REPORT ON STREAM SEDIMENT SURVEY

PYR 1 TO 4 CLAIMS		
	LOG NO: 07-01	RD.
	ACTION:	
ATLIN MINING DIVISION		
NTS 104J/4W	FILE NO:	

LAT 58°11'

LONG 131°49'

RD. LOG NO: MANA receive ACTION:-FILE NO:

OWNER

CHRIS W. GRAF, P. ENG.

WORK PERFORMED FROM JULY 31st TO AUGUST 12th 1990

M. WASKETT-MYERS GEOCHEMIST

REPORT BY

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,761

TABLE OF CONTENTS

		Page
Locat	ion Map of British Columbia	1
1.00	SUMMARY	2
2.00	INTRODUCTION	2
	<pre>2.10 Property Definition 2.20 Location and Access 2.30 Topography and Vegetation 2.40 Objectives</pre>	2 2 2 3
3.00	GEOCHEMISTRY	3
	<pre>3.10 Sampling Procedure 3.20 Heavy Mineral Concentration 3.30 Analytical Procedure</pre>	3 3 3
4.00	CONCLUSIONS	3 /
Legend	d	4 ,
Stream	n Silt Geochem Map	5
Heavy	Mineral Geochem Map	6
Analyt	tical Results	7
Stater	ment of Expenditures	9 /
Affida	avit	10
Author	r's Qualifications	11
Plate Plate Plate Plate	 Location Map Stream Silt Geochem Map Heavy Mineral Geochem Map Algional Geology 	Attached Attached Attached "

REPORT ON STREAM SEDIMENT GEOCHEMISTRY

PYR MINERAL CLAIMS

ATLIN MINING DIVISION

1.00 SUMMARY

A helicopter supported, silt and heavy mineral sampling program was carried out on creeks flowing on and around the property.

A total of 7 sites were sampled, at which a silt and a heavy mineral sample were taken in each case for a total of 14 samples.

The heavy mineral results showed no anomalous values, the silts however showed elevated values for some base metals and one high gold.

The Pyr claims were staked on Pyrrhotite Creek to cover a roof pendant of Triassic age volcanics poorly exposed between the south contact of the main Kaketsa Mountain granitic body on the north, and a smaller satellite body to the south.

Total expenditure for this survey was \$2453.50.

2.00 INTRODUCTION

2.10 Property definition

The Pyr property is 100% owned by Chris W. Graf of Vancouver, British Columbia and consists of 80 units, 4,942.40 acres. The work was performed by M. Waskett-Myers and N. Leach.

<u>Claim Name</u>	Record No.	Number of <u>Units</u>	Expiry Date
Pvr 1	4118	20	March 06, 1991
Pvr 2	4119	20	March 05, 1991
Pyr 3	4120	20	March 06, 1991
Pyr 4	4121	20	March 05, 1991

2.20 Location and access

The Pyr property is located to the east of the Shesley River, 100 kilometres west-south west of Dease Lake. Access is by helicopter.

2.30 Topography and Vegetation

The property is in an area of high relief, with elevations ranging from 850 to 1740 metres. There are swamp conditions at the lower elevations. The vegetation varies from swamp grassland to dense forest of jack pine, alder, birch and scrub brush.

2.40 Objectives

The geochemical survey was undertaken to assess the potential for base and precious metal mineralization within the survey area.

3.00 GEOCHEMISTRY

3.10 Sampling Procedure

Sample sites were preselected in the office and 7 silt samples and 7 heavy samples were taken in the field. At the sample site a sample of the stream silt was collected and put into a kraft paper bag. The heavy mineral sample was collected by screening, to -20 mesh, enough material to give a 3-5 kg sample. The heavy mineral samples were collected from parts of the stream where the water flow tended to slow down i.e. from high to low energy. Once collected, the heavies sample was put into a 6 mil plastic bag.

3.20 Heavy Mineral Concentration

To eliminate sample prep and reduce transportation costs; the heavies were concentrated at the helicopter base in Dease Lake. The concentration was carried out by use of a Gold Genie spiral concentrator. The resulting concentrate was sieved to - 40 mesh, dried, the magnetics were removed and the remaining sample placed in a plastic vial.

3.30 Analytical Procedure

All samples were sent to Min-En Labs in North Vancouver for analysis.

The samples were analyzed for gold by means of fire assay with atomic absorption finish. Following the gold assay the samples were run for 12 elements (Ag,As,Cd,Co,Cu,Fe,Mn,Ni,Pb,Sb,Zn,Sn) using inductively coupled plasma (I.C.P.).

4.00 CONCLUSIONS

The heavy mineral samples did not indicate any significant mineralization.

The silt samples on the other hand showed three samples high in copper (375, 316, 112 ppm), sample DS15 was high in Zn (273 ppm), As (5 ppm), Cd (34 ppm) and Cu (316 ppm) and there was also one elevated value for gold (17 ppb) and one high in silver (26 ppm). The samples with high values were collected from the east side of the property and represent a relatively large area. Since the heavy mineral samples did not show any response for the base metals it would suggest that the high silt values are a result of hydro-morphic transportation, and could come from a fair distance, probably off the property. Further work is probably warranted on this property, but before this is carried out, further claims should be staked at the south boundary of the Pyr claim group.

LEGEND FOR GEOCHEMICAL MAPS

HEAVIES

	Au	Greater	than	20	ppb
--	----	---------	------	----	-----

- As Greater than 10 ppm
- Zn Greater than 200 ppm

SILTS

- ▲ Au Greater than 10 ppb
- As Greater than 4 ppm
- Zn Greater than 200 ppm

Alienated claims

STREAM SILT ASSAY RESULTS

PYR CLAIMS

SAMPLE NAME	AG PPM	AS PPM	CD PPM	CO PPM	CU PPM	FE PPM	MN PPM	NI PPM	PB PPM	SB PPM	ZN PPM	SN PPM	AU PPB
DS009	1	1.0	0.1	12.0	73	26160	329	25	21	1.0	26	1.0	1
DS010	0.4	1.0	0.1	14.0	53	38140	569	33	24	1.0	23	1.0	1
DS011	0.4	1.0	0.1	12.0	40	32430	568	16	22	1.0	23	1.0	1
DS012	2.6	1.0	0.1	11.0	375	31970	366	15	26	1.0	56	1.0	1
DS013	0.6	1.0	0.1	10.0	112	34240	292	12	21	1.0	27	1.0	17
DS014	0.2	1.0	0.1	17.0	76	32790	1192	65	22	1.0	43	1.0	1
DS015	0.9	5.0	3.4	37.0	316	50730	545	78	37	1.0	273	1.0	7

HEAVY MINERAL ASSAY RESULTS

PYR CLAIMS

SAMPLE NAME	AG PPM	AS PPM	CD PPM	CO PPM	CU PPM	FE PPM	MN PPM	NI PPM	PB PPM	SB PPM	ZN PPM	SN PPM	AU PPB	
DH 9	0.8	1	0.1	8	11	20700	208	14	22	1	12	1	1	L
DH10	0.4	1	0.1	11	23	33820	267	22	21	1	15	1	2	2
DH11	0.6	1	0.1	14	18	54190	425	1	17	1	12	1	1	L
DH12	0.5	1	0.1	12	48	43280	366	2	23	1	23	1	1	L
DH13	0.8	1	0.1	10	26	33180	295	4	22	1	18	1	2	2
DH14	0.2	1	0.1	10	17	25530	373	30	21	1	18	1	1	L
DH15	0.6	1	0.1	13	54	18870	166	28	19	1	96	1	2	2

.

EXHIBIT "A"

STATEMENT OF EXPENDITURES

STREAM SEDIMENT GEOCHEMISTRY

PYR 1-4 CLAIMS

ATLIN MINING DIVISION

Salaries	M. Waskett-Myers N. Leach	\$	213.29 109.31
Transportation	Air Fare Helicopter Car (incl. Gas)	1,	83.37 549.82 59.86
Room and Board	Motel, Food		63.69
Analysis	Heavies (Prep., Gold, I.C.P.) 7 samples @ \$16.75/sample Silts (Prep., Gold, I.C.P.) 7 samples @ \$13.00/sample		117.25 91.00
Field Supplies	Sample Bags, Vials, etc.		7.31
Miscellaneous	Radios, Maps, Cab Fares, etc.		27.72
Report Preparation	Chris Graf M. Waskett-Myers Supplies, Photocopying		54.70 71.75 4.33
	TOTAL	\$2	,453.50

\$2,453.50

M. WASKETT-MYERS, Geochemist

IN THE MATTER OF THE

B.C. MINERAL ACT

AND

IN THE MATTER OF A SOIL GEOCHEMISTRY PROGRAM

CARRIED OUT ON THE PYR 1 - 4 MINERAL CLAIMS

in the Atlin Mining Division of the Province of British Columbia

AFFIDAVIT

I, M. Waskett-Myers, of Delta in the Province of British Columbia, make oath and say:

- 1. That I am a Consultant Geochemist and as such, have a personal knowledge of the facts to which I hereinafter depose;
- 2. That annexed hereto and marked as Exhibit "A" to this my Affidavit is true copy of expenditures incurred on a Soil Geochemistry program, on the Pyr mineral claims.
- 3. That the said expenditures were incurred between the 31st day of July, 1990 and the 12th day of August, 1990, for the purpose of mineral exploration on the above-noted claims.

in Washett-myrs

M. WASKETT-MYERS Geochemist

ACTIVE MINERALS LTD.

STATEMENT OF QUALIFICATIONS

M. D. Waskett-Myers has worked in Mineral Exploration for the past twenty five years, principally in the field of geochemistry.

I consider him qualified to prepare this report.

Chris W. Graf, P. Eng. President

LEGEND: DEASE LAKE (104J) MAP-AREA (1:125,000)

PLEISTOCENE AND RECENT	
Glacial and glacio-fluvial deposits, stream deposits, felsenmeer, talus, soil	UKN NAZCHA FORMATION: volcanic sandstone, argillite tuff, conglomerate
MIOCENE TO PLEISTOCENE AND(?) RECENT	UKST STUHINI FORMATION: augite and coarse bladed plagioclase porphyry, breccia and flows; tuff, volcanic sandstone and conglomerate;
Alkali olivine basalt; minor trachyte and rhyolite; /MP, may include considerable areas of underlying Mesozoic ald minor Paleozoic rocks	<pre>uKK 'KUTCHO FORMATION': dacitic breccia, tuff; foliated quartz porphyry, conglomerate, may include Cache Creek Group</pre>
CRETACEOUS TO PALEOCENE AND(?) LATER	PERMIAN (South of Atlin Terrane)
UPPER CRETACEOUS TO PALEOCENE AND(?) LATER Nonmarine sandstone, siltstone, conglomerate, and tuff; contains coalified wood and local coal seams; KTsu , SUSTUT GROUP	P Pc, pale grey and orange cherty limestone; argillaceous limestone
KTs SLOKO GROUP: rhyolite, dacite and trachyte flows, dykes, breccia	Ps., biotite-chlorite schist, age uncertain
CRETACEOUS	PERMIAN
MID TO LATE CRETACEOUS. Biotite quartz monzonite, medium to coarse grained	CACHE CREEK GROUP (Includes PT, PH, PFR, MPK, MPu)
JURASSIC	PT PH DT, TESLIN FORMATION; PH, HORSEFEED FORMATION: limestone, dolomitic limestone
MID TO LATE JURASSIC (?) Biotite and biotite hornblende granodiorite, monzodiorite, diorite;Jqm, megacrystic hornblende-biotite quartz monzonite; J _{3y} , syenice, syenite porphyry	PFR PFR , FRENCH RANGE FORMATION: altered basic volcanic flow rocks; PFR , lithic tuff, agglomerate cherty tuff and metamorphosed equivalents
JURASSIC, UNDIVIDED	· ·
J _s Greywacke, shale; pebble conglomerate with granitic clasts	MISSISSIPPIAN TO PERMIAN
LOWER JURASSIC TAKWAHONI FORMATION: greywacke, shale, minor pebble conglomerate; IJT IJTm. hornfelsed equivalents of IJT and including abundant sills anu dykes of quartz-feldspar porplyry	MPK KEDAHDA FORMATION: cherty argillite, argillaceous chert, locally graphitic, metamorphosed equivalents; chert and argillite; very minor volcanic rocks and metamorphosed equivalents; MPKc, limestone; MPKs, same as MPKbut includes greywacke and local conglomerate similar to that in the
IJI INKLIN FORMATION: penetratively foliated phyllitic slate, greywacke, pebble and cobble conglomerate IJIcg, diamictite	Inklin Formation
TRIASSIC AND JURASSIC	MPu Serpentinite, perioditie, pyloxenite.mg, gabbio, mog, and thee
LATE TRIASSIC AND EARLY JURASSIC Biotite-hornblende quartz diorite, granodiorite, quartz monzonite, Jgd dioriteKJd, hornblende diorite,KJdg, diorite and gabbro;KJpy,	METAMORPHIC ROCKS
zoned ultrabasic with margin of pyroxenite containing abundant magnetite and apatite grading through pyroxenite-syenite agmatite and pyroxene syenite to a core of altered leucocratic syenite; KJqm, quartz monzonite UPPER TRIASSIC	Gn Diorite gneiss, amphibolite, migmatite; age uncertain Biotite-muscovite quartz gneiss and schist; minor crystalline limestone, quartzite; probably metamorphosed lower Paleozoic
UTSH SHONEKTAW FORMATION: augite andesite	

SYMBOLS

	Geological boundary, defined, approximate and assumed
••••	Drift boundary .
• • • • • • • •	Limit of geological mapping
<u> </u>	Fault solid circle on downthrown side
_	Fault, thrust, teeth on upthrust side
	Bedding, inclined, vertical
<u></u>	Bedding, direction of dip known, upper side of bed unknown
<u></u>	Schistosity, gneissosity, inclined vertical
- I	Syncline
	Anticline
	Glacial striae

GEOLOGY BY

H. Gabrielse, J.W.H. Monger, S.L. Leaming, R.G. Anderson, and H.W. Tipper on 'Operation Dease', 1977 and 1979; H. Gabrielse 1961 and 1967; J.G. Souther, 1961; J.W.H. Monger, 1966; H. Gabrielse, J.G. Souther and E.F. Roots on 'Operation Stikine', 1956 and 1958. Includes information from Hotailuh Range by B.W. Downing and C.H. Leitch, Falconbridge Nickel Mines Ltd., from the Grand Canyon of the Stikine River by P.B. Read, from the Level Mountain area by T.S. Hamilton and on the distribution of several plutons by G.W. Mannard. Compiled by H. Gabrielse

. .