		Pa a
LOG NO: (OCT 16 1991	RD.
ACTION: \(\sigma\)	12 N. 26 C.	ann
	WENCY.	
		_
EME NO.		
FILE NO:		
LOG NO	1. 11-01	RÐ.
ACTION		
1	•	
ł		
PILE NO	·	

GEOLOGICAL SUMMARY REPORTE NO:

ON THE

الماسانية الماسانية

JAN 02 (1)

Gold Commissioner's Office VANCOUVER, B.C.

SPEC GROUPS OF CLAIMS (Spec I - Spec 1, 2, 3, 4, & 7) (Spec II - Spec 5 & 6)

NTS 104G/2 & 7

MOUNT EDZIZA AREA

ALASKA FERN MINES LTD

&

NORANDA EXPLORATION COMPANY, LIMITED

VANCOUVER, B.C.

DECEMBER, 1990

TABLE OF CONTENTS

Introduction	1
Location, Access and Physiography	1
Property Description	1,
Property History	2
Geology Regional Geology Local Geology	2 / 2 /
Mineralization and Alteration, Various Zones Butte, Spar, Pup and View Zones Sphaler Creek Area, Sphaler and Canyon Zones Spec 5 Claim, Ball Creek Area	3 / 3 / 4
Potential	4 /
Recommendations	5 /
Certificate of Expenditures	6 ,
References	7 ,
Certificate of Qualifications	8
<u>APPENDICES</u>	
Appendix 1 Sample Descriptions /	
Appendix 2 Geochemical Analyses and Assays /	
LIST OF FIGURES	
Figure 1 Property Location Map	1a
Figure 2 Claim Location Map	1b /
Figure 3 Map showing the Location of Various Zones, Spec 1 and 7 Claims	pocket
Figure 4 Detailed Geology, Butte, Spar, Pup & View Zones.	# .
Figure 5 Detailed Geology, Sphaler Creek Area.	11
Figure 6 Map Showing Area of Rock Sampling, Spec 5 Claim.	Ħ
Figure 7 Rock Sampling, Spec 5 Claim.	***

INTRODUCTION

Field work was carried out on the Spec Group of claims, Mount Edziza area, Northwestern British Columbia, by Mohan R. Vulimiri, John F. Mirko, David E. Blann, Harvey F. Stark and R. Redavid on behalf of Noranda Exploration Company Ltd. during a period August to October, 1990. Exploration consisted of mainly prospecting and geological mapping. The work was concentrated mainly on the Spec 1 and Spec 7 claims (Spec I). Minor work was carried out on the Spec 5 Claim (Spec II).

The expenditures incurred on Spec I are \$ 12834.00 and on Spec II are \$ 4526.50 for a total of \$ 17360.50.

LOCATION, ACCESS AND PHYSIOGRAPHY

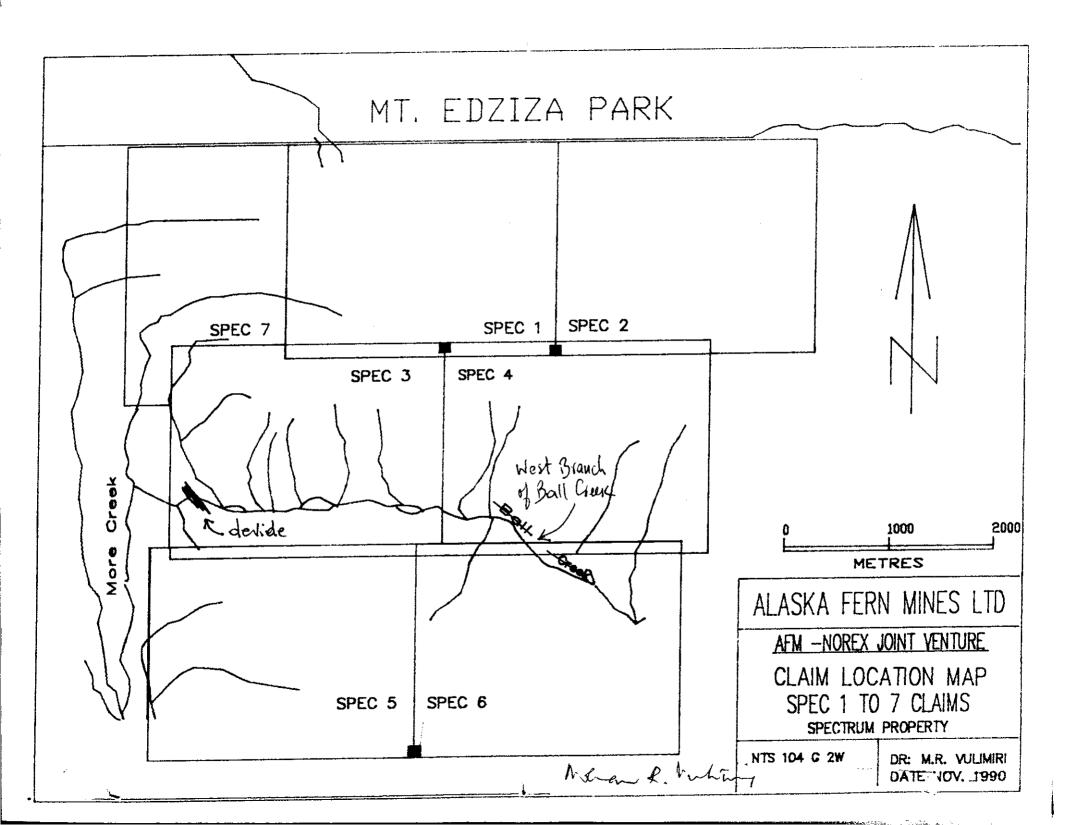
The Spec Property is located approximately 345 kilometres northwest of Smithers, B.C. and is centred at 57°15' north latitude and 130°40' west longitude in the NTS map sheets 104G 2 and 7. The claims are situated at the headwaters of More Creek (Fig. 1).

Access is by fixed wing aircraft to either Galore Creek Camp, or Bob Quin Airstrip from Smithers, then by helicopter to the Property. Bob Quin Airstrip is located about 40 kilometres to the southeast on the Stewart-Cassiar Highway.

The claims lie on the western margin of the Stikine Plateau at elevations of 1500 to 2000 metres above sea level. The rugged Coast Mountains lie to the west.

The property covers an area which is plateau-like to the west and rugged mountains to the east. Outcrop exposure is sparse on the plateau, and excellent on the steep slopes.

PROPERTY DESCRIPTION


The property is owned by Noranda Exploration Company, Limited and operated by Alaska Fern Mines Ltd, under an option. The property consists of the following claims (Fig. 2).

<u>Claim</u>	Record No	<u>Units</u>	<pre>Expiry Date*</pre>
Spec 1	6511	20	October 5, 1991
Spec 2	6512	20	October 5, 1991
Spec 3	6513	20	October 5, 1991
Spec 4	6514	20	October 5, 1991
Spec 5	6515	20	October 5, 1991
Spec 6	6516	20	October 5, 1991
Spec 7	6524	15	February 22, 1992

* valid upon acceptance of the assessment work.

The claims are grouped into two groups. The claims Spec 1, Spec 2, Spec 3, Spec 4 and Spec 7 form one group (Spec I), and claims Spec 5 and Spec 6 form the second group (Spec II).

SPEC PROPERTY NASTA Paved Highway 37A ALASKA FERN MINES LTD AFM -NOREX JOINT VENTURE LOCATION MAP SPEC PROPERTY 20 30 10 Man K. huh DATE NOW 1990

PROPERTY HISTORY

Exploration for porphyry copper and copper/molybdenum deposits has been carried out intermittently over the last 30 years in the area. Newconex Ltd., carried out a reconnaissance program on the More Creek drainage in 1976. Some of the mineral showings on the property were discovered at that time.

Edziza Resources and Skylark Resources carried out geophysical, geochemical and prospecting work during 1980 and 1988 seasons respectively. Emphasis was only placed on a spectacular narrow high grade massive sulphide showing on the southern part of the Spec 1 Claim.

GEOLOGY

Regional Geology

The Telegraph Creek Map Sheet (NTS 104 G) was mapped by J.G. Souther of the Geological Survey of Canada during the period 1956 to 1969 (GSC Paper 71-44).

According to Souther, the More Creek area is underlain by sedimentary and volcanic rocks of Triassic and Jurassic age (map units 5, 7, 8, 9 and 13). These rocks are intruded by granitic plutons and rhyolite dykes of Triassic and/or Cretaceous age (map units 17 and 20) Basaltic rocks of the Mt. Edziza area of Tertiary and Quaternary age are the youngest rocks in the area.

Recent work by Read et al in the Forrest Kerr and Lower More Creek areas (GSC Open File 2094) suggests the Triassic and Jurassic sedimentary and volcanic rocks are part of the Stuhini Group.

Local Geology

Geological mapping mainly on the western area of the Spec 1 and eastern margin of the Spec 7 claims has shown the area to be underlain by several phases of Syenite intrusions. These plutonic rocks intrude calcareous and quartzose sedimentary and interbedded sedimentary and andesitic volcanic rocks.

The sedimentary rocks have been extensively converted to garnet-diopside-K-feldspar-epidote skarns. Epidote-diopside-K-feldspar endoskarn have also been observed in the syenitic intrusions.

The syenite intrusions are characterized by various sizes of very large K-feldspar phenocrysts. The matrix is fine grained and the colour varies from dark brown to pink. Minor narrow quartz veins are also present.

The sedimentary and volcanic rocks predominantly trend north and dip steeply to east. North trending rhyolite dykes intrude all the rocks on the Spec 2 and 4 claims and the eastern part of Spec 1 claim. Minor geological mapping was carried out along the western and northern boundary of the Spec 5 Claim towards the Ball Creek drainage. Here, lesser syenite intrusive rocks are present. The dominant plutonic rocks are of granodiorite to quartz-diorite compositions. These rocks intrude calcareous sedimentary, thus resulting in garnet-diopside skarns (both endo and exoskarns).

MINERALIZATION AND ALTERATION, VARIOUS ZONES

Butte, Spar, Pup and View Zones (Spec I, Figures 3 & 4)

The Butte, Spar and Pup zones are situated with an area of 200 metre radius near the northern boundary of the Spec 1 Claim. Preliminary information indicates the Pup Zone is located inside the Mt. Edziza Park close to the southern park boundary. The View zone is approximately 200 metres to the south. This area is covered extensively by Mt. Edziza basalts and glacial debris. Outcrop exposure is poor.

Mineralization in the Butte, Spar, Pup and View zones consists predominantly of chalcopyrite, malachite, azurite, minor bornite, minor pyrite and pyrrhotite in garnet-diopside-K-feldspar-epidote endo and exoskarns. Chalcopyrite also occurs in fractures and matrix in K-feldspar porphyritic syenite.

Extremely rich chalcopyrite mineralization is exposed over an area 30 metres by 30 metres on the Butte Zone. Gold values are erratic, with values up to 100 ppb gold.

The View Zone mainly consists of chalcopyrite, malachite and azurite in fractures in epidote endoskarn in Syenite porphyry. Two samples taken over an area 20 metres by 20 metres returned 0.25% copper, and 300 and 600 ppb gold respectively.

Assays and sample descriptions are given in the Appendices 1 and 2.

Sphaler Creek Area, Sphaler and Canyon Zones (Spec I, Figures 3 & 5)

Two mineral showings, Sphaler and the Canyon showings are situated on the Sphaler Creek, near the southern boundary of the Spec 1 Claim.

The Sphaler Showing is a north-trending narrow massive sulphide in the calcareous sediments near the contact with a porphyritic syenite intrusion. The sulphides consist of bands dark brown sphalerite, chalcopyrite and pyrite, with minor galena. Mineralization is approximately 30 centimetres wide. The surrounding sediments are converted to low grade calcalicate skarn. Assays are spectacular with values up to 7.6% copper, 8.6% silver, 1.42% lead and 6.5% zinc.

The Canyon showing is situated approximately 200 metres downstream from the Sphaler Showing. Mineralization consists of chalcopyrite and malachite associated with fractures in dark brown syenite porphyry. Values up to 2600 ppm copper were obtained. Assays and sample descriptions are given in the appendices.

Spec 5 Claim, Ball Creek area (Spec II, Figures 6 & 7)

Minor prospecting and geological mapping was carried out on the northern and western boundaries of the Spec 5 Claim.

The geology consists of mainly calcareous sediments and minor andesitic volcanic rocks intruded by granodiorite to quartz diorite intrusions on the northern boundary of the Spec 5 Claim. Both epidote-diopside-minor garnet endo and exoskarns occur at the contacts. Chalcopyrite, pyrite with malachite and azurite mineralization is present in the skarns. Several samples have been sent for assay. Geochemical analyses and sample descriptions are given in Appendices 1 and 2.

Syenitic intrusive rocks are exposed on the northwestern corner of the Spec 5 Claim. These rocks are highly altered to K-feldspar with pyrite in narrow quartz stringers. Calcareous sedimentary rocks are converted to diopside-epidote-minor garnet skarns near the contacts.

POTENTIAL

The geological environment on the Spectrum Property, based on the minimal amount of work carried out to date, appears to be very similar to the Galore Creek porphyry copper-gold deposits associated with syenite intrusions.

Copper mineralization on the Spectrum Property is present both within the syenite intrusive rocks as well as in the epidote-diopside-garnet exo and endoskarns near the contacts. Several phases of syenite intrusive rocks with various sizes of K-feldspar phenocrysts are present. Very little outcrop is exposed in the area, and therefore the extent of mineralization is not known. This mineralization is exposed on the northern boundaries of Spec 1 and Spec 7 claims, and appears to extend into Mt. Edziza Park.

Intrusive-related copper mineralization is also present near the northern and western boundary of the Spec 5 Claim.

RECOMMENDATIONS

An exploration program consisting of geophysical induced polarization, magnetometer and VLF-EM surveys, and geochemical soil and silt sampling is required on the property.

Any resulting anomalies have to be interpreted in conjunction with geology, followed by diamond drilling of the anomalies.

Mhan R. Vulimiri December 15, 1990

CERTIFICATE OF EXPENDITURES

The following expenditures were incurred on th	e 5	Spectrum	Prop	erty.
Spec 1 and 7 Claims (Spec I - Spec 1, 2, 3, 4	& 7	7 claims	- 95	units)
Wages (August 9 to 13, 1990)				
M. R. Vulimiri 4 days at \$350.00/day 1 day travel	\$	1750.00		
J. Mirko 4 days at \$250.00/day 1 day travel	\$	1250.00		
R. Redavid 2 days at \$140.00/day	\$	280.00		
Transportation				
Helicopter: 6.7 hrs. at \$702./hr incl. fuel) Mob. and Demob.		4703.00 1500.00		
Room and Board				
10 man-days at \$140/man-day (Galore Camp)	\$	1400.00		
Equipment and Supplies	\$	200.00		
Geochemical Analyses and Assays				
32 rocks at \$14.25/sample (ICP) 10 rocks Assays for Cu, Ag, Au at 12.50	\$ \$	456.00 125.00		
Shipping of samples Report Drafting, Typing and Computer Time	\$ \$ \$	600.00		
	\$1	12834.00	\$12	834.00
Spec 5 Claim (Spec II - Spec 5 and 6 claims -	40	units)		
Wages (October 1, 1990)				
M. R. Vulimiri, 1 day at \$350.00/day H. Stark, 1 day at \$200.00/day D. Blann, 1 day at \$200.00/day	\$ \$			
Transportation				

Helicopter: 2.6 hrs. at \$702/hr.(incl. fuel) \$ 1825.00 Mob. and Demob. (pro rata) \$ 650.00

Room and Board

3 man-days at \$140.00/man-day (Galore Camp)	\$	420.00	
Equipment and Supplies	\$	100.00	
Geochemical Analyses and Assays			
22 rocks at \$14.25 per sample (ICP) Shipping of rocks	\$ \$	313.50 80.00	
Report Drafting, Typing and Computer Time	\$ \$ \$	4176.50 200.00 150.00	
Sub Total	\$	4526.50	\$ 4526.50
Total Expenditures		•	\$ 17360.50

REFERENCES

- Read, P.B. et al, 1989: Open File Map on the Forrest Kerr and Lower More Creek Areas, Northwestern British Columbia. Geological Open File Report No. 2094.
- Sawyer, J.B.P., 1980: Geological, Geochemical and Geophysical Report on the More Creek Property, an Assessment Report for Edziza Resources.
- Souther, J.G., 1972: Telegraph Creek Map Area, British Columbia (Report and Map 11-1971), Geological Survey of Canada Paper 71-44

CERTIFICATE OF QUALIFICATIONS

I, Mohan R. Vulimiri, hereby certify that:

I am a Consulting Geologist, with business address at 822 East 12th Street, North Vancouver, B.C. V7L 2L1.

I am a graduate of Indian Institute of Technology, Kharagpur, India with a B.Sc. Honours in Geological Sciences.

I received a Master of Science degree in Economic Geology from the University of Washington, Seattle, U.S.A.

I am a Member of Society of Economic Geologists, Member of Society of Mining Engineers and a Fellow of the Geological Association of Canada.

I have practised my profession as a Geologist since 1970, and in responsible positions since 1974, in British Columbia, Yukon, Saskatchewan, Washington, Idaho and South Western U.S.A.

I have personally carried out and supervised the field work on the Spectrum Property conducted during August to October, 1990.

Dated at Vancouver, B.C., this 10th day of December 1990.

Mohan R. Vulimiri

APPENDIX 1

Sample No. Description of Rock Samples

Spec I - Spec 1 and 7 Claims

View 1, 2	fracture-controlled Chalcopyrite mineralization in endoskarn
Cnar 1	chalcopyrite fracture in endoskarn
Spar 1,	diss. chalcopyrite in quartz-garnet-K-feldspar
Spar 2, 3	
Dett. 0	endoskarn.
Butte 1	chalcopyrite-mal-az stringers in limy skarn
Butte 2	diss. chalcopyrite in garnet-quartz-diopside skarn
SP-1	endoskarn
SP-2	<pre>garnet-k-feldspar-diopepidote endoskarn with limy</pre>
	layers.
SP-6	quartz vein
SP-7	mal., chalcopyrite in quartz-magnetite skarn
SP-8	epidote skarn
SP-13	chalcopyrite in endoskarn-syenite
SP-24	diss. chalcopyrite in skarn
SP-13A	syenite next to skarn
SP-14	epidote-garnet skarn
SP-15	syenite with dark grey matrix
SP-16	diss. chalcopyrite & mal. in fine grained syenite
SP-16A	syenite with greenish matrix
SP-17	megacrystic syenite
SP-18	chalcopyrite-mal-az in epi-diop-gt endoskarn
SP-20	K-feldspar fracture in syenite
SP-22	chlorite-altered syenite
SP-23	K-feldspar altered syenite
SP-25	diss. chalcopyrite in syenite float
SP-25A	dark brown syenite with chalcopyrite
SP-26	dark brown syenite
SP-27, 28	fracture-controlled chalcopyrite in syenite
Sphaler 1	banded massive sulphide with sphalerite, chalco-
	pyrite, galena and pyrite.

Spec II - Spec 5 Claim

SP-51, 52	K-spar, quartz in syenite intrusion with pyrite
SP-53	altered syenite intrusion with diss. pyrite
SP-54	altered granodiorite
SP-55	epidote skarn
SP-59	syenite
SP-60	epidote-diopside-garnet skarn
SP-61, 63	skarny sediments with malachite
SP-64	skarned limestone
SP-66	epidote skarn
SP-67	malachite in skarn
SP-68	siliceous sediment with diss. pyrite
SP-69	hornfels with quartz stringers and malachite
SP-70,72,73,76	granodiorite endoskarn with chalcopyrite and mal.
DB-2F	dark brown syenite float
DB-3F	epidote-garnet endoskarn
160-1 -	diget with pyrito

APPENDIX 2

.

RASSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

TO : ALASKA FERN MINES,

822 EAST 12TH ST.,

NORTH VANCOUVER, B.C.

PROJECT : SPEC

TYPE OF ANALYSIS : ASSAY

CERTIFICATE # : 90447

INVOICE # : 10558

DATE ENTERED: 90-09-14

FILE NAME : AFM90447.A

PAGE # : 1

PRE		7.	oz/t	%	7.	· · · · · · · · · · · · · · · · · · ·
FIX	SAMPLE NAME					
				· -	~	
Α	BUTTE 1	8.12	7.70			
A	BUTTE 2					
Α	FUP 1		0.75			
A	SP 13					
Α	SP 25					
Α	SPAR 1		8.65			
Α	SPAR 2					
Α	SPAR 3					
A	SPHALER 1		8.60	1.42	6.50	
A	ZINC 1	2,20	5.70			
Α	ZINC 2			4.30	4.64	Medical and an arrangement of the second of
A	ZINC 3					
		Parkers of the latest Bad (Brasses		of a find and observed by an our	arb construction to be designed	
ı.						
						м. Не История общение по при
ſ						
				. 	~~~	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~=	

CERTIFIED BY:

losbowl

# ROSSBACHER LABORATORY LTD.

## CERTIFICATE OF ANALYSIS

TO: ALASKA FERN MINES, 822 EAST 12TH ST., NORTH VANCOUVER, B.C. PROJECT: SPEC

TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 90447 INVOICE # : 10558

DATE ENTERED : 90-09-14
FILE NAME : AFM90447

PAGE # : 1

20,785

=====		=====	=====	=====	=====	=====	=====	=====	=====	=====	======	=====	*****	=====	-=====	=====	=====	=====	=====	=====		======	=====	=====	=====	=====	======	=====	======	2=====	252222	=====	=======
PRE		PPH	PPM	PPM	PPN	PPM	PPM	PPM	PPH	7	PPM	PPM	PPM	PPN	PPH	PPN	PPM	PPM	PPM	ĭ	ĭ	PPN	PPM	X.	PPM	Z.	PPM	Z.	Z.	Z	PPM	PPM	PPB
FIX	SAMPLE NAME	MO	CU	PB	ZN	A6	NI	CO	MN	FE	AS	U	AU	HG	SR	CD	SB	BI	¥	CA	P	LA	CR	MG	BA	TI	B	AL	NA	SI	¥	BE A	ı AA
Δ	BUTTE 1		 75260	1854		279.9	 65	 24		8.52	 o		ND	ND	26 <b>4</b>	25	16	266			0.20	 24		1.22		0.32					 2 <del>9</del>		140
π			10890	38	118	16.6	93	7			20	7		NV NV		73	10														40	,	
n A	BUTTE 2	_					75	ינ דר	293	1.73	20	<u>ل</u> =	ND ND	ND UA	195	ა ეუ	17	37	251		0.05	18		0.08		0.08			0.01		10	0	30 70
H	PUP 1		22430	53	643	28.0	75	27	494	4.41	28	2	ND	ND	363	21	12	10	135			15		1.18		0.20			0.02		10	4	20
H	PUP 2	_	6078	59	231	7.5	80	19	615	3.01	29	3	ND	NU	405	y	10	Z9	135			15		1.34		0.24					14	4	5
_ <del>A</del>	SP 1		7844	127	93	4.9	8	<u> </u>	287	2.00	11		ND	ND	100	<u> </u>	<del>- 9</del>	45	378	0.91	0.02	10		0.17		0.12				0.01	6		
A	SP 6	3	763	21	11	3.8	11	š	145	0.38	18	ა -	ND	ND	/5	1	1	37	_			5		0.03		0.01					1	1	5
A	SP 13		61010	387	664	99.2	9	9	425	6.56	8	5	ND	ND	665	25	11	35				19		0.26		0.13		0.63	0.01		17	1	100
A	SP 16	2	3042	12	71	4.8	108	12	337	2.06	22	5	ND	ND	478	2	5	12	88	2.40	0.23	11	6	0.69	30	0.28	5	1.58	0.01	0.01	5	2	5
A	SP 25	3	18160 -	13	583	7.6	82	42	353	4.12	8	5	ND	ND	39	5	4	8	178	0.32	0.24	20	26	2.25	67	0.10	5	1.79	0.01	0.01	6	4	5
_A	SP 25A	5	2793	37	103	2.9	21	15	1029	4.05	18	5	ND	ND	147	2	8	14	295	3.20	0.10	24	1	0.87	224	0.08	5	1.14	0.01	0.01	9	6	5
A	SP 27	2	2674	234	333	2.0	40	15	896	4.27	18	5	ND	ND	267	4	2	3	232	2.03	0.20	19	9	1.27	87	0.16	5	1.43	0.02	0.01	3	6	5
A	SP 28	2	4444	78	107	4.3	12	14	309	2.35	12	5	ND	ND	147	1	5	14	141	0.70	0.14	19	10	0.55	95	0.06	5	0.83	0.01	0.01	1	3	5
A	SPAR 1	32	78010	765	979	331.4	35	14	568	8.22	9	5	ND	ND	549	39	8	177	164	2.81	0.09	14	4	0.76	36	0.31	70	0.80	0.01	0.01	19	1	200
A	SPAR 2	5	34440	242	382	24.4	2	2	355	3.31	9	5	ND	ND	142	5	5	10	242	2.15	0.04	20	3	0.02	25	0.07	30	0.13	0.01	0.01	5	5	30
A	SPAR 3	2	12680	54	133	11.6	6	2	377	2.11	15	5	ND	ND	201	1	4	38	431	2.04	0.02	25	18	0.17	30	0.11	15	0.20	0.01	0.01	2	9	30
A	SPHALER 1			12653	51130	304.0	157	236	1281	8.30	10	5	ND	ND	168	612	69	583	244	5.95	0.01	9	1	0.50	18	0.10			0.01	0.02	N/A	2	60
Α	VIEW 1	7	3780	35	457	3.5	212	29	840	4.40	22	5	ND	ND	172	5	2	5	154	3.07	0.22	12	52	2.35	75	0.34	10	2.36	0.01	0.01	4	3	650 <
A	VIEW 2	4	5771	58	217	7.8	179	23	911	4.16	22	5	ND	ND	140	3	2	12	234	4.36		22		1.33		0.28	10	1.65	0.01	0.01	5	5	430
A	ZINC 1		21680	1094	4398	215.7	145	27	2924	7.51	5075	5	ND	18	39	55	3383	2	37			6	1	2.20		0.01	120	0.36	0.01	0.01	12	1	20
A	ZINC 2			26484			54			10.48		5	10	12	77	654	243	2		8.86		8	1	4.06				0.21		0.01	N/A	2	690
A	ZINC 3			1182		28.5	9	4			2369	<del></del> 5	ND	ND	2	9	20	21		0.09		1	30	0.13		0.01			0.01		1	1	40

La Stac

#### ROSSBACHER LABORATORY LTD.

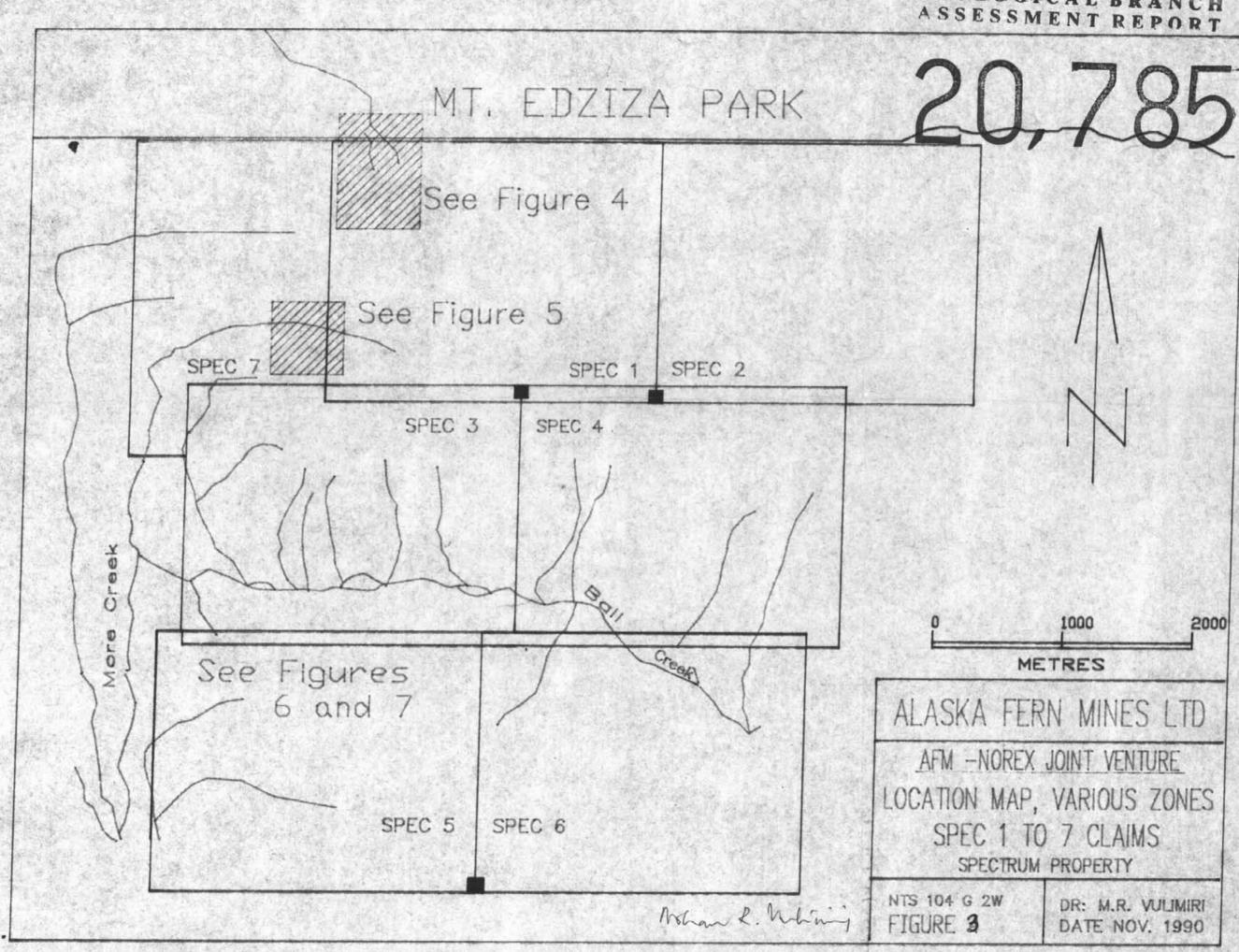
CERTIFICATE OF ANALYSIS

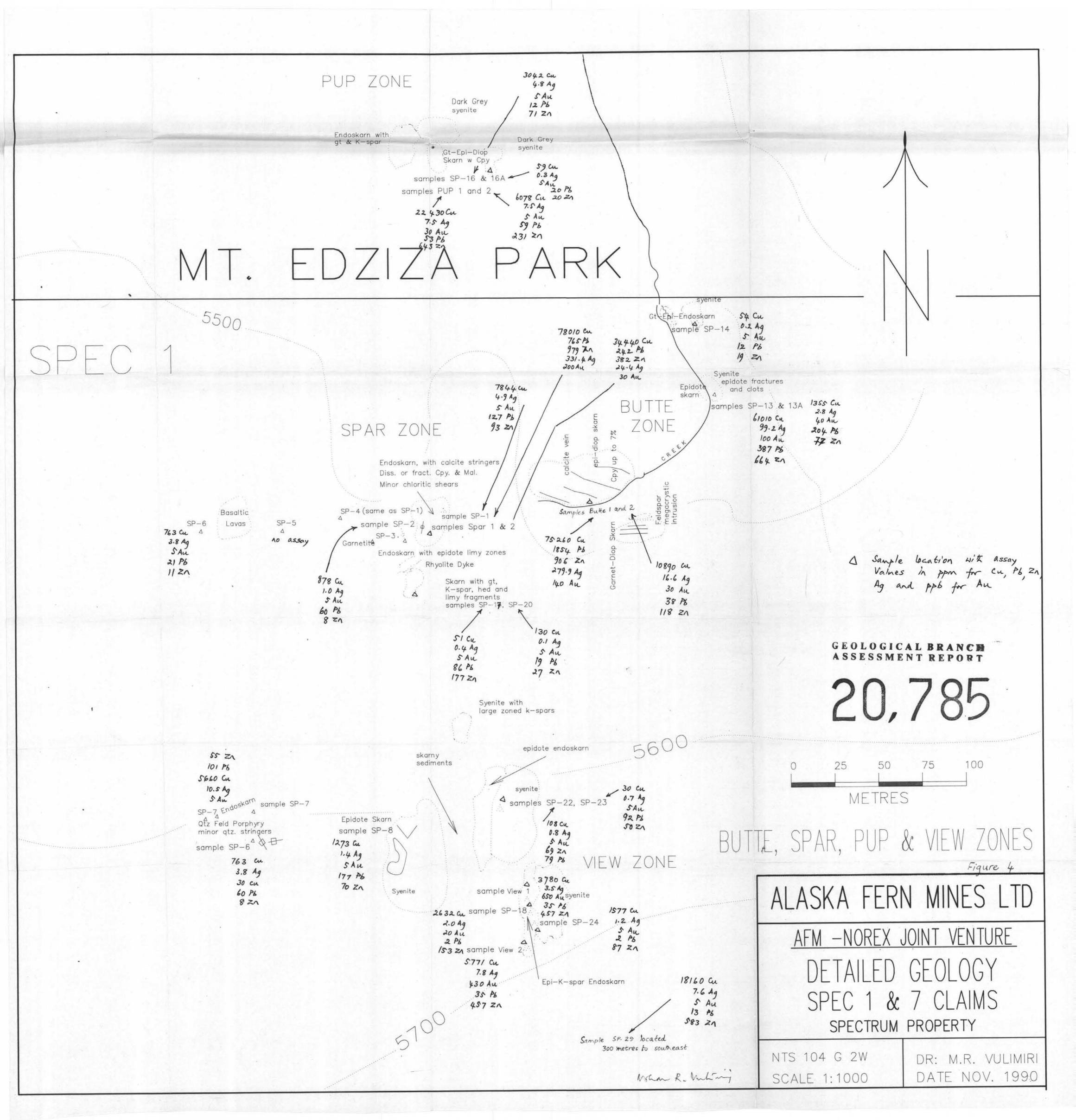
TO : ALASKA FERN MINES.

PROJECT :

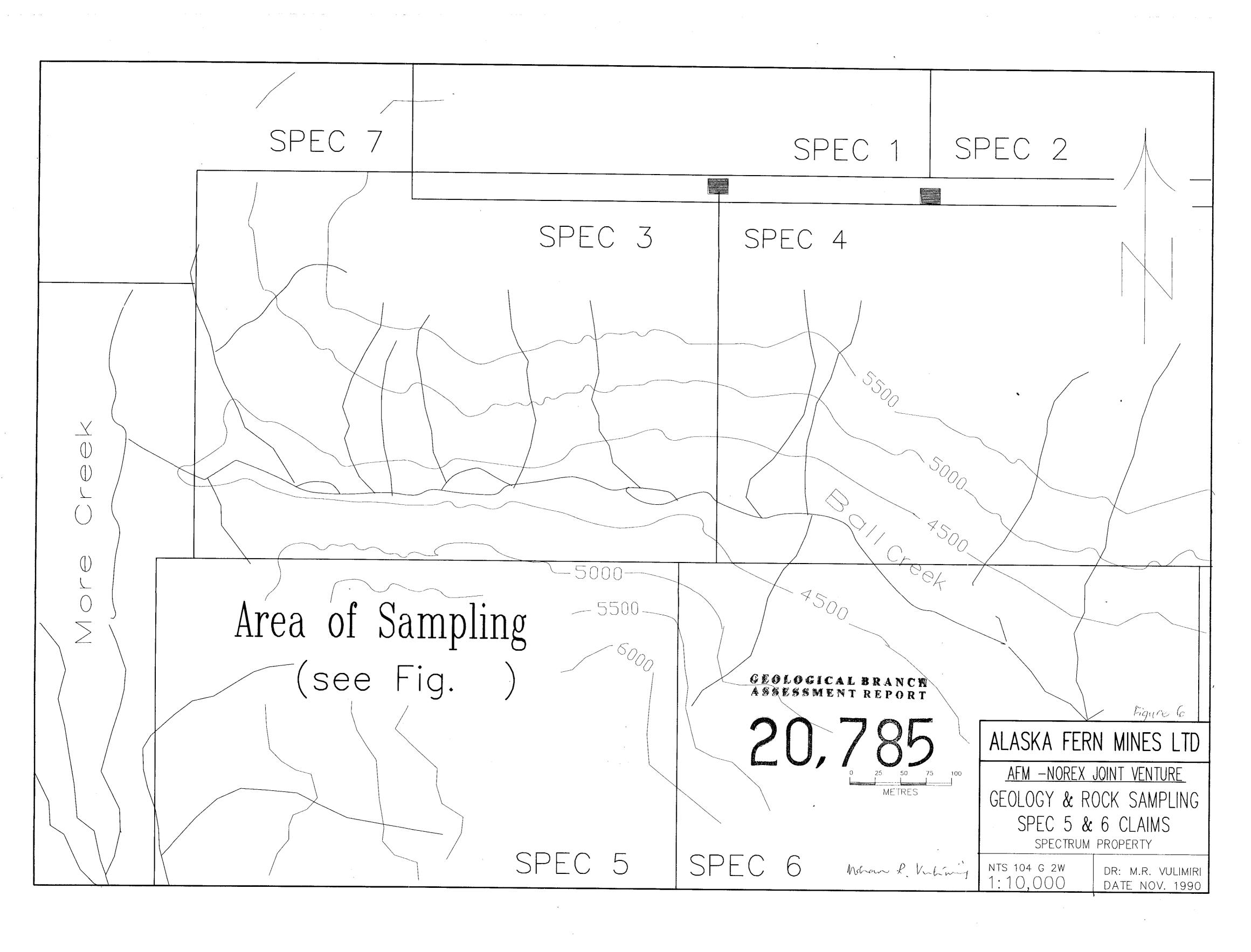
822 EAST 12TH ST.,

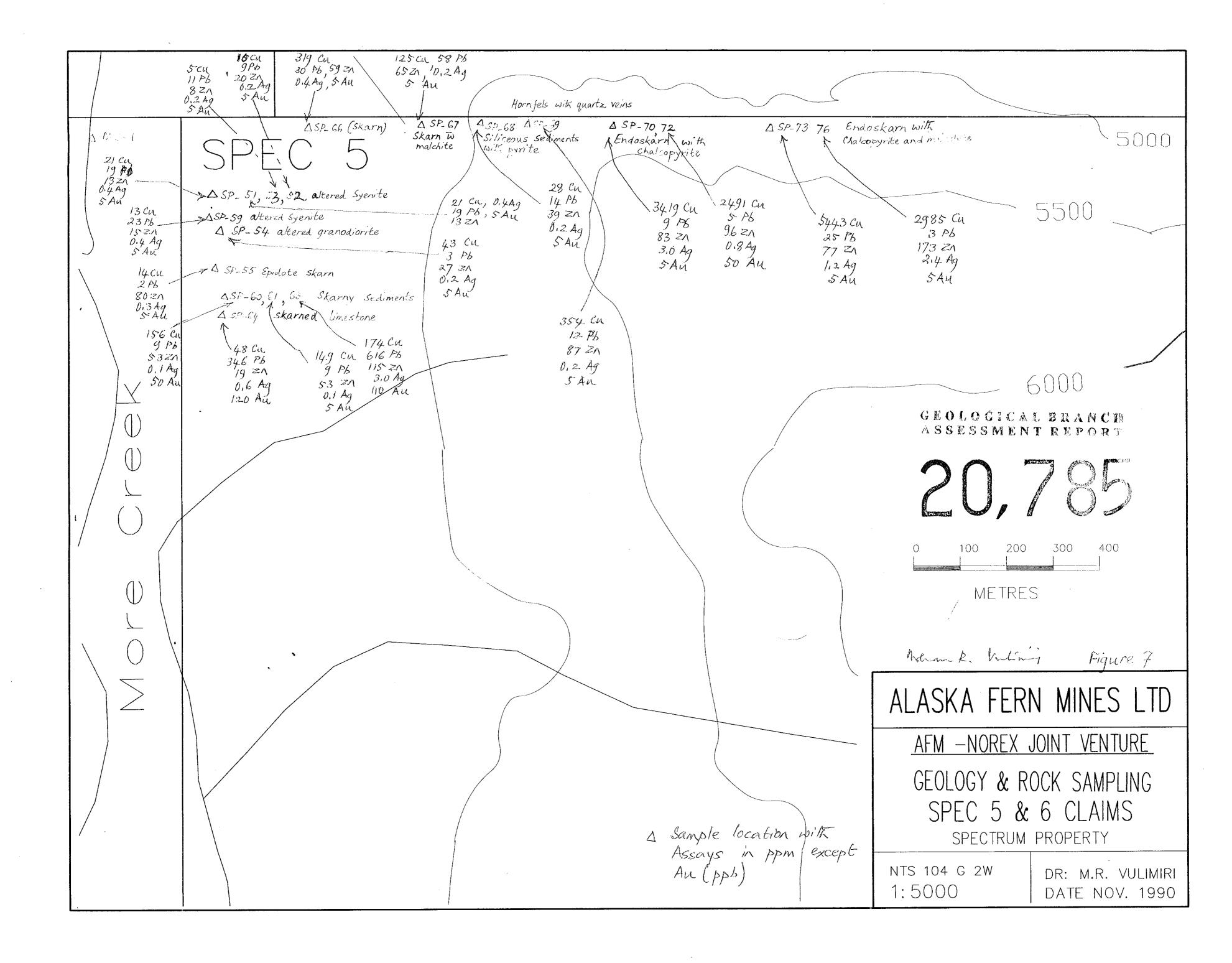
NORTH VANCOUVER, B.C.


2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1


Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 90599 **INVOICE # :** 20150 DATE ENTERED: 90-12-20


FILE NAME : AFM90599.I


	:=====================================					ALYS									=====					3E #	# :	1			=====		=====	=====	=====	=====	=====	=====	====:	
PRE FIX	SAMPLE NAME	PPM Mo	PPM Cu	PPM PB	PPM Zn	PPM AG	PPM NI	PPM CO	PPM MN	ĭ. FE	PPM AS	PPM U	PPM AU	PPM HG	PPM SR	PPM CD	PPM SB	PPM BI	PPM V	Z Ca	7. P	PPM La	PPM CR	7. NG	PPM Ba	Z TI	PPM B	X AL	Z NA	X SI	PPM ₩	PPM BE	PP Au 1	
Α	SP-2	1	878	60	8	1.0	1	1		0.70	2	5	ND	ND	467	1	9	6			0.03	13		0.02		0.09			0.01		7	2		5
A	SP-7	3	5660	101	55	10.5	7	6	804	2.11	9	5	ND	ND	468	2	4	2	140	5.31	0.16	17	57	0.58	327	0.12	10	0.43	0.01	0.01	7	3		5
A	SP-8	2	1273	177	70	1.4	24	14	552	2.16	12	5	ND	ND	371	1	4	2	105			8	34	0.74		0.27			0.01		2	2		5
Α	SP-13A	81	1355	204	77	2.8	7	5	265	1.35	18	5	ND	ND	167	3	4	14			0.02	18		0.11		0.04	5	0.34	0.01	0.01	1	į		<b>4</b> 0
A	SP-14	3	51	12	19	0.2	41	8		1.77	8	5	ND	ND	130	1	2	2	115			7	43	0.54		0.18			0.02		1	2		5
A	SP-15	6	514	144	40	1.2	5	18	257	1.27	9	5	ND	ND	175	2	2	2	34	1.53	0.02	24	16	0.17	83	0.03			0.01		1	1		5
A	SP-16A	1	59	20	20	0.3	19	5	856	1.85	4	5	ND	ND	388	1	3	2	112	6.94	0.15	14		0.46		0.16	10	0.33	0.02	0.01	4	2		5
A	SP-17	2	51	86	177	0.4	3	5	912	2.21	6	5	ND	ND	122	2	2	2	143	0.89	0.03	23	21	0.36	118	0.07	10	0.54	0.01	0.01	1	3		5
A	SP-18	2	2632	2	153	2.0	71	29	978	3.91	6	5	ND	ND	113	1	2	2	100	1.98	0.11	5	76	2.60	134	0.21	10	2.45	0.01	0.02	i	2		20
A	SP-20	1	130	19	27	0.1	13	6	296	1.04	6	5	ND	ND	290	1	3	2		1.93		12		0.54		0.13	10	0.93	0.01	0.02	1	1		5
A	SP-21	2	314	13	21	0.7	9	9	225	1.41	10	5	ND	ND	403	1	3	7	100	1.56	0.20	13	26	0.31	66	0.18	5	0.62	0.01	0.01	Ą	2		5
A	SP-22	2	108	69	79	8.0	4	8	475	2.00	9	5	ND	ND	122	1	4	13	130	0.47	0.04	18		0.24		0.07			0.01		4	3		5
A	SP-23	2	30	92	50	0.7	7	11	540	1.05	7	5	ND	ND	84	1	2	4	57	0.79	0.09	11	28	0.88	73	0.12	5	0.89	0.01	0.02	1	1		5
A	SP-24	i	1577	2	87	1.2	111	27	643	2.76	13	5	ND	ND	662	1	2	2	77	3.69	0.16	10	70	2.13	19	0.29	5	2.09	0.01	0.02	1	2	) -	5
A	SP-26	2	69	ç	71	0.3	7	15	644	3.46	9	5	ND	ND	96	1	2	2	221	1.50	0.16	20		0.89	115	0.15			0.01		1	4		5
A	SP-51	27	21	19	13	0.4	4	4	54	1.70	8	5	ND	ND	8	1	2	11	6	0.04	0.01	10	36	0.03	87	0.01	20	0.15	0.01	0.01	1	1		5
A	SP-52	4	10	9	20	0.2	4	4	277	1.53	6	5	ND	ND	5	į	3	10	4	0.02	0.01	25	45	10.0	91	0.01			0.01		i	1		5
A	SP-53	4	5	11	8	0.2	3	3	65	1.75	6	5	ND	ND	4	1	2	5	4	0.01	0.01	15		0.01	21	0.01			0.02		1	1		5
A	SP-54	3	43	3	27	0.2	3	6	937	2.17	13	5	ND	ND	72	1	2	2	83	2.75	0.13	6	19	0.32	11	0.28	10	0.64	0.02	0.01	3	1	i	5
A	SP-55	1	14	2	80	0.3	68	14	1606	4.54	- 6	5	ND	ND	94	1	2	2	125	3.80	0.09	2	74	1.20	30	0.19			0.02		1	2	) 	5
A	SP-59	3	13	23	15	0.4	5	5	749	1.31	7	5	ND	ND	55	1	3	11	119	1.66	0.03	17	23	0.22	84	0.17			0.01		4	2		5
Α	SP-60	7	158	8	153	0.3	16	15	1221	3.42	58	5	ND	ND	143	1	2	7	325	2.40	0.13	16	44	1.61	119	0.02	20	1.48	0.01	0.02	į	5	ì	50
A	SP-61	3	149	9	53	0.1	23	9	1007	1.62	11	5	ND	ND	265	1	5	2	94	6.01	0.16	12	47	0.70	31	0.18	10	0.81	0.03	0.01	5	2		5
Α	SP-63	99	174	616	115	3.0	26	7	2221	6.93	71	5	ND	ND	672	1	2	2	748 1	0.26	0.15	18	56	1.94	35	0.11	50	1.73	0.02	0.02	1	17	2 1	10
A	SP-64	27	48	346	19	0.6	1	1	2648	2.89	33	5	ND	ND	1654	1	4	2	169 2	1.07	0.09	110	20	0.23	70	0.03	30	0.17	0.02	0.01	4	4	1	20
A	SP-66	5	319	30	59	0.4	8	12	851	3.05	11	5	ND	ND	563	1	3	26	601	1.33	0.30	65	40	0.70	223	0.21	5	1.01	0.01	0.04	3	9	}	5
A	SP-67	4	125	58	65	0.2	1	12	985	3.84	7	5	ND	ND	96	1	2	2	125			10	28	1.01	62	0.26			0.02		1	7	2	5
A	SP-68	3	28	14	39	0.2	2	28	820	2.31	12	5	ND	ND	145	1	6	22	85	3.19	0.06	12	23	0.64		0.03			0.01		5	7	2	5
A	SP-69	3	354	12	87	0.2	1	10	855	4.76	10	5	ND	ND	186	1	3	15	585	4,05	0.14	11	28	0.53		0.26			0.02		5	10		5
A	SP-70	1	3419	9	83	3.0	1	4	1959	6.40	16	5	ND	ND	650	1	2	18	4925	8.19	0.54	87	40	0.62	37	0.29	5	1.02	0.02	0.04	9	70		5
A	SP-72	1	2491	5	96	0.8	2	9		3.76	7	5	ND	ND	61	1	4	2	266	0.85	0.02	8	30	0.56	47	0.13	5	0.97	0.01	0.02	1	5	ĵ	50
A	SP-73	1	5443	25	77	1.2	2	9	686	3.35	8	5	ND	ND	155	1	2	5	432	1.58	0.04	17	29	0.33	34	0.20	5	0.72	0.01	0.02	4	7	7	5
A	SP-76	2		3	173	2.9	6	17	1226	4.80	8	5	ND	ND	96	1	2	2	393	0.66	0.14	12	38	1.21	37	0.20	5	1.40	0.02	0.03	1	7	7	5
A	DB-1F	2	75	6	40	0.1	2	13	368	4.99	13	5	ND	ND	63	1	2	2	55	0.35	80.0	2	33	0.77	9	0.24	20	0.90	0.02	0.02	1	1	i	60
A	DB-2F	1	306	5	59	8.0	2	7	660	3.44	11	5	ND	ND	147	1	2	2	338	1.24	0.03	16	26	0.32	93	0.23	20	0.56	0.01	0.02	1	E	5	5
A	DB-3F	2	2071	4	52		1	11		4.20	6	5	ND	ND	318	1	2	2	650	1.30	0.01	9	29	0.48	59	0.33	5	0.86	0.01	0.01	1	1(	)	5









