LOG NO: 01-09	RD.
ACTION:	
FILE NO:	

ACCECCMENT DEDIGENO	0627	RD.
(GEOCHEMICAL)CTION:	Pack from	
ON THE L D M & MINERAL CLA	Amend	ment
FILE NO:		

Fort Steele Mining Division

NTS: 82F/8E, 9E

Latitude: 49 30'N Longitude: 116 4'W

on behalf of:

Chapleau Resources Ltd.

607 - 325 Howe Street Vancouver, B.C. V6C 1Z7

by

R. D. C. Kennedy

December 19, 1990

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,767

TABLE OF CONTENTS

Introduction	Page 1
Cost Statement	6
1990 Work Program	7

į

FIGURES

•

FIGURE	1	Location Map	2
FIGURE	2	Access Map	3
FIGURE	3	Claim Map	4
FIGURE	4	Geological Map	10
FIGURE	5	Soil Sample Location Map	11

TABLES

CLAIM	STATUS	-	MORGAN	GROUP	5
-------	--------	---	--------	-------	---

APPENDIX 1

SOIL GEOCHEM ANALYTICAL RESULTS	1.	2	•
---------------------------------	----	---	---

INTRODUCTION

This report is submitted on behalf of Chapeleau Resources Ltd., of 607-325 Howe Street, Vancouver B.C.

The L.D.M. 6 claim consists of a total of eight units and is part of the Morgan group of Claims which along with the Bar, Buck 1 and Buck 2 claim groups, form the companies Purcell Camp. The Purcell Camp consists of a total of 49 mineral claims (414 units).

Chapleau Resources has an option agreement to purchase a 90% interest in the Morgan Group of claims.

The work outlined in this report is part of Chapleau Resources ongoing exploration program on their Purcell Camp properties.

The L.D.M. *****6 claims are situated approximately 23 kilometres south west of Cranbrook, B.C., near the headwaters of Perry Creek. The claims are located on the eastern aspect between the tributaries of Limerick Creek and Wuhun Creeks. Access to the property is gained through the use of moderate to poor condition logging roads.

- 1 -

-4-

PROPERTY	_ <u>CLAIMS</u> _	_ <u>RECORD</u> *	RECORD DATE	EXPIRY DATE	<u>UNITS</u>
MORGAN	Racki 7	3017	Nov 9, 1987	Nov 9, 1991	20
MORGAN	Raoki 5	2326	Nov 26, 1984	Nov 26, 1991	10
MORGAN	Racki 10	2557	Jan 14, 1986	Jan 14, 1991	12
MORGAN	Racki 11	2558	Jan 14, 1986	Jan 14, 1991	1
MORGAN	LDM 9	2590	Mar 14, 1986	Mar 14, 1991	12
MORGAN	LDM 10	2591	Mar 14, 1986	Mar 14, 1991	8
MORGAN	LDM 11	2592	Mar 14, 1986	Mar 14, 1991	6
MORGAN	Racki 12	2593	Mar 14, 1986	Mar 14, 1991	2
MORGAN	LDM 8	2874	Apr 21, 1996	Apr 21, 1991	2
MORGAN	LDM 12	2609	Apr 21 , 1986	Apr 21, 1991	3
MORGAN	Racki 18	2873	Apr 21, 1987	Apr 21, 1991	8
MORGAN	Racki 6	2380	Apr 22, 1985	Apr 22, 1991	9
MORGAN	Racki 14	2610	Apr 25, 1986	Apr 25, 1991	12
MORGAN	Raoki 15	2611	Apr 25, 1986	Apr 25, 1991	6
MORGAN	LDM 4	1769	Apr 26, 1983	Apr 26, 1991	4
MORGAN	LDM 7	2624	May 28, 1986	May 28, 1991	4
MORGAN	Racki 16	2648	Jul 2, 1986	Jul 2, 1991	1
MORGAN	Raoki 17	2649	Jul 2, 1986	Jul 2, 1991	1
MORGAN	LDM 2	962	Jul 4, 1980	Jul 4, 1991	4
MORGAN	Racki 8	2450	Aug 30, 1985	Aug 30, 1991	9
MORGAN	Racki 9	2451	Aug 30, 1985	Aug 30, 1991	3
MORGAN	LDM 1	751	Sep 5, 1979	Sep 5, 1991	4
MORGAN	LDM 5	1940	Sep 20, 1983	Sep 20, 1991	8
MORGAN	LDM 6	1954	Sep 30, 1983	Sep 30, 1991	8
MORGAN	Racki 4	2307	Oct 22, 1984	Oct 22, 1991	10
MORGAN	Racki 2	3015	Oct 5, 1987	Oct 5, 1992	3
MORGAN	Racki 3	3016	Oct 5, 1987	Oct 5, 1992	2

-5-

COST STATEMENT

TOTAL	\$1750.00
- Report Preparation	\$ 225.00
- Geological Consultant (P. Klewchuck)	\$ 325.00
- Vehicle (4 days @ \$ 75.00 per day)	\$ 300.00
-Wages (4 mandays @ \$225.00 per day)	\$ 900.00

-6-

A reconnaisance soil sample program was initiated on the L.D.M. #6 claim block during the late summer of 1990. The L.D.M. #6 claims are situated near the headwaters of Perry Creek. The claims are located on the eastern aspect between the tributaries of Limerick and Wuhun Creeks. Access to the property is gained through the use of good logging roads. At approximately 24 km you branch off onto an old road on the east side.

Two days of road repair were required to make this road vehicle useable. A number of water control problems were corrected along with the removal of heavy windfall material.

It was hoped that a soil reconnaisance program might provide valuable information pertinent to the source of encouraging heavy stream samples, and provide an area for more intensive sampling.

Streams draining through L.D.M. #6 were sampled in the early summer of 1988. Though highly annomolous values in base metals, and gold were seen no follow-up work was undertaken at that time. A spring in a landform depression provided the highest heavy sample anomalies in both gold, and base metals (spring fault on attached map). The formation in the watershed of the drainage is the Upper Creston rocks (HC3). This formation is known to contain carbonate rich beds in its upper sequence. The Perry Creek fault, a major structural break is proposed by G.S.C. mapping to project perpendicular to the drainage near its headwaters. The Perry Creek fault in other locations, eq: Price Pit: hosts impressive sulphide gold mineralization in shear zone related quartz viens. Of further interest is the existance of a large magnetic high slightly south east of the spring fault zone. This magnetic high may indicate the existance of more recent intrusive activity. Felsic intrusive are known to occur in the general area of magnetic highs in locations, in both Perry Creek and the Moyie River.

-7-

Two reconnaissance soil lines were run with the expectation of putting in a follow-up grid on any anomalous results. One 300 meter line was completed near the headwaters of the Spring Fault linear (L1), another was run near mid-slope, 400 meters north and south of the road fork (LN, LS, Figure 5).

Samples were taken with a mattock from the B Horizon, normally about 15 to 25 cm below surface. The samples were screened in the field using an 18 mesh screen. A large sample of about one kilogram was collected at each site. It was hoped that such a procedure would reduce the effects of coarse gold in the soil and provide more consistent data. A total of 44 samples were collected in this manner (Fig. 5).

Samples were sent to Acme Analytical Laboratories Ltd. in Vancouver and analyzed for a 32 element ICP package and geochemical gold by standard laboratory techniques.

A few of the higher values are shown on Figure 5, but as the results are not significantly anomalous, a complete map of the results has not been prepared. Complete geochemical results are provided in Appendix 1.

Values for both base and precious metals are generally low. The highest copper value is 34 ppm with only 3 samples over 20 ppm. The highest lead value is 20 ppm with only 6 samples over 15 ppm. The highest zinc value is 83 ppm with only 3 samples over 75 ppm. The highest silver value is .5 ppm with only 2 samples over .2 ppm. The highest gold value is 27 ppb; it is the only value above 7 ppb.

These results clearly demonstrate that no significant bedrock mineralization has been detected by the soil survey. The repeated anomalous stream geochemistry obtained from the small stream draining the survey area has not been elucidated by this survey and a soil survey at higher elevations is recommended.

-8-

Authors Qualifications

1. I have been actively involved in mining and mineral exploration in the Province of British Columbia for the past 6 years

2. I have been employed by mineral exploration companies as a prospector and have participated in several exploration programs.

Dated at Cranbrook, British Columbia, this <u>21</u> day of <u>December</u>, 19<u>9</u>0

R.D.C. Kennedy

-9-

ACHE ANALYTTCAL LABORATORIES LTD.

N

852 E. HASTINGS ST. VANCOUVER B.C. VOA 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALL AS CERTIFICATE

Chapleau Res. Ltd. File # 91-1446 Page 1 607 - 325 Howe St., Vancouver BC V6C 121 Submitted by: MR.S.DALY

SANPLE#	Ho ppm	Cu ppm	Pb ppm	Zn ppm	Ag pom	N1 ppn	Co ppm	Nn ppm	Fe X	AN PPPI	U ppm	Au ppm	7h Ppm	\$r ppm	Çd	Sb ppm	81 ppm	V ppm	Ca X	P X	La ppn	Cr ppa	Ng X	Be ppm	171 \$	B Al ppm %	Na X	K X	U Pre	Au* ppb	
800M 750M 700N 650M 600N	1 1 1 1 1	8 7 19 9 7	10 15 12 2 7	27 34 39 28 36	1=211	9 10 16 8 10	4 5 10 5 6	59 92 484 227 62	1.96 2.15 2.26 1.60 1.87	9,995 9	5 5 5 5 5	ND ND ND ND ND	7 7 6 8	45933	~~~~~~	22422	22222	17 24 28 9 11	.02 .03 .06 .02 .01	043 080 144 022 023	26 18 5 32 46	12 11 11 8 10	.28 .22 .10 .33 .34	48 48 77 62 81	04 09 18 03	3 1.58 2 2.19 5 5.88 2 1.09 2 1.23	.01 .01 .03 .01	.05 .05 .03 .04 .07		23122	
550N 500 N 450H 12350H	1 1 1 1 1	11 25 34 10 7	15 11 6 8	65 76 83 64 53	.1 .1 .3 .1	22 20 22 11	9 10 10 7 6	296 428 470 334 189	2.30 2.34 2.31 1.86 2.01	5 3 12 8 4	5555	22222	12 9 8 8	8 8 11 9 5	NNNNN	22422	22222	19 19 24 18 16	.04 .05 .08 .07 .03	.067 .068 .089 .088 .067	21 23 18 23 33	12 12 14 10 12	.27 .32 .27 .25 .41	162 173 237 158 105	.10 .09 .12 .09 .05	4 3.16 2 2.83 3 3.27 2 2.37 7 1.72	.02 .02 .02 .02 .02	.07 .08 .08 .07		1 5 1 1 27	
200H 200H 200H 150H 100H		10 14 9 8 34	7 20 9 6 8	41 81 57 22 52	12-15	11 19 15 14 13	5 14 9 6 6	146 1899 285 97 235	1.81 2.37 1.81 1.56 2.56	4 10 11 2 12	5 5 5 5 5	ND ND ND ND	6 5 8 10 6	5 10 6 3 16	~~~~~	23224	24222	17 27 15 8 31	.03 .08 .04 .02 .15	.066 .194 .064 .019 .431	24 12 25 37 4	11 13 12 10 12	.29 .18 .30 .42 .10	97 155 114 75 134	07 14 05 20	2 1.83 3 3.41 2 1.83 2 1.00 3 6.10	.02 .02 .01 .01	.06 .07 .07 .07 .04	1	32123	
50N 00N 50S 1005 1505	1 1 1 1	5 15 9 9 4	2 18 15 7 2	28 33 44 64 66	21111	13 13 17 8 13	6 7 14 10 8	90 154 1075 1436 279	1.64 2.46 2.81 2.03 1.88	9 3 10 4 4	5 5 5 5	ND ND ND ND	9 4 12 9 10	4 50 10 5 5	NNNAN	32223	22222	11 20 23 17 14	.02 .35 .09 .03 .04	.035 .132 .363 .118 .083	34 6 16 31 33	11 12 13 11 13	.40 .23 .29 .23 .65	124 368 226 109 113	.03 .16 .10 .05	3 1.43 2 5.61 4 3.82 2 1.74 3 1.87	.01 .04 .02 .01	.05 .04 .06 .06 .07		1 1 1 1	
12005 12505 13505 13505 14005		9 12 3 21	16 4 7 7	44 65 36 58 71		18 13 13 14 18	11 6 7 7 12	104 276 115 128 361	3.03 2.31 1.82 2.14 2.12	533377	5 9 5 5	ND ND ND ND	9 11 12 13 10	11 5 3 4 10	222224	22222	22222	26 21 10 15 22	.08 .04 .02 .02 .06	103 .090 .028 .039 .067	20 26 40 37 12	15 12 9 11 11	.24 .21 .27 .26 .17	193 93 72 92 129	,0% ,0% ,03 ,04 ,13	2 3.55 4 2.32 2 1.30 2 2.22 2 4.20	.01 .01 .01 .01 .02	.08 .07 .05 .06	1 1 2 1	2 7 1 3	
α 450s Σ500s 450s 600s Σ650s	1 1 1 2	12 8 11 4 8	15 7 12 13 18	61 40 73 33 68		16 11 27 12 17	9 8 16 6 9	182 92 417 78 185	3.14 2.38 2.41 1.87 2.49	28762	55555	ND ND ND ND ND	99989	13 6 11 5 8		22222	2223	33 24 25 19 28	.10 .04 .06 .03 .05	.148 .051 .073 .063 .072	6 18 14 20 13	14 13 14 12 13	.12 .22 .25 .28 .20	86 89 158 66 135	16 07 13 14	2 6.52 2 2.59 2 3.90 3 2.34 4 3.81	50. 10. 20. 10. 20.	.04 .06 .07 .06 .07	19921	3 2 1 1 2	4 PPEND
750s 750s 800s 5.1-00 1-25	1 1 1 1	67554	11 17 12 5 2	54 68 66 39 35	.1 .1 .1 .1 .1 .2	14 17 12 14 13	8 10 9 6 7	416 687 496 162 85	2.03 2.16 2.17 1.96 1.40	345NN	5 5 5 5 5	2222 2222 2222 2222 2222 2222 2222 2222 2222	8 9 10 7 7	11 9 7 5 5	Navas	22322	22225	23 21 19 20 14	.06 .07 .05 .03	041 063 062 036 034	25 22 27 21 20	12 12 13 14 12	.26 .24 .27 .26 .25	124 145 164 84 73	10 10 06 07	2 2.64 2 3.36 2 2.53 2 2.33 2 1.61	.02 .01 .01 .01 .01	.07 .08 .08 .06 .04	99291	3 4 4 3 1	1 × 2
TANDARD C/AU-S	1 20	3 64	8 42	21 135	7.0	9 73	4 34	47	1.26	236	23 23	ND 7	8 39	3 53	17.0	2 14	2 18	10 58	.02	.023 .091	27 40	10 59	.27	40 174	.03	2 1.02 36 1.91	.01 .06	.04 .15	<u>.</u>	6 48	
-OM 	RIVE	ICP THIS - SA DI	• .50 LEAC NPLE NAY 2	U GRA H IS TYPE: 27 199	H SAN PARTI SOLL	AL FO	S DIG R HH AU* A REP	ORT	MAI	H SHL P LA C Y ACID (LED:	R HG H	HCL- BA TI H/AA AY	B H FROM	AND L 10 GN	INITE SAMP BI	D FOR	NA K	AND			.D.TC	OW LU	C.LEO	NG, J.	IS 3 WANG;	PPH.	D B.C	. Ass	AYERS		

TT.	Chapleau Res. Ltd. FILE # 91-1446																2	Pag	e 2		5.883											
IANPLE#	Ho ppm	Cu ppn	Pb ppm	Zn	A.G PEPP	Ni ppa	Co ppm	Hr: Ppm	Fe X	As ppn	U ppm	Au	Th ppm	Sr ppn	Cđ type	Sb ppn	B1 ppm	V ppm	Ca X	2	Le	Cr	Ng X	Ba ppm	rş X	B ppm	AL X	Na X	K	l PSP	Au* ppb	TAL
.1-75	1	8	8	34		12	6	110	2.21	5	5	ND	5	6	l a	3	2	2A	.04	162	16	12	.15	68	17	2	2.82	.01	.06			-61
1-100	1 1	6	2	30	1811	13	5	68	1.49	10.5	6	ND	8	ž	1803	ž	ž	15	.02	175	25		23	55	105	5	1.64	01	05	1121	5	1
1-125	1 1	8	16	49	184	13	8	128	2.48	1995	5	ND	7	7	1857	š	2	33	.05	078		13	14	81	1111	2	6.09	.02	.05		1	1
L1-150	1 1	10	13	36		19	8	80	2.38	2	ō	ND	ò	Ś	HEG!	5	5	27	.03	070	11	17	.16	47		2	3.64	.01	.05	6.SF	ž	
L1-175	1	3	2	19		10	4	+ 50	1.52	7	5	HD	7	3	12	ž	ź	13	.02	.051	22	10	.21	30	.04	ã.	1.15	.01	.04	. i	ŝ	i
L1-200	1 1	4	2	15		10	3	26	1.71	4	5	NO	7	4	5	12	2	16	.03	115	22	14	.16	53	-05	5	1.42	.01	.04		5	1
11-225	1	8	14	30	841	8	3	53	2.08	2. 2	9	HO	6	11	132	2	2	18	.10	111	14	17	.10	140	.07	3	1.58	.01	.07	2:::1	6	1
11-250	1	6	2	24		14	7	120	.99		5	HO	1	22	112	2	2	10	.17	.034	21	17	.23	355	.03	4	.87	.01	.04	1	5	1
L1-275	1	4	5	14	80 I	12	3	30	.68	2	5	NO	4	B	2012	2	6	6	.04	010	29	7	.19	95		2	.57	.01	.03		4	
L1-300	1	1	8	14		5	2	62	1.73	3	5	ND	6	3	.2	2	2	21	.02	.025	22	8	.11	39	07	2	.85	.01	.03		3	
STANDARD C/AU-S	20	59	42	135	7.3	69	32	1087	4.02	36	20	7	40	52	18.9	15	21	57	.50	.090	40	59	.87	177	.09	32	1.89	.06	.15	11	51	1