	18	13	42	37	75	38	51
Chromium (Cr	-1 33	65	58	70	39	72	55	58	62	55
Zirconium EZr		31	24	31	26	31	24	26	26	
Copper (Cu	.1 10	33	17	22	18	19	10	47	14	7
Nickel EN:	1 < 1	21	25	14	9	15	17	16	22	ب
tead GPb	1] 17	ş	15	6	11	7	< 1	.7	5	18
Zinc (In	il 51	93	64	56	73	75	130	Sć	43	9
Vanadium IV	1 20	130	57	100	76	120	160	98	129	21
Strontium (Sr	-1 Iù	33	15	26	20	15	44	21	<u>2</u>	÷1
Cobalt (Co		14	11	10	7	12	14	13	14	7
Moivadenum (Mo	5 K Z	< 2	< 2	< 2	< 2	Κ Ξ	< 2	< 2	Ν.2	25
Silver [Aq		$\langle 1$	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< <u>1</u>
Cadmaum (Ed	11 (L	1	< 1	< 1	< 1	< 1	< 1	< 1	× 1	K. L
Eerylium (Be	9 K E	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	$\langle 1 \rangle$	≤ 1
Sorca (B	3 < 10	< 10	< 10	< 10	< 1Ú	< 10	< 10	- 10	< 10	< 10
Ansteony (Sa)] < 5	1 5	< 5	< 5	< 5	< 5	< 5	5	(_	13 7
Yttrium [Y	1 5	13	5	11	11	11	13	12	13	
Seinerua (Be	2 2	10	7	9	7	Ģ	7	8	2	Ţ.
Tunosten (W	1 < 10	< 10	< 10	< 10	10	s 10	< 10	< 10	< 10	< 10
Nicolum (Ni	n3 K 10	< 10	< 10	< 10	< 10	< 10	K 10	< 10	10	< 10
Therium (Tr	13 < 10	30	50	10	40	30	50	40	30	< 92
Arsenic Éés		< 5	< 5	< 5	< 5	< 5	< 5	< 5	<	15 < 5
Bismath [3:	1 < 5	10	< 5	10	5	< 5	15	< 5		
Tin (Br		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	≺_ 10
Lithum (Li	II 5	20	15	5	15	15	20	15	13	< Ξ
Holaium (He		< 10	< 10	< 10	< 10	< 10	10		< 10	< 19

DATE : 007-15-1990

STOMED : _ Bernie Aun

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATOHEWAN 57K 6A4 TELEFHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASKA SCAN

Aqua-Regia Bigestion

PRIME EXPLORATION LTD. T.S.L. REFORT No. : 5 - 9828 - 2 10th Floor Box 10 7.5.0. File No. : E:M7887 T.S.L. Inscice No. : 1551a 808 West Hastinos St. Vancouver B.C. V6C 2%6 ATTN: J. FOSTER PROJECT: 90 EC 20 HI - TEC RESOURCES ALL REBULTS PPM Т T J TCCCC 90VTR046 90VTR047 90VTR048 90VTR049 ELEMENT

23000 15000 23000 Aluminum [Al] 2100 Iran [Fe] 39000 13000 35000 42000 Calcium [Cal 27000 5200 Z1000 16000 Maonesium [Mo] 7100 5106200 7100 [Na] 240 250 430 610 Sodium 200 Potassium EK I 1100 380 660 Titanium [Til 1700 45 3400 3800 Manoanese [Mn] 840 470 680 760 1000 Phosphorus (P] 230 1300 1100 (Ba) Barium 24054 44 44 Chromium - ICrl 38 56 - 62 -64 25 32 Zirconium (Zrl 21 4 2 Cooper C91 21 19 22 2 ENil 23 20 26 Nickel 7 (Pb] 10 8 - 6 Lead 77 30 78 EZn] Zinc 8ć Vanadium - EV 3 67 3 100 130 7 30 Strontium [Sr] 46 46 Copalt {Co] 15 1 -12 17 < 2 Molvbdenum [Mol < 2 4 < 2 Silver [Aq] < 1< 1 < 1 < 1Eb33 $\langle 1$ < 1< 1 < 1Caomium $\langle 1$ < 1 < 1< 1Bervilium [Ee] < 10 < 10 < 10 < 10 {B] Baren < 5 < 5 < 5< 5 Antiaonv (Sb) 12 3 12 Yttrium [Y] 11 7 4 7 Scanaium [Sc] i Tunasten (W) < 10 < 10 < 10< 10 < 10 < 10 < 10 < 10ENo I Nicoium 40 < 10 30 4() Thorium [Th] < 5 < 5 < 5 10 [As] Arsenic < 5 < 5 < 5 [Bi] 15 Bismuth < 10 < 10 $\langle 10 \rangle$ < 10Tin 8**3**n3 < 5 15 15 10 Lithua EL11 < 10 Holaiua [Ho] < 10 < 10 < 10

DATE : 007-15-1990

SIGNED : _ Bunie Dun

ł.

APPENDIX IV

ROCK SAMPLES DESCRIPTIONS

.

,

PC-XPLOR VERSION 1.30	f€ź	VIRGINIA LAKE PROPERTY 1990 EXPLORATION PROGRAM	₩₩₩	HI-TEL RES FMGE LTD.
Exploration Data Manager	# £ *	Mapping, sampling, MAG, VLF-EM	***	8:34:39 - Serial no: 22357
By GENCON SERVICES INC.				2/11/90 ⁶ ege : 1

,

SAMPLE DESCRIPTIONS VIRGINIA LAVE PROPERTY #9080020

EAMPLE #	RCCX TYPE	SAMPLE TYPE	MINERALIZATION	FEATURE
90VPR001 90VPR002	Grey fine gr inteed volc calc	Float Dock cook	2-31 py	thin labicae
90VPR002	Aphan inteed volc calc qtz/cb veinlets	Rock grab	11 py disseminated	blk veinlets
90VPR003	Fine gr intmed volc qtz/cb veinlets calc		trace py	
	Aph-med gr intmed volc qtz veinlets calc		trace py	571
90VPR005	Sil intrad volc tuff? qtz/cb veinlets	Rock grab	2-3% py concentrated	DIK VEINIETS
90VPR006	Aph-fine gr sil intmed volc qtz veinlets		3I py concentrated	
90VFR007	Aph intend volc tuff w blk spots calc	Float	0	-1
90VPR008	Sil aph-fine gr (maf-intmed)volc	Float	trace py	gtz veinlets
90VP?009	Intared volc w maf laminae very calc	Rock grab	11 ру	qtz/cb vnlts
90VPR010	Intered volc	Rock grab		17-13 1 -
90VPR011	Cb vein? >5m xcat by qtz veinlats	Rock grab	iž py	highly calc
90VPR012	White cb vein 1-30ca xcut by qtz veinlet	-	17 py	calc
90VPR013	D grey inteed volc slightly calc	Rock grab	<1X py	cleavage
90VPR014	Very calc 1 grey volc qtz veins <1-10am	Rock grab	22 ру	
90VPR015	Highly altrd gossan Fe/Mn stained	Rock grab	4I py 1I ga	
30VPR018	Cb vein? rhyolita? highly calc	Rock grab	37 py	gtz/cb vnlts
90023017	Sr sil interm volc xcat by q/carb veibls	•	2-3% py in fractures	<lam td="" veins<=""></lam>
30VPR018	Gry/grn aph inteed vold slightly cald	Rock grab	1I py	
S0VPR019	L gry fine gr thy calc cb-veinlets	Rock grab	3% ру	
30VPR020	Sil silts? gry w thin blk layers	Rock grab	Û	
90VPR021	Sill gry/gra aph-fn gr intmed volc	Rock grab	trace py	qtz veinlets
90VPR022	D gry w white spots sil mafic tuff	Rock grab	1I py	qtz veinlets
90793023	Sil silts w gtz vnlts	Rock grab	11 py on fractures	cleavage
90723024	Sil d gry fine gr mafic volc cb-veinlets	Rock grab	11 py disseminated	
90VPR025	White (gry bands/grn spots) sil volc	Rock grab	K1I py	flow feature
90VPR025	D gry fn gr sil intmed volc	Rock grab	31 py on fractures	
90VP9027	Sil aph mafic volc slightly calc	Rock grab	27 py disseminated	cleavage
30V22028	D gry fn gr inteed volc, calc qtz vnlts	Rock grab	trace py	flow? bands
SOVPRO29	Gry sil intmed volc qtz veinlets	Rock grab	1-27 py	
90V JR001	Aph-fine gr intmed volc w gry laminae	Rock grab	<11 py	
90VJR002	Sil mafic volc	Rock grab	0	
90VJR003	Intmed volc cb-veinlets <2mm Fe/Mn stain	•	<11 py	
90VJR004	Intmed volc gtz/cb veinlets Fe/Mn stain	Rock grab	1-21 py	
90VJR005	Banded intmed volc calc gtz/cb veinlets	Rock grab	1Z py	
90VJR006	Rhy? cb vein? very calc Fe rust	Float	51 py concentrated	
90VJR007	sil volc gtz veinlets Fe/Mn stain	Float	SI py	malachite
90VJR008	Sil intmed/mafic intext volc calc	Rock grab	31 ру	qtz veialets
90VJR008	Sil Felsic? volc Fe/Mn stain	Rock grab	SI py	die ieruiens
			51 py in blebs Fe/Mn	Rea stateb -
90VJR010	Sil gy intera volc slightly calc	Rock grab		o## 1+7\fn A
90VJR011	Banded cb-vein very calc	Rock grab	0	
90VJR012	Cb vein very calc	Rock grab	0	
90VJR013	Banded sil intmed tuff (intrusive?)	Rock grab	3Z py	
30VJR014	Intaed volc	Rock grab	0	
90VJR015	Sil fn gr banded intmed vole qtz vnlts	Rock grab	trace py	
90VJR016	Intaed volc slightly calc	Rock grab	3I py concentrated	
30VTR001	Intmed volc in gr to aphi	Rock grab	••	grey lamel
90VTR002	Maf volc fn gr polish surf	Rock grab	trace py	sa fract
90YTR003	maf volc fn gr carb veins lcm	Rock grab		
90VTR004	dk grey/green fa gr volc	Rock grab		

Exploration		*** VIRBINIA LAKE *** Mappi	lnç, sacpling,		¥ ± ÷	
	lt grey sili to	wi tarb velt	Rock grab	17 57	grey lamel	
	tuff (braccia?)	511i	Float	1% sulfide:		
	grey fo gr sili	. Volt	Rock grab	21 - 22	calcarecus	
		volc	Rock trab	2% ov ev:		
		e fa gr			calc blebs	
90778010		lite? calcareous				
90VTR011	fa gr volc		Rock orab	10% sulfides	····· · · · · ·	
90VTR012	anhi felsir vol	c fract fill sulf	Rock grab	57 au]4	aala py chal	
				107 sulf	acti pj thei	
90VTR014	fo or to anhi t	al volc	Rock grab		calcareous	
			Rock grab	117 an14		
			Rock grat		banded	
90VTR017		alt sili int volt (rhy?)		•	021:020	
	intrusive (gran		Rock grab	<1 % py		
BOVTRO19	Instablye (gran	a volc w fel volc	RUCE Grau	1 7	Arld horse	
BOVEROIS					fold brecc	
		ia/hem bxwrk 15-201 silfd				
BOVLR002		201 silicificatn				
BOAL BOOM		wide brxx/minrlzd zn				
BOVLROO4		chnl smpl cont				
BOVLROOS		-30% silfd arnd thn fracs				
		alc cont any lim	Rock grab	no vis sulphs	trac/jnts	
OVLR007	sil felsic volc	gar lig	Rock grat	tr Py		
JOVL ROOB		-25% silfctn anr bxwrk	Rock grab	KII Py	fracs	
BOVLRCOG	sil dacite 15I	silfctn	Rock grab	<11 py		
OVER010	as in 90VLR002		h grd grab	>10% Cpy/Py		
JOVER011	sil felsic volc	rby? 201 silfcts	Rock grab	1-27 dissem		
90VLR010	sil intmed volc	, shr'd brxx calc	Rock grab	41 Cpy 51 Py	frac	
JOVERC11	sil int volc		Rock grab	3-51 Cpy SI Py		
00VLR012	int volc sil		Rock grab	11 Py	foliation	
JOVLR013	intrsv dike epi	dote alt med xtln	Rock grab	tr Py		
	int tuff dk gy		Rock grab			
OVLR015	int volc (dacit	ic) 15% silfctn gy grn				
		onr thin qtz vnlts				
OVDROOT	Sil bx zone vol	c, carb flooding, sheared	Rock grab	mal. azurite stains	fractures	
OVDR002		hl, gy/gr fissile ands? N			shear fabric	
ECORDANO		shear fabric different,E	•	1-21 py	Shear fabric	
OVDR004	•	sheared as above, aphan	Rock grab	2-31 py, 11 po	shear fabric	
OVDROOS		ed,chloritic, aphan, gy S	-	,,, ,-	shear zone	
OVDROOG		, ain qtz blebs, aed gran		2% dissa py		
OVCR012	Sed. shale.	i are der orrant are free	Rock grab	no. vis. sul.		
OVER013	Andst? Cal. fil	'sd fr	Rock grab	>1% Py.		
OVLR013	Int tuff		-	trace Py		
OVLR017		rg-brn wthr,lt grn frsh	Rock grab Rock grab	•		
	•	• • •	Rock grab	1I Py		
IOVLR019	•	It gy brn, silf'd to 60Z	Rock grab	12 Py		
IOVLR020	•	to marcon, silf'd to 25%	Rock grab	<12 Py		
IOVLRO21		, thin qtz vnlets, epdt	Rock grab	no visible sulphs	Taaad	
IOVL R022		t w/ qtz, str'd and sil	Rock grab	21 Py	Trend	
OVLR023	Int volc, 1t gy		Rock grab	21 Py	Foliation	
	Tuff (dacitic),		Rock grab	5Z Py		
IOVLR025	Int volc, gy gra		Rock grab	K1I Py		
		grn, silf'd 40-50X	Float (ang)	<0.5% y		
IOVLR027		, jurasite/lim wthrng	Rock grat	11 Py visible		
OVLR028	As in 90VLR027		Rock grab			
OVLR029	Tuff (dacitic).	Sal hb porphs, sil = 25I	Rock grab	Trace Py		

E

Ľ

[]

[].

.

.

Exploration	ERSION 1.30 n Data Manager - H SERVICES INC.) EXPLORATION FROGRAM MAG, VLF-EH		9:35:15	-TEC 388 MNS Berial no: Page :	
	••••••	40-50 % sil, jurasit		Darb goth	/ñ 5 * 0 .				
3010 2024	- Juli (Matives/) 1 - Valesselsette - 4	felsic ang clasos,	18 11192	NULK GIEC Diev wers	(0.5% Py				
207121021 20712102	SolonoLidsvily :	elbic sol listoj.	intinia. Na	Alik grad Din ini					
30VER013	Taff (dacibe)	sar apót, propyl.			1-37 97				
30708013 30708015	Taff (dacite)			Rock grez	/ 1 5 -	A. 11. B			
90VCR020		shuru i a		Rock graz	(12); • 7 == 0.	foliation			
SOVCR020	Andesite, feld. p Andesite	мут 11		Rock grad Rock grad	11, 51?y	foliation			
90VCR022	Limestone			Rock grab		foliation			
90VCR023	Brecciated sandst	ana(2)		Rock grab Rock grab	barren	bands			
90VCR024		co foliated,seams e			<.51py,	foliation			
90VCR025	Diorita, seass ep			Rock grab		foliation			
90VCR026	Andesite, 51 epid			Rock grab Rock grab	<izpy< td=""><td>foliation</td><td></td><td></td><td></td></izpy<>	foliation			
30VCR027	Andesite, foliate			Nock grab	LI	(01182173)			
90VCR028	Tuff (dacite),f			Rock grab					
90VCR029	Tuff (dacite)	~1389EV		-	1-37py				
90VCR030	Andesite, partly	silirified		Rock grab Rock grab	1-3хру ЗХру	foliation			
90VCR031	Tuff (dacite), si			Rock grab	<11py	1011011011			
90VCR032	Andesite, foliate			Rock grab	1-5 Z py				
90VCR032	Tuff (dacite), si			Rock grab	(10 I py				
90VDR007		hic/volc frags, ca		Chip 40ca	10kpy				
90VDR003		ia zone vaqqy, im v			Tr py/Fe Mn staining	15-a ata u/S			
90VDR009	Altered gy aphan	• • • •		Float	87 py				
90VJR025		el tuff Fe/No-stai		Rock grab	trace py				
30V3R020		aed sil fel(rhy?)		Rock grab	il unknown, tr py	fracture			
90VJR025	• • •	el tuff Fe/Mn-stai		Rock grab	trace py	11979016			
90738029		el tuff Fe/Mn-stai.		Rock grad	17 needlelike xla	joint			
30VJR030		f cb-aaygd clasts			12 py	gtz-volts			
BOVJROBI		and tuff ctz-vnlts		Rock grab	31 disseminated py	•			
90VJR032		1 and tuff(brecc?)		Rock grab	21 py	gtz-volts			
90V JR033		1 and tuff gtz-val		Rock grab	••	flow bands			
30VJR034	Gry/purp/beiga si			Float	••	flow pattern			
90VJR035		ts .2-3cm Fe/Mn-sta		Rock grab	0	1100 partern			
BOVCR034	Argillites	13 14 JUB (2/00 34)							
90VCR035	Andesite			-	KII py				
BOVER035	Sediments gtz/cb-	filled fractures		lock grab	0	bedding			
BOVCR037	And brecc	illeu Hattures		Rock grad Rock grad	5Z py	Fracture			
BOVEROSB	Inteed volc brace	laron ata elacte		lock grab	51 py	I DESUIE.			
JOVEROSS JOVEROSJ	Fel tuff	talye yiz clasis		lock grab	0	Fracture			
OVERCHO	Sheared and				21 ру	11065016			
BOYCR041		actures some shear:		lock grab	0	Fracture			
BOVCR042	Intaed volc (and?)		•	lock grab	11 ру	1 I EL PLIE			
BOVER043		, qtz-filled fractur		lock grab	21 py				
OVCR044	Andesite	der itten itaren		lock grab					
OVCR045	Andesite qtz/cb-fi	rarturos		lock grab	27 py 17 py				
OVER045	Sil andesite			lock grab	11 py				
IOVER048	Sil andesite Mn-s	tain		lock grab	0				
10VCR048	Andesite (intred				<ii py<="" td=""><td></td><td></td><td></td><td></td></ii>				
IOVER043	Andesite clasts ((1I py				
OVER043	Sil andesite	eroww (Ebigrenen),		lock grab	<11 py				
OVEROSO OVEROSI	Volc tuff Fe-stain	n		lock grab	0	Fracture			
OVEROSI	DIORITE, MAGNETIC						·		
IOVEROJJ IOVJROJ6	pale green grey Si				1-279Y, LI <179Y				
IOVJR036	Gry sil and tuff t			-					
		•		-	1% py				
IOV JRO38	And tuff fin-coars	se yr yw cidsws	л	lotk grab	<ii py<="" td=""><td></td><td></td><td></td><td></td></ii>				

C

Ľ

C

. []

.

,

Exploratio						EXPLORATION PROGRAM Mag, VLF-EM	분응곡	AI 8:37: 9 2/11/90	Sarial co:	22257
90VJR039	Eil gry and la	pilli ta''	°qtz≁valba	/isa 70)EX (2183	-* -:				
307 3R0 40	Sil gry and la	pilli tuf:	f giz clasta	(2cz %	ock grat					
997/37041	- Bradgry/purg a	ll and pyr	raci Ferrust	ec la	ick grat					
Sev1R042	And taff			5	فة في من	1.4 K				
90V JR043	And tuff gtz-v	3143		Ā	ick grad	11 disseminated py				
90712044	Sil gry/purp a	nd/dat ves	sicular tuff	Ro	ick grab	21 disseminated py				
90VJR045	Darite (SIF)			Ro	ick grab	<.5Ipy				
90VJR046	Datite Suff			Re	ick grab	K.SZpy				
GCVIRO47	Very sil beige	/gra dac t	uff? calc	Ro	ick grab	(17 jy				
30VJR048	Intermediata t	uff, vesio	ular	80	ck grab	21py,0				
9073 R 049	IntDacitic w	esicular b	reccia	Rc	ick grab	1-21 ₂₇				
96703014	Ands, Q.C. vei	nlet		Яо	ck grad	1107				
BOVER015	Ands			Ro	ck grab	11py				
BOVCR016	Ands, sil			Ro	ck grab	1-21py				
HOVER017	Volcanic			Ro	ck grab	1 1 py				
OVCR012	Volcanic, inter	raed. comp	.,SIF, sheat	red Ro	ck grab	>1% py				
OVCR013	Fault gouge, in	ntermed. v	olcanic	Ro	ck grab	RORE				
IOVJR020	Andesite,grey,	-3am gtz-	carb volets	Ro	ck grab	<1Zpy				
IOVJR021	Andesite, brxy t	uff		Ro	ck grab	Ipy</td <td></td> <td></td> <td></td> <td></td>				
0772022	Andesite, grey,	315		Ro	ck grab	5% py				
IOVJR023	Andesite, grey, S	91F		Ro	ck grab	51py				
0738024	Andesite, gray, t	lk spots,	carb vnlet	Ro	ck grab	21.py				
0733025	Andesite,dk gra				ck grab	(ilpy				

L

C

APPENDIX V

STATEMENT OF COSTS

STATEMENT OF COSTS

CONSOLIDATED REGAL RESOURCES LTD./CONSOLIDATED RHODES RESOURCES LTD. Project 90BC020 VIRGINIA LAKE PROJECT JOJOM, CARL J, DWAYNE I MINERAL CLAIMS Period of Field work: July 18 - August 22, 1990 <u>Salaries</u> D.Lucas, Geologist, 8.5 days @ \$400/day 3,400.00 D.Collins, Geologist, 2.0 days @ \$400/day 800.00 R.Brown, Geologist, 3.0 days @ \$400/day 1,200.00 P.Daigle, Geologist, 5.0 days @ \$300/day 1,500.00 D.Hebditch, Temp.Replacement Cook, 2.75 days @ \$225/day 618.75 J.P.Sorbara, Vice Pr., 1.0 days @ \$400/day 400.00 T.Kennedy, Prospector/Blaster 5.0 days @ \$300/day 1,500.00 T.Kelemen, Technician, 7.0 days @ \$225/day 1,575.00 J Cooper, Cook, 7.25 days @ \$225/day(salary prorated) 1,631.25 J.Himmelright, Technician, 5.0 days @ \$225/day 1,125.00 G. Mowatt, Prospector, 4.0 days @ \$300/day 1,200.00 D.Carstens, Prospector, 15.0 days @ \$300/day <u>4,500.00</u> \$ 19,450.00 Project Expenses Project Preparation 5,303.28 Base Map Preparation 1:10,000 digital manuscript 3,571.20 Mobilization/Demobilization 9,031.29 Domicile 64.50 man days @ \$ 115/day 7,417.50 Geochemistry and Laboratory Service Rocks 178 Samples \$4.00/sample preparation 712.00 178 Samples \$8.00/sample Au Geochem 1,424.00 163 Samples \$6.30/sample analyzed for Hg 178 Samples \$8.40/sample 35 element ICP 1,026.90 1,495.20 Freight charges from Smithers <u>___382.30</u> 5,040.40 Geophysical Surveying T.Kelemen Domicile 11 man days @ \$70.00/man day Camp rental 770.00 11 man days @ \$45.00/man day Food 495.00 Magnetic Surveying Total Magnetic field and Vert. Grad. 16.7 Km @ \$200/Km. 3,340.00 VFL-EM Survey (2 channels) 16.7 Km @ \$200/Km. 3,340.00 Geophysical Consulting .75 day @ \$425.00/day <u>_318,75</u> 8,263.75

Page one (1) of two (2) pages

Helicopter Support 20.9 hours @ \$659.46/hour	13,782.64
Beach Fixed Wing support	1,535.30
Radio Rental	84.00
Walkie talkie rental	309.60
Field Supplies	1,610.66
Equipment rental 54.0 man days @ \$25.00/man day	1,350.00
Generator fuel and propane	177.68
Computer rental	230.40
Expediting	565.51
Government filing	336.00
Accounting, communication and freight	2,598.94
Report writing, drafting and compilation	6,240.00
15% Management Fees	12,966.92
TOTAL	\$ 99,865.09

Page two (2) of two (2) pages

STATEMENT OF COSTS

CONSOLIDATED REGAL RESOURCES LTD./CONSOLIDATED RHODES RESOURCES Project 90BC020 VIRGINIA LAKE PROJECT PATSY ANN MINERAL CLAIM Period of Field work: July 26, 1990	5 LTD.
<u>Salaries</u> T.Kennedy, Prospector/Blaster 1.0 days @ \$300/day 300.00 J Cooper, Cook, 0.25 days @ \$225/day(salary prorated) 56.25 D.Carstens, Prospector, 1.0 days @ \$300/day <u>\$300.00</u>	\$656.25
<u>Project Expenses</u> Project Preparation	\$240.19
Base Map Preparation 1:10,000 digital manuscript	\$148.80
Mobilization/Demobilization	\$376.30
Domicile 2.25 man days @ \$115/man/day	\$258.75
Geochemistry and Laboratory Service Rocks 2 Samples \$4.00/sample preparation 8.00 2 Samples \$8.00/sample Au Geochem 16.00 2 Samples \$6.30/sample analyzed for Hg 12.60 2 Samples \$8.40/sample 35 element ICP 16.80 Freight charges from Smithers <u>0.00</u>	\$ 53.40
Helicopter Support 1.2 hours @ \$659.46/hour	791.28
Beach Fixed Wing support	63.97
Radio Rental 0.5 months @ \$175/month	3.50
Walkie talkie rental 2.25 man days @ \$ 5.00/unit/man/day	11.25
Field Supplies	67.11
Equipment rental 2.25 man days @ \$25.00/man day	56.25
Generator fuel and propane	7.40
Computer rental	9.60

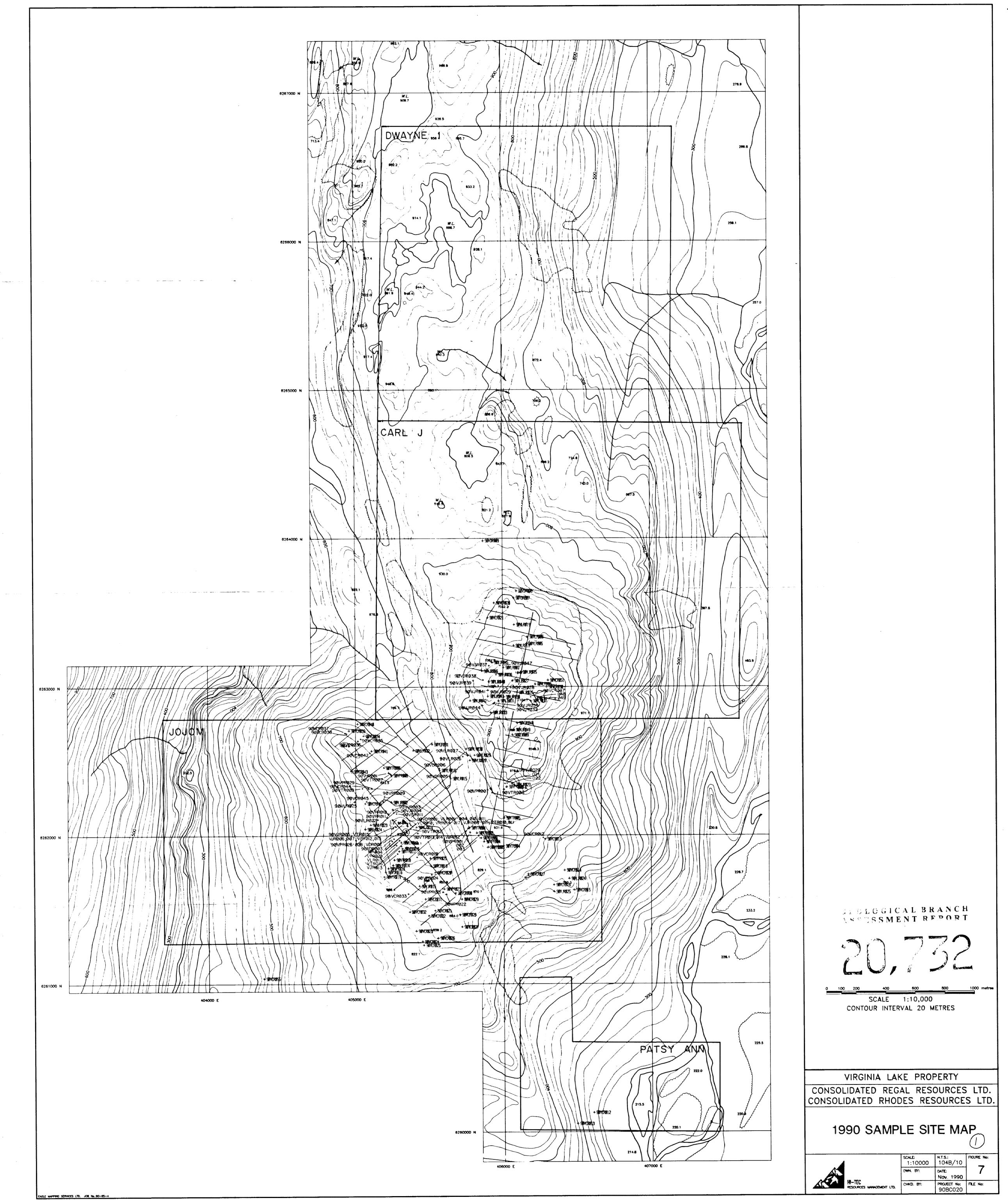
ţ

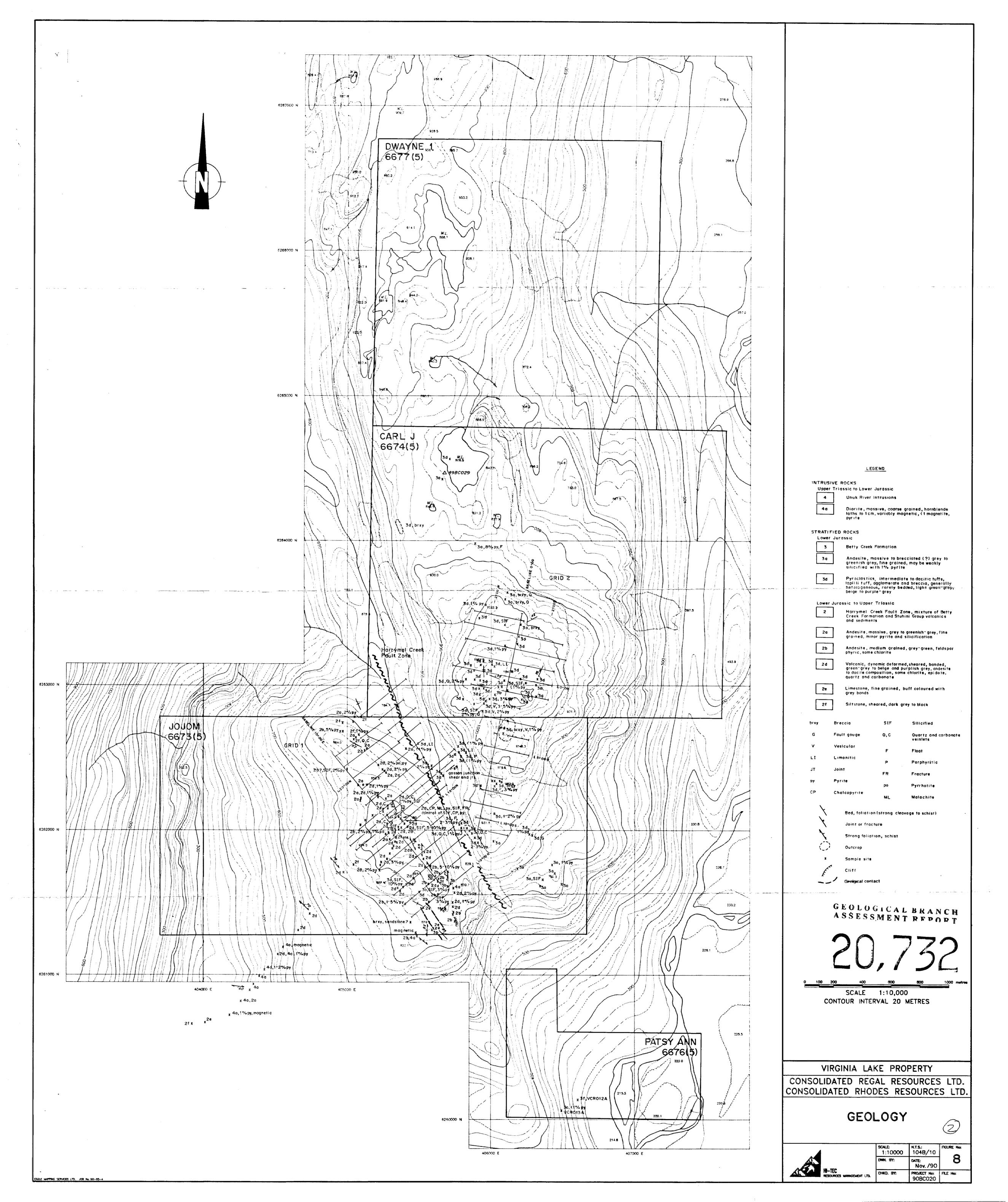
J

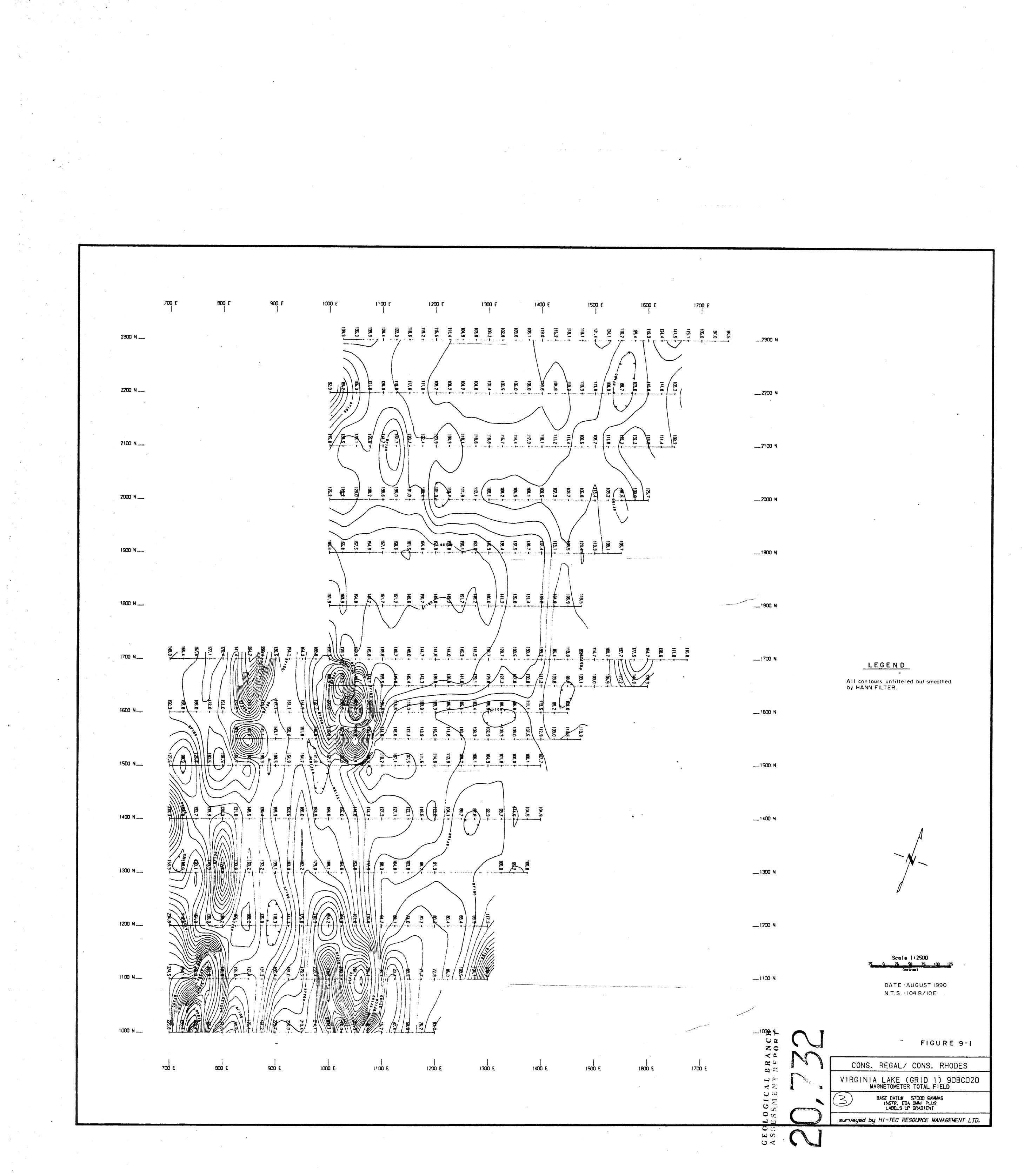
Page one (1) of two (2) pages

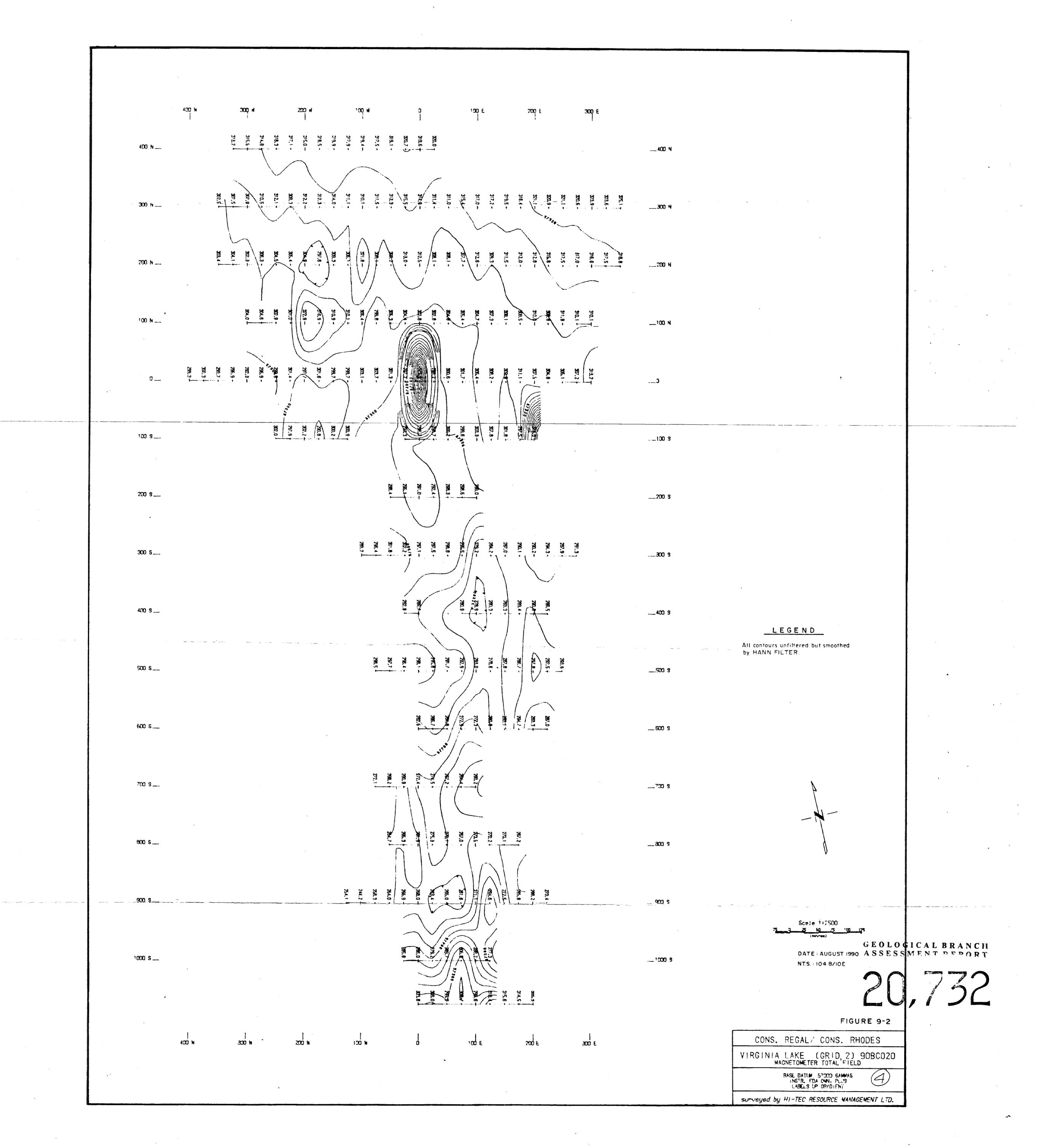
•

.

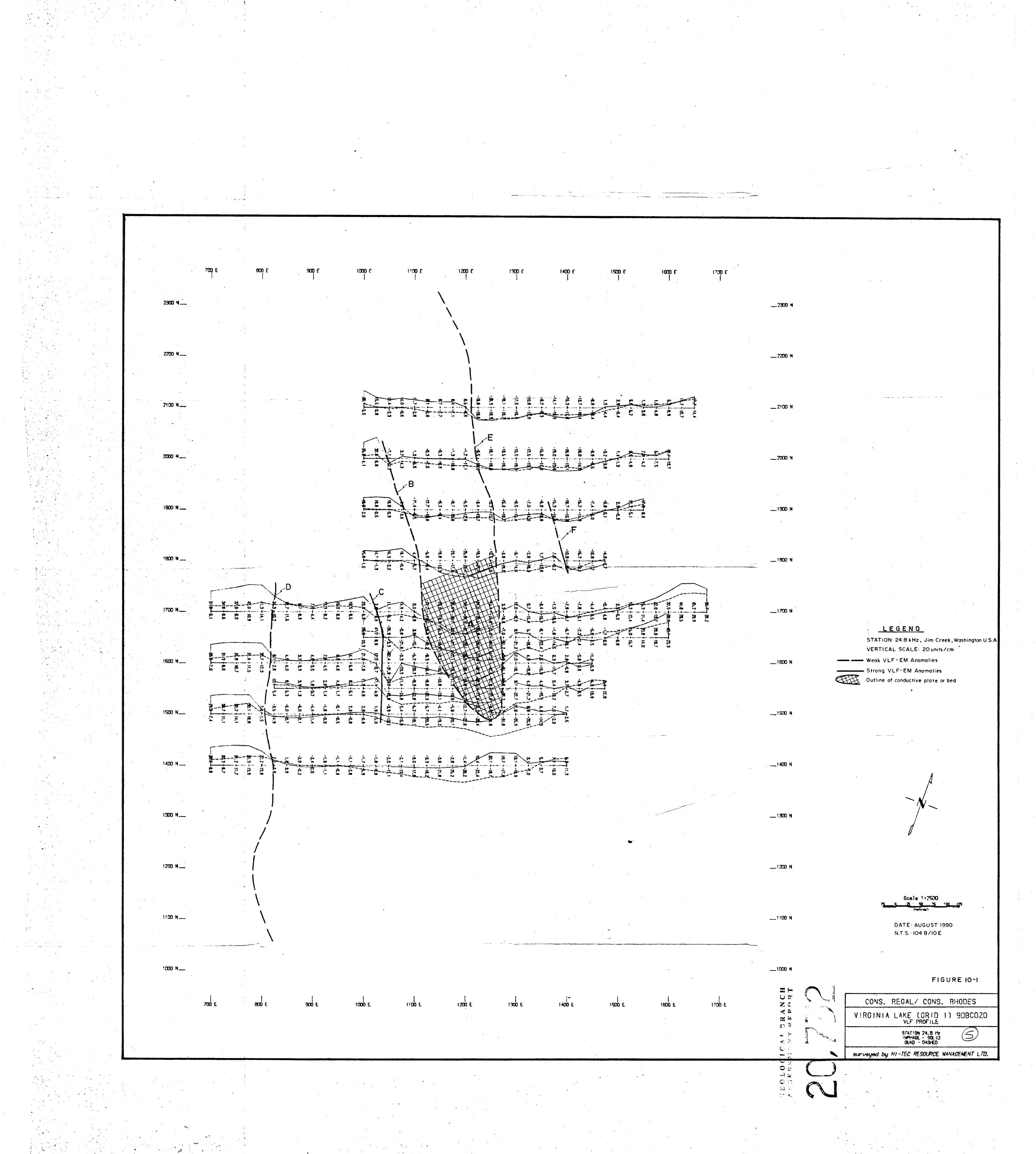

,

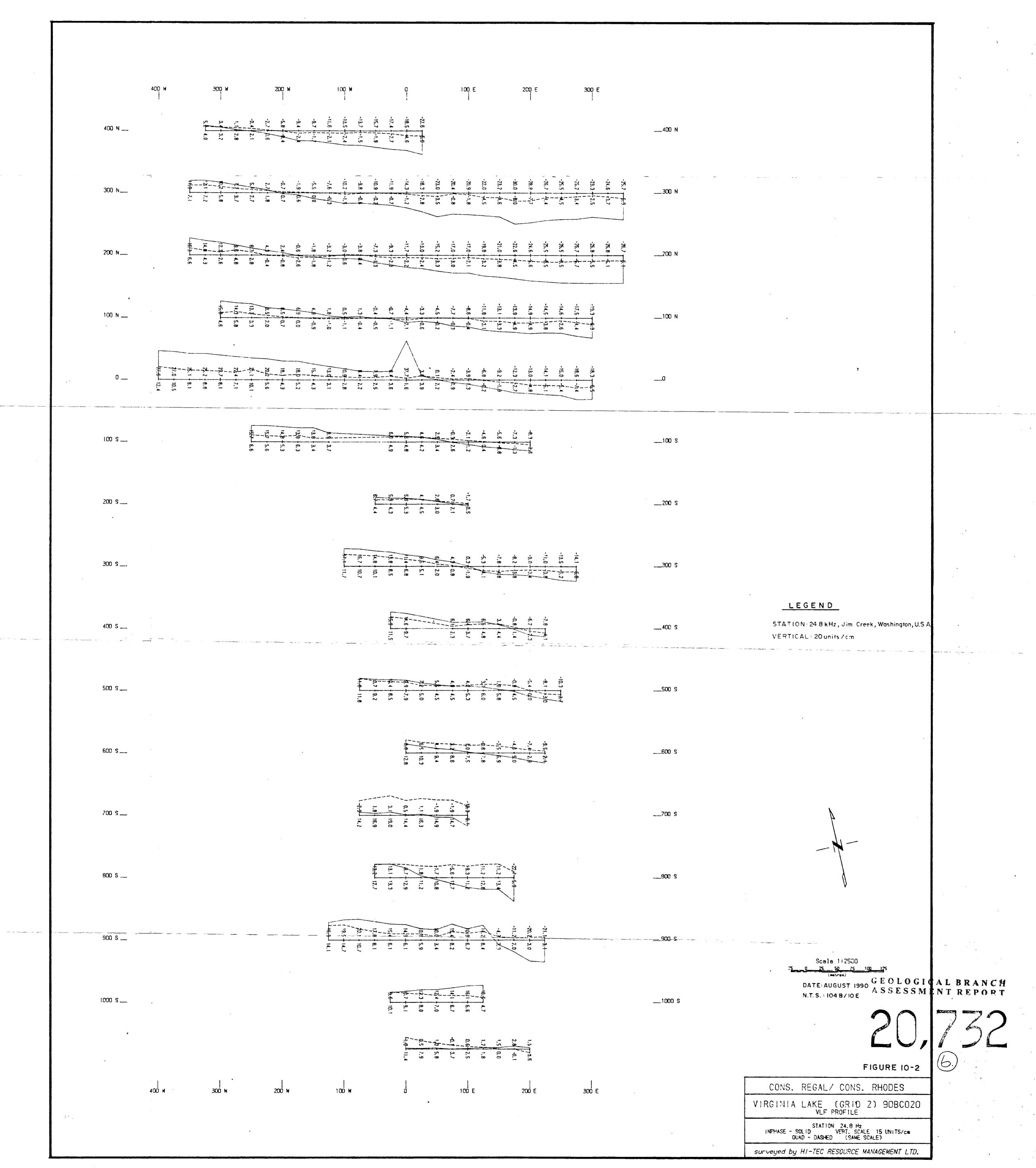

۰.


,


Expediting		23.56
Government filing etc.		14.00
Accounting, communication and freight		. 108.29
Report writing		260.00
15% Management Fees		540.29
	TOTAL	<u>\$3,690.20</u>

Page two (2) of two (2) pages





• .

÷ . . .

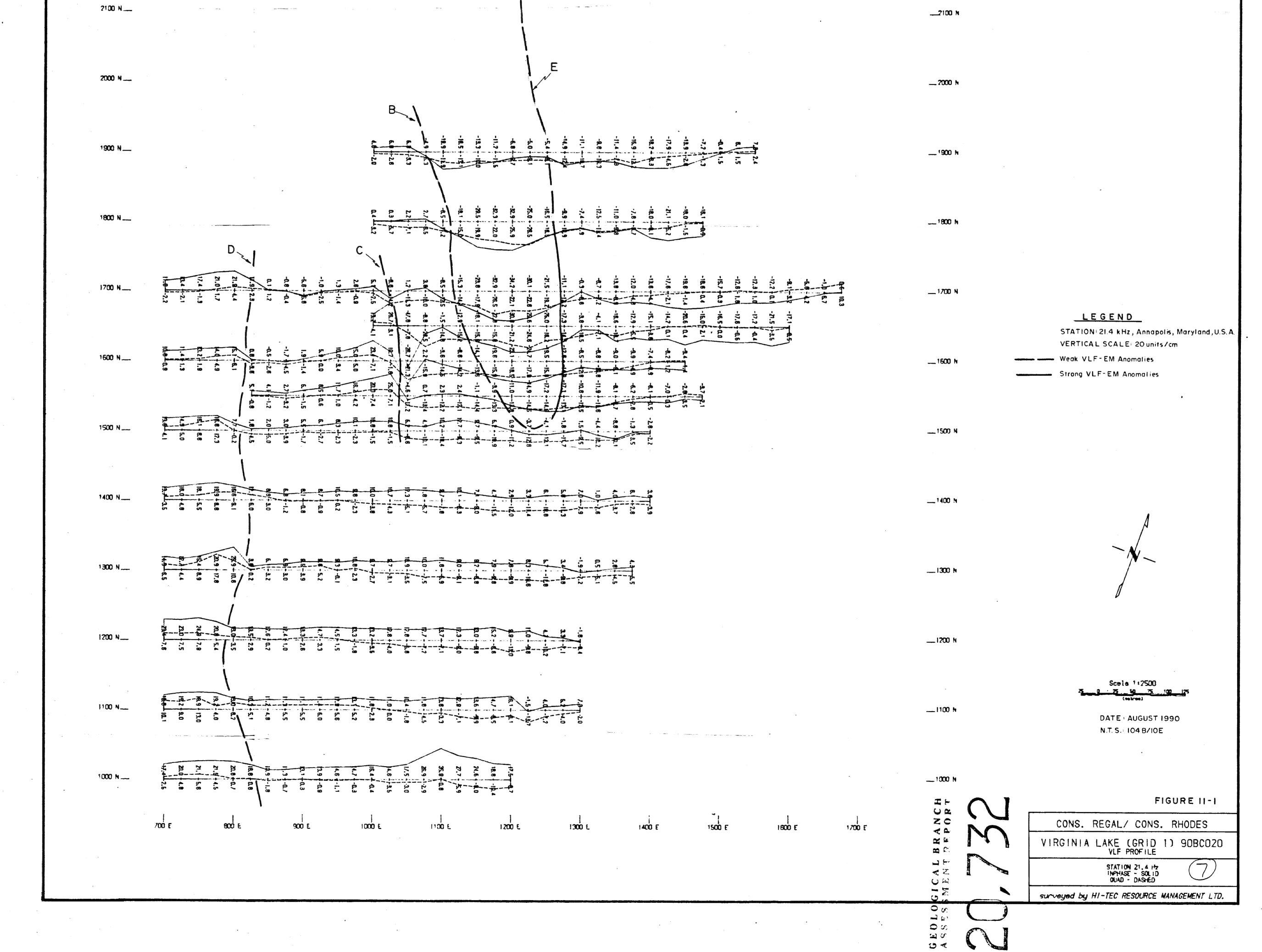
· · · · ·

• •

•

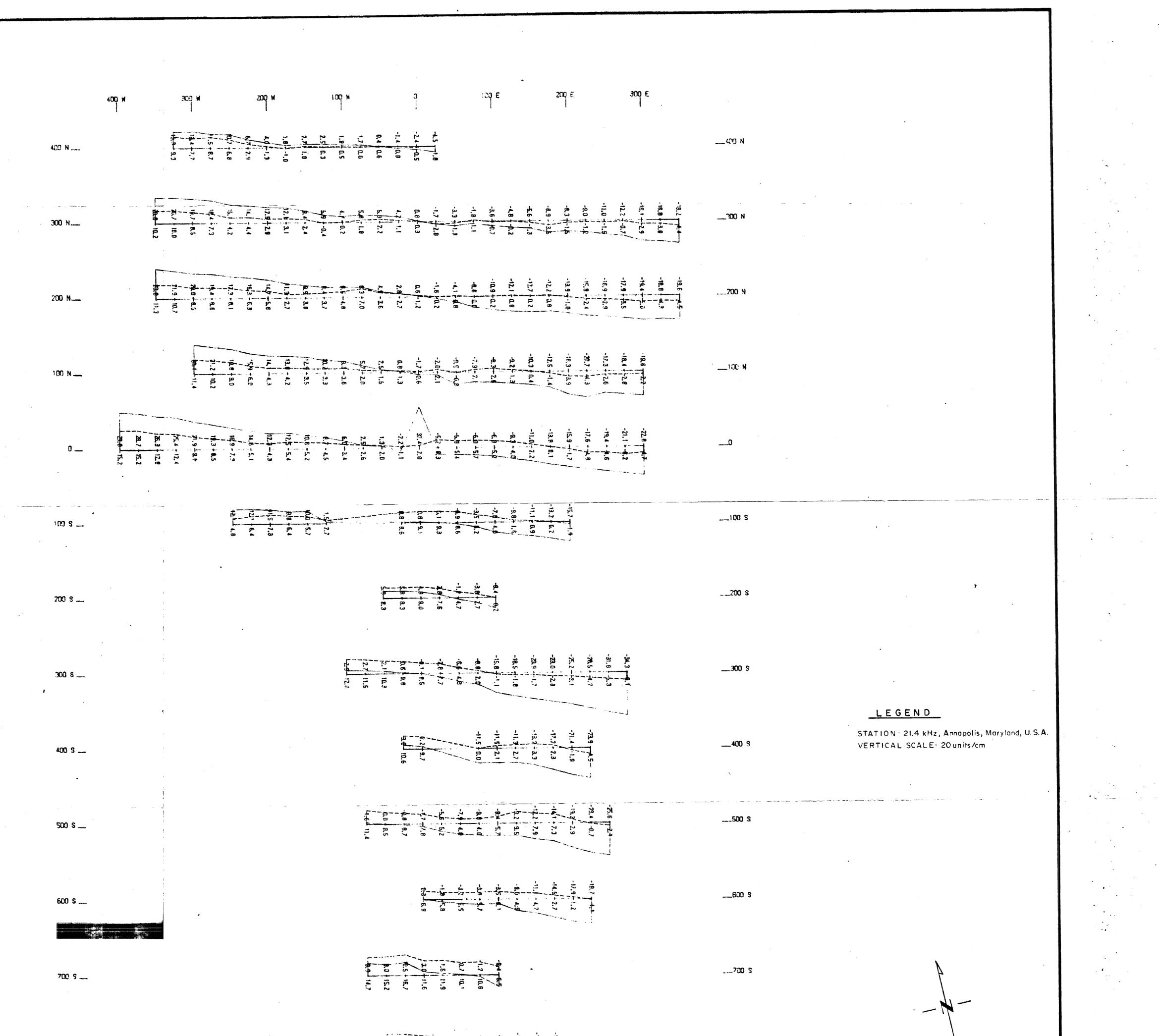
• •

9 pr. -

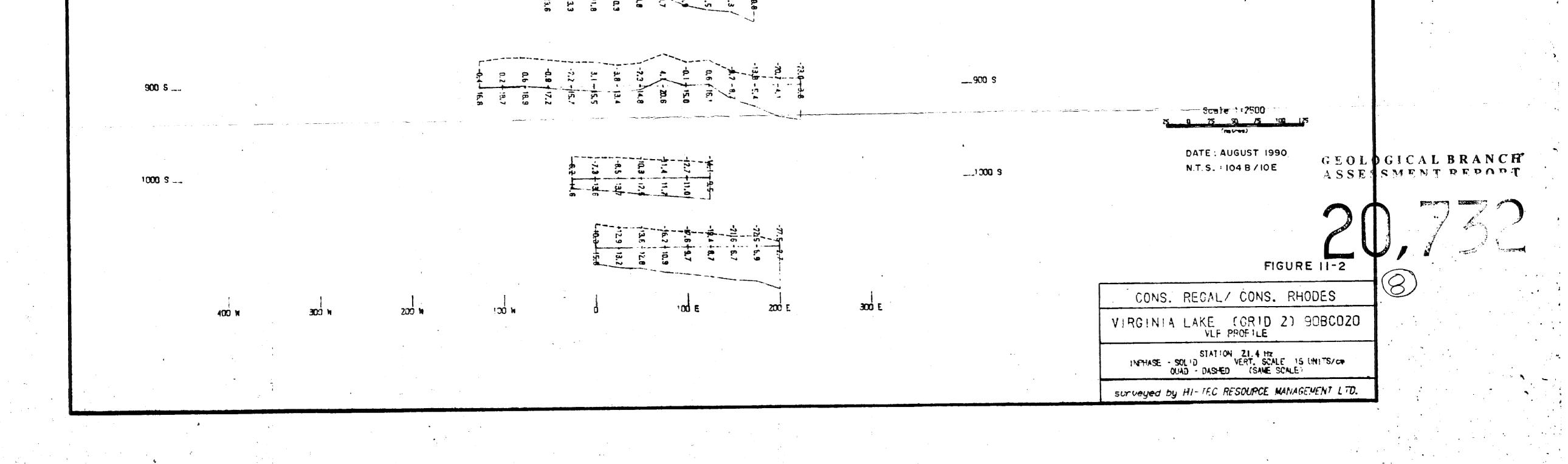

.

.

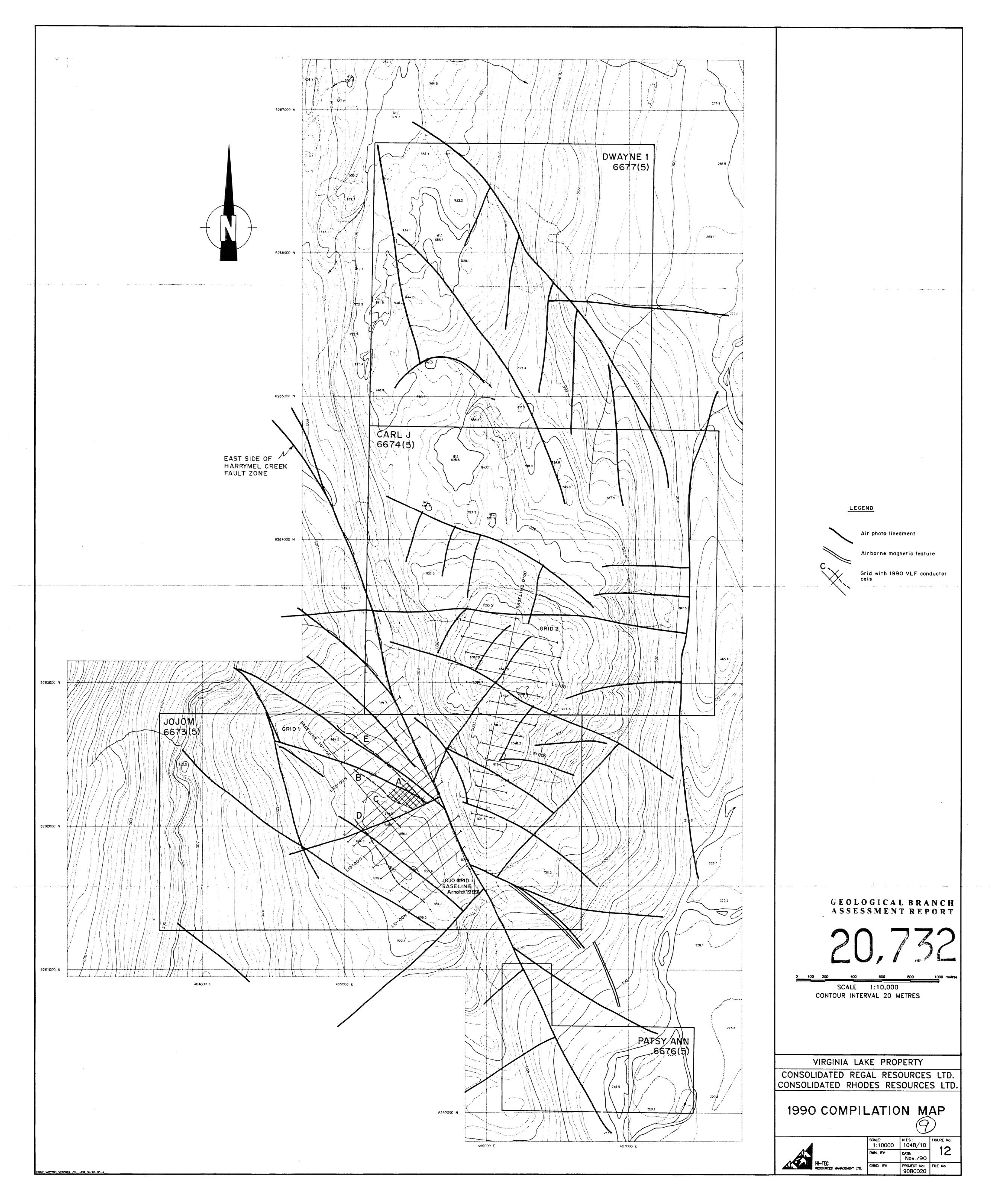
.


•

700 E 900 E 900 E ם ספיו | 1200 r 1000 E 1**300** E 1400 E 1500 E 1700 E 1600 E 2300 N ___2300 N 17.5 0.0 17.5 0.0 19.5 0.0 19.5 0.0 19.5 0.0 19.5 0.0 1.3 1.2 9.9 2200 N.___ ___ 2200 N 4.0


• •

٠,


•

900 S

___800 S

surveyed by HI-TEC RESOURCE MANAGEMENT LTU.

