LOG NO: //- 01	RD.
ACTION:	
FILE NO:	

SUMMARY REPORT ON GEOLOGICAL/GEOCHEMICAL WORK ON THE

BARITE, BASIN, LUCKY JIM, STROHN, RED REEF

AND VON MINERAL CLAIMS
SKEENA MINING DIVISION

SUB-RECORDER RECEIVED

HAN 2 - 1996

M.R. # \$

VANCOUVER, B.C.

NTS 104 A/4, 103P/13

LONGITUDE; 55° 45' TO 56° 15' LATITUDE; 129° 40' TO 130° 00'

> ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY
GORDON L. WILSON, P. GEOL.
NICHOLSON AND ASSOCIATES NATURAL
RESOURCE DEVELOPMENT INC.

DATE: OCTOBER 30, 1990

ASSESSMENT REPORT

ASSESSMENT REPORT

TABLE OF CONTENTS

	<u>PA</u>	GE
SUI	MMARY	1
1.	INTRODUCTION	
	A. LOCATION AND ACCESS	5
	B. CLAIM STATUS	6
	C. PHYSIOGRAPHY AND CLIMATE	8
	D. HISTORY AND SUMMARY OF WORK COMPLETED	9
2.	TECHNICAL DATA AND INTERPRETATION	
	A. REGIONAL GEOLOGY	11
	B. PROPERTY GEOLOGY	14
	C. GEOCHEMICAL SAMPLING RESULTS	
	a. INTRODUCTION	24
	b. DISCUSSION	25
	E. CONCLUSIONS AND RECOMMENDATIONS	27
ST	ATEMENT OF COSTS APPENDIX	1
AS:	SAY CERTIFICATES APPENDIX	11
CE	RTIFICATE APPENDIX	111
CL	AIM RECORDS APPENDIX	1 V
242	MPIE DESCRIPTIONS	V

LIST OF FIGURES

1.	LOCATION MAP	REPORT BODY
2.	CLAIMS MAP	REPORT BODY
з.	REGIONAL GEOLOGY	REPORT BODY
4.	GENERAL STRATIGRAPHIC COLUMN, STEWART AREA	REPORT BODY
5.	VON, BARITE, STROHN CLAIMS COMPILATION MAP	MAP POCKET
6.	RED REEF CLAIMS COMPILATION MAP	MAP POCKET
7.	LUCKY JIM CLAIMS COMPILATION MAP	MAP POCKET
8.	BASIN CLAIMS COMPILATION MAP	MAP POCKET

PAGE

SUMMARY

The Teuton Resources Ltd. group of properties are located within the Stewart Mining Camp which has been a significant producer of gold, silver, lead, zinc, copper and molybdenum.

The Properties are all located within a 50 km. radius of the town of Stewart and consist of contiguous or isolated four-post (modified grid) claims, excepting the Lucky Jim claims which are under the old two-post system. An examination of individual records by the writer, indicated that minimal grouping has been completed and that many of the claims were still recorded in the original locators names. For the purpose of this report, legal title of all properties will be considered to be that of Teuton Resources Ltd.

Four of the properties examined contain significant precious and base metal mineralization hosted by narrow, steep dipping quartz veins. They are the Basin, Barite, Lucky Jim and Red Reef. Two of these (the Basin and Red Reef) have had limited production or development, which has demonstrated strike and dip continuity.

The Lucky Jim and particularly the Barite, contain several prominent sulphide occurrences within volcanogenic settings. On both properties, well mineralized and altered zones were defined on surface outcrops having suitable widths and open along strike.

Most of the massive sulphide showings and quartz-carbonate veins noted on the above properties are similar, in terms of widths and mineralization, to the narrow veins and massive sulphide lenses and zones found and mined at the nearby past producers. The vein structures at several of these mines had remarkable lateral and dip continuity. These mines were successful operations, especially the Silbak Premier Mine which produced approximately 1.8 million ounces of gold and 41 million ounces of silver.

This similarity between the Barite, Lucky Jim and Basin mineral zones and those developed at the nearby mines, together with wide spread alteration associated with the principal sulphide zones, indicates considerable exploration potential.

A two part exploration program is recommended for the Teuton/Stewart properties for a total cost of \$150.000.00. Both parts may run concurrently.

Part 1 will consist of:

- i) soil/till sampling over main zones of interest; Barite, Von, Basin and Lucky Jim
- ii) Magnetometer and VLF-E16 surveying over main zones of interest with the objective of extending the zones of mineralization on the Barite, Basin and Lucky Jim claims;

- iii) Detailed geological mapping and prospecting of established grid over accessible portion of the properties: Lucky Jim, Barite, Basin, Red Reef, Strohn and Von
 - iv) Deep rock trenching and overburden blast trenching to extend outcrop areas of interest and facilitate channel sampling of existing structures and as a follow up to the geochemical and geophysical surveys: Lucky Jim, Red Reef, Barite, Von and Basin.

Part 2 is designed to explore the potential of the balance of the properties not yet examined:

- i) Extended soil/till sampling over the balance of the Basin,
 Lucky Jim and Barite claim groups;
- ii) Extended Magnetometer and EM surveying over the entire Barite, Basin and Lucky Jim claims;
- iii) Geological Mapping and prospecting of all claim groups;
- iv) Rock geochemical sampling of generated targets;

INTRODUCTION

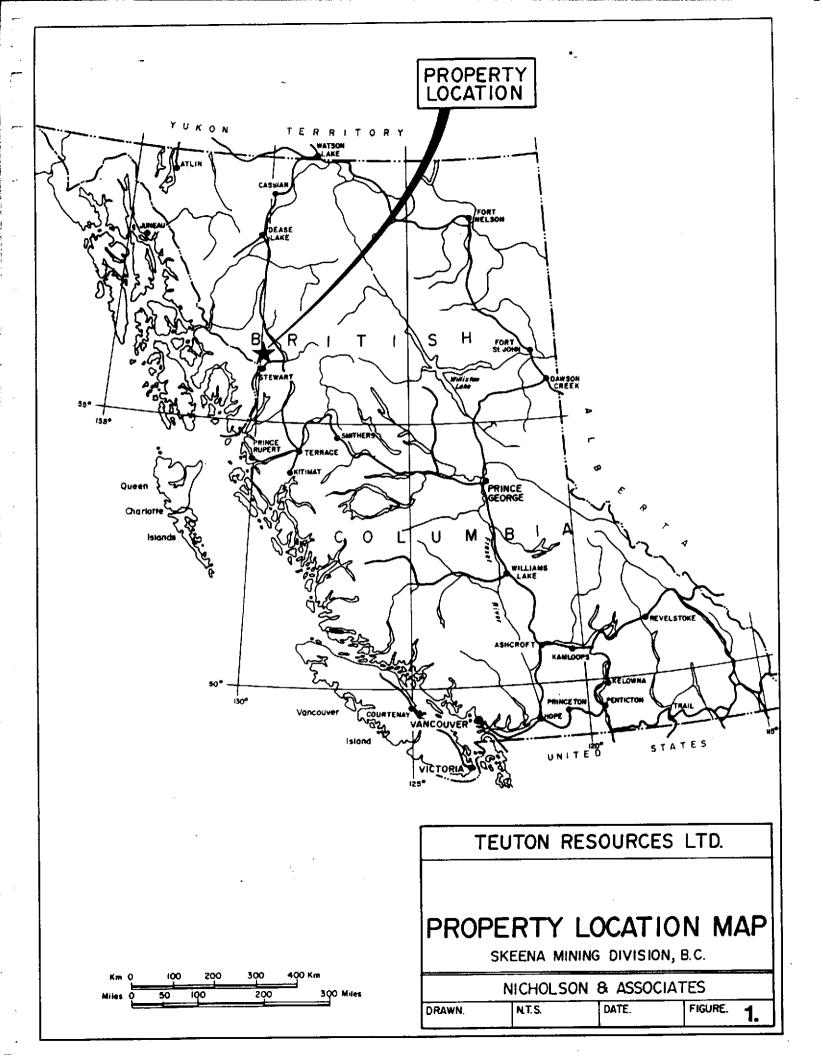
Nicholson and Associates was retained by Teuton Resources

Ltd. to carry out a geological/geochemical evaluation of six

mineral properties and to make recommendations as to further

work.

Initial ground work carried out by the crew consisted mainly of reconnaissance geochemical silt surveying, prospecting and limited geological mapping. The initial results were successful in locating mineralization on several properties and a more detailed mapping, prospecting and rock sampling program was undertaken which resulted in the location of a prominent epithermal vein system on the Barite/Von claims.


During the months of September and October, the Nicholson and Associates crew, spent a total of 21 days on the project. Field time was divided up according to the individual property requirements and was at times, interrupted due to poor weather conditions and an increasing accumulation of snow. However, the program of prospecting and geochemical sampling did return favourable results. Most notable was the newly discovered showing covered in part, by the Barite 2 and Von 2 mineral claims which returned values of up to .121 oz/ton Av (12.1 oz/ton Ag) and the Red Reef occurrence which had values up to 1.334 oz/ton Av (17.50 oz/ton Ag)

A total of \$39,120.60 was expended on the Project Group.

LOCATION AND ACCESS

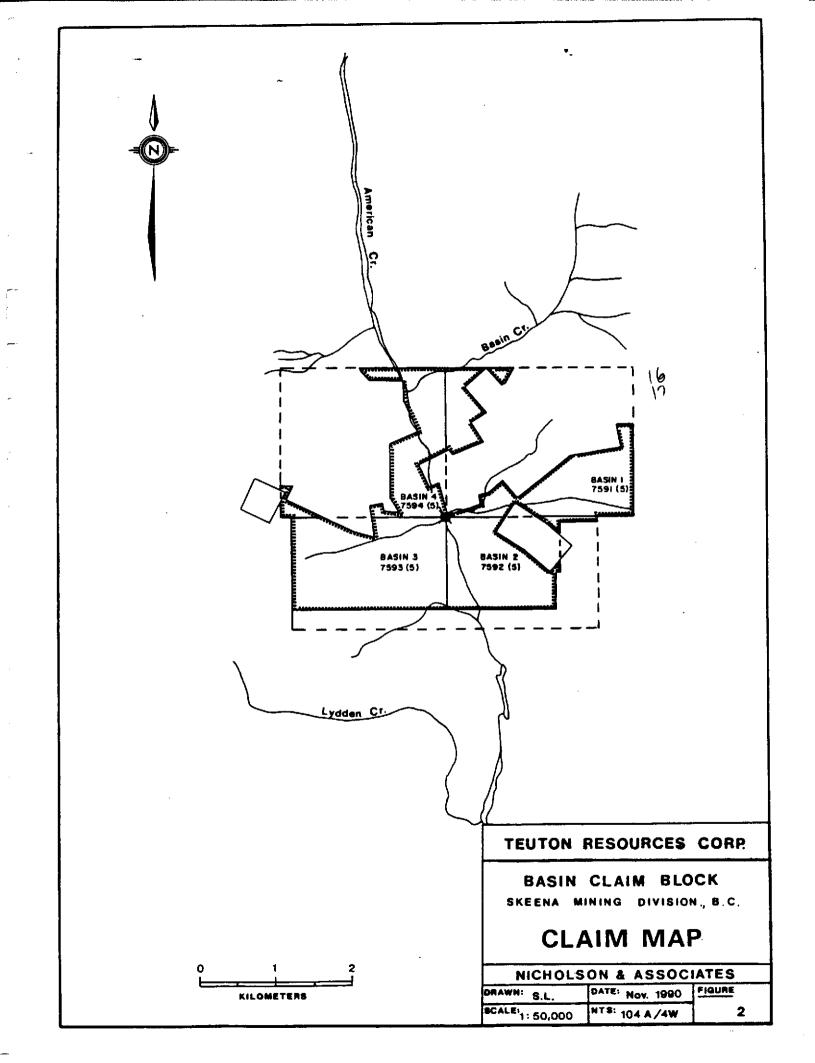
All claims examined under the project lie within a short distance north of the townsite of Stewart. The area is traversed by the Stewart Highway 37A (Figure 1).

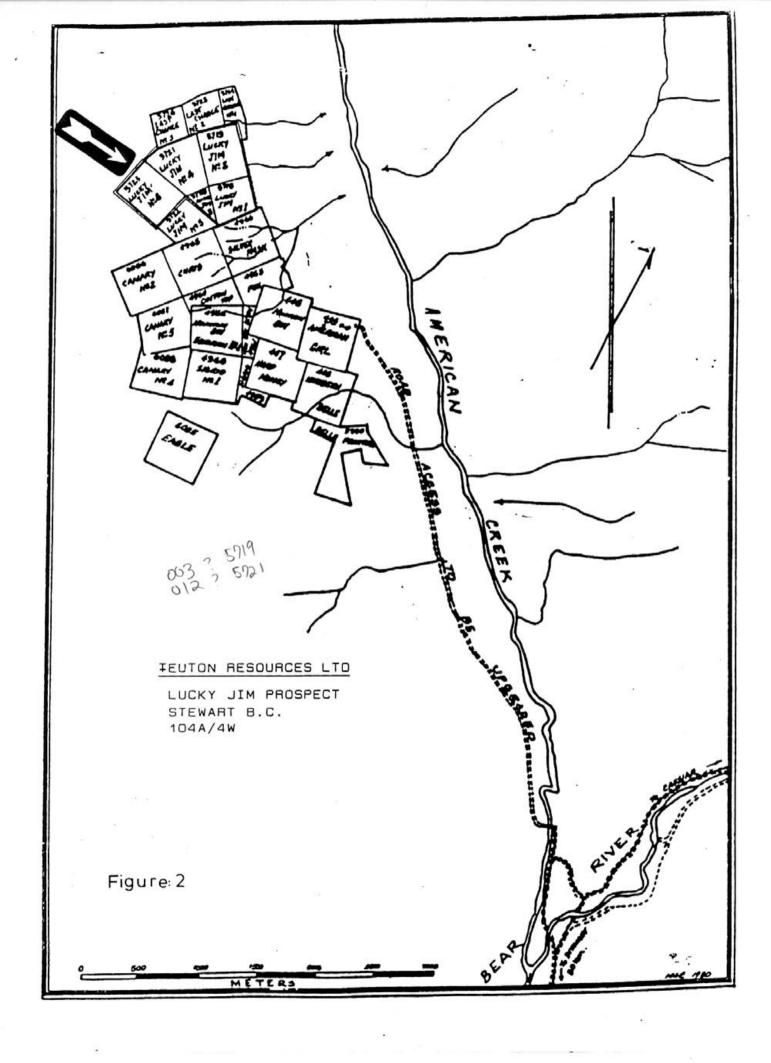
The Von, Barite, Strohn, Horn, Basin, Red Reef and Lucky Jim claim blocks are all situated within the confines of longitude 129°40' to 13°0' and latitudes 55°45' to 56°15'. The Von, Barite, Strohn, Horn, Basin and Lucky Jim groups are situated on NTS 104A/4 while the Red Reef property is situated in NTS 103°P/13. Most of the claim blocks are accessed only by helicopter from Stewart. The exception is the Strohn 1-4 claims which may be accessed by the Stewart Highway. In this case, only the lower reaches of the claim is accessible by road.

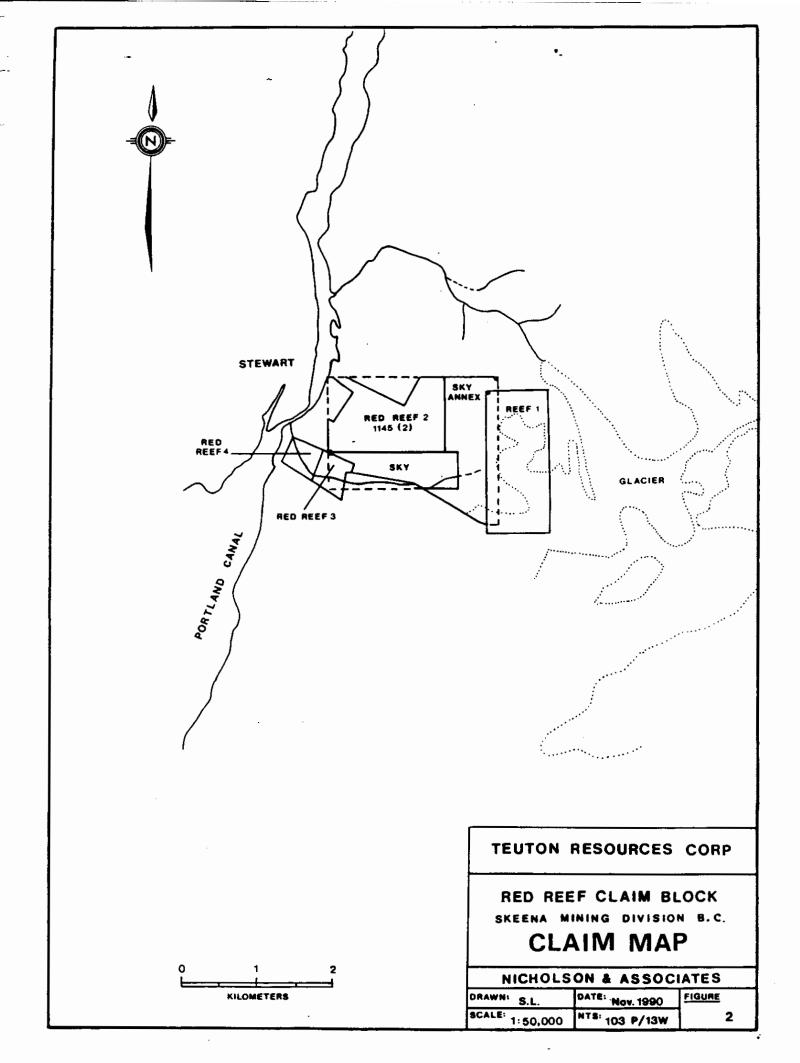
CLAIM STATUS

The Teuton project consisted of 30 mining claims in the Stewart Camp, Skeena Mining Division. The Von, Barite, Strohn and Horn claims located near Bear River Glacier, are all contiguous and were staked in accordance with the new modified grid system. The Basin claims are situated on American Creek, are also contiguous and under the modified grid system of staking. Two hundred metres northwest of the Basin 4 claim are the Lucky Jim 1-5 two-post claims. These are not contiguous with the Basin claims but are grouped.


All claim groups are completely surrounded by claims belonging to other interests.


Nicholson and Associates has only completed a basic examination of title to the claims but has not substantiated their physical boundaries and accordingly, expresses no opinion as to the validity of title and property description. As well, some of the claims examined under the project are subject to option agreements. Only preliminary information was made available to the writer, therefore, no opinion is expressed as to their status.


The claim status is as follows:


CLAIM	NO. OF	UNITS RI	ECORD #	M.D.	EXPIRY DATE
Von 1	20		8111	Skeena	Oct. 5, 1991
Von 2	20		8112	Skeena	Oct. 5, 1991
Barite 1	20		8107	Skeena	Oct. 5, 1991
Barite 2	- 20		8108	Skeena	Oct. 5, 1991
Barite 3	20		8109	Skeena	Oct. 5, 1991
Barite 4	20		8110	Skeena	Oct. 5, 1991
Strohn 1	20		8113	Skeena	Oct. 5, 1991
Strohn 2	20		8114	Skeena	Oct. 5, 1991
Strohn 3	20		8115	Skeena	Oct. 5, 1991
Strohn 4	20		8116	Skeena	Oct. 5, 1991
Basin 1	20		7591	Skeena	May 5, 1992
Basin 2	12		7592	Skeena	May 5, 1992
Basin 3	12		7593	Skeena	May 5, 1992
Basin 4	20		7594	Skeena	May 5, 1992
Lucky Jim	1 1	(claim)	8518	Skeena	March 22, 1991
Lucky Jim 2	2 1	(fractional claim)	8517	Skeena	March 22, 1991
Lucky Jim	3 1	(claim)	8516	Skeena	March 22, 1991
Lucky Jim	4 1	(claim)	8515	Skeena	March 22, 1991
Lucky Jim (i	(claim)	8513	Skeena	March 22, 1991
Red Reef	6		1145	Skeena	Feb. 19, 1992

^{*} After filing the 1990 work for assessment purposes.

PHYSIOGRAPH AND CLIMATE

The Teuton Claim Groups are situated within the inter coastal mountain belt of the Coast Mountain Batholith Complex. The property elevations vary from 700 ft. in the valleys, to 6000 ft. along the ridges. All claims have varying degrees of permanent snow and glacial ice, with the exception of the Red Reef claims which are clear. The valley walls are steep and occasionally hazardous to traverse. The valley bottoms and walls are covered in part with a veneer of unconsolidated glacial debris ranging in thickness from several centimetres to three metres.

Water is very plentiful on all claims in the form of ground water or from glacial melting. Vegetation ranges from densely forested valley bottoms to tree-less grassy alpine slopes.

Climatically this area is under the influence of the Coastal weather patterns. As a result, the weather varies considerably from warm summer days to cool, very wet fall conditions to an extremely heavy snow cover (15 metres) in the winter. The properties are therefore only workable from late June to mid September.

HISTORY AND SUMMARY OF WORK COMPLETED

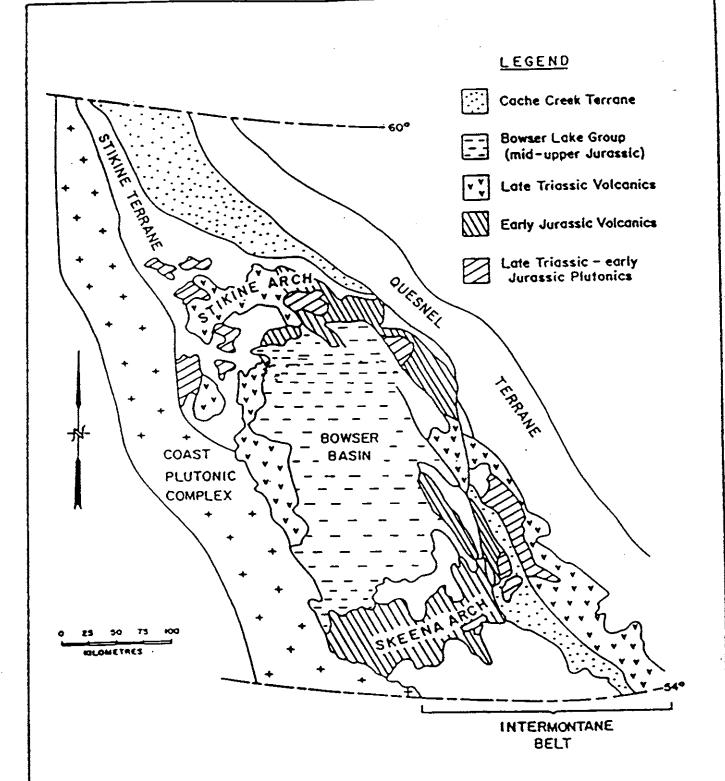
The Stewart Mining Camp, first explored during the late 1800's, has seen almost continuous exploration since the 1960's. Prior to World War 11, several small precious metal mines operated intermittently. The largest producer was the Silbak Premier Mine which produced 1.8 million ounces of gold and 41 million ounces of silver. The Big Missouri Mine, which operated from 1927 to 1942 produced 768,936 tonnes of ore averaging 2.4 g/t gold and 2.1 g/t silver. Although these two mines were the most successful out of all the operations, collectively, the various mines have produced substantial quantities of gold ore and made Stewart on of the major gold-silver districts in British Columbia.

Following World War 11, exploration was re-concentrated on large tonnage base metal deposits. Only the Granduc Mine reached commercial production totalling 15.9 million tonnes averaging 1.25% Cu,8.29 g/t Ag and 0.32 g/t Au. Exploration in the 1970's shifted back to precious metals and several deposits have been re-evaluated, resulting in the definition of significant additional gold/silver ore reserves.

Numerous companies are currently exploring for precious and base metal deposits in the area. Much of the activity is still centred around the start-up of Premier Mine (Westmin Mines Ltd.).

Westmin also continued to explore around the Silbak Premier and Big Missouri properties. Tenajon Resources Corp. continued drifting and exploration drilling on the 35, West Kansas and Kansas zones on their Silver Butte property situated just southwest of the Big Missouri. North of Stewart, work on the Korri-Hill property continues and recently a head frame and hoist have been installed in preparation of shaft sinking to explore and develop both massive sulphide zones. East of Stewart, Bond Gold continues to explore both gold discoveries made in 1989.

The Teuton properties have for the most part, seen some exploration activity. Although records of such work are incomplete, there is evidence of past stream sediment, prospecting and blast trenching. This work most likely occurred in recent history on most of the Claims (1970-80's). Properties which enclose prominent showings and occurrences covered by the old Crown Granted Claims show evidence of extensive surface exploration in terms of pit and trench development. This work was clearly a spillover on to exploration lands outside of the Crown Granted Claim.


The 1990 field program represents Teuton's first exploration effort on all claims. Work consisted of reconnaissance stream sediment sampling, geological mapping, rock geochemical sampling and prospecting.

REGIONAL GEOLOGY

The Salmon River area, includes part of the contact of the Eastern Coast Plutonic complex with the west central margin of re successor Bowser Basin. Geologically and economically, the country rocks form the well defined Stewart Complex. Sedimentary volcanic and metamorphic rocks bordering the Plutonic Complex, range in age from Middle Triassic to Quaternary.

Within the Stewart Complex, Upper Triassic rocks are found along the Unuk River section only. The Upper Triassic strata are predominantly green epiclastic volcanic units. These include volcanic breccias, sandstones and siltstone which form prominent horizons near the top of the sequence. This succession has a thickness of approximately 900 metres.

Triassic rocks are overlain by sedimentary volcanic and green/grey epiclastic volcanic rocks of the Jurassic Hazelton Group. The contact is generally disconformable to unconformable. All Jurassic rocks in the area are included in the Hazelton Group, which is comprised of four major lithostratigraphic divisions; one Early, two Middle and one Late Jurassic formation. The Lower Hazelton is mainly a volcaniclastic sequence which is characterized by extensive pillow volcanic members and marble lenses. The thick Triassic and Lower Jurassic Hazelton sequences are lithologically similar and difficult to separate without

REGIONAL GEOLOGY BOWSER BASIN NW BRITISH COLUMBIA

(Outline of terrane boundaries and major rock groups of the Jurassic and Triassic — modified from Thomson, 1985).

structural and fossil data. The Lower Jurassic units extend from the Unuk River, south to Alice Arm. These rocks overlie the Lower Hazelton and Triassic with angular discordance (E. Grove 1986). The lower Middle Jurassic Betty Creek Formation consists of a thick succession of red-green epiclastic volcanic rocks that lie unconformably on the lower Jurassic rocks.

The Betty Creek Formation is overlain conformably by the Upper Middle Jurassic, bedded Salmon River Formation which is comprised of grey-green siltstones, sandstone, greywacke and minor volcanic units. Overlying the Salmon River Formation is the marine Nass River Formation which outcrops extensively in the western Bowser Basin (Grove, 1971). These rocks are in turn overlain by the thick marine to continental sedimentary rocks of Tertiary Skeena Group, elsewhere in the basin.

Small Quaternary volcanic piles are scattered throughout the Stewart complex. The west side of the Salmon River area is dominated by the Coastal Plutonic complex of Middle Jurassic and Tertiary age. Granodicrite is the most common rock type. Extensive dyke systems are prominent features throughout the Stewart Complex, ranging from Jurassic to Tertiary in age.

	HAZEL	TON GROUP	
UNUK RIVER FORMATION	BETTY CREEK	SALMON RIVER FORMATION	NASS FORMATION
LOWER JURASSIC	MJBC .	MIDDLE JURASSIC A	UPPERJURASSIC (
Volcanic conglomerates, sandstones, siltstones and breccias - same red, mainly green. No fossils or pillow volcanics at Stewart Minor metamorphosed coaly material Vertical Scale 300 SCALE-METRES	Betty Creek Sandstone and Conglomerate Volcanic conglomerates, sandstones and siltstones (red and green) Areal unconformity		Coaly logs [Upper Oxfordian or Lawer Kimmeridgian Lower Eldorado Group – Taseko Lakes [Upper Division A – Vancouver Island Siltstone, greywackes, some conglomerate, scant argillite, volcanics [F) (Buchia Concentrica Sowerby) (Buchia Branni Roullier)

Figure 4. General stratigraphic column, Stewart area.

Deformational metamorphism is common and formed cataclasite and prominent shear zones that are restricted to the more competent Triassic and Lower Jurassic rocks. The shear zones are characterized by extensive, weathered alteration zones.

PROPERTY GEOLOGY

A) VON CLAIMS

The Von claims are largely covered by glacial ice and debris resulting in very little bedrock exposure. What was examined, indicates that the northwesterly-trending contact between southerly dipping beds of the Betty Creek Formation (mJBC) volcanic sediments, underlain to the south by the northerly, dipping Unuk River LJUR volcanic sediments, passes through the key claims of this property.

In the northern part of Von 2, the Betty Creek formation is characterized by planer bedded purple to green volcanic sandstone and siltstone with sporadic, intercalated andesitic volcanic flows, chert and minor carbonate lenses. The prominent sandstone, which underlies the purple siltstone on the west side of this ridge extends easterly into Von 1, where it lenses out. The green siltstone unit continues eastward along the upper part of the ridge to the eastern boundary of Von 1. All along the ridge, the beds are easily traceable and unconformably overlie the Unuk River sedimentary units. A cherty transition zone marks the contact between both formations. The Unuk River rocks are dominated by green-grey coloured, argillaceous siltstones and lithic greywackes, intercalated with coarsely layered volcanic sandstone and tuff. The sequence also includes Pyritic, propylitized and deformed amygdaloidal andesitic flows and lenses

which are irregularly intercalated with the siltstones. Close to the contact, thin lenticular rhyodacite flows inter-finger within the more thinly bedded siltstone sequence which in turn is unconformably overlain by the Betty Creek sediments.

Rocks of the Betty Creek Formation show weak foliation, minor folding and some lineation. On the Von claims, the strata blanket the folded and faulted Unuk River Sequence. As they fill in the old erosional surface of the Unuk River, they represent irregular, erosional remnants displaying very slight warping.

Structure within both formations is generally limited to minor local folding and weak foliation. The one exception is a northerly trending structural zone situated in the northwest corner of Von 2. Here, a strong fracture zone has developed, oblique to the Cullen Creek Fault/Shear Zone. The Cullen Creek Valley represents the main shear zone and appears to have been a corridor of major non-compressive stress. The fractures which developed peripheral to this zone appear to have remained open during a subsequent hydrothermal event. The zone is characterized by strong vein development, and moderate sulphidation and attendant silicification. Well developed red alteration is also present. Although only a small portion of the zone was examined there is evidence of major dip slip and strike slip movement typical of non-compressive stress regimes, which could give rise

to large, throughgoing open conduits. The fractures which host the mineralization (semi-massive galena, chalcopyrite, pyrite) appear to be semi-continuous, although somewhat narrow in places. What is important here as well, is the establishment of gold and silver within the system, as evidenced by channel samples Bar-6WR-17 and 18, collected over a section of the veining.

B) BARITE CLAIMS

Geological mapping was carried out on the Barite claims primarily on a need to know basis related to the mineral showing identified primarily on the Von 2 claim. The reason for this action was due to the initial discovery of a heavy concentration of massive pyrite-pyrrhotite-chalcopyrite boulders all along Cullen Creek. The source of these boulders was later found to be the fracture zone on the Von 2 claim. As much of the Barite claims are snow and ice covered, examinations were restricted to major bedrock exposures.

The Barite claims are entirely underlain by rocks of the lower Jurassic, Unuk River formation, predominately the upper member, consisting of reddish coloured, thinly layered argillaceous siltstones with intercalated pyritic (to 10%) and propylitized fine-grained andesitic flows. Silicification is generally minor. Here, the formation is weakly folded but extensively faulted and sheared due to the influence of the

Cullen Creek fault which transects the eastern portion of the property. On Barite 2, considerable silicified float was located along the tributary to Cullen Creek, mineralized with disseminated pyrite. Higher up the creek, narrow gossanous zones are present. These appear to be developed along a north-westerly trending fracture zone. There is some evidence of invasion of quartz along singular fractures and these zones are bordered by variably propylitized rocks which contain in excess of 10% pyrite. Some of the wallrocks are silicified and weak vein development was noted in places. Mineralization associated with these veins is mainly disseminated pyrite and minor malachite staining.

STROHN CLAIMS

The Strohn Group was traversed and sampled on a regional scale (Figure). The claim group straddles the Strohn Creek Valley and was found to be underlain by two main rock types; sedimentary and volcanic.

The sedimentary package observed on the property consists of fine to medium grained, grey to black interbedded argillites and siltstones of the Betty Creek Formation. Minor quartz veins and graphitic sections occur throughout and generally display no preferred orientation. The argillites are northerly dipping and are thinly bedded. This package was found to exist mainly on the northern flank of Strohn Mountain.

The volcanic rock package consists of fine to medium grained andesitic lapilli and lithic tuffs, greenish-grey in colour, with interbedded grey andesite flows. Both units show siliceous alteration and contain distinctive pyritic horizons throughout. The volcanic succession is found throughout the balance of the property and downdropped relative to the southern sedimentary succession. Prominent gossanous zones within the volcanics occur north of Strohn Creek and are mainly associated with quartz carbonate veining carrying minor disseminated pyrite.

Structural features noted on the property include a number of high angle fracture sets and shears striking 020^9-030^9 . Splay faulting occurs north of Strohn Lake trending 130^9 , with associated fracture shear zones characterized by strong gossan development.

Sulphide mineralization on the group was noted within these fracture/shear zones only. The most dominant sulphide is fine grained pyrite which occurs along fractures as narrow veinlets.

D) RED REEF CLAIMS

The Red Reef claim is underlain by andesitic lapilli and lithic tuff, with thinly interbedded grey argillite belonging to the Upper Unuk River Formation. The rocks are well bedded and range from marcon to light grey in colour and are generally very siliceous and pyritic. Cataclasite was noted on one traverse, showing only in isolated outcrops, the extent of which was not defined.

Structural features noted on the property included a series of high angle fracture sets and shears trending 125° dipping 75°S. The most prominent set hosts the "Oral M" gold bearing quartz veins which are present on the Red Reef and were previously developed by an exploration adit along the 480 foot level. Detailed examination of the underground workings and

surface stripping indicate the main structure consists of a series of silicified open and closed fractures and quartz lenses hosted by a highly oxidized shear zone. Sulphide mineralization is erratic, consisting of disseminated to semi-massive pyrite, galena and chalcopyrite. The most common oxide along the structure is malachite staining and to a lesser extent, hydrozincite staining. Previous sampling (1937) produced gold values ranging from .026 to .27 oz/ton underground and .05 to .36 oz/ton on surface (sketch map - Oral 17 Group, 1937). Although gold values are sporadic, previous work has demonstrated sufficient lateral and down dip continuity on the main gold bearing structure to allow for crude tonnage and grade calculations, currently reported to be 11,365 tons averaging 0.196 oz. gold and 0.62 oz. silver. Although no visible gold has as yet been found on the property, the presence of gold and silver in assays collected from the structure during this program from surface exposures, clearly reaffirm the presence of the elements within the system. The likely correlation for the gold is with the chalcopyrite, as proven by the higher grades along the richer copper sections. Silver values are probably associated with tetrahedrite contained within the galena. Galena rich sections correspond directly with the chalcopyrite rich sections and thus explain the elevated gold/silver grades through the well mineralized portions of the structure.

E) LUCKY JIM CLAIMS

The north-trending contact between the Lower Jurassic Unuk River Formation and the Middle Jurassic Betty Creek Formation passes through the property. Unuk River Formational rocks consist of red to green, fine grained to porphyritic andesites with lithic tuffs and lithic tuff units interlaminated within the andesite. The andesites are the primary host rocks of the veins located on the Lucky Jim during the program. Overlying the Unuk River Formation is the Betty Creek Formation, consisting of red to green volcanic siltstone, well bedded and dipping to the west from $10^{0}-45^{0}$.

The property is extensively faulted with two prominent trends being 1) the high angle block faults roughly perpendicular to the American Creek valley and 2) the steep relaxation faults parallel to the slopes along the valley.

On the Lucky Jim Claims, a total on 5 mineralized veins have been discovered to date. They vary in width from 12 to 30 feet and are mineralized with variable amounts of chalcopyrite, tetrahedrite and galena. None of the showings are well documented, however Mathew (1942) mentions the existence of a strong copper mineralized vein on the Lucky Jim No. 3 claim and a silver-lead-zinc vein on the Lucky Jim No. 2 claim. The later vein, situated at 3000' in elevation, is reported to be the

lowest in elevation of the five presently know. Sampling carried out on this structure in 1942 returned values of 93.25 oz Ag, Nil Au, .97% Zn, .31%P6, 2.14% Cu. over 5 ft. One part of this vein was located and resampled in October 1990, returning values of up to .244 oz Au, 1.01 oz Ag, Nil Cu, 8.14% P6 and 19.91% Zn. over one metre sample lengths. The vein is hosted by a 12 foot wide zone of intense fracturing and shearing, infilled and in part replaced by quartz, calcite and barite. Disseminated to semimassive galena, chalcopyrite and minor tetrahedrite mineralization occurs along narrow veins and quartz seams.

The vein structure situated on the Lucky Jim No. 3 was located but not mapped or sampled due to fresh snowfall. The vein is apparently exposed by a series of deep rock trenches over a strike length of 900 feet on the claim. According to previous reports, the structure is open to the northwest and has been exposed by trenching and overburden stripping over an overall strike length of 3500 feet from the Mountain Boy fractional claim to the south, to the Lucky Jim No. 3 claim, within this group. According to Matthews (1942), the vein system strikes at 1170 through the claim and consists of a 13 feet wide "silicified replacement zone" hosting a series of narrow quartz veins. Chalcopyrite, bornite and minor galena is reported along the veins.

Three other veins are reported to be on the property, carrying pyrite and galena however, the location of these is not known.

F) BASIN CLAIMS

The local geology of the property was mapped by A. Roberts in 1974 for Van Sea Resources Ltd. Roberts shows the area to be entirely underlain by the volcaniclastics of the Lower Jurassic Unuk River Formation. The rocks are described as green andesitic crystal and lithic tuffs, generally well bedded, siliceous and weakly pyritic. According to Roberts, these rocks have been broken and sheared and the shears and fractures replaced and infilled with vein material. The Basin Claims enclose a number of Crown Granted claims which cover important precious/base metal bearing veins of this type. During the 1990 program, one structure was located in the extreme north-east corner of the Basin 1 mineral claim. Here, a silicified fracture/shear zone, 5.5. feet wide trends 153° and dips 72° west. The structure is traceable over a strike length of 650 feet. Fissure type quartzbreccia veins up to 1.5 feet wide and irregular quartz lenses are present throughout and are variably mineralized with galena, chalcopyrite and minor pyrite. Grad samples collected from several mineralized sections returned strong silver values (up to 15.89 oz/ton) but low gold and lead/zinc values.

GEOCHEMICAL SAMPLING RESULTS

During the period of September 26 to October 11, 1990, a total of 127 rock and 37 silt samples were collected by the crew on the various claim groups.

Silt samples were randomly collected from creeks on the property and in some cases over 50 metre intervals. The majority of samples were collected in Kraft bags and submitted to Eco-Tech Laboratories Ltd. in Kamloops, B.C.

Rock samples were collected through both random and systematic sampling procedures. Detailed sampling was carried out on all workings and hand stripped areas of interest. These rock samples were also submitted to Eco-Tech Labs for analysis.

All samples were analyzed for 30 elements - Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, P6, Sb, Sn, Sr, Ti, U, V, W, Y, Zn. by inductively coupled plasma analyzer (ICP) (See Appendix 11 for Analytical Procedures). Twenty five samples were also analyzed by fire assay and atomic absorption. Results for each silt and rock are plotted on the Figures: 5 - 8 in the Map Pocket.

ROCK GEOCHEMISTRY

sample results were encouraging on several The rock properties. On the Red Reef Claim, encouraging results were obtained from samples collected in an area of inferred strike length of the main vein structure. The most notable of these was sample GWR-4, a chip sample collected from the vein in outcrop which returned values of 0.201 oz Au, 3.35 oz Ag and 3.60% Cu. This sample was collected approximately 200 metres along strike from the last developed trench. Approximately 210 metres to the west, the crew located a narrow silicified shear zone, carrying disseminated pyrite mineralization. A grab sample (GWR-5), returned a high silver value (17.50 oz Ag) but nil gold, copper, lead or zinc. Samples GWR-1 and DLR-3 were collected from stripped sections of the main vein and returned values of .167 oz Au, 1.20 oz Ag and 1.21% Cu and 1.334 oz Au, 2.63 oz Ag and 9.27% Cu respectively. Both were continuous chip samples over 1.5 and 1.0 metre intervals and contained galena (5%) and chalcopyrite (3%) mineralized quartz vein material.

On the Lucky Jim claims, anomalous values were returned in gold, silver, lead, and zinc from samples taken from a silicified shear zone, hosting a series of sub-parallel veins containing copper/lead/zinc mineralization. Chip samples taken over the structure returned anomalous values in gold (<0.244 oz), silver (1.01 oz), lead (8.14%) and zinc (19.91%). Other samples taken from the same area also returned anomalous values in base metals. True width of the structure is estimated at 10 feet.

SILT GEOCHEMISTRY

A total of 38 silt samples were obtained from most major tributaries on the properties (Figures 5-8). The initial plan was to sample creeks at 500m so that anomalies with low dispersion would not go undetected. this proved impossible since most creeks became to steep to negotiate.

The silt sample results were generally low in most elements. Few anomalous values were obtained, except for zinc and lead for which some anomalous values were obtained. The generally low results were due in part to the immature nature of the streams in the area.

CONCLUSIONS AND RECOMMENDATIONS

The occurrence of highly anomalous values in silver, gold, copper, lead, zinc, mercury, antimony and barium in the mineralized zones on the Barite, Von, Lucky Jim, Red Reef and Basin claims warrants detailed geological, geochemical and geophysical follow-up. The emphasis on the brief program conducted in 1990 was on a limited regional sampling program of the property. Several accessible gossans and major stream drainage were sampled. It should be stressed however, that the 1990 geochemical program was designed to spot-check drainages and outcrops on the various properties and by no means represents a comprehensive, systematic approach to the evaluation of these claims.

The result of this program is the delineation of several mineralized trends on five of the Teuton Claim Blocks. In each case, the mineralization is associated with quartz fissure veins similar to those found at successful nearby operations.

A follow-up program of detailed geological mapping accompanied by extensive geochemical sampling is strongly recommended on all properties. Grid sampling of both soils and outcrop could delineate an anomalous to highly anomalous mineralized zone. A geophysical program would be invaluable to determine if these mineralized trends extended under the icefield and/or the bounding ridges.

A ground geophysical program could be initiated in the spring, followed by a thorough geological and geochemical program. Such a program would allow sufficient time in the summer to permit a brief interval of drilling if warranted, during the latter part of the summer to determine the extent of any mineralized zone located.

REFERENCES

- Alldrick, D.J., Britton, J.M. and Webster, I.C.L. (1989): Unuk

 Map Area (104 B/7E, 8W, 9W, 10E). B.C. Ministry of Energy,

 Mines and Petroleum Resources, Geological Fieldwork 1988,

 Paper 1989 1, pages 241 250
- Cicci, M., Currie, G., Semeniuk, S. (1990): Stikine Arch Canadas's golden Triangle; Private Investor Report for
 L.O.M. Western Securities Ltd.
- Grove, E.W. (1971): Geology and Mineral Deposits of the Unuk
 River-Salmon River-anyox Area, B.C. Ministry of Energy,
 Mines and Petroleum Resources, Bulletin 63, 152 pages
- Grove, E.W. (1987): Geology and Mineral Deposits of the Unuk
 River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR

APPENDIX 1

STATEMENT OF COSTS

FOR TEUTON RESOURCES CORP.

PROJECT: VON

TOR TEOTOR RESCORCES COM:
PERSONNEL 15 man days @ \$240/day
HELICOPTER 26 hours @ \$713.50/hr (fuel included) 1,855.10
ROOM AND BOARD 8 man days @ \$97.72/day
<pre>VEHICLE @ \$1,350/month/7 days/p. diem \$50</pre>
FIELD SUPPLIES 16 days @ \$20/man/day
SAMPLES 11 Rock @ \$20/sample
MOB./DEMOB
OFFICE
MISCELLANEOUS 1. RADIO
TOTAL TO DATE

PROJECT: BARITE FOR TEUTON RESOURCES CORP.

PERSONNEL 2 man days @ \$240/day	
HELICOPTER 1.9 hours @ \$713.50/hr (fuel included)	1,355.65
ROOM AND BOARD 4 man days @ \$97.72/day	390.88
VEHICLE @ \$1,350/month/2 days/p. diem \$50	100.00
FIELD SUPPLIES 4 days @ \$20/man/day	80.00
SAMPLES 23 Rock @ \$20/sample	460.00
MOB./DEMOB	511.75
OFF1CE	250.00
MISCELLANEOUS 1. RADIO - 2 DAYS @ 2 DAYS X \$8	
TOTAL TO DATE	\$4,709.66

PROJECT: RED REEF FOR TEUTON RESOURCES CORP.

PERSONNEL 1 man days @ \$240/day	240.00
HELICOPTER .4 hours @ \$713.50/hr (fuel included)	285.40
ROOM AND BOARD 2 man days @ \$97.72/day	195.44
<pre>VEHICLE @ \$1,350/months/p. diem \$50</pre>	50.00
FIELD SUPPLIES 2 days @ \$20/man/day	40.00
SAMPLES 11 Rock @ \$20/sample	220.00
MOB./DEMOB	511.75
OFFICE	250.00
MISCELLANEOUS 1. DRAFTING MAPS	16.00 62.05 35.33
TOTAL TO DATE	,691.89

PROJECT: LUCKY JIM	FOR	TEUTON	RESOUF	RCES CORP.
PERSONNEL 2 man days @ \$240/day			, \$	480.00
HELICOPTER .6 hours @ \$713.50/hr (fuel include	d) .			428.10
ROOM AND BOARD 2 man days @ \$97.72/day				195.44
FIELD SUPPLIES 2 days @ \$20/man/day				40.00
SAMPLES 16 Rock @ \$20/sample				320.00
MOB./DEMOB			• •	511.75
OFFICE				250.00
MISCELLANEOUS 1. FUEL & OIL	· ·		· ·	62.05 35.33
TOTAL TO DATE			. \$2,	,664.41

PROJECT: STROHN	FOR TEUTON RESOURCES CORP.
PERSONNEL 2 man days @ \$240/day 1 man day @ \$200/day	
HELICOPTER 4.5 hours @ \$713.50/hr (fuel incl)	uded) 3,210.75
ROOM AND BOARD 3 man days @ \$97.72/day	293.16
VEHICLE @ \$1,350/Month/per diem/\$50	50.00
FIELD SUPPLIES 3 days @ \$20/man/day	60.00
SAMPLES 43 Rock @ \$20/sample	
MOB./DEMOB	511.75
OFFICE	250.00
MISCELLANEOUS 1. RADIO - 3 DAYS X \$8 2. PRO/RATE - MISC. SUPP 3. BUS. TEL. & FAX 4. REPORT	62.05
TOTAL TO DATE	\$6,849.04

PROJECT: BASIN FOR TEUTON RESOURCES CORP.

PERSONNEL 8 man days @ \$240/day	1,920.00
HELICOPTER 2.9 hours @ \$713.50/hr (fuel included)	2,069.15
ROOM AND BOARD 12 man days @ \$97.72/day	1.172.64
VEHICLE @ \$1,350/Month/per diem/\$50 X 4 days	200.00
FIELD SUPPLIES 12 days @ \$20/man/day	240.00
SAMPLES 23 Rock @ \$20/sample	460.00 300.00
MOB./DEMOB	511.75
OFFICE	250.00
MISCELLANEOUS 1. Food	30.00 96.00 62.05 35.33 552.00
TOTAL TO DATE	8.698.92

APPENDIX 11 ASSAY TECHNIQUES AND RESULTS

rest Ell Tile gargist

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canade Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

ASSAY PROCEDURES

COLD

Conventional fire assay with Atomic Absorption finish

ARSENIC

Aqua regia digestion,

I.C.P. finish

COPPER, ZINC

Aqua regia digestion, Atomic Absorption finish

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING
10041 East Trans Canada Hwy , Kamioopa, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

13. Tin

Digestion

Finish

Ammonium Iodide Fusion

Hydride generation - A.A.S.

14. Tungsten

Digestion

Finish

Potassium Bisulphate Fusion

Colorimetric or I.C.P.

15. Gold

Digestion

Finish

a) Fire Assay Preconcentration Atomic Absorption followed by Aqua Regia

b) 10g sample is roasted at 600°C then digested with hot Aqua Regia. The gold is extracted by MIBK and determined by A.A.

16. Platinum, Palladium, Rhodium

Digestion

<u>Finish</u>

Fire Assay Preconcentration followed by Aqua Regia

Graphite Furnace - A.A.S.

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy Kamicops, B.C. V2C 2J3 (604) 573-5700 Fax 673-4557

5. Beryllium

Digestion

<u>Finish</u>

Hot aqua regia

Atomic Absorption

6. Bismuth

Digestion

Finish

Hot aqua regia

Atomic Absorption

7. Chromium

Digestion

Finish

Sodium Peroxide Fusion

Atomic Absorption

8. Fluorine

Digostion

Finish

Lithium Metaborate Fusion

Ion Selective Electrode

9. Mercury

Direction

Finish

Hot aqua regia

Cold vapor generation -

A.A.S.

10. Phosphorus

Digestion

finish

Lithium Metaborate Fusion

I.C.P. finish

11. Selenium

Direction

finish

Hot aqua regia

Hydride generation - A.A.S.

12. Tellurium

Direstion

Pinish

Hot aqua regia

Hydride generation - A.A.S. Potassium Bisulphate Fusion Colorimetric or I.C.P.

FROM ECO-TECH FAMILIES

ECO-TECH LABORATORIES LTD.

12:11:19:50 | 11:02

٠. _

ASSAYING -ENVIRONMENTAL TESTING
10041 East Trans Canada Hwy., Kamioopa, B.C. V2C 2J3 (604) 673-6700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

1. Soil or Sediment: Samples are dried and then sieved through

80 mosh nylon sieves.

2. Rock, Core: Samples dried (if necessary), crushed,

riffled to pulp size and pulverised to

approximately -140 mesh.

3. Heavy Mineral Separation:

Samples are screened to -20 mesh, washed

and separated in Tetrabromothane.

(SG 2.96)

METHODS OF ANALYSIS

All methods have either certified or in-house standards carried through entire procedure to ensure validity of results.

1. Maiti-Element Cd, Cr, Co, Cu, Fe (acid soluble), Pb, Mn, Ni, Ag, Zn, Mo

Digestion

Finish

Hot aqua-regia

Atomic Absorption, background

correction applied where

appropriate

A) Multi-Element ICP

Direction

Finish

Hot aqua-regia

ICP

2. Antimony

Digestion

Finish

Hot aqua regia

Hydride generation - A.A.S.

3. Arsenic

Digestion

Finish

Hot aqua regia

Hydride generation - A.A.S.

4. Barium

Direction

Pinish

Lithium Metaborate Fusion

1.C.P.

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Carlette Hwy., Kemburps, 8 C. V2C 2J3 (604) 573-5700 Fax 674-4667

OCTOBER 29, 1990

CERTIFICATE OF ASSAY ETS 90-9173

TEUTON RESOURCES 602 - 675 W. HASTINGS VANCOUVER, 8.C.

ASSAYS

SAMPLE IDENTIFICATION: 116 ROCK samples received OCTOBER 13, 1990

PROJECT: TEUTON S.A.

بدر	Els	Description		AU (g/t)	AU (oz/t)	AG (g/t)	AG (oz/t)	CU (%)	P8 (%)	ZN (%)
	9173 - 3	L.JJ.M.R ~	3		~	-	_	-	1.63	2.62
LUCK'	Y 9173 - 4	L.JJ.M.R -	4	8.35 ×	.244	_	-	_	8.14	5.24
JIM	9173 - 5		5	2.71	.079	-	-	_	•.	8.07
	9173 - 6		6	_	-	-	_	-	-	9.50
	9173 - 7		7	-	-	34.6	1.01	-	1.63	4.46
	9173 - 8		8	-	-	-	_	-	_	3.41
	9173 - 9		9	-	-	_	_	-	3.75	19.91
	91/3 - 11		11		-	-	-	-	-	4.96
	9173 - 14		3	_	-	_	-	-	3.30	13.40
	9173 - 17		1	-	-	390.0	11.37	-	1.75	-
BASI	41 - EV16N			-	_	419.2	12.23	-	-	-
	9173 - 19	B.A.SJ.M.R	3 _	-	-	228.0	6.65	-	-	-
0 4 0 7 77	9173 - 89	B.A.RG.W.K-		· <u>-</u>	-	120.0	3.50	-	-	7.15
PARITI	^E 9173 - 90	B.A.R.~G.W.R-	18	4.14	.121	415.0	12.10	-	-	16.24
_	9173 - 97		6	~	-	128.0	3.73	-	-	2.34
BASIN	9173 - 98	B.A.SG.W.R-	7	-	-	410.0	11.96		••	7.81
	9173 -103	B.A.S. <u>-G.W.R-</u> _	12	_ ~	-	545.0	15.89	~	-	-
	9173 -104	RED - G.W.R	1	5.74 X	.167	41.0	1.20	1.21	-	-
кED	9173 -105	RED - G.W.R	2	1.02	.030	- ,	-	-	-	-
REEF	9173 -106	RED - 6.W.R	3	3.11	.091	-	-	-	-	-
, <u> </u>	9173 -107	7 RED - G.W.R	4	6.90 ×	.201	115.0	3.35	3.60	-	-
	9173 -108	KED - G.W.R	5	-	-	0.003	17.50	~	-	-
	9173 -110	RED - D.L.R	1	1.68	.049	37.6	1.10	•	-	-
	9173 -112	RED - D.L.R	3	45.73 X	1.334	90.1	2.63	9.27	-	-
	9173 -113	3 KEU - D.L.R	4	3.03	.088	-	-	-	-	-

NOTE: X SAMPLE SCREENED AND METALLIC ASSAYED

ECH LABORATORIES LTO.

A JEALØÚSE

CERTIFIED ASSAYER

SC90/TEUTON#4

ECO-TECH LABORATORIES LTD.

TEUTON RESOURCES - ETS 90-9173

10041 EEST TRANS CAMOL MIT. EMERGES, B.C. VZC 213 PHONE - 604-573-5780 FAD - 604-523-4557

642 - 675 LEST HASTINGS VANCOUVER, S.C. V48 182

OC 1802 25, 1990

WALKES THE POPE LINEESS OF MEDIUSE REPORTED

PAGE 1

PROJECT: JERNOR S.A. 116 ROCK SAMPLES RECEIVED ICIDADER 13, 1990

7: 24	ETI	OESCRIPTION	AU(ppb)	46 AL(1)	AS	8	84	BI CA	-•	CD (LR.	OU FE(1)		LA H		#	10 W	~-,	Dì	P	P8	9	SM		11(2)	!	¥		†	1 3
-	9173 - 1	L.JJ.M.R - 1	. 230	9.1 .17	11	2	86			30	4 11	18	126 .87	.45	([0	.07	245	16	.04	5		1247	5	G 0		(.0)	(10	•	(10	2	2496
LU∰KY	9173 - 2	L.JJ.R.R - 2	55	3.9 ,31	36	3	115	65	45	5	? 4	54	47 1.17	.17	22	.04	324	4	.02	5	260	1438	11	Q6	4	(.01	(10	4	(10	5	823
JIŘ	9173 - 3	L.JJ.H.R - 3	170	2.2 1.37	21	•2	64	ß.	53 1	69		ı	421 3.82	.15	23	.74	1254	19	.24	4	239)	10000	(5	C0	7	(.65	36	7	(10	431	6000
=	9173 - 4	(3,-3,8,8 - 4)1008	2:.9 .87	(5	•2	46	10 (.	e 1 2:	54	4 4	1	661 3.18	.02	13	.49	:715	2	.34	3	30)	10000	(5	(20		(,63	60	é	(16	(1.) je	6(40
	9173 - 5	LJJ.#.1 - 5	31900	3.3 .65	34	•7	23	6.	43	74	1 1	10	159 .42	10.3	(10	.05	17:	2	.12	()	(10	1877	(5	CO	5	(.0)	59	{1	(10	3) (e (00
=	9173 - 6	L.JJ.N.R - 6	195	13.3 2.77	ß	2	77	(5 .	:3 2	71 :	29 3	5	433 7.54	.08	59	1.97	2116	14	.48	()	333	2838	(5	(50	21	.#1	89	43	(10	a H	8 (00
	9L73 - 7	[JJ.II.R - 7	[30]	30.0	10	12	840	26 .	21 3	18	4 15	57	507 2.16	.06	(10	.04	561	21	.32	3	1040)	9000	10	(20	:1	€.81	10	26	(10	9 11	8000
	9173 - 8	[.].·].#.R - 8	35	2.6 .25	(5	•2	5	(5 4.	66 26	រេ	3 1	13	24 2.31	.07	14	. 25	4633	14	.14	4		5108	C.	Ğ0	124	(.01	(10	14	(10	4 31	
	9173 - 9	f - R#.UU.J	340	19.9 .86	(5	•2	132	(5 .	24 1 4	34	13 4	l (055 3.3E	.20	16	.50	2100	8 1	L.39	4	890)		5	€ 6	(I	(.41	194	16	(10	5 11	
	1173 - 10	₹.JJ.W.R - 00	15	11.0 .19	24	Q	57	(S .	01	65	3 13	r	147 5.46	.04	21	.13	182	14	.ŧI	4		1417	45	(20	÷ 5	(.4)	20	12	(10	_	1703
		£.JJ.#.# - \$1	*	3.9 .54	(5	3	54	(5 .	:6 4	13	7 13	39	94 3.41	.13	21		X22	16	.51	5		7723	15	C0	7	.01	22	23	110		000
	9173 - 12	1,1,-6.4 1	5	.2 .22	(5	2	58	G.	29	3	() 18		3 .44	10.3	(16	.02	140	9	.01	4	66	71	- (5	120	186	.42	₹ 0	13	(10		357
	1173 - 13	t.J. s.H. 2	14	1.3 .27	13	5	130	ß.	e į	2	4 15		24 1.21	23	23	.02	73	12	.01	2	360	434	(5	€20	11	(,41	(80	1	(10		3!\$
	1173 - 14	L.J6.W 3	345	16.3 1.18	G	Q	97	G.		872 1	15 3	31	305 4.62	.21	22		2:71	5 1		4	1042):		(5	60	- 6	(.0)	130	25	(18	2)1	
	1123 - 15	[.],-6.E,- 4		.5 .12	13	Q	23		42	7	11 4	IĘ.	17 3.60	.28	21	.36	717	1	.61	18	1616	156	3	(20	(1	.08	(10	53	(18	_	875
-	1173 - 16	1.16.9 5	220	9.1 .18		3	245		01	<u> </u>	<u> </u>	<u>'_</u>	40 .97	.11	(10	.02	28		-07	-		3703	14	<u>(40</u>	3	(.0)	(10	_;;_	()0	- (1	1691 296
BAS√IN	1173 - 17	B.A.SJ.N.R 1		30.0 .37	15	Q	()		36	13		4	643 3.21	.06	14	1.00	:282		(.01		295) 334	3473	146 121	(20 (20	25	(4) (4.)	(10	"	(10 (10	1	276 8015
ě				20. 0.08	17	Y	1/		33 1)4 	(1)		215 .63 545 2.12	.05	(10	.18	138	(I 2	.0\$	*1		8214	239	(20	23	{.#1	24	11	(19	71	248
털	9173 - 19	B.A.SJ.H.R 3 B.A.SJ.H.R 4		40. 0.000	11	ν ο	16	(\$ 2. (\$		1	,,			.05	(10	.86 .03	£21 15	(3			233 315	453	10	G0	70	{. 6 }	22	Á	([0	4	14
ά. Σ	9173 - 20 9173 - 21	B.A.SJ.M.R 5		7.3 · C.01 10.0 · C.01	13	0	~		02 02		(/	3	17 .18 63 .04	.01 .63	<10 <10	.02	17		(.0)	•	334	233	10	(20	· ,	(. 61	180	71	(19	74	673
<u>*</u>	9173 - 21 9173 - 22	8,8,5,-J.H.R 6		3.2 1.14	13 .	0	31		62 65	3 21	11 ·	is	22 17.04	(.01		1.89	497	2			256	116		(20		***	AG.	``s	(18	ä	64
<u>.</u>	1173 - 22	8.4.5J.H.R 7	25	.8 .85	15	c	21		27	-		?}	48 5.10	.65	21	.76	275	_	.82	-	1234	34	Ġ	(50	- 2	.10	39	82	(10	a	34
•	1173 - 24	8,4,5,-3,8,R,- 8	(5	.9 2.07	6	2	26		33	1	Ý 1	7	28 5.84	.65		1.97	373	,	.83		1621	73	5	120	ij	.68	31	138	(10	ď	33
u u	11/3 - 25	8,4,5,-J,H,R,- 7	(5	.7 2.35	ä	Я	25	12	42	1 1	81	5	183 12.44	.66	49	.50		12		2	571	12	Ġ	Œ0	38	.84	56	4	(18	(1	13
ST ROH a	1173 - 26	5.T.RD.L.R- 1		.2 .64	<u> </u>	0	76	(5 2.	09	15		77	2 1.77	- 25	13	- วัง	\$42	2 2			633	38	15	60	- 41	.62	(1G	Ē	(30	1	261
ã					-	-		••			•							-													

	şı
10	91
	91
1.7	9)
•	91
6	91
-:	91
<u>-</u>	91
	9).
	91
	91. 91.
	91
	91
	91
	71
	91
	712
	† []
	91 3
vi	# [#
30	917
Ę	9 17
ā	913

FAGE 2 ET#	ÕE SCRIPTION	Al(ppb)	**	M(1)	**		••	01.64(0)	*6	co	co.	en selvi	*1 * 1					W(X)	#(₽	PB:	Æ	SM	5 9	II(I)	U			,	7W
	PENCHILITATION				AS		\$ 4	BI CA(1)	w	CØ	CP.	CU FE(\$)	*(#) *******	18.4	6(1)	<u> </u>									**1 * /		• •=====	• ::: ::: :	:====	:::::
	5.3.R0.L.#- 2	5	_	_	G	(2	57	(S 1.39	2	9	17	3 2.87	.26	17	.30	661		1.01		8 54	•		(20	39	.#3	(10	28	(10	f	110
\$173 - 28	S.T.R0.L.R- 3	G	1.2	.56	(S	(2	20	65 .20	(1		27	(9 1.35	.25	28	.17	549	2	4.81	1	580	S	-65	(20	29	.61	110	ŧ	(10	1	6.0
9173 - 29	5.T.R#.L.R- 4	G.	1.2	.51	6	(2	8 5	6 3.93	1	9	8	3 3.67	.12	10	46	2454	(1	(.0)	3	1351	42	(5	(20	82	£.#1	23	24	(16	t	39
\$173 - 36	S.E.R0.L.#- 5	CS.	1.0	.25	14	(2	43	(5 2.66	1	24	3	43 5.29	.21	24	79	2841	1	<.0t	4	1504	*	7	(20	118	₹. ♦L	13	30	(]#	1	66
9173 - 31	S.F.RO.L.R- &	G	. , 9	.18	7	0	58	6 £.97	1	12	3	41 3.21	.17	18	.5t	1412	1	₹.01	- 1	1357	7	(5	120	113	(,\$ [(10	7	(18	- (I	82
91 73 - 3 2	S.T.R#.L.R- 7	15	2.5	.29	12	- (2	135	Ø 2.€	2	18	b	16 3.72	.24	18	.36	2427	2	4.0t	3	1520	58	16	(20	70	€.#}	110	8	{ \$	1	84
9173 - 33	S.T.R -6 .W.R 1	5	.4	-22	6	Q	93	65 E.57	1	6	34	5 1.94	.15	25	.04	1053	13	4.01	2	470	21	(5	(26	25	₹. \$ [(10	3	(10	7	65
9173 - 34	S.T.R-G.W.R. 2	G	.5	.32	(5	3	64	(5 .13	1	8	42	2 2.23	19	26	.08	347	6	₹0.>	2	718	18	(5	(20	6	(.4)	110	5	(18	4	86
9173 - 35	5.T.R-6.W.R 3	G	.5	.24	-65	(2	54	65 .58	1	3	16	2 2.02	.13	30	.09	827	6	€.0t	1	767	5	5	(20	12	1.0	110	9	110	7	70
9173 - 36	\$.T.R -6 .W.R 4	CS.	.5	.30	(5	(2	43	28. C	1	4	59	6 2.05	.19	27	.07	538	7	.0t	- (750	11	-65	120	12	.01	110	9	(10	5	164
9173 - 37	S.1.R-G.W.R 5	15	. 6	.57	Q	(2	82	\$5 E\$	í	3	65	6 1.83	.15	36	.83	Eit	7	€.01	3	7E5	11	5	(26	15	18. ì	110	7	110	5	260
9173 - 38	S.T.R-G.W.R &	10	.2	.26	G	12	50	61.16	1	5	37	7 2.22	.19	29	.11	991	6	(.0t	2	823	9	(5	(20	30	(.0)	110	12	(10	5	308
9173 - 39	S.Y.R-6.#.R 7	5	1.2	.14	Ø	12	165	65 4.56	1	3	113	3 1.28	.09	3	45	607	Ģ	(.0i	4	123	7	- (5	(20	317	1.61	190	ſ	fio	4	65
9173 - 40	S.T.R-G.W.R &	5	1.2	1.67	(C	12	130	(5 .70	•	6	187	8 2.73	.07	10	1.17	(31	11	.03	5	3C3	₹2	(5	₹20	68	1.61	(10)	.8	€10	(1	33
9[73 - 4]	S.T.R-S.W.R 9	15	.5	1.11	(S	(2	46	C .91	1	14	41	197 3.56	.64	18	.n	379	73	.08	3	2233	Q.	(5	120	Ħ	.22	16	28	{10	4	43
9173 - 42	5_T.R-6.#.R 10	5	.2	1.23	Ø	12	696	65 1.52	1	8	38	7 2.36	.34	29	.72	153	5	.02	- 4	450	19	(5	(20	83	.01	t 1 0	20	110	{	134
9173 - 43	S_E_R-6.0.R 11	5	0.1	1.17	18	Q	39	15 5.05	3	28	15	144 5.65	.35	27	1.34	1441	1	₹.01	2	1202	54	5	120	117	.63	110	84	(10	4	267
9173 - 44	S.T.R-G.W.R 12	5	₹.2	.04	7	{2	15	C5 24.94	14	5		163 1.33	.07	G	.25	1867	1	<.0t	(1	£3	₹2	ŀ	(20	332	€.01	G	31	(10	4	1156
9173 - 45	S_T_R-6.U.R 13	(5	4.3	.26	9	12	39	6 5.0	6	9	26	2733 3.52	.19	19	.43	3129	3	(.0)	a	1161	17	24	(20	122	{.\$ }	110	3	(18	2	61
9173 - 46	S.T.R-6.W.R 14	39	1.2	.33	39	₹2	130	(5 4.86	3	14	€:	73 2.92	.24	17	.11	2581	4	4.0t	()	1127	44	5	(20	536	10.3	190	11	(10	4	543
7173 - 47	S.T.R-6.W.R 15	(5	1.2	.61	(S	12	15	(S.14.7E	î	3	30	(1 1.71	.02	13	.67 [#133	1	₹.01	(1	217	(2	(5	!20	3393	(.B)	110	14	110	12	7?
9173 - 48	S.T.R-G.W.R 16	G	.2	.15	(S	12	69	CS 3.27	(1	1	- 44	5 .29	.18	13	.83	1867	4	1.0L	(1	425	114	(S	(20	43	(.)	130	2	(18	4	49
9173 - 49	S.F.RJ.M.R- 1	- 15	1.3	2.38	Q	12	33	6 .42	ŧ	37	łC	5 8.29	.20	29	2.22	544	ė	.03	ĉ	*60	55	(5	120	9	.91	43	39	(18	(1	162
7173 - 50	S_T_R, -J.#_R- 2	35	.6	.91	(S	6	61	S .13	3	7	13	1 1.76	.40	19	47	98	4	.03	2	744	22	(\$	120	Ħ	(.#E	(10	17	(18	()	34
1173 - 51	S.T.RJ.M.R- 3	- 65	1.2	.35	(5	6	(5	6 .07	2	13	11	2 2.32	.23	16	.11	8		.0?	1	738	58	(5	120	#8	(.1)	(10)	4	(10	(1	54
#173 - 52	S.F.RJ.#.#- 4	- 65	2.2	1.36	ß	7	22	6 .17	21	21	13	9 5.42	.23	23	1.15	360	4	.06	(1	1110	194	(5	120	10	{, \$ }	110	45	(10	<1	598
9173 - 53	S.T.RJ.N.R- 5	10	7.6	2.66	(5	(2	47	6 .26	1	19	7	4 7,49	.10	35	2.17	199	1	.07	(1	1562	52	(5	120	B	. 91	33	115	(16	- (1	101
1173 - 54	S.T.RJ.N.R- 6	5	3.4	2.51	65	3	47	31. (2)		20	15	6 6.90	.24	31	2.04	695	1	.04	11	1231	57	(5	120	5	.et	41	66	(16	Œ	115
9173 - 55	S.T.RJ.B.R- 7	<5	.8	1.31	(5	4	39	6 .13	ı	10	24	3 3.62	.13	17	1.13	781	é	.05	(1	843	65	(5	120	3	(.R)	11	.70	(le	4	103
9173 - 56	S.T.RJ.M.R- 8	G	.5	1.19	15	2	25	6 .14	t	9	22	4 3.51	.16	18	1.00	243	5	.05	1	EE3	27	- 65	(20	6	(.01	(10	19	{ [6	- et	58
9173 - 57	S.T.RJ.R.F- 9	45	10.5	1.45	49	5	32	B .03	2	44	43	62 11.53	.02	41	1.65	529	11	.05	2	279	212	18	(20	27	.#1	€°	27	(IO	- (I	124
9173 - 58	S.T.RJ.M.R- 10	5	.9	1.33	(5	3	35	(5 .17	1	11	20	5 3,51	.10	17	1.21	312	é	.05	1	#12	33	(S	120	6	. 9 ŧ	20	24	(19	1}	57
9173 - 59	S.T.RJ.M.R- 11	30	2.8		59	2	29	6 .12	1	42	24	21 8.30	.10		1.97	119	7	.06	3	8 35	126	15	(20	4	, 9 }	55	37	(§9	()	75
9173 - 60	S.F.R3.N.R- 12	5	.5	1.25	(5	3	32	6 .6	(1	6	24	3 3.25	.12		1.09	278	ł	.05	(1	762	19	(5	(20	16	(, # t	110	9	(18	{}	47
9173 - 61	S.T.RJ.M.R- 13	20	1.0		(5	3	30	90. 4	1	25	ě	3 7.68	.14	27		509	3	.04	1	723	51	(5	120	3	. 91	42	46	(10	(1	[68]
	S.T.RJ.W.R- 14	20	3.1		31	4	28	(5 .13	1	22	14	30 9.83	.15		1.88	742	6	.05			257	(5	(20	5	. 91	47	180	(10	(1	297
	S.T.R J.B.R- 15		11.7	.05	28	9	21	6 .4	-	(1	133	14 .94		5	.04	110	15	.02	;	264	2166	Š	120	•	(.01	(10	20	{1 û	- 11	340
	3.0.2. 3.0.2	1.5	11.5	.03	20	,	21	13 .24	-	41	133	14 .74	1.01	J	.04	410	13	.02	ľ	24-	2100	,	120	1.00	· . • :	(10	10		•••	•

ۀ	FAGE 3	OC SCRIPTION	AU(ppb)	M A(2 AS	8	BA	BI CA(:)	CO	c o	£6	CW FE(%)	k(1)	L4 MG(1) #1	#0	M(1)	٩ſ	₽	f B	50	9t	98 ((1)	¥	V	u	1	7W
		S.U.RJ.H.R- (4	15	4.4	f4 11	(2	92	6 1.39)	4	150	10 5.87	€.01	22 .2	1 833	19	(.01)	207	542	5	(20	126 .81	{1 0	43	(10	(1	387
	9173 - 45	S.I.RJ.N.R- 17	15	.# 1.	26 6	. 2	15	6 .17	1	28	42	65 4.78	.15	19 .8		10	ø.	78	441	10	(5	(20	#3 (.01	(10	40	(IG	(1	141
STROHN	9173 - 46	S.1.RJ.H.R- 18	5		70 (S	- (2	58	CS 1.06	1	5	18	7 1.70	.15	11 .6	0 387	2	.02	1	111	5	-65	(20	19 .04	{ 10	16	(16	11	69
	9123 - 47	S.T.R3,N,R- 11	- 15	1.3	56 36	(2	25	6 2.12	{1	9	49	4 3.06	.10	JB .2	2 595	23	0.3	2	774	71	5	124	EO. 18	(16	30	(1e	2	81
	9173 - 48	S.T.RJ.M.R- 20		2.4	12 (5	(2	317	6 2.30	1_	3_	عَد ا	<u>4 .85</u>	.13	61	3 847	4	1.01	1	3,6	8	- 65	(24	54 (.01	{ 4	4	(10	(1	28
	9173 - 49	B.A.R0.L.R- 1	(0	5.3 .0	06 60	?	(5	(5 ,41	- (1	2	36	5 1.29	.06	5 .0	2 19	- 6	.0t	₹1	71	-39	21	(24	1 (.01	116	(1	(10	1]	8
BARITE	9173 - 70		15	.4 .1	n c	. ?	32	6 .#	{}		42	1 1.03	.11	12 .6	2 /#	4	10.	ı	\$65	50	(5	Œ	8 (.01	{ 4	q	410	{1	54
::	9173 - 71		15	1.4	12 23	2	44	G .04	1	- 1	SE	1.80	.10	16 .0	5 41	5	.00	3	\$61	52	- (5	(24	8 (.Ot	{ 11	2	£10	41	74
=	9173 - 72	B.A.RD.L.R· I	15	1.: .1	12 43	2	53	6 .02	1	5	22	24 2.01	.06	10 .0	6 SI	3	19.	1	554	51	9	131	4 (.01	(10	?	(10 .	!]	42
0	9173 - 73		30		59 45	(2	10	CS .45	1	7	12	47 3.55	.84	22 .0		ą	.03	3	454	€6	40	(2)	10.) 6	(10	ŧ	(10	- (1	126
66	1173 - 74				14 228	2	6	C .07	30	7	43	32 3.62	.05	19 .0		;	.02	4	SEI	1351	81	(3)	7 (.01	(10	Q	(10	(I	1504
-:	1173 - 75		15	.3 2.1	-	4	33	ઉ .≀ા	ı	29	14	769 8.15	.13	30 1.3		- 11	.01	4	1045	12	45	(28	16 .02	#1	146	110	11	239
		8.A.R6.U.R- 4	15	18.5 1.4		ł	43	(S .16	77	22	43	1246 8.86	.os	31 9.0		1	. 60	4	250	367	₹5	(31	15 .04	fé	132	(10	q	9741
		8.A.RG.U.R- S	6	.! 1.0		17	42	7 .26	1	14	44	26 4.94	.15	25 .9		- 6	.03	4	817		8	(24	15 .02	(10	83	(10	- (1	184
		B.A.R6.V.R- 6		3.9 2.5		5	92	4 .19	3	10	20	3195 11.93	.16	6 1.7		()	.02	2	145	,	(5	(C)	17 .09	59	194	(10	4	244
		B.A.R. G.V.R 7	15	5.9 .1		5	15	\$.07	5	3	[46	37 4.48	.12	21 .5		12	.02	4	244	250	27	£2¶	7 (.01	(10	11	(10	31	398
_		B.A.R6.W.R- B		2.5 .1		3	21	7 .18	4	6	.0	14 3.29	.13	23 .0		11	.02	4	578	242	16	G#	19 4.01	110	4	(10	4	213
		8.A.R6.V.R- 9		12.6 .1		4	19-	(5 .07	1	5	[#[22 4.61	.16	2f .1		12	.02	3	418	592	15	(24	17 (.Ot	20	2	(10	- (1	31 -
		8.A.RG.V.R- 10		7.5 1.6		(2	16	7 1.82	3	5	n	130 5.51		30 .1		î€	.63	3	619	5761	??	C1	24 .01	(10	26	(10	41	(1)
		B.A.RG.N.R- (1		4.3 .1			6	11 .02	2	4	137	9 4.26	.20	22 .0		31	.02		265	537	28	(24	12 (.01	(10	4	(10	4	105
		B.A.R 6.V.R - 12		1.6 .2		5	94	(5 .00	1	4	124	12 1.43	.24	19 .0		11	.02	6	167	1445	(5	(20	8 (.01	(10	5	(10	- (1	31
		B.A.R6.V.R- 13		15.5 .9		(2	29	19 L.04	9	12	127	74 19.61	.8€	49 .4		32	.64	4	138	254	147	(20	2 .01		4	(IC	-11	548
		9.A.R6.V.R- 14		1.6 .4		4	101	7 .03	ı	3	146	10 2.85	.27	26 .1		13	.02	8	728	37	6	(20	20 (.01	(10	13	06	(1	39 00
		3.A.R6.V.R- 15		7.7 .2		•	7	10 .10	2	9	(42	36 7.98	.15	13 .1		14	.02	4	594	104	2?	(20	17 (.01	(14	5	(10	(1	83
		3.A.R6.N.R- 16		24.5 1.2		- (2	47	46 2.19	14	9	100	203 13.10		44 .2		21	.03	13	319	1123	141	(20	10. IS	107	4	(10	(1	948
		1.A.R6.N.R- 17	300)			Q	27	37 .58	157	4	13	244 6.09	.16	20 .1		2	.21	7	117	2319	91	(20	3 C.01	28	5	(10		10000
		I.A.R6.U.R- 18	11000)			17	5	\$.01	258	4	8	406 .77		0.		1	.39	3	175	3336	151	(20	10.) 8	(10	(1	(10		10000
		.A.RG.V.R- 19		1.8 .3			26	16 13	12	_10_	. 12	26 7.41		28 .2			02	3_	936	3%	_73_	(30		_ 53	8	(10		_1201_
BASIN		.A.S6.0.R- 1		2.2 .4		(2	52	6 1.97	2	4	- 21	4 2.33	.85	12 .7			1.01	1	832	266	(5	(20	10.1 06	(10	10	(10	(1	178
UNSIN		A.S6.8.R- 2	5	2.7		4	5	(5 .05]	. 2	\$2	4 1.53	.07	14 .5		•	.04	•	314	26	(5	(20	3 (.01	(10	9	(19	(1	84
		A.S. 6.0.R 3		(2 1.6		(2	55	6 1.70	1	lt	31	28.85	ж	17 1.3	-	,	.01	.5	83?	32	(5	(50	22 .06	(10	184	(10	(1	66 47
		A.S6.U.R- 4	15	.4 .9		(2	10	6 .21	1	લ	32	1 2.98	.06	14 .9		•	.04	10	794	13	(5	(20	22 .08	(10	35	(10	- (1	
		A.S6.0.0- 5		9.6 1.0		Q	6	6 .0	2	35	20	40 4.32	.08	21 1.0		3	.03	3	713	392	9	(54	35 .05	(18	46	(10	- (1	50
		A.S6.U.R- 6		E. 1.0E		(2	19	(5 .51	505	13	50	497 3.61	.00	13 .3			28	2	380	6397	340	(36	47 .01	(10	13	(10		10000
		A.S6.8.R- 7		0. J. 05		(2	40	6 .22	288	4	11	225 .49	.04	0 .0		C	.19	•	198	3469	161	(56	3 CO1	91	- (1	(10		10000 370
		A.S6.II.R- B		2.4 4.5		Q	42	9 1.16	8	131	.,	13 17.24	.07	62 4.8		:	.02	đ	803	118	(5	(50	61 .06	46	47	(19	((
		A.S6,U.R- 9	70	2.5 4.15	5 (5	11	40	25 .75	- 4	62	22	32 16,02	.16	i4 3.7	y 1794	•	.02	- (923	50	6	(20	.11	;3	60	(10	a	173

Ġ.	PMGE 4 E14	BESCREPT TON	AN(spl.) AG AL(S)	AS	B 3A	81 CA(X)	CD	CŒ	CR	CE FE(%)		LA 196		HH	198 M	MS I	#I	P	PB	58	SID	SB 1		IJ	¥	¥	1	
BASIN		B.A.S6.V.R- 10	5 1.5 3.58 5 7.1 .29	/5 55	7 31 36 54	22 .67 30 .06	3 2	8 5 57	14 36	216 15.19 517 34.42	.05 (.01		1.49	1330 165	\$ (!	.43 .64		1062 290	19 27	6 G	(20 (20	74 4	.11 .02	59 139	51 (I	(10	() ()	184 34
	1173 - 103	8.4.S6.V.P- 32	15 >30,0 .41	200	Q 13	8 1.46	24	28	25	372 4.45	.07	26	.58	509	4	.01	3	740	2702	696	(20	1:3	.61	10	5	(10	0	882
RED	1173 - 104	RED - S.W.R 1)1400)30.6 1.75	(5	6 3	6 .G	1	40	78	10000 5.33	.55	18	.59	336	13	.01	6	426	29	5	(20	-4	.13	(10	104	(10	(1	199
REEF	1173 - 105	RED - 6.W.R 2	11000 9,7 3.28	C)	Q 17	(5 2.83	4	25	41	3374 5.47	1.32	20 I	.22	589	4	.84	9	1779	ı2	Q	(20	52	.19	(1Ú	179	{10	41	93
KLLI	1173 - 106	£ -,R,U,3 - 43g	11000 25.2 .87	18	42 165	rs .26	5	10	\$27	7099 3.04	.17	10	.25	125	Į4	.01	6	:66	10	5	(20	16	.05	(10	73	(10	{1	125
	9173 - 107	860 - 6.W.R 4) 1000) 30_8 1_14	ช	Q SI	45 E.20	14	13	29	} (#### 1,32	.21	32	.84	724	2	10.1	4	(10	30	(5	(50	34	.94	(10	41	{10	41	288
	9173 - 108	REO - G.W.R 5	45 130.0 2.13	て	Q 31	€ 4.90	33	24	70	1655 6.33	_19	32 2	.99	1170	1	[.0]	33	1450	7998	875	(28	24.9	.DL	11	74	(10	11	1137
	9173 - 109	160 - 6.N.R 6	105 3.8 4.51	Q	Q 32	11 2.16	2	24	42	268 7.83	1.82	28 E	.37	603	1		6	1537	24	(S	(20	153	.19	40	134	(10	a	4/
	9173 - 110	RED - D.L.R ()	} (CC0) 30_0	23	Q 39	(5 .38	8	64	68	5374 4.62	.47	16	. :C	230	8	.87	6	1205	131	11	(2 #	14	.05	(16	67	(10	(1	37
	9173 - 111	1ED ~ D.L.R 7	150 3.6 2.71	15	Q 44	IC .64	2	21	29	1033 5.46	1.25	19 1	.67	324	(I	.82	9	2151	2	(S	(20	8	.15	31	186	(10	a	(
	1173 - 117	250 - 0.L.R 3	1:000 130.8 1.21	15	5 84	(5 _3)	36	18	51	F19900 10.33	.25	35	.SE	200	14	70 ,3	•	:10	30	5	(24	ė	.04	(10	42	(11	t I	8. j
	1173 - 113	RED - D.L.R ():{C0 25.7 3.85	? 5	C 30	(5 2.26	6	14	55	857L 4.87	1.16	15	33.	199	5	10.1	6	1466	Q	G	(20	187	.16	ĸ	126	€1#	(1	
	1173 - 114	RED - 0.1.R 5	320 4.2 1.91	15	2 100	(5 1.44	3	14	55	2164 3,44	.51	13	Æ	355	4	.61	5	1806	12	(5	(20	32	.13	CEC	105	CF#	(1	
BASIN	1173 - 115	8.4.5 -OL-R- I	6 .3 .13	Ö	(2 7.18	(5 8.30	(1	1	108	35 .47	.05	3	.K.	1091	8	(0)	14	73	2	5	(20	132	.00	(10	2	{{€	3	
BMSIN	1173 - 116	B.A.S -DL-R- ?	65 .2 .34	₹5	(2 228	CS 6.34	(1	3	71	28 .92	.90	7	26	919	7	(.03	1	234	12	•	(20	86	.00	(It	4	{I•	2	

NOTE: C = LESS THAN) = GREATER THAN

SC90/TENTONA4

ECO-FECH LABORATORIES LTD. BUTTA JEALOUSE B.C. CERTIFIED ASSAYER

ECO-TECH LABORATORIES LTD.

TEUTON RESDURCES - ETS 90-9172

10041 EAST TRAIS CANADA HAY. KaME, DOPS., B.C., V2C 233 PMINE - 664-573-5700 FAX - 604-573-4557

402 - 675 E. BASTIBES WHICOLAER, 3.C., VAB 182

MOMENDER 1, 1990

WALLES IN PPH UNLESS OTHERWISE REPORTED

PROJECT: TELTON S.A.J.

36 SILT SWELES RECEIVED OCTOBER 13, 1990

12146	EM	DESCRIPTION	AD(ppb)	46 M(E)	4 5	В	BA	BI CA(S)	a	CI	CR	CU FE(S)	K(X)	LA 86(2)	100	10 M(1)	H.	P	78	58	SN	SES	(1)	U	ų	1	Y	K
• •	1172 - I 1172 - 2	M-STR- 1 M-STR- 2	5 10	.7 :.4F	33 15 e	7	83 82	(5 .43 (5 .25	2	15 12	? a	24 3.71 29 3.19	.12 .13	34 .51 42 .55	2001 1510	5 (.01 2 (.0)	4	927 736	59	5 6	(20 (20	24 13	,03 ,01	(10 (10	31 21	10 12	3	367 310
STROHN ∴	9172 - 3 9172 - 4		5	3.8 1.33 1.0 1.63	31 7	12	117 154	(5 .39 (5 .39		14 22	4	23 1.23 24 1.24	.08	4 .57 07 .74	2697 3662	3 6.81 4 6.81	II.	963 981	197	7	(26 (26	23 32	.02 .02	(10 (10	85 115	34 36	3 5	549 967
Ė	9172 - 5 9172 - 6	NC-STR- 5 NC-STR- 6	<u>১</u>	1.4 2.41 1.1 .79	5 6	ت ة	185 144	(5 2.91 (5 .63	8	34 12	đ T	54 8.17 26 3.28	.13 .08	57 (.15 35 .42	\$620 3672	5 (.8) 3 (.8)	4	1292 446	178 87	Q Q	(20 (28	36	.01 .6G	18 (10	% 50	40 17	1	863 627
_	9172 - 7 9172 - 8	NC-STR- 7 DC-STR- 8	১	.5 ,34 .4 .30	!! •	16 14	544 544	(5 .46 (5 .43	1	12	1 0	25 5.23 25 4.11	.09	44 .27 38 .17	2157 1874	2 6.01 1 6.01	<u> </u>	1425 1444	50 37	8	(20	15 14	.05 _64	(10 (10		410	5	158 14
STROH	1172 - 10 1172 - 11	STR-JWS- 1 STR-JWS- 2 STR-JWS- 3	3 5	3.4 1.34 1.7 1.03	ال 4 4 21	11 11	311 324 192	C .59 C .49 C 1.05	3 }	16 19 15	2	26 4.31 46 4.34 38 3.78	.16 .14	32 .71 35 .86 26 22	1636 2360 1544	3 (.6) 4 (.6) 3 (.6)	8	1441 1335 1156	270	8	(20 (28 (28	24 21 27	.06 70. 20	(10 (10	44 44 41	40 40 46	9 3	513 236
BASIN	1172 - 12 1172 - 13	BAS-JHS 1	<u>5</u> 3	2 2.01 2 2.11	15 14	19 16	137 150	5 .59 5 .60	I I	24 26	2	44 5.00 48 5.16	.06	34 1.71 36 1.80	1271 1440	1 (.41	4	1342 1394	* *	5 7	(28 (20	23 23	.09	(10 (10]84]84	410 410	3	86 87
STROHN	1172 - 14 1172 - 15	STR-GHS- 1 STR-GHS- 2	5 20	1.3 1.28	41 21	12 9	364 218	65 .33 65 .41	4 6	13 72	16 81	32 3.95 89 4.70	.0€ .22	29 .25 47 .85	1362 6028	5 (,8t 3 (,6)		1046 1280	82 252	é	(20 (20	14 16	.06 .07	(10 (10	2€ 45	<10 21	7 15	319 771
57 KONK	1172 - 16 1172 - 17	STF-64S- 4	·5	3.2 .85 7.7 1.65	44 48	Q	77] 760	(5 1.29 (5 2.32	1	36 36	1	88 5.73 102 5.34	.21 .22	44 ,39 43 ,51	7457 7304	1 (.01 3 (.01	- (1603 1476	143 290	8	(28 (28	41 38	.03 .03	ao ao	45 51	•10 36	8	423 621
BÆSIN	9172 - 18 9172 - 19 9172 - 20	805-81-5- 1 805-81-5- 2 805-01-5- 3	5 15	7,0 †.70 3 †.9t 2 2.14	70 71 22	32 18 16	230 [44 [16	6 .63 6 .83 6 .77	3	22 16 32	2	43 4.71 31 4.16 31 4.32	.05 140, 36.	32 .94 27 .96 25 1.17	2212 1874 1325	4 (.01 2 (.01 2 (.01	3	1003 887 775	234 49	15 15	(20 (20 (24	25 29 25	.00. 30. 10	(16 (18	51 51 48	+10 +10 +10	(i (i	359 228 2 40
Ë	9172 - 21 9172 - 21	895-0L-5- 4 895-0L-5- 5	¥ 10	4.2 2.11 3.6 1.53	33 23	17	191 632	65 1.20 65 .60	3	29 17	(1 5	143 7.94 180 3.96	.00	41 1.16 41 .74	754 404L	7 (.01 1 (.01	3	668 1238	17 12 97	5 6	(28	46 33	.04 .04 .04	28 (10	#1 •E	110 15	(i 8	258 447 -
ECO - 1	9172 ~ 23 9172 ~ 24		5 1 5	8.7 1.6L 1.9 1.07	91 (5	17	201 (21	(5 _19 (5 2.19	\$ 2	20 16	(1 5	76 5.94 80 4.79	.13 .07	79 .31 33 .78	4016 3018	3 (.01 6 (.01	3	1098 1137	236 61	25 6	(28 (28	16 20	.02 .07	(10	31 89	19 •18	8	\$10 293
BARITE	9172 - 25 9172 - 26	BL SILI- I BAR BL SILI- 2 BAR		18.5 .86 2.5 2.28	36 35	13 11	92 251	(5 .53 (5 .32	?3	11 35	1 22	87 4.24 575 14.00	.07 .07	33 .46 80 1.57)	1278 10000	2 (.01 3 (.01	3	1107 894	98 459	29 9	(20 (20	21 39	.04 :05	(†0 31	45 194	-10 87	? (1	332 1849

	PAGE 2 EN	DESCRIPTION	AD(ppb)	•	Æ	8	8.8	B) EN(\$)			CR				H6(1)		MO MA(S)	_		PE		2 #	5 F 1		¥	ι	1	1	*
BARITE	9172 - 27 9172 - 28	DL SILI- 3 MR DL SILI- 4 MR	÷ 190	2.4 2.17	34 41	6	240 283	C .51 C .56	31	35 35	20 18	492 13.85 538 12.95	.07 .06	75	1.43) 1.32)	10000 10000	3 (.01 10.) E	4	917 936	730 924	8	(20 (20	44 55	.05 .04	35 \$	17C 155	133 126	41	2025 2011
	9172 - 29 9172 - 38 9172 - 31	OL SILI- 6 BMR		1.4 .01 2.1 .46 2.1 .47	34 36 153	13	113 129 157	5 .31 5 .38 5 .20		16 18 14	(1 (1 (1	30 3,70 43 3,46 37 4,42	.08	32 34 43	.40 .38 .19	1490 1523 1004	1 (.01 1 (.01 1 (.03	i i	947 945 947	, 49 : 76 243	5 6 18	(26 (26 (29	16 20 16	.03 .03 .01	(1C (1G (10	46 45 15	(10 (10 (10	2 3 2	275 457 589
4	9172 - 32 9172 - 33	PL SILT- 8 BMR OL SILT- 9 BMR	3 3	2.5 .63 8.1 1.00	3 1 13	16	113 155	(5 .27 (5 .13		12 17	a a	29 3.43 64 5.80	.09	3 ? 53	.22	1443 3263	2 (.01 3 (.01	2 2	1197 924	114 247	11 27	(20 (20	21 14	.02	{10 {10	20 25	14	4	369 531
•	1172 - 35	RL SILT- 10 BMR RL SILT- 11 BMR RL SILT- 13 BMR	×	3.4 .46 7.2 .89 3.4 1.11	43 41 57	15 1 14	94 46 203	65 .18 65 .90 65 .43	j I)0)])5	0 0 3	33 3.40 25 4.51 39 4.24	.06	37 34 41	.44 .48	1479 1367 2562	2 (,01 2 (,01 3 (,61	_	347 1322 1243	198 195 147	13 9 10	(20 (20 (28	15 30 26	.01 .06 .04	€EU €10 €10	24 28 35	110 16 22	-	395 342 497
2.199	1172 - 37		29 15	4.4 1.04 2.1 1.02	34	14	175 150	(5 .41 (5 .39	i	13 13	4	39 4.65 23 3.75		37 33	.48 .54	1985 1985	3 (.01 2 (.01	10	1269	169 123	11	(20 (20	24 23	.04 .03	(10 (10	34 44	29 33	5	612 SZE

MOTE: (= LESS THAN

x = INSUFFICIENT SAMPLE

ec: J. HCCAFFERY RECHOLSON & ASSOCIATES 406 - 675 W. MASTINGS, VANCOUVER, E.C. **968 284**

SCHI/TEUTON 35

APPENDIX 111

CERTIFICATE

STATEMENT OF QUALIFICATIONS

- I, Gordon Wilson, do hereby certify that:
- 1. I am a consulting geologist with offices at #606 675 West Hastings Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of Calgary, with a Bachelor of Science, Geology.
- 3. I have worked in geology in B.C., Manitoba, Saskatchewan, Ontario, Yukon and Idaho, U.S.A. since 1973.
- 4. I am the author of this report and my findings are based on work undertaken on the property between September 27 and October 14, 1990.
- 5. I have no interest in the properties or securities of Teuton Resources Corporation, nor do I anticipate any.
- 6. Teuton resources Corp. and affiliates are hereby authorized to use this report in, or in conjunction with, any prospectus or statement of material facts.

Dated at Vancouver, B.C., this 3/2 day of December, 1990.

Godon Wilson Gordon Wilson

* See Appendix 11 for Analytical Results

ROCK SAMPLE DESCRIPTION RECORD

PROJECT: TEUTON - STEWART ASSESSMENT

SAMPLE NO.	LOCATION	DESCRIPTION
VON-JMR-1	VON CLAIMS	Cherty, altered Arg. TR. CAg, Pg, Brecciated, Float
VON-JMR-2	VON CLAIMS	Diss. Py in very silicious Arg. Float
VON-JMR-3	VON CLAIMS	SAME AS ABOVE
VON-JMR-4	VON CLAIMS	SAME AS ABOVE
VON-JMR-5	VON CLAIMS	Silicious, w/o, vuggy altered Arg.

PROJECT: TEUTON - STEWART ASSESSMENT

SAMPLE NO.	LOCATION	DESCRIPTION
BAS-JMR-1	BASIN	Pbs, CPy, in altered sandstone/volcanic contact, some Breccia, Grab
BAS-JMR-2	BASIN	SAME AS ABOVE
BAS-JMR-3	BASIN	SAME AS ABOVE
BAS-JMR-4	BASIN	SAME AS ABOVE
BAS-JMR-5	BASIN	SAME AS ABOVE
BAS-JMR-6	BASIN	HIGHGRADE GRAB OF MASSIVE, WEATHERED OUT SULPHIDES
BAS-JMR-7	BASIN	ALTERED VOLCANICS WITH Py. TR.CPy IN SMALL SHEAR
BAS-JMR-8	BASIN	SAME AS ABOVE
BAS-JMR-9	BASIN	QUARTZ STRINGERS IN ALTERED SANDSTONES. Py, ARSENO

PROJECT: TEUTON - STEWART ASSESSMENT

SAMPLE NO.	LOCATION	DESCRIPTION
LJ-JMR-1	LUCKY JIM	CHALCODONIC QUARTZ VEIN 3.75 M. WIDE CPbs, ARSENO IN STRINGERS, TRENDING 120°
LJ-JMR-2	LUCKY JIM	SAME AS ABOVE
LJ-JMR-3	LUCKY JIM	CHALCADONIC QUARTZ, VUGGY, HONEY COMBED, Pbs, 2ns, CPy
LJ-JMR-4	LUCKY JIM	SAME AS ABOVE
LJ-JMR-5	LUCKY JIM	SAME AS ABOVE
LJ-JMR-6	LUCKY JIM	HYDROZINCITE IN ALTERED ARG, C DISS. Pbs AND CHALC QTZ. VEINLETTE, LENS, CONTACT ROCK. WEAKLY MAGNETIC
LJ-JMR-7	LUCKY JIM	GALENA IN ALTERED, SILICIOUS META- SED, SILICIOUS, BRECCIATED, GRAPHITIC
LJ-JMR-8	LUCKY JIM	SAME AS ABOVE
LJ-JMR-9	LUCKY JIM	SAME AS ABOVE
LJ-JMR-10	LUCKY JIM	VUGGY, CHALCADONIC QUARTZ
LJ-JMR-11	LUCKY JIM	SAME AS ABOVE

PROJECT: TEUTON - STEWART ASSESSMENT

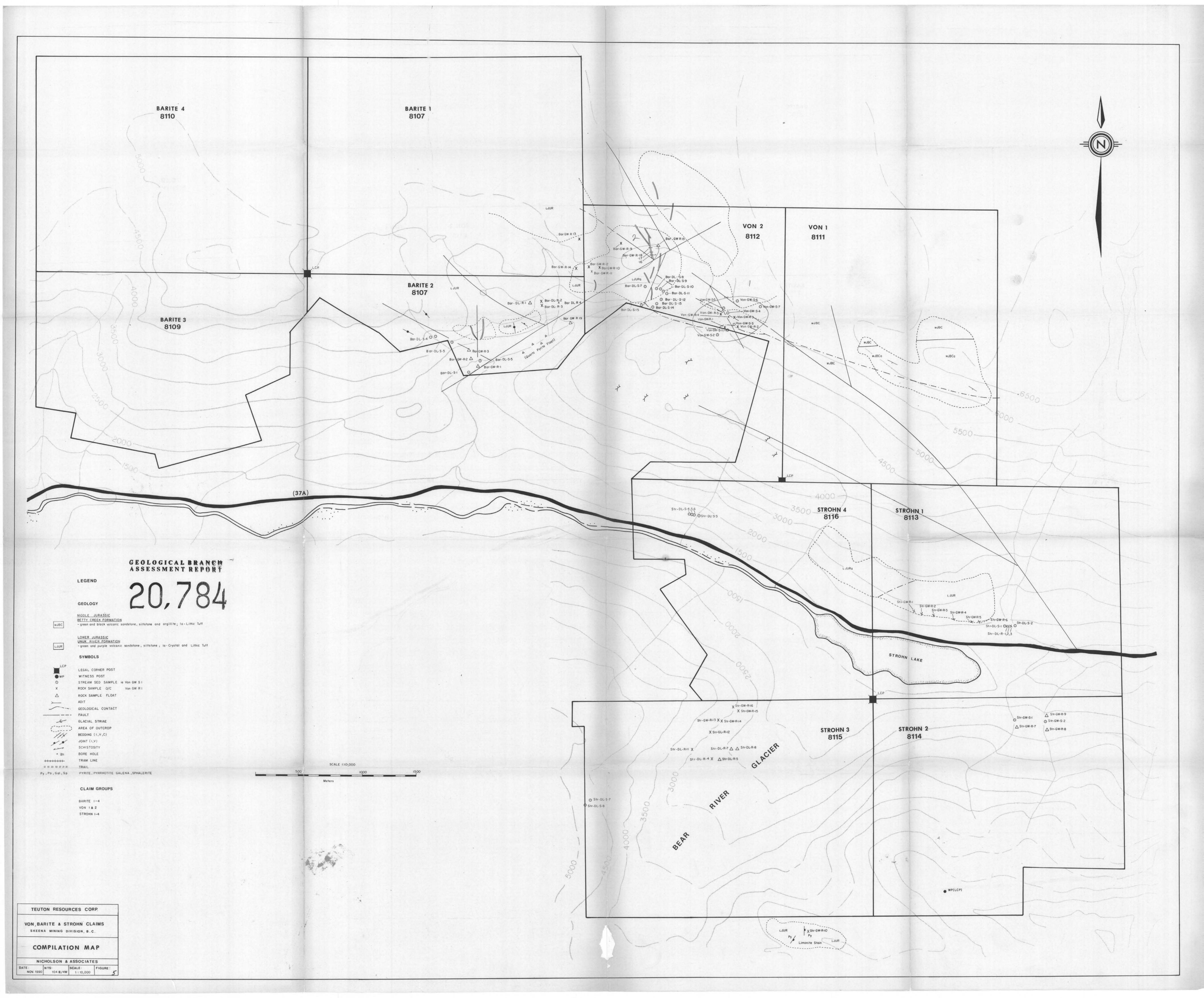
SAMPLE NO.		\sim
STR-JMR-1	STROHN	Py STR. CPY IN ALTERED W/O VOLCANICS, GRABS Where is this from
STR-JMR-2	STROHN	
STR-JMR-3	STROHN	SAME AS ABOVE
STR-JMR-4	STROHN	SAME AS ABOVE
STR-JMR-5	STROHN	SAME AS ABOVE
STR-JMR-6	STROHN	SAME AS ABOVE
STR-JMR-7	STROHN	SAME AS ABOVE
STR-JMR-8	STROHN	SAME AS ABOVE
STR-JMR-9	STROHN	SAME AS ABOVE
STR-JMR-10	STROHN	SAME AS ABOVE
STR-JMR-11	STROHN	SAME AS ABOVE
STR-JMR -12	STROHN	SAME AS ABOVE
STR-JMR-13	STROHN	Py, IN HAZELTON VOLCANICS
STR-JMR-14	STROHN	SAME AS ABOVE
STR-JMR-15	STROHN	Py, IN SILICIOUS HAZELTON VOL
STR-JMR-16	STROHN	CHERTY, JASPERIOD, C Py, TR, CPy, FLOAT
STR-JMR-17	STROHN	PHYLILLITIC, Py, QTZ STRINGERS FLOAT, GRAB FROM ABOVE O/C
STR-JMR-18	STROHN	PHYLILITIC, Py, QTZ, STRINGERS FLOAT, GRAB FROM ABOVE O/C
STR-JMR-19	STROHN	SAME AS ABOVE
STR-JMR-20	STROHN	SAME AS ABOVE

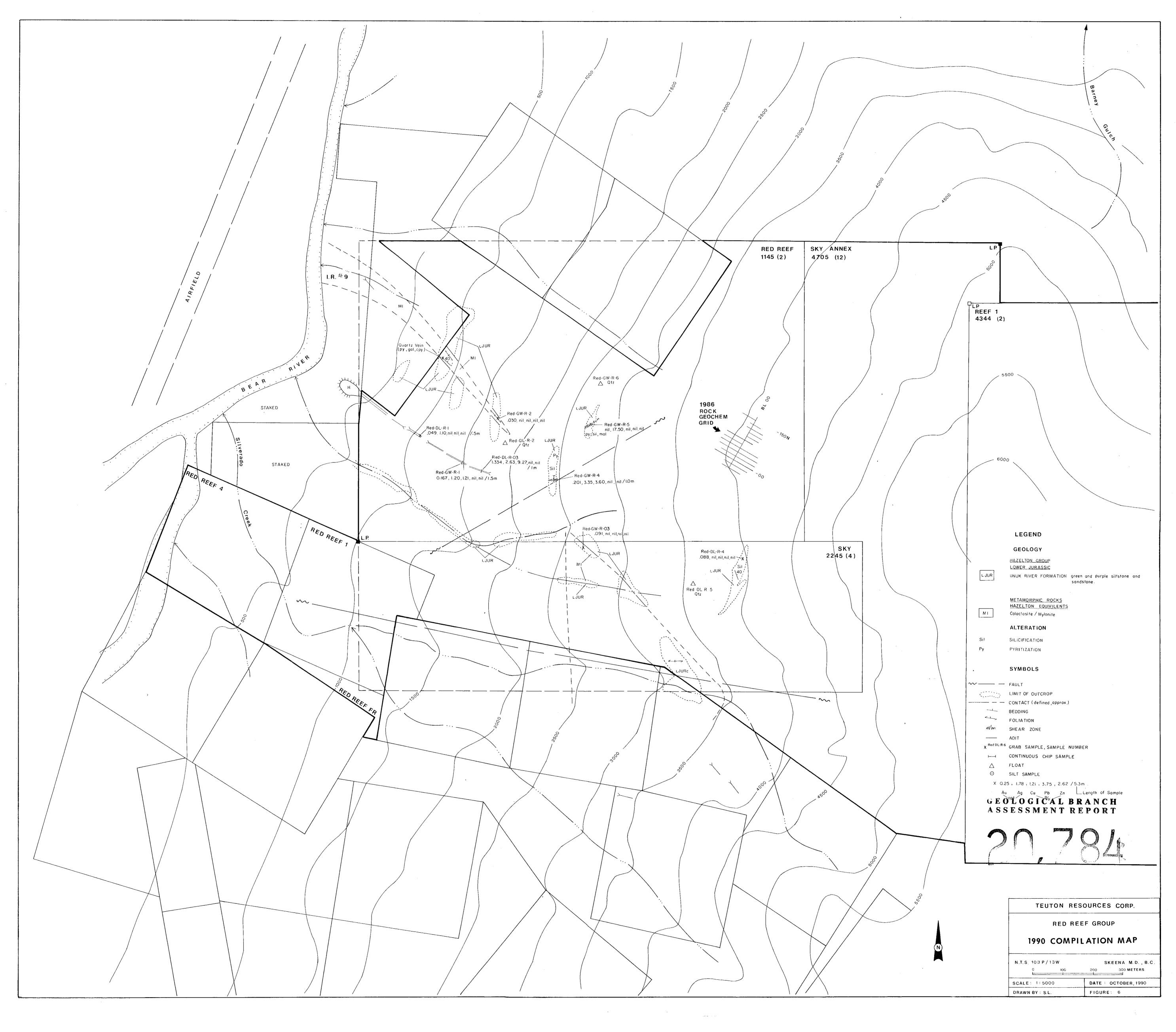
SAMPLE	<u>LOC</u>	DESCRIPTION
GW-R-1	VON	grab sample from qtz. lense in shear. Siltstone host. Pyrite and minor malachite
GW-R-2	VON	grab sample from quartz-carbonate vein, .5 to 1.2 metres wide. Pyrite and galena blebs throughout
GW-R-3	VON	grab sample from intensively altered siltstone outcrop. diss. py to 3% throughout
GW-R-4	VON	grab: silicified lithic tuff with graphitic stringers and carbonate veinlets; trace of pyrite
G W- R-5	VON	<pre>grab. quartz vein (8" wide) limonitically stained, disseminated pyrite to 1%</pre>
GW-R-6	VON	Chip sample across 1 metre outcrop. silicified, limonitically stained dacite tuff. Pyrite is disseminated throughout

SAMPLE	LOC.	DESCRIPTION	Au	<u>Ag</u>	<u>Pb</u> Zr	<u>1</u>
GW-R-1	BARITE	Grab from float. Silicified dacite tuff with irregular carbonate veining. Trace disseminated py.	30	3.4	86	126
GW-R-2	BARITE	Grab from float Limononitacally stained dacite tuff, massive pyrite throughout	10	13.0	1121	1504
GW-R-3	BARITE	Grab from float. Limonitically stained dacite tuff with 3 -5% disseminated pyrite	15	.3	2	239
G W −R−4	BARITE	Grab from outcrop. Sheared, silicified argillite, 10 - 15% quartz stringers; minor malachite stain chalcopyrite and py.	15	18.3	367	9741
GW-R-5	BARITE	Grab from outcrop. limonitic stained argillite; qtz./carbonate seams carry minor chalcopyrite	5	.9	8	184
GW-R-6	BARITE	Grab from float Silicified dacite with 5% disseminated pyrite throughout	30	3.9	9 7	244
GW-R-7	BARITE	Grab from float. Silicified dacite tuff diss. to massive pyrite throughout	15	5.	9 250	398
GW-R-8	BARITE	Chip sample over l metre. Silicified lithic dacite tuff, finely disseminated pyrite	35	2.	5 242	213

SAMPLE	LOC.	DESCRIPTION	<u>Au</u>	<u>Ag</u>	<u>Pb</u> Zr	<u>1</u>
GW-R-9	BARITE	Grab from outcrop Intensively sheared and silicified dacite tuff; limonitic with diss. py to 7%	45	12.6	592	34
G ₩ -R-10	BARITE	Chip sample over 2 Metre interval. Quartz vein, sheared, galena, malachite, pyrite	5	7.5	5781	119
GW-R-11	BARITE	Grab from outcrop Quartz vein, brecciated and sheared, blebs of galena and chalcopyrite	20	4.3	537	145
GW-R-12		Grab from outcrop Quartz veinlet, disseminated pyrite to 3%, minor galena	10	3.0	1447	34
GW-R-13	BARITE	1 metre chip sample Silicified tuff with qtz. seams and diss. py to 4%	25	15.5	254	548
GW-R-14		l metre chip sample quartz vein with heavy limonitic stain. Brecciated and weakly pyritic	10	1.6	37	30
GW-R-15	BARITE	Grab from float	5	7.7	104	83
GW−R-16	BARITE	3 metre chip sample Massive sulphide zone. sheared and silicified dacite tuff, semi-massive pyrite, chalcopyrite and galena.	15	24.5	1123	948
GW-R-17	BARITE	3 metre chip sample from same zone, 20 metres along strike	300	30.0	2319	10,000

SAMPLE	LOC.	DESCRIPTION	<u>Au</u>	Ag	Pb	<u>Zn</u>		
GW-R-18	BARITE	1.5 metre chip from same zone Taken above #17 Quartz-py vein to .3 metres wide carry diss. to massive galena	1,000	30.0	333	10,0	00	
GW-R-19	BARITE	Grab from float Limonitic dacite tuff with 5% qtz pyrite seams	5	4	.8	396 1	, 20)4
DL-R-1	BARITE	Grab from float Limonitie stained qtz.	10	5	.3	39		8
DL-R-2	BARITE	Grab from float Brecciated qtz. diss. pyrite to 1%	15		. 4	50		54
DL-R-3	BARITE	Grab from float SAME AS ABOVE	15	1.	4	52	•	74
DL-R-4	BARITE	Grab from outcrop Silicified, sheared dacite tuff, diss. pyrite to 2%	15	1.	2	51	•	42
GW-R-1	STROHN	Grab from outcrop Brecciated qtz. vein, diss py. to 3%	5		. 4	21		65
GW-R-2	STROHN	Grab from outcrop Silicified, limonitic lithic tuff, diss. pyrite to 2%	5	5	.5	10		86
GW-R-3	STROHN	Grab from outcrop Limonitic qtz. stringer: no visible sulphides		5	.5		5	70
GW-R-4	STROHN	SAME AS ABOVE		5	.5		11	164
GW-R-5	STROHN	Grab from outcrop Silicified dacite tuff, minor diss. pyrite	:	15	.6		11	260
GW-R-6	STROHN	SAME AS ABOVE		10	.2		9	308


SAMPLE	LOC.	DESCRIPTION	Au	Ag	Pb	Zn
GW-R-7	STROHN	Grab from outcrop Qtz. vein, 6 cm. wide no visible sulphides	5	1.2	7	65
GW-R-8	STROHN	Grab from outcrop Unmineralized white qtz. sweat, sheared and brecciated	5	1.2	2	33
G₩-R- 9	STROHN	Grab from outcrop Limonitically stained argillaceous shale, trace diss. py	15	.5	2	43
GW-R-10	STROHN	Grab from outcrop Narrow limonitic qtz. vein, trace pyrite	5	.2	5	134
GW-R-11	STROHN	Grab from float Limonitic stained qtz. No visible sulphide	5	1.0	54	207
G W- R-12	STROHN	Grab from float Angular, limonitic quartz, trace pyrite	5	.2	2	1156
GW-R-13	STROHN	Grab from outcrop Sheared/chloritic dacite tuff, minor malachite stain of fractures	5	4.3	17	61
G W-R-14	STROHN	Grab from outcrop Qtz./carbonate veins with diss. py.	30	1.2	44	543
GW-R-15	STROHN	Grab from float Qtz/carb. vein, minor pyrite along fractures	5	1.2	2	72
GW-R-16	STROHN	Grab from outcrop Qtz. vein, sheared and limonitic. Minor diss. pyrite	5	.2	114	49


SAMPLE	LOC.	DESCRIPTION	<u>Au</u>	Ag	Ag	Zn
DL-R-1	STROHN	Grab from outerop Limonite stained dacite tuff. diss. pyrite to 1% throughout	5	.2	38	261
DL-R-2	STROHN	SAME AS ABOVE	5	.2	9	110
DL-R-3	STROHN	Grab from outcrop Limonitic, silicified tuff, sheared and brecciated, minor pyrite associated	5	.2	5	60
DL-R-4	STROHN	Grab from outcrop Silicified tuff, 5% qtz. seams with minor pyrite associated	5	.2	2	30
DL-R-5	STROHN	Grab from float Limonitic qtz. Intense fracturing, no visible sulphides	5	1.0	9	66
G W -R-1	BASIN	Grab from outcrop Intensively sheared and slilicified tuff, weakly limonitic	5	2.2	266	178
GW-R-2	BASIN	SAME AS ABOVE	5	.2	26	84
G W -R-3	BASIN	Grab from outcrop. well silicified dacite tuff, finely diss. pyrite to 2% throughout	5	.2	32	66
G ₩ −R−4	BASIN	Grab from outcrop Silicified and chloritic andesite tuff. diss. pyrite to 3% throughout	15	14	13	47
G W -R-5	BASIN	Grab from trench Silicified and sheared lithic tuff; qtz/ veins to 7 cm wide carry diss. py., chal., and malachite to 5%	5	9.6	9	50

SAMPLE	LOC.	DESCRIPTION	<u>Au</u>	Ag	<u>Pb</u>	<u>Zn</u>
GW-R-6	BASIN	Grab from trench 100 metres south of #5. SAME AS ABOVE Semi-massive pyrite and strong diss. galena associated	20	30	6387	10,000
GW-R-7	BASIN	Grab from float. Rock dump sample of weathered malachite, galena and pyrite mineralized qtz.	55	30	3469	10,000
GW-R-8 GW-R-9 GW-R-10	BASIN	Grabs from outcrop silicified fracture/ fault zone. Brecciated flooded and mineralized with diss. py., chalcopyrite and galena to 4%	30 20 5	2.		3 370 0 123 9 188
GW-R-11	BASIN	Grab from pit Qtz., brecciated and well mineralized with semi-massive pyrite	5	7.	1 2	7 34
GW-R-12	BASIN	Grab from outcrop Intensively silicified and sheared lithic tuff Minor quartz seams	15	30	270	2 882
DL-R-1	BASIN	Grab from float Limonite stained qtz. Minor pyrite	5	•	3	2 3
DL-R-2	BASIN	SAME AS ABOVE	5		2	2 2
GW-R-1 L	UCKY JIM	Grab from outcrop Silicified and mylonitic dacite tuff. Cut by numerous qtz. seams which carry diss. pyrite to 3%	5		2 9	1 357
GW-R-2 L	UCKY JIM	Grab from outcrop Qtz. vein (7cm. wide) Minor pyritic assoc.	10	1	.3 6	34 315

SAMPLE	LOC.	DESCRIPTION	<u>Au</u>	Ag	<u>Pb</u>	<u>Zn</u>
GW-R-3	LUCKY JIM	Grab from outcrop Qtz. veins hosted by major shear zone; semi-massive galena, pyrite and minor chalcopyrite associated with all.	345	16.3	10,000	10,000
GW-R-4	LUCKY JIM	Grab from outcrop North (20 m) from	5	.5	156	875
		mineral zone. Silicified, limonitic dacite tuff, minor diss. pyrite associated. Galena blebs throughout	200	9.1	3703	1891
GW-R-1	RED REEF	Grab from trench. Continuouly chip sample over qtz. vein, diss. pyrite and chalcopyrite to 5%. Minor malachite	10,000	30	29	199
GW-R-2	RED REEF	Grab from outcrop. Sheared and mylonitized tuff, intensively fractured with some irregular vein development. Minor py.	10,000	9.7	' 2	93
G W -R-3	RED REEF	Grab from outcrop SAME AS ABOVE	10,000	25.2	2 10	125
G W −R − 4	RED REEF	Grab from outcrop Shear hosted qtz. vein, disseminated chalcopyrite and py to 3%	10,000	30	30	288
GW-R-5	RED REEF	Grab from outcrop Intensively silicified shear zone; diss. py to 2% throughout	45	30	7998	1137
G W- R-6	RED REEF	Grab from float Limonitic qtz. No visible sulphides	105	3	24	46

SAMPLE	LOC.	DESCRIPTION	<u>Au</u>	Ag	<u>Pb</u>	<u>Zn</u>
DL-R-1	RED REE	F Channel sample from upper adit. Collected from narrow pyrite bearing qtz. vein	105	3	24	46
DL-R-2	RED REE	F Grab from float Slightly limonitic qtz. No visible sulphides	150	3.6	2	61
DL-R-3	RED REE	F Chip sample over 1.5 metres. Mineralized qtz. vein. Brecciated, and limonitie Galena, chalcopyrite and py to 4%.	1000	30	5	855
DL-R-4	RED REE	F Grab from outcrop Silicified tuff, fractured and moderately sheared; diss. py to 2%	1000	25.	7 2	890
DL-R-5	RED REE	F Grab from float Weakly limonitic qtz. Very minor diss. py.	220	4.	2 2	640

GEOLOGY

MIDDLE JURASSIC

BETTY CREEK FORMATION

-green and black volcanic sandstone, siltstone and argillite; la-Lithic Tuff

LOWER JURASSIC

UNUK RIVER FORMATION

-green and purple volcanic sandstone, siltstone; la - Crystal and Lithic Tuff

GEOLOGICAL BRANCH ASSESSMENT REPORT

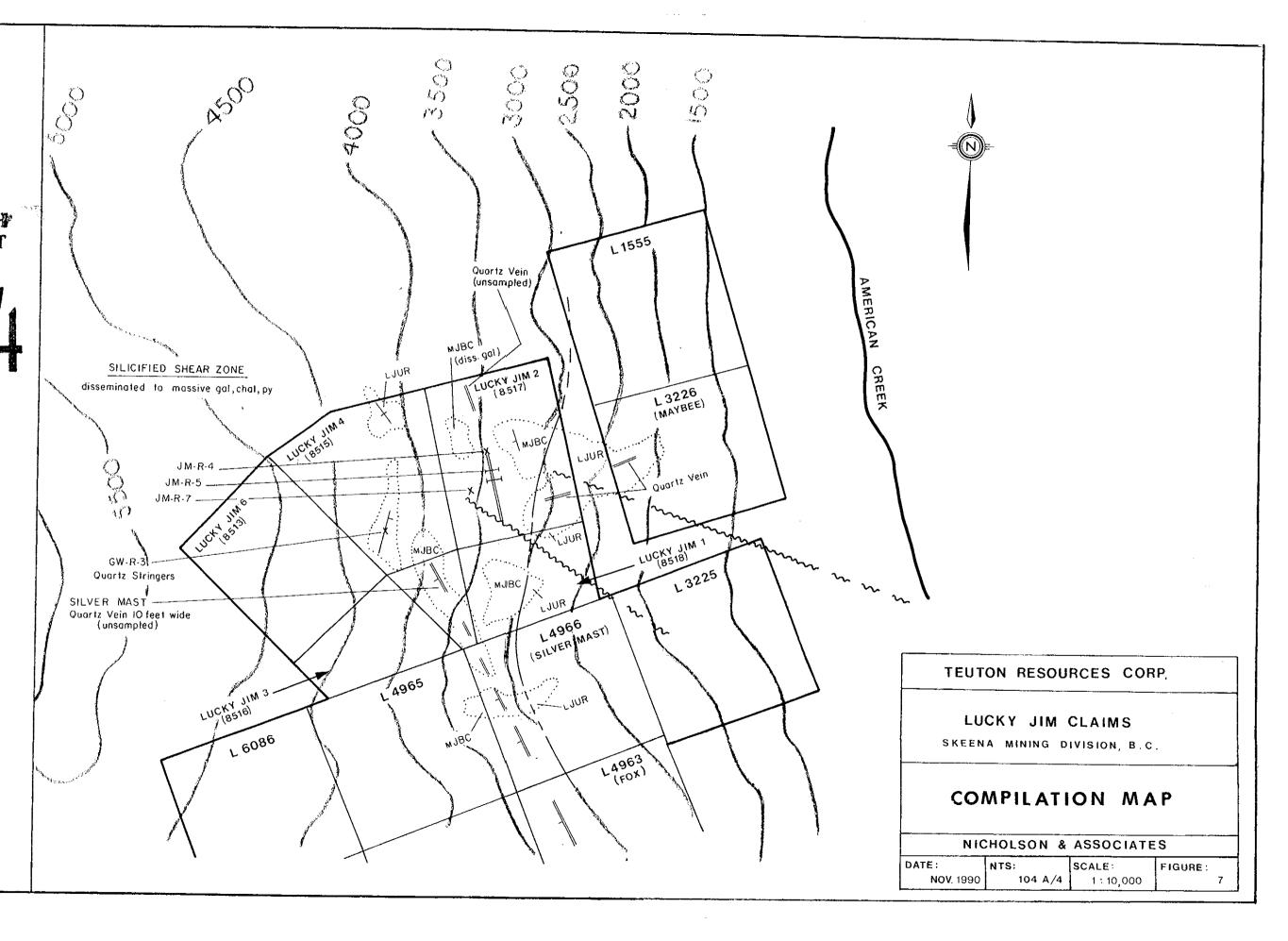
SYMBOLS

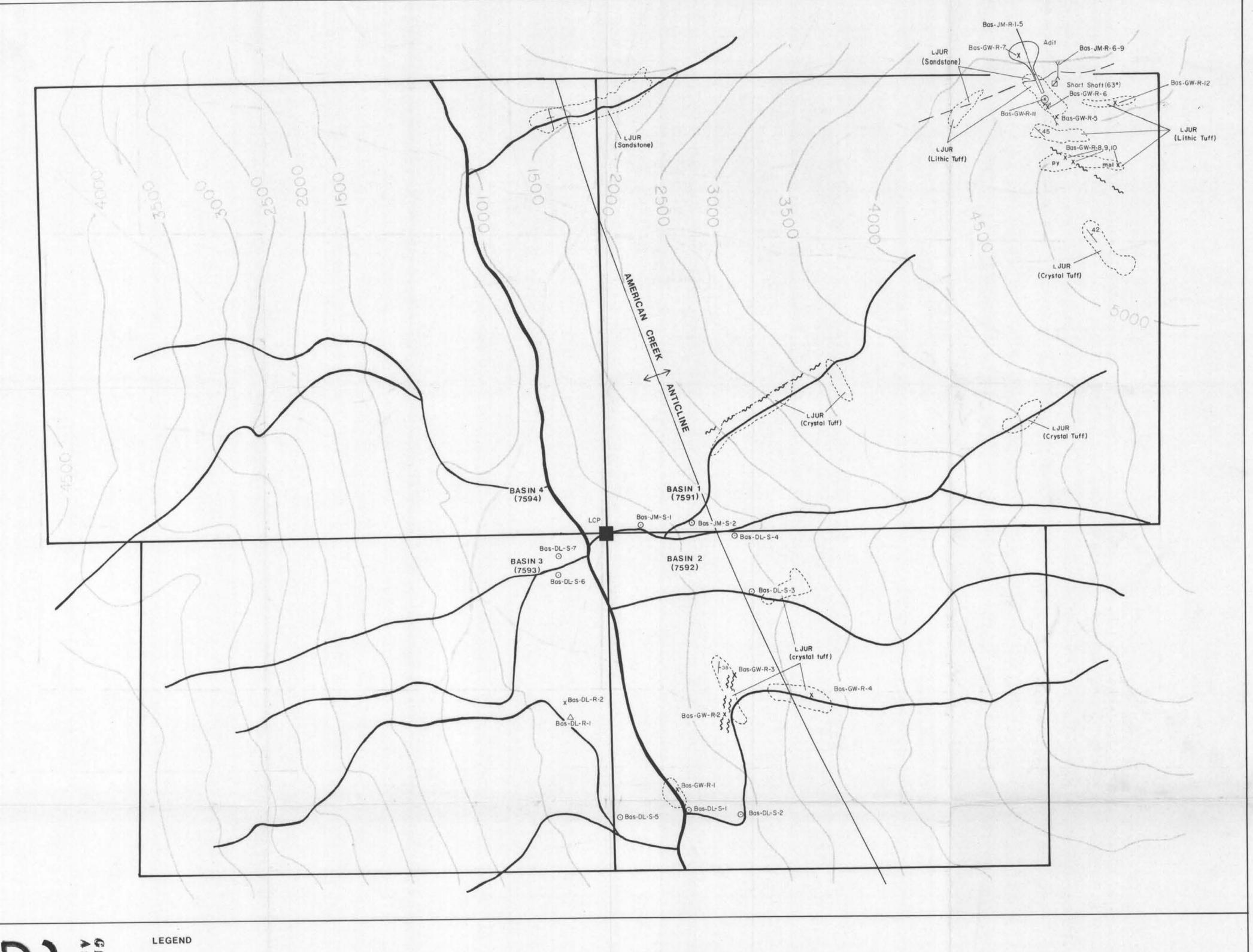
OUTCROP

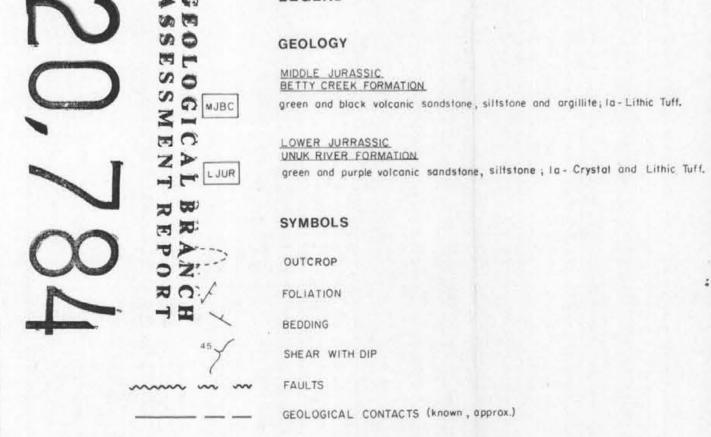
FOLIATION BEDDING

мЈВС

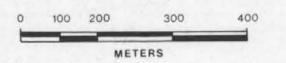
LJUR


SHEAR WITH DIP


SHEAR WITH D


MAN W FAULTS

— — GEOLOGICAL CONTACT (known, approx.)


SAMPLE	Au	Ag	Cu	Pb	Zn
	ρρb	ppm	ppm	ppm	ppm
JM-R-I 2 3 4 5	230 55 170 > 1000 > 1000	9, 1 3, 9 2, 2 21, 9 3, 3	126 67 421 661 159	1249 1038 10,000 10,000	2496 825 10,000 10,000
6 7 8 9 10	195 130 35 360 95 80	13.3 30.0 2.6 19.9 11.0 3.9	433 587 24 855 149 94	2838 10,000 5108 10,000 8487 772	10,000 10,000 10,000 10,000 8703
GW-R-I	5	0.2	3	91	357
2	10	1.3	24	634	315
3	345	16.3	305	10,000	10,000
4	5	0.5	17	156	895
5	220	9.1	40	3703	1691

	G	EOCHEN	RESULTS		
	Au	Ag	Cu	Pb	Zn
SAMPLES	ppb	ppm	ppm	ppm	ppm
JA-R-I	15	30	643	295	296
2	40	30	215	334	8015
3	30	30	545	235	248
4	20	7.3	19	115	10
5	25	10	63	336	893
6	5	3.2	22	258	88
7	25	0.8	48	1234	34
8	5	0.9	28	1621	33
9	5	0.7	183	571	13
GW-R-I	5	2.2	4	266	178
2	5	0.2	4	26	84
3	5	0.2	20	32	66
4	15	0.4	1	13	47
5	5	9.6	40	392	50
6	20	30	497	6387	10,000
7	55	30	225	3469	10,000
8	30	2.6	13	118	370
9	20	2.5	32	50	123
10	5	1.5	216	19	183
11	5	7.1	517	27	34
12	15	30	372	2702	882
DL-R-I	5	0.3	35	2	< 2
2	5	0.2	28	2	< 2

TEUTON RESOURCES CORP.

BASIN CLAIMS
SKEENA MINING DIVISON B.C.

COMPILATION MAP

NICHOLSON & ASSOCIATES

DATE: NTS: SCALE: FIGURE: 8