LOG NO:	12-04	RD.
ACTION:		
FILE NO:		

Geological and Geochemical Summary Report on the Isk Claim Group Liard Mining Division British Columbia

N.T.S. 104 B/15E

Longitude: 130°35' West Latitude: 56°48' North

SUB-RECORDER RECEIVED NOV 29 1990 VANCOUVER, B.C.

For

Yellowband Resources Inc. Ecstall Mining Corporation Omega Gold Corporation

November, 1990

Rick Walker, M.Sc.

GEOLOGICAL BRANCH ASSESSMENT REPORT

'073

.c:32100

SUMMARY

The Isk claim block is located in the Liard Mining Division, just north of the confluence of the Iskut River and Forrest-Kerr Creek (Figures 1 and 2), on N.T.S. mapsheet 104B/15E at longitude 130° 35' West, latitude 56°48' North. The property is approximately 20 kilometres north-northwest of Calpine Resources' and Stikine Resources' Eskay Creek gold discovery. The property can be accessed by helicopter at present, however initial construction has begun on an access road into the area from Highway 37 near Bob Quinn Lake which will pass just across the Iskut River from the property.

The Isk claim block consists of 76 units and is presently held by Ecstall Mining Corporation (50%) and Omega Gold Corporation (50%). The 1990 exploration program was funded by Yellowband Resources Inc. as part of their ongoing commitment under the terms of an option agreement to earn up to a 100% interest in the claim block. The property was staked in 1988 to cover favourable Lower to Middle Jurassic Hazelton Group and Upper Triassic Stuhini Group volcanic lithologies (Figures 3 and 4) mapped by the Geological Survey of Canada and the British Columbia Ministry of Energy, Mines and Petroleum Resources (Figure 5).

In 1988, a federal-provincial funded geochemical sampling program returned anomalous silver, zinc and arsenic values from one stream sediment sample. The property was staked in 1988 and 1989 by Ecstall/Omega as the underlying rock package is known to host several major deposits in the area, namely the Eskay Creek, Snip and Reg deposits (Figure 6).

i

Reconnaissance scale field mapping on Isk 5 during 1989 by Nicholson and Associates resulted in correlation of the strata to the Lower to Middle Jurassic Hazelton Group. Such a correlation is consistent with the thick succession of basalt exposed within the claim block.

Follow-up geochemical sampling and geological mapping was carried out during the 1990 field season to evaluate the economic potential of the Isk claim block. A total of 148 stream sediment and moss samples and 69 rock samples were taken for geochemical analysis. In addition, the property was completely restaked to ensure that the claims conform to, and are secure under, the Mineral Tenure Act.

There was limited success from geochemical analysis and geological mapping and prospecting failed to produce enticing targets. Approximately \$36,000 was expended during the 1990 exploration programme.

TABLE OF CONTENTS

Í

Í

Î

Ĵ

Î

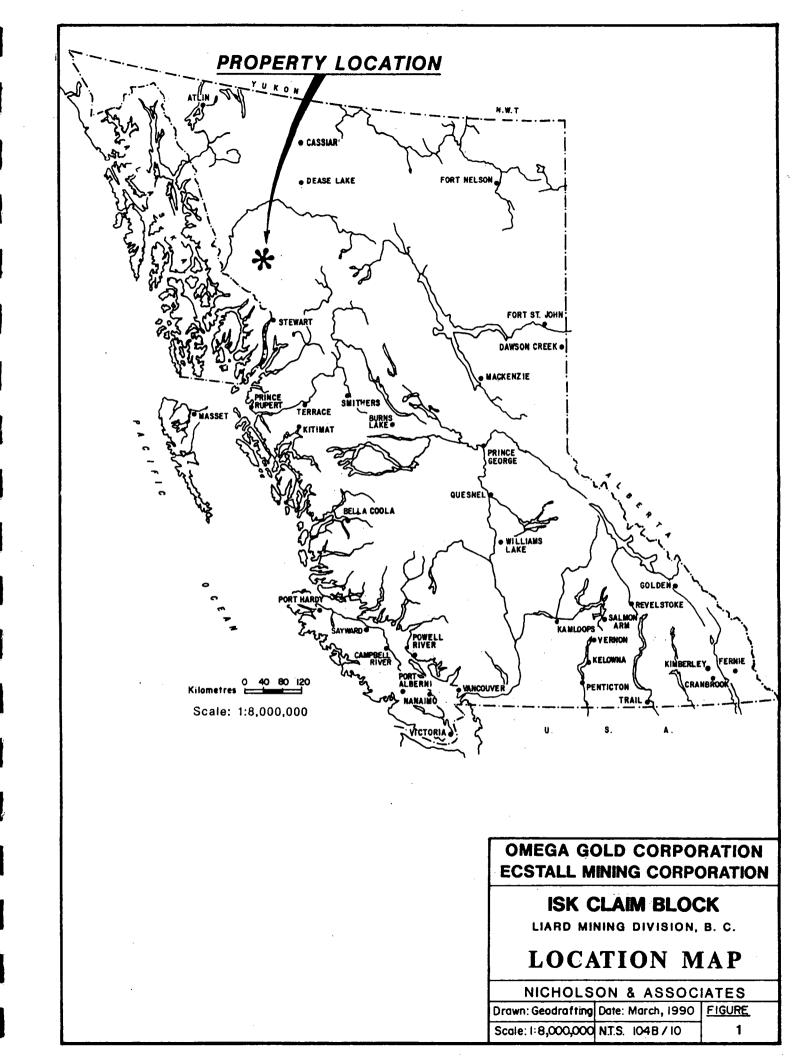
Pa	ige
JMMARY	i
IST OF FIGURES	v
NTRODUCTION	1
DCATION AND ACCESS	.4
AIM STATUS	5
HYSIOGRAPHY AND CLIMATE	6
ISTORY	7
	, 9
	-
DCAL GEOLOGY	17
Stratigraphy	17
Lower Jurassic Mt. Dilworth formation	17 18
Structure	20
Alteration	21 21 22 22 22
Mineralization	22 22 23
Geochemical Assay Results Gold Silver Arsenic Copper Lead Zinc Antimony Barium	23 24 25 25 25 26 26 26 26
ONCLUSIONS AND RECOMMENDATIONS	27

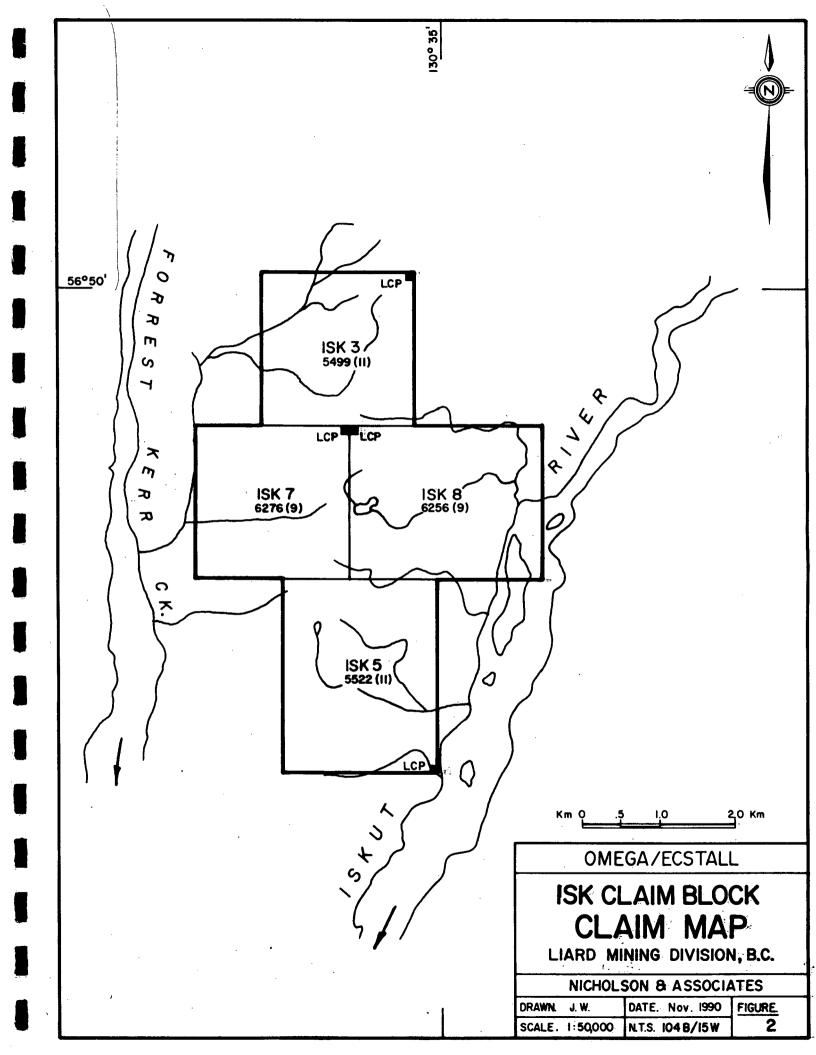
STATEMENT O	F	QU	AL	.IF	10	CAT	ΓI	ON	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	30
REFERENCES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	31

CLAIM PEOPES

APPENDIX II - STATEMENT OF WORK COSTS APPENDIX III - ASSAY TECHNIQUES AND RESULTS APPENDIX IV - ROCK DESCRIPTIONS

LIST OF FIGURES


	Page
1)	Location Map
2)	Claims Map
3)	Regional Geology
4)	Schematic Stratigraphy and Facies Changes in Triassic and
	Jurassic Lithologies
5)	B.C.M.E.M.P.R. Geology Map
6)	Index Map for Area Mines, Mineral Camps and Prospects 19
7)	Geology Map in back pocket
8)	Sample Locations Map in back pocket


INTRODUCTION

The Isk claim block is located in the Liard Mining Division at longitude 130°35' West, latitude 56°48' North (Figure 2), on N.T.S. mapsheet 104 B/15E. The claim block consists of 76 units and is jointly held by Ecstall Mining Corp. and Omega Gold Corp. on a 50/50 basis. The 1990 exploration program was funded by Yellowband Resources Inc. as part of their ongoing commitment under the terms of the option agreement to earn up to a 100% interest in the claim block.

Regional mapping of the property was done by the B.C. Department of Energy, Mines and Petroleum Resources and the Geological Survey of Canada. Correlation of the strata to Upper Triassic - Lower to Middle Jurassic stratigraphy (Figure 4) was made on the basis of their work. Subsequent reconnaissance scale mapping of Isk 5 was carried out by crews of Nicholson and Associates in 1989.

A follow-up program of rock and stream sediment geochemical sampling and geological mapping was carried out during the 1990 field season to evaluate the economic potential of the thick Middle Jurassic basaltic succession and any underlying Lower to Middle Jurassic volcanic and sedimentary lithologies. The same stratigraphic package is known to host precious metal mineralization 20 kilometres to the southeast in the Eskay Creek facies (Figure 6). Additionally, the underlying Upper Triassic Stuhini Group is also a known host for economic mineral deposits (eg. Kerr, Doc, INEL, Snip and Stonehouse) (Figure 6).

LOCATION AND ACCESS

The Isk claim block is situated at longitude 130°35' West, latitude 56°48' North (see Figure 2). The property is adjacent to the Iskut River and 20 kilometres north of Calpine Resources/Stikine Resources Eskay Creek gold project. The property is located on N.T.S. mapsheet 104 B/15E in the Liard Mining Division. The property is accessible by helicopter from the Kodiak Camp just west of the Iskut River. It is approximately 7 kilometres from Kodiak Camp to the Isk claim block.

Access to the property is from Kodiak Camp just east of the Iskut River and east of the property. Initial construction has begun on an access road from Bob Quinn Lake into the Iskut - Unuk River area and will pass within 100 metres of Kodiak Camp and within 2 kilometres east of the Isk claim block.

CLAIM STATUS

The Isk 3 and 5 claims (Figure 2) were staked in November of 1988 for Chris Graf. These claims were staked in accordance to the new modified grid system. The Isk 7 and 8 claims (Figure 2) were added in September, 1989. All interest in the claims was transferred to Ecstall Mining Corp. and Omega Gold Corp. which together hold the claims on a 50/50 basis. The claims appear on mapsheet 104 B/15E in the Liard Mining Division. Listed below is pertinent claim information.

<u>Claim</u>	Units	Record #	M.D.	Expiry Date
Isk 3	16	5499	Liard	Nov. 14, 1993
Isk 5	20	5522	Liard	Nov. 23, 1993
Isk 7	20	6276	Liard	Sept. 2, 1993
Isk 8	20	6256	Liard	Sept. 2, 1993

PHYSIOGRAPHY AND CLIMATE

The Isk claim block is situated in the Boundary Ranges of the Coast Mountains. The property's elevation varies from 300 metres (1000 feet) along the Iskut River to 1310 m (4300 feet) (Figure 5). The valley walls above the Iskut River and Forrest-Kerr Creek are very steep and heavily forested with stands of cedar, fir and hemlock. Slide alders and devils club make up much of the undergrowth, especially along gullies. Stream drainages are generally immature and contain only moderate amounts of detritus. Water is plentiful in the form of creeks, small ponds and groundwater seeps.

The timberline stands at about 1220 metres (4000 feet) above which rock exposures are very good. Alpine vegetation consists of scrub spruce, willow, heather and lichens.

Climatically the property is under the influence of coastal weather patterns. The summer weather varies from warm days to cool, wet conditions. Up to 12 metres of snow can accumulate during the winter months. Normally, the property is workable from June until late September.

6

HISTORY

The Iskut River area has, for the most part, seen sporadic mineral exploration activity. The first documented mineral discoveries occurred around the turn of the twentieth century. Mineralization was noted along the Iskut and Unuk Rivers in close proximity to the town of Stewart. Prior to World War II, small precious metal mines operated intermittently. The largest producer was the Silbak Premier Mine which produced 41 million ounces silver and 1.8 million ounces gold between 1920 and 1985. After World War II, exploration was concentrated on large tonnage base metal deposits. Although several deposits were defined, only Granduc Mine reached commercial production with published reserves of 10.9 million tons grading 1.79% copper. Exploration in the 1970's shifted to precious metals and several deposits have since been defined, including the Reg deposit (Skyline Gold Corp.) with 740,000 tons grading 0.52 ounces/ton gold, 0.67 ounces/ton silver; the Snip deposit (Cominco/Prime) with 1,032,000 tons grading 0.875 ounces/ton gold; the Eskay Creek deposit (Calpine/Stikine) with a probable reserve: 4.36 million tons grading 0.77 ounces gold, 29.12 ounces silver at a cutoff grade of 0.10 oz. gold (Northern Miner, 6 Oct. 1990). Numerous companies are exploring for precious and base metal deposits in the area and some are at the feasibility and prefeasibility stages of production, i.e., the Sulphurets deposits (Newhawk/Granduc with 715,400 tons of 0.431 ounces/ton gold and 19.7 ounces/ton silver; and the SB deposit (Tenajon) with 308,000 tons grading 0.51 ounces/ton gold.

A review of goverment files indicates that there has been no work undertaken on the claims or in the immediate area.

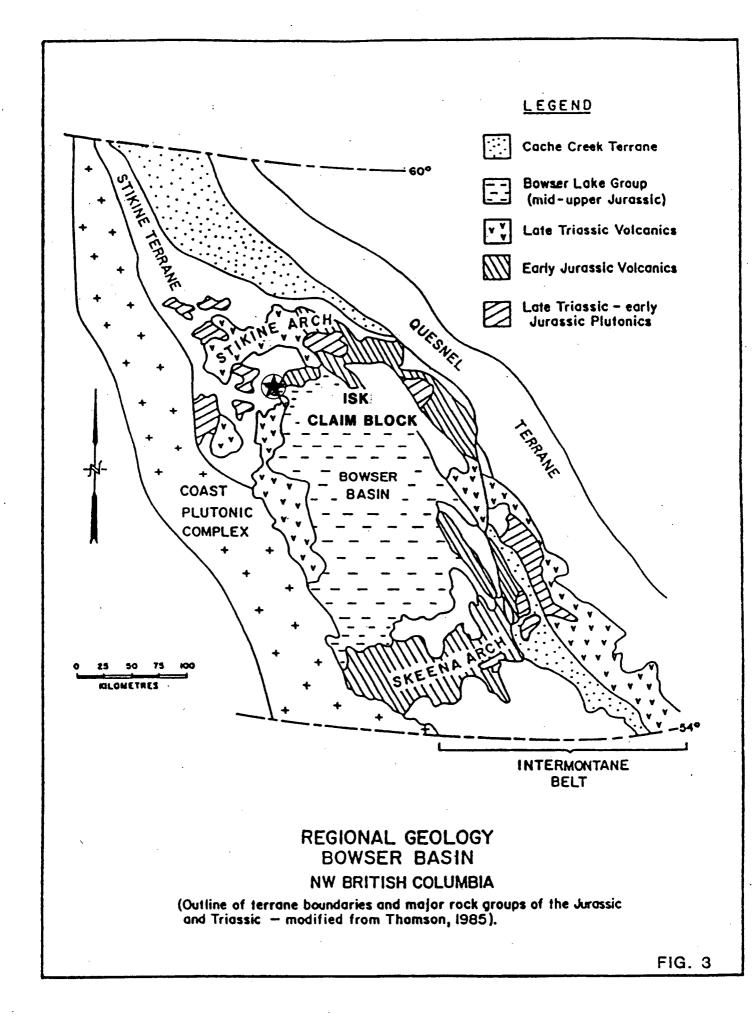
7

More recently work was undertaken by the Geological Survey of Canada and the B.C. Ministry of Energy, Mines and Petroleum Resources which released results in 1988 of a geochemical reconnaissance stream silt survey covering the Isk 5 claim. One sample taken from the property returned values of 1.0 ppm silver, 780 ppm zinc, and 55 ppm arsenic. No gold values were obtained.

In 1989, members of the B.C. Department of Energy, Mines and Petroleum Resources and the Geological Survey of Canada undertook a regional mapping program at a reconnaissance scale in the Forrest Kerr-Iskut River area. Crews of Nicholson and Associates also mapped the Isk 5 claim at a reconnaissance scale.

During the 1990 season, field crews of International Kodiak Resources Inc. completed a thorough mapping and geochemical survey program on the Isk property. A total of 217 samples were collected for geochemical analysis. The property has been extensively prospected and a geological map prepared.

8

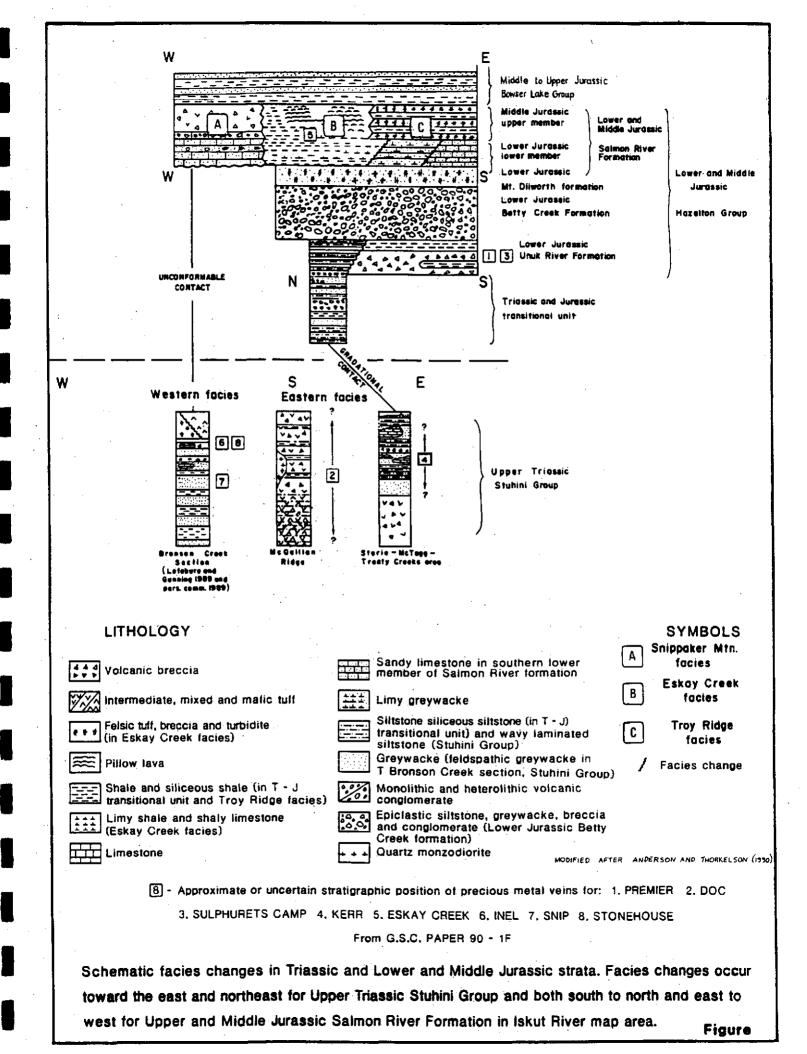

REGIONAL GEOLOGY

The Isk claims are located near the boundary between the Intermontane Belt and the Coast Plutonic Complex. It is underlain by the Stikine Terrane (Figure 3), a mid-Paleozoic to Mesozoic island arc succession (Grove, 1986). Mesozoic rocks are represented by volcanic rocks of the Upper Triassic Stuhini Group, and the volcanic and subordinate sedimentary rocks of the Lower to Middle Jurassic Hazelton Group (Figure 4). This dominantly volcanic package is interfingered with, and overlain by, Middle to Late Jurassic successor basin sediments of the Bowser Basin.

Two facies have been identified in the Upper Triassic Stuhini Group (Anderson and Thorkelson, 1990): an eastern facies and a western facies. The western facies can be traced from the Stikine River eastward to at least Snippaker Mountain. It is characterized by coralline limestone and polymict cobble conglomerate overlain by breccia, felsic tuff, shale and micrite. Laminated mafic and felsic tuff with coarse pyroxene phenocrysts are present near the top.

The eastern facies lacks the thick limestone and the felsic tuff units. Orange and black weathering, thin bedded siltstone and fine grained feldspathic, locally calcareous greywacke distinguish this facies. Polymict pebble to boulder conglomerate and shale are subordinate. Intermediate to mafic volcanics, conglomerate and breccia are typical.

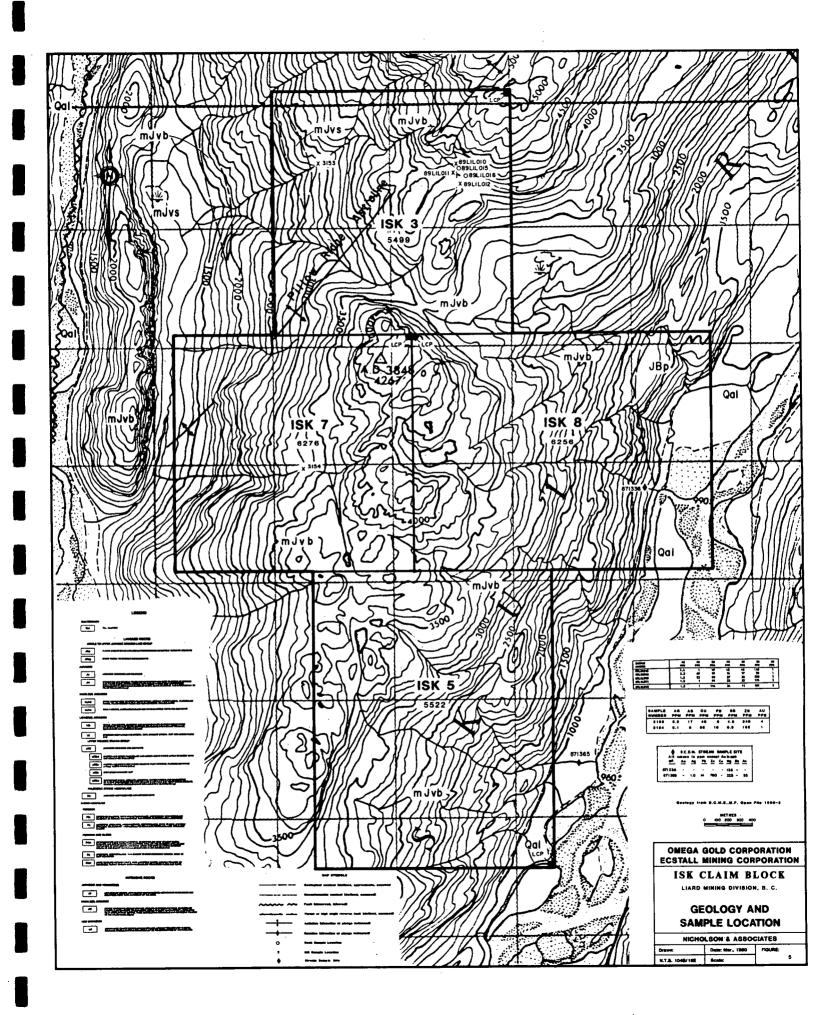
A gradational contact between the Upper Triassic Stuhini Group and the Lower to Middle Jurassic Hazelton Group has been mapped near the headwaters of Unuk River (Alldrick and Britton, 1988). Siltstone above



the orange and black weathering siltstone and shale becomes more siliceous with increasingly abundant greywacke and conglomerate. The conglomerate is present as discontinuous lenses and consists of clastsupported porphyritic andesite and dacite clasts. The uppermost strata in this transitional zone consists of laminated siliceous siltstone, fine grained greywacke, minor coarser grained greywacke and matrix to clast supported conglomerate.

Mineralization at the Snip deposit is hosted within the Stuhini Group (Figure 4 and 6) and is believed to have occurred during the Upper Triassic. Several other deposits have been recognized in the Stuhini Group; including the Kerr, the Doc, the INEL and the Stonehouse (Figure 4 and 6).

The Hazelton Group has been divided into three heterogeneous formations (Figure 4): the Lower Jurassic Unuk River Formation and Betty Creek Formation and the Lower to Middle Jurassic Salmon River Formation (Anderson and Thorkelson, 1990). In addition, a regional marker unit, the Mt. Dilworth formation, has been identified between the Betty Creek Formation and the Salmon River Formation. Some workers (Grove 1986) identify a fourth unit, the Nass Formation, overlying the Salmon River Formation. However this package of rocks includes Bowser Basin sediments and should not be included in the Hazelton Group which is dominated by volcanic lithologies (Anderson and Thorkelson 1990).


The volcanic sequences of the Unuk River Formation are characterized by basal pyroclastic flows that are progressively overlain by tuffs, argillites, local andesitic breccia and finally conglomerates with interbedded tuffs, wackes and siltstones. The Betty Creek Formation

unconformably overlies the Unuk Formation and is comprised of maroon to green volcanic siltstone, greywacke, conglomerate, breccia, basaltic pillow lavas and andesitic flows. The conglomerate/breccia units consist of matrix-supported, pebble to boulder size clasts of aphanitic to porphyritic andesite fragments. This is overlain by the Mt. Dilworth formation (Alldrick and Britton 1988, Aldrick et al. 1989, Anderson and Thorkelson, 1990) a regional marker unit consisting of tuff breccia, felsic tuff and dust tuff. These tuffs are welded to unwelded and aphyric to sparsely phyric.

The lower member of the Salmon River Formation ranges along strike from a limy argillite to limy greywacke to a sandy limestone. In most localities it is too thin to map, but it thickens toward the north and northwest to at least 1500 m of siltstones, greywacke and rare fossiliferous limestones south of Telegraph Creek.

The upper member of the Middle Jurassic Salmon River Formation displays three distinct facies from east to west; the Snippaker Mountain facies, the Eskay Creek facies, and the Troy Ridge facies (Figure 4). The gold deposit presently being defined at Eskay Creek (Figure 6) is believed to be stratabound in the Eskay Creek facies. This medial facies extends 45-60 kilometres north and south along strike from the deposit. The Eskay Creek facies is composed of aphyric to augite phyric (pillow) basalt with interfingered siltstone, tuffaceous wacke and conglomerate. To the west, the Snippaker Mountain facies consists mainly of volcanic breccia. The eastern Troy Ridge facies comprises shales with interbedded tuffs and breccias (Anderson and Thorkelson, 1990).

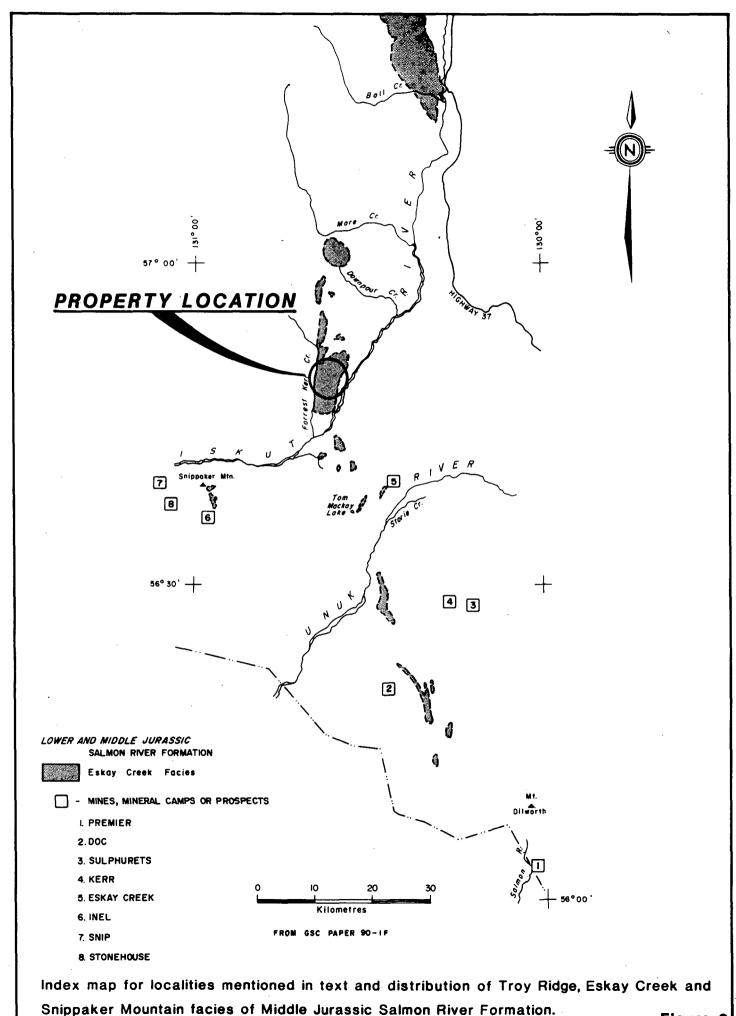


Figure 6

At the end of the Middle Jurassic the volcanic complex was uplifted to produce the Stikine Arch. Detritus shed from the exposed Stikine Arch was deposited in the adjacent Bowser Basin, resulting in the Middle and Late Jurassic Bowser Lake Group sedimentary sequences.

These volcanic and sedimentary sequences were subsequently intruded by granitoid intrusions associated with the Coast Plutonic Complex. Intrusive activity is interpreted to have taken place from the Middle Cretaceous to the Early Tertiary. Late stage (Quaternary) basaltic volcanism resulted in widespread deposits of columnar basalt flows, ash layers and scattered cinder cones. Much of these rocks were buried and/or eroded through glacial activity during the Pleistocene.

LOCAL GEOLOGY

The Isk claim block is underlain by a thick succession of basalt, pillow basalt and andesitic basalt lying above a comparatively thin sedimentary succession. The exposed succession is locally disrupted by abundant slickensides and small shears with displacements of at least 5 metres, possibly more. Quartz and/or carbonate alteration is associated with the slickensides. Bedding tops and other paleo-horizontal indicators (such as flattened pillows and load structures) identified at several outcrops indicate a southeast dipping, largely undeformed succession.

Stratigraphy

Lower Jurassic Mt. Dilworth formation

Scattered outcrops exposed in the lower slope of the Isk 5 block and farther east are comprised of sedimentary and minor volcanic lithologies (Figure 7). The basal exposures, above Quaternary alluvium, consist of conglomerate and breccia.

The conglomerate is white weathering and comprised of poorly sorted, angular chert clasts which range from less than 1 mm to 6 cm in diameter. The chert clasts have very thin, wispy internal laminations and are matrix to clast supported.

The breccia consists of bone white weathering, highly angular clasts that are mainly clast supported. The clasts consist of aphanitic to fine grained ash with a small component of feldspar clasts (less than 3 %). These clasts are interpreted to be welded to unwelded felsic (dust) tuff clasts from a proximal source. There is an apparent thickness of 400 feet (130 metres) of conglomerate/breccia exposed above alluvium. The conglomerate and breccia dominated succession is interpreted to represent the upper portion of the Mt. Dilworth formation which has been used as a regional marker horizon. It has been described as a white, maroon to green weathering, felsic tuff, tuff breccia and dust tuff, welded to unwelded and aphyric to sparsely plagioclase phyric (Anderson and Thorkelson 1990).

Lower to Middle Jurassic Salmon River Formation

The conglomerate/breccia unit is overlain by orange and dark brown to grey weathering, fissile slate and argillite laminations from 0.2 to 2 cm thick (Figure 7). There are also exposures of light to medium green weathering volcaniclastics having angular to sub-rounded feldspar clasts less than 5 mm in diameter, quartzite and fine to medium grained lithic wacke. The apparent thickness of this sedimentary sequence is approximately 500 feet (150 metres).

The sedimentary sequence overlying the conglomerate/breccia unit is interpreted to represent the basal member of the Lower to Middle Jurassic Salmon River Formation.

The sedimentary succession is overlain by approximately 3300 feet (1006 metres) of basalt, pillow basalt, andesitic basalt and interfingering horizons of argillite, fine grained greywacke and conglomerate.

The basalts are medium green-grey to orange-red weathering and can be separated into two distinct successions, separated by a fault or sheared unconformity. The lower succession is approximately 2000 feet (610 metres) thick and is dominated by homogeneous basalt, andesitic basalt and minor pillow basalt.

The basalts are aphanitic to fine grained and moderately to highly fractured. The fractures show no preferred orientation and are not believed to be columnar joints. Plagioclase \pm pyroxene phenocrysts are sometimes present and constitute less than 20 % of the matrix by volume. When present, phenocrysts are less than 3 mm in diameter.

Andesitic basalts are distinguished by the presence of hornblende at the expense of pyroxene. Due to the small size of the phenocrysts this is not a reliable indicator. A secondary characteristic is the presence of slightly to moderately corroded plagioclase phenocrysts in andesitic basalts. The andesitic basalts are also moderately to highly fractured and homogeneous. Both the basalt and andesitic basalt have local occurrences of glomeroporphyritic plagioclase and pyroxene. No exposures of andesitic dikes were observed.

The lower contact with the underlying argillite is an unconformity that has been complicated by subsequent high angle faults. One fault identified is a reverse fault having a minimum displacement of 5 m.

The overlying basaltic succession is a minimum of 1300 feet (396 metres) and lies above an unconformity. The unconformity is flat-lying to shallow west dipping and may be complicated by later shearing. The sequence above the unconformity is dominated by light to medium grey-green weathering pillow basalts. Individual pillows range from 0.3 to 2 m in diameter and are weakly to strongly defined. Selvages are up to 2 cm thick and glassy. Interstices consist of pillow breccia and fragments in a glassy matrix. Locally, the basalts are vesicular and/or amygdaloidal.

Amygdules consist of quartz and/or carbonate, however, in several localities zeolites may be present.

Sedimentary lithologies are present throughout the basaltic succession but comprise only a minor component of the overall stratigraphy. The sedimentary horizons are dominantly fine grained, alternating argillite and fine grained greywacke laminations up to 4 cm thick. Bedding is oriented northeast and dips moderately to the southeast. Laminated chert, conglomerate and breccia horizons are also present. Soft-sediment deformation features are present and include flame structures, load casts and rootless folds.

Sedimentary exposures are generally less than 3 metres thick but at the northern end of the boundary between Isk 7 and Isk 8 a thick sedimentary succession up to 50 metres thick is present. The sedimentary exposures are interpreted to represent a hiatus in basaltic magmatism during which sedimentary processes were dominant.

The volcanics of the Isk claim block, dominantly pillow basalts, can be correlated with the lower Middle Jurassic Salmon River Formation, which is the youngest formation of the Hazelton Group. More specifically, the exposed volcanics are correlatable to the Eskay Creek facies, one of three distinct facies making up the Salmon River Formation. The Eskay Creek facies hosts the Eskay Creek gold deposit, 20 km to the southeast.

Structure

The Pillow Ridge Anticline (Figure 5), mapped by the BCMEMPR (Open File 1990-2), is the sole large scale structural feature in evidence on the Isk claim block. It is poorly defined due to the homogeneous nature

of the basalt and has been defined on the basis of bedding orientations on either side of the hinge zone.

The contact between the two basalt successions may be sheared along the plane of the unconformity (Figure 7). Only one exposure has been examined at which the unconformity was exposed and there is evidence of shear but the extent and displacement remain uncertain.

Several smaller faults having displacement greater than 5 metres but less than 50 metres have been identified and complicate the stratigraphy but are not regional in extent. Abundant slickensides are present throughout the Isk claim block. The slickensides have no preferred orientation, nor do the associated slickenlines.

Alteration

The basalts appear to be pristine and well preserved but upon close examination it is apparent that they have been variably altered. Much of the alteration is associated with fractures, faults and shears.

Chlorite/Sericite

The entire basaltic pile has been variably altered. The matrix has a medium green colour on fresh surface and is largely comprised of chlorite as an alteration product of the primary minerals. The extent of chloritic alteration is unknown as microscopic examination has not been done. In addition, the mafic phenocrysts (pyroxene and/or hornblende) show evidence of partial alteration to chlorite. Feldspar phenocrysts show evidence of alteration to sericite in the form of a light green patchy colour and a soft altered rind.

Epidote

Several occurrences of epidote alteration were noted but such alteration is not pervasive or widespread. Epidote is present as a patchy pistachio green surficial rind.

Serpentine

Serpentine is an ubiquitous alteration product of the basalts along slickensides. It is present as a dark green, glassy looking layer up to 1 cm thick.

Quartz/Calcite

Quartz and calcite are common alteration products associated with shear zones and fractures. The altered zones are irregularly developed and up to 20 cm thick on either side of the fracture or shear plane.

Mineralization

Mineralization on the Isk claim block is variably developed and nowhere was found to be extensive. Local pyrite horizons were noted but are not laterally continuous and apparently barren, having no anomalous gold values.

Pyrite

Pyrite has been observed as disseminated aggregates of fine grained crystals and as single euhedral crystals up to 1 cm in diameter. Pyriterich concentrations are present along fractures as thin veins and veinlets and as bedding parallel horizons in the sedimentary intervals. Pyrite disseminations have been noted but are not a common form of mineralization on the Isk claim block.

Significant concentrations of pyrite have not been observed on the Isk claim block. Furthermore, assay results from the Isk claim block have not returned any anomalous gold values (greater than 10 ppb).

Quartz/Calcite

Quartz and/or calcite occur as veins and lenses in the Isk claim block. These veins and lenses are up to 3 cm thick and have not been found to contain any related mineralization. Individual crystals are up to 1 cm in length and have fine grained margins and coarsen toward the core.

Geochemical Assay Results

A total of 217 samples were taken from the Isk claim block for geochemical analysis. The samples taken included 69 rock samples, 103 stream sediment samples, and 45 moss samples. All samples were coded using a four part system. The first code designates the property (in this case A - Isk), the second part consists of the initials of the person that collected the sample, the third for the type of sample (R - rock, S - silt, M - moss) and the fourth is the sample number. For example, code A-RW-R-001 is a rock sample collected on the Isk claim block by Rick Walker and is the first sample taken.

Stream sediment samples were taken from every drainage on a 100 metre interval as measured with a hipchain. At every station a stream

sediment sample was taken and placed in a plastic sample bag. If insufficient sediment was present a moss sample was taken instead. In either case, the station was identified with orange flagging tape upon which the sample number was recorded.

Rock samples were taken mineralogically promising outcrops. Additional samples were taken at structural breaks (faults, unconformitites, some fractures). Chip samples were taken over an area up to 0.5 square metres to obtain a representative sample. Rock samples taken over a greater area have been identified with a "T" in the code, rather than an "R". Samples were placed in plastic sample bags. The sample location was flagged with orange flagging tape and an aluminum tag with the pertinent information was fixed to the outcrop.

Samples taken between June 16 to 18, 1990 were sent to Loring Labs in Calgary, Alberta whereas all subsequent samples were sent to Min-En Laboratories in Smithers, B.C. All samples were analyzed for 30 elements by Inductively Coupled Plasma analysis (I.C.P.) with an Atomic Absorption finish for gold (Appendix iii). Each sample was also analyzed for gold content by digestion with aquaregia solution, extraction with methyl isobutyl ketone and analysis by an atomic analysis instrument (Appendix iii).

Gold

Only 8 anomalous gold values (greater than 10 ppb) were returned (Appendix iii and iv). All anomalous values were obtained from stream sediment samples and therefore probably represent hydraulic concentration of the minor gold component contained as background in the lithological units the streams drain.

Silver

Twenty nine anomalous values (greater than 3.0 ppm) have been returned from both rock and stream sediment samples (Appendix iii and iv). The similarity between stream sediment and rock samples assay results suggests that silver is distributed in a homogeneous manner throughout the host rock.

The overlying, youngest basaltic succession contains the majority of the highest gold values. In addition, the background values are also higher than the underlying basalts and andesitic basalts. This is additional evidence indicating two different basaltic successions on the Isk claim block.

Arsenic

Five anomalous values (greater than 100 ppm) have been returned (Appendix iii and iv). Only one comes from a rock sample, the remainder are from stream sediment samples. The rock sample was taken at the faulted unconformable contact between the lower sedimentary succession and the basaltic sequence.

Copper

Only three weakly anomalous copper values (greater than 100 ppm) have been returned from the property (Appendix ii and iv). They were all from stream sediment samples and probably represent a hydraulic effect.

Lead

Only one weakly anomalous result (greater than 100 ppm) has been obtained from a rock sample in the lower sedimentary succession (Appendix iii and iv). It comes from volcaniclastic inclusions in a quartz-calcite vein near the unconformity between the underlying sedimentary succession and the basaltic pile.

Zinc

Fourteen anomalous samples (greater than 300 ppm) have been obtained from the Isk claim block (Appendix iii and iv). All anomalous values were returned from streams draining the younger basalt succession and probably reflect hydraulic concentration. This conclusion reflects the increasing value of the zinc values downstream.

Antimony

Four anomalous values (greater than 10 ppm) have been obtained from the Isk claim block (Appendix iii and iv). Three are stream sediment samples and one rock sample. There is no association between antimony and any of the other elements or host lithologies apparent.

Barium

Four anomalous values (greater than 300 ppm) have been returned from the property (Appendix iii and iv). Two of the anomalous values were obtained from stream sediment samples and two from rock sample. The two rock samples were taken from the faulted, unconformable contact between the lowest sedimentary succession and the basalt succession.

CONCLUSIONS AND RECOMMENDATIONS

The Isk claim block is host to a massive succession of volcanic and sedimentary rocks which appear to be part of a large basinal environment. Evidence for this conclusion comes from soft-sediment deformation (possibly reflecting the effect of local seismic activity), thick pillow basalt exposures and the thickened underlying sediment sequence above the Mt. Dilworth formation as compared to that exposed north of Knipple Glacier and at Storie Creek.

The strata exposed in the Isk claim block is a right-way-up, largely undeformed exposure believed correlatable with a section extending from the upper Lower Jurassic Mt. Dilworth formation upward into the Eskay Creek facies of the Lower to Middle Jurassic Salmon River Formation (Figure 4). Two unconformities are exposed; one below the basalt and another separating two separate basaltic successions (Appendix iii and iv).

The two basaltic successions can be differentiated on the basis of textures, presence of pillow basalt versus basalt and andesitic basalt and compositional differences. Silver and, to some degree, zinc show different background values between the two basalt exposures (Appendix iii and iv).

Mineralization is poor throughout the Isk property, consisting of disseminated pyritic aggregates and single euhedral crystals from 1 mm to 1 cm in diameter. No other sulphides have been observed. Assay results returned for the Isk claim block have few anomalies in gold and those obtained are only just above background values. Silver values are enriched in the younger basaltic pile and have values between 1 and 4.5 ppm in both rock and stream sediment samples. Other elements have few anomalous values and are weakly associated with the sedimentary/basalt unconformity in the lower eastern slope.

Further work is not recommended on the basis of gold values. However, the silver enrichment documented in the youngest basalt sequence should be followed up. It is recommended that more extensive sampling be carried out on the youngest sequence together with additional mapping. The nature, extent and possible displacement along the unconformity between the two different basalt sequences should be determined.

In addition, the sedimentary/basalt unconformity mapped at the base of the exposed strata (correlated with the upper Mt. Dilworth formationlower Salmon River Formation) should be examined in greater detail and extensively sampled. Arsenic and barium anomalies are spatially related to this contact and may indicate hydrothermal activity and possible precious metal enrichment.

STATEMENT OF QUALIFICATIONS

I, Rick Walker, do hereby certify that:

 I am a consulting geologist working for International Kodiak Resources from offices at #606 - 675 West Hastings Street, Vancouver, British Columbia.

2) I am a graduate of the University of Calgary with a Bachelor of Science, Geology.

3) I am a graduate of the University of Calgary with a Masters of Science, Structural Geology.

4) I have worked in geology in B.C. and the N.W.T. since 1983.

5) I am the author of this report and my findings are based on work undertaken on the property between June 16 and August 19, 1990.

6) I have no interest in the property or the companies involved nor do I anticipate any.

Dated at Vancouver, British Columbia this 1st day of November, 1990.

Rick Walker, B.Sc., M.Sc.

REFERENCES

- Alldrick, D.J. (1988): Volcanic centres in the Stewart Complex. (103P and 104A,B). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 233-240.
- Alldrick, D.J. and Britton, J.M. (1988): Geology and mineral deposits of the Sulphurets area (NTS 104 A/5, 104 A/12, 104 B/8 and 104 B/9); British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File Map 1987-22.
- Anderson, R.G. (1989): A Stratigraphic, plutonic, and structural framework for the Iskut River Map Area, northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Anderson, R.G., Thorkelson, D.G. (1990): Mesozoic Stratigraphy and Setting For Some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-IF, pages 131-139.
- Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., and Alldrick, D.J. (1988): Sulphurets Map Area (104A/05W, 12W,: 104B/08E, 09E). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 199-209.
- Drobe, J.R., Koyanagi, V.M., and Logan, J.M. (1990): Geology of the Forrest - Kerr Creek Area, Northwestern British Columbia (104 B/15); in B.C. Ministry of Energy, Mines and Petroleum Resources Geological Fieldwork 1989, Paper 1990-1, pages 127-139.
- Franklin, J.M., Lyndon, J.W. and Sangster, D.M. (1982): Volcanic-Associated Massive Sulphide Deposits; in Economic Geology Seventy-Fifth Anniversary Volume, pages 485-627.
- Grove, E.W. (1971): Geology and Mineral deposits of the Stewart Area, British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63. 152 pages
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River - Anyox Area. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63.
- Kerr, F.A. (1982): Lower Stikine and Western Iskut River Areas, British Columbia. Geological Survey of Canada Memoir 246, pages 31-34.

- Nicholson, G.E., Robb, W.A. and Sampson, C. (1990): Summary Report and Recommendations For Isk Claim Block, Liard Mining Division, B.C. for Yellowband.
- Panteleyev, A. (1986): A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits; reprinted in Ore Deposit Models, Geological Association of Canada Reprint Series 3, pages 31-44.

Appendix ii Satement of Work

INTERNATIONAL KODIAK RESOURCES INC.

Mineral Exploration Services

STATEMENT OF COSTS

PROJECT:Is	k	for	Yellowb	and	Res.
	PERIOD: June	16 - J	uly 31,	1990	
Personne1					
<u>19</u> man days @	\$275/day			-	\$5,225.00
<u>8.9</u> man days @	\$240/day			-	2,136.00
<u>8.0</u> man days @	\$225/day			-	1,800.00
<u>18.0</u> man days @	\$200/day			-	3,600.00
Helicopter _7.7 hours @ _\$7	<u>725</u> /hour (fuel inclu	ded)		-	5,582.50
Room and Board 52,1 man days @	\$125/day				6,512.50
man days @	\$40/day (fly camp)			-	
Vehicle @ \$1,350/mo	nth				
Field Supplies	man/day				1,042.00
Samples 221 Rock @ \$20/	sample				4.420.00
Soil @ \$20/	•				
Silt @ \$20/	sample				
Mob./Demob.					
Office					3,000.00
Miscellaneous 1. Filiing	a Fees				1,320.00
2. Travel					500,00
3.					
Subtotal					\$35,138.00
Contingency					
	TOTAL TO DATE				\$35,138.00
E. & O.E.					

Appendix iii Assay techniques and results

.

•

.

C TRANSFER STATE

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK: PROCEDURE FOR TRACE ELEMENT ICP

> Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for 2 hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

GOLD ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The 1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to - 1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized on a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

PHONE: (604) 980-5814 (604) 988-4524 TELEX: VIA USA 7601067 FAX: (604) 980-9624

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK PROCEDURE FOR AU, PT OR PD FIRE GEOCHEM

Geochemical samples for Au Pt Pd are processed by Min-En Laboratories, at 705 West 15th St., North Vancouver, B. C., laboratory employing the following procedures:

After drying the samples at 95 C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized on a ring mill pulverizer.

A suitable sample weight; 15.00 or 30.00 grams is fire assay preconcentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

AG, CU, PB, ZN, NI, AND CO ASSAY PROCEDURE:

Samples are dried @ 95 C and when dry are crushed on a jaw crusher. The -1/4 inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram sub-sample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3 - KCL04 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

MP: INTERNATIONA ROJ: UNUK ITN: G.NICHOLSON	KOOTAK	•							15TH	ST., NO	RTH V	ICP I ANCOUVER, (604)988-	8.C.		2					•	١.			* s		5-0218- 1F: 90/ (ACI
SAMPLE NUMBER	AG AL PPH PPM	AS PPM	в РР И	BA PPM	BE PPM	ВІ СА РРМ РРМ	CD PPH	CO PPH	PPH		K PPH	L1 N _ РРК _ РР	<u>н рри</u>	MO	NA PPM P					SR T Ph pp	'H L 'N PPN	A PP				W CR M PPM
A-PN-S-001 A-PN-S-002 A-PN-S-003 A-PN-S-004 A-PN-S-005	1.6 26180 1.2 17350 1.8 23020 1.7 24770 1.6 25720	1 1 19 1	6 5 8 6 5	82 62 51 59 58	.6 1.1 .1 .1 .1	5 7050 3 11110 5 15700 6 13400 5 10460	.1 .4 .1	16 16 21 23 22	28 34 31 36 35	37850 25840 43170 41720 45080	1020 2020 1430 980	23 1146 8 690 13 1558 14 1380 18 1211	0 1682 0 692 0 1694 0 1558	13	060 5130 2480	23 1/ 19 1/ 34 1	360 50 380 150 200	15 20 5 10 7	1	7 11 26 19 11	1 1 1 1 1 1 1 1	56 95 87.4 102		1	1 1 1 1 1	1 24 1 21 1 15 1 12 1 15
A-PN-S-006 / A-PN-S-007 / A-PK-S-008 / A-PK-S-009 / A-PN-S-010 /	1.2 25340 2.3 35090 2.4 34400 2.5 32300 2.2 29040	1 1 1 1	5 9 10 9 8	81 57 53 55 66	1,3 .1 .1 .1	4 10670 6 23440 7 22210 7 19390 6 17390	.1 .1 .1 .1	15 36 32 33 27	27 54 56 51 48	58130 57810 52590	710 790	17 724 17 1380 19 1587 19 1639 20 1505	0 1120 0 1104 0 1151 0 1159	6 5 3	380 360 480 310	93 1 90 74 1	350 000 740 050	25565	1 1 1 1	5 1 1 1		153. 161. 147. 133.	9 314 4 287	i 1		1 18 3 62 4 69 3 62 3 58
A-PH-S-011 A-PH-S-012 A-PH-S-013 A-PH-S-016 A-PH-S-015	2.5 30270 2.2 28540 2.2 28840 2.3 29700 2.2 26210	1 1 1 1	10 8 10 8 9	58 56 62 57	.1 .1 .1 .1 .1	7 16210 6 17160 6 17300 6 16920 6 16920 6 16020	.1 .1 .1 .1	31 28 28 29 27	53 46 52 47 47	62960 54330 53300 56340 53640	750 690 800 960 930	22 1746 19 1576 19 1378 20 1479 19 1423	0 1052 0 1131 0 1063 0 931	1	320 390 380 330	55 1 65 1 59 1 64 1 46 1	200 70 270 250	5 10 5 5 10	1	1 1 1 1	1 1 1 1 1 1 1 1 1 1	175 136 130 141 141	2 290 9 289 6 288 1 351	1	1	3 48 3 58 2 50 3 56 2 43
A-PN-S-016 A-PN-S-017 A-PN-S-018 A-PN-S-018 A-PN-S-019 A-PN-S-020	1.5 24830 1.8 29230 1.6 26840 1.8 27020 1.9 26280	1 1 1 1	5 8 8 6 7	74 110 121 113 102	1.2 1.0 1.1 .9 .7	5 6180 7 8310 5 8990 6 8730 6 10090	.1 .1 .1 .1	22 28 21 22 21	23 24 27 27 27 27	40470 47640 43900 42810 44180	1060 1070 1020 1050	18 919 18 906 18 1100	0 2862 0 1860 0 1974 0 1346	1	830 730 590 880	20 1 27 1 28 1 31 1 27 1	30 190 110 20	16 14 12 18 7	1	7 10 7 6 8	1 1 1 1 1 1 1 1	91. 108.0 124. 125.3	3 160 3 155	2 1 1 1	1 1 1 1	1 19 1 16 1 22 1 26 2 28
A-PN-S-021, A-PN-S-022, A-PN-S-023, A-PN-S-024, A-PN-S-025,	3.2 35220 2.8 30640 2.2 27740 2.3 28910 1.9 29130	1 1 1 1	9 8 7 8 9	138 110 106 93 69	.1 .3 .1 .4	9 15800 8 13340 7 13270 7 12550 6 14390	.1 .1 .1 .1	41 31 25 25 18	49 34 31 36 32	60690 49880 51670 39340	930 960 920 840 2600	20 23510 20 19500 17 14590 18 15100 14 7870) 1376) 1008	1	850 750 380	25 10	180 100 180	7 5 10 8 6	1 1 1 1	1 6 7 2 7	1 1 1 1 1 1 1 1 1 1	198.1 169.9 150.2 147.1 138.8	2 151 2 145 1 135 3 159	1 1 2 1		4 76 3 50 2 40 3 44 2 30
A-PN-S-028; A-PN-S-029 A-DS-S-054 A-DS-S-055 A-DS-S-055 A-DS-S-056	2.6 29780 2.6 29460 1.7 20470 2.1 21900 1.9 21750	1 130 86 46	7 8 6 8 7	103 95 79 63 65	.1 .1 .1	8 14470 8 14880 5 10910 5 15400 5 12110	.1 .1 .1 .1	29 28 17 17 17	34 33 31 39 30		870 890 880 770 730	19 1793 20 1652 25 1054 20 927 25 1119) 1189) 870) 929) 851	1 1 1 1	570 410 630 420	35 10 38 7	90 40 30 50	5 5 11 8 14	1 1 1 1	1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	89.9 91.0	216 113 120 138	1 1 2 3	1 1 1 1	3 52 2 45 1 32 1 34 1 31
A-DS-S-057 A-0S-S-058 A-0S-S-059 A-DS-S-060 A-DS-S-060 A-DS-S-061	1.8 23760 2.0 22400 1.9 23140 2.0 25320 1.7 23310	83 22 19 1 1	8 8 11 11 10	70 67 60 77 109	.1 .1 .1 .1	5 12290 5 12740 5 17160 5 16160 3 14460	.1	18 17 20 27 24	31 31 35 53 51	41970 44590 57290 53470		27 11060 25 10520 21 10880 18 13880 18 12070	809 947 966 1157	1 1	580 510 390	52 9 28 10 45 10 57 11	10 20 70 90	17 23 15 7 15	1 1 1 1	4 1 5 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		98.8 148.5 126.5	168 137 338 399	1 1 1 1	1 - pi	1 29 1 27 2 35 1 33 1 22
A-DS-S-062 A-DS-S-064 A-DS-S-065 A-DS-S-066 A-DS-S-066 A-DS-S-067	2.1 27100 1.8 25750 .5 7460 2.3 30460 2.1 28080	78 1 12 1 120	9 15 8 9	104 370 336 81 81	.1	6 13520 1 6000 1 5290 7 12150 6 12250	.1 1.4 1.6 .1 .1	27 42 12 34 32	37 219 42 38 33	54240 151220 31700 65210 71460	2550 2880 1480	22 15810 23 2360 4 1530 20 18460 21 18560	4725 1091 1369	1 3 1 1	200 / 90 / 350 3	14 48 16 7 14 9		6 13 34 5 5	1 1 1	2 1 3 1 7 1 7 1 1 1		152,4 139,3 22,9 156,0 189,4	711 258 142	1 1 1 1	1	2 41 1 1 2 42 5 41
A-DS-S-068 A-DS-S-070 A-DS-S-070 A-MS-S-066 A-MJ-S-066 A-MJ-S-067	2.0 27970 2.1 29150 1.8 22640 1.5 22610 1.6 24840	149 171 1 1	8 9 11 9 17	98 101 113 87 96	.1 .1 .1 .5	6 12590 6 14270 4 14640 4 11820 4 16410	.1	29 30 23 17 21	33 38 60 27 38	64170 60160 51510 41070 39770	190 1590 1110	16 10620 25 11170 20 .9550	1218 1374 825 1316	1 1	860 350 460 460		00 50 50 10	5 7 12 9 16	1	2 1 1 4 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	187.1 173.8 118.6 117.5 119.3	138 723 179 145	1121	1 1	2 41 5 41 1 21 1 30 2 38
A-MJ-S-069 A-MJ-S-070 A-MJ-S-071 A-MJ-S-076 A-MJ-S-085	1.5 23650 1.7 24340 1.9 31080 1.7 23390 2.7 33680	1 1 1 1	9 9 7 10 10	85 90 93 82 69	.6 .3 1.7 .3 .1	4 12570 5 11890 6 7590 5 12870 7 16580		18 18 18 20 35	31 28 25 28 44	40860 42390 44550 43220 73760	1220	22 10590 27 11180 20 7090 25 13150 22 32870) 893) 672) 811		440 3 640 2	12 10 13 9 14 13 7 19 30	60 00 60	15 17 11 7 5	5 1 1 1	6 1 5 1 6 1 6 1		113.7 122.8 123.1 114.0 160.1	182 160 175	· 2 2 3 2 1	1	32 33 18 30 50
													1				1		r		1					
							١,					,										2	. }	1	۱.	

COMP: INTERNATIONAL KODIAK

PROJ: UNUK

ATTN: G.NICHOLSON

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0161-PJ1+2

DATE: 90/07/27

• PULP • (ACT:F31)

						<u> </u>																								
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM		MG PPM	MN PPM 1	MO PPN	NA PPM	N I PPM	P PPM		SB PPM I		TH PPM Pi	U PM	V PPM F		GA SI PM PPI			AU PPB
		13470 20910 13590 13530 36620	21 19 10 32 1	1 1 18 2	529 105 197 163 11	.6 .9 1.1 .9 .3	2 19530 2 4420 3 48490 2 55640 14 23010	.1 .1 .4 .1			46270 37830 36770 124360	1360 890 4290 1750 370	10 3 4 9	32550 17960 12410 26710	275 967 901 761 667	3 1 3 1 3		1 19 24 1418	_	48 85 47 49 59	1 2 1 2 8	12 8 1 11 1	1 1 1 1	1 11 1 2 1 8 1 11	4.5 4.7 9.4	66	2 2 2 1	1 1 2 1 1 1 1 1	11 23 29 24 67	5 5 5 10
		15370 7650 4930 22100 33300	1 1 1 1	1 1 1 1	17 19 24 71 69	.3 .4 .6 .3 .6	19 18390 18 14880 16 13830 8 4190 6 5280	.1 .1 .1 .1	20	1409 946 191 61 142	86670 80780 76130 59830 53790	700 960 760 300 470	7 5 5 10	13730 1 11800 1 33950 49750	246 254 211 836 938	1 1 1 1	510 860 770 360 190	174 55 20 51	4410 4630 4620 700 2110	34 37 27 40 40	1 1 1 3	17 22 23 14 30	1 1 1 1	1 4 1 4 1 14 1 14	9.4 6.9 0.5 8.2	114 53 <u>66</u>			12 1 59 63	5 5 5 5 5
	.8 1.2 .5 1.2 1.4	11430	23 14 29 34 40	1 1 2 1	39 162 121 257 179	.6 .7 .7 .6	4 4170 2 6940 2 6280 2 2300 3 8070	.1 .1 .1 1.1 .1	11 8 10 3 10	97 62 51 46 129	38620	600 630 740 2570 400	8 11 9 91	8350 9810 4000 14900	579 535 560 120 705	2 1 3 27 2	410 590 520 170 260	6 9 10 1	1080 920 790 650 1260	45 37 42 42 77	3 1 8 6	10 7 5 6 12	1 1 1 2	1 4 1 5 1 11 1 8	3.4 3	52 48 47 204 375	3 2 1 3		34 25 72 22 10	5 5 5 5 5 5
	.9 1.6 3.6 1.5 1.9	12360 14190 4470 8680 19030	26 10 174 34 29	1 1 4 1	87 41 102 56 58	.5 .1 .4 1.0 .4	3 3920 8 4910 2 3400 3 59570 7 5810	.1 .1 1.1 .1 .1	6 8 13 30 8	6 10 14 34 7	49290 35210 52220	1090 800 1850 680 1060	5 1 1 8 3	14330 2920 32430 1		5 13 116 1 9	250 200 50 130 210	1 4 72	1310 1240 1260 770 1550	49 59 59 42 54	2 1 5 7 1	425475	1 1 1 1	1 7 1 1 1 18 1 8	2.4 3.0 6.1 4.9 0.1	52 49 22 68 68	3 2 1 2 3 2 3	1 1 1 1 1 2 2 1	27 20 69 113 37	10 5 5 5
	.1 1.6 3.1 2.6 2.7	4350 2040 10530 25940 29410	43 60 106 1 1	22 25 1 1 1	53 65 130 12 15	.4 .1 .2 .1 .1	2 870 4 3520 8 7080 10 17600 10 17350	.1 .6 .1 .1	7 8 21 25 25	19 8 15 65 65	38060 42700 41340	240 1670 2960 630 460	13 1 11 1	820 7100 13480 13040	248 51 314 348 305		90 80 110 2300 3130	35	230 890 2180 640 620	45 40 51 33 34	1 1 1 1 1	22467	1 1 1 1	1 1 1 4 1 11 1 13	4.0	18 31 18 50 51	1 2 2 2 2		176 106 32 16 16	5 5 10 5
A-CC-R 064 A-CC-R 165 A-MW-R 001	3.1	18990 19200 31440 2690 30820	1 1 46 1	1 2 1 1	44 35 42 85 17	.1 .1 .5 .1	17 14800 17 16590 10 32350 1 1160 10 17190	.1 .1 1.8 .1	33 30 25 3 25	51 25 47 14 41	75650 41770	1050 560 400 2030 300	9 1 15 2 10 2	15160 26840 510 20590	732 901 650 217 430	10	170 420 3260 270 1830	1 75 5 33	1820 1740 620 210 780	35 33 35 32 35	1 3 6 1	1 14 25	1 1 1 1	1 8 1 1 14	0.7 9.8 8.5 4.5	90 98 54 159 58	2 2 1	1	90 26	40 5 5 5 5
A-MJ-R 002 A-MJ-R 003 A-MJ-R 004 A-MJ-R 005 A-MJ-R 006	3.7 3.7 2.5	33880 39300 36810 39760 24300	1 1 1 1	46 7 4 2	55 25 6 26 29	.2 .1 .1 .1 .1	11 15200 16 32180 15 40280 12 23590 14 18430	.1 1 1 .1	37 28 25 37 39	45 46 41 68 48	64460 53430 55110 64570 50250	220 290 120 260 690	15 7 35	22190 11210 45850	672 572 522 800 649	1 1 1 1	290 830 110 760 1790	73 57 7 124 134	720 880 840 450 810	39 33 28 33 30	1 1 1 1	1 1 3	1 1 1 1	1 16 1 12 1 12	4.5 4.3 0.9 4.4	77 53 69 66 75			80 85 50 145 195	55555
A-RW-R 047 A-RW-T 048 A-RW-T 049 A-RW-R 050 A-RW-R 051	3.6 4.0 2.6	35230 35690 26720 42780 40090	1 6 1 1	1 2 2 1 6	47 12 59 10 47	.1 .4 .1 .1	14 23950 10 55880 17 21160 9 57800 15 33430	.1 5.6 .1 .1	32 18 34 12 39	39 63 41 14 43	53780 53800 56830 24830 71090	500 290 430 120 360	10 1 9 2	11860	728 485 518 210 731	19 1 1	3440 1990 2320 200 1070	43 49 63 11 46	690 560 1030 370 930	35 45 36 38 38	1 8 1 3 1	8 1 7 1 1	1 1 1 1	1 15	2.6 (5.2 5.7 3.5	66 557 76 27 77	1 2 1 2 2		114 154 164 102	10 5 5 5
A-RW-T 052 A-RW-R 053 A-RW-T 054 A-RW-R 057 A-RW-R 058	4.4		1 1 1 1	2 5 1 8 1	46 21 32 21 25	.1 .1 .1 .1	15 32980 17 49920 14 41990 18 57010 15 24240	.1 .1 .1 .1	37 39 35 36 34	40 39 48 40 36	63130 67360 58480 63810 53990	530 220 270 150 420	10 9 9	25370 1 27780 22960	740 038 743 808 689	1	2660 700 3900 630 2110	50 38 66 44 47	810 740 780 970 710	36 31 33 40 36	1 1 3 1	2 1 1 3	1 1 1 1	1 20 1 15 1 17 1 14	5.1 4.3 0.4	66 68 59 70 63	1 1 2 2	22	113	5 5 10 5
A-RW-R 059 A-RW-R 060 A-RW-R 061 A-RW-R 061 A-RW-T 062 A-RW-T 063	2.8	42450 36760 49080 35540 30070	1 1 1 1	16 1 1 1	41 29 8 11 5	.1 .1 .1 .1 .1	8 57520 13 30030 10 24160 8 20180 12 69270	.1 .1 .1 .1 .1	13 28 24 21 23	17 34 72 58 30	20860 48880 34120 30670 38800	80 490 150 340 130	5 8 7	19590 16940 13860	143 534 270 248 577	1	100 4230 6440 3700 320	18 36 49 39 36	440 760 370 300 650	25 38 42 34 38	1 5 1 3	1 11 11 3 1	1 1 1 1	1 11 1 6 1 7 1 10	8.8 3.4 9.6 2.7 9.3	16 52 36 29 49	2 2 1 3			55555
A-RW-R 064 A-RW-T 065 A-RW-R 066 A-RW-R 067 A-RW-R 068	2.6	37720 19990 27390 21970 33490	1 4 1 1	2 1 1 1 2	48 23 8 74 32	.1 .2 .1 .2 .1	18 29570 7 18200 11 47130 9 9700 13 53200	.1 .1 .1 .1	40 10 34 14 31	54 53 46 80 40	35230 63870 49940 60120	1210 470 200 2050 360	6 14 14 14	14800 29820	709 196 910 368 928	36 1	3090 880 520 1370 500	36 56 10 48	1080 550 870 850 680	40 36 39 46 36	1 2 1 1	9 1 3 1	1	1 21 1 27 1 20 1 16	5.2	109 138 63	2 2 1		63 185 29	10 5 5 5 5
A-RW-R 070 A-RW-T 071 A-RW-T 072 A-RW-T 073 A-RW-T 074	3.6	25900 32160 21250 25230 33110	1 1 1 1	1 2 1 2 4	28 23 14 65 20	.1 .1 .1 .1	13 22100 9 25860 16 16420 12 20070 12 22050	.1 .1 .1 .1	27 29 35 28 33	29 66 41 53 42	56550 44740 72260 51200 65230	260 360 550 810 220	12 / 8 / 12 /	18350 19800 14480 14760 35750	562 466 608 654 766		440 620 490 1670 1740	2 53 1 28 61	1110 430 950 520 750	37 37 32 34 30	1 1 1	1 1 2 2	1 1 1 1	1 21	3.1 9.2 1 3.5	65 53 120 53 68	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		74 1 11 111	5 5 5 5

NP: INTERNATIONAL OJ: UNUK TH: G.NICHOLSON	L K001	NK									157H	LAB: ST., N ST., S	ORTH	VANCO	UVER,	B.C.		172										FILE	DAI	05-02 E: 90 (AC	
SAKPLE NUMBER	AG PPM	AL PPM	AS PPH	B PPM		8E PPN	B1 PPM	CA PPH		CO PPH			K PPH	L1 PPM	MG PPM	MH PPH	MD PPM		N E PPM	P PPM				TH PPN I			ZW PPM I			W CR	
	.8	9740 20230 26200 5220 22730	1 1 192 81	1491	175 108 121 99 84	.7 1.1 1.1 .6 .5	6 7 10 6	10270 14960 16990 12500 12660	.1 .1 .2 .1	15 18 23 21 25	119 35 41 25	42320 33880 44890 42790 51100	1730 4470 2620 9550	10 12 14 11	12670 8860 11370 9150 15560	1002 1508 1853 1565	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	750 600 460 1040 870	24 30 23	1600 1730 1850 1760 1140	20 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57 8 7 6 3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	97.0 02.9 29.5 37.2 41.9	122 205 119	1 1 1 1	1 2 1 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5
-DS-N-073 -DS-N-074 -DS-N-075 -DS-N-075 -MJ-N-068	.7 .9 .3	24020 19530 23180 15820 19120	35 25 1 51	1 1 1 1	95 121 105 90 68	.1 .3 .4 .8 .8	8 8 5	13570 12680 11820 10230 12830	.1 .1 .1 .1	25 21 25 22 16	35 36 44	50780 40030 47870 43650 34710	3740 1970 3520	11 · 17 · 11 ·	14460 10200 14910 10240 8740	1091 870 869	1 1 2 1	590 740 400 260 380	29 42 44 32	1020 1290 890 1110 1350	8 17 12	1 1 10 1	45237	1111	11	41.5 09.4 25.3 94.5 99.2	124 124 148	1 1 1 1	1 1 1 1	3 29 1 23 3 32 2 18 1 22	5
N-HW-H-072 N-HW-H-073 N-HW-H-074 N-HW-H-075 N-HW-H-077	1.0 .8 .8 1.3	4670 0870 6320 4490 1040	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 6 1	67 77 63 60 74	67556	8 6 5 9	16490 12280 14420 18370 14670	.1	12 17 13 12 22	27 24 30 35	24610 38520 27520 23580 41340	1420 2070 3740 1150	20 14 8 16	5780 10200 7310 6040 12290	913 736 968 954	1 1 1 1	740 430 360 640 360	22 24 32	1670 1000 1230 1530 1010	12 17 12	1	10 6 8 12 7			72.4 04.5 79.6 65.9 07.4	176 133 132 210	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 20 1 22 1 19 1 19 1 21	5
A-MU-N-078 A-MU-N-079 A-MU-N-080 A-MU-N-081 A-MU-N-082	1.0 1.0 1.0 1.2	20280	1 1 1 1	1 1 1 1	78 73 76 76 91	.7 .5 .6	9 7 9 9	14740 12240 11630 11280 12360		16 18 16 18 25	36 33 35 39	32410 37920 37230 39540 45600	3020 3200 5360 1980	13 14 16 18	7980 9530 9900 1980 19830		1		22 25 27 51	1620 1400 1260 1320 1280	- 14	1 1	8 6 6	1	1 1	80.8 96.9 98.8 08.9 10.2	144 139 148 178	1	1	1 13 1 17 1 16 1 21 1 26	555
A - NU - H- 083 A - NU - H- 084 A - NU - H- 086 A - NU - H- 087 A - HU - H- 088	1.6 1.7 2.0 1.9 1.9	0550 3440 9810 3040	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	65 76 73 66 80	.1 .3 .1 .1	12 13 13 14	15350 14970 16590 15820 16480		13 33 36 34 38	43 45 42 45	65690 65000 70490 65340 70420	1270 1410 1450 1120	17 19 17 17 18	25170 24450 29180 27830 28090	1074 1051 1046 1234	1	830 730 990 790 910	55 66 65 66	2700 2560 2690 2630 2460	8 8 8 8 8	1	8 8 8 8	1		51.4 50.1 63.1 49.5 58.6	181 182 191 199	1	1	1 33 1 33 1 40 1 41 1 39	5555
A-NU-N-089 A-MU-N-090 A-NU-N-091	2.13 2.23 1.92	0200	1	1 1 1	68 69 68	.1	13	15830 16330 15590	.1	34 34 32	- 43	66200 65900 60580	1820	18 2	28600 28570 25270	965	1	790 870 740	-67	2620 2640 2180	8 8 8	1	7 8 7	1	1 1	50.2 50.4 41.8	189	1	1 1	1 42 1 42 1 39	- 5
													•												-					• •	, x +
							⁻						*			M	, ,						1,		_						
		,						<u></u>		-		¥								ų							,				
· · · ·									<u> . </u>	4				4		!															
			<u>_</u> _																												
																															

To: INTERNATIONAL KODIAK, 606, 675 Hastings Street,

in advance.

Vancouver, B.C.

	File	No. <u>33475-SM</u>
2	Date	July 9, 1990
	Samp	les <u>Soil</u>
		Smithers # 00003

Certificate of Assay LORING LABORATORIES LTD.

		Page # 7
SAMPLE N	10.	PPB Au
· · · · · · · · · · · ·		
A-DS-S-C		NIL
)02	NIL
	003	NIL
	004	NIL
	005	NIL
	007	NIL
	008	NIL
	090	NIL
	010	NIL
	011	NIL
	012	NIL
)13	NIL
)14	NIL
(015	NIL
		NIL
	I Hereby Certify assays made by me	that the above results are those e upon the herein described samples
cts reta	ined one month.	
s retain	ed one month fic arrangements	

Assayer

To: INTERNATIONAL KODIAK	
606, 675 Hastings Stree	t,
Vancouver, B.C.	
· · · · · · · · · · · · · · · · · · ·	

File No. <u>33475-SM</u>	
Date <u>July 9, 1990</u>	
Samples <u>Soil</u>	

Ref. Smithers # 00003

Assayer

Certificate of Assay LORING LABORATORIES LTD.

	Page	# 9				
SAMPLE NO.			PPB Au			
			NIL			
			NIL			
			NIL			
		•	NIL			
		۰.	NIL			
			NIL			
	•		NIL			
	/		NIL			
			NIL			
A 1			NIL			
			NIL			
	•		NIL			
		•	NIL			
		s.	NIL			
A-GB-S-001			NIL			
002	•		15			
003	1	· • •	NIL			
004		· -	NIL			
005			NIL			
006			NIL			
007			NIL			
008			NIL			
009			NIL			
010			40			
011			NIL			
012			NIL			
013			NIL			
014			NIL			
			NIL			
	•••		NIL		-	
			NIL			
			NIL			
I Hereby (ertify that the by me upon	he above re	sults a	re those		
assays mad	le by me upon	the herein	describe	ad samples		
	·					
ejecta retained one mo	nth.			1		
ulps retained one mont nless specific arrange			Tay	Juale	>	

GEOCHEMICAL JALYSIS CERTIFICATE

Loring Laboratories Ltd. PROJECT 33475 File # 90-2203A Page 1

629 Beaverdam Road N.E., Calgary AB T2K 4W7

1

- i

SAMPLE#	Mó		Pb ppm		Ag	Ni ⁻	Co	Kn ppa		As	U Ppm	Au	Th	Sr ppm	Cd Cpm	Sb ppin	Bi ^r	V ppm		I P		Cr	Hg X	ba iii ppm iiiX		Na' X	K Ppn
A-RUR-DO1	<u></u>	/ 36	<u> </u>	93	2	52	24		5.28	<u>.</u>	5	ND	1	14	1.3	2	2	128	4.41	105T	4	138	1.80	28 461	16 3.69	.14	.02
A-RUR-002	i		ŭ	61	3	22	- 9		1.36	** Z	5	ND	1	17		2	2	83	8.24	1061	3	85	.26	13 239	14 4.54	.01	.01 [11]
A-RUR-008	i	- B	3	18	83	1		1626		3	5	ND	1	495	112	2	2	6	26.54	2014	4	15	.14	2407 201	3,40		.11 接到
A-RHR-010	1	143	14	104	33	3	17		5.47		Š	ND	z	39	1:3	3	2	105	.99	\$11T	15		1.00	657 1222	3 2.54	.13	.23 (11)
A-RIR-011	1	23	243	145	3.5	5			8.40	2	5	ND	3		.9	2	2	212	1.39	1206	14	27	3.38	122 88	7 3.80	.09	.04 111
A-RUR-017	1	′π	6	96		83	34	626	4.64		5	10	1	23	7.	2	2	84	2.34	1029	2		2.79	86 48	7 3.36		.04
A-RMR-019	1	/67	Š	48	.3	16	9		1.91	3	Ś	ND	1	31	: 2	2	4	54	4.10	1023	2		.59	9 22	10 1.95		.02 11
A-RMR-020	1	-40	5	95	.2	44	27		6.54	2	Š	ND	1	14	1.4	2	2	173	3.10	3072	- 3		2.24	19 142	12 4.32		.02
A-RUR-022	i	176	5	73		73	29		5.97	8.5	5	ND	1	14	3 .3	2	2	115	1.96	2057	3	53 🕻	3.50	43 拔54	6 3.78	.07	.03
A-RWR-025	i	123	ž	62		31			4.70	5	6	ND	1	43	· . .7	2	2		9.57		2	115 :	2.28	16 37	4 2.24	.02	.01
	•	~56	c	07		100	31	507	4.35		5	ND	4	49	- 5	2	2	109	3.14	1058	3	130	1.64	32 .64	5 2.83	.39	.D1
A-RUR-026	1	15	5	92		-	23		6.62	ž	5	ND	4	14	6	2	ž	230	3.05		5		1.63	21 .49	13 3.23	.10	.01 113
A-RUR-029			2	80	5 1	25	25		4.24	200 E	5	ND	4		4	2	ž	68	1.95		5		2.38	38 140	11 2.66	. 19	.03
A-RUR-030	1	40	4	85	1.	70			6.84		ŝ	ND	-		1.0	2	ž	165	2.64		3	127		65 73		.07	.08
A-RUR-031	1	44	6	100	- 1	66				6	5	ND ND			8	2	2	275	1.77		6		1.33	39 290			.06
A-RUR-032	1	´ 39	6	147	.3	28	Z 7	112	8.73		2	KU)	1	ע ככ		-	L	LIJ			•						
A-RUR-034	1	147	6	92		80	28	842	5.71	3	5	ND	1	30		2	2	115	5.26	2068	- 4	134 🔅	2.25	21 :::69			.04 33.5
A-RUR-038	1	/50	4	100		102	32		4.67	2	5	HD	1	38	\$ 4	2	2	111		2071	- 4	140	1.78	40	8 2.85	.30	.04 281
A-RUR-039	i	40	3	95		75	24		4.48	88 S	5	HD.	1		2	2	2	96	2.37	1069	- 4	155 3		38 .64	10 2.26	-11	12 50.
A-RUR-040	i	147	6	99	1	102	33		4.75	Ż	5	ND	1	34	:3	2	2	101	2.53	2077	- 4	148 1	1.95	22 57	8 2.94	.23	.02 1
A-RUR-041	25	- 48	7	155		92	37		9.23	41	ŝ	ND	j		1.7	10	2	292	1.24		11	218	1.20	34 1.11	2 1.89	.11	.06
	•	/ 15	4	60	1	22	11	423	3.%	2	5	ND	1	14	5	2	2	48	5.15	.017	2	112	1.39	11	6 3.54	.01	.01 T
A-RUR-042		51	4		1	100	33		5.88	(**** 2 .	5	NO	ł		5	ž	ī	139	2.42		4	156 2		19 567	7 3.33	.32	.02
A-RUR-043	4		6	77		56	26	-	4.26	2	5	ж	i		3	2	3	93	2.40		3	141 1	1.99	51 3:49	4 2.50	. 18	.05
A-RUR-046		38	4		1		27		5.81	4	Ś	ND	4		4	2	ž		2.79		3	129 2		44 5187	5 2.97	.17	.03
A-RUT-24		43	•								Ś	ND ND	4		5	ż	2	100	2.50		Ă	136 2		47 :57	5 2.78	.29	.03 .2.1
A-RVT-37	1	45	5	99 :	- 1	80	28	272	4.88	3.3	3	жU	1	i i i	19.000 X . 4	6	c	100	ì	3333	·			1517			
	1	76	12	50		18	14	514	5.08	2	5	NÐ	4	- 17 🖗	-42	2	2	163	.91 §	210	11	79 1		92 19	2 2.64	. 16	.10
	ż	31	15		5	17	4		3.08	23	5	ND	1	98	2:	3	3	26	.07 }	.034	8		.32	93 .01	4 .87	.05	.152
	- 1	66	8		.2	75	26		6.11	6	5	KD	1	13 🗄	÷S	2	2	110	2.08	2090	- 4	156 3		11 :::38	5 3.98	.13	.01 [241]
	1	9	8	158 :	1	ź		984		2	5	NO	1		2	2	2	28		098	11	66	-	234 326	2 2.22	.09	·44 (2):41
	t	58	12		1	16		877		2	5	ND	Z		6	2	3	69	.84	148	8	24 1	.58	252 3.18	3 3.69	.06	.52
	4	47				71	25	749	5 57		5	жD	1	 19_%	3	2	2	123	3	044	3	54 1	.94	15 45	7 4.62	. 10	.02 .1
	1	63	6 7	88	•1	31				1495 -	5	NO NO	1	35		2	-	115	2.18		3	41 1	.87	54 47	2 3.92	.27	.03
	1	72		94 3	्रियः	38	26		5.77	4*** G	5	ND XD	ż			ž	-		1.22		6	23 1		17	2 2.86	.11	.03
]	47			. 1	6	20	765		2	5	NO	ź		୍କ ଅବ ୍ୟ	2	-	197	1.63		Ĩ.	20 2		15 273:	4 3.52	.13	.02
	1	24 40			211 21.1	12 17		877 742		4	5	ND DH	1			ž	Ž	166	.99		3	19 2		15	4 3.21		.01 1
	•			* 8 -3		••					-		-			•	-	402			7	67 2	95	25 .34	3 3.97	.06	.03 1
	1	62	3	- 74 🖇	.1	37		751 3		X: 6.	5	ND	1		. 6	2	-		1.85		3	- 07 Z - 58		181	35 1.92		.13 11
STANDARD C	18	59	42	133	7.3	70	31 1	021	3.96	42	19	7	39	53 1	5.6	16	21	57	.51 *	UY70	38	20	.73	IDI GOUY	۱۰۶۵ ند		

1

4

ICP - .500 GRAN SAMPLE IS DIGESTED WITH JHL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY JCP IS 3 PPN. - SAMPLE TYPE: Rock Pulp

AMPLE	AG		AS ·		BA	BE	B1 ··			CO ·	CU	· FE		- 11	MG	- MN -	MO	- NA ·	NI	• P·	PB	SB - S	R · . T	H' U	· V	ZN		SN L	(ACT:F
	.3 .3 .7	PPM 18150 21590 22290 23980 27220	PPM 1 1 1 1	2 2 5 4 5	PPM 33 34 78 63 89	PPM .4 .3 .8 .5	5 1 4 14 6 1	PPM 4090 3650 4140 2160 2080	PPM .4 .1 .1 .1	PPM 15 21 20 27 29	27 39 42	PPM 31230 42320 41160 52460 56710	1270 1310 6630	9 11 13 19	РРМ 10490 12360 11980 18330 17200	PPM 577 778 901 881	PPM 1 1 1	9PM 310 720 560 720	21 25 32 49	PPM 2150 1440 1700 1960 1220	PPH P 33 35 38 38 33 38	<u>PM PP</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>M PP</u> 1 9	<u>M PPM</u> 1 1 1 1 1 1	PPM 75.0 107.6 91.8 114.0 128.0	PPH 73 77 118 125			27 36 30 53 47
	1.5 1.2 1.4	26540 22960 21900 4900 28850	1 2 1 5 1	4 4 3 1 7	86 57 44 11 64	.7 .5 .4 .1 .4	8 1 7 1 7 1 1 1	2170 2350 1890 2560 2640	.1 .1 .1 3.5 .1	29 25 25 4 35	51 44 37 17	56430 49550 50790 7110 63620	2580 5940 3480 9860	19 17 17 2	18370 17150 18140 3640 23160	1052 797 723 196	1	480 1030 510 1660 810	48 45 46 11	1370 1920 1350 1970 1080	39 40 32 29 37	1	7 9 6 5 6	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	123.2 118.9 116.4 25.0 142.4	161	1 1 1 1 1	1 1 1 1 3 1 5 1 1 1	50 50 49 20 86
	1.7 .1 .4 .4	29450 30840 15860 14050 21530	1 1 1 1	8 8 2 3 3	62 64 211 201 122	.6 .4 1.1 1.5 1.3	9 1 2 1 3 0	_	17.8 9.6	36 36 17 10 14	54 53 42 37	65320 66850 33240 21360 34380	1140 2810 2860 2870	22 27 22 44	4840 7700	1154 1007 849 720	1 1 9 4 4	200 800 530	80 116 99 114	1110 1140 1130 1830 1170	36 28 36 36 36	1 2 1 10 1 2	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	147.2 153.1 51.8 30.0 57.6	558 749	1 1 1 1	1 1 1 2 1 1 1 1 1 1	88 90 15 12 18 1
	.9 .7 .8 .8	21780 20730 19570 17600 22790	1 81 176 21 46	14344	112 73 69 245 78	1.3	6 1 6 1 4 1 5 1	3380 1850 5990	14.4 1.5 2.1 .1 1.5	12 16 20 18 13	24 27 43 30	34670 46940 44730 42000 30870	1040 2190 1220 1350	48 11 12 17 13	9420 4880	1682 1961 1181 1645	43322	660 520 940 720	16 21 34 20	1180 1150 1300 1280 1590	35 33 31 35 30	1 1 3 1 1	8 6 7 8	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \end{array} $	57.7 93.2 94.6 82.1 62.6	875 136 152 198 139	1 1 1	1 1 1 1 1 1 1 1	18 19 18 27 19
	.6.99	21820 18340 18280 20400 19090	69 30 20 51 35	32254	83 68 64 54 78	.8	5 11 5 11 6 14 5 14		.1 .7 .2 .1 1.0	30 17 17 19 17	29 28 39 33	56430 38420 38370 38040 36740	770 770 1090	17 13	9590 7310 10180 10890 7630	1239 1081 879 1468	2 1 2 2	330 640	23 31 46 28	1010 1160 950 1040 1310	38 30 24 31 29	1 1 1 1	6 5 5 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130.3 87.6 91.0 91.1 83.9	169 133 128 117 136	1 1 1 1	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	23 24 1 32 1 46 29
	1.3 1.1 .8 .2	21980 18480 20860 23220 12270	32 20 17 12 40	4 2 3 1 3	64 74 73 94 176	.5 .5 1.0 .8	6 11 7 12 6 10 2 9		.1 .1 .1 8.6	20 18 19 17 16	27 31 30 54	42700 38920 42680 39450 37030	1240 900 670 1340	18 21 21 12	5830	836 834 1067 953	1 2	320 370 330 170	38 37 30 31	1000 1000 960 1210	31 26 26 30 34	1 1 1	6 5 6 9	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	100.5 92.4 103.0 93.8 58.4	146 132 132 137 518	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	42 39 41 37 12 1
MB M 071 MJ M 007 MJ M 008	.2 1.0 2 1.3 2 1.0 1	24190	1 71 1	24 42 8 4 7	198 197 71 166 139	1.0 .8 .6 .9 .8	2 19 6 17 7 9 5 13	2000 2000 2810 3550	6.0 7.6 .4 2.8 6.0	22 9 21 21 15	44 50 43 40	25830 16570 41090 46760 34820	2510 1300 840 1220	17	4340 10760 7810 6370	1577 1296 1394 1039	2_	260 220	101 52 32 28	2000 1080 1230 1350	39 30 37 36 30	2 1	6 7 0 1	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	31.3 15.9 96.4 96.0 70.8	422 447 133 281 276	1 1 1 1	3 1 4 1 1 1 1 1 1 1	
MU M 009 MU M 010 MU M 011 MU M 012 MU M 013	1.4 1.4 2.6 2.5 2.7	22100 52910 29090 58040	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 20 12 39	185 212	.7 .7 1.1 .9 1.1	6 11 10 23 9 19 11 23	1300 3490 1 9820 3510 1	9.0	19 19 28 26 30	35 70 52 72	43340 43320 59510 55350 66290	3440 2550 2730	20 15 15 15	9560 10200 13200 13400 13640	873 2016 1610 2074	2222	280 600 500 680	35 47 48 49	2760 2030 2830	40 33 48 50 54	1 7 2 7 1 9 2	8	_	93.5 95.4 132.0 120.4 146.5	276 259 441 415 469	1 2 2 2	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	27 29 43 41 481
MW M 014 MW M 015 MW M 016 MW M 017 MW M 018	2.6 2.8 2.6 3.1 1.9	5860 52860 59430	1 1 1	21 30 18 51 8	201 233 183 254 88	.9 1.2 .8 1.1 .4	10 43 10 23 11 53	3630 1	5.2	27 29 26 32 16	83 59 101	58970 62040 59540 65190 39160	3690 2290 2910	14 14 15	13710 13150 13150 13440 8870	2117 1699 2341	22132	650 580 750	47 44 52	3020	47 50 39 53 34	7 2 8 2 5 2 11 3 1 1	6 3 7		129.1 133.1 132.8 150.4 86.8	454 511 436 517 268	2 1 2 1	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	43 44 40 47 26
NU N 010	2.1 2	2250 25700 28280 2080	1 35 1 115 1	4 6 8 10	103 100 132	.9	3 7 7 16 9 10 3 18	5000 340 3320	.3	34 18 18 28 13	84 46 43 45	67090 49710 44920 52590 20850	2380 1270 2020 2200	15 18 20 22	14300 6420 7860 15570 4910	1269 1198 1033 1644	412	350 840 180 1	16 43 42	1360 1550 1160 1930	53 34 32 27	12 3 4 1 2 9 1 13	1	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	148.3 97.0 115.1 135.3 27.0	117 380	21221	1 1 1 1 1 1 1 1	47 4 28 46 22
BC N 022 BC N 021	1.2 1 1.5 1 1.7 2 1.2 1	9160 7720 5120 7840	24 2 1 29	5956	46 61 97 112	.4 .6 .7 .8	5 15 5 18 7 14 4 9	5020 3590 830 2310	.1 4.4 2.8 7.9	14 13 17 16	36 39 39 129	35190 30560 41990 36210	1950 1760 1020 4130	16 15 18 27	7620 6070 7600 8260	735 1229 1240 781	2 4 4 3	270 270 290 280	27 35 40 52	1640 1430 1380 1210	30 32 39 50	1 1 2 2 1	B	1 1 1 1 1 1 1 1	112.8 86.5 105.3 80.7	154 317 376 645	1 1 2	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 3 & 1 \end{array} $	31 31 27 17

To: INTERNATIONAL KODIAK, 606, 675 Hastings Street,

Vancouver, B.C.

+ 1

File No. <u>33475-SM</u>
Date July 9, 1990
Samples <u>Rock</u>
Ref. Smithers # 00003

Certificate of Assay LORING LABORATORIES LTD.

Page # 3

SAMPLE NO.	PPB Au
A-RW-R-020	NIL
022	NIL
025	NIL
026	NIL
029	NIL
030	NIL
031	NIL
032	NIL
034	NIL
038	NIL
039	NIL
040	NIL
041	NIL
042	NIL
043	NIL
046	NIL

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

month.

e d

Pulps retained one month unless specific arrangements

made in advance.

one

N: GEORGE NICHO	AG	AL	AS	B	BA	BE	 B1	CA	CD	çõ	CU	4)980- FE			MG		MO	NA	NI	P	PB	SB 5	R TH	U	v	ZN	GA	SN I		CT:F
UMBER	<u>PPM</u>	PPH 20240	<u>PPM</u> 14	PPM 4		PPM P	PM		<u>PPN</u>		PPH 61	PPM 61530	PPM	PPM	PPM	PPM F 1054		<u>PPN P</u>	<u>PH 1</u>	PPH 740		<u>PM PF</u>	2 1	PPM	PPM 173.7			PH PP		
	.6 1.1 .7	20250 15970 13090 29440	170	5 3 2 9	399 237 267 21	.1	1 212 1 194 3 114	340 460	.1 .1 6.6 .1	22 29 12 85	25 112 270 122		4410 2970 4810	10 7 4	20280 13460 5610				1 1	740 660 350 530	11 11 9 2	1 1		1	135.6 113.6 44.5 669.8	68 49 12 43	1	1 1	27 61	10
	1.4 2.0 1.5	39490 48200 25080 18860 14860	20 1 1 1	7 3 3 1	16 101 122 104 62	.8 .1 .1 .1 .1	5 230 6 170 5 6	910 660 090 730 840	.1 .1 .1 .1	25 17 20 13 10	213 43 74 59 274	62370 38190 52880 42840 26330	1760 1360 3980	9	8110 9250 12700 12340 6050	709 531 1049 673 495	13 12 1	430 750 540 870 730	1 8	210 850 630 680 110	10 11 7 4 8	1 3	2 1 55 1 6 1 4 1 53 1	1 1 1 1	158.3 111.8 183.1 103.1 54.8	27 67 56 35 17	1 1 1		6 65 50 54	
	1.6 1.1 1.2	19150 28070 15650 10710 15750	1 1 1 1	2 3 1 2	32 110 125 44 31	.1 .1 .1 .1	6 7 4 7 4 9	480 760 170 940 830	.1 .1 .1 .1	25 22 17 11 20	75 167 68 31 232	51090 57640 37680 26700 39660	4730 710 750	13 🛛	12810 20810 14780 9180 5680	852 599 338 293 332	1 1 1 1 1 1 1 1 1	870	1 8	980 470 880 890 940	3 2 2 21 9		3 1 4 1 7 1 9 1 3 1	1 1 1 1	179.4 163.1 108.1 72.3 91.5	70 36 27 57 25	1 1 1 1	1 2 1 2 1 1 1 2	24 35 26 43 28	4
	1.3 .9 1.3	16630 10660 5580 9520 18690	1 1 1 1 1 1	22112	39 24 30 27 49	.1	4 12 3 9 4 13	530 510 170 670 930	.1	25 23 5 18 17	255 293 54 245 122	51740 54920 25610 42190 34270	1550 830 870 1400		9910 2810 1020 2340 10640	320	63 1	050 990	1 2 ⁴ 1 20 1 30	820 190 510 520 500	8 3 6 3 10	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array} $	13 1 13 1 15 1 20 1 13 1	1 1 1 1	113.8 155.7 56.7 62.7 144.8	27 15 1 22 32	1 1 1 1		14 39 15 16 38	3
	5.0	13560 24810 34630 6190 4940	1 1 33 60	17321	31 253 12 274 36	.1 .1 .1 .1	7 32	630 330 180 350 600	.1 .1 .1 .1	19 60 12 12 4	2192 5447 202 97 70	32420 118940 36980 24980 9960	2410 330 1670	2	3280 7160 10950 13360 2420	118 329 873 1689 660	6	930 80 650 100 70		040 970 880 580 470	5 2 36 29		0 1 12 1 1 1 10 1 1 1	1 1 2 1	80.9 65.1 108.2 25.0 18.6	22 26 466 37 24	1 1 2 2	1 1	22 1 37 5 14	2
	1.5 2.6 1.7	24370 19790 700 4540 25520	69 1	43144	121 82 9 3 34	.2 .1 .1 .1	4 154 3 1859 1 141	500 440 530 150 940	.1 .1 .1 .1	13 14 2 70 19	28 97 8 410 98	31330 56930 4730 111010 55960	2870 190 90	6 1 1 10	11700 1120 790 19880	1151 372 210 390 615	15 1 1	240 600 40 30 290	1 10	760 020 180 410 740	13 14 23 11 7	1 4 8 1 1	78 1 17 1 15 1 8 1		74.5 102.4 8.5 46.1 106.7	60 14 4 1 39	2 1 3 1 1		12 3 15 4 5	
	2.6 2.9 2.6	35420 20470 21020 30730 27250	1 1 1 1	65544	91 62 49 34 145	.1 .1 .1 .1 .1	8 149 6 303	900 560	.1 .1 .1 .1	31 25 32 16 15	228 268 540 188 21	51630 42900 68590 36750 46870	1400 1330 930	12 10 6	34110 14200 20130 7460 24200	711 477 725 270 630	11 11 1	000	1 22	530 570 270 530 740	2 31 6 6	1 1	4 1 3 1 5 1 8 1 7 1	1	136.0 126.0 193.9 121.3 93.6	73 50 52 34 35	1 1 3 1	1 1 1 1 1 1 1 1 1 1	72 28 3 45 40	. .
-CB-R 053 -CB-R 054 -CB-R 055 -CB-R 055 -CB-R 056	3.1 4.3 4.1	50160 52140 25190 48670 12200	1	11 8 5 10 3	13 9 208 11 36	1 -	0 75	740	.1 .1 .1 .1	31 26 34 40 24	42 36 38 39 186	54050 41780 57800 100300 37550	130 780 150	5 12 11	17780 14900 27890 23810 11230	557 469 1062 478 249	1	100 300 180	43 7 40 8	350 700 510 590 190	2 2 2 11	1 1 1 1	1 1 1 1 1 1 6 1	1	140.0 90.0 175.7 208.7 108.5	53 45 127 55 32	5 5 1 2	1 1 1 1 1 2 1 1 1 1	72 99 118 43 14	
	2.4 2.2	11580 19500 7600 14710 6330	1 10 1 17	54554	21 40 1027 292 503	.1 .1 .1 .1 .2	6 207 1 318 1 656	360	.1 .1 .1 3.6	67 26 9 16 7	680 283 1798 75 438	83960 42980 33040 58120 18260	2080 3840 3770	- 3	4270 7750 5150 12770 1250	162 393 525 998 159	4 1	280 340 130 80 70	1 5	80 30 520 570 2	_	1 3 1 2 1 3	3 1 4 1 7 1 5 1	1 1 1 1 1		9 22 131 43 1791	1 3 2 1		1 17 93 5 62	
	2.6 4.6 2.1 .3	5160 33480 4280 8010 18440	1041 1 1 1	65879	885 803 279 229 107	-1 -1 .1 .1 .1	6 192 1 184 1 749 1 139	250	7.8 .1 .1 .1	19 73 26 71	3072 1024 41	154590	2270 320 160 3240	227		1029 311	22 63	40 590 220 100 230	1 5 1 1 1 1 4	90 10 80 70	154 2 38 11 16 2		0 1 0 1 1 1 7 1	1 1 1 1	16.4 78.6 126.2 86.7 148.2	396 60 19 36 4	1 1 5 1	1 1 1 1 1 1 1 10 1 3	12	18 1
	1.4	41940 13860 19620 19220 4430	1 24 1 66 28	3 1 23 2	58 99 128 83 470 258	.1 .2 .1	1 40	290 740 480 010 520 5	.1 .1 .1 .1 .1	22 7 13 17 5	92 34 17 18 509 28	21990 20840 51280 62270 16770 16950	370 2680 3380 3010	8	1700 5420 13420 12620 1060 870	180 339 355 373 91	1 i 1 7	90 740 820 180 180 320	<u>14</u>	30 40 500 20 30 4 740		1 1 1 5 10	1 1 1 1 1 1 6 1	1	75.2 54.9 71.7 36.1 13.9 173.5	3 95 24 53 1367 143	2 3 2 1 2	1 1		9

nen and and and and and and and and a second and

inin inini - i

· ·	•
COMP: INTERNATIONAL KODIAK	MIN-EN LABS — ICP REPORT
PROJ: UNUK	705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1
ATTN+ G NICHOLSON	(AAL)080-5814 OP (AAL)088-4524

FILE NO: 05-0161-PJ3

MP: INTERNATION	AL KODIAK				1			WEST	15TH	ST., 1	ORTH	ANCON	ÆR, I	B.C.													DA	05-01 TE: 90	/07
TN: G.NICHOLSON SAMPLE	AG					B1 C1				980-58		(604)9			10		NT	P	DP	60	60	TH	- 11	<u>v</u>	714			(AC	
IUMBER	PPM PI		S B 1 PPM	PPM	BE PPM	BI CA PPM PPM			PPM	PPN	PPM	PPM F	PPN I		PM	NA PPM	PPM	PPN	PPN	PPM	SK PPM (PPH P	PM	PPN	PPM	GA PPN F	SM PPM P	W CR PM PPM	PP
-RW-T 075 -RW-T 076 -RW-T 077 -RW-T 078	3.6 368 2.9 368 2.0 121 4.8 390 3.6 301	00 30 2 20	4 2 1 4	21 6 31 51 31	.1 .1 .2 .1 .1	13 37100 10 56250 7 10330 20 21580 15 23710	.1 .1 .1 .1	29 22 9 44 29	41 44 61 44	54160 44530 44810 86280 64300	110 670 710 570	10 191 5 65 6 58 14 311 9 162	260 340 170 1 280	124 775	1 5 1 7	2400 210 450 2210 270	22 1 51 14	670 400 2930 930 760	40 35 35 35 35 34	1 1 1	1.4.4.1.	1 1 1	1 2	26.3 77.8 67.8 46.4 78.7	51 83 155 184 71	2 2 1 1 2	1 1 1 1	1 23 1 35 1 45 2 100 1 12	 .
	2.3 3420 2.5 282 3.9 3770 4.0 2260 2.8 4159			41	.1 .2 .1 .1 .3	8 43060 12 19560 15 50550 17 21330 7 52820	.1 .1 .1 .1 .1	24 32 37 31 8	45 56 51 33 55	39540 61840 66740 67880 31130	240 840 620 220 110	3 40	X40 (X60 '	6/ <i>1</i> 132	10	890 350 3740 750 1010	65 65 60 43 9	590 770 790 630 710	35 32 36 25 38	1 1 1 7	11111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	77.8 67.9 94.3 19.8 88.1	47 62 77 76 91	2111	1 1 1 1	1 72 2 121 2 135 2 151 2 50	1
	3.7 3919 1.9 890 11.1 184 2.9 1630 1.7 3710	0 2 0 3 0 1		59	.1 .3 .7 .6	15 20040 7 6190 6 1860 5 2580 11 8340	70.8 79.9	31 7 6 33 22	47	58660 23500 34880 69740 60130	1340	10 267 3 70 1 1 4 207 10 42	780 570 10 10 10 120 2	596 463 52 153 702	1 3 2 4 17 1	3220 390 150 30 370	52 4 1 2	990 760 120 340 1210	36 46 7611 2577 122	1 1 8 6 2	11 7 8 6 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		45.3 36.7 16.9 81.3 71.9	59 54 8994 9545 382	1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 99 2 170 1 134 1 141 1 49	9
	2.3 3320 2.0 730 2.9 1566 .8 1577 .9 2669	50 2: 70 8:	27 22 28 28 29 29 29 29 29 29 27	92 241 116 169 26	.8 .4 .6 1.1 .9	8 5770 3 1960 5 2140 3 57580 3 51570	.1 18.4 1.1 .1 .1	14 10 10 43 31	- 47	58360 39160 32050 68950 63970	6040	4 241	350 170 2 180 1	733 316 269	1 5 3 1 1	230 130 160 150 160	3 7 16 53 53	1370 340 370 980 790	1300 1605 934 62 53	4 1 28 25	12 5 9 1	1 1 1 1	1	29.1 40.6 76.4 95.5 31.5	594 64 61	22222	1 1 2 1	1 54 2 265 2 151 1 93 1 85	
	2.3 124			49	,5	8 10450	.1	11	27	34160	810	6 57	00 3	302	8	810	19 2	2580	46	1	7	1	11	15.5	121 ⁻	2	1	2 159	
			. i										-																,
																									•				•
			<u> </u>															·										<u>,</u>	
							· · ·												· · · · · · · · · · · · · · · · · · ·					. <u></u>				- <u></u>	<u> </u>
<u></u>																													
		•											· - · · ·			<u> </u>													
												<u></u>		<u>.</u>															

To: INTERNATIONAL KODIAK, 606, 675 Hastings Street, Vancouver, B.C.

F

File No. <u>33475-SM</u> Date <u>July 9, 1990</u> Samples <u>Rock</u> Ref. Smithers **#** 00003

Certificate of Assay LORING LABORATORIES LTD.

Page # 2

SAMPLE NO.	PPB
	Au
	NIL
	NIL NIL
	NIL
	NIL
	NIL
A-RW-T-024	NIL
037	NIL
A-RW-R-001	NIL
002	NIL
008	NIL
010	NIL
011	NIL
017	NIL
019	NIL
I NEIEUY VEIVIY that assays made by me upor	the above results are those the herein described samples
ejects retained one month. Pulps retained one month	
unless specific arrangements	1 Man - farter
are made in advance.	Assayor

I: G.NICHOLSON	AG	ÂL	AS	8	BA	BE	B1	CA	CD	со	CU	980-58 FE	ĸ	LI	MG	MN	MO		NI					TH			GA	SN	(ACT
MBER	2.0 2.1 1.8	PPH 36780 37260 37340 26610 41100	<u>РРМ</u> 1 1 1 1	2 1 1 1 5	PPM 72 72 66 75 84	PPH .3 .4 .4 .9 .5	9 9 8	PPM 15770 18160 18020 14690 17790	PPM .1 .1 .3 .1	PPM 38 37 38 19 41	50 46 38	79590 83370 81710 46000 79130	1360 1020 1070	20 17 14	РРМ 33590 32350 36420 11040 31380	1200 1222 1148	1 1 1 1		66 67 76 27	2650 4130 3370 1250	34 31 28 36 36	1 1 1 1 2	<u>PPM P</u> 11 14 14 10 8	1 1 1 1 1 1	H PP1 1 161.0 1 187.5 1 173.9 1 107.0 1 192.3	21 23 22(24)	1 1 1 1 2 2	<u>PPM P</u> 1 1 1 1	PN PPM 1 58 1 61 1 64 1 39 2 120
500 S 20	.5 .5 .9	25290 20310 28520 23190 21490	7 13 29 51 1	1 1 1 1	247 126 95 96 118	1.5 1.4 1.2 .7	3 3 6 5	4940 3620 10800 10650 8460		18 10 19 22 18	27 38 32 31	39350 30730 43520 52810 39930	1900 1340 1200 1790	39 20 13	8020 6550 9230 10230 9430	477 1517 1182 2269	2	360 480 1420 1250 1150	97 32 29 41	950 580 790 640 940	42 36 45 48 46	2 1 1 1	23 10 7 5 9	1 1 1 1	89.4	696 181 165	2	1	1 27 1 20 1 30 1 28 1 27
DS S 016 DS S 017 DS S 018 DS S 019 DS S 020	.5 .8 .8 .8	37760 26690 26930 27180 27560	1 1 1	1 1 1	87 144 119 118 125	1.4 1.5 1.3 1.4 1.2		7950 9230 11530	.1 1.2 1 1	14 21 17 17 20	31 26 29 33	31760 51880 46250 43870 46750	1660 1680 1740 1670	18	8830 8400 10160	2915 1456 1396 1722	3 2 1 1	1980 1040 1120 1070 1020	29 35 31 39	<u>1310</u>	38 42	1 1 1 1	19 12 10 12 11	1 1 1 1	1 112.1 99.9 1 96.4 1 93.8 1 99.1	233 225 251 277		1	1 18 1 17 1 22 1 23 1 27
DS S 021 DS S 022 DS S 023 DS S 024 DS S 025	3.4 2.3 1.0 .7	28610 20330 36070 25150 23750	1 1 9 11	1 1 1 1	113 98 154 139 134	.7 .1 2.0 1.0 1.3	14 11 6	11090	1 .1 2.9 3.8	26 19 32 22 20	46 28 40 40	59490 57740 49930 52840 51950	1310 1360 2130 2130	7 11 14 12	9790 7860	592 2194 2223 2486	1 1 3 3	1620 2470 1650 1440 1130	7 27 44 35	1580	<u> 55 </u>	1 1 6 6	15 8 19 12 14	1 1 1 1	1 117.8 1 156.5 1 98.0 1 109.5 1 100.2	118 151 358 362		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 29 1 18 1 14 1 28 1 22
DS S 026 DS S 027 DS S 028 DS S 029 DS S 030	1.2 1.0 1.2 1.2	23730 36160 33920 22040 23540	1 1 13 29	1 3 1 1	114 197 145 98 127	1.0 1.6 1.0 .9 1.2	6 5 6		.1 5.2 3.1	16 27 22 18 22	54 46 31 49	40100 61260 52210 41990 54430	3870 2280 1480 1460	12 21 7 9	9530 13850 11470 10860 10050	2271 2051 1380 1864	2223	1200 1080 1350 1540	54 47 39 40	<u>1350</u>	48 65	1 1 4 4	11 25 9 14 12	1 1 1 1	86.5 1 147.2 1 120.8 1 92.2 1 109.6	540 207 323 423	1	1	1 26 1 44 1 36 1 28 1 31
DS S 031 DS S 032 DS S 033 DS S 034 DS S 035	1.8 1.6 1.6 1.1	29410 30880 29320 28300 20500	1 2 1	1 1 1 1	103 103 96 90 83	9 8 8 6 .6	8 7 8 5	15530 16490 15210 15920 15710	.1 .7 .1 5.0	24 25 23 23 18	38 43 39 .41	53540 55760 54220 52180 38460	1510 1700 1560 880	17 16 17 8	15240 17250 15620 16080 8530	1201 1220 1124 1191	1	1260 1640 1210 1090 760	44 39 43 29	1120 1120 1220 1050 1260	46 53 42 39 39	5 4 3 1 1	10 11 11 9 11	1 1 1	126.8 130.3 135.4 132.1 87.9	335 343 319 276	222	1 1 1 1	1 40 1 42 1 43 1 44 1 26
DS S 036 DS S 037 DS S 038 DS S 039 DS S 040	1.0 1.4 1.5 1.2	23330 20310 23350 29020 42680	1 1 1 1 1	1 1 1 11	76 80 90 98 201	.3 .5 .4 1.2	5 6 7 6	18180 14750 41400	3.4 4.6 4.6 .7 10.0	19 17 20 22 30	43 41 39 87	43570 35390 42660 52020 64600	970 1280 1320 3180	7 8 17 12	13090 9510 12540 13850 15230	941 1193 1010 2058	1	520 600 840	40 37 56		29 35 33 30 47	1 1 1 1 1 1	12 12 12 21	1	166.2	299 308 334 536	1 1 1	1	1 34 1 28 1 35 1 39 4 52
BC S 024	1. 9. 1.2 1.	36480 13430 24040 31130 11620	1 22 1 25 42	15 1 1 1	94 163 177 83 240	1.2 .8 .5 .6 1.5	2 5 6 1	57720 7900 13700 12260 2300	.1	19 13 17 27 44	34 58 34 43	51600 30970 47210 64030 52870	1830 1440 1500 2910	18	16980 23640 2460	1043 720 675 1844	451	690 210 290 540 90	23 62 43	640 1280 1350 670	53 35 35 35 35 34	2 1 1 2	37 6 7 5 3	1	234.2 89.2 103.1 139.8 90.5	430 153 206 77	1 2 1	1 1 1	2 97 1 25 1 27 1 60 1 28
BC M 023	1.7	25320 32020 35530	1	1 1 1	91 78 74	.4 .8 .3	8	12690 9330 16350	.1 .1 .1	19 28 36	41	44500 56750 69190	1570	14	11630 16210 27130	1077		550 1020 1040	41 43 87	710 1050 1100	37 37 32	1 1	6 9 5		126.3 132.7 171.7	342 174 233	1	1 1 1	1 35 1 46 1 105
		_																											<u>.</u>
			_																										

H should read A.

Н

. .

Loring Daporatories Ltd. PROJECT 33475 File # 90-2370 629 Beaverdam Road N.E., Calgary AB T2K 4W7

)-2370 Page 4.

SAMPLE#	No	Cu	Pb ppm	Zn	Ag ppm	Ki ppm	Ca ppm	Nn ppm	Fe	As pon	U ppna	Au ppm	Th	Sr Cd		Bi	V ppm			La	Cr ppm	Ng X	2423		AL X	Na X	K i
A-05-5-001	,	33		-334	11.2	42	16	1005	4.50	119	5	ND	1	68 3.2		2	85	2.07	J1(313)	11	32	1.06		:	2.61	.06	.05
A-06-5-002	1 1	4	8	241	112	zł	7	1350	1.71	10	ŝ	ND	1	93 91		3			138	10	19	.34	125		1.25	.02	.09
A-05-5-003	1 1	48	8.	299	翻羅	33	11	1571	3.05	21	5	ND	Í	83 5.6	_	3		2.92		11	23	.63	153 2		2.04	.04	.04
A-05-5-004	l i	61	12	.369	123	38	10	1335	2.64	110	5	ND	1	93 8.3		Ĩ		3.41		11	24	.63	157 22		1.82	.03	.05
A-05-5-005	1	51		- 338		23	8	1381	2.01	2	ŝ	ND	1	94 11.5	2	3	-		122	11	17	.39	137 1.1		1.39	.03	.13
	1	2.	•		84A						-		-		_	-				•••	•••			i –			
A-05-5-007	1	62	7	608		30	11	1453	3.19	17	5	KD	1	94 10:5	2	2	58	3.36	1112	18	22	.47	182 22	6	2.20	.04	.03
A-05-5-008	f i	37	8	197	123	32	18	1003	5.07	10	5	ND	1	99 2.5	ž	2		2.10		19		1.09	95 1155		3.18	.24	.10
A-05-5-009	Ż	37	11	212	333	39	16	1080	4.96	16	5	MD	1	58 2:6	Ž	ž		1.81		15	48	.99	95 41		2.97	.06	.05
A-05-5-010	Ī	- 44	17	269	113	42	17	1235	4.94	18	5	ND	1	59 3:3	3	Ž		1.83		19	-	1.00	94 1140		3.07	.06	.05
A-05-5-011	ī	41	22	.308		49	20	1362	5.77	11	5	ND	ż	60 3.4	3	2		1.84		20		1.17	100 51		3.61	.05	.04
	· ·	••									•		-	1916	•	-			MAR								
A-05-5-012	1	35	12	. 316		41	16	1184	5.11	113	5	ND	2	58 3.4	4	2	113	1.74		19	42	.94	90 43	2	3.05	.07	.04
A-05-5-013	2	39	10	.307	litie	39	16	1036	5.19	116	5	KD	1	62 13.5	Ż	ž	114	1.95	1094	20	45	.88	87 142		3.20	.06	.04
A-05-5-014	1	51	13	260	Z	40	16	1001	4.84	13	5	ND	1	66 3.6	5	Ž		2.32		19	42	.86	107 39	-	2.95	.05	.03
A-05-8-015	l i	42	· 9 ·	332	113	- 41	20	1067	6.01	16	5	ND	1	62 3.6	4	2		2.03	1081	19		1.03	94 46		3.32	.06	-05
A-68-5-001	2	54	70	276	2	35	15	1205	5.21	25	5	KD	1	76 3:2	3	2	113	2.66	1095	23	61	.67	111 37		3.66	.03	.03
	-							•			•					-			IIIII.				44.14				8
A-68-S-002	2	36	16	283	1112	53	23	1478	6.06	19	5	ND	2	45 2.6	3	2	126	1.30	069	16	59	1.24	103 143	z :	3.67	.04	.04
A-68-5-003	2	39	11	257	2	43		1127	5.02	0.16	6	ND	2	53 215	2	Ž		1.59	1077	18		1.05	92	2	2.98	.06	.05
A-68-5-904	2	42	13	297	1112	53	20	1237	5.28	117	5	KD	1	59 3 4	4	2	112	1.84	1086	18	49 1	1.18	94 1139		3.17	.06	.03
A-68-S-005	1	43	12	509	103	43	17	1182	5.19	017	. 5	ND	3	63 4.0	Z	2	111	1.88	1093	20	45 1	1.05	93 1:43	2 3	3.12	.07	.04
A-G8-S-006	2	46	9	527	13	39	17	1242	5.03	1.16	5	ND	1	68 4.5	5	2	109	2.15	1101	23	41	.80	94 3 44	53	3.47	-06	.04
										C201				報報					<u>Maii</u>				2 in 19				1
A-68-S-007	2	46	9	319	12.2	39	• -	1224	5.11	21	5	ND	1	69 41.9	3	2	112		2100	22		.87	92 144	93	5.29	.06	.04
A-68-5-008	1	52	9 -	298		- 38	16	1139	4.91	.H16	5	ND	1	73 4 5	. 4	2	110		2109	20	42	. 65	91 2441			- 06	.04
A-G8-S-009	1	44	10	271	1122	36	- 14	1114	4.08	in Tr	5	ND	1	70 14 4	2	2		2.50	194	19	38	.79	79 1152		2.53	.05	.12
A-68-S-010	1	51		290	Z	35		1176	4.31	110	5	NO	1	80 51	2	2		2.97	1107	21		.71	85 1134		2.86	.04	.04
A-G8-S-011 (2	52	°,	298	1	37	17	1269	4.77	17.	. 5	ND	1	77 14.8	3	2	102	2.74	186	21	43	.81	87 38	10 3	5.10	.05	.05 👾
								•	i.	1993	_			34144					THE								
A-GB-S-012	1	54		296	2	39		1245	4.64	113	5	NO	1.	80 (5.3)	- 3	2		2.88	3112	Z2		.83	92 .35			.05	
A-GB-S-013	1	43	••	304		39			5.53	20	5	ND	1	59 4.4	4	2		2.04	.086	18	45 1		95 40				-03
A-GB-S-014	1	50		315	12	37		1269	5.61	20	5	ND	1	76 :5.3	4	2	119 2		.075	20		.90	94 1143	11 3			.05
	2	31	41	102	: 5	19	7	175	7.96	14	5	ND	2	11 [[3]	3	2	176	- 14	.056	11		.59	66 1.36				.02
	5	80	31 -	172	4	36	11	335	9.98	18	10	ND	5	18	8	2	58	-21	;083;	17	60	.78	100 .05	27	.05	.01	-06 231
										hi i i i i i i i i i i i i i i i i i i	_		_					·	400								\$X
	- 4	20		-345		40	65(1		8.57	15	7	ND	2	59 4.5	6	2	84	.98	1115	14		.95	238	23			-D5 221
	2	48		166	2	37	16	1509	5.27	:22:	6	ND	2	17 119	2	2	33	.41	-092	12		.52	74 .05	24			.05
	1	21	12	68	I	11	9	205		2	5	ND	1	17 1115	2		178		2041	4		.49	29 46	21			.03 1111)
and the second sec	1	11	15	36		5.	3		1.79	12	5	ND	1	11 12	2	-	215		<u>-020</u>	3	14	.08	17 .91				.02
	6	30	20	105	7	9	5	133 1	1.06	34	7	ND	2	7 11.6	2	2	98	-04	030	8	19	.07	34 26	21	.88	.01	.04 ((())
				3																							
	1	43		134 🚦	15	16					5	ND	1	31 2120	2	2	57		.092	15		.42	71 退线	24			.04 311
STANDARD C	19	61	38	132	Z:5	74	32	1009	3.94 🗄	43	23	7	39	52 18:5	15	19	59	.50	. 098	39	61	.92	184 1209	35 1	.93	-06	.14 参照1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 NCL-KNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Duta Appendix iv Rock descriptions

,

		ROCK SAMPLE DESCRIP	TION REC	ORD			!	
Page:	,	Project: Isk Claim Block	Locatio	n: Isk	ut	Operato	ri Rick u	Ualke-
Sample No.	Location	Description		А	nalytica	l Result	B Allotters	
			Au	Ag	Pb	Zn		her
A-RW-R-1	Basalts on Isk 3	Quartz filled frontures with minor brecciation along margins. slight concentrations of pyrite	ND	0.2	6	93	Си 36	
A-RW-R-Z	Vesicular basalt/andesite on 1sk 3	guartz-feldspar - hornblende	ND	0,3	4	61	Cu 39	
A-RW-R-3	Vesicular basalt on 1sk 3	Vesicles infilled with white zeolites. Minor iron staining						
A-RW-R-8	At base of cliff	Carbonate veni 10 cm thick. In volcani clastic host	ND	0,3	3	18	Ba 2407	
•	At base of cliff	Iron-stained volcani clastic with <1% disseminated pyrite	ND	0.3	14	104	Bu 657	A5 125
A-RW-R-11	Large cliff face south of creek Basal Sedimentary Uni7	Sample of disrupted volcani- clastic in 5 cm thick quarte- carbonate vein with profuse iron staining. < 2% disseminated pyrite	ND	0.5	243	145		
A-RW-R-17		Fine-grained, iron-stained basalt with this guartz-filled fractures. No visible sulphiles	ND	0.1	6	96		
A-RW-R-19		Quante veni in dark green weathering andesite with elicm pyrite cubes present at the margin of the venin.	ND	0.3	5	48		
A-RW-R-20		Iron-stained, dark green weathering andesite with 25% cubic pyrite (described above).	ND	0.2	5	95		

-

		ROCK SAMPLE DESCRIPT	TION REC	ORD			
Page:		Project: Isk Claim Block	Locatio	on: lsk	ut	Operator	: Rick Walke
Sample No.	Location	Description		1	nalytica	al Results	Gold (ppb) others (ppm)
			Au	Ag	Pb	Zn	Other
A-RW-R-22		Fine-grained and esite with minor disseminated pyrite	ND	0.1	2	73	
A-RW-T-24	Youngesit Basalt succession by B.C. Tel. repeater Isk 5	Pillow basalts with iron staining and minor excite	ND	0.1	4	114	
	end of cliff band Isk 5	1.5 m threek . No apparent mineralization.	ND	0.1	2	62	
	end of cliff band	Basalt breccia with carbonated shear zone described above.	ND	0.1	5	92	
A-RW-R-29	old Basatt Succession. Isk 5	Heavily iron-stained horiton in andesite adjacent to creek.	ND	0.1	5	80	
J-RW-R-30	old Basalt Succession Isk 5	Fine - grained basabt. No iron staining, minor disseminate pyrite	IND	0.1	4	85	
1-RW-R-31		Coarse angular chent breccià clasts range from Elmm to Fom in long dimension in psammitic matrix.	ND	0.1	6	100	
A-RW-R-32		Course grained basalt - andesite. Iron staining along fractures	ND	0.3	6	147	
A-RW-R-34		orange-brown weathering, medium grained undesite.	ND	0.1	6	92	

		ROCK SAMPLE DESCRIP	TION REC	ORD			· ·	
Page:		Project: Isk Claim Block	Locatio	n: Iska	ut	Operato	r: Rick	Walter
Sample No.	Location	Description		A	nalytic	al Result	s Gold o others	(ppb) (ppm)
			Au	Ag	Pb	Zn		her
A-RW-T-37		Iron - stained, fine - grained basalt. Vesicules and quartz filled amygdules.	ND	0.1	5	99		
A-RW-R-38		Pillow basa H. Local concentration of pyrite, < 5% by volume	[~] ND	0.1	4	100		
A-RW-R-39		Basalt with carbonate ven (Icm × 10 cm) and minor pyrite (<1%)	ND	0.1	3	95		
A-RW-R-40		Basalt adjacent to brecciated pillow basalts relatively rich in pyrite. Pyrite occurs but as venillets and massive (Acm diameter) aggregates.	ND	0.1	6	99		
A-RW-R-41		Iron-stained, fine-grained lamin ated argitlite in contact with and underlying pillow basalts	ND	1.3	7	155		
1-RW-R-42		Brecciated quartz vein with angular breccia chips and miner sulphides	ND	0.1	4	60	· · ·	
1-RW-R-43		Disseminated pyrite (<2%) by volume) in fine grained basalt 3 mabore arailite	ND	0.1	Ч	103	,	
1-RW-R-44		Medium grained andesite with high proportion of quarter and feid spar						

.

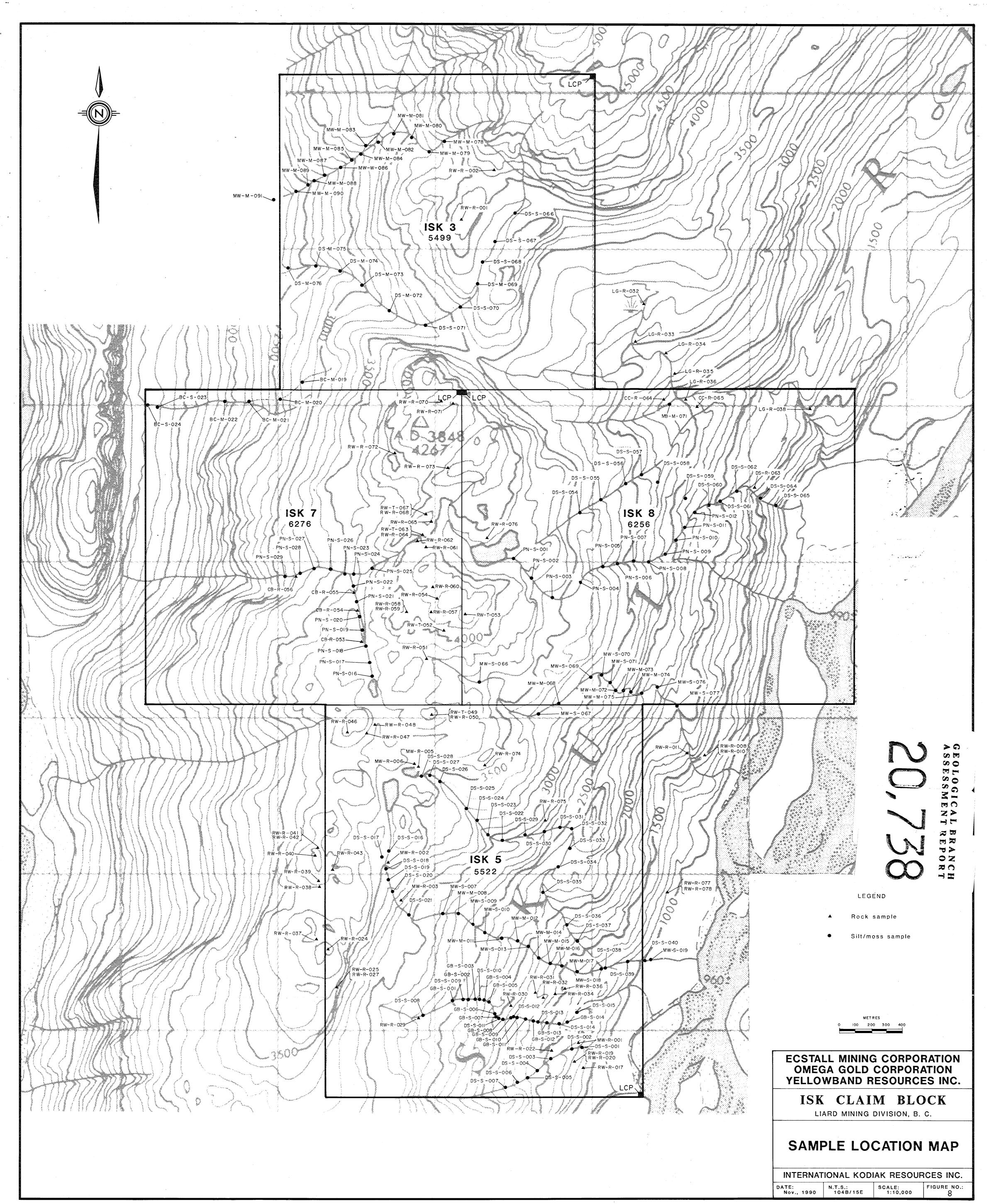
•

.

		ROCK SAMPLE DESCRIP	TION REC	ORD				
Page:		Project: Isk (A)	Locatio	n:		Operato	r: Rick (Nalker
Sample No.	Location	Description		A	nalytica	1 Result	B Gold (Others(рр b) рет
			Au	Ag	Pb	Zn	Oti	her
A-RW-R-46		Classic pillow basalts with pyrite as disseminations, veintets and pseudomorphs of gtz	NO	0.1	6	77		
A-RW-R-47		Iron-stained pillow basalt with disseminated pyrife	10	3.2	35	66		
A-RW-T-48	Yuungest Basalt Succession	iron-stained pillow basalt with disseminated pyrite	5	3.6	45	657	As 6	56 8
A-RW-T-49	1	chip samples from highly fracture pillow basalt with disseminated pyrite.	5	4.0	36	76		
A-RW-R-50		Fragments from quartz filled shear zone in pillow basalts	5	2.6	38	27	56 3	
A-RW-R-51		Pillow basalt with disseminated pyrite throughout. Small concentrations in small fracture	15	3.8	38	77		
A-RW-T-52		Disseminated pyrite in fine grained basalt	5	3.7	36	66		
A-RW-R-53		Breccipitate on sur face. Iron staining and minor disseminated pyrite (< 2% by velume)	5	4.0	31	68		
A-RW-T-54	0	Disseminated pyrite in pillow basalts	5	3.5	33	59		
A-RW-R-57		Pillow basalt with disseminated pyrite. Local ≤1 cm concentrate of pyrite	<u>س</u> 10	4,4	40	70		

.

		ROCK SAMPLE DESCRIP	TION REC	ORD				·····
Page:		Project: Isk (A)	Locatio	on:	-	Operato	r: Rick	Walke-
Sample No.	Location	Description		A	nalytica	1 Result	B Gild (, Others (орь) еет
			Au	Ag	Pb	Zn	1	her
A-RW-R-58		Pillow basalt with disseminated pyrite and minor concentrations of pyrite along fractures	5	3.8	36	63		
A-RW-R-59		Quartz vein with minor component of host pillow baself Minor disseminated pyrite and concentration along fractures	5	2.3	25	16	7	
A-RW-R-60		Well developed, iron - stained ane in pillow basatts. Local concentrations of pyrite	5	3.4	38	52		
A-RW-R-61		Very fine disseminated pyrite in heavily iron-stained suspect pillow basalts	5	2.8	42	36	5b 5	
A-RW-T-62		Medium grained andesite with minor disseminiated pyrite and local concentrations.	5	1.7	34	29		
A-RW-T-63		Quartz-carbonate iron- stained vein along fracture. Some brecciation along margin	5	4.0	38	49	56 3	
A-RW-R-64		Fine-grained basalt with disseminated pyrite and local concert rations of pyrite	10	4.4	40	81		
A-RW-T-65		Iron-stained argillites within basalt	5	1.9	36	130	562	As 4
A-RW-R-66		Sample of basatt overlying argilites, with disseminated pyrite. Pyrite also present along fractures	5	2.6	39	109		


	······································	ROCK SAMPLE DESCRIPT	TION REC	CRD					
Page:		Project: (sk (A)	Location:			Operator	c: Rick	walke-	
Sample No.	Location	Description	Analytica			1 Results	Its Gold (ppb) Others (ppm)		
			Au	Ag	Pb	Zn	1	her	
A-RW-T-67		Iron stamed arginite. No sulphides noted	5	1.9	46	138			
A-RW-R-68		Basalt clasts in breccia zone 3-4 m thick	5	3.1	36	63			
A-RW-R-70	L	Coarse-graned basalt dast in fracture, local pyrite	5	3.)	37	65			
A-RW-T-71		Pillow basalt with breccia zone and sedimentary xendliths	5	2.2	37	53	<u> </u>		
A-RW-T-72		Pillow basalt with pyrite in SIcm concentrations.	1	3.6	32	120			
A-RW-T-73		Pyrite bearing basalt immediately above sediments	5	2.4	34	53			
A-RW-T-74		Relatively high proportion of pyrite along tractures in pillow basalts, associated with minar quartz	5	2.8	30	68			
A-RW-T-75		Basaltic float at immediate base of cliff, profuse surficial calcite precipitate	5	3.6	40	51	······		
A-RW-T-76		Iron-stained, pyrite bearing pinow basalt	5	2.9	35	83			
A-RW-T-77		Iron-stained argitites Immediately above and within shear zone. No sulphides observed	5	2.0	35	155	As 29		
A-RW-T-78		Iron-stained basalt and selvage 30 cm below fault Zone. Minor pyrite	5	4.8	35	184	1		

.

1

		ROCK SAMPLE DESCRIP	TION REC	ORD				
Page:		Project: sk (A)	Location:			Operator: Chris Bishop		
Sample No.	Location	Description	Analytica					
			Au	Ag Pb				her
A-CB-R-53		Well fractured, mildly foliated basalt, carbonate alteration with mild stockwork of quarte- calcite venilets, <1% pyrite	5	3.5	2	53		
A-CB-R-54		Basalt with moderate quartz- calute stock work, limonite stained	5	3.1	2	45		
A-CB-R-55		Basalt with intense quantz- calcite stockwork, veins trending 028/2555	10	4.3	2	127	Ba 208	
A-CB-R-56		Basatt with 1-2 cm quante- calcite venilets, 5-10% disseminiated pyrite, very limonitic	10	4.1	2	55		
					d			

I

•

· · ·