LOG NO: 12-31	RD.
ACTION	
FILE NO:	

Geological and Geochemical Report

on the MacGold North Claim Group,

Skeena and Liard Mining Divisions, British Columbia

NTS 104 B/10E

Latitude: 56°37' North Longitude: 131°36' West

for

Golden Arrow Resources #710 - 580 Hornby Street Vancouver, B.C.

	SUB-RECORDER
December, 1990 Calvin Church, B.Sc. Leonard P. Gal, M.Sc.	DEC 1 9 1990 M.R. #\$ VANCOUVER, B.C.
International Kodiak Reso	GEOLOGICAL BRANCH ASSESSMENT REPORT
.c:32761	20,737

SUMMARY

The MacGold North claim block is located near the Unuk River on N.T.S. map sheet 104 B/10 E, and straddles both the Skeena and Liard Mining Division's boundaries. The MacGold 3, 4, and 5 claims consist of 36 units owned equally by Ecstall Mining Corp. (50%) and Omega Gold Corp. (50%). Golden Arrow Resources is earning an interest in the property by making certain cash and share payments to Omega/Ecstall and by making expenditures on the property.

Reconnaissance mapping at 1:10,000 scale and extensive rock geochemical sampling from several prominent gossans and mineral occurrences constituted the majority of the 1990 exploration program. Results are encouraging with a number of showings discovered and supported by significant geochemical anomalies in precious and base metals. The highest value for gold was grab sample EMMR-097 which assayed 0.117 oz/ton Au, 2.2 oz/ton Ag and 8.01% Cu. Similar high Au-Ag-Cu values were found in the vicinity of this sample and elsewhere on the property.

Just over \$44,000 was expended on the claims during 1990 and future work should focus on additional rock sampling with emphasis directed towards following up on anomalous samples located to date. Geophysics could also aid in delineating any possible drill targets.

i

TABLE OF CONTENTS

.

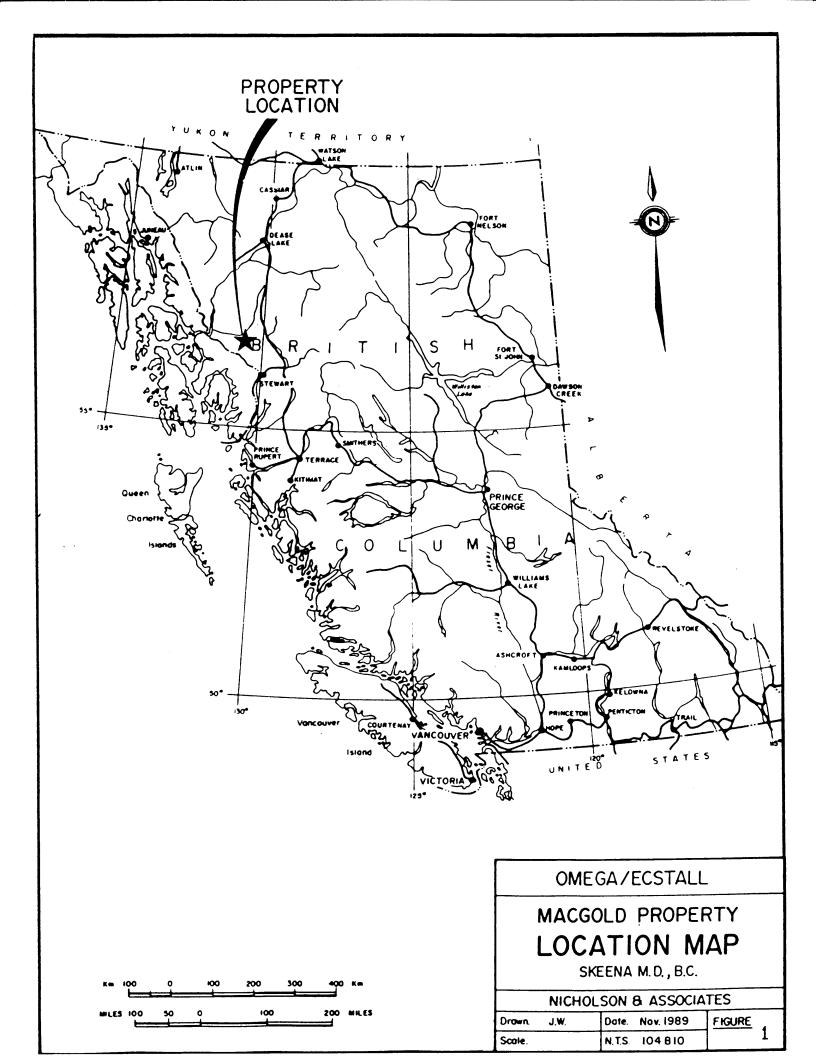
Page
SUMMARY
TABLE OF CONTENTS
LIST OF FIGURES
INTRODUCTION
LOCATION AND ACCESS
CLAIM STATUS
PHYSIOGRAPHY AND CLIMATE
HISTORY
REGIONAL GEOLOGY
LOCAL GEOLOGY
Mineralization
Alteration
GEOCHEMICAL RESULTS
CONCLUSIONS AND RECOMMENDATIONS
STATEMENT OF QUALIFICATIONS
REFERENCES
CLAIM RECORDS
STATEMENT OF COSTS
STATEMENT OF WORK
ASSAY TECHNIQUES AND RESULTS APPENDIX IV
SAMPLE DESCRIPTIONS

LIST OF FIGURES

,

	Pag	e
1.	Location Map 3	
2.	Claim Map	
3.	Regional Stratigraphy13	
4.	Local Geologyback pocket	
5.	Sample Locationsback pocket	
6.	Geochemistry Au, Ag, Asback pocket	
7.	Geochemistry Cu, Pb, Znback pocket	

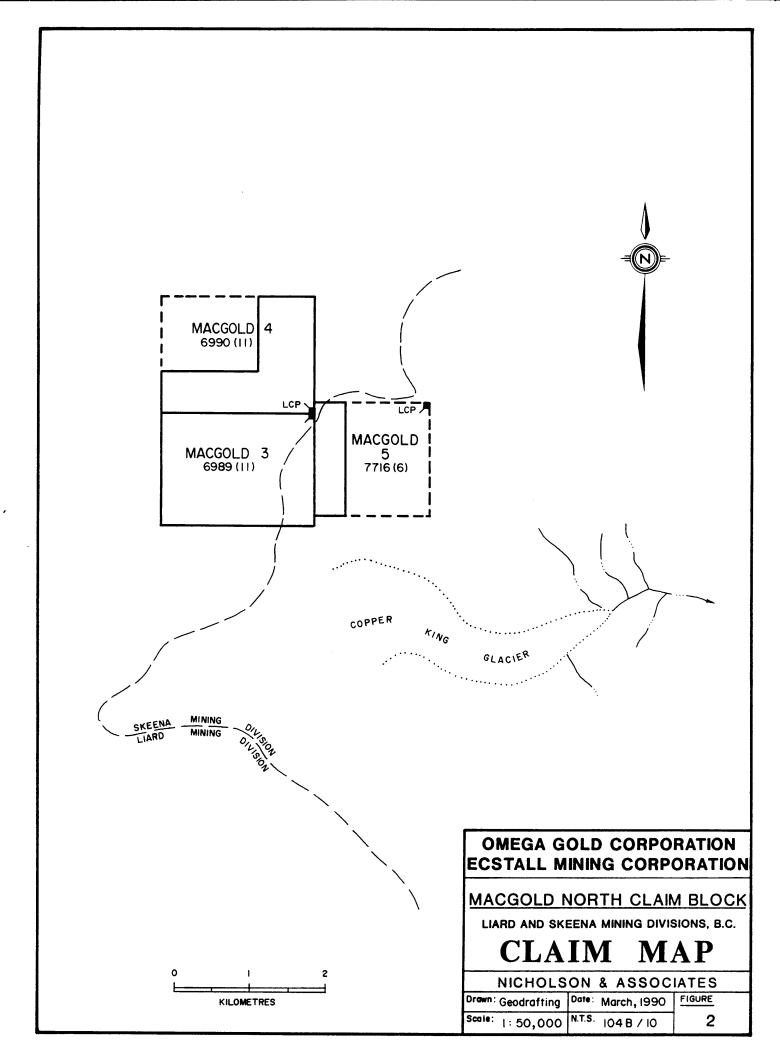
INTRODUCTION


The MacGold North property is located in the Liard and Skeena Mining Divisions of British Columbia on N.T.S. mapsheet 104 B/10E. The claim block consists of 36 units held jointly by Ecstall Mining Corp. and Omega Gold Corp. on a 50/50 basis. Golden Arrow Resources has entered into an option agreement with Ecstall Mining Corp. and Omega Gold Corp. whereby Golden Arrow may earn 50% interest in the claims by making expenditures totalling \$500,000 on the claims over four years, and by making certain cash and stock payments to Ecstall and Omega.

The preliminary program carried out by crews of International Kodiak Resources Inc. in July and August of 1990, included reconnaissance geological mapping at 1:10,000 scale and extensive rock geochemical sampling. Initial prospecting of mineralized zones were successful in locating areas containing encouraging Au, Ag, Cu, Pb, and Zn values. Quartz vein stockwork at the Lehto showing contains 3 to 5% sulphides (pyrite-chalcopyrite-galena) across a zone 2 to 3 m wide, exposed for 50 meters with probable strike extension under ice. Anomalous Au, Ag, Cu values occur over a large area on the South Ridge where a different style of mineralization and alteration dominates. A number of the gossans were not prospected because they occur on cliff faces not accessible without special climbing equipment.

1

LOCATION AND ACCESS


The MacGold North claim group is located 12 kilometres southeast of Prime Resources'/Stikine Resources' Eskay Creek gold deposit. The property is situated at latitude 56°37' North and longitude 131°36' West on N.T.S. map sheet 104 B/10E (Figure 1). The property is accessed by helicopter from the Kodiak field camp 22 km to the north-northeast. Alternate access is from an airstrip at Bob Quinn Lake or regular scheduled flights from Terrace or Smithers to the Bronson airstrip 25 km to the west. Construction has begun on an access road from Bob Quinn Lake into the Iskut - Unuk River region that will pass within 100 m of the Kodiak Camp, and within approximately 10 km of the MacGold North property.

CLAIM STATUS

The MacGold North claim block was staked during November of 1988 and June of 1989 in accordance with the modified grid system (Figure 2). The claims are owned by Ecstall Mining Corp. and Omega Gold Corp. on a 50/50 basis. Golden Arrow Resources may earn a 50% interest in the claims by making expenditures totalling \$500,000 on the claims over four years, and by making certain cash and stock payments to Ecstall and Omega. The claims are covered by N.T.S. mapsheet 1048/10E and straddle the Skeena and Liard Mining Divisions of British Columbia. Following acceptance of this report for assessment purposes the claims will have expiry dates as shown below.

CLAIM	RECORD NUMBER	<u>M.D.</u>	EXPIRY DATE
MacGold 3	6989	Skeena/Liard	Nov 14, 1999
MacGold 4	6990	Liard	Nov 14, 1999
MacGold 5	7716	Skeena/Liard	June 30, 1997

PHYSIOGRAPHY AND CLIMATE

The MacGold North claim block is situated within the Intercostal Mountain Belt of the Coast Mountain Ranges. The property ranges in elevation from 1000 m (3280 ft) on the Lehto Glacier to more than 2000 m (6562 ft) on peaks in the southwest corner of the property. Steep mountain peaks rim the eastern boundary and south central area of the property while icefields cover almost 50% of the area. Most creeks are immature and run only in periods of high runoff or disappear beneath talus. There are no trees on the property and alpine slopes are virtually devoid of any vegetation. Steep talus slopes abut icefields at their bases and there is very little in the way of soil or till cover.

Climatically, the MacGold North property is under the influence of coastal weather patterns. The summer weather varies from warm days to cool, wet conditions. Up to 12 m of snow can accumulate during the winter months. Normally, the property is workable from June until late September.

HISTORY

The Iskut River - Unuk River area has seen sporadic mineral exploration activity until very recently. The first documented mineral discoveries occurred around the turn of the century. Mineralization was discovered along the Iskut and Unuk Rivers, and in close proximity to the Prior to World War II, small precious metal mines town of Stewart. operated intermittently. The largest of these was the Silbak - Premier Mine which produced 41 million ounces of silver and 1.8 million ounces of gold between 1920 and 1985. After World War II, exploration was focused on large tonnage base metal deposits. Although several deposits were defined, only the Granduc Mine reached production, with published reserves of 10.9 million tons grading 1.79% copper. Exploration in the 1970's shifted toward precious metals, and several deposits have since been discovered; including the Reg (Johnny Mountain Mine) of Skyline Gold Corp., with 740,000 tons grading 0.52 ounces/ton gold, 0.67 ounces/ton silver: Cominco/Prime's Snip deposit, with over 1 million tons of 0.875 ounces/ton gold; and the Eskay Creek deposit (Calpine/Stikine) with preliminary estimated reserves of 4.36 million tons grading 0.77 ounces /ton gold and 29.12 ounces/ton silver at a cutoff grade of 0.10 oz/ton Au. (Northern Miner, 6 Oct. 90). Several companies are presently exploring for base and precious metal deposits, and some are in the feasibility and pre-feasibility stages of production, i.e., the Sulphurets deposit (Newhawk/Granduc) with 715,000 tons of 0.431 ounces/ton gold, 19.7 ounces/ton silver, and the SB deposit (Tenajon) with 308,000 tons grading 0.51 ounces/ton gold.

7

The MacGold North area has, for the most part, seen little exploration until recently. No history of work on the claims is present in government files. The only report of any work comes from local prospector, John Lehto, who reportedly found pieces of copper stained float at the toe of Copper King Glacier. The MacGold South property, which adjoins the MacGold North has encountered encouraging results during work programs in 1989 and 1990 which included soil grids, blast trenching/sampling and IP and UTEM geophysical surveys.

REGIONAL GEOLOGY

The MacGold North property is located near the boundary between the Intermontane Belt and the Coast Plutonic Complex. It is underlain by the Stikine Terrane, a mid-Paleozoic to Mesozoic island arc succession. Mesozoic rocks are represented by volcanic rocks of the Triassic Stuhini Group, and the volcanic and subordinate sedimentary lithologies of the Lower to Middle Jurassic Hazelton Group. This dominantly volcanic package is overlain by, and interfingers with successor basin clastics of the Bowser Basin.

An eastern facies and a western facies have been identified in the Upper Triassic Stuhini Group. The western facies can be traced from the Stikine River eastward at least to Snippaker Mountain. It is characterized by corraline limestone and polymict cobble conglomerate, overlain by breccia, felsic tuff, shale and micrite. Laminated mafic and felsic tuff with coarse pyroxene phenocrysts are present near the top. The eastern facies lacks the thick limestone and felsic tuff units. Orange and black weathering,thin bedded siltstone and fine grained, feldspathic, locally calcareous greywacke distinguish this facies. Polymict pebble conglomerate and shale are subordinate. Intermediate to mafic volcanics, breccias and conglomerates are typical.

A gradational contact between the Stuhini Group and the Hazelton Group has been mapped near the headwaters of the Unuk River (Anderson and Thorkelson, 1990). Siltstone above the orange and black weathering siltstones and shales becomes increasingly siliceous, and greywackes and conglomerates grow more abundant. This conglomerate is present as discontinuous lenses and consists of clast-supported porphyritic andesite and dacite clasts. The uppermost strata in this transitional zone consist of laminated siliceous siltstone, fine grained greywacke, minor coarser grained greywacke and matrix to clast supported conglomerate.

Mineralization at the Snip deposit is hosted within the Stuhini Group and is believed to have occurred during the Upper Triassic. Several other deposits have been found in the Stuhini Group; including the Kerr, the Doc, the Inel and the Stonehouse.

The Hazelton Group has been divided into three heterogeneous formations: the Lower Jurassic Unuk River Formation and Betty Creek Formation, and the Lower to Middle Jurassic Salmon River Formation. In addition, a regional marker unit, the Mt. Dilworth formation, has been identified regionally between the Betty Creek and Salmon River Formations and has come to gain informal status as a formation. Some workers (Grove, 1986) have identified a fourth and uppermost formation in the Hazelton Group, the Nass Formation. However, this package of rocks includes Bowser Basin rocks and should not be included in the Hazelton Group, which encompasses the Stikine Arch (Anderson and Thorkelson, 1990).

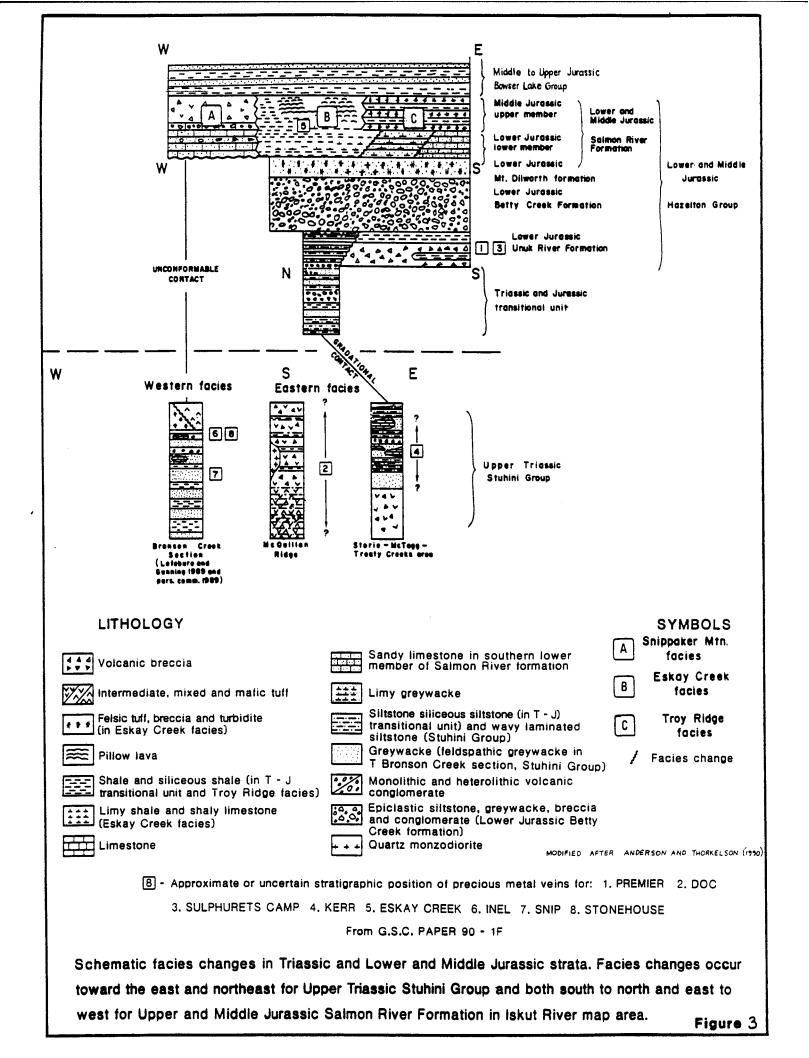
The volcanic sequences of the Unuk River Formation are characterized by basal pyroclastic flows that are progressively overlain by tuffs, argillites, local andesitic breccia, and finally conglomerates with interbedded tuffs, wackes and siltstones.

The Betty Creek Formation unconformably overlies the Unuk River Formation and is comprised of maroon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas and andesitic

10

flows. The conglomerate/breccia unit consists of matrix supported pebble to boulder sized clasts of aphanitic to porphyritic andesite.

Overlying these rocks is the Mt. Dilworth formation (Aldrick et al., 1989; Anderson and Thorkelson, 1990), a regional marker unit consisting of tuff breccia, felsic tuff and dust tuff. These tuffs range from unwelded to welded, and aphyric to sparsely phyric.


The lower member of the Salmon River Formation ranges along strike from a limy argillite to limy greywacke to a sandy limestone. In most localities it is too thin to map, but it thickens in towards the north and northwest to at least 1500 m of siltstones, greywackes and rare fossiliferous limestones south of Telegraph Creek.

The upper member of the Salmon River Formation is made up of three distinct facies from east to west: the Snippaker Mountain facies, the Eskay Creek facies, and the Troy Ridge facies (Figure 3). The gold deposit presently being defined at Eskay Creek is stratabound in Eskay Creek facies rocks. This medial facies extends 50-60 kilometers north and south along strike from the deposit. The Eskay Creek facies comprises aphyric to augite phyric pillow basalts with interfingered siltstone, tuffaceous wacke and conglomerate. To the west, the Snippaker Mountain facies consists mainly of volcanic breccia. The eastern Troy Ridge facies comprises shales with interbedded tuffs and breccias (Anderson and Thorkelson, 1990).

At the end of the Middle Jurassic, the volcanic complex was uplifted to produce the Stikine Arch, which shed detritus into the adjacent Bowser Basin. These sediments form the Middle and Late Jurassic Bowser Lake Group sediments.

11

The volcanic and sedimentary rocks were subsequently intruded by granitoid intrusions associated with the Coast Plutonic Complex. Intrusive activity is interpreted to have occurred from the Middle Cretaceous to the Early Tertiary. Late stage (Quaternary) basaltic volcanism resulted in widespread deposits of columnar basalt flows, ash and tephra, and scattered cinder cones. Much of these rocks were buried and/or eroded through glacial activity in the Pleistocene.

LOCAL GEOLOGY

The MacGold North property is underlain by granitic rock of the Jurrassic Lehto Porphyry (Alldrick et al., 1989). The Lehto porphyry is an elongate northeast-trending body roughly 10 km long by 2 km wide. Associated northeast trending dyke swarms cut immediately adjacent country rocks of the Betty Creek Formation on the property. Granitoid rocks outcrop over greater than 40% of the property. They are largely porphyritic and vary compositionally from granodiorite to syenite. The different phases of the intrusive stock are characterized by varying sizes and percentages of potassium feldspar, plagiocase and hornblende phenocrysts. Phenocrysts of white weathering plagioclase feldspar range in size up to 0.5 cm diameter. Pink potassium feldspar phenocrysts vary from 0.2 to 5 cm in length. Some exposures have coarse potassium feldspar phenocrysts typical of the Lehto batholith and other early Jurassic plutons in the area (Iskut River Pluton). It should be noted that plutonic rocks of this age with similar textures have spatial and temporate relationships with mineral deposits in the area (eq. Texas Creek batholith and the Silbak-Premier gold-silver deposit). The mafic component, less than 30% volume, is comprised of hornblende phenocrysts up to 0.4 cm long. White to buff colored aplite dykes, some as wide as 70 cm, are seen to cut the granitoid rocks, but are considered part of the granitoid phase.

Large xenoliths (10 cm to 1.5 m) occur in the Lehto porphyry, especially near contacts with volcanic units. The xenoliths are of various lithologies, including black argillite and volcanic breccia. Several volcanic units outcrop on the property in isolated areas (Figure 4). On the south and east boundary of the property fine grained quartz-feldspar crystal ash and lapilli tuffs (Figure 4, Unit 2b) overly granitoids. The tuffs weather orange-yellow and contain feldspar phenocrysts averaging 3-4mm. Dacite units (Unit 2a) interbedded with the tuffs have a siliceous aphanitic matrix and appear similar to the tuffs on fresh surfaces. Dark green andesite (Unit 7) occurs in fine grained, massive to thinly bedded outcrops on the southwest flank of the property. A distinctive white to grey marble unit (up to 15m wide) outcrops at several locations. It is usually fine grained and locally contains thin (5-10 cm) contorted beds of argillite. The volcaniclastic units described above are considered to be correlative with the Betty Creek Formation (Pliensbachian to Torcian).

Faults strike north to northeast trending subparallel to the elongate shape of the Lehto porphyry. The predominance of intrusive rock on the property makes the interpretation of movement on the faults difficult. However, markers within the Betty Creek Formation indicate substantial movement may have taken place syn- and post-tectonically with the emplacement of the Lehto porphyry.

Mineralization

Sulphide mineralization on the MacGold North property is spatially and temporally related to the Lehto porphyry intrusion. This intrusive northwest trending body is the source for mineralization in the immediate area and is itself mineralized. Volcaniclastics of the Betty Creek Formation provide a host for mineralization on the property although they are not very extensive. Many of the gossans have been prospected and mapped however there are several others that were inaccessible. A description of some of the mineral occurrences found while prospecting follows.

A gossanous zone (Lehto showing) occurs on the east edge of the Lehto glacier near the center of the property (sample numbers ECCR-149 to 152 and 160-162). Quartz-carbonate veins containing pyrite-chalcopyritegalena mineralization are found here in a felsic volcanic. The largest of these veins is 10cm wide and is part of a stockwork veining zone 2 to 3 meters wide extending 50m to a point where it disappears beneath the ice. The zone strikes 160 to 170 degrees with a steep easterly dip. This gossan is located near the contact between intrusive granitoids and overlying volcanics. A 10m wide unit of marble is interbedded with the volcanics at this locality but contains no visible sulphides.

Skarn mineralization was observed in an outcropping of a similar marble unit in the northwest corner of the property near the toe of a hanging glacier (samples numbers ECCR-155,156). The attitude of this marble unit is 006/60E and contains thin vienlets (1 to 3cm) of pyritechalcopyrite-hematite in thin serpentinite layers where the marble contacts the granitoid. Large euhedral garnet,epidote and quartz characterize the skarn gangue assemblage.

A pegmatite pod was found on one of the traverses on the south facing flank of the ridge in the southwest corner of the property (ECCR-141, 142). The pegmatite is exposed in an area of 12 square meters and contains large euhedral quartz, calcite, and epidote. Massive sulphide mineralization consisting of chalcopyrite-pyrite-galena in thin (20 cm) lenses is contained in the pod. Unfortunately the pegmatite bodies tend to be fairly small and localized making them a poor exploration target.

Quartz-epidote veins (1 to 15 cm wide) within the intrusive granitoids (Lehto porphyry) are occasionally stained with malachite and azurite with traces of chalcopyrite visible along facture surfaces. Sample EMMR-097 taken from a quartz flooded fracture in the granitoid returned a value of 2900 ppb Au (0.117 oz/ton), 76.5 ppm Ag (2.2 oz/ton), 53798 ppm Cu (8.01% Cu). The mineralization near this sample is along veins related to faults/ fractures with an orientation of 000/10W. This type of mineralization occurs mainly on the south ridge and is considered to be structurally controlled.

Alteration

Propylitic alteration is by far the most common and widespread on the property. Plagioclase and mafic minerals of the Lehto porphyry alter to chlorite and epidote. Epidote stringers are noted in fracture infilling or in fault breccia. A late phase carbonate alteration overprint is evidenced by widespread malachite/azurite staining along fracture surfaces and carbonate veins.

17

GEOCHEMICAL RESULTS

The geochemical sampling program involved prospecting accessible gossans and tracing mineralized float in talus to its source. Due to the nature of the terrain, very little detritus accumulates in the alpine streams and consequently no silt geochemistry is available for this property. A total of 92 rock samples and one moss sample were collected from outcrops on the claims (Figure 5). Rock sampling methods included either representative chips across veins or zones of mineralization or grab samples of disseminated or gossanous mineralization. The samples were then put in labelled plastic bags and a metal tag with flagging was nailed to the outcrop with the same label for future reference. Geochemical results for the elements Au, Ag, As, Pb, Zn, and Cu appear in Figures 6 and 7. Sample descriptions of rock samples are included in Appendix iii. Analytical procedures and results from Min – En Laboratories are detailed in Appendix ii. A description of anomalous values for selected elements follows.

Gold

Gold values range from 5 (detection limit) to 2900 ppb over the entire property. The most consistent anomalous gold values come from the south ridge area. A cluster of 5 samples in this area (500m x 300m) average 930 ppb. The samples are typically breccia quartz veins (0.5 to 5 cm wide) in fractures or faults mineralized with blebs of pyrite, chalcopyrite and stained with malachite and/ or azurite.

Another notable anomalous area is from the quartz - carbonate stockwork (Lehto showing) on the east side of Lehto glacier. Gold values range from 50 to 980 ppb in samples that contain stringers and disseminations of pyrite-galena-chalcopyrite (1-5%). On the west side of Lehto glacier samples ECCR-155, and 156 (1850 and 170 ppb Au respectively) are evidence of a possible gold enriched skarn. These samples are slightly anomalous in cobalt, a useful pathfinder element in tracing auriferous skarns.

Silver

Anomalous silver values generally accompanies anomalous gold values on the property (EMMR-097, 167, ECCR-141,142) although there are some exceptions. Eight of the nine samples on the south ridge area have silver values greater than 3.0 ppm.

Arsenic

The showing on the east side of Lehto glacier produced a number of high arsenic values. High gold values are associated with each arsenic anomaly which is consistent with the distribution of elements in epithermal vein systems. The highest arsenic value obtained was from sample ELGR-156 (2715 ppm arsenic) which was also weakly anomalous in gold and copper.

Copper

Anomalous copper geochemistry has a wide distribution on the property. Samples ECCR141 and EMMR097 yielded copper values of 25,146 ppm and 53,798 ppm respectively. These samples have the two most anomalous copper results on the property. Copper anomalies coincident with gold anomalies are generally five times higher than background.

Lead

The only area of anomalous lead is at the Lehto showing (east side of Lehto glacier).

Zinc

.

The highest Zn values also occur at the Lehto showing. Here the anomalous values range from 131 ppm to 1791 ppm Zn. On the south ridge moderately anomalous Zn occurs with Cu anomalies (EMMR-096, 097, ECCR-101, 102).

CONCLUSIONS AND RECOMMENDATIONS

MacGold North was a relatively unexplored property previous to 1990. British Columbia government geologists did regional mapping in the area in 1989, and Nicholson and Associates have been actively exploring a property to the south. Upon review of the results obtained from the 1990 exploration program several conclusions may be drawn.

Three areas of interest have been located by using prospecting techniques and rock geochemical results. A program of silt sediment or soil geochemical sampling is impractical for this property due to the terrain. The Lehto showing located on the east side of Lehto glacier consists of a mineralized quartz-carbonate stockwork, shows the most potential, and would be the easiest area in which to do development work. The zone of mineralization, at this showing could be further sampled using blast trenching and a small geophysical survey to delineate the extension of the zone. Samples from the south ridge revealed anomalous Au, Ag, and Cu in their assays. Although the results are indicative of the mineralization the samples occur over narrow faults in the intrusive The Lehto porphyry is the potential source for Lehto porphyry. mineralization of the overlying Betty Creek strata and not likely to host a deposit itself. A mineralized skarn carrying anomalous Cu and Au occurs west of Lehto glacier. The showing is small on surface but may extend further at depth or along strike. A geophysical survey is recommended to determine if there is any depth and/or strike length to this showing.

In summary, it is important to consider the geologic setting as it relates to the potential for finding a mineral deposit on the MacGold North. The Lehto porphyry underlies a majority of the property and displays similarities of emplacement, mineralization, and alteration to other Jurassic porphyritic intrusions important to major mineral deposits. For many of the deposits in the area (eg. Premier, Kerr, Inel and Snip) proximity to an alkali feldspar porphyry is an important control for mineralization. It is also important to note that much of the property remains unexplored due to steep terrain and the potential for further mineral discoveries in these areas should not be overlooked.

,

STATEMENT OF QUALIFICATIONS

I, Calvin Chruch do hereby certify that:

- I am a graduate of the University of British Columbia with a Bachelor of Science in Geology and have worked in the mineral exploration industry since 1986, throughout B.C.
- I am a contract geologist with principal residences at 2292
 West 49th Ave, Vancouver B.C.
- 3) I worked as a field geologist for International Kodiak Resources Inc. on the MacGold North claims during the 1990 field season.
- 4) I am the co-author of this report and my findings are based on my observations in the field and on previously published and unpublished reports on the area.
- 5) I have no interest, direct or indirect in Golden Arrow Resources, nor any of its properties, nor do I expect to recieve any such interest.

Dated at Vancouver, British Columbia, this $\frac{19}{100}$ th day of December, 1990.

Calin-Chuck

Calvin Church BSc.

STATEMENT OF QUALIFICATIONS

I, Leonard P. Gal, of 3373 West Seventh Ave. Vancouver, British Columbia, do hereby certify that:

- I am a contract geologist in the employ of International Kodiak Resources Inc., with offices at #606-675 West Hastings Street, Vancouver, B.C.
- 2) I am a graduate of the University of British Columbia (B.Sc. Geology) and the University of Calgary (M.Sc. Geology), and have worked in British Columbia and the Northwest Territories since 1986.
- I am the co-author of this report an my findings are based on work under taken on the property between July 23 and July 25, 1990, and examination of published and unpublished reports.
- 4) I have no interest, direct or indirect, in Golden Arrow Resources, nor in any of its properties, nor do I expect to recieve any such interest.
- 5) This report may be used by Golden Arrow Resources in whole or in part, as so required.

Dated at Vancouver, British Columbia this 19 th day of December, 1990

hear and gad

Leonard P. Gal, M.Sc.

REFERENCES

- Alldrick, D.J. (1988): Volcanic centres in the Stewart Complex. (103P and 104A,B). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 233-240.
- Anderson, R.G. (1989): A Stratigraphic, plutonic, and structural framework for the Iskut River Map Area, northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Anderson, R.G., Thorkelson, D.G. (1990): Mesozoic stratigraphy and setting for some mineral deposits in Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-IF, pages 131-139.
- Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., and Alldrick, D.J. (1988): Sulphurets Map Area (104A/05W, 12W,: 104B/08E, 09E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 199-209.
- Drobe, J.R., Koyanagi, V.M., and Logan, J.M. (1990): Geology of the Forrest - Kerr Creek Area, Northwestern British Columbia (104 B/15); in B.C. Ministry of Energy, Mines and Petroleum Resources Geological Fieldwork 1989, Paper 1990-1, pages 127-139.
- Franklin, J.M., Lyndon, J.W. and Sangster, D.M. (1982): Volcanicassociated massive sulphide deposits; in Economic Geology Seventy-Fifth Anniversary Volume, pages 485-627.
- Grove, E.W. (1971): Geology and mineral deposits of the Stewart Area, British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 58, 219 pages.
- Grove, E.W. (1986): Geology and mineral Deposits of the Unuk River-Salmon River - Anyox Area. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin, 63, 152 pages.
- Kerr, F.A. (1982): Lower Stikine and Western Iskut River Areas, British Columbia. Geological Survey of Canada Memoir 246, pages 31-34.
- Nicholson, G.E., and Sampson, C. (1990): Regional Geology and Geochemical Survey Report on the MacGold North Claim, Liard Mining Division, B.C. for Ecstall Mining Corp. and Omega Gold Corp.
- Panteleyev, A. (1986): A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits; reprinted in Ore Deposit Models, Geological Association of Canada Reprint Series 3, pages 31-44.

APPENDIX II

STATEMENT OF COSTS

1

,

(Long)

- 14

INTERNATIONAL KODIAK RESOURCES INC.

Mineral Exploration Services

-

STATEMENT OF COSTS

PROJECT: MACGOLD NORTH for GOL	DEN ARROW RESOURCES
PERIOD: JULY-AUGUST 1990	l
D	
Personnel <u>22.</u> 2man days @ \$275/day	6105.00
3 <u>.0</u> man days @ \$240/day	720.00
1 <u>5.0</u> man days @ \$225/day	3375.00
<u>9.0</u> man days @ \$200/day	1800.00
Helicopter 12.5 hours @ 725 /hour (fuel included)	9062.50
Room and Board 9_2 man days @ \$125/day	6150.00
man days @ \$40/day (fly camp)	
Vehicle - @-\$1,350/month 16 days at \$50 per day	800.00
Field Supplies 9.2 days @ \$20/man/day	984.00
Samples 1 24 - Rock @ \$20/sample	2480.00
Soil @ \$20/sample	·
Silt @ \$20/sample	
Mob./Demob.	
Office (report)	5000.00
Miscellaneous	
1. filing fees	1800.00
2. travel	3000.00
3. survey costs	3400.00
Subtotal	
Contingency	
TOTAL TO DATE	44,676.55

E. & O.E.

APPENDIX IV

ASSAY TECHNIQUES AND RESULTS

,

ES Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

MINERAL • EN VIRONMENTS LABORATORIES

Division of Assayers Corp. Ltd.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B. C., laboratory employing the following procedures:

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized on a ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

MINERAL

 ENVIRONMENTS LABORATORIES

Division of Assayers Corp. Ltd.

MERCURY ANALYTICAL PROCEDURE FOR ASSESSMENT FILING

Samples are processed by Min-En Laboratories at 705 West 15th St., North Vancouver, B. C., employing the following procedures.

2

After drying the samples @ 30 C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for 2 hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable delutions made if necessary.

Division of Assayers Corp. Ltd.

GOLD ASSAY PROCEDURE:

Samples are dried 0.95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

ł

З

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

FFICE AND LABORATORIES: 45 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 112

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9621

MINERAL • EN VIRONMENTS LABORATORIES

Division of Assayers Corp. Ltd.

AG, CU, PB, ZN, NI, AND CO ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3 - KCLO4 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

SAMPLE NUMBER	AG AL AS PPM PPM PPM	B BA BE BI CA PPH PPM PPN PPN PPK	CD CO CU FE K LI NG NN MO NA NI P PB SB SR TH U PPH PPN PPM PPN PPN PPN PPN PPN PPN PPN PPM PPM	V ZN GA SN N CR AU M PPN PPN PPN PPN PPB
E-LG-R 153 E-LG-R 154 E-LG-R 155 E-LG-R 156 E-LG-R 157	.3 20240 14 .6 20250 1 1.1 15970 170 .7 13090 2715 .1 29440 1	4 75 .1 1 2980 5 399 .1 1 21340 3 237 .1 1 19460 2 267 .1 3 11840 9 21 .1 1 15550	.1 20 61 61530 310 7 15780 1054 1 1100 1 740 49 1 2 1 1 1 1 173. .1 22 25 51810 4410 10 20280 1427 1 1180 1 740 11 1 1 1 155. .1 29 112 58610 2970 7 13460 823 1 140 4 660 11 1 1 1 155. .1 1270 1 350 9 1 2 1 1 44. .1 85 122 152280 410 5 1190 1 40 1 530 2 1 179 1 669.	7 99 1 1 1 6 5 6 68 1 1 1 27 10 6 49 1 1 2 61 10 5 12 1 1 2 68 160
E-LG-R 158 E-LD-R 159 E-LG-R 160 E-LG-R 161 E-LG-R 162	2.3 39490 20 1.4 48200 1 2.0 25080 1 1.5 18860 1 .7 14860 1	7 16 .8 5 34910 3 101 .1 5 23660 3 122 .1 6 17090 1 104 .1 5 6730 1 62 .1 2 11840	.1 25 213 62370 760 5 8110 709 1 430 1 2210 10 1 2 1 1 158. .1 17 43 38190 1760 12 9250 531 1 3750 1 850 11 1 35 1 1 111. .1 20 74 52880 1360 9 12700 1049 1 2540 1 1630 7 1 16 1 183. .1 13 59 42840 3980 15 12340 673 1 870 1 680 4 1 4 1 103. .1 10 274 26330 1040 3 6050 495 1 730 1 1110 8 1 133 1 54.	8 67 1 1 3 65 5 1 56 1 1 1 5 5 1 35 1 1 2 50 10
E-LG-R 163 E-LG-R 164 E-MN-R 158 E-MN-R 159 E-MN-R 160	1.8 19150 1 <u>1.6 28070 1</u> 1.1 15650 1 1.2 10710 1 1.7 15750 1	2 32 .1 7 11480 3 110 .1 6 7760 1 125 .1 4 7170 1 44 .1 4 9940 2 31 .1 5 16830	.1 25 75 51090 1480 10 12810 852 1 1560 1 980 3 1 3 1 1 179. .1 22 167 57640 4730 13 20810 599 1 920 1 470 2 1 4 1 1 163. .1 17 68 37680 710 9 14780 338 1 160 1 880 2 1 7 1 1 163. .1 13 326700 750 4 9180 293 1 1870 1 890 21 1 9 1 1 72. .1 20 232 39660 1310 7 5680 332 1 1010 1 1940 9 1 3 1 9 1 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E-MI-R 161 E-MI-R 162 E-MI-R 163 E-MI-R 164 E-MI-R 165	1.7 16630 1 1.3 10660 1 .9 5580 1 1.3 9520 1 1.0 18690 1	2 39 .1 5 13530 2 24 .1 4 12510 1 30 .1 3 9170 1 27 .1 4 13670 2 49 .1 4 12930	.1 25 255 51740 1230 11 9910 605 1 1070 1 1820 8 1 13 1 113. .1 23 293 54920 1550 2 2810 206 2 760 1 2190 3 1 333 1 1 155. .1 5 54 25610 830 1 1020 66 63 1050 1 2610 6 1 15 1 1 56. .1 18 245 62190 870 5 2340 320 1 990 1 3420 3 1 1 66. .1 162. .1 162. .1 162. .1 17 122 34270 1400 7 10640 258 11 1460 1 300 10 1 13 1 144.	7 15 1 1 2 39 70 7 1 1 1 1 15 380 7 22 1 1 1 16 70
E-INI-R 166 E-INI-R 167 E-INI-R 168 E-INI-R 169 E-INI-R 170	2.2 13560 1 5.0 24810 1 1.7 34630 1 2.3 6190 33 3.0 4940 60	1 31 .1 3 15630 7 253 .1 7 3330 3 12 .1 5 25180 2 274 .1 3 107350 1 36 .1 4 122600	.1 19 2192 32420 1510 4 3280 118 1 930 1 2040 5 1 10 1 1 80.1 .1 60 5447 118940 2410 5 7160 329 6 80 1 970 2 1 12 1 1 65. .1 12 202 36980 330 6 10950 873 1 650 1 880 2 1 1 1 108 .1 12 97 24980 1670 2 1360 1689 1 100 2 380 36 4 440 1 2 25 .1 4 70 9960 580 2 2420 660 1 70 4 470 29 7 1 1 18	1 26 1 1 1 <u>1 220</u> 2 466 1 1 2 37 5 0 37 2 1 1 5 10
-GM-R 009 -GM-R 010 -GM-R 011 -GM-R 012 -GM-R 013	1.9 24370 1 1.5 19790 1 2.6 700 69 1.7 4540 1 .4 25520 1	4 121 .2 4 72600 3 82 .1 4 15440 1 9 .1 3 185530 4 3 .1 1 14150 4 34 .1 1 8940	.1 13 28 31330 2870 12 10200 1151 1 240 1 960 13 1 78 1 1 74. .1 14 97 56930 2870 6 11700 372 15 600 1 1020 14 1 47 1 102. .1 2 8 4730 190 1 1120 210 1 400 2 180 23 8 1 1 8. .1 70 410 11010 90 1 790 390 1 30 1<40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-GN-R 014 -GN-R 015 -GN-R 016 -GN-R 017 -GN-R 019	3.3 35420 1 2.6 20470 1 2.9 21020 1 2.6 30730 1 .7 27250 1	6 91 .1 8 17290 5 62 .1 5 14900 5 49 .1 8 14560 4 34 .1 6 30390 4 145 .1 2 7430	.1 31 228 51630 1440 29 34110 711 1 2540 92 1330 2 1 44 1 1 136 .1 25 268 42900 1400 12 14200 477 1 1000 5 2670 31 1 13 1 126 .1 32 540 68590 1330 10 20130 725 1 1310 1 2270 6 1 15 1 193 .1 16 188 36750 930 6 7460 270 1 730 1 2330 6 1 8 1 121.2 .1 15 21 46870 2620 12 24200 630 1 770 1 940° 6 1 7 1 93	0 50 1 1 1 28 5 9 52 1 1 1 3 25 3 34 3 1 1 45 10
	3.5 50160 1 3.1 52140 1 4.3 25190 1 4.1 48670 1 2.4 12200 1	11 13 .1 10 59630 8 9 .1 9 56740 5 208 .1 10 75300 10 11 .1 12 33330 3 36 .1 6 16520	-1 31 42 54050 150 6 17780 557 1 770 30 850 2 1 1 1 140.0 -1 26 36 617780 130 5 14900 469 1 100 43 700 2 1 1 1 90.0 -1 34 38 57800 780 12 27890 1062 1 300 40 610 2 1 1 1 175.0 -1 40 39 100300 150 11 2810 478 9 180 45 490 2 1 1 1 1208.1 -1 24 186 37550 760 10 11230 249 1 1360 1 3190 11 1 16 1 108.5	45 5 1 99 5 7 127 1 1 2 118 10 7 55 1 1 1 43 10
-CC-R 147 -CC-R 148 -CC-R 149 -CC-R 150 -CC-R 151	2.2 11580 1 2.4 19500 1 2.2 7600 10 1.2 14710 1 3.4 6330 17	5 21 .1 3 14050 4 40 .1 6 20710 5 1027 .1 1 31860 5 292 .1 1 65630 4 503 .2 1 12100		5 22 3 1 1 17 5 5 131 3 1 1 93 50
-CC-R 152 -CC-R 153 -CC-R 155 -CC-R 155 -CC-R 156 -CC-R 157	16.8 5160 1041 2.6 33480 1 6.6 5280 1 2.1 8010 1 .3 18440 1	6 885 1 1 28480 5 803 1 6 19220 8 279 1 1 8880 7 229 1 74550 9 107 1 1 13950	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60 1 1 117 5 19 1 1 1 1 1850 36 5 1 10 12 170 4 1 3 1 10
-CC-R 158 -CC-R 159 -CC-R 160 -CC-R 161 -CC-R 162	2.3 41940 1 1.4 13860 24 .4 19620 1 .5 19220 66 2.3 4430 28	3 58 .1 5 62290 1 99 .1 3 11740 4 128 .2 1 5480 23 83 .1 1 4010 2 470 .1 1 4620	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95 3 1 2 180 5 24 3 1 1 42 10

. •

LUMP: INIE IONAL KODJAK PROJ: UNUK

• •

MIN-EN LAI - ICP REPORT

705 WEST 15TR ST., Num (N VANCOUVER, B.C. V7N 112

10: 05-0153-RJ3 F DATE: 90/07/24

ATTHE O NE CHOL COL

- · ·	ATTN: G.NICHOLSON		·-							(6	04)980-	5 <mark>814</mark> 0	R~(604	• > 988-	4524										•	* R	0CK -*	(ACT	(:F31)
	SANPLE NUMBER	AG PPN	AL PPM	AS E PPM PPN		BE PPN P			CO PPN	CU PPN			LI PPM	NG PPM	HNI PPM P		IA N PN PP		PB PPN			TN PPM P1	U PM P	Y PN	ZN PPN F	GA PPM P	SN W PN PPM		AU PP8
		1.2 34 4.6 25 3.5 26 2.9 26	550 550 600	20 1 1 1 1 1 1 1	149 1484 67 60 15	23111	1 6040 8 7470 15 19770 8 19440 9 22930	.1 .7 90.6 378.0	100	1209	89030 41720 156000	470 190 390 160	5 14 4 12 9 5	7180	815 679 557	1 6 1 4 1 8 1 30 2 1	10 10 3	6 870 6 610 6 900 1 660) 29) 27) 36) 43	1 1 3 5	11 20 58 31 29	2 1 1 1	1 120 1 133 1 73 1 135	.3 .3 (.8 3	12 50 849 8076 8353	1 2 1 2 1	1 7 1 3 1 3 1 1 1 1	183 62 49 56 1	5 5 5 10
449 PØ3	1	7.9 38 2.4 36 1.5 15 2.0 22	:840		12 152 6 266 78	.1 .1 .1	3 8860 16 10610 11 15710 7 12580 9 7940	.1 1.7 .1 .1	20 18	50	110260 78520 33900 54660	9530 150 620 1570	16 18		325 905	1 10 1 139 1 12 1 99 1 80	x0 4 10 6 10 1	9 100 0 660 6 390 9 1220 1 1280	28 30 22 39	1111	1 11 32 30 5	1 1 1 1	1 48 1 282 1 172 1 80 1 112	.4 .6 .2 .0	308 352 891 43 102	1 1 1 2	1 6 1 9 1 2 1 2	182 83 187 38 46	5 60 5 5 10
4	E RV R 194 E RV T 192 E RV T 193 E RV T 193 E RV T 195 E RV T 101		420 050 1720 680	10 1 1 1 1 1 1 1 18 1	68 261 665 62 1104	.2	4 2890 11 6130 8 7190 5 3360 2 11350 4 11430	4	5 18 13 7 10	23 43 42 53 1125	27840 61420 47530 33950 13310		8 7 18 19 13 18 7 6 1 2	580 1530	500 779 699 718 351	2 85 1 104 1 195 1 95 5 22		1 330 1 1010 9 990 1 490 5 310	3822	1	4512325	1 1 1	1 4 1 200 1 61 1 5 1 16	.2 .3 .5	65 53 54 52 9	2221		87 124	5 5 35 400
× —	E IN R 96 E IN R 97 E IN R 98 E IN R 99 E IN R 100	1.4 12 1.4 10 1.5 26	480 890 550 790	12 1 18 2 1 2	84	.1 .3 .4 .6	12 1450 3 8690 4 67110 5 34390	.5 .1 .1 .1	175_9 8 9	2007 53798 900 235 31	47550 33950 13310 25570 194310 25000 28550 27530	1520 2270 3430 750	5 5 -6 -2 8 7 4 16 4 5	490 4	530	<u>i 53</u>	0 1	1110	67. 28 54 28	47 1 6 1	28 5. 13 16 445	1	1 75 1 - 16 1 69 1 35 1 102	3	101 .697 28 9 25	1 2 2	1 2 1 3 1 1 1 2	23 -10-2 80 13 44	30 900 5 5 5 5
	E IM R 102 E IM R 103 E IM R 104 E IM R 105 -D BC R 042	1,9 18 1.6 14 1.6 18 1.5 18 28.2 21	330 100 120 920	1 1 1 1 1 1 1 1	66 131 44 111 _ 499	-1 -1 -1 -1 -1 -1	6 10180 7 6740 6 12960 6 7760 13_5230	.1 .1 .1 .1	14 14 14 14 19	135 39 138 114 21542	35950 30980 28220 34990 64140	1440 2430 1200 2880 750	10 11 6 10 5 7 7 11 6 16	850 610 730 100 1	595 303 243 254 505	1 130 1 105 2 182 1 150 1 25	0 0 0 0	3 450	31 26 24 52	1 1 21	20 11 26 16 32	1 1 1 1	1 120. 1 125. 1 98. 1 145. 1 84.	.6 .8 .4 .8	37 66 18 24 164	1 1 1 1	1 2 1 2 1 2 1 2 1 3	41 37 35 28 31	5 5 10 25
URNC.	E GB R 029 E GB R 030 E GB R 031 E GB R 032 H TT R 069	.18	270 300 130 580 920	1 1 19 1 14 1 20 1	146 284 30 50 30	.1 .2 .3 .1	7 7390 8 5080 3 2210 2 850 1 44710	.1 .1 .1 .1	17 19 4 3 2	107 282 33 23 9	42740 62850 21880 17750 5400	1770 3520 1130 1610 330	12 16 11 23 7 5 6 5 4 1	320 500 530 760 940	577 508 564 296 502	1 90 1 42 1 52 2 54 1 8	0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0	910 730 250 190 90	822825	1 1 1 1	5 3 2 3 86	1 1 1 1	1 112. 1 99. 1 2. 1 5. 1 5.	.0 .8	87 71 22 19 7	1 1 1 1	1 1 1 1 1 3 1 3 1 2	12 1 88 106 80	5 5 15 5 5
LABS	Ø					<u> </u>																		·	<u> </u>		9 _0		
MIN-EN				V		·.		. <u> </u>										•									. r		
דמיכ -																													
1 1 1																													
																												`	

															•															
NP: INTERNATION OJ: UNUK TN: G.NICHOLSON		lak i									-BN 15TR (604)	st., 1		VANCO	LWER,	B.C. 1		2									1	DATE:	-1032-RJ 90/08/0 (ACT:F31	6
SAUPLE NUMBER E-CC-R-132 - 13 E-CC-R-133 - 19 E-CC-R-134 19 E-CC-R-140	AG PPM 17.5 5.1 2.8	6760 17320 29600	AS PPN 5 1	8 PPH - 4 3 5	BA PPH 325 428 152 47 238	BE PPH .1 .1	1	CA PPN 9410 14470 21460	<u>PPN</u> .1 .1	14 12 19	CL PPP 48889 12475 10834	J FI PPI 5560 3640 3733	E K N PPN 0 800 0 1830 0 850	L1 PPH 3 5 5	MG	MN PPH 536 370 868	MO PPM P 16 4 3 1 6 1 8	70 90	II M PP 1 3 1 114 1 172 1 51	0 21	45	SR PPM P1 15 42 165 5	TH PN PP 1	1 25.	V ZN N PPN 3 51 9 27 5 47 3 113	GA PPN 1 2	SN PPK	H C PPM PI	CR AU PH PPB 06 1850 55 235 52 15 19 5	AUG 14
E-CC-R-142 E-CC-R-142 E-CC-R-143 E-CC-R-144 E-CC-R-144 E-CC-R-144	7.1	24820 7910 18930 13740 61040 41410	4 1 12 1	57376	238 54 56 37 40	.1 .1 .1 .4 .1	10	12910 14720 60770 17480 66390 33820	<u>1</u>		1039	9261	0 2010 0 800 0 1070	1	2240	438 1179 123 440	12 1	60 70	1 78 1 843 1 146 1 165 1 153	<u>0 29</u>	1	5 128 24 1	1	<u>1 19.</u> 1 128. 1 84. 1 172.	<u>5 15</u> 3 1	1 1 1	1 1 1 1	4 3	58 750 57 25 40 57 40 50 35	'90 15:29
Pg 9		/							-		<u></u>		· · · ·																	¥IE
													<u></u>																	MIN-EN LABS VANC
																														UANC.
															~~~~~															
				•																· 、						· · ·	22 	·. .r	<b>f</b>	
• · ·					<del></del>		•		•								*													- -
																										. <u></u>				909 P08
																						-			·.					
				۰									·			<u>.</u>														•
			·																						<u> </u>					

•

۰.

IN: G.NICHOLSON	I						70.	J WC:		)980-5					• / •	112									٠	ROCK	•	(ACT:	
SAMPLE NUMBER	AG AL PPM PPN	AS PPM	B		BE B		CD PPM	CO PPM	CU PPM	FE PPM	K PP <b>N</b>	LI	NG PPN	MN PPM		NA PPH		P PP <b>N</b>	PB PPM			TH PPN PP			ZN G	A SN M PPM		CR PPN P	
J	3.0 12440 1.6 14570 1.2 7870 2.3 22700 2.3 22980	1 1 1 1	3 5 3 4 3	38 770 611 137 134	.1 .1 .1 .1	6 11310 4 16840 3 2040 8 8720 8 8520	.1 .1 .1 .1	40 12 9 20 13	34 86 64 12 32	40490 38970 52700 50480 36440	370 1640	4414	13010 13290 3540 15090 13960	426 1957 194	1 1 4 1	620 480 690 670 400	32 1 1	1590 940 370 950 1320	7 15 17 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 24 20 12 3	1 7 1 1	1 59 1 60 1 58 1 112	2.1 2.8 1 3.8	44 08 24 87 26	1 1 2 1 1 1 2 1 1 1	1 1 1 1	27 11 1 11 20	5 10 5 10
	1.1 11770 .8 6120 .3 6250 .6 13080 NO SAMPLE	1 1 1	3 6 3 5	180 57 109 554		5 2660 3 5930 2 460 4 1810	.1 .1 .1 .1	10 24 17 21	10 17 23 20	41230 89820 50130 64940		2 1 1 3	6530 2570 1270 5100	232 53 1 213	1 1 1 8	600 840 80 90	1 1 1	440 310 40 850	17 12 7 11	1 1 1	11 27 1 4	1 1 1 1	1 44	1.5 5.4 5.5 5.0	14 14 1 54	1 1 1 1 1 1 1 1	1 1 1	5 1 19 1	2
A.,	2.9 25500 1.8 21340 7.8 14360 3.6 18930 37.8 8140	1 1 1 1	43694	81 119 344 88 93		9 10510 6 6600 1 3020 7 8710 1 450	.1 .1 .1 .1	35	56 18 22184 135 15208	50970 41210 73720 114440 89540	2910	4	26800 9150 5550 17770 3490	1601	1 1 16 1	600 470 250 400 400	2 1	1470 670 750 1280 90	7 8 41 37 26	1 16 1 5	4 2 5 14 10	1 1 1 1	1 38 1 110 1 55	2.7 3.1 1 3.1 5.4	19 87 25 65 46	1 1 2 1 1 1 1 <b>1</b> 1 <b>1</b>	4 1 1 2	77 12 1 1 28	1
	.8 5590 .7 1490 3.6 18490 1.8 22210 4.0 30910	3 4 1 57 1	1 5 11 8	45 346 100 101 30	.3	1 1200 2 150 9 10580 1 12080 1 25700	.1 .1 .1 .1	5 8 28 8 37	346 51 37 52 50	16150 33220 70970 63100 57680	1890	8	3150 210 14800 7070 20000	424 637 245 678	32171	340 230 450 240 3400		120 120 1490 6900 670	17 16 27 14 7	1 1 12 1	2 5 27 13 1	1 1 1 1	1 11 1 120 1 244 1 158	1.3 5.2 1.5 2 3.1	68 47 31 57	1 1 1 1 1 1 4 1 1 1	2	76 105 19 13 120	1
	2.3 11760 3.3 16100 1.4 11960 2.0 24860 1.3 10940	14 1 25 1 127	4 11 13 16	75 22 120 109 109	.1 .1 .1 .1 .2	5 6600 8 14540 1 64360 4 30360 1 64360	19.2 1. 1. 1.	9 24 28 36 31	36 46 40 41 36	31800 50910 47750 61400 49040	370 2060 2040	10 17 30	10740 15520 17320 25070 19720	223 524 951 705 1130	8 4 1 1	500 930 270 460 90	2 37 53 62 49	1350 700 680 720 770	14 7 13 7 7	1 34 25 30	1 1 1 1	1 1 1 1 1	1 161 1 255 1 94 1 153 1 75	5.7 3 1.4 1.7 1.1		4 1 2 1 4 1 1 1 2 1	2 6 2 4 1	38 99 62 110 39	
÷ ¢	1.8 21390 .8 11020 2.4 18680 1.7 2270 .5 13790	1 1 1	5 5 6 2	78 276	.1 .3 .1 .1 .8	5 12550 1 19090 6 9530 1 68270 1 18610	.1 .1 .1 .1	32 17 44 12 15	14 41 18 6 2	47410 45380 85990 43390 34600	1000 1530	9 8 1	24020 22850 17360 47070 12670	1004	22 1 1 1	650 330 180 50 140	14 1 1	2290 1910 1180 280 1740	10 17 9 7 12	1 1 1 1	12 5 16 30 32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 52	).0 1.8 2.8 1	74 98 58 67 53		2 1 1 1	23 22 5 1 9	1
	1.1 4610 .7 8200 1.7 3640 1.0 3380 .3 3770	7 33 1 1 1	6 7 9	811 1	.6 .3 .1 .1	1 28290 1 14040 1 5360 1 8810 1 4840	.1 .1 .1 .1	6 15 51 71 6	4 3 25 18 4	23770 38130 56800 106220 19050	4690 2280	1	8090 14650 1590 3640 870	927 918 124 345 158	1 19 2 5	360 60 200 50 330	1 5 1 1	770 1810 350 780 580	18 13 17 39 25	1 1 1 1	4 9 5 5 10	1 1 1 1	1 21 1 6 1 16 1 2	1.3 5.3 5.9 2.0	34 64 20 27 29	<b>3</b> 1 2 1. 1 1 1 1	1 F 1 1	28 1 15 4 38	1
5	.1 3290 .4 3120 1.5 34970 1.9 16900 2.4 28590	9 6 1 21	1	357 105	.3 .1 .1 .3 .1	1 3390 1 5800 3 32280 2 73840 7 13820	-1 -1 -1 -1 -1	2 3 27 11 35	3 8 36 30 9	7620 9020 61910 26860 69980	1000 2270	7	330 640 22330 10080 27260	428 477 1164 948 1375	1 1 1 1	660 690 390 150 590	1 2 16 26 2	240 150 360 890 1740	18 16 9 20 14	1111	10 1 5 47 51	1 1 1	1 3 1 127 1 39 1 104	1.7 7.4 7.2 1.9	31 29 76 42 8 67	1 1 1 1 1 1 3 1 1 1	1 1 1 2	60 48 10 17 54	1
2	3.5 22120 1.6 6140 1.4 21250 .1 6290 1.0 8880	1 4 21 61	4 8 7 2 5	112 30	.1 10 .5 .1 3 .3	0 8710 1 43960 3 11240 1 820 1 1450	.1 .1 .1 .1	29 27 17 2 7	317 72 169 11 40	60100 50260 92560 19260 49470	500 860	1	21920 34310 20670 2030 3900		3 1 7 5 3	340 120 740 620 330	45	1360 490 4640 370 610	21 11 9 15 21	1 22 7 37	1 5 15 1 1	1 1 1 1	1 431 1 30 1 186	).0 1.6 1.9 5.8 1	96 92 62 66 37	2 2 1 1 5 1 2 1	1 4 1 1 1	1 19 28 36 23	1
M-R-001 M-R-002 M-R-003 M-R-004	2.6 19300 .1 22320 .1 26930 .2 6340 5.3 42430	183 1 78 31 1	8 5 10 56 13	40 101 9 31 37	.1 .1 .1 .1 .3 14	1 3000 1 1230 1 420 1 300 4 50990	.1 .1 .1 .1	11 17 52 49 38	71 12 13 8 223	92780 66870 114850 43970 89640	690 740	14 12 12 3 23	6260 4340 7770 3260 24730	234 444 758 127 170	1 1 2 1	280 230 20 60 110	1 1 1 9	660 620 380 330 4480	11 9 9 9	13 1 1 1	1 1 3 44	1 1 1		.0 .5 .1 .8	37 27 29 9 71		31131	34 1 11 103 1	
34-R-005 34-R-006 34-R-007 24-R-008 26-R-131	.4 17440 .1 34320 .1 23430 .1 4790 .4√2.8 24860	11 123 1 1 1	4 9 18 34 6	20 1 38	.1 .1 .1 .1	1 3490 1 2590 1 2790 1 240 7 9110	.1 .1 .1 .1 .1	13 23 29 51 20	35 7 26 155	43110 123970 149590 384640 62860	4440 540 220 270	9 1	6050 13370 13870 920 17540	644 622 1 3621	1 1 1 3	90 70 610 60 660		560 850 810 10 1390	13 9 9 374	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 7 1 18	1	1 149 1 193 1 167 1 103	.9 .7 8	27 4 30 1 17 1 71 1		1 4 1 2	18 1 1 28	1
₹ţ¥ ŀ	281.2 1060	3128 149 130 324 141	12 2 10 4 6 1 1 4 7	655 579 615	4 1 1 1		4.8 .1 15.4	14	37407 1182 13875 2527 445	69460 44380 50490 5050 42980	2730 1970 560	1 1 11 1	320 1410 1530 210 25870	383 225	1 1 1 1 7	160 70 620 10 120	1	850 750 1100 80 1100	51 23 26 15 25	555 103 63 234 19	14 20 13 372 16		1 33 3 3	.9 4 .3 3 .4 1 .8 2 .8 64	68 1 82 1	1 1 1 1 1 1	1 1 1 1	1 12 20 47 20	

### COMP: INTERNATIONAL KODIAK

PROJ: UNUK

### MIN-EN LABS - ICP REPORT

# 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 112

•

FILE NO: 0V-1032-RJ1+2 DATE: 90/08/06

14 4 **0**6. 15:28

ÐUA

MIN-EN LABS VANC.

909 P07

ENTE ONAL ..... AK PROJ: UNUK

\$-

### han 'EN und' - ICP KEPOKT

705 WEST 15TH ST., N. . A VANCOUVER, B.C. V7N 1T2

FI 1: 05-0153-RJ4

DATE: 90/07/24

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24     1     1     3     82     10       16     1     1     2     93     5       10     2     1     1     31     5       84     1     2     2     29     5       73     1     2     69     5
<b>64</b> 1 2 2 29 5 <b>73</b> 1 1 2 69 5 63 1 7 1 74 10
64° 2 1 3 97 5 96 2 1 2 72 5
27     2     1     4     102     5       47     2     1     1     49     5       54     2     1     1     18     5       54     2     1     1     12     5       54     2     1     1     12     5       54     2     1     1     12     5       54     2     1     2     1     5       54     2     1     1     12     5       54     2     1     2     1     25
38     2     1     1     45     10       74     1     1     5     124     5       77     2     1     1     46     5       89     1     1     4     147     5       55     1     1     4     126     5
89 1 1 4 116 5

1

APPENDIX V

# SAMPLE DESCRIPTIONS

.

		ROCK SAMPLE DESCRIP	TION REC	CORD			
Page:		Project: MALGOLD NORTH	Locatio	on:		Operator	8
Sample No.	Location	Description		Aı	nalytica	l Results	
			Au	Ag	Pb	Zn	Other
Ecc R - 100		Entense quartz - carbonate vein- ing in matic - intermediate Volcanic host Calcareous serpentinite surfaces host mineralization (cpy 1th py 2th, mal, hem) Sulphides are concentrated along ruggy 2tz Veins. slickensites also noted		1.9	82	84	· · · · · · · · · · · · · · · · · · ·
EccR - 10)		Serpentinite rich silicified basalt/andesite. Coleareous with gtz verbs containing some niveralization py 1%, cpy, tr. mal. Float but on top of ridge (i.e. close to source)	5	1.7	95	96	

		ROCK SAMPLE DESCRIP	TION REC	ORD				
Page:		Project: MACGOLD NORTH	Locatio	n:		Operato	or:	
Sample No.	Location	Description		Aı	nalytica	l Result	B etters	ob) (PPm)
			Au	Ag	Pb	Zn		ner
EccR-107		Pale green siliceous rhyolite- small irregular qtz veining py-cpy-mal. mineralization rusty lingonitic stain.	5	1.9	35	27		
Ecc R-103		Float boulder (1.5 m dia) primarily black argilite/shale pod of graphite Gilielous, trace fig- py.	5	1.3	58	47		
EccR-104		Eossapous, qtz veihing in med to clark green volcanics. trace fg. py.	5	2.2	36	54		
EccR- BZ		Qtz vein in granitoid. width 6 cm, contains mal, cpy, py25% Vein mostly bull white ytz. orientat " 164/10W	1850	17.5	70	51	(ch) 223 48,889	

		ROCK SAMPLE DESCRIPT	TION RECO	ORD			
Page:		Project: MACGOLD NORTH	Location	n:		Operate	or:
Sample No.	Location	Description		A	nalytica	al Result	ts
			Au	Ag	Pb	Zn	Cu Other
EccR-138 133		Atz vein with diorite. Direcciated gtz with inclusion of diorite host. Sulphide minerals cpy 1%, py 1% malachite azurite thin	5 235	5.1	20	27	12 475
E(R-129 134		veihlets of cpy Wall vock (diorite) of the Vein described above in ECCR-138. Sulpinde poor but heavy not and azurite stain	15	2.8	21	47	10 836
EC <b>C</b> R-140		epidote veining. Fine grained matic volconie (andesite?) - = calcite, = epidote veintets, dark green. bedding: 110/805.	5	2.3	10	113	204

	- <del></del>	ROCK SAMPLE DESCRIP	FION REC	ORD			
Page:		Project: MACGOLD NORTH	Locatio	n:		Operato	r:
Sample No.	Location	Description		А	nalytica	al Result	8
			Au	Ag	Pb	Zn	Other
ECCR-141		Grab - Pegmatite - ok area 10m² contains 5-15% sulphiles py-ga-sph. Gaugue minerals Quartz, calcite, epichote, chibrite		マー	29	15	25,146
EUR-142		same as above (ECCR 141)	25	3.7	B	,	1 º 39
ExcR-143		Pule green - dk. green silicoous Volcanic (andesite?). Surrounded by exposures of cliente limonite on veathered surfaces diss. py	40	1.7	8	5	469
EccR-144		same as above same the	50	3.1	8	3	216
E (C R.145		gossenous intermediate volcanic disseminated py trace. trace galence . chip(Im)	35	3.1	923	555	191

		ROCK SAMPLE DESCRIP	TION REC	CORD			
Page:		Project: MACGOLD NORTH	Locatio	on:		Operato	pr:
Sample No.	Location	Description		A	nalytica	l Result	.8
			Au	Ag	Pb	Zn	Cu other
ECCR-146		Fine grained green siliceous Volcanic (probubly andesite tuff) py 5%, arsenopy 2-3%		2.4	¢,	32.	186
ECC R-149		same as above	20	2.2	5	9	680
EccR-148		Float - granodiorite ( K spar rich ) in contact with grey siliceous volc. py 2-3%		2.4	5	22	283
ECCR-149		Chip(Im) - Quartz carbonate Stockwork sulphide min- evalization along Fractures or siliceous veintets within the stockwork (vein). Dy 3-5th, hem 1-30th trace cpy.		2.2	309	131	1798

		ROCK SAMPLE DESCRIP	TION REC	CORD			
Page:		Project: MACGOLD NORTH	Locatio	on:		Operato	r:
Sample No.	Location	Description		Aı	nalytica	l Result	8
			Au	Ag	Pb	Zn	Other
EccR - 150		chip (Im) - Dark green Siliceous volcanic Wall rock of previous samples' Stockwork veining mostly contains specular hem. 5%	20	1.2	14	43	
ECR- 151		Quartz carbonate veining same vein as in ECR 149 but Further north along strike. Vein orientate: 162/stag. Au gust:	15	3.4	2509	1791	
ECCA-152		162/steeply east Quartz-corbonate veining Fault gauge, kadinite alts, Very rusty, limonitic, contain small py pool. py 1-306	1 <b>9</b> 0	16-8	154	396	Ch (pond) AS 2861 1041

		ROCK SAMPLE DESCRIP	TION REC	ORD			
Page:		Project: MACGOLD NORTH	Locatio	n:		Operato	pr:
Sample No.	Location	Description		An	alytica	al Result	ts
			Au	Ag	Pb	Zn	Other (ی
EecR-153		Dark green F.g. andesitic tuff · siticified py 1-2%.	5	2.6	38	60	
ECCR-155		Dark green serpentinite interbedded with grey white marble (meta-limestone) sulphides mainly in darker serpentine : pg1%, trace quy epidote in veinlets, 2 coluite	1850	4.6	((	19	3072
ECCR-156		similar to ECCR-155 contain significant Fg. gamet(dK. brown)	s 170	2.1	16	36	1024
12 CCR 157		massive sulphide vein (py) arsenopy) in dark green silicears andesite vein 4cm, ± hem.	10	0, <b>3</b>	2	4-	

Page: Pr		Project:	Location:			Operator:		
Sample No.	Location	Description	Analytical Results					
:			Au	Ag	Pb	Zn	Other	
ECCR-158		Float - Volcanic breccia W intense qtz-carbonate alth pale to dark green color. limonite. trace py-	10	2.3	2	3 ·		
EccR-159		Black chert/argittaceous seds - calcite veinlets 1-2m Huranghout. Disseminated enhedral py 106, probably	5	1.4	16	95		
EccR-160		diagenetic very siliceous bedding: 092/865 Dark green siliceous Lapilli tuff, minor limonite. disseminated py K106	10	0.4	9	24		

		ROCK SAMPLE DESCRIP	TION RECO	ORD					
Page:		Project: MACGOLD NORTH	Location: Operator:						
Sample No.	Location		Analytical Results						
			Au	Ag	Pb	Zn	Other		
Ecc R-161 Ecc R-167		s.m. lar to EccR 160. gtz- Sericite alt - limonite Stained on weathered Surfaces. Quartz veins containing	9B0 750		16	53	Cu (pAm) 509		
F		Quarte veins containing veintets and biebs of sulphides ga 1-20% py 1-20%.							

		ROCK SAMPLE DESCRIP	r		. <u></u>	Operator: KODIAK				
Page:		Project: MACGOLD NORTH (E)	Locatio	on:		Operator	KODIAK			
Sample No.	Location	on Description		A	nalytic	al Results				
			Au	Ag	Pb	Zn	Other			
EGM R 00 1		RUSTY FRACTURE ZONE IN WHITE AND GREEN TUFFS.	5	D-1	9	27				
E G M R 00 Z		2m WIDE ZONE OF RUSTY VULCANIC WITH FRACTURE FILLS AND DISS - EMINATED SULPHIDE ADJACENT TO GRAMITE	5	0.1	9	29				
EGMROO3		PLAC-LOCLASE PORPAYARY TIC ANDESITE WITH DISSEMINATED AND PRACTINE FILLING PYRITE + CHARCO PYRITE (2)	5	0.2	9	9				
EGM R004		MARBLE UNIT. CLASTIC IS MICH MARBLE UNIT. CLASTIC IS MICH IN PURITE AND PURMHOTITE ± ARSEND PURME	5	5.3	9	71				
EGMROON		RUSPY WEATTHERING - PURIFIC ANDESITE SLIVER (FAMLE VSULADD) WITHIN GRANITE	5	0.4	13	27				
EGMROOG		RUSMANDESIRE (UT BY QUARRE CARSWARE UEINS W.M. MASSINE 10005 OF PHRINE	5	0-1	9	30				

		ROCK SAMPLE DESCRIP	TION REC	ORD		:	1
Page:		Project: Macgod North	Locatio	on:		Operator	:
Sample No.	Location	Description		A	nalytic	al Results	
			Au	Ag	Pb	Zn	Other
EGM R 007		Float to subcrop of massive to semi massive pyrite - pyrrhotite and magnetite, perhaps a	į o	0.1	9	17	
- 10 x 10 x		skarn					
EGMR008		same as 007	5	6 · 1	9	1	

		ROCK SAMPLE DESCRIP	TION REC	ORD	······				
Page:		Project: Macgold North	Locatio	n:50uth	Ridge	Operator: G. MOORE			
Sample No.	Location	Description	Analytical Results						
			Au	Ag	Pb	Zn	Other		
E-6M-R-009	South Ridge	Fault breccia granite - Fragments chloritized - pervasive epidote alteration - Fault trend 070'/90"	5	1.9	<i>i</i> 3	60			
E-GM-R-010	South Ridge	Pyrite vug ± Dacite dyke - vug is part of a splay off a main fault=> 095 /vert.	10	1.5	,4	14			
E-GM·R-011	South Ridge	- vug 5->10 cmwide 30 cm long Marble pod (colcite?) - 5 X15 m - grey white; fine grained	5	2.6	23	4			
E-GM-R-OIZ	South Ridge	Mafie Xenolith in granite - pervasive chlorite alteration - massive to dissem. pyrrhotite - pyrite (10-15%)	5	17	[1	1			

		ROCK SAMPLE DESCRIP	TION REC	ORD		<del>.</del>		
Page:		Project: Macgold North	Locatio	G MOORE				
Sample No.	Location	Description	Analytical Results					
			Au	Ag	Pb	Zn	Other	
E-GM-R-013	South Ridge	darkgreen, f. grained granodiorite - gossanous a Heration - spane malachite	10	0.4	7	39		
- <u>τ</u> -το η το τ		- 2-3% dissem. pyrite - sample taken from small fault. (North trending)						
		Fine grained granodiorite - malachite along fractures - red - brown oxide - lance pyrite		3.3	7	73		
E- GM-R-0/5	South Ridge	Altered Granite - strong chlorite/epidote alteration - yellow-brown Stain	5	2.6	31	50		
		- 5% dissemo pyrite						

		ROCK SAMPLE DESCRIP	TION REC	ORD					
Page:		Project: Macgold North	Location: South Ridge Operator: 6. MOOR.						
Sample No.	Location	Description				al Results			
			Au	Ag	Pb	Zn	Other		
E-GM-R-016	South Ridge	Sranodiorite - dissem-pyrite 5% - pyrrhotite 21%	25	2.9	6	52			
E-GM-R-017	South Ridge	Altered Brandsorite - "baked", dark red-brown Oxide xenolith (10x25m) - Granite host	10	2.6	6	34			
j∈ - GM -R-019	NE Ridge	- Granite nost - mod. chlorite alteration - slightly brecciated - 2-3% dissem. pyrite Srey lapilli Tuff - rounded to subangular Fragments (0.1-5.0cm) - no sulficles evident	5	0.7	6	35			

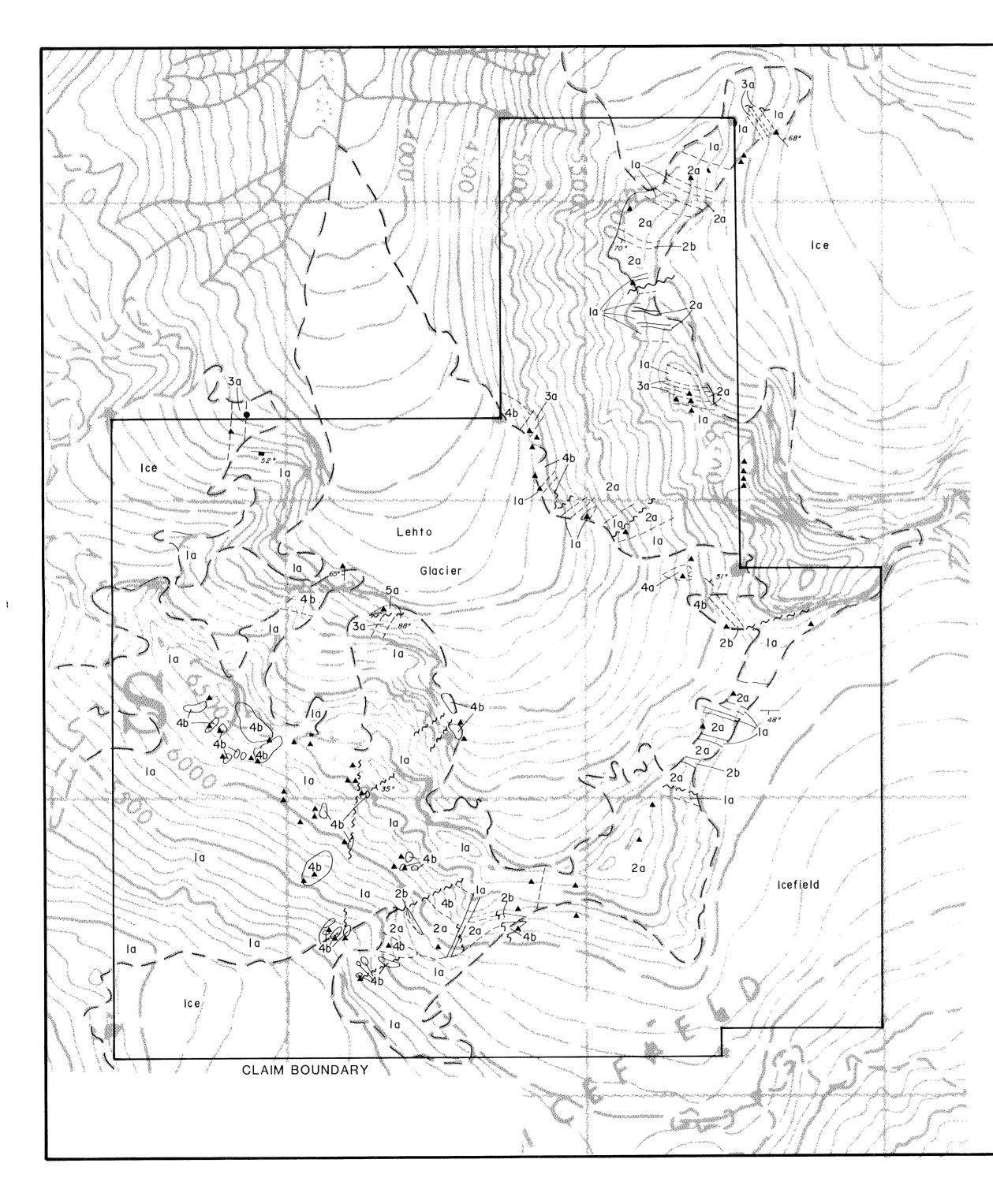
	ROCK SAMPLE DESCRIPTION RECORD											
Page:		Project: Maigold North	Location: South ridge Operator: M. MOO									
Sample No.	Location	Description		А	nalytica	l Result	8					
	a the ridge	E II de ser ita	Au	Ag	Pb	Zn	Other					
E-MM-K-046	Southering	Faulted granite - malachite along Fractures - epidote along Fractures and minor through rock - fault trend 000/80°W	30	1.8	33	10/	((u) 2069					
E-MM-R-097	South ridge	Pyritic Qtz veins ingranite - massive euhedral pyrite Crystals infilling vugs - width - 0.5 - 5.0cm		76.5	67	697	(cu) 53798					
E-MM-R-098	South ridge	- width - 0.5 > 5.0cm - trace malachite staining Fractured Granodiorite - dissem (2-3%) and fracture coating malachite - trace pyrite		1.4	28	28						

		ROCK SAMPLE DESCRIP	TION REC	ORD	<u></u>		337			
Page:	• • • • • • • • • • • • • • • • • • •	Project: Macgold North	Location: South ridge Operator: M. MORE							
Sample No.	Location	Description	Analytical Results							
			Au	Ag	Pb	Zn	Other			
E-MN-R-099	South ridge	Altered dacite dyte - dark brown colour, - very fine grained - epidote overprint? - 1-2% olissem pyrite	5	1.4	<b>5</b> 4	9.				
E-MM-R-100	South ridge	Epidote altered granite - strong pervasive epidote - moderate Potassic alterat.	5	1.5	28	25				
E-MM-T-101	South ridge	- Malachite staining - 1-2% dissem, pyrite		0.3	25	9	(ch) 112-5			
		- Sample taken over 0.5m (chip)								

		ROCK SAMPLE DESCRIP	TION REC	ORD						
Page:		Project: Macgold North	Location: South Ridge Operator: M. MOON							
Sample No.	Location	Description	Analytical Results							
			Au	Ag	Pb	Zn	Other			
E-MM·R~102	South Ridge	Fine grained granite - minor epidote alteration - mod Fe staining	5	1.9	26	37.				
<u>-</u> <u>-</u> - <u>-</u>		- 1-3% diss. pyrite - fracture set => 039°/20E => 110°/20N								
E-MM-R-103	South Ridge	Biotitic dacite -U. fine grained - 10% biotite crystals - Z-3% dissem. pyrite - 1t. red-brown stain	5	1.6	3(	66				
E-MM-R-101	South Ridge	Same as E-14M-R-103	5	1.6	26	18				

	·····	ROCK SAMPLE DESCRIP	TION REC	CORD				
Page: Project: MACGOLD NORTH		Locatio	on:		Operator:			
Sample No.	Location	Description	Analytical Results					
			Au	Ag	Pb	Zn	Other	
ERWR 191	EAST RIDGE	Crystal Ash Tuff - minor- disseminated pyrite.	10	2.0	39	102		
1E- RWT192		Basalt - Iron stained Local concentrations of pyrite along Fracture Surfaces.	5	2.4	33	53		
E-RWT193	Ut U	Crystal Ash Tuff/Baselt - Iron stained, Disseminated pyrite and local concentrations along fractures.	5	1. <b>9</b>	28	54		
E-RWT 194	<u>,</u> , ,,	Silicified pul in benco-granite. Tron stained, minor dissemin-	5	0.7	3(	65		
E-RWT 195	ى ى ب	ated pyrite. Basaltic(?) layer in leuco- granite minor disseminated pyrite and concentrations along Fractures	35	1.0	29	57		

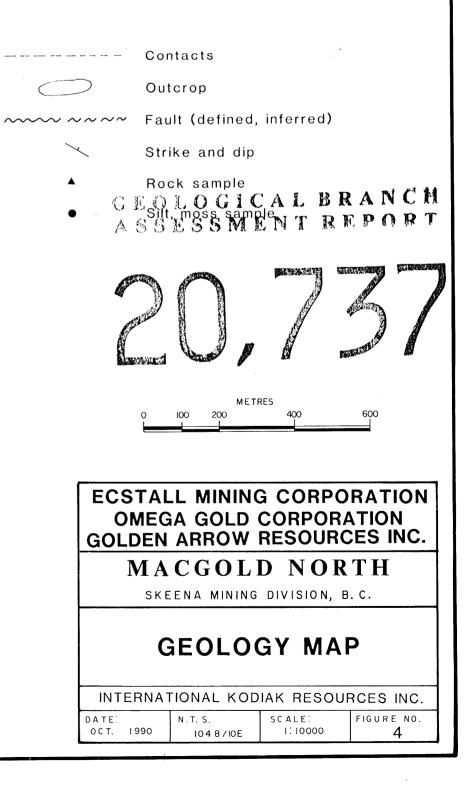
		ROCK SAMPLE DESCRIP	TION REC	ORD			
Page:		Project: Margdd North	Locatio	n: South	h Ridge	Operator	: M. MOORE
Sample No.	Location	Description		A	nalytica	l Results	
			Au	Ag	Pb	Zn	Other
E-MM-R-158	South Ridge	Fine grained Dacite					
	V	- 1-2% diss. pyrite	5	1.1	2	27	
		- 1-2% diss. pyrite - sample taken on North side of fault					
	- IL Padao	of fault					
=- MM R-157	South Ninge	Qtz-Feldspan Crystal Tuff - brown-red Oxide	10	1.2	21	57	
		- 11. fine grained					
		-2-3% dissem pyrite					
	11 0 100						
E-MM-R-160	South Kinge	Qtz-flooded Dacite -red to yellow-green oxide	5	1.7	9	25	
		his have the por					
		- calcite along that a					
		- 1-7% dissem. Pyrire					
		- arsenopyrite stain (?)					

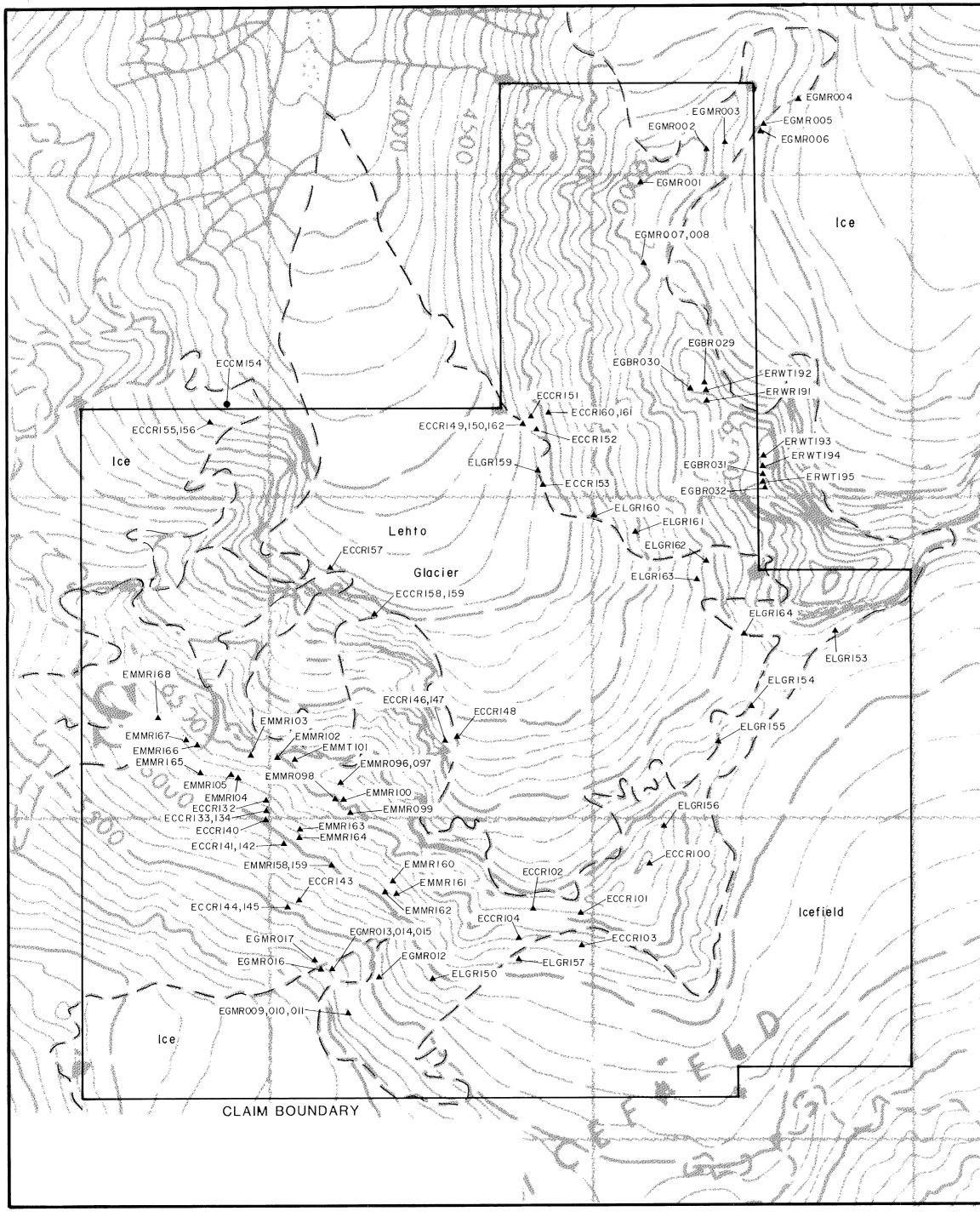

		ROCK SAMPLE DESCRIP	TION REC	ORD			
Page:		Project: Macgold North	Locatio	: M. MOORE			
Sample No.	Location	Description	Analytical Results			3	
			Au	Ag	Pb	Zn	Other
E-MM-R-/61	South Ridge	- peacock blue alteration - possible xenolith (?)	5	1.7	в	27	
	South Ridge	- 5-10% diss. pyrire Silica flooded Qtz-Fld Tuff - deep red-brown Oxide	70	1.3	3	15	
E-MM-R-163	South Ridge	- dissem & blebs of pyrrhotite 5-10% - Erace pyrite white Qtz-Fld Tuff - red brown oxide - dissem. pyrite (2-3%)	380	0.9	6	1	

		ROCK SAMPLE DESCRIP	TION REC	ORD	<u></u>			
Page:		Project: Macgold North	Locatio	n: 500th	Ridge	Operator: M. MOORE		
Sample No.	Location	Description	Analytical Results				S	
			Au	Ag	Pb	Zn	Other	
E-MM-R-164	South Ridge	Qtz-Feldspan Tuff -2-3% dissem.pyrrhotite -2-3% dissem pyrite - peacock blue alteration	70	1.3	3	22		
		Friable, red-brown dacite - 2-3% dissem pyrite	5	1.0	ĮD	32		
		Same as E-14M-R-165	40	2.7	5	22	(cu) 2192	
E-MM-R-167	South Ridge	Fault breccia - malachite (± Azurite) stain - Fault trend 035 /90° - red brown Oxide	220	5.0	2	26	(Cu) 5447	
E-MM-R-168	South Ridge		5	1.7	2	462		

		ROCK SAMPLE DESCRIP	TION REC	ORD					
Page:		Project: Mocgold North	Location: NE ridge			Operator	Operator: M. MOORE		
Sample No.	Location	Description	Analytical Results				3		
			Au	Ag	Pb	Zn	Other		
E-MMI-R-169	NE Ridge	- Shean Grend 037/38 E - yellow-brown Fe Stain	10	2.3	36	37			
E-MM-R-1,70	NE Ridge	agrillite - trace pyrite Migmatitic volcanic	5	3.0	29	24			

ROCK SAMPLE DESCRIPTION RECORD									
Page:		Project: MACCOUS NORTH (E)	Locatio	n:		Operators	Operator:		
Sample No.	Location		Analytical Results						
			Au	Ag	Pb	Zn	Other		
E LGR 153		RUSTY VOLCANIC WITH PHRITE STRINGERS, NENULITH IN GRANITE	5	0.3	49	99			
ELGR 154		RUSM - ORANGE LAPILLI NIFF	10	0.6	11	68			
ELGRISS		RUSTY ANDESITE CUT BY LOTS OF QUARTE - CA ABOMATE UTINS WITH PYRITE IN THIN FRACTURES.	10	1.1	1(	49			
ELGRISG		VERY RUSTY CARBONATE VEIN IN VOLLANIE WITH BLETSS AND LENSES OF PYRIR	10	0.7	9	12			
ELGR157		KENULIAN OF CREEN ANDESIRE WITH VEWS OF PYRIRE + MONETITE + PG. AND QUARR. MASSIVE AND DISS EMMATED EVITEDICAL PYRIRE	25	0.1	2	43			
ELER 155		QUEN WIDE QUINTE - CANTONATE VEIN IN CREEN POLIATED CRUSHL RUFE,	10	2.3	ر٥	27			
ELGR159		RUSTY VOLCANIC WITH WUART PYRITE + ARSENDMENT IN VEW. HUST IS AUTOR PORPHYRITIC ANDESITE / DALING	5	1.4	11	67			


ROCK SAMPLE DESCRIPTION RECORD							
Page:		Project: MACCOLD NORM(6)		Operator:			
Sample No.	Location	Description	Analytical Results				
			Au	Ag	Pb	Zn	Other
ELGR 160		SILICIFIED ANDESITE WITH DISS - EMINATED PARITE AND RARE STRINGERS. GUARTE STOCKEDER.	5	2.0	7	56	
ELCR 161		MARCON AND CREEN VOLCANIC WITH RARÉ PURIRE IN FRACTURES.	10	1.5	4	35	
ELGR 162		GRANINE (MED. CR.) WITH BLEBS AND SIRINGERS OF PARINE	5	0.7	8	17	
ELGR ¹⁶³		MAROUN VULANIC RENOLITY WITH STRINGERS AND DISSEMINATED PURITE	5	1.8	3	70	
ELGR164		RUSITY SILICEOUS DIFE WITH BLEBS HAND STRINGES OF PURITY	460	i.6	2	36	




## <u>LEGEND</u>

\$

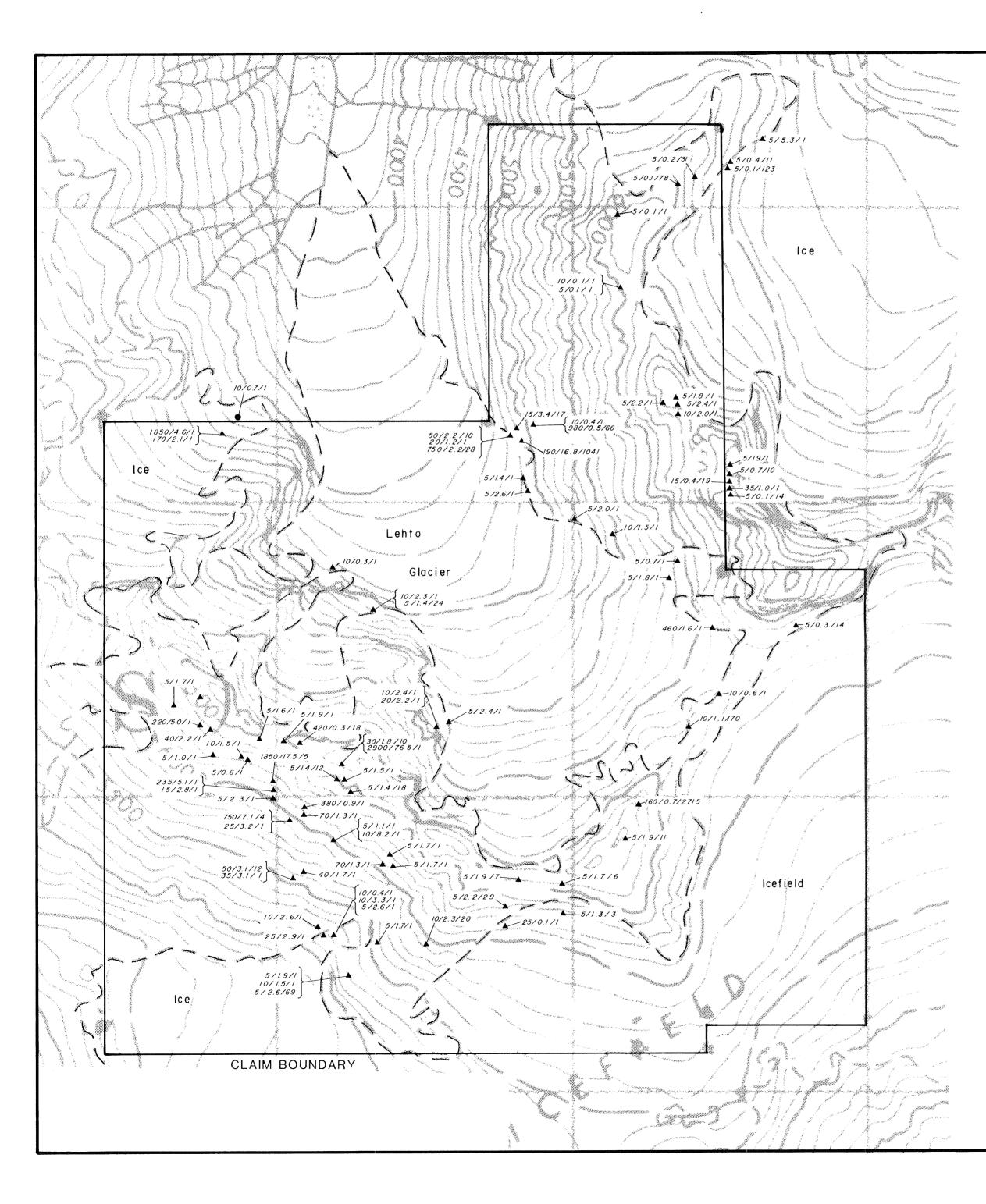

la	Leucocractic granitoid
2a	Dacite
2 b	Quartz-feldspar crystal tuff
3 a	Grey marble
4 a	Basalt
4 b	Andesite (dark green; fine-grained)
5 a	Argillite (metasediments)







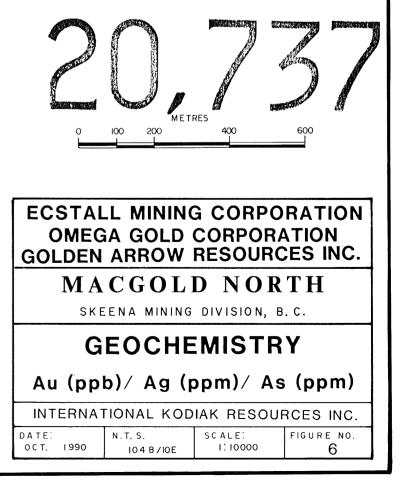
GEOLOIGMOG AntipleBRANCH ASSESSMENT REPORT

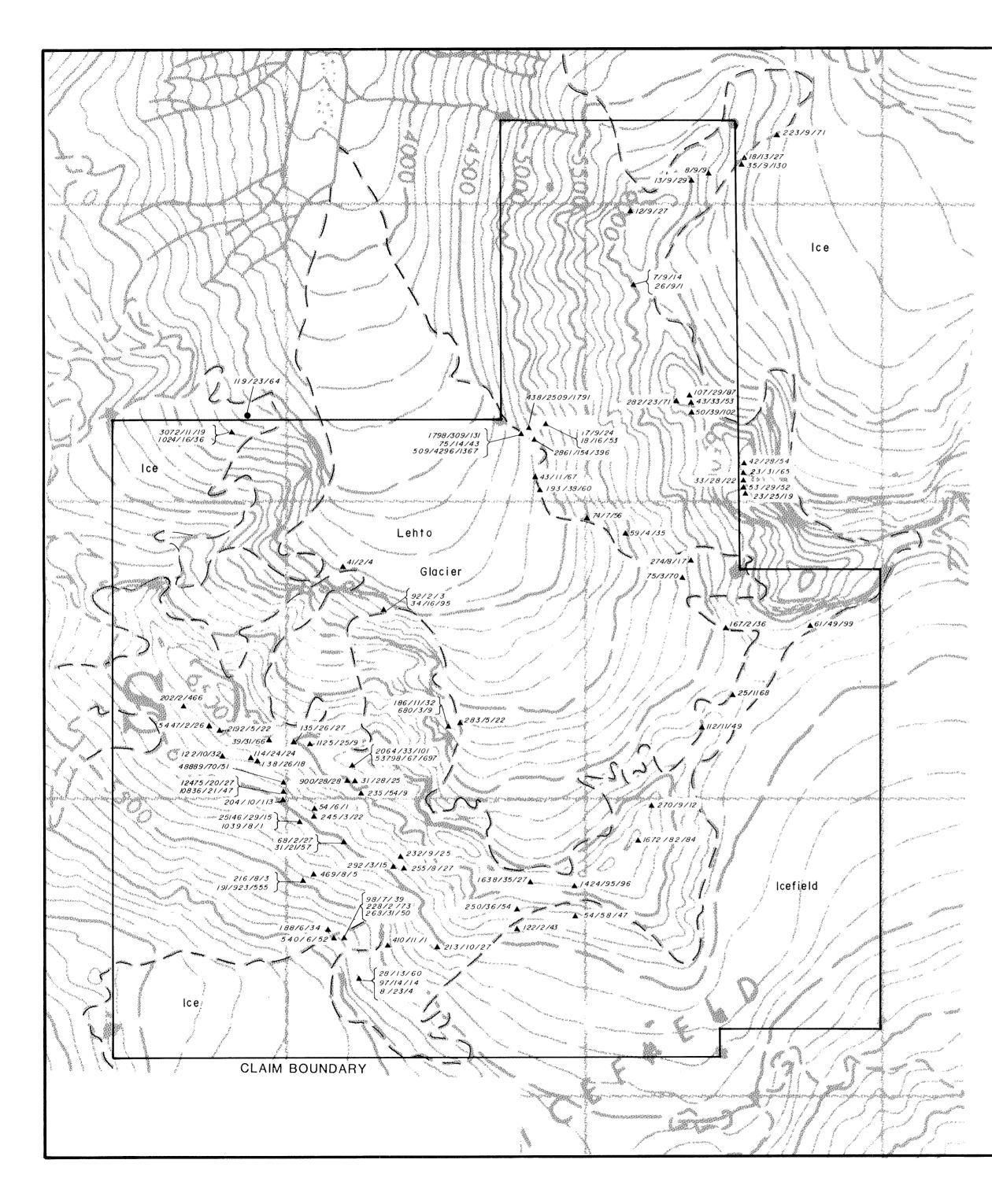


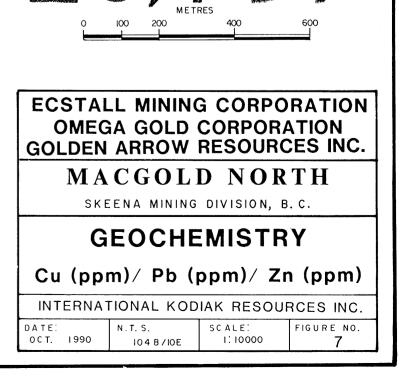

600

OMEGA GOLD CORPORATION GOLDEN ARROW RESOURCES INC.

# SAMPLE LOCATION MAP


INTERNATIONAL KODIAK RESOURCES INC. SCALE: 1:10000 DATE: OCT. 1990 N.T.S. FIGURE NO. 5 104 8/10E




- ▲ Rock sample
- Silt, moss sample

ASSESSMENT REPORT







GEOLOGIUCPAML PB (RPR) (NZC (PPM) ASSESSMENT REPORT

- Silt, moss sample
- Rock sample

LEGEND