| LOG NO: /6-0/ | RD. |
|---------------|-----|
| ACTION:       |     |
|               |     |
|               |     |
| FILE NO:      |     |

ASSESSMENT REPORT ON CONSOLIDATED GOLDWEST RESOURCES LTD.'S PUP PROJECT

GALORE CREEK AREA LIARD MINING DIVISION BRITISH COLUMBIA

J. Chapman, F.G.A.C.
M. Vanwermeskerken, Geologist

January 10, 1991

# OREQUEST



## **SUMMARY**

Consolidated Goldwest Resources Ltd. has the right to earn a 100% interest in the Pup Project, located in the Galore Creek area of northwestern British Columbia. The property comprises 7 mineral claims totalling 101 units situated within the Liard Mining Division. Access is by helicopter with the closest airstrips at Galore Creek or Porcupine River.

The Galore Creek area was extensively explored in the 1950's and 1960's for porphyry copper deposits following the discovery in 1955 of the Galore Creek copper-gold deposit. The Copper Canyon copper-gold and Schaft Creek copper-molybdenum deposits were subsequently defined, however neither of these are presently economic. Exploration activity resumed in the early 1980's, with precious metals of primary interest, and has intensified in the latter portion of the decade. This is a result of several exploration successes in the area to the southeast, the Iskut-Sulphurets-Stewart region.

The Consolidated Goldwest claims are underlain by a sequence of rocks including Permian limestone, fault bound wedges of Middle Triassic shale and an Upper Triassic Stuhini Group assemblage of sediments, volcanic flows and tuffs.

Two primary areas on the Pup Project worthy of more detailed evaluation were defined by previous work, one named the Saddle Zone and the other the Malachite Zone. The 1990 field program concentrated on expanding the Saddle Zone anomaly and providing more detailed

geological and geochemical information on the remainder of the property. The Saddle Zone features several prominent parallel northerly trending shear zones which form recessive, gossanous gullies and have associated sulphide-bearing quartz offshoots along their margins. These cover an area some 300 metres wide by 1700 metres long.

The Malachite Zone constitutes a porphyry style occurrence, featuring both disseminated and quartz vein-hosted pyrrhotite-pyrite-chalcopyrite mineralization within altered volcanics. This zone has been mapped over an area 300 metres by 400 metres, however contour soil sampling suggests that similar mineralization may exist over a larger area.

The Saddle Zone is of particular interest since it includes altered, quartz-hornblende porphyritic diorite/monzonite plugs. They have been mapped as being early Jurassic, an age which is thought to be a particularly prolific period of mineral deposit genesis, however texturally they more closely resemble Tertiary intrusives found elsewhere in the Galore Creek area. Mineralization associated with the latter is characterized by quartz veining and shearing with associated silicification, sericitization and pyritization. This appears to be the case in the Saddle Zone, where irregular sulphidebearing quartz veins are evident in foliated, well altered rocks adjacent to prominent, northerly trending shears. The shears have formed gossanous, overburden filled recessive gullies, limiting their exposure, however these linear features can be traced along strike for

over 1700 metres. Previous sampling of the veins in the Saddle Zone area produced values up to 810 ppb gold, 40 ppm silver, 1.92% copper and 1.91% zinc, while the shears themselves have returned up to 0.038 oz/ton gold, 1.95% lead and 3.4% zinc. A grid was established over the Saddle Zone extending from the south property boundary a distance of 1700 m north. This was used as control for soil and rock sampling detailed mapping, magnetic and electromagnetic surveys. A geophysical program consisting of VLF-EM and magnetometer surveys was carried out over 9.75 km of flagged grid on the Saddle Zone.

In total 432 soil samples were collected on the property, from the B horizon where possible. The depth to this layer varied between 5 and 30 cm, where present, with the C horizon used if necessary. Samples were stored in standard Kraft paper bags for shipment to TSL Laboratories for analysis.

Rock sampling totalled 199 samples, both grab and continuous chips, from all areas of the property. Only 2 silt samples were collected as the majority of drainages had been sampled in previous programs.

Results of the work on the Saddle Zone show a strong north northeast trending soil anomaly with values up to 0.041 oz/ton gold. A series of chip samples were collected over 122 m of line 8N which returned a maximum value of 560 ppb gold and 2700 ppm copper over 1.4 m. The average grade over 26.6 m was 225 ppb gold. The geophysical surveys show positive correlation with this geochemical trend.

The Malachite Zone has produced grab sample values up to 2.05% copper and 0.036 oz/ton gold, however, as a porphyry-style occurrence it requires consistent grades over a substantial area. The mapping and sampling carried out to date is limited in scope. Soil samples anomalous in copper and gold were collected along topographic contours up to 500 metres south of the zone, toward the Saddle Zone. More prospecting, mapping and sampling is required at the Malachite Zone and south to determine its extent and relationship, if any, to the Saddle Zone. Continued property-wide prospecting and sampling of zones of mineralization and alteration, is necessary.

The Pup Project is still in the early stages of exploration however it displays favourable geological, geochemical and structural attributes.

# TABLE OF CONTENTS

| Summary                                                                         | <u>Page</u>          |
|---------------------------------------------------------------------------------|----------------------|
| Introduction                                                                    | 1                    |
| Location and Access                                                             | 1                    |
| Physiography and Vegetation                                                     | 2                    |
| Claim Status                                                                    | 3                    |
| General Area History                                                            | 4                    |
| Property Exploration History                                                    | 7                    |
| Regional Geology                                                                | 8                    |
| Property Geology                                                                | 14                   |
| Mineralization and Alteration<br>Saddle Zone<br>Malachite Zone<br>Pickston Zone | 17<br>17<br>20<br>21 |
| Geochemistry Soils: Saddle Zone Pickston Zone Contour Lines                     | 22<br>22<br>23<br>24 |
| Rocks: Saddle Zone Malachite Zone Pickston Zone                                 | 24<br>27<br>27       |
| Geophysics                                                                      | 28                   |
| Statement of Expenditures                                                       |                      |
| Certificate of Qualifications                                                   |                      |
| J. Chapman, F.G.A.C.<br>M. Vanwermeskerken, Geologist                           |                      |

Bibliography

# LIST OF FIGURES

| Figure 1  | Location Map                            | Following Page 1  |
|-----------|-----------------------------------------|-------------------|
| Figure 2  | Claim Map                               | Following Page 4  |
| Figure 3  | Regional Mineral Occurrence Map         | Following Page 4  |
| Figure 4  | Regional Geology                        | Following Page 9  |
| Figure 5  | Property Geology and Index Map          | In Pocket         |
| Figure 6  | Sample Locations and Results            | In Pocket         |
| Figure 7  | Malachite Zone Geology and Geochemistry | Following Page 20 |
| Figure 8  | Pickston Zone, Geology and Geochemistry | Following Page 21 |
| Figure 9  | Saddle Zone Geochemical Results         | In Pocket         |
| Figure 10 | VLF-EM Survey - Saddle Zone             | In Pocket         |
| Figure 11 | Magnetic Survey - Saddle Zone           | In Pocket         |

# LIST OF TABLES

| Table I   | Claim Information              | Page | 4  |
|-----------|--------------------------------|------|----|
| Table II  | Saddle Zone Sampling Results   | Page | 26 |
| Table III | Pickston Zone Sampling Results | Page | 28 |

# LIST OF APPENDICES

| Appendix | A | Rock | Sample | Description | Sheets |
|----------|---|------|--------|-------------|--------|
|----------|---|------|--------|-------------|--------|

Appendix B Assay Reports

Appendix C Analytical Procedures

#### INTRODUCTION

This report was prepared by OreQuest Consultants Ltd. at the request of Consolidated Goldwest Resources Ltd., who has the right to earn a 100% interest in the Pup Project. The property is composed of the OP 1-2 and Pup 1-5 mineral claims totalling 101 units. Exploration history, regional geology and recent work on the property are summarized and recommendations for further exploration are made.

The information contained in this report is derived from field data acquired during implementation of the 1990 work program by OreQuest during the period August 11 to September 27 and a compilation of previous data as listed in the Bibliography.

#### LOCATION AND ACCESS

The Pup Project is located within the Coast Range Mountains approximately 180 kilometres northwest of Stewart and 80 kilometres south of Telegraph Creek in northwestern British Columbia (Figure 1), centred at 57°12'N latitude and 131°29'W longitude. Mapsheet reference is 104G/3W, 4E.

Access to the Pup property during the 1990 exploration program was provided by helicopter from the OreQuest field camp on Split Creek, located approximately 15 km to the southwest. During the field season, fixed-wing aircraft can provide supply flights directly from Smithers, via the Bronson Creek or Bob Quinn Lake airstrips to the Porcupine River strip, 10 km south of camp. Supplies were more



300

200

IÓO

MILES 0

500 Km

300 MILES

LOCATION MAP

British Columbia NTS: 104 G/3W, 4E

JANUARY 1990

commonly obtained from Wrangell, Alaska, 75 km southwest of Porcupine, which provides a full range of services, including a major commercial airport. The Porcupine River strip is suitable only for single engine aircraft. The Scud River airstrip, located 23 kilometres to the northwest of the Pup property, is suitable for DC-3 aircraft. Another airstrip and camp facility is seasonally operational at Galore Creek, 8 km southeast of the property.

The Stikine River has been navigated by 100-ton barges upriver as far as Telegraph Creek, allowing economical transportation of heavy machinery and fuel to the Scud River airstrip. In the early 1960's, Kennco constructed a cat road from their Galore Creek copper-gold deposit down the south side of the Scud River to the Stikine River and the Scud River airstrip. This cat road, which passes within a few hundred meters of the northeast corner of the Pup claim group, has not been maintained and would require some reconstruction before becoming passable. During the 1990 program, helicopters were stationed in the Equity Engineering Ltd. camp at the Porcupine strip and at the Galore Creek strip.

#### PHYSIOGRAPHY AND VEGETATION

The OP and Pup claims cover most of the Pup Creek drainage, extending south into the headwaters of Jack Wilson Creek and north into the drainage of an unnamed creek which drains north into the Scud River. Topography is rugged, typical of mountainous and glaciated terrain, with elevations ranging from 350 metres in the Scud River

valley on the northeast corner of the OP 1 claim to 2150 metres on the unnamed peak situated on the western boundary of the Pup 2 claim. Northerly-facing slopes are covered with permanent snowfields at higher elevations. One valley glacier descends to the 1150 metre elevation on the OP 1 claim.

Lower slopes are covered by a mature forest of hemlock, spruce and balsam fir with a dense undergrowth of devil's club, alder and huckleberry. Above treeline, which occurs at approximately 1000 metres, the creek beds and slopes are covered by dense slide alder and willow growth. The steeper slopes are covered in short heather and other alpine vegetation. Rock exposure is excellent above 1000 metres, though much of it is inaccessible due to the steepness of the terrain.

The property lies in the wet belt of the Coast Range Mountains, with annual precipitation between 190 and 380 centimetres (Kerr, 1948a). Except during July, August and September, precipitation at higher elevations falls mainly as snow, with accumulations reaching three metres or more. Both summer and winter temperatures are moderate, ranging from  $-5^{\circ}$ C in the winter to  $20^{\circ}$ C in the summer months.

# CLAIM STATUS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the OP 1-2 and Pup 1-5 claims are

owned by Consolidated Goldwest Resources Ltd. Claim data is summarized in Table 1 and Figure 2. The Pup 5 claim was staked to cover a small internal fraction between the Pup 1, 2, 3 and 4 claims.

TABLE 1 - CLAIM INFORMATION

| Record<br>Date | Expiry<br>Date                                               |
|----------------|--------------------------------------------------------------|
| Feb 22/88      | Feb 22/94                                                    |
| June 13/88     | June 13/94                                                   |
| Oct 14/89      | Oct 14/94                                                    |
|                | Feb 22/88 Feb 22/88 Feb 22/88 Feb 22/88 Feb 22/88 June 13/88 |

The expiry dates shown above reflect assessment filed Oct. 15, 1990, based on the 1990 exploration program.

## GENERAL AREA HISTORY

The Galore Creek district (Figure 3) was extensively explored for its copper potential throughout the 1960's, following the discovery in 1955 of the Galore Creek copper-gold porphyry deposit. This deposit, whose Central Zone hosts reserves of 125 million tonnes grading 1.06% copper and 400 ppb gold (Allen et al, 1976), is located approximately five kilometres south of the Pup property. Several major mining companies conducted regional mapping and silt sampling programs over the entire Galore Creek area, and the Copper Canyon copper-gold porphyry, estimated by Grant (1964) at 28 million tonnes grading 0.64% copper, was discovered eight kilometres east of the





Galore Creek Central Zone in 1957. Unfortunately, most of the regional data collected at that time was not filed for assessment credit and is not available.

Conwest Exploration staked the CW claim group in 1964 over a large area north and west of the Galore Creek deposit, including the Galore Pup drainage. They conducted regional mapping and sampling over their claims, taking fifteen rock samples and 91 silt samples in 1964, of which five rock samples and 23 silt samples were taken from the area now covered by the OP and Pup claims. Of the thirteen silt samples which returned values of 300 ppm copper or higher, ten were taken from ground currently covered by the Pup claim group. No silt samples and only selected rock samples were analyzed for gold (Grant, 1964).

In 1965, PCE Explorations and Canadian Superior Explorations staked the OP claims near the present location of the OP 1 and 2 claims, but allowed them to lapse after performing limited soil and stream geochemical sampling (Hindson, 1965).

In the early 1980's, Teck Corp. conducted regional exploration for gold and base metals throughout the area, and delineated 185,000 tonnes of drill-indicated reserves grading 4.11 g/t gold (0.12 oz/ton) in the Paydirt deposit (Holtby, 1985), which is located approximately fifteen kilometres south of the Pup property. In 1987, several precious metal occurrences were discovered on the Trophy Project,

which adjoins the OP 1 claim to the east. Continental Gold, which acquired the Trophy Project in 1988, reported trench samples averaging 2.40 g/t (0.07 oz/ton) gold and 164.5 g/t (4.80 oz/ton) silver across 56.4 metres from their Ptarmigan A zone (Continental, 1988a). Gigi Resources Ltd. acquired the Trophy Project in 1989 and during the 1990 field season drilled 1,885 metres in 10 holes on the Ptarmigan and N110 Zones. The best intersections were 9.94 grams/tonne (0.290 oz/ton) gold and 38.0 grams/tonne (1.11 oz/ton) silver over 14.1 metres from the Ptarmigan Zone and 2.06 grams/tonne (0.060 oz/ton) gold over 15.0 m on the N110 Grid (Gigi Resources News Release).

Slocan Development Corporation's Sand Project adjoins the northwest corner of the Pup Project. During the 1990 field program they located the Twilight zone, a minimum 350 m long, 1 to 5 m wide shear zone within limestones containing chalcopyrite, pyrite, sphalerite and galena. Grab samples have returned assays up to 11.08% copper, 9.5% lead, 2.72% zinc, 4.01 oz/ton silver and 0.043 oz/ton gold.

On the Deluxe Zone of Consolidated Goldwest Resources Ltd., 20 km south of the Pup Project, grab samples collected in 1989 assayed up to 0.306 oz/ton gold, and float samples up to 8.251 oz/ton gold, 20.54 oz/ton silver, 1.83% copper and 1.98% zinc. This zone was tested by 6 drill holes however the source of the anomaly was not determined.

During the 1990 field season Consolidated Rhodes Resources Ltd. conducted a drilling program on the Copper Canyon deposit which intersected values up to 1.06% copper and 0.056 oz/ton gold over 884.2 feet. Shorter intervals of 0.217 oz/ton gold over 29.5 feet and 0.142 oz/ton gold over 52.5 feet were also recorded.

#### PROPERTY EXPLORATION HISTORY

During September of 1988, Equity Engineering Ltd. on behalf of Consolidated Goldwest Resources Ltd., carried out a preliminary exploration program on the Pup Project, consisting of geological mapping, prospecting and geochemical sampling. Eleven field-sieved stream sediment samples were collected from tributaries of Pup Creek. All of these contained appreciable gold with three samples carrying greater than 60 ppb gold. Five rock samples were collected from mineralized outcrop and float in the drainage of Pup Creek, with values up to 1000 ppb gold and 4800 ppm copper (Awmack, 1989).

During August, September and October of 1989, Equity Engineering carried out a follow-up exploration program consisting of reconnaissance geological mapping, prospecting and contour soil sampling. This exploration was targeted at mesothermal precious metal vein/shear occurrences similar to those occurring elsewhere in the Galore Creek district and within a similar geological environment which stretches south to the Iskut River, Sulphurets and Stewart mining districts.

Prospecting and reconnaissance geological mapping was conducted on a 1:10,000 scale topographic orthophoto base, prospective zones of alteration and mineralization were sampled, both in outcrop and float, and contour soil lines were established downslope from gossanous zones and over areas from which stream sediment sampling by Conwest in 1964 had produced anomalous copper values. Two areas of interest were defined by this work, referred to as the Saddle and Malachite Zones.

During the 1990 field program a grid was established over the Saddle Zone, extending 1700 m north from the south property boundary. This area was soil and rock sampled, mapped and covered by magnetic and electromagnetic surveys. The Malachite Zone was covered by additional contour soil samples, prospecting, mapping and rock sampling.

A small grid was emplaced over a limestone contact in the northeast portion of the property and contour soil sampling and prospecting were carried out over the remainder of the claim block.

# REGIONAL GEOLOGY

The first geological investigations of the Stikine River in northwestern British Columbia began over a century ago when Russian geologists came to Russian North America assessing the area's mineral potential (Alaskan Geographic Society, 1979, in Brown and Gunning, 1988). This was followed by the first Geological Survey of Canada foray of G.M. Dawson and R. McConnell in 1887. Several more

generations of federal and provincial geologists have been sent to the Stikine, including Kerr (1948), the crew of Operation Stikine (GSC, 1957), Panteleyev (1976), Souther (1972), Souther and Symons (1974), Monger (1977), and Anderson (1989). The British Columbia Geological Survey has recently completed regional mapping of the area at a scale of 1:50,000 by Brown and Gunning (1989a,b) and Logan and Koyanagi (1989a,b).

The Galore Creek Camp lies within the Intermontane Belt, a geological and physiographic province of the Canadian Cordillera which flanks the Coast Plutonic Complex to the west (Figure 4). At Galore Creek, the generally northwest-trending structure of the Intermontane Belt is discordantly cut by the northeast-trending Stikine Arch which became an important, relatively positive tectonic element in Mesozoic time when it began to influence sedimentation into the Bowser Successor Basin to the southeast and into the Whitehorse Trough to the northwest (Souther et al., 1974).

Stikinian stratigraphy ranges from possibly Devonian to Jurassic, and was subsequently intruded by granitoid plutons of Upper Triassic to Eocene age. The oldest strata exposed in the Galore Creek camp are Mississippian or older mafic to intermediate volcanic flows and pyroclastic rocks (Map Units 4a and 4c) with associated clastic sediments and carbonate lenses (Map Unit 4b). These are capped by up to 700 metres of Mississippian limestone with a diverse fossil fauna (Map Unit 4d). It appears from fossil evidence that all of the



Pennsylvanian system is missing and may be represented by an angular unconformity and lacuna of 30 million years, though field relationships are complicated by faulting (Monger, 1977; Logan and Koyanagi, 1988). Permian limestones (Map Unit 6), also about 700 metres thick, lie upon the Mississippian limestone but are succeeded by a second lacuna amounting to about 20 million years from the Upper Permian to the upper Lower Triassic.

Middle and Upper Triassic siliciclastic and volcanic rocks (Map Unit 7) are overlain by Upper Triassic Stuhini Group siliciclastic (Map Unit 8a) and volcanic (Map Unit 8b, 8c and 8d) rocks, consisting of mafic to intermediate pyroclastic rocks and lesser flows. The Galore Creek porphyry copper deposit appears from field evidence to mark the edifice of an eroded volcanic centre with numerous subvolcanic plutons of syenitic composition. Jurassic Bowser Basin strata onlap the Stuhini Group strata to the southeast of Iskut River but, because of erosion and non-deposition, are virtually absent from the Galore Creek area.

The plutonic rocks follow a three-fold division (Logan and Koyanagi, 1988). Middle Triassic to Late Jurassic syenitic and broadly granodioritic intrusions are partly coeval and cogenetic with the Stuhini Group volcanics and include the composite Hickman Batholith (Map Unit 9) and the syenitic porphyries of the Galore Creek Complex (Map Unit 11). Jura-Cretaceous Coast Plutonic Complex intrusions (Map Unit 12) occur on the west side of the Galore Creek

Camp, along the Stikine River, with the youngest of these intrusions occupying more axial positions along the trend of the Coast Plutonic Complex flanked by older intrusions. The youngest intrusives in the Galore Creek Camp are Eocene (quartz-) monzonitic plugs (Map Unit 13), felsic and mafic sills and dykes (Map Unit 14), and biotite lamprophyre (minette) dykes (Map Unit 14).

The dominant style of deformation in the Galore Creek area consists of upright north-trending, open to tight folds and northwesttrending, southwest-verging, folding and reverse faulting. Regional metamorphism is in the greenschist facies. Localized contact metamorphism ranges as high as pyroxene hornfels grade; metasomatism is also noted near intrusions. Upright folding may be an early manifestation of a progressive deformation which later resulted in southwest-verging structures. Southwest-verging deformation involves the marginal phases of the Hickman Batholith and so is, at least in part, no older than Late Triassic.

Steeply dipping faults which strike north, northwest, northeast, and east have broken the area into a fault-block mosaic. North-striking faults are vertical to steeply east-dipping and parallel to the Mess Creek Fault (Souther, 1972), which was active from Early Jurassic to Recent times (Souther and Symons, 1974); northwest-striking faults are probably coeval with the north-striking faults, but locally pre-date them. East-west trending faults are vertical or steeply dipping to the north and have normal-type motion on them

(i.e., north-side down), whereas northeast-striking faults are the loci of (sinistral) strike-slip motion (Brown and Gunning, 1988a).

A number of metallic deposit types have been recognized in the Galore Creek camp: porphyry copper <u>+</u> molybdenum <u>+</u> gold deposits, structurally-controlled precious metal vein/shear deposits, skarns and breccia deposits. Porphyry copper deposits of this area include both the alkalic Galore Creek copper-gold and calc-alkalic Schaft Creek copper-molybdenum deposits. Galore Creek, which is associated with syenitic stocks and dykes rather than a quartz-feldspar porphyry, is further contrasted from the calc-alkaline Schaft Creek in that molybdenite is rare, magnetite is common and gold and silver are important by-products. The mineralization is clearly coeval and cogenetic with the spatially associated intrusive bodies. Other porphyry copper occurrences in the Galore Creek area include the Copper Canyon, Sue/Ann, Bik and Jack Wilson Creek deposits (Figure 3).

Structurally-controlled gold-silver deposits have been the focus of exploration in recent years. The vein/shear occurrences are similar throughout the Galore Creek camp in that they are mesothermal in nature, containing base metal sulphides with strong silica veining and alteration. However, it appears that the intrusive bodies associated with this mineralization fall into two classes on the basis of age and composition. These two classes are reflected in differences in the style of structures, sulphide mineralogy and associated alteration products. The intrusive types are: 1) Lower

Jurassic alkaline "Galore Creek" stocks; and 2) Eocene quartz monzonite to porphyritic granodiorite intrusions. Lead isotope data from the Stewart mining camp (Alldrick et al., 1987) further supports the proposition that separate Jurassic and Tertiary mineralizing events were "brief regional-scale phenomena".

Structures associated with the Lower Jurassic syenites are typically narrow (less than 2.0 metres) quartz-chlorite veins mineralized predominately with pyrite, chalcopyrite and magnetite. Examples of these structures in the Galore Creek camp include many of the discrete zones peripheral to the Galore Creek deposit and the gold-rich veins at Jack Wilson Creek. The Tertiary mineralization comprises discrete quartz veins and larger 'shear' zones characterized by pervasive silicification, sericitization and pyritization whose total sulphide content is commonly quite low. The quartz veins contain a larger spectrum of sulphide minerals including pyrite, chalcopyrite, pyrrhotite, arsenopyrite, galena and sphalerite. Unlike the Jurassic mineralization, silver grades may be very high. A number of mineral showings discovered in the Porcupine River area, including the Paydirt deposit, are of this type.

Skarns represent a minor percentage of the precious metal-bearing occurrences in the Galore Creek camp. The mineralogy of these deposits could be influenced by the composition of the intrusion driving the hydrothermal fluids, in much the same way as described above for the structurally-controlled deposits. If the invading

intrusives are alkalic, the skarn assemblage will be dominated by magnetite and chalcopyrite, as at the Galore Creek deposit and the Hummingbird skarn on the east side of the South Scud River.

The breccia hosted mineralization discovered in the Galore Creek camp precious metal deposits appear to be unique in style and mineralization. Three occurrences have been located in the camp: (1) the zinc-silver-gold Ptarmigan zone in the South Scud River area, (2) the copper-molybdenum-gold-silver breccia at the Trek property on Sphaler Creek and (3) the copper-bearing and magnetite breccias of the complex Galore Creek deposit. The single common denominator of each is that the zones are located along fault structures which may represent the main conduit for mineralizing fluids.

## PROPERTY GEOLOGY

Geological mapping was conducted over most of the Pup property during the 1990 program both in detail over the Saddle Zone and reconnaissance on the rest of the claims (Figure 5). Descriptions below are based on Grant (1964), Logan et al. (1989 a,b), Ross (1989) and the work carried out on the property during 1990.

The oldest rock unit recognized on the property is a pale grey to buff-coloured, thickly bedded, crystalline Permian limestone (Unit 6a), with minor cherty and argillaceous interbeds, which underlies most of the OP 1 and 2 claims. The limestones on the property lie on the eastern limb of a northerly striking, southerly plunging syncline

mapped by Logan et al (1989b). A pronounced northwest striking fault cuts the limestones across the OP 1 claim and appears to truncate the thrust fault which has thrust the Permian limestone over the Upper Triassic Stuhini Group strata. Minor, irregular gabbroic dykes occur randomly in the limestones, apparently unrelated to any major structures.

The second oldest unit is a Middle Triassic carbonaceous silty shale (Unit 7). Logan et al. (1989b) have mapped this unit in fault-bounded wedges 600 metres northwest of the legal corner post for the OP 2 claim and at the edge of a glacier on the western boundary of that claim.

The remainder of the claim block is underlain by the Upper Triassic Stuhini Group of sediments, volcanic flows and tuffs (Unit 8) which are believed to conformably overlie the Middle Triassic sediments. Greywacke and sedimentary breccia (Unit 8a) are exposed along Pup Creek. The sedimentary breccia is composed of a grey-green fine- to medium-grained matrix containing numerous rip-up clasts of dark grey shale. Limited mapping along the southeastern slope of the valley confirmed the presence of siltstones and greywackes up to 1250 metres elevation. On the northwestern slope of the Pup Creek valley, the clastic sediments are overlain by 30 metres of black, graphitic, rusty weathering argillite which is overlain by an unknown thickness of grey-green siltstones containing 2-3% finely disseminated pyrite. Several discontinuous, pyrrhotite-bearing quartz-carbonate veins, less than 10 centimetres in width, crosscut the bedding.

Above the sediments, at approximately 1000 metres elevation, is a mixed package of weathered schistose rocks and altered volcanics of uncertain origin (Unit 8). Finely disseminated pyrite occurs in the schist. The volcanics are pyritic, rusty weathering and generally too oxidized to determine their original composition. These are overlain by mixed clastic sediments and tuffs (Unit 8a), similar to those exposed in Pup Creek, and at higher elevations by dark grey, well laminated argillites and siltstones. Minor pyroxene porphyry flows (Unit 8b) are interbedded with the sediments.

The ridge on the western half of the Pup 3 claim is dominantly underlain by pale grey-green crystal tuffs and tuffaceous siltstones (Unit 8c), and minor pyroxene porphyry flows (Unit 8b). between the two units are sharp and highly irregular. The tuffaceous units dominate the western half of the ridge with the sedimentary unit on the eastern half. Thin-bedded, dark grey, rusty weathering argillites of this unit (Unit 8a) outcrop on top of the ridge and as faulted, sheared wedges caught up in the volcanics. Several well defined shear zones, up to ten metres in width, strike 010°-020° along the length of the ridge and dip steeply to the west. A wide band of sheared argillite and tuff is exposed on the main cliff face where this western ridge drops to the Saddle Zone. These beds form a large overturned isoclinal fold (nappe) dipping moderately to the west, closing to the east. Tightly folded and sheared argillite and tuff beds occupy the core of the fold. Several undeformed later stage andesite dykes (unit 14d) up to 3 m wide intrude these rocks. Α

fault-bounded band of foliated argillites parallel the shears on the western side of the ridge and a one metre wide biotite lamprophyre dyke (Unit 14c) cuts the volcanic units on the eastern side. Numerous late stage, undeformed porphyritic dykes (Unit 14d) cut the older units.

## Mineralization and Alteration

Three main mineralized zones have been recognized on the property: the Saddle Zone, the Malachite Zone and the Pickston Zone (Figure 5). These are; a vein hosted pyrrhotite-pyrite-chalcopyrite system, a porphyry style pyrrhotite-pyrite-chalcopyrite system and a skarn zone respectively.

Pyrite, generally disseminated, ranges up to 10% within the volcanics over most of the property while up to 3% blebby pyrrhotite occurs in the Malachite and Saddle Zones.

Alteration consists of mostly weak to moderate regional chloritization. Sheared zones are often sericitized. Local siliceous and limonitic zones occur throughout the property and tend to be associated with mineralization.

#### Saddle Zone

The Saddle Zone is hosted within altered (chloritized and sericitized) intermediate volcanics and porphyritic hornblende diorite plugs.

Several north to northeast trending, steeply west dipping shears form recessive zones of sericite and lesser chlorite schist. Sampling in the Saddle zone concentrated on the two major shears, the "Jack Wilson Shear", and the "Galena Shear".

The "Jack Wilson Shear", which trends north-northwest, dips 50° to the west and is approximately 10 m wide. The shear can be traced for approximately 1100 m along strike, across the saddle between Pup Creek and Jack Wilson Creek before disappearing under glacial debris in Jack Wilson Creek.

A zone of bleaching 750 m long and up to 120 m wide envelopes most of the "Jack Wilson Shear". Local sericitic and siliceous zones within this area of bleaching contain up to 2% galena, 1% chalcopyrite and 10% pyrite.

The "Galena Shear" trends  $032^{o}$  and dips steeply to the west, approximately 100 m east of and almost parallel to the Jack Wilson Shear. It is marked by a gully approximately 5 m deep, which merges with the Jack Wilson Shear to the south where it is truncated in the bowl shaped area at the head of Jack Wilson Creek. Erratic quartz veins with minor blebby galena occur in foliated volcanics near the edge of the recessive gully. The veins are generally less than 30 cm in width and several metres in length. White quartz comprises about 5% of the float within the gully, indicating that quartz veining is probably more extensive within the shear zone.

Alteration is variable and irregular, bleaching and minor clay alteration are present in some areas and silicification in others. Strong sericite and chlorite alteration prevails within the sheared zones resulting in extensive chlorite-sericite schists. Chlorite and epidote are also locally present in the volcanics. Pyrite is widespread, with most rocks containing a minimum of 2-3% silvery pyrite. Mineralization locally consists of 1-5% finely disseminated pyrite with lesser disseminated chalcopyrite, galena and sphalerite, with or without veins (quartz and quartz carbonate) in foliated host rocks. These small mineralized zones which mostly occur adjacent to shears, are generally less than 10 m across.

Quartz (carbonate) veins occur throughout the Saddle Zone, but are most prevalent towards the south where they locally contain up to 2% chalcopyrite, 5% pyrite, 3% pyrrhotite and traces of galena. A quartz vein stockwork at the south end of the Saddle Zone consists of veins up to 50 cm wide with as much as 40% pyrrhotite, 15% pyrite, 2% chalcopyrite, 1% galena, 1% sphalerite and traces of bornite and covellite. The wall rock is generally weakly siliceous and chloritic.

Fracture zones within the volcanics are often limonitic with local malachite staining. Limonitic alteration is directly related to the degree of fracturing irrespective of visible pyrite content.

#### Malachite Zone

The Malachite Zone is exposed over a lateral distance of 400 m between the 1000 m and 1400 m contours on the northwestern slope of the Pup Creek valley, in an area drained by several major tributaries of Pup Creek (Figure 7). It is hosted by intermediate tuffs and argillite (160°/55°W) which have been intruded by andesite and lamprophyre dykes. Foliation is parallel to that of the Saddle Zone, although it is generally very weak. Limonite alteration is pervasive throughout the Malachite Zone due to 3 to 5% disseminated pyrite in the volcanics.

Mineralization in the zone occurs as disseminations and as discrete quartz sulphide veins. In the first type, 1% to 7% pyrite and 1% to 2% chalcopyrite form blebs and disseminations within the altered volcanics. The resulting malachite stain is strongest around the two easternmost forks of the tributaries. The second type of mineralization consists of quartz veins with up to 5% pyrite and 1% chalcopyrite. The quartz veins are generally 2 to 30 cm in width and up to 5 m in length.

A pyrrhotite rich zone is located in the northwestern part of the Malachite Zone. A north-northwest trending shear contains as much as 10% pyrrhotite (interstitial and blebs), 10% interstitial pyrite and 1% chalcopyrite. The shear, approximately 40 m in length and up to 1 m wide has a limonitic pyrrhotite-rich halo 35 m wide. The pyrrhotite (1-5%) in the halo occurs as small blebs, less than 2 mm



in size, decreasing away from the shear. Pieces of quartz vein found in float contain as much as 50% pyrrhotite, 15% pyrite and 1% chalcopyrite. This pyrrhotite zone appears as a deep red-brown gossan on the hillside.

## Pickston Zone

The Pickston Zone consists of a sequence of siliceous mineralized pods and veins within a prominent gossanous fault trending  $093^o/75^o$ S (Figure 8). The fault zone, which is the main thrust fault separating the limestone and the volcanics, consists of highly fractured and limonitic andesite with minor, relatively unaltered limestone. Up to 20% pyrite occurs as disseminations within the shear zone.

Several quartz veins and siliceous pods up to 20 cm wide and 10 m in length contain massive sulphides consisting of up to 50% pyrite, 30% pyrrhotite, 20% galena, 5% chalcopyrite, less than 1% bornite-covellite and traces of sphalerite (?). Secondary minerals include limonite, goethite, pyrolusite, malachite, azurite and a lead oxide. Two types of veins are present within the zone:

1) Polymetallic veins containing pyrite, galena and minor chalcopyrite and sphalerite (?), lower in elevation and towards the east end of the fault.



2) Predominantly copper veins containing pyrrhotite, pyrite, chalcopyrite, bornite and covellite which occur higher in elevation and towards the west end of the fault.

Most of these mineralized veins occur on the north side of the fault. The mineralization terminates at a cross shear trending  $030^{o}/82^{o}E$ , at the west end of the zone which hosts the copper veins.

# Geochemistry - Soils

Soils were collected from a 25 m by 100 m grid covering all of the Saddle Zone (Figure 9), from a 400 m by 400 m area over the Pickston Zone (Figure 8) and from three contour lines on the west half of the claim block (Figure 6). A total of 432 soils were collected from the B horizon where possible, stored in kraft paper bags, and sent to Technical Services Labs for assay. The soils were tested for gold by atomic absortion and a 35 element package by ICP spectrophotometry. Because of poor soil development on the Saddle Zone, most samples from that zone were collected from a sandy layer on top of bedrock.

## Saddle Zone

Gold values on the Saddle Zone ranged from less than 5 ppb to 0.041 oz/ton (L13+00N / 2+25E). A soil anomaly, up to 200 m wide, extends for over 1400 m north-south across the entire Saddle Zone grid (Figure 9). The anomaly is open to the north and south (off the property) with the more anomalous samples (>100 ppb gold) increasing

towards the north. The anomaly coincides on the southern half of the grid with the zone of bleached volcanics which is in part related to the Jack Wilson shear.

A smaller anomaly over 150 m in length and 100 m in width is located adjacent to and west of the main anomaly at the north end of the grid. This north-south trending anomaly is open in both directions as sampling had to be discontinued due to coarse talus cover. Towards the south this anomaly may connect with the main anomaly between lines 7 and 8N.

Copper values range up to 741 ppm (L 8+00N/0+75E) and although results over 250 ppm copper are sporadic, they are generally coincident with the gold zone. An area of greater than 100 ppm copper up to 300 m wide extends the entire length of the grid.

#### Pickston Zone

Assays for the Pickston Zone returned a maximum of 90 ppb gold (L0+00/0+25E) and 1800 ppm copper (L1+00N/0+50E) (Figure 8). Three small gold anomalies (>50 ppb) were located, one in the centre of the grid, one in the south (open to the south) and one in the northwest corner (1 sample).

A single copper anomaly 350 m long and up to 150 m wide is centred at the baseline on L0+50N, trending approximately north-

south. This anomaly shows no correlation with gold and silver values or with geology.

#### Contour Lines

Three contour soil lines were sampled at 25 m spacing with every 50 m sample sent for assay. The alternate samples were stored to provide infill results over anomalous areas if required.

No significant gold results were returned from two of these lines which traverse the western part of the Pup 3 claim. One small anomalous section of 40 to 55 ppb gold is located at the south end of L10 over a length of 100 m (directly below the Malachite Zone) (Figure 7). Copper results are low on all three contour soil lines.

### Property geochemistry - Rocks

A total of 199 rock samples were collected from the property, consisting of both grab and chip samples, and analyzed in the same manner as the soil samples.

#### Saddle Zone

Sampling on the Saddle Zone consisted of detailed chip sampling to expand on the work completed in 1989. One hundred fifty samples were collected of which 58 returned anomalous values in gold and/or copper (Figure 6). Maximum values from the rock sampling were 0.038 oz/ton gold, 40.0 ppm silver, 1.02% copper, 1.95% lead and 3.49% zinc. Samples from altered shear zones, quartz-carbonate veins and quartz

vein stockworks, towards the south of the zone, are generally anomalous in gold, silver and base metals (Table II).

Samples collected from the Jack Wilson Shear, over a 600 m strike length, returned values up to 480 ppb gold, 8610 ppm copper, 1.95% lead and 3.40% zinc. Sample #459585 (1989), which assayed 0.038 oz/ton across 1.5 m was resampled over 1.8 m. It assayed 50 ppb gold and 35 ppm copper (sample #39126).

Samples #447212 and #447213 are from erratic quartz-sulphide veins ranging from 0.10 to 1.0 m in width, hosted by dark green pyroxene porphyry flows adjacent to the Jack Wilson Shear. These quartz veins, which locally carry blebs of chalcopyrite, galena and sphalerite, are discontinuous, with strike lengths of several metres. They returned anomalous values in 1989 sampling of up to 810 ppb gold, 40.0 ppm silver, 1.91% zinc, 9140 ppm lead and 1400 ppm copper. Additional sampling of quartz veins in the same area (1990) returned lower assays. These samples (#37775, #39140-39142) assayed up to 35 ppb gold, 600 ppm copper, 13 ppb silver, 2700 ppm lead and 1100 ppm zinc. Two hundred metres south of the Pup property on the PL 6 claim, a quartz vein in foliated dark green volcanics assayed 209 g/t (6.09 oz/ton) silver with 5.92% lead (Kasper, 1989).

Sample #459580, which carried 1.92% copper and 280 ppm gold, is a float sample collected on the western side of the Saddle Zone. Its

source was not located. Significant results from the Saddle Zone are summarized in Table II below:

TABLE II - SADDLE ZONE SAMPLING RESULTS

1990 Program

| Sample No.     | Au(ppb)   | Cu (ppn | n) Lithology                                                  | Width         |
|----------------|-----------|---------|---------------------------------------------------------------|---------------|
| 39102          | 180       | 860 C   | uartz vein stockwork, 10% py, 1% cpy                          | grab          |
| 39135          | 75        | 14000 A | indesite with quartz stringers 1% cpy                         | grab          |
| 39136          | 65        | 860 S   | Sericite alt'd with quartz stringers                          | grab          |
| 39139          | 260       | 4300 A  | undesite with quartz-carb stockwork, .5% py, 1% cpy           | grab          |
| 39138<br>37776 | 230<br><5 | 2700 Ç  | uartz vein, 1% py, 1% cpy<br>uartz vein, 5% py, 1% cpy, 2% po | 0.2 m<br>grab |

A discontinuous series of chip samples over a 122 m length was collected across an outcrop area within part of the main soil anomaly (L8+00N from 0+50E to 1+77E). Sample numbers are #39165 through #39179 and #39181 to #39216, and also include two samples of fine material (PT-2 and PT-3) which consisted of bleached and altered subcrop overlying shears. The area sampled has good outcrop exposure and features pervasive bleaching and local malachite staining all within the area of the soil anomaly.

A number of weakly anomalous zones are evident. An average of 240 ppb gold and 495 ppm copper is recorded across 4.0 m from 0+50 E to 0+54 E. From 1+32.7 to 1+45 E (12.3 m) gold averages 205 ppb and copper averages 1070 ppm, excluding an unsampled 1.1 m interval. Malachite staining and 1% chalcopyrite were noted in the first 4 m of

this section. From 1+48.9 to 1+59.3 (10.4 m) gold averages 222 ppb and copper averages 887 ppm, excluding an unsampled 0.9 m interval. Values reach highs of 560 ppb gold and 2900 ppm copper along this line. The rocks comprise chloritic and bleached ash tuff containing 3% disseminated pyrite and up to 5% quartz stringers.

#### Malachite Zone

Fourteen rock chips and grabs were collected from the Malachite Zone during the 1990 field season, three of which were anomalous in gold and/or copper (Figure 7).

Sample #39108 (1.0 m chip) from a crystal tuff with quartz stringers, 5% disseminated pyrite, 2% chalcopyrite and minor malachite staining assayed 230 ppb gold and 3800 ppm copper. Grab samples #37777 and #37778, collected from a malachite-rich zone with minor disseminated chalcopyrite, assayed 5300 ppm copper and 1900 ppm copper respectively (low gold).

#### Pickston Zone

Grab samples #37780 to #37783, #37789 and #37800 from the polymetallic (pyrite-pyrrhotite-chalcopyrite-galena-sphalerite) veins and pods are anomalous in copper, with gold values ranging from 30 to 510 ppb (Figure 8).

Grab samples #37787 and #37788 from the copper bearing (pyrite-chalcopyrite-bornite-covellite) veins produced copper values of 2300 and 9400 ppm respectively, accompanied by low gold.

The strongly altered (limonitic and moderately siliceous) wall rock to the veins does not carry gold or copper values. Significant results are listed in Table III below:

TABLE III - PICKSTON ZONE SAMPLING RESULTS

| Sample No. | Au(ppb) | Aq(ppm) | Cu(ppm) | Pb(ppm) | Zn(ppm)  |
|------------|---------|---------|---------|---------|----------|
|            |         |         | •       |         | <b>,</b> |
| 37780      | 80      | 1       | 150     | 80      | 150      |
| 37781      | 150     | 17      | 5300    | 20000   | 73000    |
| 37782      | 40      | 7       | 1600    | 680     | 1200     |
| 37783      | 30      | 8       | 4100    | 280     | 350      |
| 37787      | 10      | 7       | 2300    | 40      | 48       |
| 37788      | 15      | 8       | 9400    | 29      | 110      |
| 37789      | 510     | 12      | 1800    | 150     | 180      |
| 37800      | 65      | 5       | 1200    | 26      | 56       |

Eleven other samples were collected from the altered (limonite) limestone adjacent to the Pickston Zone. Only one sample (#37751) returned anomalous values of 140 ppm gold and 78 ppm copper.

A sample of fine material from the talus was (PT-1) taken at 1635 m elevation on the eastern OP-2 claim and assayed 230 ppb gold and 43 ppm copper. The talus contained abundant crystalline calcite vein material but no obvious sulphide mineralization.

#### GEOPHYSICS

A VLF-EM survey over the Saddle Zone located a north-south trending conductor extending the entire length of the zone, with the

strongest response towards the south end (Figure 10). It is situated parallel to and is offset approximately 50 m to the east of the gold-copper soil anomaly. The southern portion of this conductor overlaps the south end of the "Galena Shear". The conductor is open to the south and north. An offset of the conductor at L9N coincides with a prominent northwest trending fault structure. Three secondary conductors of more limited strike length are evident, one of which parallels a narrow soil anomaly extending from 12 N to 14 N at approximately 5+00E.

There appears to be little correlation between the geology, geochemistry, and results of magnetometer survey. Several anomalies (over 57000 gammas) up to 350 m in length trend north-northeast and are up to 150 m wide (Figure 11). The magnetic response is relatively flat over most of the VLF-EM conductors and the geochemical anomaly. One magnetic anomaly extending from line 4+00N to 7+00N overlaps part of the conductor.

### STATEMENT OF EXPENDITURES

| Mobilization/Demobilization                                                                                                                                                                                                                                                                                                                                                                      | \$ 7,303.29                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Field Labour  G. Cavey (consulting geologist) 4 days @ \$525/day  J. Chapman ( " ) 3.50 days @ \$450/day  M. Vanwermeskerken (project geologist) 27 days @ \$360/day  S. Baillie (geologist) 9 days @ \$330/day  D. Pickston (prospector) 5 days @ \$330/day  D. Page (field assistant) 22 days @ \$270/day  H. Page ( " ) 9 days @ \$270/day  B. Birarda ( " ) 4 days @ \$250/day  Total Labour | 1,575.00<br>9,720.00<br>2,970.00<br>1,650.00<br>5,940.00<br>2,430.00 |
| Camp Costs                                                                                                                                                                                                                                                                                                                                                                                       | 16,072.69                                                            |
| Transportation and Communication                                                                                                                                                                                                                                                                                                                                                                 | 3,753.15                                                             |
| Contracting Services - Geophysical Surveys                                                                                                                                                                                                                                                                                                                                                       | 3,300.00                                                             |
| Analyses                                                                                                                                                                                                                                                                                                                                                                                         | 11,855.88                                                            |
| Helicopter Costs                                                                                                                                                                                                                                                                                                                                                                                 | 20,144.07                                                            |
| Report Costs (partial) Total Expenditures                                                                                                                                                                                                                                                                                                                                                        | 4,514.07<br>\$94,328.15                                              |

#### STATEMENT OF QUALIFICATIONS

I, Jim Chapman, of 580 West 17th Avenue, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1976) and hold a B.Sc. degree in geology.
- 2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia, V6C 2T5.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 5. I am a Fellow of the Geological Association of Canada.
- 6. The information contained in this report on the Pup Project was obtained from a review of data listed in the bibliography knowledge of the area and a visit to the property on August 29, 1990.
- 7. I have no interest, direct or indirect in the Pup Project or in the securities of Consolidated Goldwest Resources Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Jim Chapman

Consulting Geologist, F.G.A.C.

DATED at Vancouver, British Columbia the 10th day of January 10, 1991

#### STATEMENT OF QUALIFICATIONS

I, Marco Vanwermeskerken, of the City of Vancouver, British Columbia, hereby certify:

- I am a Geologist, residing at 5148 11A Avenue, Delta, B.C. and with office at #306 - 595 Howe Street, Vancouver, B.C.
- I am a graduate of the University of British Columbia (1987) and hold a B.Sc. degree in geology.
- I have been employed in my profession by various exploration companies since graduation.
- 4. The information contained in this report on the Pup Project was obtained from a review of data listed in the bibliography and direct supervison and execution of the 1990 exploration program.
- 5. I have no interest, direct or indirect in the Pup Project or in the securities or claims of Consolidated Goldwest Resources Ltd. and will not acquire any interest in the claims, the company, or its affiliates.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Silvamosterken

Marco Vanwermeskerken, B.Sc. Geologist

DATED at Vancouver, British Columbia, this 10th day of January, 1991

#### **BIBLIOGRAPHY**

Alaskan Geographic Society (1979): The Stikine River; V. 6, 94 pp.

Alldrick, D.J., Gabites, J.E. and Godwin, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp, <u>in</u> Geological Fieldwork 1986; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1987-1, pp. 93-102.

Allen, D.G., A. Panteleyev and A.T. Armstrong (1976): Galore Creek, in CIM Special Volume 15; pp. 402-414.

Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River map area, Northwestern British Columbia, in Current Research, Part E; Geol. Surv. Can. Paper 89-1E, pp. 145-154.

Awmack, H. (1989): Geochemical Report on the OP 1-2 and Pup 1-4 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

Awmack, H., and Yamamura, B.K. (1988): 1988 Summary Report on the WJ 2, 4, 5, 6, 7 and 8 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

Brown, D.A., and Gunning, M.H. (1989a): Geology of the Scud River area, North Western British Columbia, (104G/5,6), <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 251-267.

Brown, D.A., and Gunning, M.H. (1989b): Geology of the Scud River area, North Western B.C. (map); British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Open File 1989-7.

Caulfield, D.A. (1990): 1989 Summary Report on the Pup Project, Galore Creek Area, Liard Mining Division, British Columbia, for Consolidated Goldwest Resources Ltd.

Consolidated Goldwest Resources Ltd.: News Releases dated September 19, 1990, November 5, 1990.

Consolidated Rhodes Resources Ltd.: News Release dated October 11, 1990.

Continental Gold Corp. (1988a): News Release dated April 5, 1988.

Geological Survey of Canada (1957): Stikine River area, Cassiar District, British Columbia; Geological Survey of Canada Map 9-1957.

Geological Survey of Canada (1988): National Geochemical Reconnaissance, Sumdum -Telegraph Creek, British Columbia (NTS 104F - 104G); GSC Open File 1646.

Gigi Resources Ltd.: News Releases dated November 15, 1990.

Grant, G.W. (1964): Final Geological Report - CW Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #621.

Hindson, R. (1965): Geological Report on the O.P. Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #682.

Holtby, M.H. (1985): Geological, Soil Geochemical, Trenching and Diamond Drilling Programme on the Paydirt Claim Group; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #14,980.

Kasper, B. (1989): Geological and Geochemical Report on the Anuk River East Project; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources. Kerr, F.A. (1948): Taku River map-area, British Columbia; Geological Survey of Canada, Memoir 248, 84 pp.

Logan, J.M., and Koyanagi, V.M. (1989a): Geology and Mineral Deposits of the Galore Creek area, Northwestern B.C., 104G/3,4, in Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines, and Petroleum Resources, Geological Survey Branch, Paper 1989-1, pp. 269-284.

Logan, J.M., Koyanagi, V.M., and Rhys, D. (1989b): Geology and Mineral Occurrences of the Galore Creek Area; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch Open File 1989-8, Sheet 1 of 2.

Monger, J.W.H. (1977): Upper Palaeozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution; Can. Jour. Earth Sci., V.14, pp. 1832-1859.

Panteleyev, A. (1976): Galore Creek map area, British Columbia, in Geological Fieldwork 1975; British Columbia Ministry of Energy, Mines, and Petroleum Resources; Geological Survey Branch, Paper 1976-1, pp. 79-81.

Ross, K. V. (1989): Geological and Geochemical Report on the Pup Project; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

Slocan Development Corporation Ltd.: News Release dated October 26, 1990.

Souther, J.G. (1971): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.

Souther, J.G. (1972): Geology and Mineral Deposits of the Tulsequah map-area, British Columbia; Geological Survey of Canada, Memoir 362, 84 pp.

Souther, J.G., and Symons, D.T.A. (1974): Stratigraphy and Palaeomagnetism of the Mount Edziza volcanic complex, northwestern British Columbia; Geological Survey of Canada Paper 73-32, 48 pp.

Souther, J.G., Brew, D.A., and Okulitch, A.V. (1979): Iskut River 1:1,000,000; Geological Atlas Geological Survey of Canada, Map 1418A.

# APPENDIX A ROCK SAMPLE DESCRIPTION SHEETS

MARCO CANWERMESKERKEN Pup PROJECT 1940 Remarks / Alteration / Structure: | Mineralization: Ánalysis: Lithology: Date: Location: Sample: QTZ-SER-PY. ALTERATION ZUNG 5% DISSEM. PY. < 0.5 mm AUS II SOUTH OF SRIP ANDESITE 39101 LIMONITIC WEATHERING, FLTN. 024/60 W. (1-2 m. CHIP 860 AUS 12 BETWEEN SALENA QUARTZ VEIN. MINERALIZED. BREGULAR VEINS 10% DISSEM. Py. 1% 39102 < 3 cm. VYCGY + LEACHED CHALCOPYRITE BLESS. + WILSON SHEARS LIMOUTIC WEATHERING QTZ - SER. ABUNDANT MALACHITE /AZURITO ALTERED ANDESITE WALLROCK W. STAIN. PATCHY WEAK ARGILLIC ALTERATION (SRAB) 53 35 VERY FRACTURED ZONE. LIMOPITIC 5-10 / DISSEM. PY. 12 VEST OF JACK ANDESITE 39103 LONE TRENDS 070/ STEEP PEDS + LENSES UP TO 5 CM WILSON SHEAR PREDOMINANT FRACTURE 124 /46 NO WIDE OF QUARTZ-PYRITE. (4m. CHIP) AUG 13 WEST OP (PODS + DISSEM 52 BRECCIATED LIMESTONE + CHERT 10% PY 39104 BRECCIA CLASTS UP TO 50 CM. (GRAB) PARTLY OXIDIZED TO LIMONITE CLAIM. 79 SE OP 2 2% DISSEM. LIMESTONE. FRACTURED + BRECCIATED. 39105 VERY ABUNDANT HEMATITE + CLAIM LIMONIFE BANDED RED BROWN AND BROWN SREY SPARITE. ABUNDANT CALCITE VEINING (30%) (GRAB) FOLIATED DOY /74 W. LIMONING 1% DISSEMINATED PYRITE 5 CHERT. Aug 13 SE OP 2 39106 CLAIM (GRAB) 490 40 CRYSTAL TUFF FRACTURED. 5% DISSEM. + BLEBS OF PY. Aug 15 MALACHITE ANDESITE 39107 < 1% CHALCOPYRITE (BLOTES 039/26 NW). QUARTZ-SGRICITE-ZONE PYRITE ALTERATION. MINOR < 1 mm ). MALACHITE! CALCAREOUS PRECIPITATE ON AZURITE STAIN. WEATHERED SUBFACES, (50 cm CHIP 3800 5% DISSEM. PYRITE. 2% 230 CAYSTAL TUFF MINERALIZED OTZ ANDESITE AUG 15 MALACHITE

VEINS ALONS 106/72 N FRACTURES

QUARTZ STRINGERS < 2 mm. CALCAREOUS PRECIPITATE. (1.0 m CHIP CHALCOPYRITE VERY

MALACHITE

STAIN.

ABUNDANT

AZURITE

39108

ZONE.

PROJECT 1990 Pup MARCO VANUGRMESKERKEN Date: Location: Lithology: Sample: Remarks / Alteration / Structure: Mineralization: Analysis: 39104 AUG 15 MALACHITE ANDESITE. SHEARED 079 /62 N. POOS 1% DISSOM. Py. TRACE 310 6 5 cm. OF LEACHED QUARTZ. -20NG OF MALACHITE STAIN. LIMONITIC WEATHERING 10.4 m CH AUG 15 MALACHITE SHEAR. 39110 ALONG FOOTWALL OF LAMPRO 20 37 ZUNE PHYRE DYKE, OGO/43 NW. CONTAINS QUARTZ- CARBONATE VEINS, (0.6 m. CHIP). AUG 15 MALACHITE 39111 ANDESITE UP TO 40 % BLETSS AND 84 MAN MINERALIZED ASH AND ZONE. CRYSTAL TUFF. QUARTZ VEINDO INTERSTITIAL PYRRHOTITE. 3-5% DISSEM. LIMOULTIC WEATHERING ( SELECTED GRAB.). Aug 15 MALACHITE 39112 ANDESITE. QUARTZ- SERICITE ALTERED ASH 40-50% BLEBS AND 130 30 STRONG FRACTURE 2006 INTERSTITIAL PYRRHOTITE. (104/61 5), DARK RED -BROWN 10-15% INTSTL. PYRITE. LIMUNITIC GOSSAN. (IM CHIP 1% CHALCOPYRITE. ACROSY FRACTURE AUG 17 10+00 N 1+50 & QUARTZ YEW STOCKWORK. MINERALIZED. 39113 LI% PYRITE, LI% CHALCOPYRITE (BLESS) & 1% 36 WITHIN ANDESITE. MALACHITE (SRAB) CHALCOCITE (?) MALACHITE IN FROMS Aug 17 8+00 N 2+60 E DACITE 39114 80 SILICEOUS BANDED. VERY FINE 10% PYRITE (DISSEMINATED) 45 ERAINED TO APHANITIC. (GRAB) STRINGERS (LIMM) BLEBS Aus 17 8+00 N 2+00 E VEIN. 39115 QUARTZ - CALCITE - CHLORITE 1% CHALCOPYRITE (BLEBS) 15 510 15 cm VEIN. (150/56 No 1% PYRITE (DISSEM) WIDE. 2 M. LONG LIMONITIC MALACHITE / AZURITE STAIN WEAK CHCURITE ALT'N IN ANDESITE WALLROCK (15 cm CHIP

- Programme Company (Programme Company ) A Training (Programme State (Pr

PROJECT 1990 MARCO Pup Au Date: Location: Lithology: Sample: Remarks / Alteration / Structure: Mineralization: Analysis: Aug 22 B.L. 6+75 N DACITE (?) 39116 QUARTE STRICTE ALTORED VORY 20% PYRITE (BLOTS & IMM 30 110 (SADOLE ZONE LIMONITIC. WK. CHLCRITE ALT'N + DISSEM.) BLEACHED WITH PATCHY EPIDOTO GRAB FROM SUBCACE Aug 23 7+00 N U+75-E DACITE (?) TEXTURE DISSCURED BY FOLIATION 10% PYRITE (DISSEM + STRASES 39117 AND ALTORATION. WEAK LIMON, FIC. 6.5 mm). DIRECTLY BELOW CUPPER MINALZTN SUBLEDP. SCATTERED CRAB. Aug 23 B.C. 6+00 N. ANDESITE COARSE TALUS. BLEACHED + PITTED 10% WHITE PYRITE COISSON 39118 ABUNDANT (10%) VAGGY CRYSTUN + STRINGERS. QUARTZ BOULDORSWITH ABUNDANT CHLORITE AND MINER CALCITE GRAD 6+00 N 2+00 E ANGESITE. A 50 39119 ASH TUFF. TRENDS 157/78 NE. 5% DISSEM. PY. 20 CIMONITIC. 2% QTZ. VNS. < 10 cm INTORSTITIAL 1.8 m. CHIP. AUG 23 6+00 N 3+00 E AHOESITE 66 15% DISSEMINATED PYRITE. 39120 Sinceous + CHURITIC BANDED. DARK LIMONITIC. PYRITE AND MATRIE ARE SHEARED, 5% QTZ. STRGRS < 2 cm- 20m CHIP. ASH THE PYRITIC - LIMBUTIC 10% DISSEM. Py. AUG 23 5 tOON 2 tSUE ANDESITE 39121 AUG 23 5400 N 2450 & FELOSPAR HURN- VERY SILICEOUS. SUBANGULAR FSP. 39122 10,5 OLENOE PORPHYRY PHENOCRYSTS & Imm + EUHERRAL HBL. PHENOX 1/2 mm IN AN APHANITIC PALE GREEN SILICEOUS MATRIX. WHITE PITTED WEATHERING GRAB Aug 24 5+00 N 3+00 E FSP-Hb1 PP4-SHEARED, CHLOKITIC WITH 39123 1% 84. 25 QUARTZ - CARBONATO - CHLORITE STUCK-WORK. (50% MOSTLY QUARTE

LEACHED. (1-2 m CHIP

| Pup     | Pra     | ECT 1990 (     | D MARCO      |                                     |                       | Au           | Cu          |
|---------|---------|----------------|--------------|-------------------------------------|-----------------------|--------------|-------------|
| Sample: | Date:   | Location:      | Lithology:   | Remarks / Alteration / Structure:   | Mineralization:       | Analys       |             |
| 39124   | Aug 24  | 4+00 N 2+50 E  | SCHIST.      | QUARTZ- SERICITE SCHIST. LIMONITIC  | 2% DISSOM. Py.        | 30           | 10          |
|         |         |                |              | FLTN: 040/69 NW. (2-0 m. CHIP)      |                       | ļ            |             |
| 34125   | Aug 24  | 5+00 N 10+80 E | SCHIST.      | QUARTZ - SER. SCHIST. (FSP. PPY?)   | 3% DISSEM. Py.        | 20           | 357         |
|         |         |                |              | LIMONITIC BLEACHED, FLIN: 040/604   |                       |              | <del></del> |
|         |         |                |              | (1.2 m. CHIP)                       |                       |              | <del></del> |
| 39126   | Aug 24  | BL 5+30 N      | Schist       | QUARTZ-SOR, SCHIST (Augito          | 3% Disson Py.         | 50           | 35          |
|         |         |                |              | PORPHYRY W. STRONG SHEARING)        |                       | -            |             |
|         |         |                |              | LIMONITIC. FLTN: 168/62 W.          |                       |              |             |
|         | <u></u> |                |              | (1.8 m. chip)                       |                       |              |             |
| 39127   | Aug 24  | BL 5+30 N      | ANDESITE     | STRONG BLEACHING + CIMONITIC.       | 10% DISSEM. Py.       | 10           | 110         |
|         |         |                |              | DARK BROWN GOSSAN. ABUNDANT         |                       | <del> </del> |             |
|         |         | L              |              | PTROLUCITE. GRAB.                   |                       |              |             |
| 39128   | Aug 24  | 5+00 N 1+25 E  | ANDESITE (?) | BANDED FINE SRAINED, SILICED        | 10% DISSEM. Py.       | 20           | 43          |
|         |         |                | ,            | (QUARTZ - SERILITE HALO) ABOVE      |                       |              |             |
|         |         |                |              | AUGITE PORPHYRY GRAB                |                       |              |             |
| 39129   | Aug 24  | 4150 N 0175 E  | ANDESITE.    | HORNBURDE PORPHYRY. 2%              | 20-25 % DISSOM Py.    | 65           | 45          |
|         |         |                |              | HBL. PHENO & I MM VERY LIMONIA      | QTZ-SOR PATCHES WITH  |              |             |
|         |         |                |              | GOSSAN NEAR AHDESITE DYKE. MINON    | UP TO 40% PY.         |              | <del></del> |
|         |         |                |              | EPIDOTE 2% QTZ. STRINGERS. (GRAN    | <u> </u>              |              |             |
| 39130   | Aug 25  | AGOUG MALACHIT | DACITE       | FINE GRAINED. 30 cm. WIDE           | 5-10% PYRRHOTITE      | 5            | 160         |
|         |         | 2016           |              | DYKE CROSS CUTTING ANDESITIC        | INTERSTITUL AND BLEBS |              |             |
|         |         |                |              | BODS. TRENDS 045/50 NW.             | < 5 mm)               |              |             |
|         |         |                |              | LT. GREY - TAN WEATHERING (LIMONITY | )                     |              |             |
|         |         |                |              | 10% DK. SREY RTZ. STRINGERS < 1 cm  | ]                     |              |             |
| •       |         |                |              | (0.3 m. CHIP)                       |                       |              |             |
| 39131   | Aug 25  | ABOVE MALACHIT | DACITE.      | SAME DYKE AS BOIDD CON STRIKE       | 2% DISSEM. PYRITE.    | <5           | 110         |
| 7       |         | ZONÉ           |              | 0.5 m. wipe. 30% QUARTZ-            |                       |              |             |
|         |         |                |              | CARBONATE VEIUS PERPENDICULAR       |                       |              |             |
|         |         |                |              | TO DYKE . MANY SMALL RIGHT -        |                       |              |             |
|         |         |                |              | LATERAL OFFSETS ON PYKE (0.5 m C    | 10)                   |              |             |

(5) MARCO Pup PROJECT 1990 Date: Location: Sample: Lithology: Analysis: Remarks / Alteration / Structure: Mineralization: Aug 25 5. 0F ANDESITE 39132 QUARTZ- PYRITE ALTERATION 10-15% DISSEM. PY. 130 (SER. ALT'L ALSO) VERY LIMOULTIC MALACHITÉ ZONE el. 1100 m. CARBONATE VEINS. (GRAB) VERY FRACTURED (FAULT) BRIGHT 20% DISSEM. PY Aug 26 LST-AND ANDESITE < 5 34133 380 FAULT CONTACT BROKETIVA OKANGE-BROWN GOSSAN ADJACT TO UNALTERED LIMESTONE. (GRAB Aug 26 LST-AND. ANDESITE. 39134 VERY FRACTURED, SHEARED AND 180 < 5 EAULT CONTACT. LIMONITIC. VUGGY QUARTZ-SER. ALTERATION. BRECCIATED (GRAD) 39135 Aug 29 N. END OF AMOSSITE QUARTZ STRINGERS (MINERALIZED) 1 % CHALLOPYRITE AND 14000 SADOLE ZONE < 2 mm (5,840) Aug 31 B.C. 7+50 N ANDESLITE QTZ-SER ALT'D. ADSACENT TO 65 860 34136 15-20% PYRITE (BLESS FELDSPAR DYKE 10% QUARTE AND DISSEMINATED) STRINGERS < 3 mm. (GRAB) AUG 31 7+00 N HOUE QUARTZ YEIN. MINERALIZED, LEACHED. SUBCRUP. CHALLOPYRITE MAL/AZ STAIN 230 34137 2700 (GRAB) AUG 31 7+00 N 1+00 E QUARTZ - CHLCRITCH 39138 Vuggy. 20 cm. WIDE, WITHIN 1% PY (STRINGERS CO.5mm 290 LEACHED DACITE TRENDS ODD / 90 1% CHALLOPYRITE, TRACE OF (20 cm. CHIP) MALACHITO STAIN. BAT 1 5 too N 1400 6 ANDESITE 15-20% DISSEMINATED PYRITE 260 4300 39139 MINERALIZED QUARTZ-CALCITE AND PY. STRINGERS CO.5 MM STRINGER STUCKWORK. LIMONITIC BRIGHT ORANGE-BROWN SOSSAN. 1% CHALCOPYRITE , MALACHITE AZURITE IN STRINGERS WEAK SILICEOUS CHLORITE - EPIDOTE ALTERATION ZONE . 10% STRINGERS < 1 CM. (LEACHED). LIMOPITE -JAROSITE WEATHERING (GRAB) 39140 SEPT 1 2+00 N HOUW ANDESITE FOLIATED (042/58 NW) LIMONITIC 10% PYRITE BOXWORK. 35 120 LEACHED ANDESITE (SERICITE SCHIST ABUNDANT LIMONITE (2.0 m CHIP

(6) MARCO Pup PROJECT 1990 Date: Location: Sample: Lithology: Remarks / Alteration / Structure: Mineralization: Analysis: SEPT 3 1+00 N BL. 39141 QUARTZ YEIN. MINERALIZED. 40 cm. WIRE. 40-50% PYRRHOTITE. 600 LEACHED . LIMONITIC. TRENDS 2% CHALLUPYRITE. 155 /76 SW. PART OF STOCKWORK TRACE BORDITE / CONELLITE. WITHIN ANDESITIC ASH THER. O.4 m. CHIP) SEPT 3 0+50 N 0+50 W SCHIST. 34142 CHLUBITE - SERICITE SCHIST. 15 % DISSEM, PYRITE. 20 130 ALTERED ANDESITE THEE (?). PARTLY LEACHED. LIMONITIC. (GRAS) SEPT 4 LST-AND. CONTACT ANDESITE (?) 39143 VERY FRACTURED LEACHED AND BOXWORK OF 15% PY. 410 el 1138 m LIMONITIC. (GRAB) SEPT 4 LST-AND. CONTET ANDESITE. 39144 VERY STRONGLY FOLIATED 53 el 1250 m. (012/46 W) ASH TUFF (FAULT) LIGHT GREY TO TAN CLASTS <2 mm IN A DARK CREY MATRIX. ARCONATE + LIMONITE IN FRACTURE 1.5 m CHIP) SERT 4 LST-AND CONT SCHIST. 39145 QUARTZ - SERICITE SCHIST, SAME 20% DISSEMINATED PYRITE 35 46 AS 39144 BUT MORE FOLIATED. (BLETOS < 1 cm LIMONITIC - (2.0 M. CHIP) SOFT 4 LST-AND. CONT. LIMESTONE 39146 CHUP ACRUSS LIMESTONE ANDESITE 5% DISSEM. PY. 20 CONTACT (000/90). VERY ANDESITE. LEACHED AND LIMONITIC ANDESITE IS VERY FRACTURED. LIMESTONE IS MASSIVE AND BANDED. 10% CALCITE VEINS < 2 cm. (1.0 m CHIA) SEPT 6 LST-AND. CONT (HEAT (?) VETY ALT'O (CHL, CARB.) LIMONITY 5% PYRRHOTITE (BLEBS 39147 130 el 1155 m CHERT (?) MOTTLED MAROUN + < 1 mm ) AND 10% PYRITE GREY. APHANITIC. (20 m CHIP) (BLEBS + STRINGERS & 2 mm) SEPT 6 LST - AND. CONT ANDESITE 90 39148 CHL. SER. ALTERED VERY FRACTURED 5% FINE DISSEM. PY. EACHED. ALLM. TAROSITE (2-0 M CP

The state of the second of the state of the

Pup 1990  $(\tilde{\beta})$ PROJECT MARCO Date: Location: Sample: Lithology: Remarks / Alteration / Structure: Analysis: Mineralization: 39149 SEPT 6 AND-LST. CONTACT 10 % Py. (FRACTURE FILLING CHERT USAY FRACTURED LIMONIFIC el 970 m WEATHERING (SRAID) DISSEMINATED, STRINGERS SEPT 8 RIDGE WOF 39150 ASH TUFF < 1% PY (FRACTURE FILLIDE) 240 SADOLE ZONE TRENDING OZI CARBONATE VEINS UP TO 15 CM. TRENDING 088/46 N AND O31/90. STOERITE IN FRITES SOME LEACHING (GRAB) 39151 SEPT 2 SAME AS 39150. (GRAB) 2 % PYRITE. KIK PYRRHOTIN 110 ABUNDANT CARB. + RTZ. VEINS. 39152 SEPT & SAME AS 39154 (GRAB) No SULPHIDES 39153 SEPT 4 SILTSTOWE CARBONATE LIMONITE ALTERATIO BURRADE L13 0+50 W ZONE ON FAULT TRENDING 173/746 QUARTE AND QUARTE CARBONATO YEIN STOCKWORK. SILTSTONES AT (2.0 m. CHIP) 500 g RIOSE WEST OF ANDESITE 39154 < 5 FAULTED (FRAC-SADOLE ZONE. TUROD). LIMONITIC. FAULT el 1385 m TRENDS 176/85 W. (1.0 m CHIP. 39155 RIDGE WEST OF SEPT 9 ASH TUPP 3% PYRATIOTITE 3% SADDLE 20NG PYRITE PL CHALCO PYRITE SILICIFICATION WITH QUARTZ el 1471 m 1% SALEN LESS THAN 1% QUARTZ CALCITE STRINGERS UP TO 3 CM. PARTLY LEACHED SPHALERITE - (WITHIN LEAD OXIDE (?) STRINGERS). PYKKHOTITE FRACTURES AND ON WEATHED BLEBS DIRECTLY AROUND SUMFACES (1.0 m. CHIP) THIS ZONG AS WELL. el 1511 m ALON 39156 SILICEOUS ZONE ALONG FAULT (? 62 ASH TUFF STRIKE OF 10% QUARTZ NEINS UP TO 20 Cm 34155 WIDE. MINUR CHLORITE IN VEINS . . (2.0 m. CHIP)

(8) MARCO Pup PROJECT 1990 Date: Location: Lithology: Sample: Remarks / Alteration / Structure: Mineralization: Analusis: 39157 W. RIDGE SEPT 12 HURNBLENDE-<5 42 3 METRE WIDE DYKE TRENDING 148/78 SW. 40-50% HURNBLENDL PORPHYRY PHENOCRYSTS & O.5 mm IN A FINE GRAINED FELDSPAR RICH MATRIX. MASNETIC - 2-3 SENERATIONS OF INTRUSIONS! WITH CHILLED MARCINS BRECHATED ZONES. (3.0 M. CHIP 34158 50PT 12 SILTSTONE BIDSE. BRECCIATED WITH CALLITE CIMONITY 1% PYRITE (BLEBS) 45 MATRIX . MOD. SILICIFICATION. TUITE QUARTZ STRINSERS. APHANITIC BLUE-CREY FAULT ZONE TRENOINS 077° (STEEP). SUCKENSIDES 3.0 46-7013" (1.2 m. CHIP) 39159 SEPT 12 W. RIDGE 66 SILTSTONG SAME AS 39158 FELSENMERA 45 (BLEDS) AND TRACE TUFF QUARTZ STRINGERS SALENA IN QTZ. STRINGERS. SEPT 12 W. RIDGE 39160 SILTSTONE 21 BRECCIATED WITH QUARTZ - CALCUTE 1% PY 45 4 1% CPY. el 1530 m SOME LIMONITE. ABNOT. DULL SAGY-BLACK CHLORITE + EPIDOTE IN VEINS METALLIC NOWMAGNETIC MINORA GRAB FROM SUBCROP ANHEORAL BLEBS < 2 mm 39161 18 \* SEPT 14 W. RIDGE 45 30% QUARTZ VEIN STOCKWORK 25 METRES WIDE (VEINS UP TO I M) · Vina 2.0 M. CHIP 39162 14 RIDGE ARSILLINE SHEAREN (030/57 NW) io LIMONITIC (2.0 M CHIP) 39 163 BEDT 19 EAST OF " QUARTZ - CARB. 30 CM. WIDE WITHIN CAPILLI TUFF. 15 % PYRITE AND & 1% SADOLE ZONE. TRENDS OUY /80 E. 15 M. STRIKE PYRAMOTITE (13ccm5) LENGTH PART OF STOCKWORK AMORPHOUS QTZ. BANDS (0.3 m CHIP 39164 SEPT 19 HADGINGUALL OF FAULT (034/53 NW) QTZ-SER, ALT'D. LIMONITIC (2.0 m

1 1 1

9 MARCO

| jample:                               | Dote:       | Location:        | Lithology:                                                | Remarks / Alteration / Structure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mineralization:           | Hu          | Cu                    |
|---------------------------------------|-------------|------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-----------------------|
| 39165                                 | <del></del> |                  |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Analy:      |                       |
| T                                     | SEVI 11     | 0+50 - 0+52      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3% DISSEMINATED PYRITE    | 340         | 140                   |
| (20 m)                                |             | ***              | BRPHYRY .                                                 | ANGUINE DARK GARY FLATTENED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |             |                       |
| <del></del>                           |             |                  |                                                           | PHENOCRYSTS IN A FINE GRAINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |             |                       |
| · · · · · · · · · · · · · · · · · · · |             |                  |                                                           | LIGHT GREY MATRIX. LEAK SERICITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | <del></del> |                       |
| 111                                   |             |                  |                                                           | ALTERATION AND BLEACHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | <del></del> |                       |
| 9166                                  | SEPT 27     | 0+52 - 0+54      | HBL FSP PPY.                                              | SAME AS 39165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3% DISS PY. AND MALACHINA | 140         | 850                   |
| (20 in)                               |             |                  |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAIN.                    | * * * * *   |                       |
| 7167                                  | 5EPT 27     | 0+54-0+56        | HBL - FSP . PPY                                           | SAME AS 39165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3% DISS. PY.              | <u> 30</u>  | 390                   |
| (2-0 m)                               |             | <del></del>      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |                       |
| 168                                   | SEPT 27     | 0+56-0+58        | HIBL-FSP. PRY                                             | SAME AS 39165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3% DISS. CY.              | 15          | 88                    |
| (20m)                                 |             | -                |                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |             |                       |
| 1169                                  | SEPT 27     | 0+52-0+60        | HBL-FSP. PPY.                                             | SAME AS 39165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3% DISS PY. MALACHITE STU | . 70        | 550                   |
| 20m)                                  | , i         |                  |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |                       |
| 7170                                  | SEPT 27     | 0+652 -0+66-0    | ANDESITE (?)                                              | LIMONITIC, BLEACHED FOLIATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7% LEACHED PYRITE         | 50          | 220                   |
| (0.8 m)                               |             |                  |                                                           | (014/70 W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |             |                       |
| 1171                                  | SEPT 27     | 0+687-0+70.7     | HBL-FSP. PRY                                              | QUARTE + QTZ - CHLURITE YEINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4% DISSEMINATED PYRITE    | . 70        | 420                   |
| (20m)                                 |             | ,                |                                                           | UP TO 10 CM. WEAK CHLURITIZTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |             |                       |
| 1172                                  | SEPT 27     | 0+70.7-0+72.7    | HBL-ESP. PRY                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4% DISSOM. PY.            | 70          | 100                   |
| 20m)                                  |             | 7                | e i i i i de          | The same of the sa | *                         |             | Complete Section Con- |
| 173                                   | SOF 27      | 0+72-7- 0+74.7   | HBL-FSP PPY                                               | SAME AS 39171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4% DISSEN - PY            | 35          | 120                   |
| (20m)                                 | -/          | . 60 (3)         |                                                           | 2000年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |             | 1                     |
| 174                                   | SERT 27     | 0+74.7-17+76.7   | ASH TUFF                                                  | MODERATERY CHLORITIC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3% 0155EM py              |             | 268                   |
|                                       | 1           |                  | 13 20 13 - 20 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | QUARTZ STRINGERS UP TO 3 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JA UDENE 17.              | · ~         |                       |
| 175                                   | 5-21 27     | 0+787-0+98.7     | ASY THEE                                                  | SAME AS 39174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36 DISSEM. PY.            | 50-         | 250                   |
| -/-                                   | 25. 7       |                  | 7.711                                                     | Marie 113 141/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB 01775771 177.          |             | ~ Ju                  |
| 176                                   | 5070 17     | 0+787-0+80.7     | ACH THE                                                   | 5 46 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30/ 246.22                | <u></u>     | 170                   |
| /-V                                   | ~~/         | 0.767 0100.7     | 7.311 141-                                                | SAME AS 39174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3% DISSEM PY.             | 50          | •/0                   |
| 1177                                  | 500 F 27    | 0+807-0+82-7     | ALL TUES                                                  | 54 46 34174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3% DISSEM. PY.            | 35          | 3.82                  |
| <del></del>                           | V-4' -/     | 0 (00 / - 0 tc2) | 1/15M (WET                                                | SAME AS 34174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 176 U155EM-179            | د د         | 700                   |

PUP 1990 PROJECT L Stoon CHIP SAMPLES

| 29179 SOT 27 01847-0186.7 ASH THEE SAME AS 39179 3% DISSEM BY GTZ STRAGES 170  (20 m)  39 180 SOFT 27 0186.7 ASH THEE SAME AS 391.79 3% DISSEM BY 40  (GRAG)  39 181 SEPT 27 0186.5 - 0188.5 ASH THEE MODERATE BLEACHING, LIMONITIC 3% DISSEM BY 130  (20 m)  39 182 SEPT 27 0188.5 - 0188.5 ASH THEE SAME AS 39181 3% DISSEM BY 210  (14 m)  39 184 SOFT 27 01905-0141.9 ASH THEE SAME AS 39181 3% DISSEM BY 560  (14 m)  39 184 SOFT 27 0193.0-0145.0 ASH THEE SAME AS 39181 3% DISSEM BY 160  (20 m)  39 185 SOFT 27 0193.0-0145.0 ASH THEE SAME AS 39181 3% DISSEM BY 160  (20 m)  39 185 SOFT 27 0193.0-0145.0 ASH THEE SAME AS 39181 3% DISSEM BY 160  (20 m)  39 185 SOFT 27 0193.0-0145.0 ASH THEE SAME AS 39181 3% DISSEM BY 160  (20 m)  39 185 SOFT 27 0193.0-0145.0 ASH THEE DITH MINOR CRYSTAL THEE (?) 2% - 3% DISSEM. BY 270  (1.5 m)  LEACHED (LIMONITIC)  39 186 SOFT 27 1101.3-1103.3 ASH THEE SAME AS 39185 2-3% DISSEM. BY 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 34 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iis:                                  |
| 34179 SPT 27 01247-01267 ASM THEE SAME AS 34174 3% DISSEM BY GRZ STRINGES 170 (12m)  34180 SPT 27 01247 ASM THEE SAME AS 34174 3% DISSEM BY GRZ STRINGES 170 (64A0)  34181 SEPT 27 01267 ASM THEE SAME AS 34174 3% DISSEM BY 40 (64A0)  34182 SEPT 27 01265-01285 ASM THEE SAME AS 34181 3% DISSEM BY 130 (20m)  34183 SEPT 27 01265-0141 ASM THEE SAME AS 34181 3% DISSEM BY 210 (20m)  34183 SEPT 27 01405-0141 ASM THEE SAME AS 34181 3% DISSEM BY 160 (14m)  34183 SEPT 27 01405-0141 ASM THEE SAME AS 34181 3% DISSEM BY 160 (14m)  34185 SEPT 27 01403-0145-0 ASM THEE SAME AS 34181 3% DISSEM BY 160 (15m)  48185 SEPT 27 01403-1103 ASM THEE DITH MINOR CRYSTAL THEE (2) 2%-3% DISSEM BY 270 (15m)  48186 SEPT 27 1103-1103 ASM THEE SAME AS 34186 2-3% DISSEM BY 140 (15m)  48186 SEPT 27 1103-1-1103 ASM THEE SAME AS 34186 2-3% DISSEM BY 77 LIMITURE (160 (12m))  34188 SEPT 27 1105-1-107-1 ASM THEE SAME AS 34188 SAME AS 34188 280 (12m)  34189 SEPT 27 1105-1-107-1 ASM THEE SEME AS 34188 SAME AS 34188 150 (12m)  54189 SEPT 27 1107-1-1049-3 ASM THEE SAME AS 34188 SAME AS 34188 150 (12m)  54190 SEPT 27 1107-1-1049-3 ASM THEE SAME AS 34188 SAME AS 34188 150 (12m)  54191 SEPT 27 1107-1-1049-3 ASM THEE SAME AS 34188 SAME AS 34188 150 (12m)  54191 SEPT 27 1107-1-1049-3 ASM THEE SAME AS 34188 SAME AS 34188 150 (12m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100 .                                |
| (15 cm)  34 (80 SET 2701867 . ASH THEE SAME AS 39.74 3% DISSEM BY 40 (GRAB)  34 (81 SEPT 2701865-0.88 5 ASH THEE SAME AS 39.181 3% DISSEM BY 130  34 (82 SEPT 2701865-0.88 5 ASH THEE SAME AS 39.181 3% DISSEM BY 210  34 (82 SEPT 2701865-0.90 5 ASH THEE SAME AS 39.181 3% DISSEM BY 210  34 (82 SEPT 2701865-0.90 5 ASH THEE SAME AS 39.181 3% DISSEM BY 210  34 (82 SEPT 2701865-0.90 5 ASH THEE SAME AS 39.181 3% DISSEM BY 210  34 (83 SEPT 2701905-0.91 9 ASH THEE SAME AS 39.181 3% DISSEM BY 160  34 (84 SEPT 2701905-0.91 9 ASH THEE SAME AS 39.181 3% DISSEM BY 160  (10 cm)  34 (85 SEPT 2701905-0.91 9 ASH THEE SAME AS 39.181 3% DISSEM BY 160  (10 cm)  34 (85 SEPT 2701905-0.91 9 ASH THEE SAME AS 39.181 3% DISSEM BY 160  (10 cm)  34 (85 SEPT 271003-1.100 9 ASH THEE SAME AS 39.185 2-3% DISSEM BY 190  (10 cm)  34 (85 SEPT 271103-1.1103-1.1 ASH THEE SAME AS 39.186 2-3% DISSEM BY 190  (10 cm)  34 (88 SEPT 271103-1.1107-1.1 ASH THEE SAME AS 39.186 2-3% DISSEM BY 21 (1000) TO 160  34 (89 SEPT 271105-1.1-1107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (89 SEPT 27110-1-1107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (19 SEPT 27110-1-1-107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (19 SEPT 27110-1-1-107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (19 SEPT 27110-1-1-107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (19 SEPT 27110-1-1-107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (19 SEPT 27110-1-1-107-1.1 ASH THEE SERVICIE ALTOROW DEAK SILICI- 5% DISSEM BY 21 (1000) TO 160  34 (19 SEPT 27110-1-1-107-1.1 ASH THEE SERVICIE ASH AS 39.188 SAME AS |                                       |
| 39 180 SET 2701867 ADIT THEE SAME AD 34.74 36 DISSEM BY 40 (GRAB) 39 181 SEPT 2701865-0188 5 ASH THEE MODERATE GLEACHIES, LIMOUTE 376 DISSEM BY 130 (20 cm) 39 182 SEPT 2701885-0190 5 ASH THEE SAME AD 37181 36 DISSEM BY 210 (20 cm) 39 182 SEPT 2701985-0191 9 ASH THEE SAME AD 37181 376 DISSEM BY 560 (14 m) 39 184 SEPT 27 01905-0191 9 ASH THEE SAME AD 37181 376 DISSEM BY 160 (20 cm) 39 184 SEPT 27 01929-1100 4 ASH THEE SAME AD 37181 376 DISSEM BY 160 (15 cm) 39 185 SEPT 27 01929-1100 4 ASH THEE DITH MINOR CHYSTAL THEE (2) 26-3% DISSEM BY 170 (15 cm) 39 185 SEPT 27 1103-1103-3 ASH THEE DITH MINOR CHYSTAL THEE (2)  LEACHED (LIMOUTIC) 39 185 SEPT 27 1103-1103-3 ASH THEE SAME AD 39 186 2-3% DISSEM BY 190 29 187 SEPT 27 1103-1103-1 ASH THEE SAME AD 39 186 2-3% DISSEM BY 190 (18 cm) 39 188 SEPT 27 1103-1 1105-1 ASH THEE SAME AD 39 188 SEPT 27 1107-1 - 1109-3 ASH THEE SERVICE ALTORED LEAK SILICI-5 % DISSEM BY 190 (18 cm) 39 189 SEPT 27 1107-1 - 1109-3 ASH THEE SERVICE SERVICE STRINGERS MALACHITE STAINING (12 cm) 39 189 SEPT 27 110-3 - 110-3 ASH THEE SERVICE ALTORED LEAK SILICI-5 % DISSEM BY 190 (12 cm) 39 199 SEPT 27 110-3 - 1110-7 ASH THEE SAME AD 39 188 SAME AD 39 188 155 (14 m) 39 199 SEPT 27 110-3 - 1110-7 ASH THEE SAME AD 39 188 SAME AD 39 188 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2900                                  |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   |                                       |
| 39 181 SEPT 27 01865-0188 5 ASH THEF MODERATE BLEACHES, LIMENTIC 3% DISSEM. PY. 130  39 182 SEPT 27 0188-5-0190 5 ASH THEF SAME AS 39 181 3% DISSEM PY. 210  39 183 SEPT 27 01905-0191 9 ASH THEF SAME AS 39 181 3% DISSEM PY. 560  (14 m)  39 184 SEPT 27 01905-0191 9 ASH THEF SAME AS 39 181 3% DISSEM PY. 160  39 184 SEPT 27 01909-0195 0 ASH THEF SAME AS 39 181 3% DISSEM PY. 160  (15 m)  4 185 SEPT 27 01909-1100 4 ASH THEF WITH MINOR CRYSTAL THEF (?) 26-3% DISSEM. PY. 270  WEAK CHURRITIC SIL ?)  (15 m)  39 186 SEPT 27 1103-3 1103-3 ASH THEF SAME AS 39 185 2-3% DISSEM. PY. 190  (20 m)  39 187 SEPT 27 1103-3-1105-1 ASH THEF SAME AS 39 186 2-3% DISSEM. PY. 350  (18 m)  39 189 SEPT 27 1105-1-1107-1 ASH THEF SERIE ALTERED. WEAK SILICI-5% DISSEM PY. 7 LIMONIA 160  FILATION SE WHART STRINGERS MALACHITE STAINING  (20 m)  59 189 SEPT 27 1107-1-1109-3 ASH THEF LESS THAN 5 MAIN STRINGERS MALACHITE STAINING  (20 m)  59 189 SEPT 27 1107-1-1109-3 ASH THEF SAME AS 39 188 SAME AS 39 188 150  (14 m)  59 190 SEPT 27 1123-1125-3 ASH THEF SAME AS 39 188 SAME AS 39 188 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510                                   |
| (20m)  39 182 SEPT 27 0.28.5-0.90 5 ASH TUFF SAME AS 39181 3% DISSEM PY 210  (14m)  39 183 SEPT 27 0.905-0.191.9 ASH TUFF SAME AS 39181 3% DISSEM PY 560  (14m)  39 184 SEPT 27 0.193.0-0.195.0 ASH TUFF SAME AS 39181 3% DISSEM PY 160  29 184 SEPT 27 0.193.9-1400.4 ASH TUFF SAME AS 39181 3% DISSEM PY 160  29 185 SEPT 27 0.193.9-1400.4 ASH TUFF SAME AS 39181 3% DISSEM. PY 270  (1.5m)  29 186 SEPT 27 1103-1103-3 ASH TUFF SAME AS 39185 2-3% DISSEM. PY 190  29 187 SEPT 27 1103-3-1405.1 ASH TUFF SAME AS 39186 2-3% DISSEM. PY 350  (1.2m)  39 188 SEPT 27 1403-1405.1 ASH TUFF SERICITE ALTERED LERK SILICI-5% DISSEM. PY 7 LIMONITY 160  (20m)  39 189 SEPT 27 1407-1-1407-1 ASH TUFF SERICITE ALTERED LERK SILICI-5% DISSEM PY 7 LIMONITY 160  FIRATION 5% QUARTE STRINGERS MALACHITE STAINING  (20m)  59 189 SEPT 27 1407-1-1409-3 ASH TUFF LESS THAN 5 MM.  50 19188 SEPT 27 1407-1-1409-3 ASH TUFF SAME AS 39188 SAME AS 39188 280  (1.4m)  50 1919 SEPT 27 1412-3-1413-7 ASH TUFF SAME AS 39188 SAME AS 39188 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 39 182 SEPT 27 0-188-5-0-190 5 ASH TUFF SAME AS 39 181 3% DISSEM PY. 210  34 183 SEPT 27 0-1905-0-191 9 ASH TUFF SAME AS 39 181 3% DISSEM PY. 560  (14 m)  34 185 SEPT 27 0-1930-0-1950 ASH TUFF SAME AS 39 181 3% DISSEM PY. 160  (20 m)  34 185 SEPT 27 0-1939-1-100 4 ASH TUFF SAME AS 39 181 3% DISSEM PY. 160  (15 m)  15 LEACHED (LIMOUTIC)  36 186 SEPT 27 1-103-1-103-3 ASH TUFF SAME AS 39 185 2-3% DISSEM. PY. 190  (12 m)  34 187 SEPT 27 1-103-1-105-1 ASH TUFF SAME AS 39 186 2-3% DISSEM. PY. 350  (15 m)  37 188 SEPT 27 1-103-1-1-107-1 ASH TUFF SEMICITE ALTERED DEAK SILICI-5% DISSEM PY. 7 CHANNIE 160  (20 m)  38 189 SEPT 27 1-107-1-1-109-3 ASH TUFF SEMICITE ALTERED DEAK SILICI-5% DISSEM PY. 7 CHANNIE 160  (20 m)  58 189 SEPT 27 1-107-1-1-109-3 ASH TUFF SEMICITE ALTERED DEAK SILICI-5% DISSEM PY. 7 CHANNIE 160  (20 m)  58 189 SEPT 27 1-107-1-1-109-3 ASH TUFF SEMICITE ALTERED DEAK SILICI-5% DISSEM PY. 7 CHANNIE 160  (20 m)  58 189 SEPT 27 1-107-1-1-109-3 ASH TUFF SEMICITE ALTERED DEAK SILICI-5% DISSEM PY. 7 CHANNIE 160  (20 m)  58 189 SEPT 27 1-107-1-1-109-3 ASH TUFF SEMIC AS 39 188 SAME AS 39 188 280  (14 m)  58 19 19 SEPT 27 1-103-1-113-7 ASH TUFF SEMIC AS 39 188 SAME AS 39 188 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>7</u> 20                           |
| (20 m)  34 183 SET 27 0-905-0-141.9 ASH THEE SAME AS 39181  37 DISSEM PY  560  (14 m)  39 184 SEPT 27 0-929-1-100.4 ASH THEE SAME AS 39181  38 DISSEM PY  160  (20 m)  39 185 SET 27 0-929-1-100.4 ASH THEE LITTH MINOR CRYSTAL THEE (?). 26-36 DISSEM. PY. 270  (1.5 m)  LEACHED (LIMODITIC).  39 186 2-36 DISSEM. PY. 190  LEACHED (LIMODITIC).  39 187 SEPT 27 1-103-3 ASH THEE SAME AS 39185  (20 m)  39 187 SEPT 27 1-103-1-105-1 ASH THEE SAME AS 39186  2-36 DISSEM. PY. 190  39 188 SEPT 27 1-103-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                  |
| 34 183 SAT 27 0-905-0-141.9 ASH THEE SAME AS 39181 3% DISSEM PY 560  (14 m)  39 184 SAT 27 0-930-0-1950 ASH THEE SAME AS 39181 3% DISSEM PY 160  (20 m)  39 185 SAT 27 0-1989-1-100 4 ASH THEE WASH MINOR CRYSTAL THEE (?) 26-3% DISSEM. PY 270  (15 m)  WEAK CHURITIC. DACITIC (S12?)  LEACHED (LIMONITIC)  39 186 SAT 27 1-103 3 ASH THEE SAME AS 39185 2-3% DISSEM. PY 190  (20 m)  39 187 SEPT 27 1-103-1-105-1 ASH THEE SAME AS 39186 2-3% DISSEM. PY 350  (18 m)  39 188 SEPT 27 1-105-1-1-107-1 ASH THEE SERICITE ALTERED. WEAK SILICI-5% DISSEM PY 7-7 LIMONITA 160  (20 m)  39 189 SEPT 27 1-105-1-1-107-1 ASH THEE SERICITE ALTERED. WEAK SILICI-5% DISSEM PY 7-7 LIMONITA 160  (20 m)  39 189 SEPT 27 1-107-1-1-109-3 ASH THEE SERICITE ALTERED. WEAK SILICI-5% DISSEM PY 7-7 LIMONITA 160  (20 m)  59 189 SEPT 27 1-107-1-1-109-3 ASH THEE SERICITE ALTERED SAME AS 39188 SAME AS 39188 280  (1-1 m)  59 190 SEPT 27 1-103-7 ASH THEE SAME AS 39188 SAME AS 39188 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000                                  |
| (1.4 m)  39 184 SEPT 270+930-0+950 ASH TUFF SAME AS 39181 3% DISSEM PY. 160  (20 m)  39 185 SEPT 270+989-1+00 4 ASH TUFF WITH MINOR CHYSTAL TUFF (?). 2%-3% DISSEM. PY. 270  (1.5 m)  LEACHED (LIMOUTIC.)  39 186 DISSEM PY. 160  39 186 DISSEM PY. 160  39 186 DISSEM PY. 160  160  270  LEACHED (LIMOUTIC.)  39 186 DISSEM. PY. 270  LEACHED (LIMOUTIC.)  39 187 SEPT 27 1+03 3 ASH TUFF SAME AS 39 186  2-3% DISSEM. PY. 190  190  (1.8 m)  39 188 SEPT 27 1+05-1-1+07-1 ASH TUFF SENCITE ALTERED. WEAK SILICI-5% DISSEM PY -7 LIMONIR 160  FICATION (% QUARTE STRINGERS MALACHITE STAINING  (20 m)  39 189 SEPT 27 1+05-1-1+09 3 ASH TUFF LESS THAN 5 MM.  (22 m)  39 190 SEPT 27 1+12 3-1+13-7 ASH TUFF SAME AS 39 188  5 AME AS 39 188  5 AME AS 39 188  15 CHILD SAME AS 39 188  5 AME AS 39 188  150  14191 SEPT 27 1+13-9-1+15-5 ASH TUFF SAME AS 39 188  5 AME AS 39 188  5 AME AS 39 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 39 184 SEPT 27 0+930-0+950 ASH THEE SAME AS 39181 3% DISSEM PY. 160  39 185 SEPT 27 0+98-9-1+00 4 ASH THEE WITH MINOR CHYSTAL THEE (?). 2%-3% DISSEM. PY. 270  (1.5 m)  WEAK CHORITIC. DACITIC (SIL?)  LEACHED (LIMODITIC).  39 180 SEPT 27 1+01-3-1+03-3 ASH THEE SAME AS 39185 2-3% DISSEM. PY. 190  (20 m)  39 187 SEPT 27 1+03-3-1+05-1 ASH THEE SAME AS 39186 2-3% DISSEM. PY. 350  (1.8 m)  39 188 SEPT 27 1+05-1-1+07-7 ASH THEE SERICITE ALTERED. WEAK SILICI-5% DISSEM. PY7 LIMONIA 160  FIGATION 5% QUARTE STRINGERS MALACHITE STAINING  (20 m)  59 189 SEPT 27 1+07-1-1+09-3 ASH THEE LESS THAN 5 MM.  (1-2 m)  59 190 SEPT 27 1+12-3-1+13-7 ASH THEE SAME AS 39188 SAME AS 39188 15  (1-4 m)  59 191 SEPT 27 1+12-5 ASH THEE SAME AS 39188 SAME AS 39188 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2700                                  |
| (20 m)  39 (85 Sept 27 0+989-1+00 4 Ash THEE DITH MINOR CRYSTAL THEE (?) 2%-3% DISSEM. Py. 270  (15 m)  LEACHED (LIMODITIC)  39 (86 m)  SEPT 27 (+01-3-1+03-3 Ash THEE SAME AS 39 (86 2-3% DISSEM. Py. 190  (1-8 m)  39 (88 Sept 27 (+03-3-1+05-1 Ash THEE SAME AS 39 (86 2-3% DISSEM. Py. 350  (1-8 m)  39 (88 Sept 27 (+05-1-1+07-7 Ash THEE SERICITE ALTERED WEAK SILICI- 5% DISSEM PY - 2 LIMONITE 60  (20 m)  49 (89 Sept 27 (+05-1-1+07-7 Ash THEE SERICITE ALTERED WEAK SILICI- 5% DISSEM PY - 2 LIMONITE 60  FICATION 5% QUARTE STRINGERS MALACHITE STAINING  (22 m)  5AME AS 39 (88 SAME AS 39 (88 SAME AS 39 (88 15)  (1-4 m)  54 (190 Sept 27 (+12-3-1+13-7 Ash THEE SAME AS 39 (88 SAME AS 39 (88 15)  (1-4 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 39186m) SEPT 27 (1989-1400.4) ASH THEE WITH MINOR CRYSTAL THEE (?). 2%-3% DISSEM. PY. 270  WEAK CHLORITIC. DACITIC (SL ?)  LEACHED (LIMONITIC)  39186m) SEPT 27 (1013-1403.3) ASH THEE SAME AS 39186  2-3% DISSEM. PY. 190  39188 SEPT 27 (1033-1405.1) ASH THEE SAME AS 39186  2-3% DISSEM. PY. 350  (1.8m)  39188 SEPT 27 (1051-1407.1) ASH THEE SERICITE ALTERED. WEAK SILICI-5% DISSEM PY-7 LIMONITE (60)  (20m)  49189 SEPT 27 (1071-1409.3) ASH THEE LESS THAN 5 MMM.  (1.2m)  59189 SEPT 27 (1013-1409.3) ASH THEE LESS THAN 5 MMM.  (1.2m)  59190 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188  59191 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188  59191 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188  59191 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188  59191 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188  59191 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188  59191 SEPT 27 (1123-1413-7) ASH THEE SAME AS 39188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1700                                  |
| (1.5 m)  WEAK CHLORITIC DACITIC (512?)  LEACHED (LIMOUTIC)  39186m) SEPT 27 1401-3-1403-3 ASH TUFF SAME AS 39186  2-3% DISSEM. PY. 190  39187 SEPT 27 1403-3-1405-1 ASH TUFF SAME AS 39186  2-3% DISSEM. PY. 350  (1.8 m)  39188 SEPT 27 1405-1-1407-1 ASH TUFF SERICITE ALTERED. WEAK SILICI- 5% DISSEM PY. 7 LIMONITE 60  (20 m)  19189 SEPT 27 1407-1-1409-3 ASH TUFF LESS THAN 5 MM.  (1.2 m)  5AME AS 39188 SAME AS 39188 SAME AS 39188  19190 SEPT 27 1412-3-1413-7 ASH TUFF SAME AS 39188  54191 SEPT 27 1413-9-1415-5 ASH TUFF SAME AS 39188  54191 SEPT 27 1413-9-1415-5 ASH TUFF SAME AS 39188  54191 SEPT 27 1413-9-1415-5 ASH TUFF SAME AS 39188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| WEAK CHURITIC DACITIC (512?)   LEACHED (LIMODITIC)   SQUENTY   SOFT 27   1013-1103-3   ASH TUFF   SAME AS 39185   2-3% DISSEM PY. 190   39187   SEPT 27   1033-1105-1   ASH TUFF   SAME AS 39186   2-3% DISSEM PY. 350   (1.8m)   SEPT 27   105-1-1107-1   ASH TUFF   SERICITE ALTERED   WEAK SILICI-5% DISSEM PY -7 LIMONITE 160   (20m)   FICATION 5% QUARTZ STRINGERS   MALACHITE STAINING     (20m)   SAME AS 39188   SAME AS 39188   280   (1.2m)   SAME AS 39188   SAME AS 39188   15   (1.4m)   SAME AS 39188   SAME AS 39188   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360                                   |
| 39186m) SEPT 27 HO3-3-1+03-3 ASH THE SAME AS 39186  (20m)  39187 SEPT 27 HO3-3-1+05-1 ASH THE SAME AS 39186  2-3% DISSEM. PY. 350  (1.8m)  39188 SEPT 27 HO5-1-1+07-1 ASH THE SERICITE ALTERED. WEAK SILICI-5% DISSEM PY. 77 LIMONING 160  (20m)  49189 SEPT 27 HO5-1-1+09-3 ASH THE LESS THAN 5 MM.  (22m)  59190 SEPT 27 HO3-1-1+09-3 ASH THE LESS THAN 5 MM.  (1.2m)  59190 SEPT 27 HO3-1-1+09-3 ASH THE SAME AS 39188  59190 SEPT 27 HO3-1-1+09-3 ASH THE SAME AS 39188  59190 SEPT 27 HO3-1-1+09-3 ASH THE SAME AS 39188  59190 SEPT 27 HO3-1-1+09-3 ASH THE SAME AS 39188  59190 SEPT 27 HO3-1-1+03-7 ASH THE SAME AS 39188  59190 SEPT 27 HO3-1-1+03-7 ASH THE SAME AS 39188  59180 SEPT 27 HO3-1-1+03-7 ASH THE SAME AS 39188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| (20m) 39187 SEPT 27 1403-3-1405-1 ASH TUFF SAME AS 39186 2-3% DISSEM. PY. 350 (1.8m) 39188 SEPT 27 1405-1-1407: / ASH TUFF SERICITE ALTERED. WEAK SILICI-5% DISSEM PY.—7 LIMONING 160 (20m) 4189 SEPT 27 1407-1-1409-3 ASH TUFF LESS THAN 5 MM. (22m) 5AME AS 39188 SAME AS 39188 280 (1.4m) 54191 SEPT 27 1412-3-1413-7 ASH TUFF SAME AS 39188 54191 SEPT 27 1413-9-1415-5 ASH TUFF SAME AS 39188 54161 SEPT 27 1413-9-1415-5 ASH TUFF SAME AS 39188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| 39188 SEPT 27 1403-3-1407-1 ASH TUFF SERICITE ALTERED. WEAK SILICI- 5% DISSEM PY -7 LIMONING 160 (20m)  19189 SEPT 27 1407-1-1409-3 ASH TUFF LESS THAN 5 MM.  19189 SEPT 27 1407-1-1409-3 ASH TUFF LESS THAN 5 MM.  19190 SEPT 27 1412-3-1413-7 ASH TUFF SAME AS 39188 SAME AS 39188 15  19191 SEPT 27 1413-9-1415-5 ASH TUFF SAME AS 39188 SAME AS 39188 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100                                  |
| (1.8 m)  39.188 SEPT 27   105.1-1407.1 ASH TUFF SERICITE ALTERED VEAK SILICI- 5% DISSEM PY -7 LIMONITY 160  (20 m)  69.189 SEPT 27   1407.1-1409.3 ASH TUFF LESS THAN 5 mm.  (2.2 m)  5AME AS 39.188 SAME AS 39.188  19.190 SEPT 27   1412.3-1413.7 ASH TUFF SAME AS 39.188  (1.4 m)  69.191 SEPT 27   1413.9-1415.5 ASH TUFF SAME AS 39.188  54.191 SEPT 27   1413.9-1415.5 ASH TUFF SAME AS 39.188  54.191 SEPT 27   1413.9-1415.5 ASH TUFF SAME AS 39.188  54.191 SEPT 27   1413.9-1415.5 ASH TUFF SAME AS 39.188  120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ************************************* |
| 39188 SEPT 27 1405.1-1407.1 ASH TUFF SERICITE ALTERED VEAK SILICI- 5% DISSEM PY -7 LIMONITE 160  (20m) FICATION 5% QUARTZ STRINGERS MALACHITE STAINING  (9189 SEPT 27 1407.1-1409.3 ASH TUFF LESS THAN 5 mm.  (22m) SAME AS 39188 SAME AS 39188 280  (14m) SEPT 27 1412.3-1413.7 ASH TUFF SAME AS 39188 SAME AS 39188 15  (1.4m) SEPT 27 1413.9-1415.5 ASH TUFF SAME AS 39188 SAME AS 39188 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 578                                   |
| [120m]   FICATION 5% QUARTZ STRINGERS MALACHITE STAINING   19   189   SOUT 27   107.1-1+09.3 ASH TYPE LESS THAN 5 MM.   (2.2 m)   SAME AS 39   188   SAME AS 39   188   280   19   SOUT 27   112.3-1+13.7 ASH TYPE SAME AS 39   188   SAME AS 39   188   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     |
| 19 189 SERT 27 1407.1-1409.3 ASH TYPE LESS THAN 5 MM.  (2.2 m)  SAME AS 39 188  SAME AS 39 188  19 (1.4 m)  SOPT 27 1413.9-1415-5 ASH TYPE SAME AS 39 188  SAME AS 39 188  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000                                  |
| (2-2 m)  5AME AS 39188  5AME AS 39188  280  39190  5AME AS 39188  5AME AS 39188  15  (1.4 m)  5AME AS 39188  5AME AS 39188  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     |
| 19 190 SEPT 27 1412-3-1413-7 ASH TYPE SAME AS 39188 SAME AS 39188 15  (1.4 m)  SEPT 27 1413-9-1415-5 ASH TYPE SAME AS 39188 SAME AS 39188 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| (1.4 m) SAME AS 59188 15<br>19191 SOPT 271413.9-1415-5 ASH THEE SAME AS 39188 SAME AS 34188 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970                                   |
| 9191 Sept 27 1413:9-1415-5 ASH TUFF SAME AS 39188 SAME AS 39188 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270                                   |
| (16 m) SAME AS 39188 SAME AS 39188 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| $-1.06$ m $H_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , Carry                               |

| Pup 194<br>Sample: |          | Location:       | N CHIP SAM                  | Remarks / Alteration / Structure: | Mineralization:             | Au            | <u> </u>    |
|--------------------|----------|-----------------|-----------------------------|-----------------------------------|-----------------------------|---------------|-------------|
| 39192              |          | 1+16-1-1+17.5   |                             |                                   |                             | Analy         |             |
| (1.4 m)            | JCF1 2/  | 1410-6 - 1117-5 | 775H 14PF                   | SAME AS 39188                     | SAME AS 39188               | 40            | 180         |
|                    | SERT 27  | 1+17.5 - 1+19.5 | ASH THEE                    | SAME AS 39188                     | SAME AS 34188               | 75-           | 360         |
| 39194              | 5007 27  | 1+20-3-1+22.3   | ASH TUFF                    | Sam= A5. 39188                    | SAME AS 39188               | 20            | 300         |
|                    | SEPT 27  | 1+25.2 - 1+27.0 | ASH TUFF                    | WEAK CHLORITIZATION.              | 3% PYRITE AS STRINGERS YE   | <b>3</b> 0    | 250         |
| (1.8 m)            | ,        |                 |                             |                                   | TO 0.5 MM AND DISSEMINATION |               | V-10        |
| (20m)              | 590 27   | 1+270-1+290     | ASH TUFF                    | WEAK CHLERT.                      | SAME AS 39195               | 40            | 350         |
| 9197               | SOF 27   | 1+29-0-1+30.6   | ANDES. TE (DYKE)            | SUBCROP. VERY FINE SRAINED        |                             | < 5           | 110         |
| (16m)              |          |                 |                             | DARK GREY                         |                             |               | 110         |
| (20m)              | SEPT 27  | 1+30-6-1+32-6   | ASH TUFF                    | 54MG AS 34195                     | SAME AS 39145               | 35            | Z 3 e       |
|                    | SEPT 27  | 1+34.1-1136.1   | ASH TUEF                    | CHLORITIC ABUNDANT EPIDOTE.       | 2% DISSEM. Py.              | <b>3</b> 0    | 250         |
| (20m)              |          |                 |                             | GRADES INTO FELDSPATHIC THE       |                             |               |             |
| 9200               | < -1     | 1.04            |                             | CHYSTAL TUFF TOWARDS 39202        |                             |               |             |
| (2-om)             | JEV 27   | 1+361-1+38.1    | 43H TUFF                    | SAME AS 34199                     | 2% DISSEM DY.               | 20            | 220         |
| 9201               | C-0      | 1+38-1-1+40 0   | FELOSPATHIC                 |                                   |                             |               | -           |
| (19m)              | 231 2/   |                 |                             | SAME AS 34199                     | 2% DISSOM PY.               | 140           | 390         |
| 9202               | Z-05 - 5 |                 | CRYSTAL TUFF.               |                                   | <b>2</b>                    |               | - 100 C 400 |
| (1.6 m)            | JEN ( 2/ |                 | FELOSPATHIC                 | FOLIATED (038/84 SE). BLEACHE     | 2% 01556m Py                | 30            | 226         |
| 9203               | (.ME 37  |                 | CRYSTAL TUFF                | LIMONITIC                         |                             | <del>  </del> |             |
| (1.7m)             | JEVI L   | 1+34.8-1+41.5   | ,                           | SAME AS 39202.                    | 2 % 0155Em. Py.             | 25            | 250         |
| 9204               | 5,000 20 | 11380-1111-7    | CRYSTAL TUFF<br>FELOSPATHIC |                                   | - 0/                        | ļ             | / / / 4 4 4 |
| (2.2 m)            | 2012/    | 14 7000 1440.2  |                             | Vuggy atz. VEINS 4P TO 10 CM      |                             | 75            | 440         |
| 10.00              |          |                 | (ESP. HOL- PPY?)            | HORN BLENDE (?) ALTERED TO        | LARLINGERG VEINS.           | <del> </del>  |             |
|                    |          |                 | LEDT. HIZE- PRY ; )         | CHLORITE. FLATTENED FELDSPAR      |                             | I             |             |

13 MARCO

|                 |              | VECT L 8t00     |                     | PLC 3                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------|-----------------|---------------------|-----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample: 34205   |              | Location:       | Lithology:          | Remarks / Alteration / Structure: | Mineralization:         | Au C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (2.0 m)         | 120. 2/      | 1+402-1+42.2    | - SAME AS 3920      | 4 SAME AS 34204                   | SAME AS 39204           | Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 39206           | SERT 27      | 1+42.2-1+44.2   | SAME 45 34200       | 5 SAME AS 34204                   |                         | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (20m)           |              |                 |                     |                                   | SAME AS BYZOY           | 75- 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (20m)           | DENT 27      | 1+44.2-1+46.2   | SAME AS 3920        | 4 SAME AS. 39204                  | SAME AS 39204           | 30 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39208           | SERT 27      | 1448.5 - 1450.6 | 1                   |                                   |                         | 30 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (1.5 m)         | -7           | 1130.2          | 7773H 14FF          | CHLORITIC. SUBCROP                | 2% DISSEM. Py.          | 20 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39209           | SEPT 27      | 1453-3-1455-7   | ASH (?) TUFF.       | WEAK CHLORITE & SCRICITE ALTERTA  | <u> </u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (20m)<br>39210  | V27 - 20     | 11000           | 1 1 2               |                                   | 7% YERY FINE DISSEM PY. | 15 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (10m)           | JEN 1        | 1455.5-1456.    | ASH (?) TUFF.       | WK. CHL. + SER. ALTN.             | 2% V-FING DISSEM. Py.   | 10 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39211           | SORT 27      | 1+63.8-1+64.9   | ASH THE             | STRONG FOLIATION (OIL /61W)       | 17:                     | 10 2/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (1-1m)          |              |                 |                     | MOD CHLORITIZATION LIMENITIC      |                         | 20 /20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39212           | SEPT 27      | 1+64-9-1-66-3   | ASH TUFF            | SAME AS 39211                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1.4m)<br>39213 | 5,00- 27     | 1.622 1.68      | /                   |                                   |                         | 5 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1.2 m)         | 7601 27      | 146/-2 - 1468.4 | LAPILLI TUFF        | FLATTENED CLASTS, BLEACHED.       | 5% FINE DISSEMINATED PY | 15 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39214           | S=0T 27      | 1+69-1-1+70.5   | LAPILLI TUFF        | SAME AS 39213                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1.4 m)         |              |                 |                     |                                   | 5% FINE DISSOM. PY      | 20 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39215<br>(1.2m) | JEPT 27      | 1+70.5-1+71.7   | LAPILLE TUFF        | QTZ-SOR ALTERED AND               | 3% FINE DISSEM. PY      | 20 Zah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39216           | SEPT 27      | 1+75.3-1477.3   | LAPILLI TOFF        | BLEACHED                          |                         | 20 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | 7            | 1.7.            | LATEUR JUST         | SAME AS 39215<br>DACING (?)       | 5% MIS FINE DISSEM. PY. | 20 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |              |                 |                     | C-/                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | <del> </del> |                 |                     |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |              | <del></del>     |                     |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |              |                 | \$ 1986.            |                                   |                         | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |              |                 | 2 <sup>4</sup> 7.34 |                                   |                         | THE STATE OF THE S |

| ( | i | 3 | ) |
|---|---|---|---|
| • | _ | _ |   |

| - '         | 21            | 1 . 1 .     | 1 1 1 1                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Au           | Cu      |
|-------------|---------------|-------------|----------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| jample: .   | Date:         | Location:   | Lithology:                                   |                                           | Mineralization:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysi      | s:      |
| 5B-1        | Sept 1/20     | 5100 £ 5193 | N Ote vein swarm                             |                                           | Tr sulphides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <5           | 20      |
| Trip/a.om   | <del></del> - |             | in andesdic boil                             | access of milky at veins which cross      | 2410/0 specular bematite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·<br>        |         |
|             |               |             | - tuff                                       | cut foliation. Str blue gray oxidation    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |         |
| SB-2        | <del></del>   | 5+95N 5+3   |                                              | ovidized fracture surfaces                | 51% disseminated and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <5           | 110     |
| nrab        | /             |             | Orgillite/siltston                           | e                                         | blebby py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         |
| SB- R3      | Sept 3/90     | 7+00 N 7+4  | OF Felds por - HOI                           | Toxidized orange Find up to 2cm c         | 151% fracture controlled +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L5           | 7       |
| hip/1.00    | <i>(</i>      |             |                                              |                                           | disseminated By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
| ·           |               |             | /                                            | cution of original text, mod carb         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
| SB-84       |               |             |                                              | mod silicification weak marb              | Trpo, 4<1% dissempy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <5           | 8       |
| hip/20m     |               |             |                                              | fracture contr. Relict igneous tex        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
|             |               |             |                                              | thick oxidized and                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
| ·SB - R 5   |               |             |                                              | wk carb, strong silicification            | < 1% dissempy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5           | ξ       |
| hip/2.0 m   |               | /           | <b>√</b>                                     | thick oxidized find                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
|             |               |             | ,                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
| ·SB-R6      | <b>Y</b>      | 7+20N 6+00  | E Sheared Andesit                            | fine grouned with moderately-Str.         | Trpo 1-2% fine py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45           | 9       |
| Grab        |               |             | Flow                                         |                                           | aligned along shistosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ``      |
|             |               |             |                                              |                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |         |
| -SB-R7      | Sept 6/90     | 3490N 3+95F | contact zone of                              | Thick mange brown wenthered sortace       | <1% finely disseminated py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5           | ( (     |
| hp/aom      | , , .         |             | hbl porphyry and                             | rind, sheared, deformed.                  | 1/0 ) 1/2 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 4 ( 1/1/2 |              |         |
| 17          |               |             | handed sultstone                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | s 7 a j |
|             |               |             |                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
| SB-R8       |               | 3495, 4+15E | banded argulite                              | south bown andation tollowing             | 2% dissempy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <5           | 12      |
| up 1.70     |               |             |                                              | bedding, zone 300mwide                    | (1/35+7/1 py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |         |
|             |               |             |                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | •       |
| -SB -R9     |               | 5+40N 5+20A | 1 Foldson Harnbler                           | e epidote alkintion                       | 11% dissem py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45           | 2       |
| Grab        |               |             | porphyry                                     | 7/100/10/10/10/                           | 170 Uissern Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |         |
|             |               |             | <i>*************************************</i> |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del> </del> |         |
| SB-R10      |               | 4+86N 455 E | Otz vein Swarm                               | r orange oxidation with thick rind. Aboth | 1519/2 Dicite disseminated than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | out <        |         |
| 10.00 Ja.on |               |             |                                              | ·                                         | 4 Long the disseminated lineus, Feld porph. rare by in chlivein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1007         |         |
| ··/·/ * ··· |               |             | - Property                                   |                                           | Orz voin no mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del> </del> |         |

 $\mathbf{T}_{\mathbf{T}} = \mathbf{T}_{\mathbf{T}} = \mathbf{T}_{\mathbf{T}} = \mathbf{T}_{\mathbf{T}} = \mathbf{T}_{\mathbf{T}} = \mathbf{T}_{\mathbf{T}}$ 

PUP 1990 PROJECT

SHARON BAILLIE

(14)

| Sample:                               | Date:        | Location:    | Lithology:            | Remarks / Alteration / Structure:       | Mineralization:                                     | Analys   | is:         |
|---------------------------------------|--------------|--------------|-----------------------|-----------------------------------------|-----------------------------------------------------|----------|-------------|
|                                       |              | 12+00N 3175E |                       | miner milky gtz +chl veining            | <1% finely dissempy                                 | 45       | 6           |
| -SB-RIZ                               |              | 17+00N 3+74F | Andositic resistal    | massive, bleached.                      | 1-2% disseminated and                               | < 5      | 7           |
| Grab -                                |              |              | Tuff                  |                                         | microfracture controlled fine                       |          | <del></del> |
| -5B-R13                               | -            | 12+00N 3+40E | Cryslal Toff          | Shear zone, minor, strong oudation      | 5% blebby and fracture                              | 15       | 280         |
| hip/0.8m                              | <u> </u>     |              | (andesitic)           | minor cross culting shears              | controlled by locally up to 15% with 0.4 m of spear |          |             |
| 25B-R14                               |              | 12+00N 2176E | Ordesitie ash         | strong oxidation staining.              | 2-3% dissem + fract. contr                          | 10       | 96          |
| Grab<br>2-5B-RIS                      | -            | 12+20N 2+55E | TUFF<br>andesitic Osh | sheared minor fault, moderate           | 1-20% fracture controlled px                        | 10       | 130         |
| Chip/2.0m                             |              |              | TUFF                  | brown exidation                         | 210/0 dissem py                                     |          |             |
| P-5B-R16                              | 1            | 12+80N 3+0SE | Milky Otz Vein        | hematite staming,                       | no visible sulfides                                 | < 5      | 9           |
| 6-5B-RH                               |              | 12+98N 2+90E | crystal tuff          | conscale at vein swarm servite          | Typically <1% dissembly with                        | 20       | 130         |
| Chip/200                              | /            |              | <u> </u>              | - limonite dev., chymineral dev         | local used con scale py plebs.                      |          |             |
|                                       |              |              |                       | (////////////////////////////////////// |                                                     |          |             |
|                                       |              |              |                       |                                         |                                                     |          |             |
|                                       |              |              |                       |                                         |                                                     |          |             |
|                                       |              |              |                       |                                         |                                                     |          |             |
|                                       |              |              |                       |                                         |                                                     | -        |             |
|                                       | <del> </del> |              |                       |                                         |                                                     |          |             |
|                                       |              |              |                       |                                         |                                                     |          |             |
|                                       |              |              |                       |                                         |                                                     |          | ्राह्य<br>स |
| · · · · · · · · · · · · · · · · · · · |              |              |                       |                                         |                                                     | <u> </u> |             |

| PUP 199      | o Pizau    | ECT SHAR             | ON BAILLIE            | 15                                                                             |                                 | Au     | Cu      |
|--------------|------------|----------------------|-----------------------|--------------------------------------------------------------------------------|---------------------------------|--------|---------|
| Sample:      | Date:      | Location:            | Lithology:            | Remarks / Alteration / Structure:                                              | Mineralization:                 | Analys | sis:    |
| P-SB-RB      | Sept 8/90  | 12+92 N 2+00E        | sericite shisting     | limonite development, oxidized weathered                                       | 5% prite, alongemm scale        | 15     | 57      |
| Chip 12.0m   |            |                      |                       | surface silicified, local bleaching                                            | monite fractures and subperpen- |        |         |
|              |            |                      |                       | sericite, no corb                                                              | dicular microfiaciones, dissem  |        |         |
| P-5B-R19     |            | 12+85N 3+00E         | Otz vein              | 35cm wide milky atzylimonite                                                   |                                 | 15     | 80      |
| Chip/0.35 m  |            |                      |                       | visible strike length 12-15 m, no not be characte vaniets, local sulphide min. | 51% Fracture controlled py      | · ·    |         |
|              |            |                      |                       | charte vaniets, local solphide min.                                            | <1% blebby c'py, Ir hematite    |        |         |
| P-58-R20     |            | 13+00N 3+25E         | Otz vein              | Same vein as above, 70 cm wide                                                 | << 1% py blebs, Trolher         | 25     | 33      |
| Chip/0,70m   |            |                      |                       | with lenses of ash tuff enveloped by                                           | <ul><li>sulphides</li></ul>     |        |         |
|              |            |                      |                       | vein. no carbonate no chorite.                                                 |                                 |        |         |
| P-58-R21     |            | 14+00N 3+30E         | Osh Tuff              | Sheared, pervasive + veinlet                                                   | medar blebby py + dissem        | 15     | 110     |
| a.0/2.0m     |            |                      | (andesitic)           | silicification, brown purple oxide                                             | py 5%                           |        | 448     |
|              |            |                      |                       | staining, no carb, minor chlerite                                              |                                 |        | WE AN   |
| P-5B-R22     |            | 14+30N 1+75E         | 95h toff              | limonitic, strongly oxidized                                                   | <1% finely dissem py            | <5     | 22學     |
| Chip/a.0 m   |            |                      | Carlesitic)           | writhered surface, no norb                                                     |                                 |        |         |
| 1            |            |                      |                       | minor blebby chlorite, locally                                                 |                                 |        | ) J. S. |
|              | 1          |                      |                       | chalky                                                                         |                                 |        |         |
| P-SB-R23     | Sept 12/90 | DEFORMATION ZONE     | Qtz veinlet swarm in  | inequilir availlity seams, our - corbinantels                                  | 1-2% po <<1% py                 | 10     | 57      |
| Cho/0,5m     | /          | (Too Malachite Zone) | andesity Crystal Toff | moderate spotly Impale staining                                                | disseminated                    |        |         |
|              |            | ELEV: 1415m          |                       |                                                                                |                                 |        |         |
| PSB R24      |            | DEFORMATION Z.       | ash Tuff              | pervasively sticified, strongly                                                | 290 py flames soneared on       | < 5    | 45%     |
| Cup/a.om     |            | ELEV: 1402 m         | andesitic             |                                                                                | microfracture surface, x1%      |        |         |
|              |            |                      |                       | oxidized.                                                                      | blebby py                       |        |         |
| P-SB-R 25    |            | DEFORMATION Z.       | Otz- carb vein swall  | Chloritized, silicified ashtutt (As)                                           | <<1% covellite? \$1% dis po     | 25     | 78      |
| Choplian_    |            | ELEV: 1394 m         | in ash tuff           | minor chlorite stringers, limonitic                                            | in Ac < 1% py                   |        |         |
|              |            |                      | (andesitio)           | . ,                                                                            |                                 |        |         |
| P5B-R26      |            | DEFORMATION Z        | Orgillete             | sheared, limonitic, minor at z-corb                                            | Trace visible sulfides          | 45     | 75      |
| (hp) 1.0m    |            | ELEV. 1319 m         |                       | reinlet stockwork                                                              |                                 | ļ      |         |
|              |            | i s                  |                       |                                                                                |                                 |        | 200     |
| P-5B-R28     | SEPT14/90  | West Ridge           | OSh TOFF              | limonitic, blacky, massive                                                     | 2-3% dissem and muces fractive  | 25     | 86 s    |
| , Chio 12:00 |            | ELEV: 1552m          | (andesitic)           | minor clay minerallevelop.                                                     | py                              |        | 11.56   |

7

}

| <u>(i</u> | D |
|-----------|---|
| ۰         |   |

| Pup 199   | o Pra      | ECT SHARE                               | DN BA(LLIE                            |                                     |                             | An                                               | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|------------|-----------------------------------------|---------------------------------------|-------------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |            | Location:                               | Lithology:                            | Remarks / Alteration / Structure:   | Mineralization:             | Analy                                            | sis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Sept 14/90 | West ridge                              | argillite                             | silicified with abundant atz        | 21% fracture controlled cpy | 25                                               | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ch.p/0.5m |            | ELEV: 1560 m                            | <u> </u>                              | veinlets, oxidized, Sheared         | 41% fracture controlled py  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0         |            |                                         |                                       | <u> </u>                            | . ,                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-5B-830  | -          | Westridge                               | ash tulf                              | Sheared, limonitic, atz-calcite     |                             | 45                                               | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| chp/0,40  |            | FLEV! 1555 m                            | (andesitic)                           | veinlets, Chlorite Stringers        | 11 90                       | ļ                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 60 00   |            | 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 2                                     |                                     |                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ?-5B-R31  |            | ELEV: 1618 m                            | Cytz-Vein Swam                        | chlaritized wallrock alteration     | Tr sulphides.               | 45                                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ch/o.xu   |            | TFEA. 1918 W                            | in ash tuff                           | weak carbonate along micro fruct    |                             |                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |            |                                         |                                       | minor hematite                      |                             |                                                  | - 10 min (1) min (2) |
| P-58-R27  | 20+ 1/0/20 | -vnt stone                              | alterer andreite                      | Faulted off wedge in Limeslang      | 4444                        | 25                                               | 81=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Che/2.0m  |            | FAULT Flev:1028.                        | n volcovic                            | sericitics silverfree chlaritic     | chascingy 5-7%              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _         |            | ·                                       |                                       | stringers strong Imonite            | 10235111-117                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·         | 7          |                                         | ,                                     | clay min der ino carb               |                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-5B-R32  |            | Lime stone                              | Limestone                             | shewed, minar oxidized 15+th        | Tr sulphider                | 10                                               | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chip/I om |            | FAULT Z. F1:1040m                       |                                       | mina Imponite                       | ,                           |                                                  | era di sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |            |                                         |                                       |                                     |                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-5B-R33  |            | Limestons                               | siltstone                             | limonitic blocky, contact with      | 1100 Py (3)                 | 45                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chip/10m  |            | fAULTZ. F1:1630                         |                                       | Limest.                             | /                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            | <del>,</del>                            |                                       |                                     |                             | ļ.,                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-5B-134  |            | Limestone                               | altered limiest.                      | limonitic, clayminider, calcile     | 1% finely dissem + blebby   | < 5                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chip/Dom  | <u> </u>   | Fault 7. F1: 1095                       |                                       | veinless chlorite blebs + stringers | py visible                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            |                                         |                                       | Extremely rotten systair            |                             | ļ                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            |                                         |                                       |                                     |                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            | <del></del>                             | ·                                     |                                     |                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            |                                         | · · · · · · · · · · · · · · · · · · · |                                     |                             | <b></b>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            |                                         |                                       |                                     |                             | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            |                                         |                                       |                                     |                             | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |            |                                         |                                       |                                     |                             |                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

1

)

| Pup       | Pra                                     | JECT 1990                                    | DEREK PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                   |
|-----------|-----------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|
| pur       | FRW                                     | <u>801</u> 1710                              | hever lude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Au Cu             |
| Sample:   | Date:                                   | Location:                                    | Lithology:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks / Alteration / Structure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mineralization:           | Analysis:         |
| P-90-R-1  | SEPT 12                                 | <del></del>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 cm WIDE 20 METRES LONS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 270 3500          |
|           |                                         | OF SADDLE ZN.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |
| P-90-R-2  | SEPT 12                                 | RIDGE WEST OF                                | QUARTZ VOIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 cm WIDE 10 METRES LONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 45 1200           |
|           | <u></u>                                 | SADOLE ZONE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>                                     </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | . +2              |
| P-90-R-3  | SEPT 12                                 | RIDGE WEST OF                                | QUARTZ VEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 cm wide 10m LONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LESS THAN 1% CHALCOPYRING | 5 240             |
|           | <u> </u>                                | SADOLE ZONE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STRIKES 15:4/46-NG. VUGGY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MINOR MALACHITE           |                   |
|           |                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHYSTALLING. CHLORITIC FRAGMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                   |
| P-90-R-4  | SEPT 12                                 | RIDGE WEST OF                                | ANDESITE TUFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIMONITIC. FROM FAULT ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1% FINE DISSEMINATON PY.  | 15 57             |
|           |                                         | SADOLE ZONE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRAG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |
| P-90-R-5  |                                         |                                              | BRECEIATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIMONITIC FADT FAULT ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | C5 190            |
|           |                                         | SADOLE ZONE                                  | ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GRAB,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | W. W. W.          |
| P-90-R-6  | SEPT 12                                 | CHAMPY THEST OF                              | QUARTZ - CALCITÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKAD FROM STOCKWORK WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 45. 110           |
|           | · · ·                                   | SAOULE ZONE,                                 | VEINS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NEINS UP TO 15 CON WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                   |
|           |                                         |                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRENDING 086/37 N,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                   |
| 7-90-R-7  | SEPT 16                                 | RIOSE WEST OF                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 10 71             |
|           |                                         | SADDLE ZONE                                  | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| 0-90-R-8  | S00+ 16                                 | RIOSE WEST OF                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | MES 71            |
|           |                                         | SAPOLE ZONE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Richard Say                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 400               |
| P-90-R-9  | Sept 16                                 | RIDGE WEST OF                                | and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A Committee of the Comm |                           | K5 547            |
|           |                                         | SADOLE ZOLE                                  | 10 Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| P-90-R-10 | SOFT 16                                 | RIGE WEST OF                                 | No we take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 5 5/6             |
|           |                                         | SADOLE ZONE                                  | The Control of the Co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| 9-90-R-11 | SEPT 16                                 | RIDGE WEST OF                                | 14. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>《教育法》</b> 2019年,1911年,1911年,1911年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 5                 |
|           | -                                       | SADDLE ZONE                                  | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | The second second |
| P-90-R-12 | 3EPT 19                                 |                                              | QUARTE VEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 cm WIRE TRENDS 016/47W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1% PYRITE 1% CHALCOPYRITE | e150 64           |
|           |                                         | SADOLE ZONE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WITHIN ARGILLIES SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 1 3 3             |
| P-90-R-13 | SEPT 19                                 | The state of the state of the                | ASH TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VORY FRACTURED (FAULT 20NE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 10 540            |
|           |                                         | SADOLE ZONE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 m CHIP THROUGH ON THE WALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                         |                   |
|           |                                         |                                              | The state of the s | (034/53 NW). QTZ-508, ALTERED,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | <b>罗迪尔</b>        |
|           | - : · · · · · · · · · · · · · · · · · · | 20 70 10 10 10 10 10 10 10 10 10 10 10 10 10 | Property of the Spings of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIMONITIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 100,000           |

(18) Pup DAUG PICKSTOR PROJECT 1990 An Date: Location: Lithology: Sample: Remarks / Alteration / Structure: Mineralization: Analusis: 37751 AUG 13 LIMESTONE AREA Pyziric. LIMESTONE FINE SRAINED WITH 50% PYRINE 140 78 of 1465 m SRAB MASSIUM PYRITE. AUG 13 LST. AREA. ANGESITE /LST. 37752 CONTACT ZONE (?) GRAG 7% PYRITE 2% CHALCOPYRITE 920 37753 13 OP 2 CLAIMS SILICEOUS. SAAB 15% PYRITE. ANDES LITE 430 37754 13 OP 2 CLAIMS MINOR ANBESLTE ADJACENT .. TO 37753. FAULT ZONG MALACHITG. 770 DATATA GRAB SHEARED)! 3777/ AUG 23 SEND W. RIBSE POSSIBLY BASALT SRAP 3 % PYRITE ANDESITE LIMONITIC 310 STRINSGRS AUG 23 5. ENO W. RIDGE As 37271 GRAB 3% PYRITE 37772 ANDESITE 32 Aug 23 STOOLE ZONE 37773 140 ANDESIZE A5 37771 (STRINSCRS W. QTZ. STRINGERS. 5% PYKIRE 37774 Aug. 231 SADOLE 68 ANDESITE LIMONITIC 15 AUG 23 SADDLE ZONE 37775 MINERALIZED < 1% GALLENA 75.5 ANDESITE WALL 5% PYRITE ROCK. VUGGY FRE QUARTZ YETM. QUARTZ VEIN SADOLE ZONE 37776 MINERALIZED WITHIN ANDESITIC CRYSTAL TUFF. 30% PYRAHOTITE 1% CHALCO-45 1300 QUARTE VEIN. GRAB PYRITE. Aug 24 MALACHITE ZONE 37777 20 ABUNDANT MALACHITE STAIN. ANDESITE. 5300 37778 AUG 24 MALACHITE ZONE ANDESNE AS 37777 WITH LESS MALACHITES 2% PYKITE. 41% CHALCOPYRITO 1900. GRAG. 37779 . Aug 25 / IME STONE ANDESI QUARTZ YOUR 540 PYRITIC ANDESITE WALL ROCK A 8% PYRITE BANDER WITH WALL KOCK LIMONITIC CONTACT ZONG. GRAB SAME VEW AS 37779 Y CHAB WITH 15 % PYRITE (BANDED) 150 37780. PICKSTON ZONG QUARTZ VOIN No WALLROCK LIMONITIC LIMESTONE ANDESTE 30% PYRITE 20% GALENA PICKSTON ZONG NCLUDES OYAKTZ - SULPHIDE VENU 5 300 37781 150 CONTACT LIMONITIC FURMING A FERRICKUTE GRAG. 37782 VERY FRACTURED AND LIMONITIC PICILSTON ZUNG Aug 25 1600 ANDESITE 10% DISSOM. PIRITE. MALACMIN GRAPS 37783 AUS 25 PICISTON ZONE Silicous SMALL 30% PYRITE (MASSING) 4100 SILICUTOUS MINGRALIZED LIME STONG POD CRAPS. 2 % SALENA. TEX . . . . 1 1744

(19) Pup DAUG PICKSTON PROJECT 1990 Au Sample: Date: Location: Lithology: Remarks / Alteration / Structure: Mineralization: Analusis: AUG 25 PICIASTON ZONG ANDESITE 37784 SILICEOUS AND VERY FRACTURED. 10 % DISSOM. Py. I'V SALONA 820 40 MINERALIZED LIMENITIC SRAB TRACE SPHALERITE (?) AUS 25 PICKSTUN ZONE ANDESITE 37785 15% DISSEM PY 190 VERY FRACTURED AND LIMONITIE GRAB AUG 25 PICIESTON 2000 ANDESITE PYRITIC & LIMONITIC. VERY 3% DISSOM. PYRITE. 120 FRACTURED SRAB. AUG 25 PICKSTON ZONG QUARTZ VOIN 37787 MINERALIZED LIMESTOND WALL 30% PYRRHOTITE 5% PYRITE 2300 BOCK. VEIN TRENDS 003 /15 W 5% CHALCOPYRITE. L 1% LIMONITIC. 10-15 Cm. WIDE. BORNITE /CONSLLITE MALACHI GRAB. 37788 AUS 25 PICKSTON ZONE QUARTZ YEIN-SAME AS 37787 10 m ALONG STRIKE SAME AS 37787 W 60% A 9400 15 37784 AUG 26 PICKSTON ZONE ANDESITE. 10% DISSEM. PY. 1% SALENA 1.800 SAME 45 37784 GRAPS 510 37790 Aug 26 LIMESTONE AREA GRAB ANDESITE Limonitic 5 % DISSOM. PYRITE. 15 580 37791 Aus 26 OP 2 CLAIM ANDESITE PyRITIC 53 LIMONITIC SRAB. 8% DISSEM. PYRITE 37792 26 OP 2 CLAIM ANDESIRE PYRITIC 8% DISSOM PYRITE. GRM LIMONITIC 15 310 Aug 26 08 2 cusin 37793 ANDESITE PYRITIC LIMONITIC GRAB 8% DISSOM. PYRITO-170 15 37794 A46 26 OP 2 CLAIM LIMUNITIE 1100 ANDEZIRE PYRITIC GRAB 30% DISSEM. PYRITE 37800 AUG 26 PICKSTON ZONG ANDESITE + GRAB FROM CONTACT. 1 1200 3 LIMONITIC 1 LIMESTONE. WITH MALACHITE STAW. 77 

# APPENDIX B ASSAY REPORTS



## TSL LABORATORIES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street.

Vancouver, B.C. V6C 2X6

SAMPLE(S) OF Silt\Talus

REPORT No. S1290

INVOICE #: 15909

P.O.: R2694

Marco V. Project PUP

REMARKS: Orequest Consultants

Au ppb

PT 2 60 PT 3 40

COPIES TO:

J. Foster, P. Lougheed

INVOICE TO:

Prime-Vancouver

Oct 15/90

SIGNED

Dane

**V** 

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: 306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X6 T.S.L. REPORT No.: S - 1290 - 1 T.S.L. File No.: M - 8292

T.S.L. Invoice No.: 16072

S7K 6A4

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS

ALL RESULTS PPM

|            |                 | PT 2           | PT 3         |
|------------|-----------------|----------------|--------------|
| ELEMENT    |                 |                |              |
|            |                 |                |              |
| Aluminum   | [A]]            | 18000          | 15000        |
| Iron       | [Fe]            | 38000          | 29000        |
| Calcium    | (Ca)            | 2000           | 1600         |
| Magnesium  | [Mg]            | 3900           | 3300         |
| Sodium     | [Na]            | <b>9</b> 70    | 7 <b>9</b> 0 |
| Potassium  | EK 1            | 1300           | 1000         |
| Titanium   | [Ti]            | 1000           | <b>78</b> 0  |
| Manganese  | (Mn)            | 480            | 360          |
| Phosphorus | <pre>{P }</pre> | 1000           | 910          |
| Barium     | (Ba)            | <del>9</del> 7 | 45           |
| Chromium   | (Cr)            | 23             | 19           |
| Zirconium  | [[7]            | 4              | 2            |
| Copper     | (Cu)            | 2400           | 290          |
| Nickel     | [Ni]            | 23             | 12           |
| Lead       | [Pb]            | 43             | 26           |
| Zinc       | [Zn]            | 83             | 64           |
| Vanadium   | [ [ V]          | 44             | 42           |
| Strontium  | [Sr]            | 22             | 16           |
| Cobalt     | [Co]            | 8              | <u>Ļ</u>     |
| Molybdenum | [Mo]            | 2              | < 2          |
| Silver     | [Ag]            | < 1            | < 1          |
| Cadmium    | [Cd]            | < 1            | < 1          |
| Beryllium  | [Be]            | 1              | < i          |
| Baron      | {B ]            | < 10           | 20           |
| Antimony   | [Sb]            | < 5            | < 5          |
| Yttrium    | [ Y3            | 20             | 13           |
| Scandium   | {Sc}            | 2              | 2            |
| Tungsten   | [W]             | < 10           | < 10         |
| Niobium    | [Nb]            | 20             | 10           |
| Thorium    | [Th]            | 30             | 40           |
| Arsenic    | (As)            | 20             | 10           |
| Bismuth    | [Bi]            | 5              | < 5          |
| Tin        | [Sn]            | ₹ 10           | < 10         |
| Lithium    | [Li]            | < 5            | < 5          |
| Holmium    | [Ho]            | < 10           | < 10         |

Bernie Dun

DATE: OCT-29-1990



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St

Vancouver, B.C.

V6C 2X6

REPORT No. S9822

SAMPLE(S) OF Rock

INVOICE #: 15205

P.O.: R-2441

Marco V. Project PUP

**REMARKS:** OreQuest Consultants

|       | Au<br>ppb |
|-------|-----------|
| P-T-1 | 230       |
| 39101 | 30        |
| 39102 | 180       |
| 39103 | 35        |
| 39104 | 15        |
| 39105 | 10        |
| 39106 | 5         |
| 39107 | 40        |
| 39108 | 230       |
| 39109 | 30        |
| 39110 | 20        |
| 39111 | 5         |
| 39112 | 30        |
| 39113 | <5        |
| 39114 | <5        |
| 39115 | 15        |
| 39116 | 30        |
| 37751 | 140       |
| 37752 | 5         |
| 37753 | 10        |

P. Lougheed, J. Foster COPIES TO:

INVOICE TO: Prime - Vancouver

Sep 06/90

SIGNED .



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St

Vancouver, B.C.

V6C 2X6

REPORT No. S9822

SAMPLE(S) OF Rock

INVOICE #: 15205

P.O.: R-2441

Marco V. Project PUP

**REMARKS:** OreQuest Consultants

Αu ppb 37754 15 JC-1 5 JC-2 80 JC-3 40 JC-4 <5

COPIES TO: P. Lougheed, J. Foster

INVOICE TO: Prime - Vancouver

Sep 06/90

SIGNED .

Page 2 of 2



2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4

> TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2441

T.S.L. REPORT No.: S - 9822 - 1 T.S.L. File No.: E:M7888

T.S.L. Invoice No.: 15367

ALL RESULTS PPM

|            |       | P-T-1 | 39101 | 39102 | 39103 | 39104 | 39105      | 39106 | 39107 | 39108       | 39109 |
|------------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------------|-------|
| ELEMENT    |       |       |       |       |       |       |            |       |       |             |       |
| Aluminum   | [A13  | 6500  | 2300  | 4700  | 15000 | 2200  | 970        | 2000  | 5000  | 6900        | 13000 |
| Iron       | [Fe]  | 26000 | 19000 | 25000 | 30000 | 26000 | 5700       | 18000 | 17000 | 23000       | 26000 |
| Calcium    | [Ca]  | 98000 | 5100  | 12000 | 10000 | 4600  | 100000     | 3900  | 5100  | 5200        | 14000 |
| Magnesium  | [Mg]  | 920   | 490   | 2400  | 6100  | 700   | 550        | 950   | 2500  | 3300        | 5500  |
| Sodium     | [Na]  | 50    | 230   | 200   | 190   | 20    | < 10       | 20    | 260   | 210         | 150   |
| Potassium  | £K ]  | 850   | 1500  | 1400  | 730   | 530   | 270        | 470   | 940   | 1100        | 860   |
| Titanium   | [Ti]  | 110   | 370   | 860   | 1000  | 47    | 6          | 25    | 950   | 500         | 580   |
| Manganese  | [Mn]  | 770   | 240   | 470   | 640   | 180   | 280        | 44    | 110   | 150         | 320   |
| Phosphorus | [P]   | 440   | 480   | 650   | 1400  | 310   | 150        | 140   | 710   | <b>52</b> 0 | 770   |
| Barium     | [Ba]  | 150   | 110   | 42    | 18    | 87    | 20         | 110   | 30    | 38          | 39    |
| Chromium   | [[7]] | 17    | 22    | 32    | 15    | 67    | 14         | 43    | 28    | 34          | 40    |
| Zirconium  | [Zr]  | 12    | 3     | 6     | 6     | 6     | 2          | 2     | 8     | 8           | 5     |
| Copper     | (Cu)  | 43    | 18    | 860   | 53    | 52    | 7 <b>9</b> | 15    | 490   | 3800        | 310   |
| Nickel     | [Ni]  | 16    | 1     | 1     | 2     | 24    | 5          | 19    | 7     | 11          | 18    |
| Lead       | [Pb]  | 50    | 22    | 41    | 3     | 5     | 34         | 7     | 6     | 2           | 2     |
| Zinc       | [Zn]  | 130   | 13    | 50    | 25    | 22    | 56         | 18    | 10    | 28          | 22    |
| Vanadium   | [V ]  | 42    | 8     | 17    | 41    | 31    | 18         | 5     | 28    | 26          | 26    |
| Strontium  | [Sr]  | 31    | 33    | 54    | 28    | 11    | 42         | 3     | 35    | 33          | 36    |
| Cobalt     | [co]  | 9     | 3     | 7     | 8     | 10    | 7          | 4     | 5     | 9           | 7     |
| Molybdenum |       | < 2   | 2     | < 2   | < 2   | < 2   | < 2        | < 2   | 2     | 66          | 4     |
| Silver     | [Ag]  | < 1   | < 1   | < 1   | < 1   | < 1   | < 1        | < 1   | < 1   | < 1         | < 1   |
| Cadmium    | [Cq]  | 2     | < 1   | < 1   | < 1   | < 1   | 11         | < 1   | < 1   | < 1         | < 1   |
| Beryllium  | {Be}  | < 1   | < 1   | < 1   | < i   | < 1   | < 1        | < 1   | < 1   | < 1         | < 1   |
| Boron      | [B]   | ₹ 10  | < 10  | < 10  | < 10  | < 10  | < 10       | < 10  | < 10  | < 10        | < 10  |
| Antimony   | [Sb]  | < 5   | < 5   | < 5   | 5     | < 5   | < 5        | < 5   | < 5   | ₹ 5         | 5     |
| Yttrium    | £ Y 3 | 26    | 4     | 4     | 4     | 6     | 20         | 1     | 4     | 4           | 3     |
| Scandium   | {Sc1  | 5     | < 1   | < 1   | < 1   | 5     | 2          | < 1   | < 1   | < 1         | 1     |
| Tungsten   | [ W ] | 10    | < 10  | < 10  | < 10  | < 10  | < 10       | < 10  | < 10  | < 10        | < 10  |
| Niobium    | [Nb]  | ₹ 10  | < 10  | < 10  | < 10  | < 10  | < 10       | < 10  | < 10  | < 10        | < 10  |
| Thorium    | [Th]  | < 10  | < 10  | 40    | 30    | < 10  | < 10       | < 10  | < 10  | 20          | 20    |
| Arsenic    | [As]  | 35    | < 5   | 10    | < 5   | 10    | 10         | < 5   | < 5   | ₹ 5         | < 5   |
| Bismuth    | [Bi]  | < 5   | < 5   | < 5   | < 5   | < 5   | < 5        | < 5   | < 5   | < 5         | < 5   |
| Tin        | [Sn]  | ₹ 10  | < 10  | < 10  | < 10  | < 10  | < 10       | < 10  | < 10  | < 10        | < 10  |
| Lithium    | [Li]  | < 5   | < 5   | < 5   | 5     | < 5   | ⟨ 5        | < 5   | < 5   | < 5         | < 5   |
| Holmium    | [Ho]  | < 10  | < 10  | < 10  | < 10  | < 10  | 20         | ← 10  | < 10  | < 10        | < 10  |

DATE: SEP-10-1990

SIGNED: Dens Pilipink

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2441

ALL RESULTS PPM

T.S.L. File No.: E:M7888

T.S.L. Invoice No.: 15367

T.S.L. REPORT No.: S - 9822 - 2

57K 6A4

| ELEMENT            |              | 39110       | 39111      | 39112      | 39113        | 39114                                 | 39115      | 39116                                 | 37751             | 37752           | 37753      |
|--------------------|--------------|-------------|------------|------------|--------------|---------------------------------------|------------|---------------------------------------|-------------------|-----------------|------------|
| Aluminum           | (A13         | 17000       | 9900       | 13000      | 4000         | 6 <b>9</b> 00                         | 10000      | 4000                                  | 1100              | 6200            | 6800       |
| Iron               | [Fe]         | 27000       | 31000      | 43000      | 8900         | 18000                                 | 21000      | 25000                                 | 130000            | 64000           | 86000      |
| Calcium            | [Ca]         | 82000       | 16000      | 9200       | 1100         | 3500                                  | 3200       | 3000                                  | 2700              | 15000           | 5000       |
| Magnesium          | [Mg]         | 6400        | 4300       | 5200       | 2400         | 3500                                  | 5100       | 1800                                  | 240               | 3800            | 4500       |
| Sodium             | [Na]         | 50          | 140        | 100        | 50           | 190                                   | 160        | 120                                   | 20                | 160             | 60         |
| Potassium          | EK 1         | 440         | 640        | 1400       | 100          | 710                                   | 470        | 2200                                  | 780               | 860             | 7400       |
| Titanium           | [Ti]         | 110         | 890        | 840        | 56           | 490                                   | 500        | 1700                                  | 80                | <del>9</del> 70 | 980        |
| Manganese          | [Mn]         | 830         | 440        | 470        | 150          | 230                                   | 450        | 84                                    | 19                | 130             | 55         |
| Phosphorus         | [P ]         | 400         | 780        | 800        | 28           | 830                                   | 510        | 800                                   | 62                | 830             | 1400       |
| Barium             | [Ba]         | 30          | 63         | 69         | b            | 26                                    | 15         | 43                                    | 5                 | 13              | 18         |
| Chromium           | (Cr)         | 89          | 62         | 56         | 100          | 25                                    | 67         | 15                                    | 46                | 44              | 150        |
| Zirconium          | [Zr]         | 7           | 7          | 8          | 2            | 4                                     | 4          | 7                                     | 20                | 13              | 19         |
| Copper             | (Cul         | 37          | 64         | 130        | 36           | 80                                    | 510        | 110                                   | 78                | 920             | 430        |
| Nickel             | [Ni]         | 23          | 15         | 24         | 4            | 4                                     | 12         | 7                                     | 100               | 31              | 63         |
| Lead               | [Pb]         | < 1         | 2          | 7          | 3            | 3                                     | 3          | 4                                     | 30                | 5               | 24         |
| Zinc               | [Zn]         | 27          | 20         | 290        | 19           | 11                                    | 20         | 7                                     | 16                | 5               | 36         |
| Vanadium           | [V]          | 84          | 35         | 37         | 17           | 11                                    | 38         | 29                                    | < 1               | 74              | 65         |
| Strontium          | [Sr]         | 180         | 38         | 19         | 18           | 28                                    | 22         | 34                                    | 4                 | 25              | 21         |
| Cobalt             | [63]         | 11          | 12         | 17         | 1            | 3                                     | 9          | 7                                     | 77                | 8               | 37         |
| Molybdenum         |              | < 2         | < 2        | 50         | < 2          | 2                                     | < 2        | < 2                                   | 6                 | < 2             | < 2        |
| Silver             | [Ag]         | < 1         | < 1        | < 1        | < 1          | < 1                                   | < 1        | < 1                                   | 5                 | < 1             | 5          |
| Cadmium            | [Cq]         | < 1         | < 1        | 5          | < 1          | < 1                                   | < 1        | < 1                                   | 2                 | < 1             | < 1        |
| Beryllium          | [Be]         | < 1         | < 1        | < 1        | < 1          | < 1                                   | < 1        | < 1                                   | < 1               | < 1             | < 1        |
| Boron              | [B]          | < 10        | ₹ 10       | < 10       | < 10         | < 10                                  | < 10       | < 10                                  | < 10              | < 10            | < 10       |
| Antimony           | [Sb]         | 10          | < 5        | < 5        | < 5          | < 5                                   | < 5        | ₹ 5                                   | < 5               | < 5             | 5          |
| Yttrium            | [Y]          | 5           | 3          | 4          | < 1          | 4                                     | 3          | 3                                     |                   | 9               | 9          |
| Scandium           | [Sc]         | 9           | 2          | 1          | ( 1          | < 1                                   | < 1        | 1                                     | < 1               | 3               | 6          |
| Tungsten           | [₩]          | < 10        | < 10       | < 10       | < 10         | < 10                                  | < 10       | < 10                                  | < 10              | < 10            | < 10       |
| Niobium            | [Nb]         | < 10        | < 10<br>20 | < 10<br>30 | < 10<br>< 10 | < 10<br>50                            | < 10<br>20 | < 10<br>< 10                          | < 10<br><b>40</b> | < 10<br>30      | < 10<br>10 |
| Thorium            | [Th]<br>[As] | 10<br>- < 5 | 20<br>< 5  | 30<br>< 5  | < 5          | 30<br>< 5                             | ∠0<br>⟨ 5  | < 5                                   | 40<br>140         | - 30<br>- ₹ 5   | 75         |
| Arsenic<br>Bismuth | [Bi]         | < 5         | \ 5        | \ 5        | \ 5          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ 5        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 10                | \               | √3<br>← 5  |
| Bismuth<br>Tin     | (Sn)         | √ 3<br>← 10 | ⟨ 10       | < 10       | ⟨ 10         | < 10                                  | < 10       | ⟨ 10                                  | ₹ 10              | ₹ 10            | ₹ 10       |
| Lithium            | (Li)         | 10          | 5          | 15         | < 5          | < 5                                   | ₹ 5        | < 5                                   | < 5               | 5               | ₹ 5        |
| Holmium            | (Ho)         | < 10        | < 10       | < 10       | ₹ 10         | < 10                                  | ⟨ 10       | ₹ 10                                  | ₹ 10              | < 10            | ₹ 10       |
| ( C) I M I CIM     | CHUI         | / 10        | V 10       | N 4V       | 7 10         | \ 10                                  | V 10       | \ 10                                  | / 14              | \ 1V            | . 10       |

DATE : SEP-10-1990

SIGNED: Dennis Piliniak

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6

T.S.L. REPORT No.: S - 9822 - 3 T.S.L. File No.: E:M7888

T.S.L. Invoice No.: 15367

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2441

ALL RESULTS PPM

|                      |       | 37754 | JC-1  | JC-2        | 1C-3  | JC-4  |
|----------------------|-------|-------|-------|-------------|-------|-------|
| ELEMENT              |       | 3//34 | 10-1  | 3C-Z        | 16-7  | 16-4  |
|                      |       |       |       |             |       |       |
| Aluminum             | [A13  | 7900  | 9300  | 1700        | 3800  | 11000 |
| Iron                 | [Fe]  | 55000 | 21000 | 24000       | 28000 | 28000 |
| Calcium              | [Ca]  | 34000 | 7800  | 33000       | 5900  | 3600  |
| Magnesium            | [Mg]  | 4500  | 4000  | 450         | 1100  | 5100  |
| Sodium               | [Na]  | 70    | 360   | 130         | 220   | 270   |
| Potassium            | EK ]  | 3400  | 1700  | 1100        | 2200  | 1300  |
| Titanium             | [Ti]  | 910   | 1700  | 590         | 1400  | 1400  |
| Manganese            | [Mn]  | 340   | 310   | 930         | 85    | 77    |
| Phosphorus           | [P ]  | 1400  | 1000  | <b>76</b> 0 | 1400  | 1000  |
| Barium               | (Ba)  | 41    | 39    | 54          | 45    | 68    |
| Chromium             | [7]   | 70    | 57    | 19          | 42    | 28    |
| Zirconium            | [Zr]  | 13    | 5     | 5           | 10    | 5     |
| Copper               | [Cu]  | 770   | 120   | 470         | 160   | 33    |
| Nickel               | [Ni]  | 70    | 12    | 3           | 3     | 4     |
| Lead                 | [Pb]  | 44    | 6     | 21          | 10    | 9     |
| Zinc                 | [Zn]  | 100   | 19    | 33          | 9     | 11    |
| Vanadiu <del>a</del> | [V]   | 60    | 38    | 7           | 40    | 53    |
| Strontium            | [Sr]  | 150   | 72    | 150         | 51    | 24    |
| Cobalt               | [Co]  | 40    | 16    | 7           | 7     | 19    |
| Molybdenum           | (Mo)  | < 2   | < 2   | < 2         | < 2   | < 2   |
| Silver               | [Ag]  | < 1   | < 1   | < 1         | < 1   | < 1   |
| Cadmium              | [Cd]  | 1     | < 1   | < 1         | < 1   | < 1   |
| Beryllium            | {Be}  | < 1   | < 1   | < 1         | < 1   | < 1   |
| Baran                | (B ]  | < 10  | < 10  | < 10        | < 10  | < 10  |
| Antimony             | [Sb]  | 10    | < 5   | ₹ 5         | < 5   | 5     |
| Yttrium              | { Y } | 10    | 4     | 6           | 5     | 5     |
| Scandium             | {Sc}  | 4     | 2     | < 1         | 1     | 4     |
| Tungsten             | [W]   | 30    | < 10  | < 10        | < 10  | < 10  |
| Niobium              | [Nb]  | < 10  | < 10  | < 10        | < 10  | < 10  |
| Thorium              | [Th]  | 10    | < 10  | < 10        | < 10  | 40    |
| Arsenic              | [As]  | 45    | < 5   | 10          | < 5   | < 5   |
| Bismuth              | [Bi]  | < 5   | ₹ 5   | < 5         | < 5   | < 5   |
| Tin                  | [Sn]  | < 10  | < 10  | < 10        | < 10  | < 10  |
| Lithium              | [Li]  | 5     | < 5   | < 5         | < 5   | < 5   |
| Holmium              | [Ho]  | < 10  | < 10  | < 10        | < 10  | < 10  |

SIGNED: Denn Pilsiak

DATE : SEP-10-1990



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10

808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1002

SAMPLE(S) OF ROCK

INVOICE #: 15516

P.O.: R2538

Marco V. Project PUP

Wrangell Samples-Orequest Consultants **REMARKS:** 

|          | Au<br>ppb |
|----------|-----------|
| 39136    | 65        |
| 39137    | 230       |
| 39138    | 40        |
| 39139    | 260       |
| 39140    | 35        |
| 39141    | 5         |
| 39142    | 20        |
| 39143    | 5         |
| 39144    | 5         |
| 39145    | 35        |
| 39146    | 20        |
| 39147    | <5        |
| SB 1     | <5        |
| SB 2     | <5        |
| P-SB-R-3 | <5        |
| P-SB-R-4 | <5        |
| P-SB-R-5 | <5        |
| P-SB-R-6 | <5        |
| P-SB-R-7 | <5        |
| P-SB-R-8 | <5        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 17/90

Dam Pilgin



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place

10th Floor-Box 10

808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1002

SAMPLE(S) OF ROCK

INVOICE #: 15516

P.O.: R2538

Marco V. Project PUP

**7...** 

REMARKS: Wrangell Samples-Orequest Consultants

|           | Au  |
|-----------|-----|
|           | ppb |
| P-SB-R-9  | <5  |
|           | , • |
| P-SB-R-10 | <5  |
| P-SB-R-11 | <5  |
| P-SB-R-12 | <5  |
| P-SB-R-13 | 15  |
|           |     |
| P-SB-R-14 | 10  |
| P-SB-R-15 | 10  |
| P-SB-R-16 | <5  |
| P-SB-R-17 | 20  |
| 39148     | 5   |
| 39149     | <5  |
|           |     |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 17/90

SIGNED

Page 2 of 2

**A** 

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1002 - 1 T.S.L. File No.: M 8083

T.S.L. Invaice No.: 15721

S7K 6A4

| uver B.C. ' |       |             |            |            |              |       |             |         |   |
|-------------|-------|-------------|------------|------------|--------------|-------|-------------|---------|---|
| J. FOSTE    | R PR  | OJECT: PUP  | OREQUEST C | DNSULTANTS | R-2538       |       | ALL RESULTS | PPM     |   |
|             |       | 39136       | 39137      | 39138      | 39139        | 39140 | 39141       | . 39142 | 3 |
| ELEMENT     |       |             |            |            |              |       |             |         |   |
| Aluminum    | [A1]  | 4900        | 2000       | 4500       | 7100         | 3900  | 1100        | 9300    |   |
| Iron        | [Fe]  | 34000       | 41000      | 12000      | 26000        | 40000 | 190000      | 44000   | 7 |
| Calcium     | [Ca]  | 31000       | 36000      | 29000      | 23000        | 1300  | 900         | 11000   | 1 |
| Magnesium   |       | 2500        | 400        | 3500       | 5500         | 2100  | <b>38</b> 0 | 6800    |   |
| Sodium      | [Na]  | 190         | 150        | 110        | 150          | 220   | 30          | 160     |   |
| Potassium   | [K ]  | 2500        | 1400       | 560        | 3700         | 2300  | 120         | 2600    |   |
| Titanium    | [Ti]  | 430         | 520        | 170        | 1300         | 960   | 57          | 2100    |   |
| Manganese   | [Mn]  | 520         | 1100       | 840        | 540          | 81    | 480         | 510     |   |
| Phosphorus  |       | <b>92</b> 0 | 1200       | 310        | 7 <b>6</b> 0 | 1100  | 180         | 1000    |   |
| Barium      | [Ba]  | 37          | 31         | 53         | 19           | 120   | 14          | 34      |   |
| Chromium    | (Cr)  | 11          | 13         | 48         | 70           | 14    | <b>6</b> 0  | 31      |   |
| Zirconium   | [[r]  | 5           | 4          | ( 1        | 8            | 6     | 35          | 8       |   |
| Copper      | [Cu]  | 840         | 2700       | 290        | 4300         | 120   | 600         | 130     |   |
| Nickel      | [Ni]  | 4           | 2          | < 1        | 30           | 2     | 7           | 12      |   |
| Lead        | [Pb]  | 10          | 59         | 3          | 3            | 10    | 39          | 7       |   |
| Zinc        | [Zn]  | 64          | 93         | 42         | 39           | 11    | 320         | 65      |   |
| Vanadium    | (V ]  | 14          | 9          | 13         | 45           | 28    | i           | 64      |   |
| Strontium   | [Sr]  | 100         | 98         | 160        | 150          | 32    | 10          | 32      |   |
| Cobalt      | [Co]  | 12          | 8          | 2          | 17           | < 1   | 49          | 13      |   |
| Malybdenum  |       | < 2         | < 2        | < 2        | < 2          | 6     | < 2         | < 2     |   |
| Silver      | [Aq]  | 1           | 4          | < 1        | 4            | < 1   | 2           | < 1     |   |
| Cadmium     | [Cd]  | < 1         | 1          | < 1        | 2            | < 1   | < 1         | < 1     |   |
| Beryllium   |       | < 1         | < 1        | < 1        | < 1          | < 1   | < 1         | < 1     |   |
| Baran       | EB 1  | < 10        | < 10       | 10         | < 10         | < 10  | < 10        | < 10    | + |
| Antimony    | (Sb)  | ₹ 5         | < 5        | < 5        | < 5          | < 5   | 5           | < 5     |   |
| Yttrium     | [ Y ] | 5           | 7          | 3          | 4            | 2     | 5           | 4       |   |
| Scandium    | (Sc)  | < 1         | < 1        | ( 1        | 2            | 2     | < 1         | 2       |   |
| Tungsten    | [W ]  | < 10        | < 10       | < 10       | < 10         | < 10  | < 10        | < 10    | 4 |
| Niobium     | [Nb]  | < 10        | < 10       | 1. 10      | < 10         | < 10  | < 10        | < 10    |   |
| Thorium     | [Th]  | ₹ 10        | < 10       | 10         | 130          | < 10  | 270         | 160     |   |
| Arsenic     | [As]  | 15          | 10         | ₹ 5        | < 5          | 10    | 55          | 10      |   |
| Bismuth     | (Bil  | 25          | 25         | 30         | 30           | ⟨ 5   | ⟨ 5         | 20      |   |
| Tin         | [Sn]  | < 10        | ₹ 10       | . 10       | < 10         | < 10  | < 10        | < 10    |   |
| Lithium     | [Li]  | < 5         | ₹ 5        | < 5        | 4 5          | ₹ 5   | ₹ 5         | ₹ 5     |   |
| CLUITOR     | [Ho]  | < 10        | ₹ 10       | . 10       | < 10         | ₹ 10  | < 10        | ₹ 10    |   |

DATE : SEP-30-1990

516NED: Bunie Pun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2X6

AT

T.S.L. REPORT No.: S - 1002 - 2

T.S.L. File No.: SE25MA

57K 6A4

T.S.L. Invoice No.: 15721

| ancouver B.C.<br>TTN: J. FOSTE |        |              | 'UP OR     | EQUEST | CONSULTANTS | R-2538        |                | ALL RESULT  | S PPM      |          |
|--------------------------------|--------|--------------|------------|--------|-------------|---------------|----------------|-------------|------------|----------|
|                                |        | 3914         | 4          | 39145  | 39146       | 39147         | SB 1           | SB 2        | .P-SB-R-3  | P-SB-R-4 |
| ELEMENT                        |        |              |            |        |             |               |                |             |            |          |
| Aluminum                       | [A1]   | 890          | 90         | 9700   | 2400        | 14000         | 12000          | 20000       | 9700       | 8600     |
| Iron                           | [Fe]   | 7000         | Ю          | 92000  | 56000       | <b>9</b> 0000 | 2 <b>90</b> 00 | 49000       | 34000      | 25000    |
| Calcium                        | [Ca]   | 3 <b>9</b> 0 | 0          | 13000  | 50000       | 3200          | 4000           | 5900        | 13000      | 11000    |
| Magnesium                      | [Mo]   | 580          | 0          | 5700   | <b>69</b> 0 | <b>9</b> 100  | <b>48</b> 00   | 8300        | 4600       | 4000     |
| Sodium                         | [Na]   | 13           | <i>(</i> 0 | 120    | 40          | 310           | 250            | 220         | 220        | 360      |
| Potassium                      | [K ]   | 88           | 0          | 2400   | 2600        | 3100          | 1100           | 320         | 1200       | 1400     |
| Titanium                       | [Ti]   | 530          | Ю          | 270    | 41          | 2200          | 340            | 1800        | 61         | 190      |
| Manganese                      | [Mn]   | 7            | 4          | 80     | 200         | 160           | 780            | <b>68</b> 0 | 870        | 740      |
| Phosphorus                     | (P ]   | 220          | 0          | 4600   | 680         | 7 <b>6</b> 0  | <b>9</b> 70    | 1000        | 770        | 690      |
| Barium                         | [Ba]   | 15           | 0          | 11     | 56          | 25            | 36             | 17          | 98         | 130      |
| Chromium                       | [Cr]   | 7            | 8          | 41     | 10          | 23            | 42             | 56          | 32         | 42       |
| Zirconium                      | [Zr]   | 1            | 0          | 26     | 8           | 18            | 4              | 8           | 6          | 6        |
| Copper                         | [Cu]   | 5            | 3          | 46     | 71          | 130           | 20             | 110         | 7          | 8        |
| Nickel                         | [Ni]   | 3            | 2          | 66     | 48          | 37            | 2              | 38          | 5          | 2        |
| Lead                           | [Pb]   | i            | 0          | 20     | 21          | 4             | ņ              | 6           | 4          | 9        |
| Zinc                           | [ Zn ] | 1            | 7          | 31     | 190         | 16            | 58             | 83          | <b>6</b> 5 | 61       |
| Vanadium                       | [V ]   | 3            | P          | 32     | 9           | 120           | 53             | 57          | 40         | 30       |
| Strontium                      | [Sr]   | 2            | 0          | 60     | 130         | 17            | 3i             | 27          | 23         | 33       |
| Cobalt                         | {Co3}  |              | 6          | 19     | 26          | 16            | 6              | 18          | 8          | 6        |
| Molybdenum                     | [Mo]   | <            | 2          | 22     | < 2         | < 2           | 2              | < 2         | < 2        | < 2      |
| Silver                         | [Ag]   | <            | 1          | 1      | < 1         | < 1           | < i            | < i         | < 1        | < 1      |
| Cadmium                        | (Cd)   | <            | 1          | < 1    | < 1         | < 1           | < 1            | < 1         | < 1        | < 1      |
| Beryllium                      | (Be]   | <            | 1          | < 1    | < 1         | . < 1         | < 1            | < 1         | < 1        | < 1      |
| Boron                          | [B]    | < i          | 0          | < 10   | < 10        | < 10          | < 10           | < 10        | < 10       | < 10     |
| Antimony                       | (Sb)   | <            | 5          | < 5    | ₹ 5         | 5             | < 5            | < 5         | < 5        | < 5      |
| Yttrium                        | [Y ]   |              | 4          | 19     | 8           | Ģ             | 7              | 6           | 9          | 8        |
| Scandium                       | (Sc)   |              | 2          | 2      | 2           | 11            | 1              | 3           | 4          | 2        |
| Tungsten                       | [₩]    |              | 0          | < 10   | < 10        | < 10          | 20             | < 10        | < 10       | < 10     |
| Niobium                        | [Nb]   | . < 1        | 0          | < 10   | < 10        | < 10          | < 10           | < 10        | < 10       | < 10     |
| Thorium                        | [Th]   | E            | XO         | 180    | < 10 €      | 310           | 130            | 130         | 210        | < 10     |
| Arsenic                        | [As]   |              | 90         | 55     | 35          | 10            | < 5            | 5           | 5          | 25       |
| Bismuth                        | [Bi]   |              | 5          | 5      | 25          | 10            | 20             | 20          | 20         | 20       |
| Tin                            | [Sn]   |              | 0          | < 10   | < 10        | < 10          | < 10           | < 10        | < 10       | < 10     |
| Lithium                        | [Li]   |              | 5          | < 5    | ₹ 5         | < 5           | < 5            | < 5         | < 5        | < 5      |
| Holmium                        | [Ho]   | < 1          | θ          | < 10   | . 10        | 10            | 4 10           | < 10        | < 10       | < 10     |

DATE : SEP-30-1990

SIGNED: Bernie Our

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No. : S - 1002 - 3

T.S.L. File No.: SE25MA

T.S.L. Invoice No. : 15721

57K 6A4

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2538 ALL RESULTS PPM

|            |       | P-SB-R-5     | P-SB-R-6 | P-SB-R-7 | P-SB-R-8     | P-SB-R-9 | P-SB-R-10      | P-SB-R-11 | P-SB-R-12      |
|------------|-------|--------------|----------|----------|--------------|----------|----------------|-----------|----------------|
| ELEMENT    |       |              |          |          |              |          |                | •         |                |
| Aluminum   | [A1]  | <b>590</b> 0 | 30000    | 17000    | 18000        | 11000    | 11000          | 9200      | 8100           |
| Iron       | [Fe]  | 22000        | 55000    | 52000    | 39000        | 20000    | 32000          | 23000     | 19000          |
| Calcium    | [Ca]  | 16000        | 8200     | 31000    | 10000        | 7900     | 37000          | 16000     | 19000          |
| Magnesium  | [Mg]  | 2600         | 10000    | 8000     | <b>76</b> 00 | 5700     | 4100           | 4500      | 2900           |
| Sodium     | [Na]  | 430          | 240      | 220      | 250          | 330      | 210            | 230       | 280            |
| Potassium  | EK 1  | 2400         | 710      | 1100     | 210          | 1700     | 1500           | 1900      | 3000           |
| Titanium   | [Ti]  | 27           | 1500     | 81       | 1600         | 790      | <del>6</del> 2 | 530       | 180            |
| Manganese  | [Mn]  | 720          | 970      | 1400     | 580          | 530      | 1400           | 510       | 410            |
| Phosphorus | [P ]  | 700          | 1300     | 1000     | 940          | 920      | 1200           | 820       | 840            |
| Barium     | [Ba]  | 140          | 34       | 590      | 43           | 120      | 140            | 52        | <del>6</del> 7 |
| Chromium   | [Cr]  | 46           | 54       | 32       | 64           | 32       | 9              | 14        | 13             |
| Zirconium  | [Zr]  | 4            | 7        | 9        | 8            | 4        | 3              | 4         | 2              |
| Copper     | [Cu]  | 8            | 98       | 100      | 120          | 23       | 59             | 6         | 9              |
| Nickel     | [Ni]  | 2            | 25       | 21       | 37           | 9        | < 1            | 1         | 2              |
| Lead       | [Pb]  | 7            | 6        | 21       | 5            | 2        | 5              | 13        | 2              |
| Zinc       | [Zn]  | 51           | 120      | 470      | 67           | 61       | 74             | 35        | 24             |
| Vanadium   | [V]   | 17           | 85       | 75       | 78           | 46       | 46             | 23        | 13             |
| Strontium  | {Sr}  | 39           | 18       | 62       | 53           | 42       | 260            | 130       | 160            |
| Cobalt     | [Co]  | 5            | 18       | 18       | 17           | 8        | 8              | 6         | 5              |
| Molybdenum |       | < 2          | < 2      | < 2      | < 2          | < 2      | < 2            | < 2       | < 2            |
| Silver     | [Ag]  | < 1          | < 1      | < 1      | < 1          | < 1      | < 1            | < 1       | < 1            |
| Cadmium    | [64]  | < 1          | < 1      | 3        | < 1          | < 1      | < 1            | < i       | < 1            |
| Beryllium  | [Be]  | < i          | < 1      | √ 1      | < 1          | < 1      | < 1            | < i       | < 1            |
| Baran      | (B ]  | < 10         | < 10     | < 10     | 10           | < 10     | < 10           | < 10      | < 10           |
| Antimony   | [Sb]  | < 5          | < 5      | 5        | < 5          | 5        | < 5            | < 5       | < 5            |
| Yttrium    | { Y } | 7            | 4        | 12       | 6            | 5        | 11             | 5         | 8              |
| Scandium   | [Sc]  | 2            | 2        | 7        | 4            | 2        | , 2            | 1         | < 1            |
| Tungsten   | [W]   | < 10         | < 10     | < 10     | < 10         | < 10     | 20             | < 10      | < 10           |
| Niobium    | [No]  | √ ← 10       | < 10     | < 10     | < 10         | < 10     | < 10           | < 10      | < 10           |
| Thorium    | [Th]  | < 10         | 240      | 190      | 160          | 200      | 10             | < 10      | < 10           |
| Arsenic    | [As]  | 65           | 15       | 15       | 5            | 25       | < 5            | 5         | < 5            |
| Bismuth    | [Bi]  | 25           | 30       | 30       | 25           | 25       | 35             | 20        | 30             |
| Tin        | [Sn]  | < 10         | ( 10     | 10       | < 10         | < 10     | < 10           | < 10      | < 10           |
| Lithium    | [Li]  | < 5          | 5        | 5        | < 5          | < 5      | < 5            | < 5       | < 5            |
| Holmium    | (Ho)  | < 10         | < 10     | 10       | < 10         | 1. 10    | < 10           | < 10      | < 10           |
|            |       |              |          |          |              |          |                |           |                |

SIGNED: Bernie Vim

DATE : SEP-30-1990

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2538

T.S.L. Invoice No.: 15721 ALL RESULTS PPM

T.S.L. File No.: SE25MA

T.S.L. REPORT No.: S - 1002 - 4

57K 6A4

|            |        | P-SB-R-13        | P-SB-R-14 | P-SB-R-15 | P-SB-R-16    | P-SB-R-17  | 39148           | 39149 |
|------------|--------|------------------|-----------|-----------|--------------|------------|-----------------|-------|
| ELEMENT    |        |                  |           |           |              |            |                 | •     |
| Aluminum   | [A]]   | <del>77</del> 00 | 11000     | 11000     | 1100         | 7100       | 11000           | 2700  |
| Iron       | [Fe]   | 38000            | 37000     | 36000     | <b>49</b> 00 | 33000      | 41000           | 28000 |
| Calcium    | (Ca)   | 8100             | 7300      | 6300      | 540          | 3600       | 4000            | 3100  |
| Magnesium  | [Mg]   | 4800             | 6000      | 6700      | 680          | 3700       | 6200            | 2300  |
| Sodium     | [Na]   | 310              | 260       | 300       | 70           | 240        | 160             | 30    |
| Potassium  | EK 1   | 1600             | 1300      | 870       | 150          | 1400       | 1600            | 220   |
| Titanium   | [Ti]   | 1100             | 1400      | 1400      | 83           | 800        | 2200            | 31    |
| Manganese  | [Mn]   | 390              | 600       | 450       | 50           | 330        | 130             | 55    |
| Phosphorus | (P ]   | 1000             | 1100      | 1200      | 62           | 1300       | <del>58</del> 0 | 1100  |
| Barium     | [Ba]   | 39               | 46        | 30        | 4            | 4 <u>i</u> | 120             | 31    |
| Chromium   | (Cr)   | 22               | 17        | 45        | 120          | 37         | 28              | 66    |
| Zirconium  | [Zr]   | 8                | ā         | 8         | < 1          | 9          | 11              | 3     |
| Copper     | (Cu)   | 280              | 96        | 130       | 9            | 130        | 90              | 66    |
| Nickel     | [Ni]   | 4                | 5         | 16        | 3            | < 1        | 6               | 8     |
| Lead       | (Pb)   | 4                | 5         | 2         | 4            | 21         | 6               | 5     |
| Zinc       | [ Zn ] | 29               | 47        | 24        | 6            | 23         | 10              | 5     |
| Vanadium   | (V )   | 44               | 44        | 47        | 8            | 34         | 67              | 8     |
| Strontium  | (Sr)   | 44               | 50        | 42        | ć            | 19         | 16              | 5     |
| Cobalt     | [Ca]   | 11               | 17        | 16        | < 1          | 5          | 4               | 9     |
| Molybdenum |        | 14               | < 2       | < 2       | < 2          | 24         | < 2             | 2     |
| Silver     | [Ag]   | < 1              | < 1       | < 1       | < 1          | < 1        | < 1             | < 1   |
| Cadmium    | (Cq)   | < i              | < 1       | < 1       | < 1          | < 1        | < 1             | < 1   |
| Beryllium  | [Be]   | < 1              | < 1       | < 1       | < 1          | < i        | < 1             | < 1   |
| Boron      | [B ]   | < 10             | < 10      | < 10      | < 10         | < 10       | < 10            | < 10  |
| Antimony   | [Sb]   | < 5              | < 5       | < 5       | < 5          | < 5        | < 5             | < 5   |
| Yttrium    | [Y ]   | 6                | 5         | 5         | < 1          | 5          | 6               | 4     |
| Scandium   | [Sc]   | 1                | 2         | 2         | < 1          | 1          | 7               | 1     |
| Tungsten   | [# ]   | < 10             | 10        | < 10      | < 10         | < 10       | < 10            | < 10  |
| Niobium    | EMb3   | < 10             | < 10      | v 10      | < 10         | < 10       | < 10            | < 10  |
| Thorium    | [Th]   | 400              | 320       | 80        | < 10         | 50         | 110             | < 10  |
| Arsenic    | [As]   | 10               | 15        | 10        | < 5          | ₹ 5        | < 5             | < 5   |
| Bismuth    | [Bi]   | 20               | 25        | 25        | 20           | 20         | 25              | 15    |
| Tin        | 15n3   | < 10             | < 10      | √ 10      | < 10         | < 10       | < 10            | < 10  |
| Lithium    | [Li]   | < 5              | < 5       | : 5       | < 5          | 5          | < 5             | < 5   |
| Holmium    | (Ho)   | < 10             | < 10      | 10        | 4 10         | < 10       | < 10            | < 10  |

DATE : SEP-30-1990



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S1005

SAMPLE(S) OF ROCK

INVOICE #: 15519

P.O.: R-2540

Marco V.

Project: PUP

REMARKS: Wrangell Samples - OreQuest Consultants

|       | Au<br>ppb |
|-------|-----------|
| 37771 | <5        |
| 37772 | 5         |
| 37773 | 5         |
| 37774 | 15        |
| 37775 | <5        |
| 37776 | <5        |
| 37777 | 20        |
| 37778 | 20        |
| 37779 | 10        |
| 37780 | 80        |
| 37781 | 150       |
| 37782 | 40        |
| 37783 | 30        |
| 37784 | 40        |
| 37785 | <5        |
| 37786 | <5        |
| 37787 | 10        |
| 37788 | 15        |
| 37789 | 510       |
| 37790 | <5        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 18/90

SIGNED 🔼

Page 1 of 3

**W** 



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S1005

SAMPLE(S) OF ROCK

INVOICE #: 15519

P.O.: R-2540

Marco V.

Project: PUP

REMARKS: Wrangell Samples - OreQuest Consultants

|       | Au            |
|-------|---------------|
|       | ppb           |
|       |               |
| 37791 | <5            |
| 37792 | <5            |
| 37793 | <b>&lt;</b> 5 |
| 37794 | <b>&lt;</b> 5 |
| 37800 | 65            |
| 37000 | 03            |
| 39117 | 45            |
| 39118 | 10            |
| 39119 |               |
|       | 20            |
| 39120 | 20            |
| 39121 | 5             |
| 39122 | 10            |
|       |               |
| 39123 | 10            |
| 39124 | 30            |
| 39125 | 20            |
| 39126 | 50            |
| 20127 | 10            |
| 39127 | 10            |
| 39128 | 20            |
| 39129 | 65            |
| 39130 | 5             |
| 39131 | <5            |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 18/90

SIGNED

Page 2 of 3





## TSL LABORAT

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S1005

INVOICE #:

15519

P.O.: R-2540

SAMPLE(S) OF ROCK

Marco V.

Project: PUP

**REMARKS:** 

Wrangell Samples - OreQuest Consultants

Au

ppb

39132 39133

5 <5

39134

<5

COPIES TO:

J. Foster, P. Lougheed

INVOICE TO:

Prime - Vancouver

Sep 18/90

SIGNED

Page 3 of 3

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1005 - 1 T.S.L. File No.: M - 8080 T.S.L. Invoice No.: 15663

Vancouver B.C. V6C 2X6

S7K 6A4

| ATTN: J. FOSTE |        |       | QUEST CONSULTANTS | R-2540 | ALL RESULTS PPM |       |
|----------------|--------|-------|-------------------|--------|-----------------|-------|
|                |        | 37771 | 37772             | 37773  | 37774           | 37775 |
| ELEMENT        | •      |       |                   |        | •               |       |
| Aluminum       | [A]]   | 25000 | 11000             | 17000  | 6800            | 2600  |
| Iron           | (Fel   | 47000 | 26000             | 44000  | <b>45</b> 000   | 15000 |
| Calcium        | [Ca]   | 5600  | 72000             | 4800   | 19000           | 760   |
| Magnesium      | [Mg]   | 9000  | 5200              | 7200   | 4700            | 1300  |
| Sodium         | [Na]   | 170   | 110               | 130    | 300             | 80    |
| Potassium      | €K ]   | 1500  | 1600              | 1700   | 640             | 230   |
| Titanium       | [Ti]   | 1800  | 420               | 1200   | 850             | 64    |
| Manganese      | [Mn]   | 750   | 2200              | 750    | 690             | 190   |
| Phosphorus     | (P ]   | 1500  | 1100              | 1100   | 1000            | 84    |
| Barium         | [Ba]   | 55    | 42                | 47     | 24              | 9     |
| Chromium       | (Cr)   | 16    | 23                | 33     | 23              | 110   |
| Zirconium      | [Zr]   | 8     | 5                 | 9      | 8               | < 1   |
| Copper         | [Cu]   | 310   | 32                | 140    | 98              | 75    |
| Nickel         | [Ni]   | 29    | 15                | 15     | 6               | 2     |
| Lead           | [Pb]   | 21    | 20                | 2      | 16              | 2700  |
| Zinc           | [Zn]   | 55    | 81                | 58     | 22              | 1100  |
| Vanadium       | [V ]   | 60    | 27                | 47     | 32              | 9     |
| Strontium      | [Sr]   | 15    | 250               | 16     | 50              | 12    |
| Cobalt         | [Co]   | 25    | 8                 | 15     | 11              | 5     |
| Molybdenum     | [Mo]   | < 2   | 4                 | 32     | < 2             | < 2   |
| Silver         | [Ag]   | < 1   | < 1               | < i    | < 1             | 13    |
| Cadmium        | [Cd]   | < 1   | < 1               | < 1    | < 1             | 6     |
| Beryllium      | [Be]   | < 1   | < 1               | < 1    | < i             | < 1   |
| Baran          | (B ]   | < 10  | < 10              | < 10   | < 10            | < 10  |
| Antimony       | [Sb]   | < 5   | < 5               | < 5    | < 5             | < 5   |
| Yttrium        | [Y ]   | 8     | 11                | 9      | 4               | < 1   |
| Scandium       | [Sc]   | 3     | 2                 | 3      | 1               | < 1   |
| Tungsten       | [W]    | < 10  | < 10              | < 10   | < 10            | ₹ 10  |
| Niobium        | [Nb]   | ₹ 10  | < 10              | < 10   | ₹ 10            | < 10  |
| Thorium        | [Th] . | 190   | 50                | 190    | 450             | < 10  |
| Arsenic        | [As]   | 5     | √ 5               | < 5    | 25              | < 5   |
| Bismuth        | [Bi]   | 5     | 25                | < 5    | < 5             | 20    |
| Tin            | [Sn]   | < 10  | < 10<br>· −       | < 10 − | < 10            | < 10  |
| Lithium        | [Li]   | 5     | < 5               | < 5    | < 5             | < 5   |
| Holmium        | (Ha    | < 10  | < 10              | < 10   | < 10            | < 10  |

DATE: SEP-27-1990

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1005 - 3

T.S.L. File No.: SE25MA

T.S.L. Invoice No.: 15663

S7K 6A4

| Vancouver B.C. V6C 2X6 |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5.E. INVOICE NO. : 13663 |                 |        |  |
|------------------------|--------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|--------|--|
| ATTN: J. FOSTER        |        | PROJECT: PUP | OREQUEST CONSULTANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R-2540                     | ALL RESULTS PPM |        |  |
|                        |        | 3778         | 1 37782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37783                      | 37784           | 37785  |  |
| ELEMENT                |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | •               |        |  |
| Aluminum               | [A1]   | 240          | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1200                       | 11000           | 31000  |  |
| Iron                   | [Fe]   | 17000        | 0 62000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210000                     | 44000           | 110000 |  |
| Calcium                | [Ca]   | 220          | 0 28000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14000                      | 63000           | 3700   |  |
| Magnesium              | [Mg]   | 150          | 0 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500                       | 6400            | 12000  |  |
| Sodium                 | [Na]   | 3/           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                         | 60              | 80     |  |
| Potassium              | EK 1   | 18           | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                        | 1800            | 24000  |  |
| Titanium               | [Ti]   | 9            | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71                         | 62              | 2000   |  |
| Manganese              | [Mn]   | 20           | 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                        | 990             | 120    |  |
| Phosphorus             | [P ]   | 90           | 9 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 730                        | 3000            | 730    |  |
| Barium                 | [Ba]   | ļ            | 5 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                         | 34              | 19     |  |
| Chromium               | [Cr]   | 10           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                         | 28              | 29     |  |
| Zirconium              | [Zr]   | 2            | 7 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                         | 13              | 23     |  |
| Copper                 | [Cu]   | 530          | ) 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4100                       | 820             | 190    |  |
| Nickel                 | [Ni]   |              | 7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                         | 22              | 19     |  |
| Lead                   | (Pb)   | 2000         | 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280                        | 1100            | 62     |  |
| Zinc                   | [ Zn ] | 7300         | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 350                        | 2000            | 110    |  |
| Vanadium               | [ V]   | 1            | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                         | 40              | 160    |  |
| Strontium              | [Sr]   | ŧ            | 7 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                         | 310             | 11     |  |
| Cobalt                 | [Co]   |              | <u>.</u> 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77                         | 10              | 33     |  |
| Molybdenum             | [Mo]   | < :          | 2 < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                         | < 2             | < 2    |  |
| Silver                 | [Ag]   | 1            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                          | 6               | < 1    |  |
| Cadmium                | [Cq3   | 629          | ) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                          | 44              | < 1    |  |
| Beryllium              | [Be]   | <            | 1 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 1                        | < 1             | < 1    |  |
| Boron                  | (B ]   | < 19         | ( 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10                       | < 10            | < 10   |  |
| Antimony               | [Sb]   | 4!           | 5 < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 5                        | < 5             | 15     |  |
| Yttrium                | {Y ]   | ;            | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                          | 36              | 10     |  |
| Scandium               | [Sc]   | <            | 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1                        | 14              | 10     |  |
| Tungsten               | [W]    | 1:           | ( 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                        | < 10            | < 10   |  |
| Niobium                | [Nb]   | < 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10                       | < 10            | < 10   |  |
| Thorium                | [Th]   | 18           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>38</b> 0                | 120             | 390    |  |
| Arsenic                | [As]   | 7:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 5                        | 20              | 10     |  |
| Bismuth                | [Bi]   | (            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                        | 25              | 20     |  |
| Tin                    | [Sn]   | < 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 10                       | < 10            | < 10   |  |
| Lithium                | [Li]   |              | 5 < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 5                        | < 5             | < 5    |  |
| 11-3-1                 | E113   | 7.           | No. of the second secon | 4.0                        | 4.6             | 4.4    |  |

DATE : SEP-27-1990

Holmium [Ho]

< 10

30

Lunia Dunn

10

10

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS R-2540

ALL RESULTS PPM

T.S.L. File No.: SE25MA

T.S.L. Invoice No.: 15663

T.S.L. REPORT No.: 5 - 1005 - 4

S7K 6A4

|            |        | 37786      | 37787            | 37788  | 3778 <del>9</del> | 37790 |
|------------|--------|------------|------------------|--------|-------------------|-------|
| ELEMENT    |        |            |                  |        | •                 |       |
| Aluminum   | [A13   | 14000      | 550              | 1600   | 8000              | 7800  |
| Iron       | [Fe]   | 92000      | 210000           | 180000 | 150000            | 57000 |
| Calcium    | {Ca}   | 5100       | <del>5</del> 000 | 13000  | 10000             | 35000 |
| Magnesium  | [Mg]   | 7900       | 840              | 3100   | 4800              | 7100  |
| Sodium     | (Na)   | 70         | < 10             | 10     | 30                | 50    |
| Potassium  | EK 3   | 2900       | 220              | 750    | 1600              | 2500  |
| Titanium   | [Ti]   | 130        | 22               | 47     | 92                | 1400  |
| Manganese  | [Mn]   | <b>9</b> 5 | 51               | 120    | 180               | 130   |
| Phosphorus | [P]    | 2600       | 270              | 370    | 560               | 950   |
| Barium     | [Ba]   | 27         | 6                | 5      | 12                | 8     |
| Chromium   | [Cr]   | 47         | 17               | 45     | 41                | 180   |
| Zirconium  | [Zr]   | 12         | 63               | 36     | 25                | 9     |
| Copper     | [Cu]   | 120        | 2300             | 9400   | 1800              | 580   |
| Nickel     | [Ni]   | 65         | 48               | 37     | 260               | 220   |
| Lead       | [Pb]   | 31         | 40               | 29     | 150               | 18    |
| Zinc       | EZn1   | 48         | 48               | 110    | 180               | 25    |
| Vanadium   | [V]    | 58         | < 1              | 10     | 55                | 33    |
| Strontium  | [Sr]   | 29         | 7                | 27     | 59                | 150   |
| Cobalt     | {Co]   | 24         | 39               | 69     | 79                | 55    |
| Malybdenum | [Mo]   | < 2        | < 2              | < 2    | < 2               | < 2   |
| Silver     | [Ag]   | < 1        | 7                | 8      | 12                | < 1   |
| Cadmium    | [Cd]   | < 1        | < i              | < 1    | < 1               | < 1   |
| Beryllium  | [Be]   | < i        | < 1              | < 1    | < 1               | < 1   |
| Baran      | EB 1   | < 10       | < 10             | < 10   | < 10              | < 10  |
| Antimony   | [96]   | < 5        | < 5              | 5      | < 5               | 5     |
| Yttrium    | EY 1   | 12         | 7                | 7      | 16                | 5     |
| Scandium   | [Sc]   | 4          | < 1              | < 1    | 6                 | 1     |
| Tungsten   | [W]    | < 10       | 10               | < 10   | < 10              | 70    |
| Niobium    | [Nb]   | < 10       | < 10             | < 10   | < 10              | < 10  |
| Thorium    | EThl . | 210        | 370              | 330    | 260               | < 10  |
| Arsenic    | [As]   | < 5        | < 5              | 20     | 430               | < 5   |
| Bismuth    | [Bi]   | < 5        | 60               | 15     | 5                 | 20    |
| Tin        | [Sn]   | < 10       | < 10             | < 10   | < 10              | < 10  |
| Lithium    | [Li]   | < 5        | < 5              | < 5    | < 5               | < 5   |
| Holmium    | [Ho]   | ₹ 10       | 40               | 20     | 30                | < 10  |
|            |        |            |                  |        |                   |       |

DATE : SEP-27-1990

SIGNED: <u>Barnie Ourn</u>

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP

OREQUEST CONSULTANTS R-2540

ALL RESULTS PPM

T.S.L. File No.: SE25MA

T.S.L. Invoice No.: 15663

T.S.L. REPORT No.: S - 1005 - 5

S7K 6A4

|            |               | 37791  | 37792  | 37793 | 37794  | 37800          |
|------------|---------------|--------|--------|-------|--------|----------------|
| ELEMENT    |               |        |        |       | •      |                |
| Aluminum   | [A1]          | 1900   | 4000   | 1500  | 4800   | 2000           |
| Iron       | [Fe]          | 180000 | 140000 | 57000 | 190000 | 120000         |
| Calcium    | [Ca]          | 780    | 2800   | 1600  | 18000  | 700            |
| Magnesium  | [Mg]          | 2400   | 3400   | 1700  | 4200   | 570            |
| Sodium     | [Na]          | 20     | 310    | 30    | 40     | 10             |
| Potassium  | EK 3          | 570    | 380    | 190   | 510    | 490            |
| Titanium   | [Ti]          | 100    | 770    | 52    | 58     | 30             |
| Manganese  | [Mn]          | 35     | 76     | 52    | 170    | 72             |
| Phosphorus | [P ]          | 110    | 1500   | 98    | 2200   | 370            |
| Barium     | [Ba]          | 9      | 9      | 14    | 13     | 21             |
| Chromium   | [Cr]          | 78     | 100    | 140   | 73     | <del>9</del> 0 |
| Zirconium  | [Zr]          | 30     | 23     | 4     | 39     | 14             |
| Copper     | (Cu)          | 53     | 310    | 170   | 1100   | 1200           |
| Nickel     | [Ni]          | 26     | 170    | 34    | 180    | 35             |
| Lead       | [Pb]          | 34     | 22     | 14    | 24     | 26             |
| Zinc       | [Zn]          | 40     | 23     | 14    | 16     | 56             |
| Vanadium   | [V ]          | 14     | 57     | 13    | 34     | 35             |
| Strontium  | (Sr)          | 5      | 8      | 5     | 25     | 4              |
| Cobalt     | [Co]          | 190    | 60     | 38    | 78     | 19             |
| Molybdenum | [Mo]          | < 2    | < 2    | < 2   | < 2    | 2              |
| Silver     | [Ag]          | < 1    | < 1    | < 1   | < 1    | 5              |
| Cadmium    | (Cq3          | < 1    | < 1    | < 1   | < 1    | < 1            |
| Beryllium  | (Be]          | < 1    | < 1    | < 1   | < 1    | < 1            |
| Boron      | [B]           | < 10   | < 10   | < 10  | < 10   | ₹ 10           |
| Antimony   | [Sb]          | 15     | 5      | < 5   | 10     | ₹ 5            |
| Yttrium    | [Y ]          | 5      | 12     | 3     | 13     | 12             |
| Scandium   | [Sc]          | < 1    | 6      | < 1   | 2      | 2              |
| Tungsten   | [W]           | 30     | 70     | 160   | 20     | 20             |
| Niobium    | [Nb]          | < 10   | < 10   | < 10  | < 10   | < 10           |
| Thorium    | [Th]          | 240    | 160    | < 10  | 350    | 80             |
| Arsenic    | [As]          | 130    | 5      | 5     | 5      | 45             |
| Bismuth    | [Bi]          | < 5    | < 5    | < 5   | 30     | < 5            |
| Tin        | [ <b>S</b> n] | < 10   | < 10   | < 10  | < 10   | ₹ 10           |
| Lithium    | [Li]          | < 5    | ₹ 5    | < 5   | < 5    | ₹ 5            |
| Holmium    | [Ho]          | < 10   | 20     | < 10  | 40     | 10             |

DATE : SEP-27-1990

SIGNED: Bernie Our

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. REPORT No.: S - 1005 - 6 T.S.L. File No.: SE25MA T.S.L. Invoice No.: 15663

808 West Hastings St. Vancouver B.C. VAC 2XA

| ASSECUTABLE DIGITARY |              |                      |        |                 |
|----------------------|--------------|----------------------|--------|-----------------|
| ATTN: J. FOSTER      | PROJECT: PUP | OREQUEST CONSULTANTS | R-2540 | ALL RESULTS PPM |
|                      |              |                      |        |                 |

|            |       | 39117         | 39118            | 39119       | 39120       | 39121 |
|------------|-------|---------------|------------------|-------------|-------------|-------|
| ELEMENT    |       |               |                  |             |             |       |
| Aluminum   | [A1]  | 3100          | 9800             | 7100        | 5900        | 13000 |
| Iron       | [Fe]  | 43000         | 34000            | 37000       | 39000       | 36000 |
| Calcium    | {Ca}  | 15000         | <del>4</del> 500 | 4500        | 3900        | 5400  |
| Magnesium  | [Mg]  | 570           | 5900             | 4300        | 3400        | 6800  |
| Sodium     | [Na]  | 160           | 2 <del>9</del> 0 | 460         | 410         | 280   |
| Potassium  | EK 3  | 2100          | 1000             | 670         | 1400        | 1100  |
| Titanium   | [Ti]  | <b>86</b> 0   | 1300             | 1600        | 1300        | 1300  |
| Manganese  | (Mn)  | 530           | 560              | 260         | 200         | 600   |
| Phosphorus | [P ]  | 1300          | 1300             | 1500        | 1200        | 1400  |
| Barium     | [Ba]  | 57            | 39               | 24          | 36          | 40    |
| Chromium   | [Cr]  | 28            | 37               | 26          | 37          | 21    |
| Zirconium  | [Zr]  | 4             | 7                | 4           | 7           | 5     |
| Copper     | [Cu]  | 1200          | 77               | 50          | 66          | 45    |
| Nickel     | [Ni]  | 4             | 6                | < 1         | 18          | 8     |
| Lead       | [Pb]  | 84            | 30               | 9           | 4           | 4     |
| Zinc       | [Zn]  | 110           | 54               | 23          | 13          | 36    |
| Vanadium   | [ V ] | 15            | 45               | 40          | 46          | 51    |
| Strontium  | [Sr]  | 57            | 22               | 32          | 21          | 24    |
| Cobalt     | [63]  | 7             | 9                | 4           | 14          | 15    |
| Molybdenum |       | 4             | 4                | 2           | 10          | < 2   |
| Silver     | {Ag}  | 2             | < 1              | < 1         | < 1         | < 1   |
| Cadmium    | [Cq]  | 1             | < 1              | < 1         | < 1         | < 1   |
| Beryllium  | [Be]  | < 1           | < 1              | < 1         | < 1         | < 1   |
| Baran      | [B ]  | < 10          | < 10             | < 10        | < 10        | < 10  |
| Antimony   | (Sb)  | < 5           | < 5              | < 5.        | < 5         | < 5   |
| Yttrium    | [ Y ] | 6             | 4                | 4           | 5           | 5     |
| Scandium   | [Sc]  | < 1           | 2                | 1           | 2           | 2     |
| Tungsten   | [W ]  | < 10          | < 10             | < 10        | < 10        | < 10  |
| Niobium    | [Nb]  | ₹ 10          | < 10             | < 10        | < 10        | < 10  |
| Thorium    | [Th]  | < 10<br>15    | 270<br>50        | < 10<br>5   | < 10        | 230   |
| Arsenic    | [As]  |               | 50<br>< 5        |             | 10          | < 5   |
| Bismuth    | [Bi]  | . < 5<br>< 10 |                  |             | < 5         | < 5   |
| Tin        | (Sn)  |               |                  | < 10<br>< 5 | < 10<br>< 5 | < 10  |
| Lithium    | (Li)  |               | < 5<br>/ 10      | _           |             | < 5   |
| Holmium    | [Ho]  | < 10          | < 10             | < 10        | < 10        | < 10  |

DATE: SEP-27-1990

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 608 West Hastings St.

T.S.L. REPORT No.: S - 1005 - 7 T.S.L. File No.: SE25MA

Vancouver B.C. V&C 2X6

T.S.L. Invoice No.: 15663

S7K 6A4

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2540 ALL RESULTS PPM

|            |       | 39122 | 39123 | 39124 | 39125 | 39126 |
|------------|-------|-------|-------|-------|-------|-------|
| ELEMENT    |       |       |       |       | •     |       |
| Aluminum   | [A]]  | 11000 | 7200  | 3700  | 2700  | 2700  |
| Iron       | [Fe]  | 23000 | 22000 | 52000 | 36000 | 36000 |
| Calcium    | {Cal  | 14000 | 2600  | 1600  | 1900  | 1800  |
| Magnesium  | [Mg]  | 4300  | 3000  | 930   | 1000  | 1000  |
| Sodium     | [Na]  | 320   | 190   | 260   | 390   | 390   |
| Potassium  | €K 1  | 1400  | 870   | 1700  | 1400  | 1400  |
| Titanium   | [Ti]  | 240   | 86    | 450   | 1300  | 1300  |
| Manganese  | EMn 3 | 750   | 580   | 320   | 92    | 86    |
| Phosphorus | [P ]  | 630   | 420   | 990   | 740   | 720   |
| Barium     | [Ba]  | 72    | 44    | 76    | 51    | 51    |
| Chromium   | [Cr]  | 47    | 98    | 14    | 25    | 25    |
| Zirconium  | [Zr]  | 4     | 3     | 7     | 8     | 8     |
| Copper     | {Cu3  | 10    | 25    | 10    | 35    | 35    |
| Nickel     | ENi 1 | 3     | 3     | < 1   | < 1   | < i   |
| Lead       | [Pb]  | 22    | 11    | 5     | 9     | 10    |
| Zinc       | EZn 1 | 91    | 45    | 81    | 120   | 120   |
| Vanadium   | [V ]  | 28    | 18    | 10    | 23    | 23    |
| Strontium  | [Sr]  | 62    | 19    | 27    | 22    | 22    |
| Cobalt     | [Co]  | 5     | 4     | - 2   | 3     | 3     |
| Molybdenum | (Mo)  | < 2   | < 2   | < 2   | < 2   | < 2   |
| Silver     | [Ag]  | < 1   | < 1   | < 1   | < 1   | < 1   |
| Cadmium    | [Cq3  | < 1   | ⟨ 1   | < 1   | < 1   | < i   |
| Beryllium  | (Be]  | < 1   | < 1   | < 1   | < 1   | < 1   |
| Boron      | (B ]  | < 10  | < 10  | < 10  | < 10  | < 10  |
| Antimony   | (96)  | < 5   | < 5   | < 5   | ₹ 5   | ₹ 5   |
| Yttrium    | EY 1  | 6     | 4     | 5     | 4     | 4     |
| Scandium   | (Sc)  | 2     | < 1   | < 1   | < 1   | < 1   |
| Tungsten   | EM 3  | < 10  | < 10  | < 10  | < 10  | < 10  |
| Niobium    | [Nb]  | < 10  | < 10  | < 10  | < 10  | < 10  |
| Thorium    | [Th]  | < 10  | < 10  | < i0  | < 10  | < 10  |
| Arsenic    | [As]  | 20    | < 5   | 25    | 10    | 15    |
| Bismuth    | [Bi]  | 10    | < 5   | < 5   | < 5   | < 5   |
| Tin        | [Sn]  | < 10  | < 10  | < 10  | < 10  | < 10  |
| Lithium    | [Li]  | < 5   | ⟨ 5   | < 5   | ₹ 5   | ₹ 5   |
| Holmium    | [Ha]  | < 10  | < 10  | < 10  | < 10  | < 10  |

DATE : SEP-27-1990

SIGNED: <u>Bernie Dun</u>

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No.: S - 1005 - 8 T.S.L. File No.: SE25MA

T.S.L. Invoice No.: 15663

| J. FOSTER  |       | ECT: PUP OREQUEST C | DNSULTANTS R-25 | 40 ALI                                 | RESULTS PPM      |          |
|------------|-------|---------------------|-----------------|----------------------------------------|------------------|----------|
|            |       | 39127               | 39128           | 39129                                  | 39130            | 3913     |
| ELEMENT    |       |                     |                 |                                        | •                |          |
| Aluminum   | [A]]  | 6000                | 3000            | <b>990</b> 0                           | 8300             | 1200     |
| Iron       | [Fe]  | 46000               | 45000           | 49000                                  | 22000            | 23000    |
| Calcium    | [Ca]  | 2500                | 3300            | 4600                                   | 55000            | 3100     |
| Magnesium  | [Mg]  | 4000                | 1200            | 6600                                   | 3100             | 440      |
| Sodium     | [Na]  | 250                 | 350             | 260                                    | 50               | 12       |
| Potassium  | EK 1  | 2000                | 1200            | 2500                                   | 2300             | 140      |
| Titanium   | [Ti]  | 2100                | 1700            | 1500                                   | 670              | 100      |
| Manganese  | [Mn]  | 240                 | 81              | 440                                    | 5 <del>9</del> 0 | 54       |
| Phosphorus | [P ]  | 1600                | 1800            | 1900                                   | 700              | 80       |
| Barium     | [Ba]  | 74                  | 53              | 43                                     | 120              | 7        |
| Chromium   | [73]  | 24                  | 17              | 32                                     | 12               | 2        |
| Zirconium  | [Zr]  | 11                  | 14              | 9                                      | 3                |          |
| Copper     | {Cu}  | 110                 | 43              | 45                                     | 100              | 11       |
| Nickel     | [Ni]  | 3                   | 1               | 4                                      | 3                |          |
| Lead       | [Pb]  | 18                  | 9               | 4                                      | 19               | i        |
| Zinc       | [Zn]  | 30                  | 11              | 40                                     | 110              | 8        |
| Vanadium   | [[ ]] | 41                  | 38              | 58                                     | 22               | 3        |
| Strontium  | [Sr]  | 21                  | 35              | 37                                     | 150              | 21       |
| Cobalt     | {Co}  | 5                   | 4               | 10                                     | 10               | 1        |
| Molybdenum | [Mo]  | 2                   | 2               | 6                                      | 4                | Κ        |
| Silver     | [Ag]  | < 1                 | < 1             | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ | < 1<br>← 1       | <u> </u> |
|            | (Cd)  | < 1                 | < 1             |                                        |                  |          |
| Beryllium  | (Be]  | < 1                 | < 1             | < 1                                    | < 1              | < :      |
| Boron      | [B]   | < 10                | ₹ 10            | < 10                                   | < 10             | < 19     |
| Antimony   | (Sb)  | < 5                 | < 5             | ₹ 5                                    | < 5              | ⟨ :      |
| Yttrium    | [ Y]  | 4                   | 3               | 5                                      | 6                |          |
| Scandium   | [Sc]  | 2                   | 2               | 2                                      | < 1              | <        |
| Tungsten   | [W]   | < 10                | < 10            | < 10                                   | < 10             | < 1      |
| Niobium    | (Nb)  | < 10                | < 10            | < 10                                   | < 10             | < 1      |
| Thorium    | [Th]  | <b>26</b> 0         | < 10            | 100                                    | < 10             | < 1      |
| Arsenic    | [As]  | 5                   | 15              | 15                                     | < 5              | <        |
| Bismuth    | [Bi]  | < 5                 | < 5             | < 5                                    | 25               | 1        |
|            | [9n]  | < 10                | < 10            | < 10                                   | < 10             | < 1      |
|            | [Li]  | < 5                 | < 5             | < 5                                    | < 5              | < :      |
|            | (Ha]  | √ 10                | < 10            | < 10                                   | < 10             | < 10     |

DATE: SEP-27-1990

SIGNED: Beine Oun

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP

OREQUEST CONSULTANTS R-2540

T.S.L. REPORT No. : S - 1005 - 9

T.S.L. File No.: SE25MA

T.S.L. Invoice No.: 15663

ALL RESULTS PPM

| 1 114+ | 9. (UJ1L)              |                 | THOUSE THE SHEWEST | CONSOCIANTS N 2040 |       | HLE N |
|--------|------------------------|-----------------|--------------------|--------------------|-------|-------|
|        |                        |                 | 39132              | 39133              | 39134 |       |
|        | ELEMENT                |                 |                    |                    |       |       |
| 4      | Aluminum               | [A]]            | 5300               | 8200               | 6500  |       |
| Ì      | Iron                   | [Fe]            | 25000              | 59000              | 42000 |       |
| {      | Calcium                | [Cal            | 5200               | 2500               | 5600  |       |
| ŧ      | Magnesium              | [Mg]            | 2700               | 5500               | 3700  |       |
| Ę      | Sodium                 | [Na]            | 430                | 170                | 170   |       |
| F      | otassium               | [K ]            | 1300               | 2100               | 2800  |       |
| 1      | Titanium               | [Ti]            | 1000               | 2000               | 1700  |       |
| ħ      | fanganese              | [Mn]            | 130                | 160                | 38    |       |
| F      | hosphorus <sup>2</sup> | <pre>{P }</pre> | 1100               | 410                | 2300  |       |
| E      | Barium                 | [Ba]            | 39                 | 21                 | 54    |       |
| (      | Chromium               | [Cr]            | 34                 | 25                 | 35    |       |
| 2      | Zirconium              | [Zr]            | 15                 | 15                 | 7     |       |
| (      | Copper                 | [Cu]            | 130                | 380                | 180   |       |
| ħ      | Vickel                 | [Ni]            | 7                  | 7                  | 8     |       |
| Ł      | _ead                   | [Pb]            | 5                  | 13                 | 8     |       |
| ī      | Zinc                   | { Zn ]          | 15                 | 27                 | 14    |       |
| 1      | /anadium               | [ [ [           | 36                 | 76                 | 77    |       |
| 5      | Strontium              | [Sr]            | 45                 | 13                 | 29    |       |
| (      | Cobalt                 | (Co)            | 4                  | 7                  | 4     |       |
| ř      | 1olybdenum             | [Mo]            | < 2                | < 2                | 6     |       |
| 5      | Silver                 | [Ag]            | < 1                | < <u>i</u>         | < 1   |       |
| {      | Cadmium                | [Cd]            | < 1                | < 1                | < 1   |       |
| Ε      | Beryllium -            | (Bel            | < 1                | < 1                | < 1   |       |
| E      | Baron                  | (B ]            | < 10               | < 10               | < 10  |       |
| £      | Antimony               | (Sb)            | < 5                | < 5                | < 5   |       |
|        | /ttrium                | [ Y ]           | 6                  | 6                  | 7     |       |
| 9      | Scandium               | (Sc)            | < 1                | 10                 | 4     |       |
|        | lungsten               | [₩]             | < 10               | < 10               | < 10  |       |
| ħ      | √iobi⊔m                | [Mb]            | < 10               | ₹ 10               | < 10  |       |
|        | Thorium                | [Th]            |                    | 130                | 80    |       |
|        | Arsenic                | [As]            | 15                 | < 5                | < 5   |       |
|        | Bismuth                | [Bi]            | < 5                | < 5                | ₹ 5   |       |
|        | Tin                    | ( <b>S</b> n]   | < 10               | ₹ 10               | < 10  |       |
|        | ithium                 | [Li]            | < 5                | ₹ 5                | < 5   |       |
| ÷      | -olmium                | [Ho]            | < 10               | < 10               | < 10  |       |
|        |                        |                 |                    |                    |       |       |

DATE : SEP-27-1990

SIGNED: Curie Pun



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street.

Vancouver, B.C. V6C 2X6

SAMPLE(S) OF ROCK

REPORT No. S1095

INVOICE #: 15614

R2622 P.O.:

Marco V. Project PUP

Wrangell Samples-Orequest Consultants **REMARKS:** 

|                                                               | au<br>ppb                  |
|---------------------------------------------------------------|----------------------------|
| P-SB-R-18<br>P-SB-R-19<br>P-SB-R-20<br>P-SB-R-21<br>P-SB-R-22 | 15<br>15<br><5<br>15<br><5 |
| 39135                                                         | 75                         |
| 39150                                                         | <5                         |
| 39151                                                         | <5                         |
| 39152                                                         | <5                         |
| 39153                                                         | <5                         |
| 39154                                                         | <5                         |
| 39155                                                         | 10                         |
| 39156                                                         | <5                         |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 25/90

SIGNED .

Remie Our

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2X&

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2622 T.S.L. Invoice No.: 15766

ALL RESULTS PPM

REPORT No.: S - 1095 - 1

File No.: M 8145

S7K 6A4

T.S.L.

T.S.I.

P-SB-R-18 P-SB-R-19 P-SB-R-20 P-SB-R-21 P-SB-R-22 39151 39135 39150 ELEMENT Aluminum [A1] 4400 5200 1500 6800 11000 9300 7300 8000 [Fe] Iron 28000 14000 6100 16000 21000 26000 16000 28000 Calcium [Ca] 5200 2300 640 4500 3700 5300 17000 4800 Magnesium [Mo] 1700 3000 960 3000 5100 3800 3300 4000 Sodium [Na] 410 200 50 570 470 550 320 530 Potassium EK 1 1500 840 190 890 760 1700 150 550 Titanium [Ti] 400 89 1200 690 920 700 640 1100 Manganese [Mn] 130 220 88 340 330 670 290 360 Phosphorus (P ) 980 260 54 930 900 840 790 880 53 24 7 24 24 27 Barium [Ba] 10 66 Chromium [Cr] 20 89 98 35 27 41 34 27 15 2 < 1 4 4 2 5 Zirconium [Zr] 6 22 Copper [Cu] 57 80 33 110 14000 240 110 Nickel [Ni] 3 4 2 5 3 5 6 4 7 3 [Pb] 230 15 2 11 7 4 Lead 17 7 21 19 Zinc [Zn] 17 280 46 52 Vanadium [V ] 32 15 5 16 26 45 19 27 56 17 35 22 52 46 26 Strontium [Sr] 6 Cobalt [Co] 5 3 1 6 4 8 7 9 2 2 2 2 < 2 2 4 < < 4 < Molybdenum [Mo] < 1 ₹. 1 < 1 1 < 1 10 < 1 < 1 Silver [Aq] 1 < < 1 3 < < 1 Cadmium [Cq] < < 1 < 1 1 1 < 1 < 1 < 1 < 1 < 1 < 1 Beryllium [Be] < 1 < 1 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 Boron [B] 5 5 ₹ 5 5 5 5 5 5 [Sb] < < < < < Antimony 2 4 3 4 Yttrium [Y] 5 < 1 6 6 < 2 {Sc} 1 ₹ 1 < 1 < 1 1 < 1 < 1 Scandium < < 10 Tunosten EW 3 < 10 < 10 < 10 < 10 < 10 < 10 10 [Nb] < 10 < 10 < − 10 < 10 < 10 < 10 < 10 < 10 Niobium 70 10 10 < − 10 50 < 10 Thorium [Th] < 10 ⟨ < 60 5 5 5 5 Arsenic 15 < 5 ( 5 < 5 < < { [As] 5 5 5 Bismuth {Bi} 10 ₹ 5 < 5 < − < 5 < 5 < < Tin [Sn]< 10 ₹. 10 ⟨ 10 < 10 ₹ 10 < 10 10 < 10

DATE: OCT-01-1990

Lithium

Holmium

[Li]

(Ho)

20

< 10 30

< 10

35

< 10

35

< 10

Beinia Oum

45

< 10

35

< 10

40

< 10

35

< 10

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No. : S - 1095 - 2

T.S.L. File No.: SE27MD

S7K 6A4

T.S.L. Invoice No. : 15766

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2622

ALL RESULTS PPM

|   | V                          |       | 111000011 101 | Orthogon Con-  |       | W LULL      |       | NEC NEGOETO TT |
|---|----------------------------|-------|---------------|----------------|-------|-------------|-------|----------------|
|   |                            |       | 39152         | 39153          | 39154 | 39155       | 39156 |                |
|   | ELEMENT                    |       |               |                |       |             |       | ·              |
| 4 | Aluminum                   | [A13  | 8900          | 3300           | 7200  | 15000       | 12000 |                |
| : | Iron                       | [Fe]  | 24000         | 2 <b>90</b> 00 | 32000 | 41000       | 21000 |                |
| { | Calcium                    | [Ca]  | 3500          | 78000          | 2100  | 9800        | 7800  |                |
| 1 | 1agnesium                  | [Mg]  | 4400          | 6800           | 1500  | 5200        | 4300  |                |
| ţ | Sodium                     | [Na]  | 430           | 90             | 330   | 230         | 360   |                |
| ŧ | otassium                   | EK 1  | <b>98</b> 0   | 470            | 850   | 710         | 510   |                |
| 7 | Titanium                   | [Ti]  | 1300          | 40             | 34    | 58          | 710   |                |
| ŧ | langanese                  | [Mn]  | 330           | 940            | 540   | 670         | 430   |                |
| ş | hosphorus                  | [P]   | <b>95</b> 0   | 240            | 710   | 620         | 520   |                |
| ł | Barium                     | [Ba]  | 51            | 31             | 78    | 47          | 32    |                |
| { | Chromium                   | [01]  | z             | 38             | 16    | 26          | 42    |                |
| i | Zirconium                  | [Zr]  | 4             | 6              | 5     | 4           | 4     |                |
| ( | Copper                     | {Cu}  | 88            | 60             | 73    | 780         | 62    |                |
| ł | lickel                     | [Ni]  | 6             | 6              | 8     | 7           | 5     |                |
| ł | .ead                       | {Pb]  | 5             | 4              | 7     | <b>9</b> 50 | 30    |                |
| i | Zinc                       | {Zn}  | 26            | 24             | 65    | 1800        | 81    |                |
| ١ | /anadium                   | [[ [] | 20            | 49             | 39    | 39          | 24    |                |
| ç | Strontium                  | [Sr]  | 19            | 470            | 16    | 29          | 38    |                |
| { | Cobalt                     | {Ca]  | 9             | 7              | 13    | 21          | 6     |                |
|   | <b>fo</b> lybdenu <b>a</b> | (Ma)  | < 2           | < 2            | < 2   | < 2         | < 2   |                |
| 9 | Silver                     | (Ag)  | < i           | < 1            | < 1   | 2           | < 1   |                |
| ( | Cadmium                    | [Cd]  | < i           | < 1            | < 1   | 28          | < 1   |                |
| 1 | Beryllium -                | [Be]  | < 1           | < 1            | < 1   | < 1         | < 1   |                |
| E | Boron                      | (B ]  | < 10          | < 10           | < 10  | < 10        | < 10  |                |
| 1 | Antimony                   | (Sb)  | ₹ 5           | 5              | < 5   | ₹ 5         | ₹ 5   |                |
| ١ | /ttrium                    | [ Y]  | 2             | 8              | 6     | 6           | 2     |                |
| 9 | Scandium                   | {Sc}  | < 1           | 7              | 5     | 2           | < 1   |                |
|   | lungsten                   | [W]   | < 10          | < 10           | < 10  | 40          | ₹ 10  |                |
| ŀ | liobium                    | (Mb)  | < 10          | ₹ 10           | < 10  | < 10        | < 10  |                |
| 1 | Morium                     | [Th]  | 90            | 20             | < 10  | 40          | 60    |                |
|   | Arsenic                    | [As]  | < 5           | < 5            | < 5   | < 5         | < 5   |                |
|   | Bismuth                    | [Bi]  | < 5           | < 5            | < 5   | 15          | < 5   |                |
| 7 | Tin                        | [Sn]  | < 10          | < 10           | < 10  | ← 10        | < 10  |                |
|   | ithium                     | [Li]  | 35            | 25             | 20    | 20          | 25    |                |
| ł | avialo)                    | [Ha]  | < 10          | 10             | < 10  | < 10        | < 10  |                |
|   |                            |       |               |                |       |             |       |                |

DATE: OCT-01-1990

CICHED

Bunie Vum



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1109

SAMPLE(S) OF Rock

INVOICE #: 15627

P.O.: R2626

Marco V. Project PUP

λ.,

REMARKS: Wrangell Samples-Orequest Consultants

|           | au<br>ppb |
|-----------|-----------|
| P-90-R-1  | 270       |
| P-90-R-2  | 45        |
| P-90-R-3  | 5         |
| P-90-R-4  | <5        |
| P-90-R-5  | <5        |
| P-90-R-6  | <5        |
| P-SB-R-23 | 10        |
| P-SB-R-24 | <5        |
| P-SB-R-25 | 25        |
| P-SB-R-26 | <5        |
| P-SB-R-28 | <5        |
| P-SB-R-29 | <5        |
| P-SB-R-30 | <5        |
| P-SB-R-31 | <5        |
| 39157     | <5        |
| 39158     | <5        |
| 39159     | <5        |
| 39160     | <5        |
| 39161     | <5        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 26/90

SIGNED \_

Bernie Ouns

**V** 

Page 1 of 1

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

> TELEPHONE #: (304) 931 - 1033 (306) 242 - 4717

FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X& T.S.L. REPORT No.: 5 - 1109 - 1 T.S.L. File No.: M - 8170

T.S.L. Invoice No.: 15781

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2626 ALL RESULTS PPM

| ELEMENT    |               | P-90-R-1    | P-90-R-2 | P-90-R-3 | P-90-R-4 | P-90-R-5        | P-90-R-6    | P-SB-R-23    |
|------------|---------------|-------------|----------|----------|----------|-----------------|-------------|--------------|
| Aluminum   | (A1)          | 1400        | 2400     | 300      | 4500     | 8600            | <b>95</b> 0 | 10000        |
| Iron       | [Fe]          | 19000       | 12000    | 20000    | 21000    | 37000           | 9700        | 23000        |
| Calcium    | {Ca]          | 4100        | 17000    | 620      | 41000    | 2100            | 12000       | 4300         |
| Magnesium  | [Mg]          | <b>58</b> 0 | 1200     | 90       | 2800     | 3600            | 440         | <b>49</b> 00 |
| Sodium     | (Na)          | 40          | 50       | 20       | 150      | 190             | 40          | 250          |
| Potassium  | [K ]          | 90          | 200      | 20       | 1300     | <del>98</del> 0 | 190         | 1300         |
| Titanium   | [Ti]          | 72          | 28       | 10       | 9        | 350             | 37          | <b>6</b> 20  |
| Manganese  | [Mn]          | 140         | 210      | 82       | 650      | 420             | 230         | <b>4</b> 60  |
| Phosphorus | (P ]          | 60          | 110      | 16       | 540      | 500             | 88          | 700          |
| Barium     | [Ba]          | 12          | 32       | 5        | 52       | 54              | 12          | 55           |
| Chromium   | [Cr]          | 140         | 110      | 180      | 26       | 76              | 110         | 36           |
| Zirconium  | [7]           | į           | 1        | < 1      | 2        | 3               | 1           | 4            |
| Copper     | (Cu)          | 3500        | 1200     | 240      | 51       | 190             | 110         | 57           |
| Nickel     | [Ni]          | 7           | 14       | 22       | 4        | 10              | 4           | 16           |
| Lead       | [Pb]          | 1           | 8        | 5        | 5        | 27              | 9           | 8            |
| Zinc       | [Zn]          | 58          | 55       | 16       | 48       | 43              | 540         | 270          |
| Vanadium   | [V ]          | 5           | 9        | 2        | 13       | 17              | 2           | 26           |
| Strontium  | [Sr]          | 13          | 28       | 3        | 74       | 8               | 23          | 15           |
| Cobalt     | [60]          | 7           | 16       | 25       | 7        | 20              | 8           | 8            |
| Molybdenum |               | < 2         | < 2      | < 2      | < 2      | < 2             | < 2         | < 2          |
| Silver     | [Ag]          | 18          | 2        | < 1      | < 1      | < 1             | < 1         | < 1          |
| Cadmium    | [Cq3          | 1           | < 1      | < 1      | < 1      | < 1             | Ė           | 2            |
| Beryllium  | (Be)          | < 1         | < 1      | < 1      | < 1      | < <b>1</b>      | < 1         | < 1          |
| Baron      | [B ]          | < 10        | < 10     | < 10     | < 10     | < 10            | < 10        | < 10         |
| Antimony   | (Sb)          | < 5         | < 5      | < 5      | < 5      | < 5             | < 5         | < 5          |
| Yttrium    | EY 3          | < i         | 1        | < 1      | 5        | 4               | < 1         | 4            |
| Scandium   | (Sc)          | < 1         | 1. 1     | 4. 1     | 2        | < 1             | < 1         | 1            |
| Tungsten   | [W ]          | < 10        | < 10     | < 10     | < 10     | < 10            | < 10        | < 10         |
| Niobium    | [Nb]          | ( 10        | < 10     | < 10     | < 10     | < 10            | < 10        | < 10         |
| Thorium    | [Th]          | < 10        | < 10     | < 10     | < 10     | 10              | < 10        | 50           |
| Arsenic    | [As]          | 5           | \ 5      | 10       | < 5      | < 5             | 10          | ₹ 5          |
| Bismuth    | (Bi)          | < 5         | < 5      | ( 5      | 15       | < 5             | 5           | ₹ 5          |
| Tin        | ( <b>S</b> nJ | < 10        | 1. 10    | 10       | < 10     | < 10            | < 10        | < 10         |
| Lithium    | [[1]          | ₹ 5         | √ 5      | √ 5      | < 5      | < 5             | < 5         | < 5          |
| Holmium    | (Ha           | < 10        | 10       | : 10     | ₹ 10     | < 10            | < 10        | < 10         |

DATE : 0CT-01-1990

SIGNED: Bunie am

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 57K 6A4

T.S.L.

T.S.L.

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2626

T.S.L. Invoice No. : 15781

ALL RESULTS PPM

REPORT No.: S - 1109 - 2

File No.: SE29MA

P-SB-R-28 P-SB-R-24 P-SB-R-25 P-SB-R-26 P-SB-R-29 P-SB-R-30 P-SB-R-31 ELEMENT Aluminum [A]] Iron [Fe] Calcium (Ca) Magnesium [Mo] Sodium [Na] Potassium [K ] Titanium [Ti] Manganese [Mn] Phosphorus [P ] Barium [Ba] [Cr] Chromium Zirconium [Zr] (Cu) Copper Nickel [Ni] í (Pb) Lead Zinc [Zn] Vanadium [ V] Strontium [Sr] Cobalt [Co] Ē Ģ Molybdenum (Mo) ₹ < < 2 < Silver [Aq] ₹ < < ₹ ₹ ₹ [Cd] < < i ₹ < 1 Cadmium Beryllium [Be] í < < 1 < 1 < 10 Boron [B] < 10 < 10 < < 10 Antimony £623 Yttrium EY 1 Scandium [Sc] [W] < 10 < < 10 < 10 Tungsten Micbium (Mb) ₹ ₹ < 10 Thorium [Th] < 10 [As] < Arsenic < < < ⟨ [81] Bismuth (Sa) Tin < 10 Ξ, < 5 Lithium [Li] Holmium (Ho) < 10 < 10

DATE: GCT-01-1990

CICNED .

Reme Oun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No. : S - 1109 - 3

T.S.L. File No.: SE29MA T.S.L. Invoice No.: 15781

....

S7K. 6A4

| ATTN: J | , FOSTER  | }    | PROJECT: | PUP        | OREQUE | EST C      | CONSULTANTS   |          | R-2626      |   | all resi | ULTS PPM |
|---------|-----------|------|----------|------------|--------|------------|---------------|----------|-------------|---|----------|----------|
|         |           |      | 391      | .57        | 3915   | 18         | <b>39</b> 15  | 9        | 3916        | ) | 39161    |          |
|         | ELEMENT   |      |          |            |        |            |               |          |             |   |          |          |
| Alı     | uminum    | [Al] | 200      | )00        | 1300   | 30         | 980           | 0        | 1400        | ) | 3800     |          |
| Iro     | הנ        | [Fe] | 380      | 000        | 2400   | 00         | 2 <b>6</b> 00 | 0        | 2700        | 0 | 10000    |          |
| Cal     | lcium     | [Ca] | 110      | 000        | 2900   | )()        | 3800          | 0        | 2700        | 0 | 1800     |          |
| Mac     | nesium    | [Mq] | 69       | 700        | 45(    | 00         | 480           | 0        | 490         | ) | 1900     |          |
|         | ium       | [Na] | Ç        | 900        | 24     | <b>4</b> 0 | 18            | 0        | 28          | ) | 200      |          |
|         | tassium   | EK 3 | 6        | 360        | 90     | 30         | 130           | 0        | 75          | 0 | 420      |          |
|         | tanium    | [Ti] |          | 100        | 1      | 20         | 5             | 1        | 36          | ) | 78       |          |
|         | iganese   | [Mn] |          | 10         | 68     | 30         | 77            | ()       | 72          | ) | 160      |          |
| Pho     | sphorus.  | (P ] | É        | 40         | 55     | 50         | 53            | Ü        | <b>6</b> 51 | ) | 280      |          |
|         | ium       | [Ba] |          | 89         | 5      | 51         | 7             | 9        | 3           | 4 | 45       |          |
|         | COMIUM    | [67] |          | 40         |        | 20         | 1             | 4        | 3           | 1 | 93       |          |
| Zir     | rconium   |      |          | 21         |        | 4          |               | 3        |             | 3 | 2        |          |
|         | per       | [Cu] |          | 47         |        | 38         | 6             | Ł        | 8           | 1 | 18       |          |
|         | kel       | [Ni] |          | 17         |        | 4          |               | 6        |             | 4 | i        |          |
| Lea     | ad        | (Pb3 |          | 15         |        | 7          | 3             | 3        | 6           | 1 | 5        |          |
| Zir     | 10        | [Zn] |          | <i>6</i> 7 |        | 55         | 21:           | 0        | 13          | 0 | 23       |          |
| Var     | nadium    | (V ] |          | 10         |        | 31         | 2             | 8        | 3           | 5 | 19       |          |
| Sto     | rantium   | [Sr] |          | <i>6</i> 6 | į      | 95         | 13            | 0        | 7.          | 2 | 11       |          |
| Cot     | palt      | (Cal |          | 15         |        | 7          | İ             | <u>:</u> | į           | 0 | 2        |          |
| Mol     | Lybdenum  | [Mo] | <        | 2          | 4      | 2          | <             | 2        | <           | 2 | < 2      |          |
|         | lver      | [Ag] | ₹.       | į          | <      | 1          | <             | 1        | <           | i | < 1      |          |
| Cac     | dmium     | (Cq) | <        | l          | Κ.     | 1          |               | 1        | <           | 1 | < 1      |          |
| Bes     | ryllium   | [Be] | <        | 1          | 4      | 1          | 4             | 1        | <           | 1 | < 1      |          |
| Bot     | ים<br>חסת | [8]  | <        | 10         | < -    | 10         | < 1           | Û        | < 1·        | 0 | < 10     |          |
| An t    | timony    | (Sb] | < <      | 5          |        | 5          | \ \ \         | 5        | <           | 5 | < 5      |          |
| γţ      | trium     | [7]  |          | 8          |        | 6          |               | 7        |             | 3 | 2        |          |
| Sc      | andium    | [8c] |          | 7          |        | 3          |               | 2        | <           | 1 | < 1      |          |
| Tur     | nosten    | [W]  | <        | 10         | Α.     | 10         | < 1           | Û        | < 1         | 0 | < 10     |          |
| Nic     | obium     | {Nb} | <        | 10         | 4      | 10         | i             | 0        | < 1         | 0 | < 10     |          |
| The     | orium     | [Th] | •        | 40         |        | 50         | 6             | .0       | 4           | 0 | < 10     |          |
|         | senic     | (As] |          | 5          | 4      | 5          | <             | 5        | <           | 5 | 10       |          |
|         | smuth     | [Bi] |          | 10         |        | 15         |               | 0        | i           |   | < 5      |          |
| Tir     |           | (Sn) | <b>N</b> | 10         |        | 10         |               | ŷ        | < 1         |   | < 10     |          |
| 11      | thium     | ELil |          | 5          |        | 5          |               | 5        |             | 5 | ₹ 5      |          |
|         | inium     | (Ho) |          | 10         |        | 10         |               | 0        | < 1         |   | < 10     |          |
|         |           |      |          |            |        |            |               | •        | * *         | • | V 10     |          |

DATE: OCT-01-1990

SIGNED: Beinie Aim



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

REPORT No.

S1217

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

\_\_\_\_\_\_

SAMPLE(S) OF Rock

INVOICE #: 15800 P.O.: R2671

Marco V. Project PUP

REMARKS: Wrangell Samples-Orequest Consultants

|           | Au<br>ppb |
|-----------|-----------|
| P-90-R-7  | 10        |
| P-90-R-8  | 5         |
| P-90-R-9  | <5        |
| P-90-R-10 | 5         |
| P-90-R-11 | 5         |
| P-90-R-12 | 150       |
| P-90-R-13 | 10        |
| 39162     | 10        |
| 39163     | 5         |
| 39164     | 5         |
| P-SB-R-27 | 25        |
| P-SB-R-32 | 10        |
| P-SB-R-33 | <5        |
| P-SB-R-34 | <5        |

COPIES TO:

J. Foster, P. Lougheed

INVOICE TO:

Prime-Vancouver

Oct 05/90

SIGNED

Page 1 of 1

**É** 

2-302-48TH STREET, SASKATOON, SASKATCHENAN S7K 6A4

TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastinos St. Vancouver B.C. V&C 2X&

T.S.L. REPORT No. : S - 1217 - 1 T.S.L. File No.: M - 8251

T.S.L. Invoice No.: 15977

ATTN: J. FOSTER PROJECT: PUP

OREQUEST CONSULTANTS

ALL RESULTS PPM

| ELEMENT              |              | P-90-R-7     | P-90-R-8     | P-90-R-9           | P-90-R-10    | P-90-R-11  | P-90-R-12        | P-90-R-13    | 39162        |
|----------------------|--------------|--------------|--------------|--------------------|--------------|------------|------------------|--------------|--------------|
| Aluminum             | [A]]         | 4400         | 16000        | 11000              | B10          | 12000      | 12000            | 390          | 4400         |
| Iron                 | [Fe]         | 15000        | 30000        | 26000              | 43000        | 26000      | 28000            | 68000        | 32000        |
| Calcium              | [Ca]         | 29000        | 8200         | 3800               | < 20         | 18000      | 3900             | 63000        | 32000        |
| Magnesium            | [Mg]         | 2000         | 5900         | 4800               | 510          | 5000       | 4700             | 170          | 1100         |
| Sodium               | [Na]         | 180          | 200          | 280                | 30           | 120        | 180              | 20           | 200          |
| Potassium            | EK 1         | 890          | 410          | 520                | 60           | 1700       | 730              | 210          | 1100         |
| Titanium             | [Ti]         | <b>4</b> 30  | <b>94</b> 0  | <del>9</del> 80    | 58           | 810        | <b>9</b> 70      | 17           | 19           |
| Manganese            | [Mn]         | 320          | 670          | 500                | 57           | 360        | 300              | 380          | 820          |
| Phosphorus <b>P</b>  | (P ]         | 500          | 590          | 1100               | 28           | 1200       | 700              | < 2          | 1000         |
| Barium               | [Ba]         | 38           | 25           | 26                 | 2            | 33         | 25               | 12           | 37           |
| Chromium             | [Cr]         | 28           | 26           | 21                 | 100          | 15         | 34               | 53           | 12           |
| Zirconium            | [Zr]         | 6            | 12           | 12                 | 17           | 11         | 11               | 28           | 13           |
| Cooper               | (Cu)         | 71           | 71           | 54                 | 510          | 150        | <i>6</i> 4       | 540          | 14           |
| Nickel               | [Ni]         | 9            | 10           | 5                  | 14           | 14         | 3                | 20           | 2            |
| Lead                 | [64]         | 15           | 13           | 11                 | 17           | 12         | 16               | 35           | 13           |
| Zinc                 | [Zn]         | 32           | 52           | 51                 | 11           | 56         | 41               | 10           | 59           |
| Vanadium             | [ \ \]       | 11           | 40           | 27                 | < 1          | 23         | 19               | < 1          | 24           |
| Strontium            | [Sr]         | 69           | 34           | 27                 | 2            | 31         | 19               | 180          | 42           |
| Cobalt               | [Co]         | 7            | 15           | 13                 | 36           | 15         | 7                | 120          | 8            |
| Molybdenum           |              | < 2          | < 2          | < 2                | < 2          | < 2        | 10               | < 2          | < 2          |
| Silver               | [Ag]         | < 1          | < 1          | < 1                | < 1          | < 1        | < 1              | < 1          | < 1          |
| Cadmium              | [64]         | < 1          | < 1          | < 1                | < 1          | < i        | < 1              | 130          | 1            |
| •                    | [Be]         | < 1          | < 1          | < 1                | < 1          | < 1        | < 1              | < 1          | < 1          |
| Boron                | [B ]         | < 10         | < 10<br>-    | < 10               | < 10         | < 10       | < 10             | < 10         | ₹ 10         |
| Antimony             | [Sb]         | 5            | 5            | < 5                | < 5          | < 5        | < 5              | < 5          | ₹ 5          |
| Yttrium              | [Y]          | 3            | 2            | 4                  | < 1          | 3          | 2                | 2            | 9            |
| Scandium<br>Turneter | [Sc]<br>[W ] | < 1<br>< 10  | 1 ( 10       | < 1                | < 1          | 1          | < 1<br>< 10      | < 1          | 2            |
| Tungsten<br>Niobium  | [Nb]         | ( 10         | < 10<br>< 10 | < 10<br>< 10       | < 10         | < 10       |                  | < 10         | < 10         |
| Thorium              | [Th]         | √ 10<br>← 10 | √ 10<br>60   | < 10<br><b>8</b> 0 | < 10<br>< 10 | < 10<br>90 | < 10<br>60       | < 10<br>< 10 | < 10<br>< 10 |
| Arsenic              | [As]         | 10           | 6V<br>( 5    | 60<br>< 5          | < 10<br>< 5  | 70<br>< 5  | 60<br>65         |              |              |
| Bismuth              | [Bi]         | 10           | \ J<br>25    | 20                 | √ 5<br>25    | ( )<br>20  | ან<br>20         | 7800<br>55   | 140<br>25    |
| Tin                  | [Sn]         | 10           | < 10         | 4 10               | < 10         | < 10       | < 10             | < 10         |              |
| Lithium              | [Li]         | · \ \ 10     | 10           | \ 10<br>5          | \ 10<br>\ 5  | < 5        | 5                | < 10<br>< 5  | < 10<br>< 5  |
| Holmium              | [Ho]         | 20           | 50           | 40                 | 20           | ₹ 10       | 40               | ⟨ 10         | 20           |
| · · • • • III £ £118 | E: (G) 3     | 24           | 00           | 40                 | 20           | V 10       | <del>4</del> 1.7 | √ 10         | 20           |

DATE : OCT-22-1990

SIBNED: Bernie Pun

TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No.: S - 1217 - 2 T.S.L. File No.: OC15MIKE

(

T.S.L. Invoice No.: 15977

S7K 6A4

| TN: J. FOSTER |      | PROJECT: PUP | OREQUE | est consultant | ALL RESULTS PPM |           |           |
|---------------|------|--------------|--------|----------------|-----------------|-----------|-----------|
| ELEMENT       |      | 39163        | 39164  | P-58-R-27      | P-SB-R-32       | P-SB-R-33 | P-SB-R-34 |
| Aluminum      | [A1] | 4000         | 3600   | 12000          | 3800            | 10000     | 17000     |
| Iron          | [Fe] | 8400         | 30000  | 43000          | 16000           | 44000     | 49000     |
| Calcium       | [Ca] | 140000       | 27000  | 7000           | 1800            | 5900      | 500       |
| Magnesium     | [Mo] | 1700         | 1000   | 5900           | 360             | 3600      | 6400      |
| Sodium        | [Na] | 20           | 160    | 140            | 20              | 30        | 190       |
| Potassium     | EK 1 | 810          | 1400   | 1900           | 2200            | 7700      | 4100      |
| Titanium      | [Ti] | < 1          | 2      | 1900           | 75              | 500       | 270       |
|               | [Mn] | 490          | 940    | 120            | 73              | 100       | 270<br>65 |
| Phosphorus    |      | < 2          | 990    | 1200           | 840             | 400       | 630       |
| Barium        | [Ba] | 10           | 39     | 11             | 20              | 18        | 21        |
| Chromium      | [Cr] | 26           | 10     | 42             | 17              | 17        | 27        |
| Zirconium     | [Zr] | 3            | 11     | 22             | 8               | 20        | 23        |
| Copper        | [Cu] | 15           | 5      | 81             | 62              | < 1       | 14        |
| Nickel        | [Ni] | 3            | < i    | 25             | 37              | 15        | 7         |
| Lead          | [Pb] | 1            | 11     | 18             | 310             | 24        | 24        |
| Zinc          | [Zn] | 10           | 68     | 9              | 870             | 65        | 14        |
| Vanadium      | [V ] | 14           | 15     | 62             | 32              | 75        | 75        |
| Strontium     | [Sr] | 190          | 57     | 10             | 6               | 7         | 3         |
| Cobalt        | [Co] | 3            | 6      | 23             | 9               | 8         | 5         |
| Molybdenum    | [Ma] | < 2          | < 2    | ⟨ 2            | < 2             | < 2̄      | < 2       |
| Silver        | [Ag] | < i          | < 1    | < 1            | ← 1             | < 1       | < 1       |
| Cadmium       | [Cd] | < 1          | < 1    | < 1            | 7               | < 1       | < 1       |
| Beryllium     | [Be] | < 1          | < i    | < 1            | < 1             | < 1       | < 1       |
| Boron         | (B ] | < 10         | < 10   | < 10           | < 10            | < 10      | < 10      |
| Antimony      | [Sb] | < 5          | < 5    | < 5            | < 5             | < 5       | < 5       |
| Yttrium       | [Y]  | 2            | 9      | 7              | 6               | 13        | 7         |
| Scandium      | [Sc] | < 1          | 2      | 4              | 5               | 9         | 8         |
| Tungsten      | [W]  | < 10         | < 10   | < 10           | < 10            | < 10      | < 10      |
| Niobium       | ENb3 | < 10         | < 10   | 10             | < 10            | < 10      | < 10      |
| Thorium       | [Th] | < 10         | < 10   | 50             | < 10            | 110       | 60        |
| Arsenic       | [As] | 5            | < 5    | < √5           | 15              | 15        | < 5       |
| Bismuth       | [Bi] | 10           | 20     | 35             | 10              | 30        | 35        |
| Tin           | [Sn] | < 10         | < 10   | < 10           | < 10            | < 10      | < 10      |
| Lithium       | [Li] | < 5          | < 5    | 10             | < 5             | < 5       | 5         |
| Holmium       | [Ho] | 20           | 20     | 100            | 20              | 40        | 40        |

DATE: OCT-22-1990



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1264

SAMPLE(S) OF ROCk

INVOICE #: 15890

P.O.: R-2693

Marco V.

Project: Pup

REMARKS: Orequest Consultants

Au

|       | ppb |
|-------|-----|
| 39165 | 340 |
| 39166 | 140 |
| 39167 | 30  |
| 39168 | 15  |
| 39169 | 70  |
| 39170 | 50  |
| 39171 | 70  |
| 39172 | 70  |
| 39173 | 35  |
| 39174 | 130 |
| 39175 | 55  |
| 39176 | 50  |
| 39177 | 35  |
| 39178 | 110 |
| 39179 | 170 |
| 39180 | 40  |
| 39181 | 130 |
| 39182 | 210 |
| 39183 | 560 |
| 39184 | 160 |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Oct 12/90

SIGNED

une Vun

**V** 

Page 1 of 3



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1264

SAMPLE(S) OF ROCK

INVOICE #: 15890

P.O.: R-2693

Marco V.

Project: Pup

REMARKS: Orequest Consultants

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Oct 12/90

SIGNED

Bunie Vin

**V** 

Page 2 of 3



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1264

SAMPLE(S) OF Rock

INVOICE #: 15890

P.O.: R-2693

Marco V.

Project: Pup

REMARKS: Orequest Consultants

|       | Au  |
|-------|-----|
|       | ppb |
| 39205 | 60  |
| 39206 | 75  |
| 39207 | 30  |
| 39208 | 20  |
| 39209 | 15  |
| 39210 | 10  |
| 39211 | 20  |
| 39212 | 5   |
| 39213 | 15  |
| 39214 | 20  |
| 39215 | 20  |
| 39216 | 20  |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Oct 12/90

SIGNED

Page 3 of 3

**V** 

TELEPHONE #: 306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

T.S.L. REPORT No.: S - 1264 - 1
T.S.L. File No.: M - 8285
T.S.L. Invoice No.: 16010

(

S7K 6A4

Vancouver B.C. V&C 2X&

| ATTN: J. FOSTER     |              | PROJECT: PUP OREQUEST |           | CONSULTANTS   |              | ALL RESULT   | ALL RESULTS PPM |              |  |  |
|---------------------|--------------|-----------------------|-----------|---------------|--------------|--------------|-----------------|--------------|--|--|
| ELEMENT             |              | 39165                 | 39166     | 39167         | 39168        | 39169        | 39170           | 39171        |  |  |
| CLLINGILI           |              |                       |           |               |              |              | •               |              |  |  |
| Aluminum            | [A13         | 4400                  | 9200      | 6700          | 5200         | 6200         | 4400            | 4500         |  |  |
| Iron                | [Fe]         | 33000                 | 20000     | 17000         | 15000        | 16000        | 25000           | 18000        |  |  |
| Calcium             | [Ca]         | 8900                  | 11000     | 10000         | 6800         | 5700         | 2100            | 6400         |  |  |
| Magnesium           | [Mg]         | 1200                  | 3500      | 2300          | 1400         | 2100         | 1300            | 1400         |  |  |
| Sodium              | [Na]         | 190                   | 200       | 210           | 220          | 230          | 180             | 190          |  |  |
| Potassium           | CK 1         | 2500                  | 4100      | 3700          | 3300         | 3100         | 2600            | 2000         |  |  |
| Titanium            | [Ti]         | 390                   | 970       | 870           | 630          | 980          | 1000            | 170          |  |  |
| Manganese           | [Mn]         | 810                   | 610       | 620           | 730          | 680          | 220             | 550          |  |  |
| Phosphorus          |              | 930                   | 840       | 830           | 860          | 780          | 1100            | 670          |  |  |
| Barium              | [Ba]         | 28                    | 66        | 75            | 86           | 68           | 76              | 44           |  |  |
| Chromium            | (Cr)         | 39                    | 24        | 24            | 43           | 32           | 22              | 16           |  |  |
| Zirconium           | [Zr]         | 4                     | 5         | 5             | 5            | 4            | 3               | 2            |  |  |
| Cooper              | [Cu]         | 140                   | 850       | 390           | 88           | 550          | 220             | 420          |  |  |
| Nickel              | [Ni]         | 6                     | 3         | 2             | 3            | 2            | < 1             | 1            |  |  |
| Lead                | [Pb]         | 15                    | 13        | 17            | 4            | 10           | 16              | 6            |  |  |
| Zinc                | [Zn]         | 29                    | 56        | 59            | 35           | 43           | 20              | 28           |  |  |
| Vanadium            | [V ]         | 13                    | 35        | 24            | 16           | 21           | 19              | 15           |  |  |
| Strontium           | [Sr]         | 34                    | 93        | 80            | 58           | 56           | 25              | 44           |  |  |
| Cobalt              | [Co]         | 31                    | 8         | 7             | 6            | 6            | 3               | <i>b</i>     |  |  |
| Molybdenum          |              | < 2                   | < 2       | 2             | 2            | 2            | < 2             | < 2          |  |  |
| Silver              | [Ag]         | < 1                   | < 1       | < 1           | ₹ 1          | < 1          | < 1             | < 1          |  |  |
| Cadmium             | [C4]         | < 1                   | < i       | < 1           | < 1          | < 1          | < 1             | < 1          |  |  |
| Beryllium           | [Be]         | < 1                   | < 1       | < 1           | < 1          | < 1          | < 1             | < 1          |  |  |
| Boran               | [8]          | < 10                  | < 10      | < 10          | < 10         | < 10         | < 10            | < 10         |  |  |
| Antimony            | [Sb]         | < 5                   | < 5       | < 5           | < 5          | < - 5        | < 5<br>3        | < 5<br>3     |  |  |
| Yttrium<br>Scandium | [Y ]<br>[Sc] | 7                     | 5<br>2    | <b>4</b><br>1 | 4            | 4            |                 | =            |  |  |
|                     | [W ]         | 40                    | < 10      | 1<br>< 10     | < 1<br>< 10  | 1<br>< 10    | < 1<br>< 10     | < 1<br>< 10  |  |  |
| Tungsten<br>Niobium | [Nb]         | 40<br>( 10            | < 10      |               |              |              |                 |              |  |  |
| Thorium             | [Th]         | < 10                  | 50        | < 10<br>< 10  | < 10<br>< 10 | < 10<br>< 10 | < 10<br>< 10    | < 10<br>< 10 |  |  |
| Arsenic             | [As]         | 35                    | 50<br>< 5 | 5 5           | ₹ 5          | < 5          | 15              | \ 10<br>5    |  |  |
| Bismuth             | [Bi]         | 55<br>15              | 15        | 10            | 10           | \ 5          | 15<br>< 5       | 5<br>5       |  |  |
| Tin                 | [Sn]         | < 10                  | < 10      | < 10          | < 10         | < 10         | ⟨ 10            |              |  |  |
| Lithium             | [Li]         | < 5                   | < 5       | < 5           | < 5          | ₹ 5          | < 5             | < 10<br>< 5  |  |  |
| Holmium             | [Ho]         | ⟨ 10                  | ⟨ 10      | ₹ 10          | ⟨ 10         | ⟨ 10         | ₹ 10            | ⟨ 10         |  |  |
| 1111 1 12(3)        | - 1104 3     | V 1V                  | . 10      | / 10          | V 4V         | / IV         | × 10            | V 10         |  |  |

DATE: OCT-23-1990

SIGNED:

Bernie Oun

57K 6A4

TELEPHONE #: 306) 931 - 1033

FAX #:

(306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1264 - 2

T.S.L. File No.: OC17MB T.S.L. Invoice No. : 16010

Vancouver B.C. V&C 2X6 ATTN: J. FOSTER PROJECT: PUP DREQUEST CONSULTANTS

ALL RESULTS PPM

| HIIN: J. FUSIEK       |             | PROJECT: POP | UREGUEST CONS   | ULIANIS                               | ALL RESULTS PPM |            |               |            |  |
|-----------------------|-------------|--------------|-----------------|---------------------------------------|-----------------|------------|---------------|------------|--|
| ELEMENT               |             | 39172        | 39173           | ₹₽174                                 | 39175           | 39176      | 39177         | 39178      |  |
| CCCICIAI              |             |              |                 |                                       |                 |            | •             |            |  |
| Aluminum              | [A1]        | 3900         | 5000            | 90                                    | 6400            | 5700       | 7300          | 9700       |  |
| Iron                  | [Fe]        | 15000        | 15000           | . 00                                  | 18000           | 20000      | 20000         | 23000      |  |
| Calcium               | [Ca]        | 1700         | 2600            | 3600                                  | 3000            | 2900       | 3500          | 4200       |  |
| Magnesium             | [Mg]        | 990          | 1500            | 1500                                  | 2000            | 1400       | 2100          | 3400       |  |
| Sodium                | [Na]        | 230          | 380             | 260                                   | 250             | 340        | 340           | 350        |  |
| Potassium             | [K ]        | 2200         | 2400            | 2300                                  | 2100            | 2000       | 2000          | 1900       |  |
| Titanium              | [Ti]        | 140          | 360             | 240                                   | 110             | 46         | 110           | 360        |  |
| Manganese             | [Mn]        | 260          | 220             | 300                                   | 530             | 330        | 310           | 300        |  |
| Phosphorus            |             | 580          | 620             | 630                                   | 900             | 640        | 780           | 970        |  |
| Barium                | [Ba]        | 49           | 55              | 39                                    | 40              | 50         | 53            | 55         |  |
| Chromium              | [Cr]        | 23           | 51              | 36                                    | 26              | 35         | 25            | 25         |  |
| Zirconium             | [77]        | 2            | 4               | 2                                     | 2               | 1          | 2             | 5          |  |
| Copper                | [Cu]        | 100          | 120             | 260                                   | 250             | 170        | 380           | 1100       |  |
| Nickel                | [Ni]        | 1            | 2               | 2                                     | 4               | 3          | 1             | < 1        |  |
| Lead                  | [Pb]        | 6            | 4               | 2                                     | 5               | 12         | 9             | 3          |  |
| Zinc<br>Vanadium      | [Zn]<br>[V] | 18<br>12     | 17              | 19                                    | 33              | 26         | 31            | 35         |  |
| vanaoium<br>Strontium | [Sr]        | 12<br>18     | 15<br>35        | 15<br>26                              | 23<br>17        | 19<br>30   | 26<br>77      | 45         |  |
| Cobalt                | (Co)        | 18<br>4      | აი<br>4         |                                       |                 |            | 37            | 52         |  |
| Molybdenum            |             | 4            | <b>4</b><br>( 2 | 4<br>8                                | 5<br>8          | 5<br>4     | <b>4</b><br>2 | 6<br>( 2   |  |
| Silver                | [Ao]        | < 1          | < 1             | < 1                                   | < 1             |            |               |            |  |
| Cadmium               | [Cq]        | < 1          | < 1             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ \ \ \ \ 1     | < 1<br>< 1 | < 1<br>< 1    | < 1<br>< 1 |  |
| Beryllium             | [Be]        | < 1          | < 1             | < 1                                   | ₹ 1             | ₹ 1        | < 1           | ₹ 1        |  |
| Boron                 | (B ]        | ₹ 10         | ₹ 10            | ₹ 10                                  | ₹ 10            | ₹ 10       | ₹ 10          | ₹ 10       |  |
| Antimony              | [Sb]        | < 5          | < 5             | < 5                                   | ₹ 5             | ₹ 5        | ₹ 5           | ₹ 5        |  |
| Yttrium               | [Y ]        | 3            | 3               | ` 3                                   | 5               | . 3        | · 4           | ` 5        |  |
| Scandium              | (Sc)        | < 1          | < <u>1</u>      | < 1                                   | 1               | 1          | 1             | 2          |  |
| Tungsten              | EW 1        | < 10         | < 10            | < 10                                  | < 10            | < 10       | 10            | < 10       |  |
| Niobium               | [Nb]        | < 10         | < 10            | < 10                                  | < 10            | < 10       | < 10          | ← 10       |  |
| Thorium               | [Th]        |              | < 10            | < 10                                  | < 10            | < 10       | < 10          | 40         |  |
| Arsenic               | [As]        | < 5          | < 5             | < 5                                   | 5               | 15         | 10            | ₹ 5        |  |
| Bismuth               | [Bi]        | 5            | < 5             | 5                                     | 5               | ₹ 5        | ₹ 5           | Š          |  |
| Tin                   | [Sn]        | < 10         | < 10            | < 10                                  | < 10            | < 10       | < 10          | < 10       |  |
| Lithium               | [Li]        | < 5          | < 5             | ₹ 5                                   | < 5             | < 5        | < 5           | ₹ 5        |  |
| Holmium               | [Ho]        | < 10         | < 10            | < 10                                  | < 10            | < 10       | < 10          | ₹ 10       |  |
|                       |             |              |                 |                                       |                 |            |               |            |  |

DATE: OCT-23-1990

SIGNED: Semie Pun

S7K 6A4

TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1264 - 3 T.S.L. File No.: 9C17MB

T.S.L. Invaice No. : 16010

Vancouver B.C. V&C 2X6 ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS

ALL RESULTS PPM

| AIIN: J. FUSIEK      |              | PROJECT: POP | OKEGUEST CON        | SULTANTS    |                                       | ALL RESULT  | S PPM       |             |
|----------------------|--------------|--------------|---------------------|-------------|---------------------------------------|-------------|-------------|-------------|
|                      |              | 39179        | 39180               | 39181       | 39182                                 | 39183       | 39184       | 39185       |
| ELEMENT              |              |              |                     |             |                                       |             | •           |             |
| Aluminum             | [A1]         | 9700         | 9600                | 12000       | 10000                                 | 11000       | 9000        | 5900        |
| Iron                 | [Fe]         | 23000        | 22000               | 27000       | 27000                                 | 32000       | 26000       | 22000       |
| Calcium              | [Ca]         | 5600         | 6200                | 5600        | 8600                                  | 7500        | 5500        | 3800        |
| Magnesium            | [Mg]         | 3300         | 3500                | 3700        | 3200                                  | 3200        | 3200        | 2400        |
| Sodium               | [Na]         | 330          | 280                 | 250         | 280                                   | 230         | 270         | 380         |
| Potassium            | [K ]         | 1400         | <b>88</b> 0         | 1200        | 1800                                  | 1600        | 1400        | 1300        |
| Titanium             | [Ti]         | 730          | <b>96</b> 0         | <b>54</b> 0 | 93                                    | 400         | 580         | 730         |
| Manganese            | [Mn]         | 350          | 410                 | 460         | 480                                   | 450         | 400         | 410         |
| Phosphorus           |              | <b>98</b> 0  | 1200                | 1200        | 1100                                  | 1100        | 1000        | 680         |
| Barium               | [Ba]         | 34           | 25                  | 33          | 47                                    | 41          | 40          | 32          |
| Chromium             | (Cr)         | 23           | 22                  | 16          | 19                                    | 12          | 16          | 33          |
| Zirconium            | [Zr]         | 7            | 8                   | 5           | 2                                     | 5           | 6           | 6           |
| Copper               | [Cu]         | <b>29</b> 00 | 510                 | 720         | 2000                                  | 2700        | 1700        | 390         |
| Nickel               | [Ni]         | < 1          | < 1                 | 1           | < 1                                   | < <u>1</u>  | < 1         | 4           |
| Lead                 | [Pb]         | 5            | 5<br>               | 3           | 4                                     | 7           | 8           | 16          |
| Zinc                 | [Zn]         | 46           | 26                  | 43          | 40                                    | 48          | 50          | 81          |
| Vanadium             | [V]          | 54           | 54                  | 65<br>(1    | 38<br>90                              | 51          | 45<br>63    | 33<br>27    |
| Strontium            | [Sr]         | <i>8</i> 6 · | 120                 | 61          |                                       | 62          |             |             |
| Cobalt               | [Co]         | 8            | 7                   | 6           | 7<br>< 2                              | 8<br>〈 2    | 7<br>< 2    | 5<br>〈 2    |
| Molybdenum<br>Silver |              | < 2<br>1     | < 2                 | < 2         |                                       |             |             |             |
|                      | [Ag]         | -            | < 1                 | < 1<br>< 1  | 1 ( 1                                 | 1<br>< 1    | < 1<br>< 1  | < 1<br>< 1  |
| Cadmium<br>Beryllium | [Cd]<br>[Be] | < 1<br>< 1   | < 1<br>< 1          | < 1         | · -                                   |             |             |             |
| Boron                | [B]          | < 10         | < 10                | ( 10        | < 1<br>< 10                           | < 1<br>< 10 | < 1<br>< 10 | < 1<br>< 10 |
| Antimony             | [Sb]         | \ 10<br>\ 5  | \ \ \ \ \ \ \ \ \ 5 | < 5         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | < 5         | < 5         |             |
| Yttrium              | [Y ]         | 5            | 5                   | 6           | 7                                     | 6           | \ 5<br>5    | 5<br>3      |
| Scandium             | [Sc]         | 2            | 2                   | 2           | 2                                     | 2           | 2           |             |
| Tungsten             | [W ]         | < 10         | < 10                | < 10        | < 10                                  | < 10        | < 10        | 1<br>< 10   |
| Niobium              | [Nb]         | ₹ 10         | ₹ 10                | < 10        | < 10                                  | ₹ 10        | < 10        | ₹ 10        |
| Thorium              | [Th]         | 50           | 60                  | 30          | 60                                    | 60          | 50          | ₹ 10        |
| Arsenic              | [As]         | 5            | ₹ 5                 | < 5         | < 5                                   | ₹ 5         | 10          | 25          |
| Bismuth              | [Bi]         | 5            | 5                   | 5           | 5                                     | 5           | ₹.5         | ₹ 5         |
| Tin                  | [Sn]         | < 10         | ← 10                | < 10        | < 10                                  | < 10        | < 10        | ₹ 10        |
| Lithium              | [Li]         | ₹ 5          | ₹ 5                 | ₹ 5         | `₹ 5                                  | ₹ 5         | `₹ 5        | ₹ 5         |
| Holmium              | [Ho]         | ⟨ 10         | < 10                | < 10        | < 10                                  | < 10        | < 10        | < 10        |
|                      |              | · -•         |                     |             | • ••                                  |             |             | . • •       |

DATE: OCT-23-1990

SIGNED: Benie Oum

TELEPHONE #: 306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. File No.: OC17MB

T.S.L. REPORT No.: S - 1264 - 4

808 West Hastings St.

T.S.L. Invoice No.: 16010

S7K 6A4

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS

ALL RESULTS PPM

| HILING J. TUSIEN |        | rnuseur rur | טאבשטבס: בטואס | ULIMMID     |                 | HEE NEOULS | o rrn |       |
|------------------|--------|-------------|----------------|-------------|-----------------|------------|-------|-------|
| ELEMENT          |        | 39186       | 39187          | 39188       | 39189           | 39190      | 39191 | 39192 |
| Aluminum         | [A1]   | 8400        | 7300           | 5800        | 8900            | 14000      | 7200  | 10000 |
| Iron             | [Fe]   | 22000       | 23000          | 20000       | 21000           | 22000      | 17000 | 23000 |
| Calcium          | [Ca]   | 4600        | 5200           | 5900        | 5600            | 8200       | 5400  | 5400  |
| Magnesium        | [Mg]   | 3300        | 2900           | 2600        | 3600            | 4700       | 2900  | 4000  |
| Sodium           | [Na]   | 360         | 300            | 270         | 330             | 380        | 320   | 260   |
| Potassium        | [K ]   | 1100        | 1400           | 1200        | 1000            | 770        | 940   | 1200  |
| Titanium         | [Ti]   | 880         | 890            | 220         | 1200            | 1400       | 1200  | 1600  |
| Manganese        | [Mn]   | 450         | 410            | 410         | 310             | 500        | 240   | 330   |
| Phosphorus       | [P]    | 920         | <b>B4</b> 0    | <b>79</b> 0 | 1000            | 1300       | 1300  | 1200  |
| Barium           | [Ba]   | 24          | 33             | 29          | 24              | 15         | 16    | 14    |
| Chromium         | [Cr]   | 30          | 31             | 26          | 22              | 29         | 16    | 14    |
| Zirconium        | [Zr]   | 7           | 8              | 3           | 7               | 8          | 6     | 6     |
| Copper           | [Cu]   | 1100        | 570            | 1000        | <del>9</del> 70 | 270        | 380   | 180   |
| Nickel           | [Ni]   | < 1         | < 1            | < 1         | < 1             | 2          | 2     | 3     |
| Lead             | [Pb]   | 11          | 12             | 7           | 3               | 5          | 5     | 4     |
| Zinc             | [Zn]   | 44          | 58             | 67          | 32              | 31         | 23    | 28    |
| Vanadium         | [V]    | 43          | 37             | 30          | 56              | 63         | 36    | 47    |
| Strontium        | [Sr]   | 53          | 49             | 49          | 91              | 63         | 50    | 43    |
| Cobalt           | [Co]   | 7           | 6              | 5           | 5               | 6          | 7     | 7     |
| Molybdenum       |        | < 2         | < 2            | < 2         | < 2             | < 2        | < 2   | 2     |
| Silver           | [ Ag ] | < 1         | < 1            | < 1         | < 1             | < 1        | < 1   | < 1   |
| Cadmium          | [Cd]   | < 1         | < 1            | < 1         | < 1             | < 1        | < 1   | < 1   |
| Beryllium        | [Be]   | < 1         | < 1            | < 1         | < 1             | < i        | < 1   | < 1   |
| Baron            | [B]    | < 10        | < 10           | < 10        | < 10            | < 10       | < 10  | < 10  |
| Antimony         | [56]   | < 5         | < 5            | < 5         | ₹ 5             | < 5        | ₹ 5   | ⟨ 5   |
| Yttrium          | [Y]    | 5           | 5              | 4           | 5               | 6          | 5     | 5     |
| Scandium         | [Sc]   | 1           | 2              | 1           | 2               | 4          | 1     | 2     |
| Tungsten         | [W]    | < 10        | 10             | < 10        | < 10            | < 10       | < 10  | < 10  |
| Niobium          | [Nb]   | < 10        | < 10           | < 10        | < 10            | < 10       | < 10  | < 10  |
| Thorium          | [Th]   | 40          | 60             | < 10        | 50              | 40         | ← 10  | 20    |
| Arsenic          | [As]   | 10          | 10             | 10          | ₹ 5             | 5          | ₹ 5   | < 5   |
| Bismuth          | [Bi]   | . 5         | 10             | 10          | 10              | 10         | 5     | 10    |
| Tin              | [Sn]   | < 10        | < 10           | < 10        | < 10            | < 10       | < 10  | < 10  |
| Lithium          | [Li]   | < 5         | < 5            | < 5         | ₹ 5             | < 5        | < 5   | < 5   |
| Holmium          | [Ho]   | < 10        | < 10           | < 10        | < 10            | < 10       | < 10  | < 10  |
|                  |        |             |                |             |                 |            |       |       |

DATE : OCT-23-1990

SIGNED: Burie Oum

S7K 6A4

TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. REPORT No.: S - 1264 - 5 T.S.L. File No.: OC17MB

(

340

450

260

21

10

250

5

48

75

270

< 1

< 1

< 1

< 10

2

50

10

< 5

< 10

< 5

< 10

₹ 5 7

< 10

( 10

7

808 West Hastinos St.

T.S.L. Invoice No.: 16010

Vancouver B.C. V&C 2X&

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS ALL RESULTS PPM 39198 39199 39196 39197 39195 39193 39194 ELEMENT 8400 Aluminum [A1] 14000 17000 8200 9400 11000 11000 22000 21000 21000 21000 [Fe] 25000 28000 18000 Iron Calcium [Ca] 7800 8700 6000 9100 20000 9400 8300 2100 2400 3700 2900 Magnesium [Mq] 4500 5100 2100 [Na] 310 290 360 260 90 240 Sodium 1600 9700 3700 5200 EK ) 2400 4900 1700 Potassium 800 1100 990 1400 Titanium [Ti] 1800 2000 760 1000 460 430 470 310 Manganese [Mn] 440 1600 Phosphorus [P ] 1500 830 670 820 1200 610 67 38 140 39 37 [Ba] 21 Barium Chromium [Cr] 20 48 19 15 6 22 5 5 4 6 6 Zirconium [Zr] 6 360 300 250 350 110 230 Cooper [Cu] ( 1 < 1 < 1 < 1 < 1 3 Nickel [Ni] 4 3 Lead [Pb] 1 4 7 8 9 58 37 32 30 23 30 [Zn] Zinc [V ] 59 75 52 Vanadium 46 65 48 75 49 81 160 88 74 Strontium [Sr] 9 B Cobalt [Co] 4 5 10 5 < 2 < 2 < 2 2 2 2 < 2 Molybdenum [Ma] < (

< 1

< 1

< 10

< 5

< 10

< 10

< 10

< 5

< 10

< 5

< 10

10

4

1

< 1 < 1

< 1

< 10

6

1

10

80

10

< 5

< 10

< 10

< 5

< 5

<

< 10

< 1 ( 1

< 1

< 1

< 10

< 5

< 10

< 10

< 10

< 5

< 10

15

< 5

6

1 < 10 < 1

< 1

< 1

< 10

< 5

< 10

20

10

< 5

< 10

< 5

< 10

( 10

7

Bernia Dun SIGNED :

DATE: OCT-23-1990

Silver

Cadmium Beryllium [Be]

Baron

Antimony

Yttrium Scandium

Tungsten Niobium

Thorium

Arsenic

Bismuth

Lithium

Holmium

Tin

[Aq]

[[03]

[B]

[Sb]

[ Y]

[Sc]

[W]

[Nb]

[Th]

[As]

[Bi]

[Sn]

[Li]

[Ho]

< 1

< 1

< 1

< 10

< 10

< 5

6

2

10

40

10

< 5

< 10

< 5

10

< 1

< 1

< 1

< 5

< 10

< 10

7

2

10

40

10

10

< 5

< 10

< 5

S7K 6A4

TELEPHONE #: 306) 931 - 1033 (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. File No.: OC17MB

808 West Hastings St.

T.S.L. Invoice No.: 16010

Vancouver B.C. V&C 2X& ATTN: J. FOSTER

PROJECT: PUP DREQUEST CONSULTANTS

ALL RESULTS PPM

T.S.L. REPORT No.: 5 - 1264 - 6

|                     |              |               | 5.1240201 50.100 |             |            | THE THEODETT               | J 1111                     |             |
|---------------------|--------------|---------------|------------------|-------------|------------|----------------------------|----------------------------|-------------|
| ELEMENT             |              | 39200         | 39201            | 39202       | 39203      | 39204                      | 39205                      | 39206       |
| <b>A</b> 3 .        |              | 47000         |                  |             |            |                            | •                          |             |
| Aluminum<br>-       | [A1]         | 12000         | 13000            | 13000       | 7400       | 12000                      | 12000                      | 12000       |
| Iron                | [Fe]         | 24000         | 30000            | 30000       | 25000      | 28000                      | 25000                      | 25000       |
| Calcium             | [Ca]         | 7200          | 8500             | 11000       | 13000      | 6000                       | 8800                       | 9300        |
| Magnesium<br>Sodium | [Mo]<br>[Na] | 3 <b>9</b> 00 | 4000             | 3700        | 1700       | 3500                       | 3900                       | 4000        |
|                     | [K]          | 300<br>5000   | 280              | 230<br>2200 | 190        | 190<br>1700                | 240<br>1500                | 240<br>1100 |
| Potassium           | [Ti]         | 5800          | 2300             |             | 3300       |                            |                            |             |
| Titanium            |              | 1400          | 1100             | 370<br>200  | 160<br>690 | <b>45</b> 0<br><b>74</b> 0 | <b>82</b> 0<br><b>68</b> 0 | 1000<br>650 |
| Manganese           | [Mn]         | <b>44</b> 0   | 590<br>1700      | 800         |            |                            |                            |             |
| Phosphorus          |              | 1200          | 1300             | 1200        | 1400       | 1300<br>40                 | 1500<br>34                 | 1500<br>28  |
| Barium<br>Chromium  | [Ba]<br>[Cr] | 46<br>25      | 32<br>20         | 52<br>21    | 68         |                            |                            |             |
|                     |              | 23<br>7       | 20<br>7          | 21<br>5     | 9<br>3     | 13<br>5                    | 20<br>7                    | 14<br>9     |
| Zirconium           | [Zr]<br>[Cu] | /<br>220      | 7<br>390         | 220         | ა<br>250   |                            |                            |             |
| Copper              | [Ni]         | 420<br>( 1    | 370<br>< 1       | < 1         | 250<br>< 1 | 440<br>< 1                 | 330<br>4                   | 480<br>2    |
| Nickel<br>Lead      | [Pb]         | 4             | 3                | 5           | 7          | 2                          | 5                          | 4           |
|                     | [Zn]         | 42            | 52               | 56          | 34         | 53                         | 60                         | 50          |
| Zinc<br>Vanadium    | [            | 42<br>81      | 100              | 56<br>56    | 27         | 55                         | 65                         | 88          |
| Strontium           | [Sr]         | 190           | 77               | 120         | 85         | 85                         | 120                        | 130         |
| Cobalt              | [Co]         | 5             | 6                | 6           | 8          | 8                          | ь                          | 7           |
| Molybdenum          |              | < 2           | < 2              | < 2 −       | < 2        | ⟨ 2                        | < 2                        | ⟨ 2         |
| Silver              | [Ag]         | < 1           | < 1              | ₹ 1         | < 1        | ₹ 1                        | ₹ 1                        | < 1         |
| Cadmium             | [Cd]         | < 1           | < 1              | < 1         | ₹ 1        | ₹ 1                        | < <b>1</b>                 | < 1         |
| Beryllium           | [Be]         | < 1           | < 1              | < 1         | < 1        | < 1                        | < 1                        | ₹ 1         |
| Baran               | [B]          | < 10          | < 10             | < 10        | < 10       | < 10                       | < 10                       | < 10        |
| Antimony            | [86]         | < 5           | < 5              | < 5         | ₹ 5        | ₹ 5                        | 5                          | ⟨ 5         |
| Yttrium             | EY 1         | 6             | 7                | 8           | 9          | 7                          | 7                          | 6           |
| Scandium            | [Sc]         | 2             | 3                | 3           | 2          | 2                          | 2                          | 2           |
| Tungsten            | [W]          | < 10          | < 10             | < 10        | 10         | < 10                       | < 10                       | < 10        |
| Niobium             | [Nb]         | < 10          | < 10             | < 10        | < 10       | < 10                       | < 10                       | < 10        |
| Thorium             | [Th]         | 20            | 30               | 30          | < 10       | 50                         | 30                         | 20          |
| Arsenic             | (as)         | < 5           | < 5              | 5           | 10         | 10                         | 20                         | < 5         |
| Bismuth             | [Bi]         | 10            | 10               | 10          | 10         | 5                          | 10                         | 10          |
| Tin                 | [Sn]         | < 10          | < 10             | < 10        | < 10       | < 10                       | ← 10                       | < 10        |
| Lithium             | [Li]         | < 5           | < 5              | < 5         | < 5        | < 5                        | < 5                        | < 5         |
| Holmium             | [Ho]         | < 10          | 10               | < 10        | < 10       | < 10                       | < 10                       | < 10        |

DATE: OCT-23-1990

SIGNED: Beine Oun

> TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1264 - 7 T.S.L. File No.: OC17MB

T.S.L. Invoice No.: 16010

| Vancouver B.C.      | V6C 2X <i>E</i> | )            |              |             |       |            |       |           |
|---------------------|-----------------|--------------|--------------|-------------|-------|------------|-------|-----------|
| ATTN: J. FOSTER     |                 | PROJECT: PUP | OREQUEST COM | ISULTANTS   |       | ALL RESULT | S PPM |           |
| ELEMENT             |                 | 39207        | 39208        | 39209       | 39210 | 39211      | 39212 | 39213     |
| CFELICIAL           |                 |              |              |             |       |            | •     |           |
| Aluminum            | [A1]            | 12000        | 9300         | 12000       | 13000 | 9200       | 13000 | 17000     |
| Iran                | [Fe]            | 30000        | 23000        | 28000       | 25000 | 27000      | 31000 | 34000     |
| Calcium             | [Ca]            | 5300         | 4500         | 7300        | 9700  | 15000      | 9200  | 6200      |
| Magnesium           | [Mo]            | 4100         | 3600         | 3600        | 4500  | 2500       | 3300  | 4800      |
| Sodium              | [Na]            | 310          | 340          | 280         | 330   | 160        | 170   | 270       |
| Potassium           | £K ]            | 1700         | 1700         | 1900        | 720   | 2200       | 2500  | 1700      |
| Titanium            | [Ti]            | 1100         | 920          | 960         | 880   | 180        | 280   | 580       |
| Manganese           | [Mn]            | <b>5</b> 20  | 480          | <b>75</b> 0 | 830   | 540        | 650   | 860       |
| Ph <b>os</b> phorus | [P]             | 1500         | 1000         | 1400        | 1200  | 1300       | 1400  | 1200      |
| Barium              | (Ba)            | 38           | 70           | 43          | 24    | 65         | 72    | 46        |
| Chromium            | [Cr]            | 25           | 22           | 17          | 41    | 12         | 10    | 19        |
| Zirconium           | [Zr]            | 9            | 8            | 7           | 10    | 2          | 1     | 4         |
| Copper              | [Ըս]            | 130          | 120          | 230         | 210   | 120        | 170   | 430       |
| Nickel              | [Ni]            | < 1          | < 1          | i           | 10    | < 1        | < 1   | 7         |
| Lead                | [Pb]            | 5            | 4            | 4           | 5     | 12         | 13    | 5         |
| Zinc                | [Zn]            | 44           | 42           | 43          | 53    | 37         | 54    | 36        |
| Vanadium            | [V ]            | 58           | 49           | 46          | 67    | 22         | 29    | 67        |
| Strontium           | [Sr]            | 110          | 110          | 48          | 53    | 140        | 82    | 42        |
| Cobalt              | [Co]            | 7            | 5            | 8           | 7     | 5          | 7     | 9         |
| Molybdenum          | [Mo]            | < 2          | < 2          | < 2         | < 2   | < 2        | < 2   | < 2       |
| Silver              | [Ag]            | < 1          | < 1          | < 1         | < 1   | < 1        | < 1   | <b>(1</b> |
| Cadmium             | [Cd]            | < 1          | < 1          | < 1         | < i   | < i        | < 1   | ₹ 1       |
| Beryllium           | [Be]            | < 1          | < 1          | < 1         | < 1   | < 1        | < 1   | < 1       |
| Boron               | [B]             | < 10         | < 10         | < 10        | < 10  | < 10       | < 10  | < 10      |
| Antimony            | [Sb]            | < 5          | < 5          | < 5         | ₹ 5   | ₹ 5        | < 5   | < 5       |
| Yttrium             | [Y]             | 6            | 5            | £           | 6     | 6          | 8     | . 9       |
| Scandium            | [Sc]            | 2            | 2            | 2           | 2     | < 1        | 1     | 3         |
| Tungsten            | [W]             | < 10         | < 10         | < 10        | < 10  | < 10       | < 10  | < 10      |
| Niobium             | [Nb]            | < 10         | < 10         | < 10        | < 10  | < 10       | < 10  | < 10      |
| Thorium             | [Th]            | 50           | 60           | 30          | 40    | 80         | 60    | 30        |
| Arsenic             | [As]            | 10           | 10           | 10          | 5     | 10         | < 5   | < 5       |
| Bismuth             | [Bi]            | 5            | 10           | 10          | 10    | 10         | 10    | 10        |
| Tin                 | [Sn]            | < 10         | < 10         | < 10        | < 10  | < 10       | < 10  | < 10      |
| Lithium             | [Li]            | < 5          | < 5          | < 5         | < 5   | < 5        | < 5   | < 5       |
| Holmium             | [Ho]            | < 10         | < 10         | < 10        | < 10  | < 10       | 10    | 10        |
|                     |                 |              |              |             |       |            |       |           |

Benne Dunn

DATE: OCT-23-1990

S7K 6A4

TELEPHONE #: 306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. REPORT No.: S - 1264 - 8 T.S.L. File No.: OC17MB

808 West Hastings St.

T.S.L. Invoice No.: 16010

Vancouver B.C. V&C 2X6 ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS

ALL RESULTS PPM

|      | TRUVEGIE FUF                                        | UNEQUES! CUMO                                                                                                                                                                                                                                                                               | DE LHIM 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 39214                                               | 39215                                                                                                                                                                                                                                                                                       | 39216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ΓΛ11 | 1,8000                                              | LDAA                                                                                                                                                                                                                                                                                        | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 28000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -    |                                                     |                                                                                                                                                                                                                                                                                             | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [Ba] | 50                                                  | 37                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [Cr] | 13                                                  | 17                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [Zr] | 3                                                   | 3                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [Cu] | 5 <b>9</b> 0                                        | 290                                                                                                                                                                                                                                                                                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [Ni] | 4                                                   | 4                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [Pb] | 19                                                  | 16                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [Zn] | 33                                                  | 29                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [ V  | 61                                                  | 26                                                                                                                                                                                                                                                                                          | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [Co] |                                                     |                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                     |                                                                                                                                                                                                                                                                                             | < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -    | · -                                                 | · -                                                                                                                                                                                                                                                                                         | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | · -                                                 |                                                                                                                                                                                                                                                                                             | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | · •                                                 | · -                                                                                                                                                                                                                                                                                         | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                     |                                                                                                                                                                                                                                                                                             | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                     | · -                                                                                                                                                                                                                                                                                         | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | =                                                   |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                     |                                                                                                                                                                                                                                                                                             | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                     |                                                                                                                                                                                                                                                                                             | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                     |                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                     |                                                                                                                                                                                                                                                                                             | < 10<br>- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                                                     |                                                                                                                                                                                                                                                                                             | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1401 | < 10                                                | < 10                                                                                                                                                                                                                                                                                        | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | [Cr]<br>[Zr]<br>[Cu]<br>[Ni]<br>[Pb]<br>[Zn]<br>[V] | [A1] 14000 [Fe] 37000 [Ca] 6000 [Mo] 5200 [Na] 300 [K ] 2300 [Ti] 530 [Mn] 660 [P ] 1200 [Ba] 50 [Cr] 13 [Zr] 3 [Cu] 590 [Ni] 4 [Pb] 19 [Zn] 33 [V ] 61 [Sr] 34 [Co] 9 [Mo] < 2 [Ag] < 1 [Cd] < 1 [Be] < 10 [Sb] < 5 [Y ] 11 [Sc] 3 [W ] < 10 [Nb] < 10 [Th] 40 [As] < 5 [Sn] < 10 [Li] < 5 | [A1] 14000 6900 [Fe] 37000 24000 [Ca] 6000 17000 [Mg] 5200 2900 [Na] 300 230 [K ] 2300 [CK ] 2300 [ |

SIGNED: Bernie Pun

DATE: OCT-23-1990



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street.

Vancouver, B.C. V6C 2X6

SAMPLE(S) OF Soil

REPORT No. S9919

INVOICE #: 15355

P.O.: R2471

Marco V Project PUP

**REMARKS:** Orequest Consultants

Au

|                                                |       | ppb                       |
|------------------------------------------------|-------|---------------------------|
| L1+00N                                         | 1+25W | 35                        |
| L1+00N                                         | 1+00W | 55                        |
| L1+00N                                         | 0+75W | 120                       |
| L1+00N                                         | 0+50W | 45                        |
| L1+00N                                         | 0+25W | 80                        |
| L1+00N                                         | 0+00  | 60                        |
| L1+00N                                         | 0+25E | 20                        |
| L1+00N                                         | 0+50E | 25                        |
| L1+00N                                         | 0+75E | 20                        |
| L1+00N                                         | 1+00E | 10                        |
| L1+00N<br>L1+00N<br>L2+00N<br>L2+00N<br>L2+00N | 1+50E | 10<br>5<br>50<br>40<br>85 |
| L2+00N                                         | 0+00  | 40                        |
| L2+00N                                         | 0+25E | 25                        |
| L2+00N                                         | 0+50E | 30                        |
| L2+00N                                         | 0+75E | 30                        |
| L2+00N                                         | 1+00E | 40                        |

J. Foster, P. Lougheed COPIES TO:

Prime-Vancouver INVOICE TO:

Sep 11/90

Bernie Vum SIGNED \_

Page 1 of 7



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S9919

SAMPLE(S) OF Soil

INVOICE #: 15355

P.O.: R2471

Marco V Project PUP

REMARKS: Orequest Consultants

|                                                |                                           | Au<br>ppb                   |
|------------------------------------------------|-------------------------------------------|-----------------------------|
| L2+00N<br>L2+00N<br>L2+00N<br>L2+00N<br>L2+00N | 1+25E<br>1+50E<br>1+75E<br>2+00E<br>2+25E | 25<br>30<br>60<br>25<br>30  |
| L2+00N<br>L3+00N<br>L3+00N<br>L3+00N<br>L3+00N | 2+50E<br>1+00W<br>0+75W<br>0+50W<br>0+25W | 30<br>55<br>35<br>240<br>80 |
| L3+00N<br>L3+00N<br>L3+00N<br>L3+00N           | 0+00<br>0+25E<br>0+50E<br>0+75E<br>1+00E  | 55<br>25<br>180<br>25<br>25 |
| L3+00N<br>L3+00N<br>L3+00N<br>L3+00N           | 1+25E<br>1+50E<br>1+75E<br>2+00E<br>2+25E | 10<br>15<br>20<br>10        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 11/90

SIGNED Dein

Page 2 of 7

₹ **V** 



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

## **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S9919

SAMPLE(S) OF Soil

INVOICE #: 15355

P.O.: R2471

Marco V Project PUP

REMARKS: Orequest Consultants

|                                      |       | Au<br>ppb            |
|--------------------------------------|-------|----------------------|
| L3+00N<br>L3+00N<br>L3+00N<br>L3+00N |       | 25<br>25<br>15<br>30 |
| L4+00N                               | 0+75W | 55                   |
| L4+00N                               | 0+50W | 30                   |
| L4+00N                               | 0+25W | 50                   |
| L4+00N                               | 0+00  | 35                   |
| L4+00N                               | 0+25E | 20                   |
| L4+00N                               | 0+50E | 20                   |
| L4+00N                               | 0+75E | 30                   |
| L4+00N                               | 1+00E | 15                   |
| L4+00N                               | 1+25E | 25                   |
| L4+00N                               | 1+50E | 45                   |
| L4+00N                               | 1+75E | 80                   |
| L4+00N                               | 2+00E | 15                   |
| L4+00N                               | 2+25E | 30                   |
| L4+00N                               | 2+50E | 35                   |
| L4+00N                               | 2+75E | 25                   |
| L4+00N                               | 3+00E | 15                   |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 11/90

SIGNED Bune Pun

**A** 



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

## **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S9919

SAMPLE(S) OF Soil

INVOICE #: 15355

R2471 P.O.:

Marco V Project PUP

Orequest Consultants **REMARKS:** 

Δ11

|        |       | ppb |
|--------|-------|-----|
| L4+00N | 3+25E | 10  |
| L4+00N | 3+50E | <5  |
| L4+00N | 3+75E | 5   |
| L5+00N | 0+50W | 30  |
| L5+00N | 0+25W | 50  |
| L5+00N | 0+00  | 65  |
| L5+00N | 0+25E | 40  |
| L5+00N | 0+50E | 60  |
| L5+00N | 0+75E | 70  |
| L5+00N | 1+00E | 70  |
| L5+00N | 1+25E | <5  |
| L5+00N | 1+50E | 20  |
| L5+00N | 1+75E | 10  |
| L5+00N | 2+00E | 60  |
| L5+00N | 2+25E | 15  |
| L5+00N | 2+50E | 5   |
| L5+00N | 2+75E | 30  |
| L5+00N | 3+00E | 15  |
| L5+00N | 3+25E | 5   |
| L5+00N | 3+50E | 5   |

J. Foster, P. Lougheed COPIES TO:

INVOICE TO: Prime-Vancouver

Sep 11/90

Beinie Ou





DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S9919

SAMPLE(S) OF Soil

INVOICE #: 15355

P.O.: R2471

Marco V Project PUP

REMARKS: Orequest Consultants

|        |       | Au<br>ppb |
|--------|-------|-----------|
| L5+00N | 3+75E | 15        |
| L5+00N | 4+00E | 10        |
| L5+00N |       | 5         |
| L6+00N |       | 10        |
| L6+00N | 0+00  | <5        |
| L6+00N | 0+25E | <5        |
| L6+00N | 0+50E | 5         |
| F6+00N | 0+75E | 60        |
| L6+00N | 1+00E | 100       |
| L6+00N | 1+25E | 95        |
| L6+00N | 1+75E | 90        |
| L6+00N |       | 70        |
| L6+00N |       | 10        |
| L6+00N | 2+50E | 5         |
| L6+00N | 2+75E | 10        |
| L6+00N | 3+00E | 10        |
| L6+00N |       | 25        |
| L6+00N |       | 5         |
| L6+00N |       | 5         |
| L6+00N | 4+00E | 15        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 11/90

SIGNED .

Beine Vin

**T** 



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place

10th Floor-Box 10

808 West Hastings Street. Vancouver, B.C. V6C 2X6

SAMPLE(S) OF Soil

REPORT No. S9919

INVOICE #: 15355

P.O.: R2471

Marco V Project PUP

REMARKS: Orequest Consultants

|                                                |       | Au<br>ppb                  |
|------------------------------------------------|-------|----------------------------|
| L6+00N                                         | 4+25E | <5                         |
| L6+00N                                         | 4+50E | <5                         |
| L6+00N                                         | 4+75E | 5                          |
| L6+00N                                         | 5+00E | 20                         |
| L7+00N                                         | 0+50E | 15                         |
| L7+00N                                         | 0+75E | 270                        |
| L7+00N                                         | 1+00E | 15                         |
| L7+00N                                         | 1+25E | 90                         |
| L7+00N                                         | 1+50E | 100                        |
| L7+00N                                         | 1+75E | 70                         |
| L7+00N<br>L7+00N<br>L7+00N<br>L7+00N<br>L7+00N | _     | 40<br>55<br>15<br>40<br>50 |
| L7+00N                                         | 3+25E | 15                         |
| L7+00N                                         | 3+50E | 20                         |
| L7+00N                                         | 3+75E | 20                         |
| L7+00N                                         | 4+00E | 25                         |
| L7+00N                                         | 4+25E | 15                         |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 11/90

GNED Berne Un

Page 6 of





DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place

10th Floor-Box 10

808 West Hastings Street. Vancouver, B.C. V6C 2X6

**CERTIFICATE OF ANALYSIS** 

REPORT No. S9919

SAMPLE(S) OF Soil

INVOICE #: 15355

P.O.: R2471

Marco V Project PUP

REMARKS: Orequest Consultants

|        |       | Au<br>ppb |
|--------|-------|-----------|
| L7+00N | 4+50E | 40        |
| L7+00N | 4+75E | 5         |
| L7+00N | 5+00E | <5        |
| L7+00N | 5+25E | <5        |
| L7+00N | 5+50E | 10        |
| L3+00N | 3+50E | 5         |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 11/90

SIGNED

Uline Vun

₩ **V** 

Page 7 of

2-302-48TH STREET, SASKATOON, SASKATCHEMAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

T.S.L. File No.: SE14MZ

T.S.L. Invoice No.: 15481

T.S.L. REPORT No.: S - 9919 - 1

S7K 6A4

|            |       | L1+00N 1+25W | L1+00N 1+00W | L1+00N 0+75W | L1+00N 0+50W | L1+00N 0+25W | L1+00N 0+00 |
|------------|-------|--------------|--------------|--------------|--------------|--------------|-------------|
| ELEMENT    |       |              |              |              |              | •            |             |
| Aluminum   | [A]]  | 15000        | 14000        | 13000        | 16000        | 17000        | 17000       |
| Iran       | [Fe]  | 49000        | 36000        | 69000        | 76000        | 55000        | 100000      |
| Calcium    | [Ea]  | 1900         | 1400         | 1100         | 2500         | 920          | 480         |
| Magnesium  | [Mg]  | 5400         | 4100         | 4900         | 5200         | 4100         | 5500        |
| Sodium     | [Na]  | 180          | 190          | 60           | 50           | 170          | 30          |
| Potassium  | EK 3  | 580          | 840          | 300          | 210          | 540          | 190         |
| Titanium   | {Ti}  | 630          | 830          | 1600         | 1300         | 1900         | 2400        |
| Manganese  | [Mn]  | 1000         | 1100         | 910          | 1200         | 740          | 1300        |
| Phosphorus | [P]   | 1200         | 1500         | 2000         | 1900         | 1300         | 1100        |
| Barium     | [Ba]  | 50           | 32           | 14           | 9            | 25           | 16          |
| Chromium   | {Cr}  | 27           | 11           | 18           | 6            | 18           | 18          |
| Zirconium  | [Zr]  | 7            | 5            | 11           | 12           | 11           | 21          |
| Copper     | [Cu]  | 140          | 72           | 240          | 120          | 250          | 110         |
| Nickel     | ENi 3 | 19           | 6            | 11           | 3            | 10           | 8           |
| Lead       | [የቴ]  | 12           | 15           | 31           | 6            | 19           | 35          |
| Zinc       | [Zn]  | 63           | 71           | 65           | 42           | 88           | 55          |
| Vanadium   | [V ]  | 51           | 38           | 54           | 87           | 58           | 56          |
| Strontium  | [Sr]  | 24           | 20           | 12           | 26           | 9            | 7           |
| Cobalt     | [Co]  | 19           | 13           | 14           | 14           | 9            | 10          |
| Molybdenum | [Mo]  | < 2          | < 2          | < 2          | 4            | < 2          | ₹ 2         |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | ₹ 1         |
| Cadmium    | [Cd]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1         |
| Beryllium  | {Be}  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1         |
| Boron      | [B]   | < 10         | < 10         | < 10         | < 10         | - < 10       | < 10        |
| Antimony   | {Sb}  | 10           | < 5          | < 5          | < 5          | < 5          | < 5         |
| Yttrium    | [Y]   | 27           | 7            | 5            | 5            | 6            | 4           |
| Scandium . | [Sc]  | 2            | 1            | 2            | < 1          | 1            | 3           |
| Tungsten   | [₩]   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10        |
| Niobium    | [Nb]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10        |
| Thorium    | [Th]  | 30           | 30           | 50           | 50           | 30           | 60          |
| Arsenic    | [As]  | 30           | 5            | 50           | 20           | 25           | 100         |
| Bismuth    | [Bi]  | ₹ 5          | < 5          | 10           | 10           | < 5          | 20          |
| Tin        | {Sn}  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10        |
| Lithium    | [Li]  | 5            | < 5          | 5            | < 5          | 5            | 5           |
| Holmium    | [Ho]  | < 10         | < 10         | 10           | < 10         | < 10         | 20          |

DATE : SEP-14-1990

SIGNED: Dem Pilipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X6 T.S.L. REPORT No.: S - 9919 - 2 T.S.L. File No.: SE14MZ

T.S.L. Invoice No.: 15481

S7K 6A4

PROJECT: PUP OREQUEST CONSULTANTS R-2471 ATTN: J. FOSTER

ALL RESULTS PPM

|            |      | L1+00N 0+25E | L1+00N 0+50E | L1+00N 0+75E | L1+00N 1+00E | L1+00N 1+25E | L1+00N 1+50E   |
|------------|------|--------------|--------------|--------------|--------------|--------------|----------------|
| ELEMENT    |      |              |              |              |              |              |                |
| Aluminum   | [A1] | 18000        | 14000        | 14000        | 14000        | 16000        | 15000          |
| Iron       | [Fe] | 36000        | 37000        | 31000        | 31000        | 34000        | 31000          |
| Calcium    | {Ca} | 3500         | 2200         | 3000         | 3200         | 3000         | 3600           |
| Magnesium  | [Mg] | 6400         | 4700         | 5100         | 4900         | 5500         | 4700           |
| Sodium     | [Na] | 60           | 110          | 50           | 70           | 120          | 90             |
| Potassium  | EK ] | 320          | 600          | 550          | 530          | 720          | 560            |
| Titanium   | [Ti] | 830          | 470          | 320          | 320          | 460          | 240            |
| Manganese  | [Mn] | 720          | 1700         | 1200         | 1200         | 1100         | 1300           |
| Phosphorus | [P]  | 830          | 770          | <b>94</b> 0  | 960          | 840          | 1000           |
| Barium     | [Ba] | 28           | 44           | 37           | 40           | 50           | 42             |
| Chromium   | [0]  | 32           | 24           | 17           | 15           | 23           | 14             |
| Zirconium  | [[7] | 6            | 5            | 4            | 5            | 6            | 5              |
| Copper     | (Cu) | 74           | 91           | 47           | 51           | 71           | 50             |
| Nickel     | [Ni] | 17           | 17           | 9            | 9            | 14           | 7              |
| Lead       | {Pb} | 7            | 37           | 19           | 17           | 24           | 2 <del>6</del> |
| Zinc       | [Zn] | 67           | 240          | 100          | 100          | 120          | 110            |
| Vanadium   | [V]  | 63           | 46           | 44           | 45           | 58           | 48             |
| Strontium  | [Sr] | 17           | 19           | 20           | 23           | 23           | 32             |
| Cobalt     | [Co] | 14           | 14           | 11           | 11           | 12           | 9              |
| Molybdenum | [Ma] | < 2          | < 2          | < 2          | < 2          | < 2          | < 2            |
| Silver     | [Ag] | < 1          | < 1          | < 1          | < 1          | < 1          | < 1            |
| Cadmium    | [Cd] | < 1          | 1            | < 1          | < 1          | < 1          | 1              |
| Beryllium  | [Be] | < 1          | < 1          | < 1          | < 1          | < 1          | < 1            |
| Boron      | [B]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |
| Antimony   | (Sb) | < 5          | < 5          | < 5          | < 5          | ₹ 5          | ₹ 5            |
| Yttrium    | [ Y] | 6            | 10           | 7            | 7            | 9            | 10             |
| Scandium   | [Sc] | 3            | 2            | 2            | 2            | 3            | 2              |
| Tungsten   | {W ] | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |
| Niobium    | {Nb} | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |
| Thorium    | [Th] | 40           | 30           | 40           | 40           | 30           | 30             |
| Arsenic    | [As] | ₹ 5          | ₹ 5          | 15           | 40           | 30           | 150            |
| Bismuth    | [Bi] | ₹ 5          | ₹ 5          | < 5          | < 5          | < 5          | < 5            |
| Tin        | [Sn] | ← 10         | < 10         | < 10         | < 10         | < 10         | ← 10           |
| Lithium    | [Li] | 5            | < 5          | < 5          | < 5          | < 5          | < 5            |
| Holmium    | [Ho] | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |

DATE : SEP-14-1990

SIGNED: Dem Pilgrich

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. T.S.L. REPORT No.: S - 9919 - 3 T.S.L. File No.: SE14MZ

T.S.L. Invoice No.: 15481

S7K 6A4

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PI

PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

|            |      | £2+00N 0+75W | L2+00N 0+50W | L2+00N 0+25W | L2+00N 0+00 | L2+00N 0+25E | L2+00N 0+50E |
|------------|------|--------------|--------------|--------------|-------------|--------------|--------------|
| ELEMENT    |      |              |              |              |             |              |              |
| Aluminum   | [A]] | 11000        | 13000        | 7600         | 18000       | 23000        | 12000        |
| Iron       | [Fe] | 25000        | 43000        | 73000        | 64000       | 38000        | 15000        |
| Calcium    | (Ca) | 1000         | 720          | 860          | 340         | 1400         | 620          |
| Magnesium  | [pM] | 2300         | 2800         | 2600         | 2400        | 6600         | 1200         |
| Sodium     | [Na] | 1200         | 250          | 40           | 60          | 110          | 890          |
| Potassium  | EK 1 | 1000         | 590          | 420          | 300         | 330          | 700          |
| Titanium   | [Ti] | 1100         | 1100         | 1000         | 3400        | 1100         | 1400         |
| Manganese  | EMn3 | 670          | <b>98</b> 0  | 1300         | 260         | 260          | 100          |
| Phosphorus | [P ] | 590          | 1800         | 3300         | 750         | 7 <b>8</b> 0 | 340          |
| Barium     | [Ba] | 69           | 24           | 15           | 28          | 19           | 31           |
| Chromium   | (Cr) | 8            | 7            | 2            | 15          | 96           | 10           |
| Zirconium  | [Zr] | 14           | 8            | 10           | 14          | 5            | 21           |
| Copper     | [Cu] | 38           | 51           | 200          | 75          | <b>6</b> 2   | 10           |
| Nickel     | (Ni) | 5            | 3            | 3            | 3           | 81           | 4            |
| lead       | [Pb] | 10           | 15           | 20           | 13          | 29           | 14           |
| Zinc       | [Zn] | 51           | 55           | 27           | 35          | 270          | 36           |
| Vanadium - | [V]  | 21           | 34           | 17           | 130         | 90           | 23           |
| Strontium  | (Sr) | 14           | 16           | 6            | 6           | 9            | 5            |
| Cobalt     | [co] | 6            | 8            | 23           | 3           | 10           | 1            |
| Molybdenum | [Mo] | < 2          | 20           | < 2          | < 2         | < 2          | < 2          |
| Silver     | [Ag] | < 1          | < 1          | < 1          | < 1         | < 1          | < 1          |
| Cadmium    | [Cd] | < 1          | < 1          | < 1          | < 1         | < 1          | < 1          |
| Beryllium  | [Be] | 1            | < 1          | < 1          | < 1         | < 1          | < 1          |
| Baran      | {B ] | < 10         | < 10         | < 10         | < 10        | < 10         | ← 10         |
| Antimony   | {Sb} | ₹ 5          | < 5          | < 5          | < 5         | < 5          | ₹ 5          |
| Yttrium    | {Y } | 9            | 5            | 4            | 7           | 8            | 8            |
| Scandium   | {Sc} | < 1          | < 1          | 1            | < 1         | 2            | < 1          |
| Tungsten   | [W]  | < 10         | < 10         | < 10         | < 10        | < 10         | < 10         |
| Niobium    | [Nb] | < 10 €       | < 10         | < 10         | < 10        | < 10         | 10           |
| Thorium    | [Th] | 10           | 20           | 40           | 20          | 10           | < 10         |
| Arsenic    | [As] | < 5          | 5            | 65           | 15          | < 5          | < 5          |
| Bismuth    | [Bi] | < 5          | < 5          | < 5          | < 5         | < 5          | ₹ 5          |
| Tin        | [Sn] | < 10         | < 10         | < 10         | < 10        | < 10         | < 10         |
| Lithium    | [Li] | < 5          | < 5          | < 5          | ₹ 5         | ₹ 5          | ₹ 5          |
| Holmium    | {Ho} | ← 10         | < 10         | 10           | < 10        | 10           | < 10         |

DATE: SEP-14-1990

SIGNED: Dem Viliginsk

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No. : S - 9919 - 4

T.S.L. File No.: SE14MZ

T.S.L. Invoice No. : 15481

S7K 6A4

PROJECT: PUP OREQUEST CONSULTANTS R-2471 ATTN: J. FOSTER

ALL RESULTS PPM

|                   |       | L2+00N 0+75E | L2+00N 1+00E | L2+00N 1+25E | L2+00N 1+50E | L2+00N 1+75E | L2+00N 2+00E |
|-------------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT           |       |              |              |              |              |              |              |
| Aluminum          | [A]]  | 29000        | 20000        | 16000        | 18000        | 18000        | 14000        |
| Iron              | [Fe]  | 31000        | 35000        | 20000        | 44000        | 26000        | 16000        |
| Calcium           | {Ca}  | 1600         | 1000         | 640          | 580          | 660          | 620          |
| Magnesium         | [Mg]  | 3100         | 1800         | 1100         | 1700         | 1900         | 2300         |
| Sodium            | [Na]  | 130          | 70           | 90           | 50           | 350          | 320          |
| Potassiu <b>s</b> | EK 1  | 350          | 480          | 620          | 670          | 670          | 540          |
| Titanium          | [Ti]  | 720          | 470          | 210          | 360          | 700          | 1800         |
| Manganese         | (Mn)  | 600          | 2900         | 420          | 4200         | 1100         | 220          |
| Phosphorus        | [P ]  | 910          | 990          | 430          | 740          | 360          | 410          |
| Barium            | {Ba}  | 24           | 52           | 47           | 81           | 54           | 24           |
| Chromium          | (Cr)  | 51           | 20           | 8            | 11           | 11           | 15           |
| Zirconium         | [2r]  | 6            | 2            | 2            | 4            | 5            | 10           |
| Copper            | {Cu}  | 44           | 27           | 8            | 58           | 19           | 15           |
| Nickel            | [Ni]  | 21           | 7            | 6            | 3            | 4            | 4            |
| Lead              | [Pb]  | 14           | 16           | 10           | 38           | 19           | 19           |
| Zinc              | {Zn}  | 54           | 60           | 40           | 130          | 88           | 44           |
| Vanadium          | {V }  | 41           | 36           | 26           | 21           | 46           | 49           |
| Strontium         | {Sr}  | 12           | 10           | 7            | 6            | 9            | 8            |
| Cobalt            | {co3} | 6            | 11           | 3            | 17           | 7            | 2            |
| Molybdenum        | {Ma}  | < 2          | 2            | < 2          | < 2          | < 2          | < 2          |
| Silver            | [Ag]  | < 1          | < 1          | < 1          | < i          | < 1          | < 1          |
| Cadmium           | [Cd]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium         | [Be]  | < 1          | < 1          | < 1          | 1            | < 1          | < 1          |
| Boron             | (B )  | < 10         | < 10         | < 10         | ← 10         | < 10         | < 10         |
| Antimony          | (Sb)  | < 5          | ₹ 5          | < 5          | < 5          | ₹ 5          | < 5          |
| Yttrium           | {Y }  | 14           | 19           | 6            | 9            | 7            | 5            |
| Scandium          | [Sc]  | 2            | < 1          | < 1          | < 1          | < 1          | < 1          |
| Tungsten          | [W]   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium           | [Nb]  | ₹ 10         | ₹ 10         | < 10         | < 10         | 10           | < 10         |
| Thorium           | [Th]  | < 10         | 30           | < 10         | 40           | ₹ 10         | < 10         |
| Arsenic           | [As]  | < 5          | < 5          | 10           | < 5          | < 5          | < 5          |
| Bismuth           | (Bi)  | < 5          | ₹ 5          | < 5          | < 5          | < 5          | < 5          |
| Tin               | [Sn]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium           | [Li]  | < 5          | ₹ 5          | ₹ 5          | < 5          | ₹ 5          | < 5          |
| Holmium           | {Ho}  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |

DATE : SEP-14-1990

SIGNED: Dem Piliziek

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

T.S.L. REPORT No.: S - 9919 - 5 T.S.L. File No.: SE14MZ T.S.L. Invoice No.: 15481

57K 6A4

PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

| ELEMENT         |      | L2+00N 2+25E | L2+00N 2+50E | £3+00N 1+00W | L3+00N 0+75W | L3+00N 0+50W | £3+00N 0+25W |
|-----------------|------|--------------|--------------|--------------|--------------|--------------|--------------|
| Aluminum        | [A1] | 24000        | 19000        | 13000        | 16000        | 15000        | 14000        |
| Iron            | [Fe] | 47000        | 28000        | 70000        | 47000        | 76000        | B2000        |
| Calcium         | [Ca] | 2200         | 1200         | 1100         | 960          | 1300         | 1100         |
| Magnesium       |      | 7200         | 4200         | 4000         | 4000         | 3400         | 3200         |
| Sodium          | [Na] | 90           | 750          | 260          | 300          | 130          | 40           |
| Potassium       | [K ] | 420          | 730          | 570          | 520          | 260          | 290          |
| Titanium        | [Ti] | 1100         | 1400         | 730          | 1500         | B30          | 620          |
| Manganese       | (Mn) | 1300         | 420          | 1200         | 480          | 2400         | 3700         |
| Phosphorus      | [P]  | 1200         | 640          | 1900         | 1500         | 1800         | 3000         |
| Barium          | [Ba] | 44           | 33           | 40           | 28           | 21           | 49           |
| Chromium        | (Cr) | 39           | 23           | 16           | 15           | 7            | 5            |
| Zirconium       | [Zr] | 8            | 10           | 15           | 8            | 12           | 11           |
| Copper          | (Cu) | 180          | 80           | 96           | 85           | 560          | 530          |
| Nickel          | [Ni] | 44           | 15           | 11           | 6            | 4            | 5            |
| Lead            | [Pb] | 29           | 11           | 27           | 8            | 5            | 12           |
| Zinc            | [Zn] | 110          | 66           | 52           | 40           | 60           | 59           |
| <b>Vanadium</b> | [V ] | 89           | 45           | 40           | 50           | 62           | 16           |
|                 | [Sr] | 15           | 11           | 13           | 20           | 20           | 36           |
| Cobalt          | (Ca) | 30           | 11           | 21           | 7            | 24           | 39           |
| Molybdenum      |      | < 2          | < 2          | < 2          | 2            | < 2          | 6            |
| Silver          | [Ag] | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium         | [Cq] | < 1          | < 1          | < 1          | < 1          | < i          | < 1          |
| Beryllium       | (Be) | < 1          | < 1          | ₹ 1          | < 1          | < 1          | 2            |
| Boron           | (B ) | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony        | [56] | 5            | < 5          | ₹ 5          | < 5          | < 5          | ₹ 5          |
| Yttrium         | [Y]  | 9            | 11           | 10           | 6            | 11           | 25           |
| Scandium        | {Sc} | 4            | 2            | 4            | 1            | 3            | 2            |
| Tungsten        | [W]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium         |      | < 10         | ₹ 10         | ← 10         | < 10         | ₹ 10         | < 10         |
| Thorium         | [Th] | 40           | 20           | 30           | 30           | 30           | 40           |
| Arsenic         | [As] | < 5          | < 5          | 20           | < 5          | 15           | 15           |
| Bismuth         | [Bi] | 5            | < 5          | < 5          | < 5          | 10           | 10           |
| Tin             | [Sn] | < 10         | ₹ 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium         | [Li] | < 5          | < 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Holmium         | [Ho] | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |

DATE : SEP-14-1990

SIGNED: Demo Pilipiak

### LABORATORIES TSL

2-302-48TH STREET, SASKATOON, SASKATCHENAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

### I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No.: 5 - 9919 - 6

57K 6A4

T.S.L. File No.: SE14MZ

T.S.L. Invoice No.: 15481

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2471 ALL RESULTS PPM

|            |       | L3+00N 0+00 | L3+00N 0+25E | L3+00N 0+50E | £3+00N 0+75E | L3+00N 1+00E | L3+00N 1+25E |
|------------|-------|-------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |             |              |              |              |              |              |
| Aluminum   | [A1]  | 9400        | 15000        | 16000        | 16000        | 13000        | 15000        |
| Iron       | {Fe}  | 54000       | 47000        | 77000        | 48000        | 46000        | 44000        |
| Calcium    | [Ca]  | 1000        | 260          | 3700         | 560          | 660          | 380          |
| Magnesium  | [Mg]  | 2500        | 660          | 5000         | 3700         | 1500         | 920          |
| Sodium     | [Na]  | 60          | 50           | 60           | 580          | 610          | 170          |
| Potassium  | EK 1  | 490         | 450          | 280          | 440          | 590          | 400          |
| Titanium   | [Ti]  | 540         | 1200         | 1700         | 1400         | 480          | 280          |
| Manganese  | EMn I | 2200        | 860          | 970          | 480          | 1600         | 1100         |
| Phosphorus | [P ]  | 1800        | 620          | 1800         | 1400         | 1100         | 550          |
| Barium     | [Ba]  | 24          | 26           | 12           | 15           | 39           | 34           |
| Chromium   | (Cr)  | 5           | 10           | 4            | 11           | 9            | 13           |
| Zirconium  | [Zr]  | 6           | 9            | 12           | 10           | 5            | 4            |
| Copper     | [Cu]  | 170         | 49           | 670          | 41           | 49           | 30           |
| Nickel     | [Ni]  | 4           | 3            | 2            | 4            | 4            | 4            |
| Lead       | [Pb]  | 21          | 12           | 3            | 26           | 27           | 18           |
| Zinc       | EZn]  | 110         | 55           | 42           | 39           | 81           | 73           |
| Vanadium   | {V}   | 15          | 58           | 76           | 33           | 16           | 31           |
| Strontium  | [Sr]  | 14          | 6            | 120          | 6            | 6            | 6            |
| Cobalt     | [Co]  | 16          | 5            | 21           | 6            | 7            | 7            |
| Molybdenum | [Mo]  | < 2         | < 2          | < 2          | < 2          | 4            | < 2          |
| Silver     | [Ag]  | < 1         | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | £Cd1  | < 1         | < 1          | < 1          | < 1          | 1            | < 1          |
| Beryllium  | [Be]  | < 1         | < 1          | < 1          | < 1          | < 1          | < 1          |
| Boron      | {B}}  | < 10        | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | {Sb}  | < 5         | < 5          | ₹ 5          | ₹ 5          | < 5          | ₹ 5          |
| Yttrium    | [Y]   | 13          | 6            | 5            | 11           | 8            | 5            |
| Scandium   | (Sc)  | 1           | < 1          | 1            | 2            | < 1          | < 1          |
| Tungsten   | [W]   | < 10        | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | . < 10      | < 10         | < 10         | < 10         | < 10         | < 10         |
| Thorium    | [Th]  | 30          | 30           | 40           | 30           | 40           | 40           |
| Arsenic    | [As]  | 95          | 25           | 35           | 20           | 70           | 10           |
| Bismuth    | EBil  | < 5         | < 5          | 10           | < 5          | < 5          | < 5          |
| Tin        | (Sn)  | < 10        | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | < 5         | ₹ 5          | < 5          | < 5          | < 5          | < 5          |
| Holmium    | (Ho)  | < 10        | < 10         | 10           | < 10         | < 10         | < 10         |
|            |       |             |              |              |              |              |              |

DATE : SEP-14-1990

SIGNED: Denn Vilgink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2471

T.S.L. REPORT No.: S - 9919 - 7 T.S.L. File No.: SE14MZ

T.S.L. Invoice No.: 15481

S7K 6A4

ALL RESULTS PPM

| <b>-1</b>  |       | £3+00N 1+50E | L3+00N 1+75E | L3+00N 2+00E | L3+00N 2+25E | L3+00N 2+50E | L3+00N 2+75E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              |              |              |
| Aluminum   | [A1]  | 4300         | 15000        | 21000        | 28000        | 22000        | 25000        |
| Iron       | [Fe]  | 18000        | 30000        | 70000        | 41000        | 57000        | 61000        |
| Calcium    | [Ca]  | 280          | 520          | 1000         | 1000         | 1800         | 1200         |
| Magnesium  | [pM]  | 310          | 1800         | 6400         | 4500         | 6900         | 6500         |
| Sodium     | [Na]  | 220          | 210          | 180          | 80           | 50           | 100          |
| Potassium  | EK 1  | 500          | 470          | 440          | 200          | 460          | 620          |
| Titanium   | [Ti]  | 670          | 1100         | 1100         | 1600         | 890          | 1500         |
| Manganese  | EMn 3 | 290          | 180          | 1600         | 490          | 1700         | 1300         |
| Phosphorus | [P]   | 370          | 390          | 1600         | 470          | 1200         | 1500         |
| Barium     | {Ba]  | 21           | 27           | 24           | 22           | 35           | 33           |
| Chromium   | [Cr]  | 13           | 16           | 52           | 55           | 47           | 52           |
| Zirconium  | [Zr]  | 5            | 7            | 13           | 9            | 9            | 10           |
| Copper     | [Cu]  | 9            | 15           | 200          | 46           | 140          | 230          |
| Nickel     | [Ni]  | 4            | 4            | 66           | 27           | 55           | 55           |
| Lead       | (Pb)  | 9            | 24           | 30           | 14           | 35           | 20           |
| Zinc       | [Zn]  | 27           | 36           | 120          | 55           | 180          | 120          |
| Vanadium   | [V]   | 19           | 66           | 72           | 110          | 75           | 87           |
|            | (Sr)  | 3            | 7            | 7            | 9            | 15           | 12           |
| Cobalt     | [Co]  | 3            | 2            | 50           | 10           | 39           | 40           |
| Molybdenum |       | < 2          | < 2          | < 2          | < 2          | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | £643  | < 1          | < 1          | < 1          | ₹ 1          | < 1          | < i          |
| Beryllium  | [Be]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Boron      | (B)   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [Sb]  | < 5          | ₹ 5          | ₹ 5          | < 5          | 5            | ₹ 5          |
| Yttrium    | { Y } | 2            | 6            | 16           | 9            | 10           | 15           |
| Scandium   | {Sc}  | < 1          | < 1          | 6            | 2            | 4            | 7            |
| Tungsten   | [W ]  | < 10         | ← 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | < 10         | ₹ 10         | < 10         | < 10         | < 10         | < 10         |
| Thorium    | ETh1  | < 10         | 20           | 40           | 20           | 30           | 30           |
| Arsenic    | [As]  | 10           | < 5          | ₹ 5          | < 5          | < 5          | ₹ 5          |
| Bismuth    | [Bi]  | . < 5        | < 5          | 10           | < 5          | 5            | 10           |
| Tin        | [Sn]  | < 10         | ₹ 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | < 5          | < 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Holmium    | (Ho)  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |

DATE : SEP-14-1990

SIGNED: Lamo Pilysik

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2471

T.S.L. REPORT No.: S - 9919 - 8

T.S.L. File No.: SE14MZ

S7K 6A4

T.S.L. Invoice No.: 15481

ALL RESULTS PPM

| Aluminum   [A1]   26000   21000   9900   13000   11000   31000   11000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   17000   170 |            |       | L3+00N 3+00E | £3+00N 3+25E | L4+00N 0+75W   | L4+00N 0+50W | L4+00N 0+25W  | L4+00N 0+00 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------|--------------|----------------|--------------|---------------|-------------|
| Tron   [Fe]   44000   35000   78000   42000   63000   75000   Calcium   [Ca]   1200   1600   1400   1500   680   440   Magnesium   [Mg]   5800   5200   4000   2900   2700   3500   Sodium   [Na]   130   390   90   940   330   60   Potassium   [K ]   510   590   280   790   390   250   Titanium   [Ti]   2000   1600   1300   1300   1900   1200   Manganese   [Mn]   1300   620   1100   680   810   1400   Phosphorus   [P ]   1100   750   2900   990   1500   3000   Barium   [Ba]   31   39   13   43   19   14   Chromium   [Cr]   333   24   5   11   22   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ELEMENT    |       |              |              |                |              |               |             |
| Calcium         [Ca]         1200         1600         1400         1500         680         440           Magnesium         [Mg]         5800         5200         4000         2900         2700         3500           Sodium         [Na]         130         390         90         940         330         60           Potassium         [K]         510         590         280         790         390         250           Titanium         [Ti]         2000         1600         1300         1300         1900         1200           Manganese         [Mn]         1300         620         1100         680         810         1400           Phosphorus         [P]         1100         750         2900         990         1500         3000           Barium         [Ba]         31         39         13         43         19         14           Chromium         [Cr]         33         24         5         11         22         7           Zirconium         [Cr]         9         8         14         12         14         13           Copper         [Cu]         71         67         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aluminum   | [A1]  | 26000        | 21000        | 9900           | 13000        | 11000         | 31000       |
| Magnesium         LMg1         5800         5200         4000         2900         2700         3500           Sodium         [Na]         130         390         90         940         330         60           Potassium         [K ]         510         590         280         790         390         250           Titanium         [Ti]         2000         1600         1300         1300         1900         1200           Manganese         [Mn]         1300         620         1100         680         810         1400           Phosphorus         [P ]         1100         750         2900         990         1500         3000           Barium         [Ba]         31         39         13         43         19         14           Chromium         [Cr]         33         24         5         111         22         7           Zirconium         [Zr]         9         8         14         12         14         13           Copper         [Cu]         71         67         140         78         68         210           Nickel         [Ni]         19         17         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Iron       | {Fe}  | 44000        | 35000        | 78000          | 42000        | 63000         | 75000       |
| Sodium   [Na]   130   390   90   940   330   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calcium    | [Ca]  | 1200         | 1600         | 1400           | 1500         | <b>68</b> 0 . | 440         |
| Potassium         [K]         510         590         280         790         390         250           Titanium         [Ti]         2000         1600         1300         1300         1900         1200           Manganese         [Mn]         1300         620         1100         680         810         1400           Phosphorus         [P]         1100         750         2900         990         1500         3000           Barium         [Ba]         31         39         13         43         19         14           Chromium         [Cr]         33         24         5         11         22         7           Zircconium         [Zr]         9         8         14         12         14         13           Copper         [Cu]         71         67         140         78         68         210           Nickel         [Ni]         19         17         2         7         6         8           Lead         [Pb]         12         12         13         5         18         4           Zinc         [Zn]         82         80         38         42         34 <td>Magnesium</td> <td>[Mg]</td> <td>5800</td> <td>5200</td> <td>4000</td> <td>2900</td> <td>2700</td> <td>3500</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Magnesium  | [Mg]  | 5800         | 5200         | 4000           | 2900         | 2700          | 3500        |
| Titanium         CTil         2000         1600         1300         1300         1900         1200           Manganese         CMnl         1300         620         1100         680         810         1400           Phosphorus         CP 1         1100         750         2900         990         1500         3000           Barium         CBal         31         39         13         43         19         14           Chromium         CCrl         33         24         5         11         22         7           Zirconium         CZrl         9         8         14         12         14         13           Copper         CCul         71         67         140         78         68         210           Nickel         ENil         19         17         2         7         6         8           Lead         CPbl         12         12         13         5         18         4           Zinc         CZnl         82         80         38         42         34         34           Vanadium         EV l         92         63         42         27         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sodium     | [Na]  | 130          | 390          | <del>7</del> 0 | 940          | 330           | 60          |
| Manganese         LMnl         1300         620         1100         680         810         1400           Phosphorus         LP         1100         750         2900         990         1500         3000           Barium         LBal         31         39         13         43         19         14           Chromium         CCrl         33         24         5         11         22         7           Zirconium         CZrl         9         8         14         12         14         13           Copper         CGUl         71         67         140         78         68         210           Nickel         LNil         19         17         2         7         6         8           tead         LPbl         12         12         13         5         18         4           Zinc         IZnl         82         80         38         42         34         34           Vanadium         IV l         92         63         42         27         40         40           Strontium         ISrl         14         16         27         18         14         15 <td>Potassium</td> <td>EK 3</td> <td>510</td> <td>590</td> <td>280</td> <td>790</td> <td><b>39</b>0</td> <td>250</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Potassium  | EK 3  | 510          | 590          | 280            | 790          | <b>39</b> 0   | 250         |
| Phosphorus [P]         1100         750         2900         990         1500         3000           Barium [Ba]         31         39         13         43         19         14           Chromium [Cr]         33         24         5         11         22         7           Zirconium [Zr]         9         8         14         12         14         13           Copper [Cu]         71         67         140         78         68         210           Nickel [Ni]         19         17         2         7         6         8           Lead [Pb]         12         12         12         13         5         18         4           Zinc [Zn]         82         80         38         42         34         34           Vanadium [V]         92         63         42         27         40         40           Strontium [Sr]         14         16         27         18         14         15           Cobalt [Co]         22         15         21         7         10         34           Molybdenum [Mo]         <2         <2         <2         <2         <2         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Titanium   | [Ti]  | 2000         | 1600         | 1300           | 1300         | 1900          | 1200        |
| Barium         (Ba)         31         39         13         43         19         14           Chromium         (Cr)         33         24         5         11         22         7           Zirconium         (Zr)         9         8         14         12         14         13           Copper         (Cu)         71         67         140         78         68         210           Nickel         (Ni)         19         17         2         7         6         8           Lead         (Pb)         12         12         13         5         18         4           Zinc         (Zn)         82         80         38         42         34         34           Vanadium         (V )         92         63         42         27         40         40           Strontium         (Sr)         14         16         27         18         14         15           Cobalt         (Co)         22         15         21         7         10         34           Molybdenum         (Mol         4         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Manganese  | [Mn]  | 1300         | 620          | 1100           | <b>68</b> 0  | 810           | 1400        |
| Chromium         [Cr]         33         24         5         11         22         7           Zirconium         [Zr]         9         8         14         12         14         13           Copper         [Cu]         71         67         140         78         68         210           Nickel         [Ni]         19         17         2         7         6         8           Lead         [Pb]         12         12         13         5         18         4           Zinc         [Zn]         82         80         38         42         34         34           Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mol         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phosphorus | [P ]  | 1100         | 750          | 2900           | 990          | 1500          | 3000        |
| Zirconium         [Zr]         9         8         14         12         14         13           Copper         [Cu]         71         67         140         78         68         210           Nickel         [Ni]         19         17         2         7         6         8           Lead         [Pb]         12         12         13         5         18         4           Zinc         [Zn]         82         80         38         42         34         34           Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mol         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Barium     | {Ba}  | 31           | 39           | 13             | 43           | 19            | 14          |
| Copper         [Cu]         71         67         140         78         68         210           Nickel         [Ni]         19         17         2         7         6         8           Lead         [Pb]         12         12         13         5         18         4           Zinc         [Zn]         82         80         38         42         34         34           Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mo]         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chromium   | {Cr}  | 33           | 24           | 5              | 11           | 22            | 7           |
| Nickel         [Ni]         19         17         2         7         6         8           Lead         [Pb]         12         12         13         5         18         4           Zinc         [Zn]         82         80         38         42         34         34           Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mo]         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zirconium  | [Zr]  | 9            | 8            | 14             | 12           | 14            | 13          |
| Lead         [Pb]         12         12         13         5         18         4           Zinc         [Zn]         82         80         38         42         34         34           Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mo]         < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Copper     | [Cu]  | 71           | 67           | 140            | 78           | 84            | 210         |
| Zinc         [Zn]         B2         B0         38         42         34         34           Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mol]         < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nickel     | ENi 3 | 19           | 17           | 2              | 7            | 6             | 8           |
| Vanadium         [V]         92         63         42         27         40         40           Strontium         [Sr]         14         16         27         18         14         15           Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mo]         <2         <2         <2         <2         <2         <2         26           Silver         [Ag]         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead       | [64]  |              | 12           | 13             | 5            | 18            | 4           |
| Strontium [Sr]         14         16         27         18         14         15           Cobalt [Co]         22         15         21         7         10         34           Molybdenum [Mo]         < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zinc       | [Zn]  | 82           | 80           | 38             | 42           | 34            | 34          |
| Cobalt         [Co]         22         15         21         7         10         34           Molybdenum         [Mo]         4         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 </td <td>Vanadium</td> <td>[V]</td> <td></td> <td>63</td> <td>42</td> <td>27</td> <td>40</td> <td>40</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vanadium   | [V]   |              | 63           | 42             | 27           | 40            | 40          |
| Molybdenum [Mo]         < 2         < 2         < 2         < 2         < 2         < 2         26           Silver [Ag]         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Strontium  |       |              |              | 27             | 18           | 14            | 15          |
| Silver         [Ag]         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cobalt     | [Co]  |              |              | 21             | 7            | 10            | 34          |
| Cadmium         [Cd]         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Molybdenum | [Mo]  | < 2          | < 2          | < 2            | < 2          | < 2           | 26          |
| Beryllium [Be]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silver     | [Ag]  | < 1          | < 1          | < 1            | < 1          | < 1           | < 1         |
| Boron [B] < 10 < 10 < 10 < 10 < 10 < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cadmium    | [63]  | < 1          | < 1          | < 1            | < 1          | < 1           | < 1         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beryllium  |       |              |              |                |              | < 1           | < 1         |
| ALLIANDO FOLD / E / E / E / E / E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |              |              |                | < 10         | < 10          | < 10        |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antimony   | {Sb}  | ₹ 5          | < 5          | 5              | < 5          | < 5           | ₹ 5         |
| Yttrium [Y ] 7 10 5 7 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |              |              |                |              |               | 5           |
| Scandium [Sc] 3 2 2 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |              |              |                |              |               | 2           |
| Tungsten [W ] < 10 < 10 < 10 < 10 < 10 < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |              |              |                |              |               | < 10        |
| Niobium [Nb] < 10 < 10 < 10 < 10 < 10 < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |              |              |                |              |               |             |
| Thorium [Th] 30 30 40 20 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |       |              |              |                |              |               |             |
| Arsenic [As] < 5 < 5 35 < 5 10 < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       |              |              |                |              |               |             |
| Bismuth [Bi] < 5 < 5 5 < 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |              |              | -              |              |               |             |
| Tin [Sn] < 10 < 10 < 10 < 10 < 10 < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |              |              |                |              |               |             |
| Lithium [Li] < 5 < 5 < 5 < 5 < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |              |              |                |              |               |             |
| Holmium [Ho] < 10 < 10 < 10 < 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Holmium    | (Ho)  | < 10         | ₹ 10         | < 10           | < 10         | 10            | < 10        |

DATE : SEP-14-1990

SIGNED: Demis Pilysisk

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

S7K 6A4

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. File No.: SE14MZ T.S.L. Invoice No.: 15481

Vancouver B.C. V&C 2X6

PROJECT: PUP OREQUEST CONSULTANTS R-2471 ATTN: J. FOSTER

ALL RESULTS PPM

T.S.L. REPORT No. : S - 9919 - 9

|            |       | L4+00N 0+25E | L4+00N 0+50E | L4+00N 0+75E | L4+00N 1+00E | L4+00N 1+50E | L4+00N 1+75E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              | •            |              |
| Aluminum   | [A1]  | 16000        | 6000         | 10000        | 11000        | 17000        | 20000        |
| Iron       | [Fe]  | 27000        | 25000        | 37000        | 46000        | 65000        | 88000        |
| Calcium    | [Ca]  | 1100         | 580          | 1100         | 300          | 520          | 860          |
| Magnesium  | [Mg]  | 2800         | 1400         | 700          | 720          | 2700         | 3600         |
| Sodium     | [Na]  | 200          | 200          | 280          | 120          | 290          | 280          |
| Potassium  | EK 1  | 580          | 660          | 470          | 420          | 540          | 470          |
| Titanium   | [Ti]  | 2300         | 2300         | 650          | 3000         | 1200         | 780          |
| Manganese  | [Mn]  | 190          | 370          | 250          | 1100         | 2600         | 3900         |
| Phosphorus | [P ]  | 810          | 730          | 830          | 1000         | 1400         | 1500         |
| Barium     | [Ba]  | 19           | 24           | 16           | 25           | 30           | 27           |
| Chromium   | (Cr)  | 38           | 44           | 42           | 8            | 12           | 11           |
| Zirconium  | [Zr]  | 9            | 8            | 6            | 14           | 10           | 14           |
| Copper     | (Cu)  | 28           | 55           | 80           | 22           | 150          | 420          |
| Nickel     | [Ni]  | 14           | 18           | 17           | 3            | 6            | 12           |
| Lead       | [Pb]  | 22           | 10           | 14           | 28           | 110          | 880          |
| Zinc       | EZn]  | 39           | 39           | 31           | 36           | 180          | 500          |
| Vanadium   | [V ]  | 64           | 49           | 24           | 63           | 29           | 29           |
| Strontium  | [Sr]  | 18           | 11           | 8            | 4            | 6            | 7            |
| Cobalt     | [co]  | 3            | 4            | 3            | 5            | 20           | 48           |
| Molybdenum | [Mo]  | < 2          | 2            | < 2          | < 2          | 4            | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | 5            |
| Cadmium    | [Cq]  | < 1          | < 1          | < 1          | < 1          | < 1          | 1            |
| Beryllium  | [Be]  | < 1          | ₹ 1          | < 1          | < 1          | < 1          | < 1          |
| Boron      | [B]   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [5b]  | < 5          | < 5          | ₹ 5          | ⟨ 5          | < 5          | < 5          |
| Yttrium    | [Y]   | 6            | 2            | 6            | 4            | 11           | 11           |
| Scandium   | {Sc}  | < 1          | < 1          | < 1          | < 1          | 1            | 2            |
| Tungsten   | [ W ] | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | < 10         | ← 10         | 10           | < 10         | < 10         | ₹ 10         |
| Thorium    | [Th]  | 20           | < 10         | 10           | 30           | 30           | 40           |
| Arsenic    | [As]  | √ ₹ 5        | 5            | < 5          | 10           | 45           | 55           |
| Bismuth    | EBil  | < 5          | < 5          | < 5          | ₹ 5          | 10           | 25           |
| Tin        | [Sn]  | ← 10         | < 10         | < 10         | < 10         | < 10         | ₹ 10         |
| Lithium    | [Li]  | ₹ 5          | ₹ 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Holmium    | [Ho]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |

DATE : SEP-14-1990

Dinn Piljich

2-302-48TH STREET, SASKATOON, SASKATCHENAN

TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. File No.: SE14MZ T.S.L. Invoice No.: 15481

T.S.L. REPORT No. : S - 9919 - 10

S7K 6A4

Vancouver B.C. V&C 2X&

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

|            |       | L4+00N 2+00E | L4+00N 2+25E | L4+00N 2+50E | L4+00N 2+75E    | L4+00N 3+00E | L4+00N 3+25E |
|------------|-------|--------------|--------------|--------------|-----------------|--------------|--------------|
| ELEMENT    |       |              |              |              |                 |              |              |
| Aluminum   | [A1]  | 24000        | 18000        | 20000        | 23000           | 21000        | 29000        |
| Iron       | (Fe]  | 42000        | 48000        | 78000        | 40000           | 55000        | 60000        |
| Calcium    | [Ca]  | 800          | 580          | 2800         | 1400            | 1100         | 1500         |
| Magnesium  | [Mg]  | 3100         | 2400         | 5400         | 4700            | 6000         | 4700         |
| Sodium     | [Na]  | 90           | 270          | 100          | 250             | 470          | 80           |
| Potassium  | ₹K ]  | 210          | 430          | 460          | 540             | 550          | 340          |
| Titanium   | [Ti]  | 1300         | 820          | 360          | 1300            | 1200         | 1900         |
| Manganese  | EMn 3 | 290          | 1500         | 3500         | <del>9</del> 70 | 1000         | 520          |
| Phosphorus | [P]   | 380          | 850          | 1700         | 850             | 930          | 550          |
| Barium     | [Ba]  | 24           | 31           | 70           | 51              | 33           | 32           |
| Chromium   | [73]  | 56           | 18           | 31           | 40              | 22           | 38           |
| Zirconium  | [77]  | 7            | 8            | 12           | 5               | 12           | 14           |
| Copper     | {Cu}  | 46           | 110          | 260          | 79              | 230          | 79           |
| Nickel     | [Ni]  | 15           | 8            | 30           | 23              | 41           | 25           |
| Lead       | (Pb)  | 52           | 150          | 80           | 35              | 15           | 6            |
| Zinc       | [Zn]  | . 67         | 270          | 500          | 150             | 99           | 67           |
| Vanadium   | (V )  | 100          | 48           | 88           | 80              | 55           | 80           |
| Strontium  | [Sr]  | 8            | 6            | 27           | 13              | 14           | 12           |
| Cobalt     | [Co]  | 5            | 17           | 65           | 16              | 38           | 15           |
| Molybdenum | [Mo]  | < 2          | < 2          | < 2          | < 2             | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1             | < 1          | < 1          |
| Cadmium    | [C4]  | < 1          | < 1          | 4            | < 1             | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < 1          | < 1          | < 1             | < 1          | < 1          |
| Boron      | [B]   | < 10         | < 10         | < 10         | < 10            | < 10         | < 10         |
| Antimony   | [Sb]  | < 5          | ₹ 5          | ₹ 5          | < 5             | < 5          | ₹ 5          |
| Yttrium    | [Y ]  | 7            | 14           | 21           | 12              | 11           | 10           |
| Scandium   | [Sc]  | 2            | < 1          | 3            | 2               | 2            | 2            |
| Tungsten   | {W }  | < 10         | < 10         | < 10         | < 10            | ₹ 10         | < 10         |
| Niobium    | [Nb]  | < 10         | 10           | < 10         | < 10            | < 10         | < 10         |
| Thorium    | [Th]  | 10           | 20           | 50           | 20              | 40           | 20           |
| Arsenic    | [As]  | . ₹ 5        | 15           | <b>6</b> 5   | 15              | 10           | ₹ 5          |
| Bismuth    | [Bi]  | < 5          | < 5          | 15           | < 5             | < 5          | ₹ 5          |
| Tin        | [Sn]  | < 10         | ← 10         | < 10         | < 10            | < 10         | < 10         |
| Lithium    | [Li]  | ₹ 5          | ₹ 5          | ₹ 5          | < 5             | < 5          | < 5          |
| Holmium    | (Ho)  | < 10         | < 10         | < 10         | ₹ 10            | < 10         | < 10         |

DATE: SEP-14-1990

Dems Vilgink

2-302-48TH STREET, SASKATOON, SASKATCHEMAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 9919 - 11 T.S.L. File No.: SE14MZ

T.S.L. Invoice No.: 15481

S7K 6A4

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

|            |                 | L4+00N 3+50E | L4+00N 3+75E   | E5+00N 0+50W | L5+00N 0+25W | L5+00N_0+00 | L5+00N 0+25E |
|------------|-----------------|--------------|----------------|--------------|--------------|-------------|--------------|
| ELEMENT    |                 |              |                |              |              |             |              |
| Aluminum   | [A]]            | 14000        | 20000          | 17000        | 22000        | 19000       | 14000        |
| Iron       | [Fe]            | 19000        | 50000          | 39000        | 47000        | 55000       | 61000        |
| Calcium    | [Ca]            | 700          | 1400           | 3500         | 1500         | 2600        | 1100         |
| Magnesium  | [Mg]            | 2500         | 4700           | 5800         | 5300         | 5700        | 4500         |
| Sodium     | [Na]            | 540          | 310            | 260          | 100          | 120         | 60           |
| Potassium  | €K 1            | 790          | 330            | 740          | 690          | 770         | 780          |
| Titanium   | [Ti]            | 690          | 1200           | 790          | 1200         | 1100        | 1500         |
| Manganese  | EMn 3           | 460          | 1500           | 1700         | 1100         | 1900        | 1200         |
| Phosphorus | <pre>[P ]</pre> | 510          | 710            | 1300         | 1300         | 1600        | 2400         |
| Barium     | [Ba]            | 50           | 20             | 130          | 54           | 98          | 31           |
| Chromium   | [Cr]            | 12           | 13             | 41           | 37           | 35          | 30           |
| Zirconium  | [Zr]            | 6            | 9              | 8            | 5            | 6           | 9            |
| Copper     | [Cu]            | 26           | 80             | 110          | 160          | 170         | 250          |
| Nickel     | [Ni-]           | 6            | 15             | 29           | 18           | 24          | 15           |
| Lead       | [Pb]            | 18           | 4              | 11           | 11           | 11          | 6            |
| Zinc       | [Zn]            | 61           | 81             | 95           | 70           | 85          | 51           |
| Vanadium   | [V]             | 32           | <del>6</del> 3 | 64           | 82           | 75          | 46           |
| Strontium  | [Sr]            | 7            | 16             | 66           | 34           | 47          | 12           |
| Cobalt     | [Co]            | 4            | 35             | 19           | 18           | 24          | 19           |
| Molybdenum |                 | < 2          | < 2            | < 2          | < 2          | < 2         | < 2          |
| Silver     | [Ag]            | < 1          | < 1            | < 1          | < 1          | < 1         | < 1          |
| Cadmium    | [Cq1            | < 1          | < 1            | < 1          | < 1          | < 1         | < 1          |
| •          | [Be]            | < 1          | < 1            | < 1          | < 1          | < 1         | < 1          |
| Boron      | (B )            | < 10         | < 10           | < 10         | < 10         | < 10        | < 10         |
| Antimony   | {Sb}            | < 5          | ₹ 5            | < 5          | < 5          | < 5         | < 5          |
| Yttrium    | {Y }            | 6            | 6              | 14           | 9            | 12          | 6            |
| Scandium   | (Sc)            | < 1          | < 1            | 4            | 3            | 4           | 2            |
| Tungsten   | [W]             | < 10         | < 10           | < 10         | < 10         | < 10        | < 10         |
| Niobium    | [Nb]            |              | < 10           | < 10         | < 10         | < 10        | < 10         |
| Thorium    | [Th]            | < 10         | 30             | 40           | 30           | 30          | 30           |
| Arsenic    | [As]            | < 5          | ₹ 5            | 25           | ₹ 5          | 35          | 5            |
| Bismuth    | [Bi]            | ₹ 5          | < 5            | < 5          | < 5          | < 5         | ₹ 5          |
| Tin        | [Sn]            | < 10         | < 10           | < 10         | ₹ 10         | ₹ 10        | < 10         |
| Lithium    | [Li]            | ₹ 5          | ₹ 5            | < 5          | < 5          | < 5         | ₹ 5          |
| Holmium    | [Ho]            | < 10         | < 10           | < 10         | < 10         | ← 10        | 10           |

DATE : SEP-14-1990

SIGNED: James Pilipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

### I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No. : S - 9919 - 12

T.S.L. File No.: SE14MZ

57K 6A4

T.S.L. Invoice No.: 15481

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2471 ALL RESULTS PPM

|            |       | L5+00N 0+50E | L5+00N 0+75E | L5+00N 1+00E | L5+00N 1+25E | L5+00N 1+50E | L5+00N 1+75E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              | ·            |              |
| Aluminum   | (A1)  | 10000        | 8300         | 9000         | 14000        | 15000        | 16000        |
| Iron       | [Fe]  | 69000        | 84000        | 80000        | 17000        | 28000        | 37000        |
| Calcium    | [Ca]  | 1000         | 1000         | 980          | 700          | 800          | 2100         |
| Magnesium  | [Mg]  | 4000         | 4000         | 4000         | 1300         | 2300         | 7300         |
| Sodium     | [Na]  | 150          | 160          | 160          | 1300         | 1000         | 120          |
| Potassium  | €K 1  | 360          | 330          | 340          | 930          | 820          | 240          |
| Titanium   | [Ti]  | 1800         | 2000         | 1900         | 1100         | 1100         | 940          |
| Manganese  | EMn 3 | 370          | 490          | 520          | 170          | 400          | 250          |
| Phosphorus | {P }  | 2300         | 2500         | 2600         | 300          | 490          | 880          |
| Barium     | [Ba]  | 24           | 33           | 31           | 23           | 42           | 16           |
| Chromium   | (Cr)  | 13           | 7            | 7            | 7            | 14           | 130          |
| Zirconium  | {Zr}  | 13           | 18           | 15           | 35           | 16           | 4            |
| Copper     | [Cu]  | 160          | 210          | 220          | 17           | 38           | 92           |
| Nickel     | ENil  | 8            | 3            | 3            | 4            | 7            | 110          |
| Lead       | (Pb)  | 11           | 14           | 19           | 10           | 16           | 6            |
| Zinc       | [Zn]  | 35           | 36           | 36           | 33           | 47           | 70           |
| Vanadium   | [V]   | 61           | 70           | 63           | - 16         | 31           | 97           |
| Strontium  | [5r]  | 26           | 26           | 25           | 5            | 7            | 8            |
| Cobalt     | [Co]  | 8            | 9            | 9            | 1            | 3            | 11           |
| Molybdenum | [Mo]  | 16           | 8            | 8            | < 2          | < 2          | < 2          |
| Silver     | [Ag]  | ₹ 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | [Cd]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | {Be}  | < 1          | < 1          | < 1          | i            | < 1          | < 1          |
| Baran      | [8]   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [56]  | ₹ 5          | < 5          | ₹ 5          | < 5          | ₹ 5          | 5            |
| Yttrium    | [Y]   | 4            | 3            | 4            | 10           | 10           | 7            |
| Scandium   | [Sc]  | 4            | 4            | 4            | < 1          | < 1          | 3            |
| Tungsten   | EW ]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | . < 10       | < 10         | < 10         | 10           | 10           | ₹ 10         |
| Thorium    | [Th]  | 30           | 50           | 40           | < 10         | 60           | < 10         |
| Arsenic    | [As]  | < 5          | 20           | 20           | ₹ 5          | < 5          | < 5          |
| Bismuth    | [Bi]  | < 5          | 10           | 10           | < 5          | < 5          | < 5          |
| Tin        | [Sn]  | < 10         | < 10         | < 10         | < 10         | < 10         | ₹ 10         |
| Lithium    | [Li]  | ₹ 5          | < 5          | ₹ 5          | < 5          | < 5          | < 5          |
| Holmium    | [Ho]  | 10           | 20           | 20           | < 10         | < 10         | 10           |

DATE: SEP-14-1990

SIGNED: Demo Vilgiant

### LABORATORIES TSL

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2X6 ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS R-2471

T.S.L. REPORT No.: S - 9919 - 13

T.S.L. File No.: SE14MZ T.S.L. Invoice No.: 15481

57K 6A4

ALL RESULTS PPM

|            |       | L5+00N 2+00E | L5+00N 2+25E | L5+00N 2+50E | L5+00N 2+75E | L5+00N 3+00E | L5+00N 3+25E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              | •            |              |
| Aluminum   | [A]]  | 26000        | 18000        | 18000        | 21000        | 15000        | 17000        |
| Iron       | [Fe]  | 78000        | 28000        | 49000        | 67000        | 50000        | 26000        |
| Calcium    | [Ca]  | 920          | 600          | 1300         | 1200         | 960          | 400          |
| Magnesium  | [Mg]  | 4900         | 2900         | 4700         | 5700         | 4200         | 2100         |
| Sodium     | [Na]  | 60           | 190          | 110          | 310          | 260          | 200          |
| Potassium  | £K 3  | 260          | 370          | 350          | 370          | 470          | 450          |
| Titanium   | [Ti]  | 1600         | 2500         | 1700         | 1000         | 690          | 780          |
| Manganese  | EMn 3 | 2000         | 320          | 400          | 1500         | 2000         | 410          |
| Phosphorus | [P ]  | 1300         | 430          | 560          | 1400         | 1300         | 380          |
| Barium     | [Ba]  | 20           | 22           | 18           | 25           | 29           | 34           |
| Chromium   | [Cr]  | 68           | 51           | 52           | 22           | 15           | 13           |
| Zirconium  | [Zr]  | 14           | 11           | 10           | 12           | 6            | 5            |
| Copper     | (Cu)  | 260          | 29           | 37           | 160          | 140          | 30           |
| Nickel     | [Ni]  | 37           | 22           | 24           | 21           | 20           | 6            |
| Lead       | [Pb]  | 33           | 19           | 8            | 20           | 39           | 26           |
| Zinc       | EZn]  | 110          | 49           | 47           | 68           | 170          | 55           |
| Vanadium   | [V]   | 66           | 77           | 93           | 68           | 35           | 53           |
| Strontium  |       | 22           | 9            | 11           | 15           | 9            | 6            |
| Cobalt     | [Co]  | 66           | 6            | 8            | 46           | 23           | 4            |
| Molybdenum |       | < 2          | < 2          | < 2          | ₹ 2          | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | [Cd]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  |       | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Baran      | (B )  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | {Sb}  | ₹ 5          | ₹ 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Yttrium    | £A ]  | 6            | 5            | 5            | 13           | 10           | 4            |
| Scandium   | (Sc)  | 1            | < 1          | 1            | 3            | 2            | ₹ 1          |
| Tungsten   | (W )  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | (Nb)  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Thorium    | [Th]  | 20           | < 10         | 30           | 50           | 30           | 10           |
| Arsenic    | [As]  | . 75         | < 5          | ₹ 5          | 30           | 15           | ₹ 5          |
| Bismuth    | [Bi]  | 10           | < 5          | < 5          | 5            | < 5          | < 5          |
| Tin        | (Sn)  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | ₹ 5          | < 5          | < 5          | < 5          | ₹ 5          | < 5          |
| Holmium    | [Ho]  | < 10         | < 10         | 10           | < 10         | ← 10         | < 10         |

DATE: SEP-14-1990

SIGNED: Limis Vilginal

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 9919 - 14 T.S.L. File No.: SE14MZ

Vancouver B.C. V6C 2X6

57K 6A4

T.S.L. Invoice No.: 15481

PROJECT: PUP OREQUEST CONSULTANTS R-2471 ATTN: J. FOSTER

ALL RESULTS PPM

|            |       | L5+00N 3+50E  | L5+00N 3+75E | L5+00N 4+00E | L5+00N 4+25E | L6+00N 0+50E | L6+00N 0+75E |
|------------|-------|---------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |               |              |              |              |              |              |
| Aluminum   | [A1]  | 18000         | 23000        | 12000        | 29000        | 9100         | 15000        |
| Iron       | [Fe]  | <b>280</b> 00 | 73000        | 25000        | 40000        | 18000        | 64000        |
| Calcium    | [Ca]  | 1100          | 1900         | 1000         | 1000         | 1400         | 1500         |
| Magnesium  | EMg3  | 2700          | 6500         | 3100         | 4600         | 2000         | 4100         |
| Sodium     | [Na]  | 560           | 140          | <b>78</b> 0  | 120          | 2900         | 330          |
| Potassium  | EK 1  | 720           | 730          | 860          | 340          | 1800         | 580          |
| Titanium   | [Ti]  | 630           | 1200         | 1600         | 3500         | 1400         | 1400         |
| Manganese  | EMn 3 | 1400          | 1600         | 550          | 940          | 300          | 310          |
| Phosphorus | {P }  | <b>6</b> 70   | 1600         | 570          | 440          | 190          | 1900         |
| Barium     | [Ba]  | 77            | 50           | 25           | 25           | 50           | 22           |
| Chromium   | [Cr]  | 11            | 38           | 21           | 22           | 10           | 14           |
| Zirconium  | [Zr]  | 8             | 15           | 12           | 18           | 55           | 12           |
| Copper     | {Cu}  | 42            | 270          | 26           | 35           | 63           | 100          |
| Nickel     | [Ni]  | 7             | 63           | 12           | 8            | 8            | 7            |
| Lead       | {Pb}  | 35            | 31           | 13           | 10           | 6            | 17           |
| Zinc       | [Zn]  | 100           | 110          | 51           | 64           | 100          | 45           |
| Vanadium   | {V }  | 28            | 67           | 40           | 84           | 15           | 58           |
| Strontium  | [Sr]  | 11            | 18           | 11           | 18           | 11           | 33           |
| Cobalt     | [Co]  | 10            | 49           | 8            | 9            | 3            | 8            |
| Molybdenum | [Mo]  | < 2           | < 2          | < 2          | < 2          | < 2          | 2            |
| Silver     | [Ag]  | < 1           | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | [Cq]  | < 1           | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | 2             | < 1          | < 1          | < 1          | 2            | < 1          |
| Baran      | (B)   | < 10          | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | (Sb)  | < 5           | 10           | ₹ 5          | ₹ 5          | < 5          | < 5          |
| Yttrium    | [Y]   | 13            | 30           | 6            | 8            | 14           | 7            |
| Scandium   | {Sc}  | < 1           | 8            | < 1          | 2            | < 1          | 1            |
| Tungsten   | (W 3  | < 10          | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | 20            | < 10         | 10           | < 10         | < 10         | < 10         |
| Thorium    | (Th)  | 50            | 40           | 30           | 20           | < 10         | 40           |
| Arsenic    | (As)  | < 5           | ₹ 5          | < 5          | < 5          | ₹ 5          | 10           |
| Bismuth    | [Bi]  | ₹ 5           | 15           | < 5          | < 5          | < 5          | < 5          |
| Tin        | [Sn]  | < 10          | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | < 5           | < 5          | < 5          | < 5          | ₹ 5          | ₹ 5          |
| Holmium    | (Ho)  | < 10          | 10           | < 10         | < 10         | < 10         | < 10         |
|            |       |               |              |              |              |              |              |

DATE : SEP-14-1990

Daris Pilipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS R-2471

T.S.L. REPORT No. : S - 9919 - 15

T.S.L. File No.: SE14MZ T.S.L. Invoice No. : 15481

57K 6A4

ALL RESULTS PPM

| ELEMENT    |      | L6+00N 1+00E | L6+00N 1+25E | 16+00N 1+75E | L6+00N 2+00E | L6+00N 2+25E | L6+00N 2+50E   |
|------------|------|--------------|--------------|--------------|--------------|--------------|----------------|
| Aluminus   | [A]] | 14000        | 13000        | 22000        | 19000        | 9900         | 23000          |
| Iron       | (Fe) | 68000        | 110000       | 110000       | 85000        | 27000        | 23000<br>34000 |
| Calcium    | [Ca] | 1100         | 740          | 1100         | <b>88</b> 0  | 27000<br>580 | 2100           |
| Magnesium  |      | 4700         | 4600         | 5500         | 3700         | 2200         |                |
| Sodium     | [Na] | 230          | 50           | 130          | 190          | 410          | 6000<br>210    |
| Potassium  | [K ] | 880          | 280          | 260          | 460          | 600          | 330            |
| Titanium   | [Ti] | 1200         | 1700         | 1300         | 960          | 2100         | 910            |
| Manganese  | [Mn] | 1000         | 1100         | 1600         | 2100         | 630          | 410            |
| Phosphorus |      | 1900         | 3500         | 1500         | 1300         | 440          | 590            |
| Barium     | [Ba] | 28           | 15           | 15           | 26           | 23           | 23             |
| Chromium   | [01] | 26           | 8            | 9            | 20<br>9      | 40           | 110            |
|            | [Zr] | 12           | 18           | 20           | 14           | 14           | 4              |
| Copper     | [Cu] | 570          | 300          | 190          | 180          | 19           | 5 <b>8</b>     |
| Nickel     | [Ni] | 15           | 4            | 6            | 5            | 15           | 73             |
| Lead       | [Pb] | 23           | 40           | 110          | 57           | 18           | 7              |
| Zinc       | [Zn] | 51           | 130          | 170          | 110          | 42           | 47             |
| Vanadium   | [V ] | 51           | 37           | 53           | 40           | 62           | 100            |
| Strontium  |      | 22           | 18           | 17           | 18           | 8            | 13             |
| Cobalt     | [Co] | 17           | 23           | 28           | 27           | 7            | 11             |
| Molybdenum |      | 4            | 8            | 6            | < 2          | ₹ 2          | < 2            |
| Silver     | [Ag] | < 1          | < 1          | < 1          | < 1          | < 1          | ₹ 1            |
| Cadmium    | (Cq3 | < 1          | < 1          | < 1          | < 1          | < 1          | < 1            |
| Beryllium  | [Be] | < 1          | < 1          | < 1          | < 1          | < 1          | < 1            |
| Baran      | [B]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |
| Antimony   | (Sb) | ₹ 5          | ₹ 5          | < 5          | ₹ 5          | < 5          | 5              |
| Yttrium    | £Y ] | 8            | 4            | 9            | 9            | 4            | 7              |
| Scandium   | (Sc) | 4            | 2            | 2            | 1            | < 1          | 2              |
| Tungsten   | [₩]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |
| Niobium    | ENb3 | < 10         | < 10         | < 10         | < 10         | < 10         | < 10           |
| Thorium    | [Th] | 40           | 60           | 50           | 40           | 20           | < 10           |
| Arsenic    | [As] | 15           | 75           | 110          | 75           | 10           | ₹ 5            |
| Bismuth    | [Bi] | 10           | 25           | 25           | 5            | < 5          | ₹ 5            |
| Tin        | [Sn] | ₹ 10         | < 10         | < 10         | < 10         | < 10         | ← 10           |
| Lithium    | [Li] | < 5          | ₹ 5          | < 5          | < 5          | < 5          | ₹ 5            |
| Holmium    | (Ho) | 10           | 20           | 20           | 10           | < 10         | 10             |

DATE: SEP-14-1990

SIGNED: Limin Pilgins

2-302-48TH STREET, SASKATOON, SASKATCHEMAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: 5 - 9919 - 16

T.S.L. File No.: SE14MZ T.S.L. Invoice No.: 15481

57K 6A4

Vancouver B.C. V6C 2X6 ATTN: 1. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2471 ALL RESULTS PPM

| ELEMENT    |       | L6+00N 2+75E | L6+00N 3+00E | L6+00N 3+25E | L6+00N 3+50E | L6+00N 3+75E | L6+00N 4+00E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| Aluminum   | [A]]  | 20000        | 18000        | 23000        | 21000        | 18000        | 27000        |
| Iron       | [Fe]  | 55000        | 55000        | 28000        | 29000        | 29000        | 42000        |
| Calcium    | {Ca}  | 2600         | 1500         | 1800         | 2200         | 1700         | 3200         |
| Magnesium  | [Mq]  | 4800         | 5000         | 4500         | 4600         | 3100         | 5900         |
| Sodium     | [Na]  | 260          | 480          | 150          | 370          | 510          | 370          |
| Potassium  | EK 1  | 930          | 800          | 460          | 580          | 1000         | 960          |
| Titanium   | [Ti]  | 1700         | 1200         | 1400         | 1500         | 740          | 1100         |
| Manganese  | EMn 3 | 1500         | 1000         | 270          | 420          | 2800         | 2400         |
| Phosphorus |       | 1400         | 1300         | 5 <b>9</b> 0 | 580          | 970          | 1100         |
| Barium     | [Ba]  | 55           | 39           | 32           | 37           | 120          | 99           |
| Chromium   | [Cr3] | 39           | 24           | 53           | 50           | 13           | 41           |
| Zirconium  | [Zr]  | 8            | 9            | 4            | 8            | 3            | 8            |
| Copper     | [Cu]  | 130          | 180          | 39           | <b>39</b>    | 50           | 140          |
| Nickel     | [Ni]  | 28           | 20           | 18           | 27           | 7            | 39           |
| Lead       | [Pb]  | 25           | 24           | 15           | 14           | 36           | 37           |
| Zinc       | [Zn]  | 92           | 70           | 54           | 61           | 100          | 230          |
| Vanadium   | [V]   | 57           | 50           | 100          | 81           | 32           | 73           |
| Strontium  | [Sr]  | 24           | 14           | 17           | 20           | 49           | 31           |
| Cobalt     | [Co]  | 17           | 21           | 6            | 8            | 8            | 27           |
| Molybdenum | [OM]  | < 2          | < 2          | < 2          | < 2          | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | £643  | < 1          | ( 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < 1          | < 1          | < 1          | 2            | < 1          |
| Boron      | EB 1  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [Sb]  | ₹ 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Yttrium    | [Y ]  | 31           | 14           | 6            | 8            | 18           | 17           |
| Scandium   | {Sc}  | 4            | 3            | 2            | 2            | 1            | 3            |
| Tungsten   | [W ]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | ENb3  | . 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Thorium    | ETh 3 | 30           | 40           | 20           | 30           | 40           | 20           |
| Arsenic    | [As]  | < 5          | ₹ 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Bismuth    | [Bi]  | < 5          | < 5          | ₹ 5          | < 5          | ₹ 5          | ₹ 5          |
| Tin        | (Sn)  | ₹ 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | ⟨ 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Holmium    | [Ho]  | 10           | < 10         | < 10         | ⟨ 10         | < 10         | < 10         |
|            |       |              |              |              |              |              |              |

DATE: SEP-14-1990

SIGNED: Dem Polipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 S7K 6A4

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. T.S.L. REPORT No. : S - 9919 - 17 T.S.L. File No. : SE14MZ

28.T

T.S.L. Invoice No.: 15481

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PF

PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

|            |       | L6+00N 4+25E | L6+00N 4+50E | L6+00N 4+75E | L6+00N 5+00E | L7+00N 0+50E | L7+00N 0+75E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              | •            |              |
| Aluminum   | [A1]  | 30000        | 18000        | 23000        | 26000        | 12000        | 10000        |
| Iran       | [Fe]  | 41000        | 17000        | 29000        | 54000        | 17000        | 81000        |
| Calcium    | [Ca]  | 3600         | 1200         | 1500         | 2600         | 1100         | 1100         |
| Magnesium  | [Mg]  | 5300         | 2400         | 4500         | 4800         | 1800         | 1200         |
| Sodium     | (Na)  | 330          | 760          | 800          | 250          | 2800         | 260          |
| Potassium  | [K ]  | 780          | 620          | 820          | <b>93</b> 0  | 1900         | 410          |
| Titanium   | [Ti]  | 1600         | 1700         | 2000         | 800          | 1200         | 2000         |
| Manganese  | EMn 1 | 1400         | 210          | 470          | 2100         | 240          | 1500         |
| Phosphorus | [P ]  | 1100         | 410          | 570          | 1700         | 290          | 1900         |
| Barium     | [Ba]  | 54           | 30           | 41           | 6 <b>4</b>   | 23           | 22           |
| Chromium   | [2]   | 38           | 22           | 25           | 18           | 8            | 9            |
| Zirconium  | {Zr}  | 9            | 14           | 11           | 7            | 60           | 15           |
| Copper     | (Cu1  | 100          | 22           | <b>4</b> 5   | 150          | 38           | 470          |
| Nickel     | [Ni]  | 36           | 6            | 15           | 13           | 6            | 4            |
| Lead       | [Pb]  | 13           | 13           | 11           | 62           | 8            | 98           |
| Zinc       | [Zn]  | 150          | 50           | 77           | 170          | 48           | 85           |
| Vanadium   | {V }  | 75           | <b>5</b> 3   | 71           | 73           | 16           | 33           |
| Strontium  | [Sr]  | 28           | 12           | 18           | 23           | 9            | 13           |
| Cobalt     | [Co]  | 22           | 3            | 9            | 21           | 2            | 14           |
| Molybdenum | [Ma]  | < 2          | < 2          | < 2          | < 2          | < 2          | 8            |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | [C4]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < 1          | < 1          | 1            | 1            | < 1          |
| Boron      | [B]   | < 10         | < 10         | < 10         | < 10         | ← 10         | ← 10         |
| Antimony   | [Sb]  | 5            | ₹ 5          | ₹ 5          | < 5          | < 5          | ₹ 5          |
| Yttrium    | {Y ]  | 16           | 9            | 12           | 27           | 11           | 8            |
| Scandium   | (Sc)  | 3            | 1            | 2            | 3            | < 1          | 1            |
| Tungsten   | [W]   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | (Nb)  | . < 10       | < 10 €       | < 10         | < 10         | 10           | < 10         |
| Thorium    | ETh]  | 40           | < 10         | 30           | 40           | < 10         | 50           |
| Arsenic    | [As]  | 20           | < 5          | ₹ 5          | < 5          | < 5          | 40           |
| Bismuth    | [Bi]  | ₹ 5          | < 5          | < 5          | < 5          | < 5          | 5            |
| Tin        | [Sn]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | (Li)  | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Holmium    | (Ha)  | ← 10         | < 10         | < 10         | < 10         | < 10         | 20           |

DATE : SEP-14-1990

SIGNED: Lems librick

2-302-48TH STREET, SASKATOON, SASKATCHENAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

## I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X6 T.S.L. REPORT No.: 5 - 9919 - 18

T.S.L. File No.: SE14MZ

S7K 6A4

T.S.L. Invoice No.: 15481

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

|            |       | L7+00N 1+00E | L7+00N 1+25E | L7+00N 1+75E | L7+00N 2+00E   | L7+00N, 2+25E | L7+00N 2+50E |
|------------|-------|--------------|--------------|--------------|----------------|---------------|--------------|
| ELEMENT    |       |              |              |              |                |               |              |
| Aluminum   | [A]]  | 11000        | 26000        | 14000        | 13000          | 14000         | 9900         |
| Iran       | [Fe]  | 22000        | 72000        | 51000        | 5 <b>40</b> 00 | 57000         | 16000        |
| Calcium    | [Cal  | 1000         | 4900         | 2800         | 860            | 1100          | 740          |
| Magnesium  | [Mg]  | 1600         | 7600         | 2800         | 2400           | 2900          | 1500         |
| Sodium     | [Na]  | 2500         | 150          | 200          | 210            | 260           | 90           |
| Potassium  | EK 1  | 1700         | 4600         | 280          | 410            | 500           | 320          |
| Titanium   | [Ti]  | 1300         | 2000         | 1400         | 1100           | 1300          | 1200         |
| Manganese  | [Mn]  | 230          | 1500         | 640          | 280            | 320           | 100          |
| Phosphorus | [P]   | 380          | 2700         | 1800         | 1400           | 1500          | 750          |
| Barium     | [Ba]  | 31           | 78           | 13           | 21             | 23            | 14           |
| Chromium   | (Cr)  | 8            | 20           | 24           | 13             | 16            | 54           |
| Zirconium  | [[r]  | 70           | 15           | 8            | 9              | 10            | 4            |
| Copper     | [Cu]  | 20           | <b>38</b> 0  | 150          | 240            | 260           | 110          |
| Nickel     | [Ni]  | 5            | 7            | 7            | 9              | 10            | 15           |
| Lead       | [Pb]  | 11           | 17           | 16           | 7              | 6             | 11           |
| Zinc       | {Zn}  | 45           | 95           | 43           | 33             | 38            | 27           |
| Vanadium   | [V]   | 16           | 100          | 84           | 34             | 38            | 67           |
| Strontium  | [Sr]  | 5            | 100          | 43           | 12             | 16            | 8            |
| Cobalt     | [co3] | 2            | 31           | 9            | 7              | 8             | 2            |
| Molybdenua | EMo3  | 2            | < 2          | 6            | 6              | 6             | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1            | < 1           | < 1          |
| Cadmium    | £Cq3  | < 1          | < 1          | < 1          | < 1            | < 1           | < 1          |
| Beryllium  | [Be]  | 1            | < 1          | < 1          | < 1            | < 1           | < 1          |
| Baran      | [B]   | < 10         | < 10         | < 10         | < 10           | < 10          | < 10         |
| Antimony   | [Sb]  | < 5          | 5            | < 5          | < 5            | < 5           | ₹ 5          |
| Yttrium    | EY 3  | 10           | 9            | 5            | 5              | 6             | 4            |
| Scandium   | [Sc]  | < 1          | 3            | 2            | < 1            | < 1           | ₹ 1          |
| Tungsten   | EW 3  | < 10         | < 10         | < 10         | < 10           | < 10          | < 10         |
| Niobium    | [Nb]  | 20           | < 10         | < 10         | < 10           | < 10          | < 10         |
| Thorium    | [Th]  | < 10         | <b>6</b> 0   | 30           | 30             | 30            | < 10         |
| Arsenic    | [As]  | √ 5          | < 5          | 25           | 10             | 10            | ₹ 5          |
| Bismuth    | [Bi]  | < 5          | 20           | < 5          | < 5            | < 5           | ₹ 5          |
| Tin        | [Sn]  | < 10         | < 10         | < 10         | < 10           | ₹ 10          | < 10         |
| Lithium    | [Li]  | < 5          | ₹ 5          | < 5          | < 5            | < 5           | < 5          |
| Holmium    | (Ho)  | < 10         | < 10         | < 10         | < 10           | 10            | < 10         |
|            |       |              |              |              |                |               |              |

DATE : SEP-14-1990

SIGNED: Lemis Pilgriak

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

## I.C.A.P. PLASMA SCAN

## Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 9919 - 19

T.S.L. File No.: SE14MZ

T.S.L. Invaice No.: 15481

S7K 6A4

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2471 ALL RESULTS PPM

|            |       | L7+00N 2+75E | £7+00N 3+00E | L7+00N 3+25E   | L7+00N 3+50E | L7+00N 3+75E | L7+00N 4+00E |
|------------|-------|--------------|--------------|----------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |                |              | •            |              |
| Aluminum   | [A]]  | 17000        | 21000        | 18000          | 18000        | 20000        | 20000        |
| Iron       | [Fe]  | 50000        | 37000        | 34000          | 29000        | 33000        | 35000        |
| Calcium    | [Ca]  | 1900         | 2200         | 3300           | 1200         | 2100         | 1300         |
| Magnesium  | [Mg]  | 6100         | 6100         | 6000           | 3100         | 4400         | 3600         |
| Sodium     | [Na]  | 140          | 220          | 150            | 540          | 260          | 170          |
| Potassium  | EK 3  | 480          | 500          | 510            | 720          | 370          | 520          |
| Titanium   | [Ti]  | 1600         | 1300         | 1300           | 1200         | 1300         | 2400         |
| Manganese  | EMn3  | 410          | 430          | 670            | 830          | 260          | 230          |
| Phosphorus | [P ]  | 1300         | 830          | 890            | 780          | 530          | 500          |
| Barium     | [Ba]  | 26           | 50           | 44             | 35           | 23           | 24           |
| Chromium   | [Cr]  | 72           | 73           | 82             | 16           | 58           | 38           |
| Zirconium  | [Zr]  | 9            | 7            | 7              | 7            | 8            | 13           |
| Copper     | (Lu3) | 250          | 120          | 69             | 35           | 37           | 40           |
| Nickel     | ENi ] | 60           | 51           | 57             | 7            | 19           | 13           |
| Lead       | [Pb]  | 8            | 11           | 10             | 39           | 9            | 15           |
| Zinc       | EZn]  | 55           | 65           | <del>6</del> 8 | 58           | 43           | 47           |
| Vanadium   | [V]   | 81           | 89           | 92             | 49           | 120          | 97           |
| Strontium  | [Sr]  | 16           | 18           | 24             | 18           | 15           | 10           |
| Cobalt     | [Co3] | 15           | 17           | 14             | 7            | 6            | 5            |
| Molybdenum | [Mo]  | < 2          | < 2          | < 2            | < 2          | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1            | < 1          | < 1          | < 1          |
| Cadmium    | [Cq]  | < 1          | < 1          | < 1            | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < 1          | < 1            | < 1          | < 1          | < 1          |
| Boron      | [B]   | < 10         | < 10         | < 10           | < 10         | < 10         | < 10         |
| Antimony   | [Sb]  | 5            | 5            | < 5            | < 5          | ₹ 5          | < 5          |
| Yttrium    | £A 3  | 8            | 9            | 9              | 10           | 6            | 6            |
| Scandium   | {\$c} | 4            | 3            | 4              | 1            | 3            | 2            |
| Tungsten   | €₩ 3  | < 10         | < 10         | < 10           | < 10         | < 10         | ₹ 10         |
| Niobium    | ENb3  | < 10         | ₹ 10         | < 10           | < 10         | < 10         | < 10         |
| Thorium    | (Th)  | 30           | 20           | 10             | 40           | 20           | 20           |
| Arsenic    | (As)  | < 5          | < 5          | ₹ 5            | < 5          | < 5          | ₹ 5          |
| Bismuth    | (Bi)  | < 5          | < 5          | < 5            | < 5          | ₹ 5          | < 5          |
| Tin        | [Sn]  | < 10         | < 10         | < 10           | < 10         | ₹ 10         | < 10         |
| Lithium    | [Li]  | ₹ 5          | < 5          | < 5            | < 5          | < 5          | < 5          |
| Holmium    | [Ho]  | 10           | 10           | 10             | ← 10         | ₹ 10         | < 10         |

DATE : SEP-14-1990

SIGNED: Dennis Polipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X6 T.S.L. REPORT No. : S - 9919 - 20 T.S.L. File No.: SE14MZ

57K. 6A4

T.S.L. Invoice No.: 15481

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2471

ALL RESULTS PPM

|            |       | L7+00N 4+25E | L7+00N 4+75E | L7+00N 5+00E | L7+00N 5+25E | L7+00N 5+50E | L3+00N 3+50E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              |              |              |
| Aluminum   | [A]]  | 21000        | 21000        | 20000        | 16000        | 27000        | 19000        |
| Iran       | [Fe]  | 51000        | 30000        | 23000        | 19000        | 63000        | 34000        |
| Calcium    | [Ca]  | 1800         | 1800         | 1100         | 580          | 2200         | 2700         |
| Magnesium  | [Mg]  | 6300         | 4600         | 2200         | 1800         | 3000         | 5900         |
| Sodium     | [Na]  | 310          | 510          | 230          | 620          | 90           | 140          |
| Potassium  | EK 1  | 620          | 730          | 710          | 550          | 640          | 290          |
| Titanium   | [Ti]  | 1100         | 1200         | 710          | 1300         | 780          | 1100         |
| Manganese  | [Mn]  | 1500         | 600          | 360          | 170          | 1900         | 450          |
| Phosphorus | {P ]  | 1300         | <b>98</b> 0  | 450          | 410          | 1300         | 760          |
| Barium     | [Ba]  | 39           | 47           | 53           | 39           | 51           | 32           |
| Chromium   | [Cr]  | 42           | 32           | 27           | 11           | 30           | 100          |
| Zirconium  | [Zr]  | 10           | 6            | 4            | 13           | 8            | 6            |
| Copper     | [Cu]  | 410          | 67           | 24           | 13           | 66           | 60           |
| Nickel     | [Ni]  | 78           | 20           | 10           | 6            | 10           | 65           |
| Lead       | [Pb]  | <b>6</b> 5   | 92           | 24           | 11           | 25           | 9            |
| Zinc       | [Zn]  | 180          | 180          | 58           | 41           | 100          | 53           |
| Vanadium   | (V)   | 56           | 66           | 57           | 50           | <b>4</b> 5   | 120          |
| Strontium  | [Sr]  | 15           | 16           | 10           | 6            | 17           | 15           |
| Cobalt     | [co]  | 47           | 16           | 4            | 3            | 21           | 12           |
| Molybdenum |       | < 2          | < 2          | < 2          | < 2          | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | {Cq}  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Boron      | {B }  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [Sb]  | ₹ 5          | < 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Yttrium    | { Y } | 17           | 13           | 7            | 7            | 14           | 7            |
| Scandium   | {Sc}  | 4            | 2            | < 1          | < 1          | 1            | 3            |
| Tungsten   | [W]   | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | < 10 €       | < 10         | < 10         | 10           | < 10         | < 10         |
| Thorium    | [Th]  | 40           | 30           | ₹ 10         | < 10         | 30           | < 10         |
| Arsenic    | [As]  | √ 5          | < 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Bismuth    | [Bi]  | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Tin        | {Sn}  | < 10         | ₹ 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | < 5          | < 5          | < 5          | < 5          | ₹ 5          | ₹ 5          |
| Holmium    | {Ha}  | < 10         | ₹ 10         | < 10         | < 10         | < 10         | < 10         |

DATE : SEP-14-1990

SIGNED: Denn Pilinik



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S9918

INVOICE #:

15386

P.O.: R2470

SAMPLE(S) OF Soils

Marco V. Project: Pup

REMARKS: OreQuest Consultants

|                  |       | Au<br>ppb |
|------------------|-------|-----------|
| L8+00N           | 0+50E | 80        |
| L8+00N<br>L8+00N | 0+75E | 570       |
| L8+00N           | 1+00E | 110<br>5  |
| L8+00N           | 1+50E | 35        |
| 10.001           | 1.305 | 33        |
| L8+00N           | 1+75E | 65        |
| L8+00N           | 2+00E | 75        |
| L8+00N           | 2+25E | 70        |
| L8+00N           | 2+50E | 50        |
| L8+00N           | 2+75E | 20        |
|                  |       |           |
| L8+00N           |       | 15        |
| L8+00N           |       | 10        |
| L8+00N           |       | 25        |
| L8+00N           |       | 45        |
| L8+00N           | 4+00E | 35        |
| L8+00N           | 4+25E | 30        |
| L8+00N           |       | <5        |
| L8+00N           | 4+75E | 15        |
| L8+00N           | 5+00E | 10        |
| L8+00N           | 5+25E | 15        |
|                  |       | -0        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 12/90

SIGNED

Page 1 of 6

V



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S9918

INVOICE #:

15386

P.O.: R2470

SAMPLE(S) OF Soils

Marco V.

Project: Pup

REMARKS: OreQue

OreQuest Consultants

**A**11

|        |       | ppb |
|--------|-------|-----|
| L8+00N | 5+50E | 20  |
| L8+00N | 5+75E | 20  |
| L8+00N | 6+00E | 20  |
| L9+00N | 1+00E | 25  |
| L9+00N | 1+25E | 35  |
| L9+00N | 1+50E | 15  |
| L9+00N |       | 300 |
| L9+00N | 2+00E | 100 |
| L9+00N | 2+25E | 65  |
| L9+00N | 2+50E | 80  |
| L9+00N | 2+75E | 20  |
| L9+00N |       | 10  |
| L9+00N |       | <5  |
| L9+00N | 3+50E | 5   |
| L9+00N | 3+75E | 5   |
| L9+00N | 4+00E | <5  |
| L9+00N |       | 10  |
| L9+00N | 4+50E | <5  |
| L9+00N | 4+75E | <5  |
| L9+00N | 5+00E | <5  |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 12/90

**SIGNED** 

Page 2 of 6





IV RURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S9918

SAMPLE(S) OF Soils

INVOICE #: 15386

P.O.: R2470

Marco V.

Project: Pup

REMARKS: OreQuest Consultants

|               | Au<br>ppb |
|---------------|-----------|
| L9+00N 5+25E  | <5        |
| L9+00N 5+50E  | <5        |
| L9+00N 5+75E  | <5        |
| L9+00N 6+00E  | <5        |
| L9+00N 6+25E  | <5        |
| L10+00N 1+00E | 65        |
| L10+00N 1+25E | 120       |
| L10+00N 1+50E | 80        |
| L10+00N 1+75E | 30        |
| L10+00N 2+00E | 100       |
| L10+00N 2+25E | 65        |
| L10+00N 2+50E | 35        |
| L10+00N 2+75E | 20        |
| L10+00N 3+00E | 10        |
| L10+00N 3+25E | <5        |
| L10+00N 3+50E | <5        |
| L10+00N 3+75E | <5        |
| L10+00N 4+00E | 5         |
| L10+00N 4+25E | <5        |
| L10+00N 4+50E | <5        |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 12/90

SIGNED .

Page 3 of 6





DIV RURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S9918

SAMPLE(S) OF Soils

INVOICE #: 15386

P.O.: R2470

Marco V.

Project: Pup

REMARKS: OreQuest Consultants

|                                                     |       | Au<br>ppb                 |
|-----------------------------------------------------|-------|---------------------------|
| L10+00N                                             | 4+75E | 15                        |
| L10+00N                                             | 5+00E | 5                         |
| L10+00N                                             | 5+25E | 5                         |
| L10+00N                                             | 5+50E | <5                        |
| L10+00N                                             | 5+75E | 20                        |
| L10+00N                                             | 6+00E | 10                        |
| L10+00N                                             | 6+25E | <5                        |
| L11+00N                                             | 0+25W | 180                       |
| L11+00N                                             | 0+00  | 160                       |
| L11+00N                                             | 0+25E | 20                        |
| L11+00N                                             | 0+50E | 130                       |
| L11+00N                                             | 0+75E | 10                        |
| L11+00N                                             | 1+00E | 5                         |
| L11+00N                                             | 1+25E | 95                        |
| L11+00N                                             | 1+50E | 160                       |
| L11+00N<br>L11+00N<br>L11+00N<br>L11+00N<br>L11+00N |       | 45<br>5<br>90<br>10<br>45 |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 12/90

SIGNED

Page 4 of 6





DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

**7...** 

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S9918

INVOICE #:

15386

P.O.: R2470

SAMPLE(S) OF Soils

Marco V.

Project: Pup

REMARKS: OreQuest Consultants

|         |       | ppb |
|---------|-------|-----|
| L11+00N | 3+00E | 10  |
| L11+00N | 3+25E | 65  |
| L11+00N | 3+50E | 5   |
| L11+00N | 3+75E | 15  |
| L11+00N | 4+00E | 10  |
| L11+00N | 4+25E | 5   |
| L11+00N | 4+50E | 5   |
| L11+00N | 4+75E | <5  |
| L11+00N | 5+00E | <5  |
| L11+00N | 5+25E | <5  |
| L11+00N | 5+50E | 10  |
| L11+00N | 5+75E | 5   |
| L11+00N | 6+00E | 5   |
| L11+00N | 6+25E | <5  |
| L11+00N | 6+50E | 5   |
| L12+00N | 0+25W | 5   |
| L12+00N | 0+00  | <5  |
| L12+00N | 0+25E | 260 |
| L12+00N | 0+50E | 50  |
| L12+00N | 0+75E | 15  |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 12/90

SIGNED

Page 5 of 6





DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Exploration Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver. B.C.

V6C 2X6

REPORT No. S9918

SAMPLE(S) OF Soils

INVOICE #: 15386

P.O.: R2470

Marco V. Project: Pup

REMARKS: OreQuest Consultants

|         |       | Au  |
|---------|-------|-----|
|         |       | ppb |
| L12+00N | 1+00E | 30  |
|         |       |     |
| L12+00N | 1+25E | 50  |
| L12+00N | 1+50E | 40  |
| L12+00N | 1+75E | 20  |
| L12+00N | 2+00E | 120 |
|         |       |     |
| L12+00N | 2+25E | 45  |
| L12+00N | 2+50E | 15  |
| L13+00N | 0+50E | 75  |
| L13+00N | 0+75E | 10  |
| L13+00N | 1+00E | 10  |
|         |       |     |
| L13+00N | 1+25E | 15  |
| L13+00N | 1+50E | 10  |
|         |       |     |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 12/90

SIGNED

Page 6 of 6



2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

PROJECT: PUP ATTN: J. FOSTER

OREQUEST CONSULTANTS R02470

T.S.L. Invoice No.: 15482 ALL RESULTS PPM

T.S.L. File No.: M7985

T.S.L. REPORT No.: S - 9918 - 1

|            |       | L8+00N 0+50E | L8+00N 0+75E | L8+00N 1+00E | L8+00N 1+25E   | L8+00N · 1+50E     | L8+00N 1+75E |
|------------|-------|--------------|--------------|--------------|----------------|--------------------|--------------|
| ELEMENT    |       |              |              |              |                |                    |              |
| Aluminum   | [A]]  | 19150        | 13620        | 20000        | 21060          | 11350              | 15710        |
| Iron       | [Fe]  | 40910        | 53210        | 33600        | 2 <b>948</b> 0 | 178 <del>9</del> 0 | 42070        |
| Calcium    | [Ca]  | 1360         | 960          | 860          | 1200           | <del>88</del> 0    | 2060         |
| Magnesium  | [Mg.] | 4610         | 3330         | 3200         | <b>407</b> 0   | 1680               | 5040         |
| Sodium     | [Na]  | 350          | 380          | 70           | <b>29</b> 0    | 740                | 400          |
| Potassium  | €K 1  | 790          | 600          | 250          | 660            | 780                | 900          |
| Titanium   | [Ti]  | 1472         | 946          | 1240         | 2041           | 1252               | 979          |
| Manganese  | EMn 1 | 533          | 666          | 177          | 231            | 138                | 629          |
| Phosphorus | (P ]  | 996          | 1278         | 498          | 618            | 484                | 1260         |
| Barium     | [Ba]  | 22           | 24           | 21           | 26             | 23                 | 36           |
| Chromium   | [Cr]  | 22           | 19           | 27           | 19             | 9                  | 32           |
| Zirconium  | [Zr]  | 5            | 4            | 6            | 8              | 12                 | 4            |
| Copper     | (Cu)  | 320          | 741          | 338          | 140            | 36                 | 430          |
| Nickel     | [Ni]  | 40           | 36           | 21           | 15             | 10                 | 27           |
| Lead       | [Pb]  | 25           | 21           | 19           | 16             | 16                 | 20           |
| Zinc       | [Zn]  | 72           | .70          | 43           | 46             | 36                 | 59           |
| Vanadium   | {V }  | 52           | 26           | 56           | 62             | 23                 | 52           |
| Strontium  | {Sr}  | 16           | 10           | 10           | 14             | 8                  | 18           |
| Cobalt     | [Co]  | 10           | 13           | 4            | 5              | 2                  | 14           |
| Molybdenum | [Mo]  | 4            | 14           | 4            | 2              | 2                  | 12           |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1            | < 1                | < 1          |
| Cadmium    | [Cd]  | < 1          | < 1          | < 1          | < 1            | < 1                | < 1          |
| Beryllium  | [Be]  | < i          | < 1          | < 1          | < 1            | < 1                | < 1          |
| Boron      | (B)   | < 10         | < 10         | ₹ 10         | ← 10           | < 10               | < 10         |
| Antimony   | [5b]  | < 5          | < 5          | < 5          | < 5            | ₹ 5                | ₹ 5          |
| Yttrium    | [Y ]  | 10           | 10           | 6            | 7              | 7                  | 11           |
| Scandium   | (Sc)  | 2            | 2            | 1            | 1              | < 1                | 4            |
| Tungsten   | EW 1  | < 10         | < 10         | < 10         | < 10           | < 10               | < 10         |
| Niobium    | ENb3  | < 10         | < 10         | < 10         | < 10           | < 10               | < 10         |
| Thorium    | [Th]  | 30           | 30           | 10           | 20             | ₹ 10               | 20           |
| Arsenic    | [As]  | 10           | 20           | 20           | < 5            | < 5                | < 5          |
| Bismuth    | [Bi]  | < 5          | < 5          | < 5          | < 5            | ₹ 5                | ₹ 5          |
| Tin        | [Sn]  | < 10         | < 10         | < 10         | < 10           | < 10               | < 10         |
| Lithium    | [Li]  | < 5          | < 5          | < 5          | < 5            | < 5                | ₹ 5          |
| Holmium    | (Ho   | 10           | 10           | < 10         | < 10           | < 10               | < 10         |

DATE : SEP-16-1990

SIGNED: Lem Pilgrick

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 9918 - 2 T.S.L. File No.: M-7985

T.S.L. Invoice No.: 15482

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470

ALL RESULTS PPM

|            |       | L8+00N 2+00E | L8+00N 2+25E | L8+00N 2+50E | L8+00N 2+75E | E8+00N-3+00E | L8+00N 3+25E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |              |              |              |              |
| Aluminum   | [A1]  | 20370        | 24120        | 16190        | 23380        | 13820        | 13180        |
| Iron       | {Fe}  | 78040        | 73820        | 37210        | 22790        | 40650        | 18630        |
| Calcium    | [Ca]  | 1220         | 900          | 1340         | 2220         | 860          | 680          |
| Magnesium  | [Mg]  | 5230         | 3870         | 4560         | 5280         | 1220         | 1270         |
| Sodium     | [Na]  | 150          | 140          | 410          | 130          | 310          | 1230         |
| Potassium  | EK 1  | 290          | 250          | 570          | 450          | 460          | 920          |
| Titanium   | [Ti]  | 1707         | 1025         | 1356         | 1710         | 522          | 1014         |
| Manganese  | [Mn]  | 686          | 675          | 335          | 226          | 1681         | 466          |
| Phosphorus | [P ]  | 1504         | 928          | <b>9</b> 20  | 706          | 698          | 256          |
| Barium     | [Ba]  | 18           | 19           | 25           | 42           | 23           | 35           |
| Chromium   | [Cr]  | 9            | 20           | 46           | 80           | 8            | 8            |
| Zirconium  | [Zr]  | 8            | 9            | 3            | 2            | 6            | 49           |
| Copper     | (Cu)  | 286          | 415          | 100          | 56           | 38           | 8            |
| Nickel     | [Ni]  | 7            | 20           | 27           | 40           | 3            | 4            |
| Lead       | [Pb]  | 34           | 20           | 16           | 21           | 25           | 15           |
| Zinc       | [Zn]  | 50           | 44           | 56           | 59           | 59           | 37           |
| Vanadium   | [V]   | 39           | 27           | 62           | 73           | 10           | 12           |
| Strontium  | [Sr]  | 12           | 6            | 14           | 14           | 6            | 4            |
| Cobalt     | {Co3} | 10           | 18           | 8            | 8            | 13           | 3            |
| Molybdenum | [Mo]  | 12           | 4            | 2            | < 2          | 4            | 2            |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | . < 1        |
| Cadmium    | [Cq]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < 1          | < i          | < 1          | 1            | 1            |
| Baron      | (B)   | < 10         | ← 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | (Sb)  | < 5          | ₹ 5          | < 5          | ₹ 5          | < 5          | ₹ 5          |
| Yttrium    | [ Y ] | 6            | 9            | 9            | 9            | 6            | 9            |
| Scandium   | [Sc]  | 2            | 1            | 2            | 2            | < 1          | < 1          |
| Tungsten   | [W ]  | < 10         | < 10         | < 10         | < 10         | ₹ 10         | < 10         |
| Niobium    | [Nb]  | < 10         | < 10 €       | < 10         | < 10         | 10           | 20           |
| Thorium    | [Th]  | 40           | 40           | 20           | < 10         | 60           | ₹ 10         |
| Arsenic    | [As]  | 30           | 25           | 10           | < 5          | 10           | < 5          |
| Bismuth    | [Bi]  | < 5          | ₹ 5          | < 5          | < 5          | < 5          | ₹ 5          |
| Tin        | [Sn]  | < 10         | ⟨ 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | < 5          | < 5          | < 5          | < 5          | ₹ 5          | < 5          |
| Holmium    | [Ho]  | 10           | < 10         | ₹ 10         | < 10         | < 10         | < 10         |

DATE : SEP-16-1990

SIGNED: Lemi Pilipiak

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. File No.: M-7985

808 West Hastings St.

T.S.L. Invoice No.: 15482

Vancouver B.C. V&C 2X&

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

T.S.L. REPORT No. : S - 9918 - 3

|            |       | L8+00N 3+50E | L8+00N 3+75E | L8+00N 4+00E | L8+00N 4+25E | L8+00N: 4+75E | L8+00N 5+00E |
|------------|-------|--------------|--------------|--------------|--------------|---------------|--------------|
| ELEMENT    |       |              |              |              |              |               |              |
| Aluminum   | (A1)  | 17090        | 19340        | 16520        | 18780        | 19460         | 14800        |
| Iron       | [Fe]  | 33070        | 41480        | 18910        | 30090        | 29290         | 22490        |
| Calcium    | {Ca}  | 1040         | 1700         | 620          | 1400         | 1720          | 2060         |
| Magnesium  | [Mg]  | 4450         | 3590         | <b>208</b> 0 | <b>458</b> 0 | 5040          | 4680         |
| Sodium     | (Na)  | 460          | 340          | 70           | 570          | 100           | 800          |
| Potassium  | €K 3  | 560          | 470          | 300          | 790          | 360           | 730          |
| Titanium   | [Ti]  | 1176         | 1314         | 812          | 889          | 957           | 1347         |
| Manganese  | EMn 3 | 862          | 936          | 185          | 705          | 269           | 286          |
| Phosphorus | {P ]  | 798          | 636          | 302          | 914          | 646           | 530          |
| Barium     | [Ba]  | 27           | 41           | 26           | 56           | 25            | 38           |
| Chromium   | (Cr)  | 45           | 32           | 32           | 2 <i>6</i>   | 56            | 45           |
| Zirconium  | [Zr]  | 6            | 7            | 3            | 2            | 2             | 6            |
| Copper     | [Cu]  | 62           | 69           | 14           | 100          | 41            | 46           |
| Nickel     | ENi I | 31           | 26           | 11           | 22           | 29            | 30           |
| Lead       | [Pb]  | 27           | 30           | 17           | 29           | 15            | 13           |
| Zinc       | [Zn]  | 61           | 103          | 31           | 142          | 58            | 57           |
| Vanadium   | {V }  | 46           | 36           | 58           | 47           | 82            | 61           |
| Strontium  | [Sr]  | ۶            | 15           | 8            | 12           | 13            | 14           |
| Cobalt     | [Co]  | 16           | 19           | 3            | 13           | 8             | 9            |
| Molybdenum | [Mo]  | < 2          | < 2          | 2            | < 2          | < 2           | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1           | < 1          |
| Cadmium    | £Cq3  | < 1          | < 1          | < 1          | < 1          | < 1           | < 1          |
| Beryllium  | [Be]  | < 1          | 1            | < 1          | < 1          | < 1           | < 1          |
| Baron      | £B 3  | < 10         | < 10         | < 10         | < 10         | < 10          | < 10         |
| Antimony   | [Sb]  | < 5          | ₹ 5          | < 5          | < 5          | < <u>5</u>    | ₹ 5          |
| Yttrium    | £Y ]  | 7            | 9            | 4            | 12           | 7             | 10           |
| Scandium   | {Sc}  | < 1          | < 1          | < 1          | 2            |               |              |
| Tungsten   | [₩ ]  | < 10         | < 10         | ₹ 10         | < 10         | < 10          | < 10         |
| Niobium    | [Nb]  | < 10         | < 10         | < 10         | < 10         | < 10          | ₹ 10         |
| Thorium    | [Th]  | 30           | 30           | < 10         | 30           | 20            | 20           |
| Arsenic    | [As]  | < 5          | ₹ 5          | < 5          | ₹ 5          | < 5           | < 5          |
| Bismuth    | [Bi]  | ₹ 5          | < 5          | < 5          | < 5          | < 5           | < 5<br>< 40  |
| Tin        | [Sn]  | < 10         | < 10         | < 10<br>2    | < 10<br>=    | < 10          | < 10         |
| Lithium    | [Li]  | < 5          | < 5          | < 5          | < 5          | < 5<br>< 10   | < 5          |
| Holmium    | [Ho]  | < 10         | < 10         | < 10         | < 10         | < 10          | < 10         |

DATE : SEP-16-1990

SIGNED: Dem Pilgrah

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 9918 - 4 T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

S7K 6A4

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470

ALL RESULTS PPM

| ELEMENT             |       | £8+00N 5+25E    | L8+00N 5+50E                          | LB+00N 5+75E | 18+00N 6+00E | L9+00N-1+00E                          | L9+00N 1+25E |
|---------------------|-------|-----------------|---------------------------------------|--------------|--------------|---------------------------------------|--------------|
| CLCHCKI             |       |                 |                                       |              |              |                                       |              |
| Aluminum            | [A]]  | 21150           | 17230                                 | 19830        | 19040        | 15910                                 | 18150        |
| Iron                | [Fe]  | 56440           | 32310                                 | 24390        | 30770        | 19090                                 | 40150        |
| Calcium             | [Cal  | 1440            | 1900                                  | 1020         | 900          | 760                                   | 540          |
| Magnesium           | CMg 3 | 6380            | 4810                                  | 3810         | 3160         | 1840                                  | 9820         |
| Sodium              | (Na)  | 220             | 330                                   | 360          | 340          | 690                                   | 170          |
| Potassium           | €K 3  | 430             | 700                                   | 560          | 400          | 560                                   | 330          |
| Titanium            | [Ti]  | 1296            | 1240                                  | 1300         | 2241         | 1407                                  | 1083         |
| Manganese           | [Mn]  | 1284            | 676                                   | 445          | 303          | 115                                   | 870          |
| Phosphorus          | (P ]  | 1158            | 994                                   | 552          | 502          | 500                                   | 554          |
| Barium              | [Ba]  | 27              | 34                                    | 37           | 25           | 21                                    | 16           |
| Chromium            | [Cr]  | 41              | 37                                    | 35           | 23           | 21                                    | 308          |
| Zirconium           | [2r]  | 7               | 5                                     | 5            | 9            | 10                                    | 3            |
| Copper              | (Cu)  | 252             | 74                                    | 47           | 36           | 94                                    | 126          |
| Nickel              | [Ni]  | 52              | 30                                    | 21           | 10           | 5                                     | 370          |
| Lead                | [Pb]  | 23              | 27                                    | 19           | 20           | 17                                    | 10           |
| Zinc                | [Zn]  | 109             | <del>9</del> 7                        | 57           | 53           | 46                                    | 59           |
| Vanadium            | [V]   | 71              | 57                                    | 46           | 60           | 40                                    | 51           |
|                     | [Sr]  | 10              | 16                                    | 9            | 10           | 8                                     | 10           |
| Cobalt              | [Co]  | 40              | 13                                    | 8            | 5            | i                                     | 43           |
| Molybdenum          |       | < 2             | < 2                                   | < 2          | 2            | 6                                     | < 2          |
| Silver              | [Ag]  | < 1             | < 1                                   | < 1          | < 1          | < 1                                   | < 1          |
| Cadmium             | [Cq]  | < 1             | < 1                                   | < 1          | < 1          | < 1                                   | < 1          |
| Beryllium           | [Be]  | < 1             | < 1                                   | < 1          | < 1          | < 1                                   | < 1          |
| Baran               | [B ]  | < 10            | < 10                                  | < 10         | < 10         | < 10                                  | < 10         |
| Antimony            | [Sb]  | < 5             | 5                                     | < 5          | < 5          | < 5                                   | 10           |
| Yttrium             | [ Y]  | 14              | 9                                     | 10           | 9            | 13                                    | 5            |
| Scandium            | (Sc)  | 5               | 3                                     | 2            | 2            | 1                                     | 2            |
| Tungsten<br>Niobium | ENb]  | < 10<br>< 10    | < 10<br>< 10                          | < 10<br>< 10 | < 10<br>< 10 | < 10<br>< 10                          | < 10<br>< 10 |
|                     | [Th]  | 30              | 20                                    | 20           | 20           | < 10                                  | < 10<br>< 10 |
| Thorium<br>Arsenic  | [As]  | 5               | 20<br>15                              | 20<br>5      | 20<br>5      | \ 10<br>5                             | 10           |
| Hrsenic<br>Bismuth  | [Bi]  | ,<br>(5         | 15<br>< 5                             | ,<br>(5      | ,<br>( 5     | ,<br>(5                               | 10<br>< 5    |
| Tin                 | [Sn]  | ⟨ 10            | ⟨ 10                                  | ₹ 10         | ⟨ 10         | √ 10                                  | ⟨ 10         |
| Lithium             | [Li]  | \ \ \ \ \ \ \ 5 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ 5          | < 5          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ₹ 5          |
| Holmium             | (Ho)  | ⟨ 10            | ⟨ 10                                  | ₹ 10         | ₹ 10         | ₹ 10                                  | 70           |
| 1 100 T 101 T 1510  | -1102 | , AV            | * **                                  |              | • • •        | · ••                                  | , ,          |

DATE: SEP-16-1990

SIGNED: Lem Pilgnik

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

### I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 9918 - 5

T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

Vancouver B.C. V6C 2X6

PROJECT: PUP ATTN: J. FOSTER

**DREQUEST CONSULTANTS** R-2470 ALL RESULTS PPM

|            |      | L9+00N 1+50E     | L9+00N 1+75E  | L9+00N 2+00E | L9+00N 2+25E   | L9+00N 2+50E | L9+00N 2+75E |
|------------|------|------------------|---------------|--------------|----------------|--------------|--------------|
| ELEMENT    |      |                  |               |              |                |              |              |
| Aluminum   | [A1] | 16290            | 14350         | 15340        | 14530          | 20880        | 9760         |
| Iron       | [Fe] | 1 <b>98</b> 50   | 50850         | 38560        | 52210          | 49600        | 59930        |
| Calcium    | [Ca] | 7 <del>6</del> 0 | 2 <b>28</b> 0 | 1700         | 960            | 1520         | 2320         |
| Magnesium  | [Mg] | 2840             | 3250          | <b>429</b> 0 | 4760           | 4940         | 2760         |
| Sodium     | [Na] | 760              | 250           | 400          | 350            | 290          | 100          |
| Potassium  | EK 1 | 790              | 530           | 790          | 530            | 470          | 360          |
| Titanium   | [Ti] | 1245             | 1375          | 944          | 1669           | 1623         | 236          |
| Manganese  | [Mn] | 135              | 361           | 858          | 1096           | 578          | 1737         |
| Phosphorus | {P ] | 438              | 1556          | 1104         | 1262           | 1410         | 1710         |
| Barium     | (Ba) | 25               | 23            | 42           | 21             | 25           | 32           |
| Chromium   | {Cr] | 21               | 23            | 23           | 3 <del>8</del> | 25           | 11           |
| Zirconium  | [Zr] | 10               | 4             | 4            | 6              | 5            | 3            |
| Copper     | (Cu) | 25               | 550           | 334          | 293            | 160          | 164          |
| Nickel     | [Ni] | 14               | 22            | 20           | 30             | 13           | 8            |
| Lead       | [Pb] | 30               | 21            | 21           | 13             | 23           | 21           |
| Zinc       | EZn3 | 44               | 40            | 77           | 44             | 59           | 53           |
| Vanadium   | [V ] | 29               | 48            | 46           | 44             | 80           | 10           |
| Strontium  | [Sr] | 9                | 45            | 22           | 15             | 48           | 19           |
| Cobalt     | [co] | 3                | 15            | 14           | 23             | 10           | 17           |
| Molybdenum | [Mo] | 2                | 4             | 8            | 6              | 34           | 4            |
| Silver     | [Ag] | < 1              | < 1           | < 1          | < 1            | < 1          | < 1          |
| Cadmium    | ECq3 | < 1              | < 1           | < 1          | < 1            | < 1          | < 1          |
| Beryllium  | [Be] | < 1              | < 1           | < 1          | < 1            | < 1          | < 1          |
| Boron      | [B]  | < 10             | < 10          | < 10         | < 10           | < 10         | < 10         |
| Antimony   | [Sb] | < 5              | < 5           | < 5          | < 5            | ₹ 5          | ₹ 5          |
| Yttrium    | [Y]  | 11               | 7             | 11           | 10             | 8            | 14           |
| Scandium   | (Sc) | < 1              | 2             | 3            | 2              | 2            | 1            |
| Tungsten   | [W]  | < 10             | < 10          | < 10         | < 10           | < 10         | < 10         |
| Niobium    | [Mb] | < 10             | < 10          | < 10         | < 10           | < 10         | < 10         |
| Thorium    | [Th] | < 10             | 30            | 30           | 30             | 30           | 40           |
| Arsenic    | [As] | < 5              | 15            | 25           | < 5            | 30           | 10           |
| Bismuth    | [Bi] | < 5              | < 5           | < 5          | < 5            | < 5          | ₹ 5          |
| Tin        | [Sn] | < 10             | < 10          | < 10         | < 10           | < 10         | < 10         |
| Lithium    | [Li] | < 5              | < 5           | < 5          | ₹ 5            | < 5          | < 5          |
| Holmium    | [Ho] | < 10             | < 10          | < 10         | < 10           | < 10         | < 10         |
|            |      |                  |               |              |                |              |              |

DATE : SEP-16-1990

SIGNED: Lem Piljink

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10 808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2470

T.S.L. Invoice No.: 15482 ALL RESULTS PPM

T.S.L. REPORT No.: 5 - 9918 - 6 T.S.L. File No.: SE14MA

57K 6A4

| ELEMENT    |       | L9+00N 3+00E | L9+00N 3+25E | L9+00N 3+50E | L9+00N 3+75E | 19+00N-4+00E | L9+00N 4+25E |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| Aluminum   | [A1]  | 15770        | 12760        | 15190        | 18220        | 17690        | 19410        |
| Iron       | (Fe)  | 53810        | 19610        | 25550        | 25750        | 28150        | 34230        |
| Calcium    | [Ca]  | 1360         | 820          | 1160         | 1500         | 960          | 2120         |
| Magnesium  | EMg 1 | 2430         | 1770         | 4120         | 4520         | 3250         | 4380         |
| Sodium     | [Na]  | 270          | 1320         | 310          | 210          | 290          | 450          |
| Potassium  | EK 1  | 450          | 960          | 420          | 370          | 430          | 580          |
| Titanium   | [Ti]  | 374          | 1124         | 1073         | 1275         | 1724         | 1550         |
| Manganese  | [Mn]  | 2240         | 259          | 190          | 252          | 305          | 739          |
| Phosphorus |       | 916          | 358          | 470          | 636          | 598          | 734          |
| Barium     | [Ba]  | 58           | 42           | 23           | 26           | 27           | 34           |
| Chromium   | (Cr)  | 10           | 15           | 39           | 57           | 30           | 30           |
| Zirconium  | [Zr]  | 3            | 15           | 3            | 2            | 7            | 6            |
| Copper     | [Cu]  | 113          | 13           | 33           | 43           | 55           | 98           |
| Nickel     | [Ni]  | 6            | 7            | 19           | 28           | 13           | 21           |
| Lead       | [Pb]  | 30           | 11           | 17           | 15           | 18           | 45           |
| Zinc       | EZn 3 | 82           | 37           | 45           | 47           | 44           | 204          |
| Vanadium   | [V]   | 9            | 21           | 53           | 73           | 59           | 68           |
| Strontium  | [Sr]  | 23           | 8            | 13           | 11           | 12           | 21           |
| Cobalt     | [Co]  | 17           | 3            | 5            | 8            | 7            | 17           |
| Molybdenum | [Mo]  | 4            | 2            | < 2          | < 2          | < 2          | < 2          |
| Silver     | [Ag]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | [Cd]  | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | 2            | 1            | < 1          | < 1          | < 1          | < 1          |
| Boron      | [B ]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [Sb]  | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Yttrium    | [Y]   | 12           | 8            | 6            | 6            | 7            | 12           |
| Scandium   | [Sc]  | < 1          | < i          | 1            | 2            | 1            | 3            |
| Tungsten   | [W ]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb]  | 10           | 10           | < 10         | < 10         | ← 10         | < 10         |
| Thorium    | [Th]  | 40           | < 10         | 10           | 20           | 30           | 30           |
| Arsenic    | [As]  | . < 5        | < 5          | 5            | < 5          | < 5          | 15           |
| Bismuth    | [Bi]  | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Tin        | [Sn]  | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li]  | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Holmium    | [Ho]  | < 10         | < 10         | < 10         | 10           | < 10         | < 10         |

DATE : SEP-16-1990

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP

OREQUEST CONSULTANTS

R-2470

T.S.L. REPORT No.: S - 9918 - 7 T.S.L. File No.: SE14MA

T.S.L. Invoice No.: 15482

ALL RESULTS PPM

|            |      | L9+00N 4+50E | L9+00N 4+75E | L9+00N 5+00E  | L9+00N 5+25E | L9+00N: 5+50E | L9+00N 5+75E |
|------------|------|--------------|--------------|---------------|--------------|---------------|--------------|
| ELEMENT    |      |              |              |               |              |               |              |
| Aluminum   | [A1] | 24200        | 14590        | 14930         | 16300        | 20610         | 21950        |
| Iron       | [Fe] | 27250        | 41390        | 27550         | 21840        | 30480         | 37480        |
| Calcium    | [Ca] | 1680         | 2400         | 1920          | 1140         | 2740          | 3260         |
| Magnesium  | [Mg] | <b>49</b> 90 | 4940         | 2 <b>69</b> 0 | 2120         | 5170          | 4420         |
| Sodium     | (Na) | 120          | 80           | 450           | 1000         | 190           | 220          |
| Potassium  | EK 1 | 260          | 260          | 800           | 810          | 300           | 420          |
| Titanium   | [Ti] | <b>89</b> 0  | 1587         | 1034          | 1251         | 928           | 1234         |
| Manganese  | [Mn] | 2 <b>9</b> 0 | 583          | 1746          | 287          | 335           | 964          |
| Phosphorus | [P ] | 458          | 350          | 652           | 416          | 610           | 1094         |
| Barium     | [Ba] | 25           | 27           | 55            | 45           | 31            | 45           |
| Chromium   | (Cr) | 70           | 65           | 15            | 18           | 73            | 45           |
| Zirconium  | [2r] | 2            | 4            | 4             | 14           | 3             | 4            |
| Copper     | {Cu} | 55           | 27           | 35            | 16           | 80            | 66           |
| Nickel     | ENi] | 40           | 19           | 7             | 11           | 38            | 25           |
| Lead       | [Pb] | 12           | 27           | 26            | 15           | 11            | 24           |
| Zinc       | EZn] | 47           | 74           | 92            | 39           | 40            | 55           |
| Vanadium   | [V ] | 83           | 125          | 50            | 33           | 104           | 94           |
| Strontium  | {Sr} | 11           | 23           | 26            | 10           | 17            | 45           |
| Cobalt     | [00] | 8            | 10           | 7             | 3            | 9             | 13           |
| Molybdenum | (Mo) | < 2          | < 2          | < 2           | 2            | < 2           | ₹ 2          |
| Silver     | [Ag] | < 1          | < 1          | < 1           | < 1          | < 1           | < 1          |
| Cadmium    | (Cq) | < 1          | < 1          | < 1           | < 1          | < 1           | < 1          |
| Beryllium  | [Be] | < 1          | < 1          | i             | 1            | < 1           | < 1          |
| Baran      | (B)  | < 10         | < 10         | < 10          | < 10         | < 10          | < 10         |
| Antimony   | [Sb] | < 5          | < 5          | < 5           | 10           | < 5           | < 5          |
| Yttrium    | [Y]  | 6            | 5            | 7             | 11           | 7             | 10           |
| Scandium   | (Sc) | 2            | 2            | < 1           | 1            | 3             | 3            |
| Tungsten   | [W]  | < 10         | < 10         | < 10          | < 10         | < 10          | < 10         |
| Niobium    | [Nb] | < 10         | < 10         | 10            | 10           | < 10          | < 10         |
| Thorium    | [Th] | 20           | 30           | 60            | < 10         | 10            | 10           |
| Arsenic    | [As] | 10           | 15           | 5             | 20           | < 5           | 15           |
| Bismuth    | {Bi} | √ 5          | < 5          | < 5           | < 5          | < 5           | < 5          |
| Tin        | [Sn] | < 10         | < 10         | < 10          | < 10         | < 10          | < 10         |
| Lithium    | [Li] | < 5          | < 5          | < 5           | < 5          | < 5           | < 5          |
| Holmium    | (Ho) | 10           | < 10         | < 10          | < 10         | 10            | < 10         |
|            |      |              |              |               |              |               |              |

DATE : SEP-16-1990

SIGNED: Lem Pilgrick

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 57K 6A4

### I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 9918 - 8 T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

Vancouver B.C. V&C 2X&

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

| er eneme                    |              | L9+00N 6+00E | L9+00N 6+25E  | L10+00N 1+00E      | L10+00N 1+25E    | L10+00N-1+75E | L10+00N 2+00E |
|-----------------------------|--------------|--------------|---------------|--------------------|------------------|---------------|---------------|
| ELEMENT                     |              |              |               |                    |                  |               |               |
| Aluminum                    | [A]]         | 18670        | 22890         | 20170              | 19640            | 23970         | 15140         |
| Iron                        | [Fe]         | 30490        | 35840         | <b>4</b> 5260      | 54240            | 41710         | 56920         |
| Calcium                     | [Ca]         | 1380         | 1900          | 1800               | 1980             | 860           | 2420          |
| Magnesium                   | [Mg]         | 3610         | 4460          | 3820               | 4430             | 3970          | 3000          |
| Sodium                      | [Na]         | 550          | 250           | 550                | 460              | 70            | 180           |
| Potassium                   | EK 1         | 590          | 480           | 750                | 730              | 250           | 570           |
| Titanium                    | [Ti]         | 1976         | 1858          | 1439               | 1552             | 1138          | 541           |
| Manganese                   | [Mn]         | 571          | 457           | 562                | 716              | 279           | 2676          |
| Phosphorus                  | [P ]         | 586          | 558           | 916                | 1238             | 624           | 1190          |
| Barium                      | [Bal         | 35           | 34            | 37                 | 31               | 23            | 58            |
| Chromium                    | [Cr]         | 19           | 52            | 19                 | 18               | 71            | 10            |
| Zirconium                   | [7r]         | 10           | 6             | 7                  | 4                | 3             | 2             |
| Copper                      | [Cu]         | 52           | 48            | 186                | 345              | 82            | 527           |
| Nickel                      | ENi]         | 10           | 21            | 14                 | 13               | 27            | 9             |
| Lead                        | (Pb)         | 12           | 15            | 39                 | 47               | 15            | 491           |
| Zinc                        | [Zn]         | 56           | 57            | 97                 | 61               | 41            | 372           |
| Vanadium                    | {V }         | <i>6</i> 4   | <del>98</del> | 3 <del>9</del>     | 38               | 77            | 23            |
| Strontium                   | [Sr]         | 16           | 17            | 21                 | 31               | 13            | 22            |
| Cobalt                      | [Co]         | 9            | 9             | 10                 | 23               | 6             | 30            |
| Molybdenum                  |              | 2            | < 2           | 12                 | 6                | 2             | 12            |
| Silver                      | [ pA]        | < 1          | < 1           | < 1                | < 1              | < 1           | < 1           |
| Cadmium                     | £643         | < 1          | < 1           | < 1                | < 1              | < 1           | < 1           |
| Berylliu <b>m</b>           | [Be]         | 1            | < 1           | i                  | 1                | < 1           | 1             |
| Boron                       | (B ]         | < 10         | < 10          | < 10               | < 10             | < 10          | < 10          |
| Antimony                    | [56]         | < 5          | < 5           | ₹ 5                | < 5              | < <u>5</u>    | ₹ 5           |
| Yttrium                     | [ Y ]        | 10           | 8             | 12                 | 14               | . 7           | 12            |
| Scandium                    | [Sc]         | 2            | 3             | 1                  | 2                | < 1           | < 1           |
| Tungsten                    | [W]          | < 10         | < 10          | < 10               | < 10             | < 10          | < 10          |
| Niobium                     | [Nb]         | < 10         | < 10          | < 10<br><b>7</b> 0 | < 10             | < 10          | < 10          |
| Thorium                     | [Th]<br>[As] | 10           | 10<br>< 5     | 30<br>← 5          | <b>3</b> 0<br>15 | < 10          | 30            |
| Arsenic<br>Bis <b>m</b> uth | [Bi]         | < 5          | < 5<br>< 5    | < 5<br>< 5         | 13<br>( <b>5</b> | < 5<br>< 5    | 5<br>〈 5      |
| Bismutn<br>Tin              | [Sn]         | ₹ 5<br>₹ 10  | < 10          | ( 10               | < 10             | < 3<br>< 10   |               |
| Lithium                     | (ill         | \ 10<br>\ 5  | < 5           | < 5                | < 5              | < 10<br>< 5   | < 10<br>< 5   |
| Holmium                     | [Ho]         | ⟨ 10         | ₹ 10          | ⟨ 10               | √ J<br>← 10      | √ 3<br>← 10   | √ 3<br>← 10   |
| 440.1441.744                | CUOI         | V 10         | \ 10          | \ 1V               | V 10             | V 10          | 3 10          |

DATE : SEP-16-1990

SIGNED: Jam Pilipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Agua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470

T.S.L. REPORT No.: 5 - 9918 - 9

T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

57K 6A4

ALL RESULTS PPM

| El Curut   |       | L10+00N 2+25E | L10+00N 2+50E | £10+00N 2+75E | L10+00N 3+00E | E10+00N 3+25E | L10+00N 3+50E |
|------------|-------|---------------|---------------|---------------|---------------|---------------|---------------|
| ELEMENT    |       |               |               |               |               |               |               |
| Aluminum   | [A]]  | 18110         | 22730         | 12900         | 15000         | 26240         | 20410         |
| Iron       | [Fe]  | 81620         | 63530         | 30540         | 29980         | 53900         | 36870         |
| Calcium    | [Ca]  | 2280          | 580           | 1620          | 2720          | 760           | 1540          |
| Magnesium  | [Mg]  | <b>49</b> 20  | 4440          | 2800          | 5690          | 5140          | 5180          |
| Sodium     | [Na]  | 80            | 70            | 190           | 130           | 80            | 120           |
| Potassium  | EK 1  | 340           | 510           | 750           | 290           | 560           | 300           |
| Titanium   | [Ti]  | 1021          | 2528          | 840           | 859           | 983           | 1065          |
| Manganese  | [Mn]  | 2448          | 878           | 1001          | 450           | 718           | 341           |
| Phosphorus | [P]   | 898           | 626           | 940           | 668           | 722           | 498           |
| Barium     | [Ba]  | 34            | 45            | 39            | 27            | 35            | 22            |
| Chromium   | [Cr]  | 20            | 32            | 39            | 84            | 37            | 75            |
| Zirconium  | [75]  | 7             | 14            | < 1           | 1             | 4             | 4             |
| Copper     | [Cu]  | 261           | 104           | 48            | 84            | 50            | 43            |
| Nickel     | [Ni]  | 39            | 10            | 16            | 69            | 21            | 47            |
| Lead       | [64]  | 30            | 51            | 27            | 12            | 22            | 13            |
| Zinc       | [Zn]  | 79            | 93            | 56            | 39            | 41            | 40            |
| Vanadium   | [V]   | 53            | 135           | 47            | 70            | 63            | 72            |
| Strontium  | [Sr]  | 36            | 15            | ié            | 15            | 11            | 12            |
| Cobalt     | [Co]  | 61            | 12            | 11            | 12            | 12            | 8             |
| Molybdenum | [Ma]  | 18            | 12            | < 2           | < 2           | 8             | 2             |
| Silver     | [Ag]  | < 1           | < 1           | < 1           | < 1           | < 1           | ₹ ,1          |
| Cadmium    | (Cq3  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| Beryllium  | [Be]  | i             | < 1           | < 1           | < 1           | < 1           | < 1           |
| Baran      | (B ]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Antimony   | [Sb]  | < 5           | < 5           | < 5           | 5             | < 5           | ₹ 5           |
| Yttrium    | [ Y ] | 8             | 7             | 5             | 6             | 7             | 6             |
| Scandium   | [Sc]  | 2             | 2             | < 1           | 2             | 1             | 2             |
| Tungsten   | [W]   | < 10          | < 10          | < 10          | < 10          | < 10          | ₹ 10          |
| Niobium    | [Nb]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Thorium    | ETh 3 | 40            | 30            | 20            | 20            | 30            | 20            |
| Arsenic    | [As]  | 20            | 10            | < 5           | < 5           | 15            | < 5           |
| Bismuth    | [Bi]  | < 5           | < 5           | < 5           | < 5           | < 5           | ₹ 5           |
| Tin        | [Sn]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Lithium    | [Li]  | < 5           | < 5           | < 5           | < 5           | ₹ 5           | ₹ 5           |
| Holmium    | [Ho]  | < 10          | < 10          | < 10          | 20            | ← 10          | 10            |

DATE: SEP-16-1990

SIGNED: Jems Pilipink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 S7K 6A4

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : 5 - 9918 - 10 T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

|            |       | L10+00N 3+75E | L10+00N 4+00E | L10+00N 4+25E | L10+00N 4+50E | L10+00N-4+75E | L10+00N 5+00E  |
|------------|-------|---------------|---------------|---------------|---------------|---------------|----------------|
| ELEMENT    |       |               |               |               |               |               |                |
| Aluminum   | [Al]  | 14240         | 25040         | 21130         | 19530         | 15180         | 20730          |
| Iron       | [Fe]  | 21510         | 30560         | 29310         | 35270         | 24640         | 29800          |
| Calcium    | [Ca]  | 940           | 1860          | 3620          | 1180          | 3080          | 1820           |
| Magnesium  | [Mq]  | 2230          | 5680          | 4780          | 2260          | 4800          | 2880           |
| Sodium     | [Na]  | <b>69</b> 0   | 150           | 500           | 380           | 340           | 520            |
| Potassium  | EK 1  | 550           | 270           | 680           | 710           | 530           | 860            |
| Titanium   | [Ti]  | 1305          | 904           | 1163          | 1522          | 1039          | 687            |
| Manganese  | EMn 3 | 121           | 281           | 563           | 1424          | 333           | 2035           |
| Phosphorus | [P ]  | 418           | 432           | - 770         | 642           | 640           | 726            |
| Barium     | [Ba]  | 29            | 29            | 69            | 51            | 38            | 93             |
| Chromium   | [Cr]  | 38            | 97            | 52            | 17            | 52            | 17             |
| Zirconium  | [Zr]  | 10            | 2             | 3             | 5             | 4             | 1              |
| Copper     | [Cu]  | 23            | 48            | 44            | 42            | 40            | 32             |
| Nickel     | [Ni]  | 12            | 61            | 32            | 6             | 35            | 9              |
| Lead       | [Pb]  | 11            | 12            | 32            | 41            | 49            | 18             |
| Zinc       | [Zn]  | 29            | 45            | 109           | 119           | 46            | <del>9</del> 1 |
| Vanadium   | [V]   | 49            | 84            | 68            | 49            | 72            | 39             |
| Strontium  | [Sr]  | 8             | 13            | 27            | 19            | 19            | 29             |
| Cobalt     | [Co]  | 2             | 9             | 10            | 12            | 8             | 8              |
| Molybdenum | {Mo}  | 2             | < 2           | < 2           | 4             | < 2           | < 2            |
| Silver     | [Ag]  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1            |
| Cadmium    | [Cd]  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1            |
| Beryllium  | {Be}  | < 1           | < 1           | 1             | 1             | < 1           | 2              |
| Boron      | [B]   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10           |
| Antimony   | [56]  | ₹ 5           | 5             | < 5           | < 5           | 10            | < 5            |
| Yttrium    | [Y ]  | 7             | 6             | 12            | 9             | 7             | 14             |
| Scandium   | [Sc]  | < i           | 2             | 2             | 1             | 2             | 1              |
| Tungsten   | EW 1  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10           |
| Niobium    | [Nb]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10           |
| Thorium    | [Th]  | < 10          | 10            | 20            | 30            | 20            | 40             |
| Arsenic    | [As]  | ₹ 5           | < 5           | 5             | . 5           | 10            | < 5            |
| Bismuth    | [Bi]  | < 5           | < 5           | < 5           | < 5           | < 5           | ₹ 5            |
| Tin        | (Sn)  | < 10          | < 10          | < 10          | < 10          | ₹ 10          | < 10           |
| Lithium    | [Li]  | < 5           | < 5           | < 5           | < 5           | < 5<br>/ 18   | < 5            |
| Holmium    | {Ho}  | < 10          | 10            | < 10          | < 10          | < 10          | < 10           |

DATE : SEP-16-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. REPORT No.: S - 9918 - 11 T.S.L. File No.: SE14MA T.S.Ł. Invoice No.: 15482

57K 6A4

808 West Hastings St.

Vancouver B.C. V&C 2X6 ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

|            |                 | L10+00N 5+25E | L10+00N 5+50E | L10+00N 5+75E | L10+00N 6+00E  | L10+00N-6+25E | L11+00N 0+25W |
|------------|-----------------|---------------|---------------|---------------|----------------|---------------|---------------|
| ELEMENT    |                 |               |               |               |                |               |               |
| Aluminum   | [A]]            | 16560         | 16220         | 22120         | 18900          | 5700          | 18400         |
| Iron       | [Fe]            | 22790         | 24590         | 49210         | 2 <b>98</b> 30 | 8120          | 78120         |
| Calcium    | [Ca]            | 3200          | 1300          | 3220          | 2320           | 960           | 2460          |
| Magnesium  | [pM]            | 2430          | 2020          | <b>597</b> 0  | 4870           | 1110          | 5150          |
| Sodium     | [Na]            | 470           | 1070          | 220           | 330            | 700           | 170           |
| Potassium  | EK 3            | 580           | 1010          | 5 <b>8</b> 0  | 490            | 650           | 710           |
| Titanium   | {Ti}            | 726           | 1386          | 1331          | 1506           | 1650          | 1023          |
| Manganese  | EMn 1           | 682           | 1177          | 2292          | 590            | 105           | 1402          |
| Phosphorus | <pre>{P }</pre> | 704           | 476           | 1666          | 690            | 446           | 1124          |
| Barium     | [Ba]            | 76            | 65            | 31            | 30             | 16            | 33            |
| Chromium   | [Cr]            | 32            | 13            | 45            | <b>64</b>      | 21            | 16            |
| Zirconium  | [Zr]            | 4             | 12            | 4             | 4              | 7             | 8             |
| Copper     | (Cu)            | 20            | 17            | 231           | 54             | 8             | 326           |
| Nickel     | [Ni]            | 14            | 7             | 57            | 34             | 8             | 22            |
| Lead       | [Pb]            | 13            | 23            | 82            | 15             | 14            | 38            |
| Zinc       | EZn]            | 55            | 79            | 212           | 56             | 26            | 82            |
| Vanadium   | EV 3            | 45            | 39            | 77            | 83             | 27            | 36            |
| Strontium  | [Sr]            | 29            | 15            | 22            | 17             | 10            | 41            |
| Cobalt     | [63]            | 6             | 6             | 33            | 11             | 2             | 41            |
| Molybdenum | [Ma]            | < 2           | < 2           | . < 2         | < 2            | < 2           | 4             |
| Silver     | [Ag]            | < 1           | < 1           | < 1           | < 1            | < 1           | < 1           |
| Cadmium    | [Cq]            | < 1           | < 1           | < 1           | < 1            | < 1           | < 1           |
| Beryllium  | [Be]            | 2             | 2             | < 1           | < 1            | < 1           | < 1           |
| Baron      | (B ]            | < 10          | < 10          | < 10          | < 10           | < 10          | < 10          |
| Antimony   | [56]            | < 5           | < 5           | < 5           | < 5            | ₹ 5           | ₹ 5           |
| Yttrium    | [ Y ]           | 11            | 11            | 14            | 7              | 3             | 13            |
| Scandium   | [Sc]            | < 1           | < 1           | 5             | 3              | < 1           | 2             |
| Tungsten   | {₩ }            | < 10          | < 10          | < 10          | < 10           | < 10          | < 10          |
| Niobium    | [Nb]            | 10            | 20            | < 10          | < 10           | < 10          | < 10          |
| Thorium    | [Th]            | 20            | < 10          | 30            | < 10           | < 10          | 40            |
| Arsenic    | (As)            | √ ₹ 5         | < 5           | 15            | < 5            | < 5           | 10            |
| Bismuth    | [Bil            | < 5           | < 5           | < 5           | < 5            | < 5           | < 5           |
| Tin        | [Sn]            | < 10          | < 10          | < 10          | < 10           | < 10          | < 10          |
| Lithium    | [Li]            | < 5           | < 5           | < 5           | < 5            | < 5           | ₹ 5           |
| Holmium    | [Ho]            | < 10          | < 10          | < 10          | < 10           | < 10          | < 10          |

DATE : SEP-16-1990

SIGNED: Jam Pilpink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 S7K 6A4

I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No.: S - 9918 - 12 T.S.L. File No.: SE14MA

T.S.L. Invoice No.: 15482

ATTN: J. FOSTER PROJECT: PUP

OREQUEST CONSULTANTS R-2470

ALL RESULTS PPM

|   | ELEMENT     |       | £11+00N 0+00 | L11+00N 0+25E  | L11+00N 0+50E      | L11+00N 0+75E  | L11+00N-1+00E | L11+00N 1+25E |
|---|-------------|-------|--------------|----------------|--------------------|----------------|---------------|---------------|
| , | Aluminum    | [A]]  | 18870        | 16 <b>4</b> 70 | 19630              | OFF A          | 0400          |               |
|   | ron         | [Fe]  | 66550        | 35120          |                    | 8550<br>35.400 | 8120          | 18400         |
|   | Calcium     | [Ca]  | 2100         | 33120<br>3460  | 69050<br>2220      | 25480          | 24940         | 35540         |
|   | lagnesium   | [Mg]  | 4790         | 3450<br>3130   | 5110               | 3760           | 1880          | 1780          |
|   | odium       | [Na]  | 270          | 410            | 200                | 1890           | 3380          | 4120          |
|   | otassium    | EK 1  | 810          | 410<br>680     | 200<br>680         | 1120<br>970    | 660           | 380           |
|   | itanium     | [Ti]  | 926          | 717            | 1020               |                | 920           | 540           |
|   |             | [Mn]  | 1759         | 858            | 1342               | 1138           | 1222          | 1660          |
|   | hosphorus   |       | 1328         | 882            | 1076               | 1078<br>494    | 544           | 379           |
|   | arium       | [Ba]  | 41           | 40             | 107 <b>6</b><br>42 | 474<br>34      | 554<br>21     | 722           |
|   | hromium     | [Cr]  | 20           | 40<br>60       | 22                 | 35             | 108           | 27            |
|   | irconium    | [Zr]  | 6            | 4              | 6                  | 33<br>8        | 108           | 37            |
|   | Copper      | (Cu)  | 223          | 180            | 5 <b>42</b>        | 236            | 47            | 6<br>70       |
|   | lickel      | [Ni]  | 16           | 28             | 45                 | 18             | 47<br>45      | 70<br>20      |
|   | .ead        | [Pb]  | 73           | 33             | 26                 | 20             | 43<br>22      | 18            |
|   | inc         | [Zn]  | 117          | 126            | 79                 | 62             | 60            | 59            |
|   | anadium     | [V ]  | 38           | 28             | 37                 | 14             | 32            | 44            |
|   | trontium    | (Sr)  | 32           | 22             | 31                 | 16             | 17            | 19            |
|   | obalt       | (Co)  | 31           | 15             | 60                 | 14             | 7             | 7             |
|   | lo Lybdenum |       | 6            | 18             | 8                  | 12             | 10            | 10            |
|   | ilver       | [Ag]  | < 1          | < 1 1 × 1      | < 1                | < 1            | ₹ <b>1</b>    | < 1           |
|   | admium      | [Cd]  | < 1          | ₹ 1            | < 1                | ₹ 1            | ₹ 1           | ₹ 1           |
|   | eryllium    | (Be)  | 1            | 1              | < 1                | 1              | ₹ 1           | ₹ 1           |
|   | oron        | [B ]  | < 10         | < 10           | ₹ 10               | < 10           | ₹ 10          | ₹ 10          |
|   | ntimony     | [Sb]  | ₹ 5          | ₹ 5            | ₹ 5                | ₹ 5            | ₹ 5           | ₹ 5           |
|   | ttrium      | [ Y ] | 13           | 12             | 10                 | 9              | 4             | 9             |
| S | candium     | [Sc]  | 2            | < 1            | 2                  | < 1            | < 1           | 2             |
| T | ungsten     | [W]   | < 10         | < 10           | < 10               | < 10           | < 10          | < 10          |
|   | iobium      | [Nb]  | < 10         | 10             | < 10               | 20             | < 10          | ₹ 10          |
| Ŧ | horium      | [Th]  | 40           | < 10           | 40                 | 30             | < 10          | 30            |
| Α | rsenic      | [As]  | 35           | 10             | 10                 | 10             | 5             | < 5           |
| В | ismuth      | [Bi]  | √ < 5        | < 5            | < 5                | < 5            | < 5           | < 5           |
|   | in          | [Sn]  | < 10         | < 10           | < 10               | < 10           | < 10          | < 10          |
|   | ithium      | [Li]  | < 5          | < 5            | < 5                | < 5            | < 5           | < 5           |
| Н | olmium      | (Ha)  | < 10         | < 10           | < 10               | < 10           | 10            | ₹ 10          |

DATE : SEP-16-1990

SIGNED: Lenn Pilipiak

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTB. 10th Floor Box 10 808 West Hastings St. T.S.L. REPORT No. : S - 9918 - 13

T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

Vancouver B.C. V&C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

| ELEMENT    |       | L11+00N 1+75E | L11+00N 2+00E | L11+00N 2+25E | L11+00N 2+50E | L11+00N-2+75E | L11+00N 3+00E   |
|------------|-------|---------------|---------------|---------------|---------------|---------------|-----------------|
|            |       |               |               |               |               |               |                 |
| Aluminum   | [Al]  | 15140         | 14140         | 6760          | 13070         | 14300         | 11250           |
| Iron       | [Fe]  | 36590         | 20970         | <b>7457</b> 0 | <b>2566</b> 0 | 53970         | 23230           |
| Calcium    | [Ca]  | 1220          | 960           | 1060          | 1000          | 1060          | 960             |
| Magnesium  | [Mg]  | 3550          | 1480          | 2510          | 2270          | 2980          | 1890            |
| Sodium     | [Na]  | 470           | 720           | 220           | 430           | 560           | <del>89</del> 0 |
| Potassium  | EK 1  | 510           | 590           | 570           | 480           | 540           | 850             |
| Titanium   | [Ti]  | 966           | 840           | 1341          | 1271          | 1418          | 860             |
| Manganese  | EMn 1 | 824           | 172           | 306           | 161           | 636           | 208             |
| Phosphorus |       | 648           | 386           | 1712          | 664           | 996           | 514             |
| Barium     | [Ba]  | 22            | 29            | 44            | 19            | 26            | 33              |
| Chromium   | [Cr]  | 115           | 13            | 88            | 37            | 15            | 37              |
| Zirconium  | [Zr]  | 5             | 25            | 7             | 10            | 8             | 8               |
| Copper     | (Cu)  | 236           | 86            | 119           | 38            | 134           | 36              |
| Nickel     | ENil  | 49            | 6             | 34            | 16            | 9             | 20              |
| Lead       | (Pb)  | 17            | 15            | 17            | 17            | 15            | 26              |
| Zinc       | [Zn]  | 39            | 35            | 28            | 42            | 53            | 35              |
| Vanadium   | [V]   | 46            | 23            | 47            | 44            | 33            | 18              |
| Strontium  | [Sr]  | 17            | 8             | 24            | 9             | 19            | 8               |
| Cobalt     | (Co)  | 21            | 3             | 4             | 4             | 11            | 3               |
| Molybdenum |       | 4             | 4             | 10            | 4             | 4             | 4               |
| Silver     | [Ag]  | < 1           | < 1           | < i           | < 1           | < 1           | < 1             |
| Cadmium    | (Cq)  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1             |
| Beryllium  | {Be}  | < 1           | 1             | < 1           | < 1           | < 1           | ₹ 1             |
| Boron      | (B)   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10            |
| Antimony   | {Sb}  | < 5           | < 5           | < 5           | < 5           | < 5           | ₹ 5             |
| Yttrium    | {Y }  | 7             | 8             | 3             | 6             | 8             | 7               |
| Scandium   | [Sc]  | < 1           | < 1           | < 1           | < 1           | < i           | ₹ 1             |
| Tungsten   | [W ]  | < 10          | < 10          | 40            | < 10          | < 10          | < 10            |
| Niobium    | [Nb]  | < 10          | 20            | < 10          | 10            | < 10          | 10              |
| Thorium    | [Th]  | < 10          | < 10          | 10            | 30            | 20            | < 10            |
| Arsenic    | [As]  | 15            | 5             | 40            | 15            | 5             | 20              |
| Bismuth    | [Bi]  | < 5           | < 5           | ₹ 5           | < 5           | < 5           | < 5             |
| Tin        | [Sn]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10            |
| Lithium    | [Li]  | < 5           | < 5           | < 5           | < 5           | < 5           | < 5             |
| Holmium    | [Ha]  | < 10          | < 10          | 20            | < 10          | < 10          | < 10            |

DATE : SEP-16-1990

SIGNED: Lam Oiljink

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 T.S.L. REPORT No.: S - 9918 - 14 T.S.L. File No.: SE14MA

T.S.L. Invoice No.: 15482

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

|            |      | L11+00N 3+25E | L11+00N 3+50E | L11+00N 3+75E | L11+00N 4+00E | L11+00N 4+25E | L11+00N 4+50E |
|------------|------|---------------|---------------|---------------|---------------|---------------|---------------|
| ELEMENT    |      |               |               |               |               |               |               |
| Aluminum   | [A1] | 15870         | 13750         | 20080         | 19210         | 25120         | 20240         |
| Iron       | [Fe] | 92250         | 30120         | 31880         | 35660         | 30640         | 35060         |
| Calcium    | [Ca] | 2060          | 880           | 3920          | 3260          | 2 <b>68</b> 0 | 2320          |
| Magnesium  | [Mg] | 3860          | 2350          | 4430          | 6300          | 5 <b>48</b> 0 | 4730          |
| Sodium     | (Na) | 150           | 220           | 240           | 160           | 190           | 510           |
| Potassium  | €K 3 | 370           | 390           | 530           | 560           | 430           | 540           |
| Titanium   | [Ti] | 1375          | 1539          | 672           | 1182          | 1299          | 1092          |
| Manganese  | [Mn] | 1557          | 442           | 353           | 508           | 501           | 919           |
| Phosphorus | [P ] | 2190          | 528           | 930           | 870           | 654           | 714           |
| Barium     | [Ba] | 36            | 26            | 61            | 52            | 38            | 44            |
| Chromium   | [Cr] | 8             | 41            | 56            | 86            | 79            | 41            |
| Zirconium  | [Zr] | 9             | 6             | 6             | 4             | 3             | 4             |
| Copper     | [Cu] | 373           | 34            | 413           | 100           | 79            | 124           |
| Nickel     | [Ni] | 25            | 18            | 41            | 75            | 51            | 23            |
| Lead       | [64] | 40            | 14            | 14            | 15            | 17            | 15            |
| Zinc       | [[n] | 69            | 39            | 58            | 70            | 61            | 69            |
| Vanadium   | [7]  | 21            | 67            | 47            | 72            | 91            | 63            |
| Strontium  | [Sr] | 34            | 9             | 62            | 33            | 16            | 17            |
| Cobalt     | [63] | 24            | 7             | 8             | 14            | 14            | 21            |
| Molybdenum | [Mo] | 16            | 6             | 8             | < 2           | < 2           | < 2           |
| Silver     | [Ag] | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| Cadmium    | [Cq] | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| Beryllium  | [Be] | < 1           | < 1           | 1             | < 1           | < 1           | < 1           |
| Baran      | {B } | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Antimony   | (Sb) | < 5           | ₹ 5           | < 5           | < 5           | 5             | < 5           |
| Yttrium    | [Y]  | 9             | 6             | 27            | 13            | 7             | 10            |
| Scandium   | (Sc) | 3             | < 1           | 1             | 3             | 3             | 2             |
| Tungsten   | [W ] | < 10          | < 10          | < 10          | < 10          | ₹ 10          | < 10          |
| Niobium    | [Nb] | < 10          | < 10          | < 10          | < 10          | < 10          | ₹ 10          |
| Thorium    | [Th] | 50            | 30            | 20            | 10            | 20            | 20            |
| Arsenic    | [As] | 10            | ₹ 5           | 10            | < 5           | ₹ 5           | 10            |
| Bismuth    | [Bi] | ' ← 5         | < 5           | ⟨ 5           | < 5           | < 5           | ₹ 5           |
| Tin        | [Sn] | < 10          | < 10          | < 10          | < 10          | < 10          | ₹ 10          |
| Lithium    | [Li] | < 5           | < 5           | < 5           | < 5           | < 5           | < 5           |
| Holmium    | [Ho] | 10            | < 10          | < 10          | 20            | 10            | < 10          |

SIGNED: Lem Pilmak

DATE : SEP-16-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

T.S.L. REPORT No.: S - 9918 - 15

PRIME EXPLORATION LTD. 10th Floor Box 10

10th Floor Box 10 T.S.L. File No.: SE14MA 808 West Hastings St. T.S.L. Invoice No.: 15482

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

|            |       | L11+00N 4+75E | L11+00N 5+00E | L11+00N 5+25E | £11+00N 5+50E | L11+00N-5+75E | L11+00N 6+00E |
|------------|-------|---------------|---------------|---------------|---------------|---------------|---------------|
| ELEMENT    |       |               |               |               |               |               |               |
| Aluminum   | [A]]  | 10420         | 15980         | 20230         | 17220         | 23060         | 16460         |
| Iron       | {Fe}  | 26440         | 20630         | 23740         | 29350         | 32220         | 27510         |
| Calcium    | [Ca]  | 1000          | 1740          | 1560          | 2140          | 2320          | 1320          |
| Magnesium  | [Mg]  | 3420          | 3110          | 4100          | 5330          | 5900          | 4110          |
| Sodium     | (Na)  | 670           | 1330          | 170           | 300           | 170           | 410           |
| Potassium  | EK 3  | 640           | 990           | 260           | 440           | 530           | 570           |
| Titanium   | [Ti]  | 2198          | 1175          | 842           | 1001          | 1486          | 1289          |
| Manganese  | (Mn)  | 510           | 350           | 186           | 493           | 332           | 510           |
| Phosphorus | [P ]  | 362           | 518           | 444           | 560           | 580           | 676           |
| Barium     | (Ba)  | 18            | 91            | 18            | 40            | 66            | 34            |
| Chromium   | [Cr]  | 45            | 26            | 49            | 59            | 95            | 76            |
| Zirconium  | [Zr]  | 16            | 16            | 4             | 2             | 4             | 6             |
| Copper     | [Cu]  | 16            | 30            | 42            | 61            | 69            | 47            |
| Nickel     | ENi]  | 16            | 17            | 18            | 42            | 61            | 31            |
| Lead       | [96]  | 15            | 11            | 11            | 17            | 16            | 17            |
| Zinc       | [Zn]  | 38            | 70            | 33            | 92            | 53            | 61            |
| Vanadium   | [V]   | 70            | 35            | 84            | 75            | 105           | 69            |
| Strontium  | (Sr)  | Ģ             | 12            | 10            | 14            | 19            | 12            |
| Cobalt     | {Co3} | 6             | 6             | 4             | 13            | 11            | 8             |
| Molybdenum |       | < 2           | < 2           | < 2           | < 2           | < 2           | < 2           |
| Silver     | [Ag]  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| Cadmium    | [Cd]  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| Beryllium  | [Be]  | < 1           | 2             | < 1           | < 1           | < 1           | < 1           |
| Boron      | (B)   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Antimony   | [Sb]  | ₹ 5           | < 5           | < 5           | < 5           | < 5           | ₹ 5           |
| Yttrium    | (Y ]  | 4             | 13            | 6             | 6             | 7             | 6             |
| Scandium   | [Sc]  | 1             | 2             |               | 2             | 4             | 1             |
| Tungsten   | [W]   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Niobium    | [Nb]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Thorium    | [Th]  | ₹ 10          | 50            | < 10          | 10            | < 10          | 10            |
| Arsenic    | [As]  | 5             | 10            | 10            | < 5           | < 5           | 20            |
| Bismuth    | [Bi]  | ₹ 5           | < 5           | < 5           | < 5           | ₹ 5           | < 5           |
| Tin        | [5n]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Lithium    | [Li]  | < 5           | < 5           | ₹ 5           | < 5           | ₹ 5           | < 5           |
| Holmium    | (Ho)  | < 10          | < 10          | < 10          | < 10          | 20            | < 10          |

DATE : SEP-16-1990

SIGNED: Lem Pilipiak

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Agua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. File No.: SE14MA T.S.L. Invoice No.: 15482

T.S.L. REPORT No. : S - 9918 - 16

808 West Hastings St.

Vancouver B.C. V6C 2X6 PROJECT: PUP ATTN: J. FOSTER OREQUEST CONSULTANTS R-2470

ALL RESULTS PPM

|            |      | L11+00N 6+25E | L11+00N 6+50E  | L12+00N 0+25W | L12+00N 0+00       | L12+00N-0+25E | L12+00N 0+50E |
|------------|------|---------------|----------------|---------------|--------------------|---------------|---------------|
| ELEMENT    |      |               |                |               |                    |               |               |
| Aluminum   | [A]] | 22590         | 19280          | 17440         | 9 <del>6</del> 00  | 22480         | 15100         |
| Iron       | [Fe] | 27530         | 27510          | 59600         | 28140              | 69780         | 55450         |
| Calcium    | [Ca] | 2860          | 1720           | <b>342</b> 0  | 2460               | 1860          | 2020          |
| Magnesium  | [Mg] | 4270          | 4480           | 5510          | 2970               | 4630          | 4770          |
| Sodium     | [Na] | 330           | 250            | 110           | 580                | 260           | 180           |
| Potassium  | £K 3 | 420           | 380            | 450           | 690                | 530           | 530           |
| Titanium   | [Ti] | 1272          | 1120           | 550           | 1016               | 924           | 567           |
| Manganese  | [Mn] | 316           | 314            | 1722          | 862                | 1624          | 1152          |
| Phosphorus | [P ] | 488           | 604            | 1232          | 55 <b>8</b>        | 1234          | 1158          |
| Barium     | [Ba] | 73            | 28             | 51            | 36                 | 34            | 40            |
| Chromium   | [Cr] | 50            | <del>6</del> 0 | 34            | 33                 | 20            | 27            |
| Zirconium  | [75] | 5             | 2              | 4             | 9                  | 6             | 2             |
| Copper     | [Cu] | 37            | 42             | 201           | 50                 | 671           | 210           |
| Nickel     | [Ni] | 22            | 24             | 60            | 22                 | 19            | 26            |
| Lead       | (Pb) | 13            | 13             | 38            | 18                 | 40            | 38            |
| Zinc       | CZn1 | 48            | 42             | 222           | 80                 | 92            | 121           |
| Vanadium   | [V ] | 76            | 84             | 37            | 24                 | 31            | 39            |
| Strontium  | [Sr] | 20            | 13             | 19            | 12                 | 23            | 16            |
| Cobalt     | [Co] | 7             | 7              | 33            | 15                 | 48            | 28            |
| Molybdenum |      | 2             | < 2            | < 2           | 2                  | 32            | 4             |
| Silver     | [Ag] | < 1           | < 1            | < 1           | < 1                | < 1           | < 1           |
| Cadmium    | £Cq3 | < 1           | < 1            | < 1           | < 1                | < 1           | < 1           |
| Beryllium  | {Be} | < 1           | < 1            | < i           | < 1                | 1             | < 1           |
| Boron      | [B]  | < 10          | < 10           | < 10          | < 10               | < 10          | < 10          |
| Antimony   | [Sb] | < 5           | ₹ 5            | < 5           | < 5                | < 5           | < 5           |
| Yttrium    | [Y]  | 9             | 8              | 14            | 7                  | 12            | 8             |
| Scandium   | [Sc] | 2             | 2              | 2             | < 1                | 2             | ₹ 1           |
| Tungsten   | [W]  | < 10          | < 10           | < 10          | < 10               | < 10          | < 10          |
| Niobium    | [Nb] | < 10          | < 10           | < 10          | < 10               | < 10          | < 10          |
| Thorium    | [Th] | 20            | 20             | 30<br>45      | 30                 | 40            | 40            |
| Arsenic    | [As] | 5             | ₹ 5            | 15            | 10                 | 35            | 25            |
| Bismuth    | [Bi] | · < 5         | < 5            | < 5           | < 5                | < 5           | ₹ 5           |
| Tin        | [Sn] | < 10<br>< 5   | < 10<br>/ E    | < 10          | < 10<br>✓ <b>5</b> | < 10          | < 10          |
| Lithium    | [Li] |               | < 5<br>∠ •∧    | < 5           | < 5<br>< √0        | < 5           | < 5           |
| Holmium    | (Ha) | ⟨ 10          | ( 10           | 10            | < 10               | < 10          | < 10          |

DATE : SEP-16-1990

516NED: Jems Viljaik

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Agua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

**OREQUEST CONSULTANTS** 

R-2470

ALL RESULTS PPM

T.S.L. Invoice No.: 15482

REPORT No.: S - 9918 - 17

File No.: SE14MA

T.S.L.

T.S.L.

L12+00N 1+50E L12+00N 1+75E £12+00N\* 2+00E L12+00N 2+25E L12+00N 1+00E L12+00N 1+25E ELEMENT Aluminum [A1] 19060 17180 17490 7510 19320 11460 17890 64260 39090 38890 36170 31720 Iron [Fe] 1040 620 980 Calcium [Ca] 2140 1660 1320 4050 2830 3280 860 3200 Magnesium [Mo] 5120 700 720 Sodium [Na] 500 810 230 340 780 650 530 Potassium €K 1 910 680 610 1094 1056 1421 945 1109 968 [Ti] Titanium 820 695 312 108 940 318 Manganese [Mn] Phosphorus [P ] 928 956 514 516 1078 832 Barium 41 42 4() 14 26 23 [Ba] 33 20 18 14 10 67 Chromium [Cr] [Zr] 6 6 13 16 6 4 Zirconium Copper [Cu] 130 122 130 32 419 121 [Ni] 29 18 11 6 5 30 Nickel 21 [Pb] 36 20 15 11 40 Lead 57 107 88 50 36 64 Zinc [Zn] {V } 35 33 21 32 38 Vanadium 56 7 12 17 15 12 15 Strontium [Sr] 15 3 17 8 [Co] 11 6 Cobalt 2 Molybdenum [Mo] < 2 4 4 6 < i ( 1 ₹. i 1 < 1 < 1 Silver [Aq] ₹ [Cd] < 1 < 1 < 1 < 1 < 1 < 1 Cadmium ₹. í < 1 < 1 Beryllium {Be} i 1 i < 10 10 < 10 < 10 < 10 Boron EB 1 < 10 5 < − 5 5 < 5 < − 5 [Sb] 10 Antimony 7 [ Y] 12 13 9 5 5 Yttrium (Sc] 3 2 1 1 ₹ 1 < 1 Scandium [W] < 10 < 10 < 10 10 < 10 < 10 Tungsten < 10 < 10 < 10 10 < 10 < 10 Niobium [Nb] 30 30 < 10 30 [Th] 20 10 Thorium 5 15 25 15 5 15 Arsenic [As] < 5 5 5 ₹ 5 < 5 Bismuth [Bi] < 5 < ₹ < 10 10 < 10 10 < 10 [Sn] < 10 Tin 5 5 < 5 5 < 5 Lithium 5 < < [Li] < **1**0 < 10 < 10 < 10 < 10 10 [Ho] Holmium

sm Vilipinh

DATE: SEP-16-1990

2-302-48TH STREET, SASKATDON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

### I.C.A.P. PLASMA SCAN

### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 9918 - 18 T.S.L. File No.: SE14MA

T.S.L. Invoice No.: 15482

S7K 6A4

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2470 ALL RESULTS PPM

| Aluminum   [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       | L12+00N 2+50E | L13+00N 0+50E | L13+00N 0+75E | 113+00N 1+00E | L13+00M 1+25E | L13+00N 1+50E |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------------|---------------|---------------|---------------|---------------|---------------|
| Fron   Fe   26230   52840   52090   57560   52510   35300   Calcium   Cal   2600   1460   1320   3400   3100   1840   Magnesium   Emg   2260   4960   5240   5730   5800   3650   Sodium   (Na)   5550   280   300   120   120   380   Potassium   EK   660   530   530   490   510   510   510   Titanium   ETil   489   1356   1027   716   753   1260   Manganese   Emn   755   984   1291   1480   1223   508   Phosphorus   EP   1016   1060   994   1102   994   594   Barium   Em   477   26   27   30   29   17   21   21   27   49   44   17   26   27   30   29   17   21   22   21   27   49   44   17   26   27   30   29   46   18   27   28   28   28   28   28   28   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEMENT    |       |               |               |               |               |               |               |
| Tron   [Fe]   26230   52840   52090   57560   52510   35300   Calcium   Cal   2600   1460   1320   3400   3100   1840   Magnesium   Emg]   2260   4960   5240   5730   5800   3650   Sodium   Emg]   2260   4960   5240   5730   5800   3650   Sodium   Emg]   5550   280   300   120   120   3800   Potassium   Emg]   4897   1356   1027   716   753   1260   Titanium   Emi]   4897   1356   1027   716   753   1260   Titanium   Emg]   1016   1060   994   1102   994   594   Spanium   Emg]   477   26   27   30   29   17   20   29   17   20   20   20   20   41   20   20   20   41   20   20   20   20   20   20   20   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aluminum   | [A]]  | 16010         | 23200         | 19930         | 17360         | 17070         | 16220         |
| Calcium         Cal         2600         1460         1326         3400         3100         1840           Magnesium         CMj         2260         4960         5240         5730         5800         3650           Sodium         (Na)         550         280         300         120         120         380           Potassium         KI         660         530         530         490         510         510           Titanium         CTI         489         1356         1027         716         753         1260           Manganese         CMnI         755         984         1291         1480         1223         508           Phosphorus         CP         1016         1060         994         1102         994         594           Barium         CBal         41         34         36         38         38         39           Chromium         CCr)         47         26         27         30         29         17           Zirconium         CCr)         47         26         27         30         29         17           Zirconium         CCr)         49         38         43                                                                                                                                                                                                                  |            |       | 26230         | 52840         | 52080         | 57560         | 52510         | 35300         |
| Magnesium   CMg   2260   4960   5240   5730   5800   3650   Sodium   CNa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | [Ca]  | 2600          | 1460          | 1326          | 3400          | 3100          | 1840          |
| Sodium   CNa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | [Mq]  | 2260          | 4960          | 5240          | 5730          | 5800          | 3650          |
| Titanium (Ti) 489 1356 1027 716 753 1260  Manganese (Mn) 755 984 1291 1480 1223 508  Phosphorus (P ) 1016 1060 994 1102 994 594  Barium (Ba] 41 34 36 38 38 39  Chromium (Cr) 47 26 27 30 29 17  Zirconium (Zr) 5 4 3 3 3 4 6  Copper (Cu) 97 265 158 200 202 61  Nickel (Ni) 22 21 27 49 44 17  Lead (Pb) 49 38 43 52 58 28  Zinc (Zn) 82 92 152 238 244 100  Vanadium (V ) 21 44 44 42 38 40 37  Strontium (Sr) 18 22 92 152 238 244 100  Vanadium (V ) 21 44 42 38 40 37  Strontium (Sr) 18 22 13 22 20 14  Cobalt (Co) 6 25 23 27 24 9  Molybdenum (Mo) 4 16 2 2 2 2 2  Silver (Ag) 41 41 41 41 41 41 41 41  Cadmium (Cd) 4 1 41 41 41 41 41 41 41  Beryllium (Be) 2 41 41 41 41 41 41 41 41  Beryllium (Be) 2 41 41 41 41 41 41 41 41 41  Beryllium (Be) 2 41 41 41 41 41 41 41 41 41  Beryllium (Bo) 4 5 5 5 5 5 5 5 5 5 5 5  Yttrium (T) 15 10 12 12 12 8  Scandium (Sc) 4 1 2 2 2 2 2 2 2 2 11  Cosanium (Sc) 4 1 40 40 40 40 40 40 40 40 40 40 40 40 40                                                                                                                                                                                                                                                                                                                                                                                      | •          | -     | 550           | 280           | 300           | 120           | 120           | 380           |
| Titanium (Ti) 489 1356 1027 716 753 1260  Manganese (Mn) 755 984 1291 1480 1223 508  Phosphorus (P) 1016 1060 994 1102 994 594  Barium (Ba] 41 34 36 38 38 39  Chromium (Cr) 47 26 27 30 29 17  Zirconium (Zr) 5 4 3 3 3 4 6  Copper (Gu) 97 265 158 200 202 61  Nickel (Ni) 22 21 27 49 44 17  Lead (Pb) 49 38 43 52 58 28  Zinc (Zn) 82 92 152 238 244 100  Vanadium (V) 21 21 44 42 38 40 37  Strontium (Sr) 18 22 13 22 20 14  Cobalt (Co) 6 25 23 27 20 14  Cobalt (Co) 6 25 23 27 24 9  Molydenum (Mo) 4 16 2 2 2 2 2 2  Silver (Ag) 41 41 41 41 41 41 41 41 41 41 41 41 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potassium  | €K 1  | 660           | 530           | 530           | 490           | 510           | 510           |
| Phosphorus (P ]         1016         1060         994         1102         994         594           Barium (Ba)         41         34         36         38         38         39           Chromium (Cr)         47         26         27         30         29         17           Zirconium (Zr)         5         4         3         3         4         6           Copper (Cu)         97         265         158         200         202         61           Nickel (Ni)         22         21         27         49         44         17           Lead (Pb)         49         38         43         52         58         28           Zinc (Zn)         82         92         152         238         244         100           Vanadium (V)         21         44         42         38         40         37           Strontium (Sr)         18         22         13         22         23         24         100           Vanadium (V)         21         44         42         38         40         37           Strontium (Sr)         18         22         21         15         22         2                                                                                                                                                                                                                              |            | [Ti]  | 489           | 1356          | 1027          | 716           | 753           | 1260          |
| Phosphorus [P ]   1016   1060   994   1102   994   594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganese  | [Mn]  | 755           | 984           | 1291          | 1480          | 1223          | 508           |
| Barium   [Ba]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | [P]   | 1016          | 1060          | 994           | 1102          | 994           | 594           |
| Zirconium         CTr         5         4         3         3         4         6           Copper         Cul         97         265         158         200         202         61           Nickel         (Ni)         22         21         27         49         44         17           Lead         (Pb)         49         38         43         52         58         28           Zinc         (Zn)         82         92         152         238         244         100           Vanadium         (V)         21         44         42         38         40         37           Strontium         (Sr)         18         22         13         22         20         14           Cobalt         (Co)         6         25         23         27         24         9           Molybdenum         (Mo)         4         16         2         2         2         2         2           Silver         (Ag)         4         16         2         2         2         2         2           Silver         (Ag)         4         16         2         1         1 <t< td=""><th></th><th></th><td>41</td><td>34</td><td>36</td><td>38</td><td>38</td><td>39</td></t<>                                                                                                                                                             |            |       | 41            | 34            | 36            | 38            | 38            | 39            |
| Copper         Coul         97         265         158         200         202         61           Nickel         (Ni)         22         21         27         49         44         17           Lead         (Pb)         49         38         43         52         58         28           Zinc         (Zn)         82         92         152         238         244         100           Vanadium         (V)         21         44         42         38         40         37           Strontium         (Sr)         18         22         13         22         20         14           Cobalt         (Co)         6         25         23         27         24         9           Molybdenum         (Mo)         4         16         2         2         2         2         2           Silver         (Ag)         <1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                                                                                               | Chromium   | [Cr]  | 47            | 26            | 27            | 30            | 29            | 17            |
| Nickel         [Ki]         22         21         27         49         44         17           Lead         (Pb)         49         38         43         52         58         28           Zinc         (Zn)         82         92         152         238         244         100           Vanadium         (V)         21         44         42         38         40         37           Strontium         (Sr)         18         22         13         22         20         14           Cobalt         (Col         6         25         23         27         24         9           Molybdenum         (Mo)         4         16         2         2         2         2         2           Silver         (Ag)         41         6         2         2         2         2         2         2           Silver         (Ag)         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41         41 </th <th>Zirconium</th> <th>[7]</th> <th>5</th> <th>4</th> <th>3</th> <th>3</th> <th>4</th> <th>6</th>                                                                                                                                     | Zirconium  | [7]   | 5             | 4             | 3             | 3             | 4             | 6             |
| Lead         CPb1         49         38         43         52         58         28           Zinc         CZn1         82         92         152         238         244         100           Vanadium         CV 1         21         44         42         38         40         37           Strontium         ESr1         18         22         13         22         20         14           Cobalt         CGo]         6         25         23         27         24         9           Molybdenum         EMo]         4         16         2         2         2         2         2           Silver         EAg]         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                     | Capper     | [Cu]  | 97            | 265           |               |               | 202           | 61            |
| Zinc         (Zn1         82         92         152         238         244         100           Vanadium         (V 1)         21         44         42         38         40         37           Strontium         (Sr1)         18         22         13         22         20         14           Cobalt         (Col)         6         25         23         27         24         9           Molybdenum         (Mol)         4         16         2         2         2         2         2           Silver         (Ag)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""><th></th><th>[Ni]</th><td>22</td><td>21</td><td>27</td><td>49</td><td>44</td><td>17</td></td<>                                                                                                                                           |            | [Ni]  | 22            | 21            | 27            | 49            | 44            | 17            |
| Vanadium         (V ]         21         44         42         38         40         37           Strontium         (Sr)         18         22         13         22         20         14           Cobalt         (Col)         6         25         23         27         24         9           Molybdenum         (Mol)         4         16         2         2         2         2         2           Silver         (Ag)         4         16         2         2         2         2         2           Silver         (Ag)         4         16         2         4         2         2         2         2           Silver         (Ag)         4         16         2         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><th>Lead</th><th>[96]</th><td>49</td><td>38</td><td>43</td><td>52</td><td>58</td><td>28</td></t<>                                                                                                                                                | Lead       | [96]  | 49            | 38            | 43            | 52            | 58            | 28            |
| Strontium         [Sr]         18         22         13         22         20         14           Cobalt         [Co]         6         25         23         27         24         9           Molybdenum         [Mo]         4         16         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4 <th>Zinc</th> <th>[Zn]</th> <td>82</td> <td>92</td> <td>152</td> <td>238</td> <td>244</td> <td></td>                                                                                                                                      | Zinc       | [Zn]  | 82            | 92            | 152           | 238           | 244           |               |
| Cobalt         [Co]         6         25         23         27         24         9           Molybdenum         [Mo]         4         16         25         23         27         24         9           Molybdenum         [Mo]         4         16         25         23         27         24         9           Molybdenum         [Mo]         4         16         2         <2         <2         <2         <2         2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2         <2 <th< td=""><th>Vanadium</th><th>{V ]</th><td>21</td><td>44</td><td></td><td>_</td><td></td><td></td></th<>                                                                                                        | Vanadium   | {V ]  | 21            | 44            |               | _             |               |               |
| Molybdenum [Mo]         4         16         2         2         2         2           Silver [Ag]         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strontium  | [92]  | 18            |               |               |               |               |               |
| Silver         [Aq]         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cobalt     | [Co]  | 6             | 25            |               |               |               |               |
| Cadmium         [Cd]         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         < 1         <                                                                                                                                                | Molybdenum | [Mo]  | 4             | 16            | 2             | < 2           | < 2           | 2             |
| Beryllium         [Be]         2         <1         <1         <1         <1         1           Boron         [B ]         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Silver     | [Ag]  | < 1           |               | < 1           |               | < 1           |               |
| Boron         [B]         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10 <th< td=""><th>Cadmium</th><th>[[63]</th><td></td><td></td><td></td><td>&lt; 1</td><td></td><td>&lt; 1</td></th<> | Cadmium    | [[63] |               |               |               | < 1           |               | < 1           |
| Antimony [Sb]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beryllium  | [Be]  | 2             | < 1           |               |               |               |               |
| Yttrium         [Y]         15         10         12         12         12         12         8           Scandium         ESc]         < 1         2         2         2         2         2         2         1           Tungsten         [W]         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10                                                                                                                                           | Boron      | {B }  | < 10          |               |               |               |               |               |
| Scandium         [Sc]         < 1         2         2         2         2         2         1           Tungsten         [W ]         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10                                                                                                                            | Antimony   | [Sb]  |               |               |               |               |               |               |
| Tungsten         [W]         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10         < 10                                                                                                                | Yttrium    | [Y]   | 15            |               |               |               |               | 8             |
| Niobium         [Nb]         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                 | Scandium   | {Sc}  | < 1           |               |               |               |               |               |
| Thorium         [Th]         < 10         40         30         40         30         10           Arsenic         [As]         10         20         20         15         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tungsten   |       |               |               |               |               |               |               |
| Arsenic         [As]         10         20         20         15         5         5           Bismuth         [Bi]         < 5         < 5         < 5         < 5         < 5         < 5           Tin         [Sn]         < 10         < 10         < 10         < 10         < 10         < 10           Lithium         [Li]         < 5         < 5         < 5         < 5         < 5         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Niobium    |       |               |               |               |               |               |               |
| Bismuth         [Bi]         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thorium    | [Th]  |               |               |               |               |               |               |
| Tin         ESn1         < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic    |       |               |               |               |               |               |               |
| Lithium [Li] < 5 < 5 < 5 < 5 < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |       |               |               |               |               |               |               |
| W- 211 - MITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tin        |       |               |               |               |               |               |               |
| Halmium [Ha] < 10 < 10 < 10 < 10 < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |               |               |               |               |               |               |
| 1021112011 (3102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Holmium    | (Ho)  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |

DATE: SEP-16-1990

SIGNED: Dem Pilipink



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1034

SAMPLE(S) OF Soils

INVOICE #: 15547 P.O.: R-2533

Marco V.

Project: PUP

Δ11

REMARKS: Wrangell Samples - OreQuest Consultants

|      |           | Au            |
|------|-----------|---------------|
|      |           | ppb           |
|      |           |               |
| L13  | 0+00      | 15            |
| L13  | 0+50W     | 25            |
| L13  | 1+00W     | <5            |
| L13  | 1+50W     | <5            |
| L13  | 2+00W     | <5            |
| - 10 | 0 =0      |               |
|      | 2+50W     | <5            |
|      | 3+00W     | 5             |
|      | 3+50W     | <5            |
|      | 4+00W     | <5            |
| L13  | 4+50W     | <5            |
| T.13 | 5+00W     | <5            |
|      | 5+50W     | <b>&lt;</b> 5 |
|      | 6+00W     | <b>&lt;</b> 5 |
| L13  |           | <b>&lt;</b> 5 |
| L13  |           | <b>&lt;</b> 5 |
| пто  | 7 1 0 0 W | \3            |
| L13  | 7+50W     | <5            |
| L13  | 8+00W     | <5            |
| L13  | 8+50W     | <5            |
| L13  | 9+00W     | <5            |
| L13  | 9+50W     | <5            |
|      |           |               |

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 19/90

SIGNED

Page 1 of 6

CTA W



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1034

INVOICE #:

15547

P.O.: R-2533

SAMPLE(S) OF Soils

Marco V.

Project: PUP

Au

**REMARKS:** 

Wrangell Samples - OreQuest Consultants

|                                 |                | ppb                         |
|---------------------------------|----------------|-----------------------------|
| L13<br>L10<br>L10<br>L10<br>L10 | 0+50N<br>1+00N | <5<br>55<br>45<br>NSB<br>40 |
| L10<br>L10<br>L10<br>L10<br>L10 | 2+50N<br>3+00N | 20<br>15<br>15<br>10<br>25  |
| L10<br>L10<br>L10<br>L10<br>L10 | 5+50N<br>6+00N | 20<br>15<br><5<br>5<br><5   |
| L10<br>L10<br>L10<br>L10<br>L10 | 8+00N          | 10<br><5<br>5<br>5<br>5     |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 19/90

SIGNED

Page 2 of 6

**A** 

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1034

SAMPLE(S) OF Soils

INVOICE #: 15547

P.O.: R-2533

Marco V.

Project: PUP

REMARKS: Wrangell Samples - OreQuest Consultants

|                                 |                            | Au<br>ppb                   |
|---------------------------------|----------------------------|-----------------------------|
| L10<br>L10<br>L10<br>L10<br>L10 | 10+00N<br>10+50N<br>11+00N | NSB<br><5<br><5<br><5<br><5 |
|                                 | 12+50N<br>13+00N<br>13+50N | <5<br><5<br>5<br>5          |
| L10<br>L10<br>L10<br>L10        | 15+00N<br>15+50N<br>16+00N | <5<br><5<br>10<br>5<br><5   |
| L10<br>L10<br>L10<br>L10<br>L10 | 17+50N<br>18+00N<br>18+50N | 35<br><5<br><5<br><5<br><5  |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 19/90

SIGNED

Page 3 of 6

**A** 



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1034

SAMPLE(S) OF Soils

INVOICE #: 15547

P.O.: R-2533

Marco V.

Project: PUP

REMARKS: Wrangell Samples - OreQuest Consultants

|                    | Au<br>ppb     | Au<br>ozt |
|--------------------|---------------|-----------|
|                    | PP            | 0_0       |
| _L10 19+50N        | 5             |           |
| <b>↓</b> L12N2+75E | 150           |           |
| L12N3+00E          | 55            |           |
| L12N3+25E          | 10            |           |
| L12N3+50E          | 5             |           |
| T 1 0 1 0 . TET    | 10            |           |
| L12N3+75E          | 10            |           |
| L12N4+00E          | 15            |           |
| L12N4+25E          | 5             |           |
| L12N4+50E          | <5            |           |
| L12N4+75E          | 100           |           |
| T 1 0 1 F : 0 0 F  |               |           |
| L12N5+00E          | <b>&lt;</b> 5 |           |
| L12N5+25E          | 10            |           |
| L12N5+50E          | <5            |           |
| L12N5+75E          | 10            |           |
| L13N1+75E          | 110           |           |
| T 1 2322 - 000     | 100           |           |
| L13N2+00E          | 130           | 0.44      |
| L13N2+25E          | >1000         | .041      |
| L12N2+50E          | 600           |           |
| L13N2+75E          | 180           |           |
| L13N3+00E          | 90            |           |
|                    |               |           |

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 19/90

SIGNED

Page 4 of

CTA W

For enquiries on this report, please contact Customer Service Department.

Samples, Pulps and Rejects discarded two months from the date of this report.



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1034

SAMPLE(S) OF Soils

INVOICE #: 15547

P.O.: R-2533

Marco V.

Project: PUP

REMARKS: Wrangell Samples - OreQuest Consultants

|           | Au<br>ppb |
|-----------|-----------|
| L13N3+25E | 55        |
| L13N3+50E | 25        |
| L13N3+75E | 10        |
| L13N4+00E | 25        |
| L13N4+25E | 25        |
| L13N4+50E | 10        |
| L13N4+75E | 25        |
| L13N5+00E | 45        |
| L14N1+25E | 35        |
| L14N1+50E | 20        |
| L14N1+75E | 130       |
| L14N2+00E | 150       |
| L14N2+25E | 35        |
| L14N2+50E | 15        |
| L14N2+75E | 110       |
| L14N3+00E | 10        |
| L14N3+25E | 15        |
| L14N3+50E | 5         |
| L14N3+75E | 10        |
| L14N4+00E | 20        |

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 19/90

IGNED Demo Pilg

Page 5 of 6





DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd.

10th Floor, Box 10-808 West Hastings St.

Vancouver, B.C.

V6C 2X6

REPORT No. S1034

SAMPLE(S) OF Soils

INVOICE #: 15547

P.O.: R-2533

Marco V.

Project: PUP

Δ11

REMARKS: Wrangell Samples - OreQuest Consultants

|                                                               | ppb                |
|---------------------------------------------------------------|--------------------|
| L14N4+25E                                                     | 10                 |
| L14N4+50E                                                     | 35                 |
| L14N4+75E                                                     | 30                 |
| L14N5+00E                                                     | 25                 |
| L14N5+25E                                                     | 140                |
| L14N5+50E<br>L14N5+75E<br>L14N6+00E<br>L14N6+25E<br>L14N6+50E | 5<br>5<br><5<br><5 |
| L14N6+75E                                                     | 15                 |
| L14N7+00E                                                     | <5                 |
| L14N7+25E                                                     | 5                  |
| L14N7+50E                                                     | 10                 |

COPIES TO:

J. Foster, P. Lougheed

INVOICE TO:

Prime - Vancouver

Sep 19/90

**SIGNED** 

Page 6 of 6

CTA

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (30A) 931 - 1033 FAX #: (30A) 242 - 4717

I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Histings St.

T.S.L. REPORT No.: S - 1034 - 1 T.S.L. File No.: M - 8072 T.S.L. Invoice No.: 15654

Vancouver B.C. V6C 2X6

PROJECT: PUP OREQUEST CONSULTANTS ATTM: J. FOSTER R-2533 ALL RESULTS PPM

|            |       | PUPL13 0+00 | PUPL13 0+50W      | PUPL13 1+00W | PUPL13 1+50W | PUPL13 2+00W | PUPL13 2+50W |
|------------|-------|-------------|-------------------|--------------|--------------|--------------|--------------|
| ELEMENT    |       |             |                   |              |              |              |              |
| Aluminum   | [A1]  | 24000       | 14000             | 15000        | 14000        | 14000        | 22000        |
| Iron       | [Fe]  | 24000       | 68000             | 19000        | 26000        | 15000        | 27000        |
| Calcium    | [Ca]  | 1100        | 3 <del>6</del> 00 | 580          | 1500         | 780          | 1400         |
| Magnesium  | [Mg]  | 3700        | 3700              | 2800         | 3600         | 2900         | 4900         |
| Sodium     | [Na]  | 140         | 70                | 300          | 1200         | 670          | 90           |
| Potassium  | EK 1  | 500         | 520               | 370          | <b>94</b> 0  | 600          | 390          |
| Titanium   | [Ti]  | 1700        | 120               | 1200         | 940          | 1300         | 1500         |
| Manganese  | EMn I | 250         | 3300              | 270          | 930          | 280          | 390          |
| Phosphorus | [P ]  | 700         | 820               | 420          | 800          | 350          | 810          |
| Barium     | [Ba]  | 86          | 450               | 25           | 22           | 26           | 24           |
| Chromium   | [Cr]  | 41          | 15                | 28           | 17           | 14           | 38           |
| Zirconium  | [75]  | 11          | 9                 | 16           | 5            | 10           | 3            |
| Copper     | [Cu]  | 68          | 220               | 21           | 50           | 18           | 49           |
| Nickel     | ENil  | 14          | 32                | 11           | 13           | 5            | 19           |
| Lead       | [Pb]  | 19          | 34                | 12           | 44           | 33           | 14           |
| Zinc       | EZn 1 | 48          | 380               | 45           | 120          | 58           | 63           |
| Vanadium   | [V]   | 62          | 80                | 38           | 32           | 31           | 60           |
| Strontium  | [Sr]  | 12          | 48                | 9            | 13           | 8            | 17           |
| Cobalt     | [Co]  | 4           | 32                | 3            | ņ            | 3            | 7            |
| Molybdenum | [Ma]  | < 2         | 4                 | < 2          | 4            | < 2          | < 2          |
| Silver     | [Ag]  | < 1         | 2                 | < 1          | < 1          | < 1          | < 1          |
| Cadmium    | ECd1  | < 1         | 4                 | < 1          | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1         | < i               | < 1          | 1            | < 1          | < 1          |
| Boron      | [B]   | < 10        | < 10              | < 10         | ₹ 10         | ₹ 10         | < 10         |
| Antimony   | (56)  | < 5         | 5                 | < 5          | < 5          | < 5          | < 5          |
| Yttrium    | [Y ]  | 6           | 31                | 5            | 9            | 6            | 6            |
| Scandium   | [Sc]  | <u>1</u>    | 7                 | < i          | 1            | < 1          | 1            |
| Tungsten   | [W]   | . < 10      | 10                | < 10         | < 10         | < 10         | < 10         |
| Niobium    | ENb3  | ₹ 10        | < 10              | < 10         | < 10         | < 10         | < 10         |
| Thorium    | [Th]  | < 10        | 40                | < 10         | < 10         | < 10         | 60           |
| Arsenic    | [As]  | 10          | 50                | 10           | 15           | 15           | 20           |
| Bismuth    | [Bi]  | √ ₹ 5       | < 5               | < 5          | < 5          | < 5          | < 5          |
| Tin        | [Sn]  | < 10        | < 10              | < 10         | < 10         | < 10         | < 10         |
| Lithium    | (Li]  | < 5         | < 5               | < 5          | < 5          | < 5          | < 5          |
| Holmium    | [Ho]  | < 10        | < 10              | < 10         | < 10         | < 10         | < <b>1</b> 0 |

SIGNED: Bernie Oun

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

# I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1034 - 2

T.S.L. File No.:

T.S.L. Invoice No.: 15654

Vancouver B.C. V6C 2X6

PROJECT: PUP ATTN: J. FOSTER DREQUEST CONSULTANTS R-2533 ALL RESULTS PPM

| ELEMENT    |      | PUPL13 3+00W | PUPL13 3+50W | PUPL13 4+00W       | PUPL13 4+50W | PUPL13 5+00W     | PUPL13 5+50W              |
|------------|------|--------------|--------------|--------------------|--------------|------------------|---------------------------|
| Aluminum   | [A1] | 9800         | 6700         | 9160               | 7900         | 15000            | 24000                     |
| Iron       | [Fe] | 8400         | 14000        | 10000              | 22000        | 24000            | 30000                     |
| Calcium    | (Ca) | 380          | 700          | 560                | 780          | 1100             | 1400                      |
| Magnesium  |      | 610          | 1600         | 1700               | 1400         | 5700             | 7100                      |
| Sodium     | [Na] | 600          | 650          | 470                | 160          | 1 <del>7</del> 0 | 300                       |
| Potassium  | EK 1 | 590          | <b>64</b> 0  | 550                | 320          | 450              | 610                       |
| Titanium   | [Ti] | 770          | 1100         | 710                | 2400         | 2400             | 2400                      |
| Manganese  |      | 55           | 220          | 120                | 550          | 290              | 430                       |
| Phosphorus |      | 550          | 290<br>290   | 490                | 420          | 300              | 360                       |
| Barium     | [Ba] | 14           | 23           | 22                 | 420<br>23    | 22               | 20                        |
| Chromium   | [Cr] | 13           | 41           | 23                 | 23<br>27     | 49               | 55                        |
| Zirconium  | [Zr] | 15           | 12           | 25<br>6            | 27<br>6      | 9                | 9                         |
| Copper     | [Cu] | 9            | 10           | 17                 | 13           | 14               | 29                        |
| Nickel     | [Ni] | 4            | 15           | 7                  | 10           | 16               | 24                        |
| Lead       | (Pb) | 10           | 9            | 13                 | 11           | 8                | 8                         |
| Zinc       | [Zn] | 21           | 3 <b>4</b>   | 32                 | 36           | 41               | 59                        |
| Vanadium   | [V]  | 18           | 26           | 21                 | 89           | 87               | 98                        |
|            | [Sr] | 4            | 10           | 6                  | 15           | 15               | 18                        |
| Cobalt     | [Co] | < i          | 3            | 2                  | 5            | 7                | 11                        |
| Molybdenum |      | ₹ 2          | ⟨ 2          | < 2                | < 2          | 2                | ₹ 2                       |
| Silver     | (Aq) | ₹ <b>1</b>   | < 1          | ₹ 1                | ⟨ 1          | < 1              | ₹ 1                       |
| Cadmium    | [Cd] | ₹ 1          | < i          | ( i                | ₹ 1          | < i              | $\langle \hat{i} \rangle$ |
| Beryllium  | (Be] | ₹ 1          | · i          | <b>\(\lambda\)</b> | < 1          | < 1              | < 1                       |
| Boron      | (B)  | ₹ 10         | < 10         | < 10               | < 10         | < 10             | < 10                      |
| Antimony   | (Sb) | ₹ 5          | ⟨ 5          | ₹ 5                | < 5          | < 5              | ₹ 5                       |
| Yttrium    | [Y]  | 4            | 3            | 3                  | 2            | 3                | 4                         |
| Scandium   | (Sc) | < 1          | < 1          | < 1                | < 1          | < 1              | 1                         |
| Tungsten   | [W]  | < 10         | < 10         | < 10               | < 10         | < 10             | < 10                      |
| Niobium    | [Nb] | < 10         | 10           | < 10               | < 10         | ₹ 10             | < 10                      |
| Thorium    | (Th] | < 10         | < 10         | < 10               | < 10         | 40               | 40                        |
| Arsenic    | (As] | < 5          | < 5          | < 5                | < 5          | < 5              | 5                         |
| Bismuth    | [Bi] | √ 5          | < 5          | < 5                | ₹ 5          | < 5              | ₹ 5                       |
| Tin        | [Sn] | < 10         | < 10         | < 10               | < 10         | < 10             | < 10                      |
| Lithium    | [Li] | < 5          | < 5          | < 5                | < 5          | < 5              | < 5                       |
| Holmium    | [Ho] | < 10         | < 10         | < 10               | < 10         | < 10             | < 10                      |

SIGNED: Bernie aun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

T.S.L. REPORT No.: S - 1034 - 3

PRIME EXPLORATION LTD.

T.S.L. File No.: SE24MZ 10th Floor Box 10 T.S.L. Invoice No.: 15654 808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2533 ALL RESULTS PPM

| ELEMENT    |       | PUPL13 6+00W | PUPL13 6+50W   | PUPL13 7+00W | PUPL13 7+50W   | PUPL13 8+00W | PUPL13 8+50W |
|------------|-------|--------------|----------------|--------------|----------------|--------------|--------------|
| ELEMEN     |       |              |                |              |                |              |              |
| Aluminum   | [A]]  | 17000        | 20000          | 17000        | 24000          | 25000        | 25000        |
| Iron       | [Fe]  | 27000        | 31000          | 25000        | 39000          | 28000        | 35000        |
| Calcium    | [Ca]  | 1800         | 2100           | 2100         | 1400           | 3400         | 2800         |
| Magnesium  | [pM]  | 7100         | 7300           | 6100         | 6900           | 8800         | 7800         |
| Sodium     | [Na]  | 120          | 160            | 80           | 280            | 90           | 90           |
| Potassium  | ₹K 1  | 480          | 480            | 360          | 2500           | 550          | 3300         |
| Titanium   | [Ti]  | 2000         | 2000           | 1300         | 1400           | 960          | 2000         |
| Manganese  | [Mn]  | 510          | 540            | 420          | 1000           | <b>58</b> 0  | 790          |
| Phosohorus | [P]   | 490          | 360            | 360          | <b>82</b> 0    | 480          | 560          |
| Barium     | [Ba]  | 25           | 18             | 35           | 70             | 40           | 24           |
| Chromium   | [Cr3] | 56           | 36             | 88           | 67             | 400          | 91           |
| Zirconium  | [[]]  | 4            | 7              | 2            | 7              | 2            | 5            |
| Copper     | [Cu3  | 23           | 30             | 27           | 86             | 39           | 61           |
| Nickel     | [Ni]  | 19           | 14             | 44           | 35             | 170          | 36           |
| Lead       | [Pb]  | 5            | 7              | 7            | 17             | 10           | 8            |
| Zinc       | [Zn]  | 47           | 54             | 53           | <b>8</b> 3     | 56           | 72           |
| Vanadium   | [V ]  | 95           | <del>9</del> 5 | 59           | <del>9</del> 7 | 69           | 100          |
| Strontium  | [Sr]  | 12           | 16             | 20           | 15             | 28           | 16           |
| Cobalt     | [Co]  | 11           | 10             | 7            | 16             | 17           | 18           |
| Molybdenum | [Mo]  | < 2          | < 2            | < 2          | < 2            | 2            | < 2          |
| Silver     | [Ag]  | < 1          | < 1            | < 1          | < 1            | < 1          | < 1          |
| Cadmium    | £643  | < 1          | < 1            | < 1          | < 1            | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < i            | < 1          | < 1            | < 1          | < 1          |
| Baran      | £ 3   | < 10         | < 10           | < 10         | < 10           | < 10         | < 10         |
| Antimony   | [Sb]  | < 5          | < 5            | < 5          | 10             | 10           | 10           |
| Yttrium    | £ Y 3 | 2            | 5              | 3            | ç              | 4            | 6            |
| Scandium   | [Sc]  | < 1          | 1              | < 1          | 6              | 1            | 3            |
| Tungsten   | [W]   | < 10         | < 10           | < 10         | < 10           | < 10         | < 10         |
| Niobium    | [Nb]  | < 10         | < 10           | < 10         | < 10           | < 10         | < 10         |
| Thorium    | [Th]  | 30           | 40<br>45       | 10           | 50             | < 10         | 20           |
| Arsenic    | (As)  | 15           | 15             | 15           | 10             | 80           | 15           |
| Bismuth    | [Bi]  | < 5          | < 5            | < 5          | < 5            | 5            | < 5          |
| Tin        | [Sn]  | < 10         | < 10           | < 10         | < 10           | < 10         | < 10         |
| Lithium    | (Li)  | ₹ 5          | < 5            | < 5          | < 5            | 10           | ⟨ 5          |
| Holmium    | (Ho)  | < 10         | < 10           | < 10         | < 10           | < 10         | < 10         |

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

T.S.L. REPORT No.: S - 1034 - 4
T.S.L. File No.: SE24MZ

1.5.L. File No.: SE24MZ T.S.L. Invoice No.: 15654

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS R-2533 ALL RESULTS PPM

| er erest   |       | PUPL13 9+00W | PUPL13 9+50W | PUPL13 10+00W     | PUPL10 0+00  | PUPL10 0+50N | PUPL10 1+50N |
|------------|-------|--------------|--------------|-------------------|--------------|--------------|--------------|
| ELEMENT    |       |              |              |                   |              |              |              |
| Aluminum   | [A13  | 31000        | 25000        | 27000             | 10000        | 7700         | 13000        |
| Iron       | (Fe]  | 37000        | 33000        | 40000             | 28000        | 28000        | 33000        |
| Calcium    | [Ca]  | 1600         | 1600         | 2800              | 760          | 2200         | 5000         |
| Magnesium  | [Mg]  | <b>B</b> 200 | 7300         | 7 <del>9</del> 00 | 2900         | 3500         | 5800         |
| Sodium     | [Na]  | 160          | 100          | 40                | 70           | 150          | 70           |
| Potassium  | CK 1  | 2200         | 750          | 3000              | 350          | 650          | 590          |
| Titanium   | [Ti]  | 2500         | 2100         | 2100              | 660          | 320          | <b>38</b> 0  |
| Manganese  | [Mn]  | 690          | 530          | 590               | 190          | 950          | 910          |
| Phosphorus | [P ]  | 400          | 2 <b>8</b> 0 | 360               | <b>64</b> 0  | 720          | 1100         |
| Barium     | (Ba]  | 12           | 17           | 44                | 28           | 38           | 50           |
| Chromium   | [Cr]  | 69           | 54           | 72                | 45           | 100          | 120          |
| Zirconium  | [Zr]  | 5            | 3            | 3                 | 2            | < 1          | 2            |
| Copper     | [Cu]  | 39           | 28           | 28                | 55           | 55           | 100          |
| Nickel     | ENi 1 | 24           | 22           | 30                | 23           | 47           | 96           |
| Lead       | [Pb]  | 6            | 7            | 7                 | 9            | 12           | 11           |
| Zinc       | [Zn]  | 54           | 50           | 64                | 32           | 50           | 110          |
| Vanadium   | [V]   | 120          | 99           | 120               | 47           | 34           | 39           |
| Strontium  | [Sr]  | 11           | 16           | 20                | 9            | 16           | 21           |
| Cobalt     | [Co]  | 16           | 11           | 15                | 4            | 11           | 20           |
| Molybdenum |       | < 2          | < 2          | < 2               | 6            | 8            | < 2          |
| Silver     | [4g]  | < 1          | < i          | < 1               | < 1          | < 1          | < 1          |
| Cadmium    | [Cq]  | < 1          | ₹ 1          | < 1               | < 1          | < 1          | < 1          |
| Beryllium  | [Be]  | < 1          | < <b>i</b>   | < 1               | < 1          | <b>₹ 1</b>   | < 1          |
| Boron      | (B)   | < 10         | < 10         | < 10              | < 10         | < 10         | < 10         |
| Antimony   | [Sb]  | < 5          | < 5          | 5                 | ₹ 5          | < 5          | ₹ 5          |
| Yttrium    | [Y]   | 3            | 3            | 3                 | 2            | 2            | 5            |
| Scandium   | [Sc]  | 1            | 1            | 1                 | < 1<br>< 10  | < 1<br>< 10  | < 1          |
| Tungsten   | [W]   | < 10         | 〈 10<br>〈 10 | < 10              |              |              | < 10         |
| Niobium    | [Nb]  | < 10         | < 10<br>50   | < 10<br>40        | < 10<br>< 10 | < 10<br>10   | < 10<br>< 10 |
| Thorium    | [Th]  | 40           |              |                   | < 10<br>20   |              |              |
| Arsenic    | [As]  | 15           | 15<br>< 5    | 30                |              | 10<br>< 5    | 20           |
| Bismuth    | EBil  | 5            |              | 5<br>/ 10         |              |              | < 5          |
| Tin        | [Sn]  | < 10         |              | < 10              |              | < 10         | 〈 10         |
| Lithium    | (Li)  | < 5          | 〈 5<br>〈 10  | < 5<br>< 10       | < 5<br>< 10  | < 5          | < 5<br>< 10  |
| Holmium    | (Ho)  | < 10         | < 10         | < 10              | < 10         | < 10         | < 10         |

SIGNED: Bernie Dunn

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS R-2533

ALL RESULTS PPM

T.S.L. Invoice No.: 15654

T.S.L. REPORT No.: S - 1034 - 5 T.S.L. File No.: SE24MZ

S7K 6A4

| el emerit          |              | PUPL10 2+00N                          | PUPL10 2+50N  | PUPL10 3+00N   | PUPL10 3+50N | PUPL10 4+00N | PUPL10 4+50N |
|--------------------|--------------|---------------------------------------|---------------|----------------|--------------|--------------|--------------|
| ELEMENT            |              |                                       |               |                |              |              |              |
| Aluminum           | [A1]         | 13000                                 | 14000         | 15000          | 13000        | 17000        | 15000        |
| Iron               | [Fe]         | 31000                                 | 33000         | 37000          | 34000        | 35000        | 31000        |
| Calcium            | [Ca]         | 4700                                  | 3700          | 1600           | 5300         | 4000         | 6000         |
| Magnesium          | [Mg]         | 5800                                  | 5700          | 4200           | <b>50</b> 00 | 5900         | 6200         |
| Sodium             | [Na]         | 80                                    | 70            | 70             | 80           | 70           | 70           |
| Potassium          | EK 1         | 720                                   | 620           | 1100           | 740          | 660          | 790          |
| Titanium           | [Ti]         | 300                                   | 250           | 140            | 200          | 260          | 170          |
| Manganese          | [Mn]         | 1000                                  | 1100          | 1400           | 1400         | 1200         | 1300         |
| Phosphorus         | [P]          | 950                                   | <b>8</b> 50   | 850            | 1100         | 1100         | 1100         |
| Barium             | [Ba]         | 58                                    | 63            | 110            | 80           | 71           | 70           |
| Chromium           | [Cr]         | 190                                   | 120           | 73             | 250          | 130          | 250          |
| Zirconium          | [Zr]         | < 1                                   | < 1           | < 1            | < 1          | 3            | < 1          |
| Copper             | [Cu]         | 83                                    | <del>66</del> | 65             | 72           | 77           | 63           |
| Nickel             | [Ni]         | 110                                   | 80            | 50             | 110          | 82           | 130          |
| Lead               | <b>[</b> Pb] | 12                                    | 15            | 49             | 20           | 15           | 11           |
| Zinc               | [Zn]         | 120                                   | 110           | <del>9</del> 3 | 120          | 140          | 130          |
| Vanadium           | [V]          | 40                                    | 45            | 41             | 45           | 51           | 44           |
| Strontium          | (Sr)         | 19                                    | 18            | 16             | 21           | 21           | 25           |
| Cobalt             | [Co]         | 21                                    | 21            | 23             | 22           | 17           | 19           |
| Molybdenum         | [Mo]         | < 2                                   | 2             | < 2            | 2            | < 2          | < 2          |
| Silver             | [Ag]         | < 1                                   | < 1           | < 1            | < 1          | < 1          | < i          |
| Cadmium            | [Cq]         | < 1                                   | < 1           | < 1            | < 1          | < 1          | 2            |
| Beryllium          | [Be]         | < 1                                   | < 1           | < 1            | < 1          | < 1          | < 1          |
| Baron              | £B ]         | < 10                                  | < 10          | < 10           | < 10         | < 10         | < 10         |
| Antimony           | [Sb]         | ₹ 5                                   | < 5           | < 5            | < 5          | < 5          | < 5          |
| Yttrium            | [Y]          | 4                                     | 4             | 9              | 5            | 10           | 6            |
| Scandium           | [Sc]         | < 1                                   | < 1           | < <u>i</u>     | < 1          | i            | < 1          |
| Tungsten           | [W]          | < 10                                  | 10            | 20             | 10           | < 10         | < 10         |
| Niobium            | [Nb]         | < 10                                  | < 10          | < 10           | < 10         | < 10         | ₹ 10         |
| Thorium            | [Th]         | < 10                                  | < 10          | 40             | < 10         | < 10         | < 10         |
| Arsenic            | [As]         | 15                                    | 20            | 35             | 20           | 35           | 35           |
| Bismuth            | [Bi]         | < 5<br>< 10                           | < 5<br>< 10   | < 5<br>< 10    | < 5<br>< 10  | < 5          | < 5<br>< ±∧  |
| Tin                | [Sn]<br>[Li] | < 10<br>< 5                           | < 10<br>< 5   | < 10<br>< 5    | < 10<br>< 5  | < 10<br>< 5  | < 10<br>< 5  |
| Lithium<br>Holmium | (Ho)         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ \ 10        | √ 10           | ₹ 10         | ⟨ 10         | ₹ 10         |
| TOTHIUM            | CUUJ         | / <b>1</b> V                          | V 10          |                | V *V         | N 4W         | V 4V         |

SIGNED: Bernie Oun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

S7K 6A4

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2533

T.S.L. REPORT No.: S - 1034 - 6

T.S.L. File No.: SE24MZ

T.S.L. Invoice No.: 15654

ALL RESULTS PPM

| ELEMENT    |      | PUPL10 5+00N | PUPL10 5+50N | PUPL10 6+00N | PUPL10 6+50N | PUPL10 7+00N | PUPL10 7+50N |
|------------|------|--------------|--------------|--------------|--------------|--------------|--------------|
| Aluminum   | [A1] | 14000        | 8100         | 7800         | 11000        | 9000         | 1400         |
| Iron       | [Fe] | 30000        | 21000        | 20000        | 28000        | 27000        | 2600         |
| Calcium    | [Ca] | 2600         | 1700         | 2000<br>780  | 28000<br>680 | 4200         | 3000<br>3000 |
| Magnesium  | [Mg] | 3400         | 3200         | 2300         | 3100         | 3500         | 280          |
| Sodium     | [Na] | 170          | 100          | 140          | 130          | 150          | 100          |
| Potassium  | EK 1 | 730          | 670          | 440          | 400          | 580          | 140          |
| Titanium   | [Ti] | 730<br>310   | 310          | 500          | 270          | 160          | 51           |
| Manganese  | [Mn] | 1100         | 390          | 170          | 460          | 1300         | 70           |
| Phosphorus |      | 1300         | 1000         | 750          | 800          | 1200         | 330          |
| Barium     | [Ba] | 60           | 45           | 20           | 25           | 90           | 32           |
| Chromium   | [Cr] | 65           | 150          | 75           | 52           | 140          | 7            |
| Zirconium  | [Zr] | < 1 €        | < 1          | Ĭ.           | 2            | < 1          | < i          |
| Copper     | [Cu] | 24           | 29           | 25           | 25           | 47           | 20           |
| Nickel     | [Ni] | 29           | 58           | 32           | 25           | 66           | 7            |
| Lead       | (Pb) | 10           | 9            | 5            | 12           | 16           | 3            |
| Zinc       | [Zn] | 94           | 59           | 47           | 74           | 160          | 51           |
| Vanadium   | [V ] | 56           | 44           | 38           | 60           | 45           | 3            |
| Strontium  | [Sr] | 19           | 15           | 7            | 7            | 17           | 12           |
| Cobalt     | [Co] | 8            | 5            | 4            | 5            | 15           | 1            |
| Molybdenum | [Mo] | 6            | 2            | 2            | 6            | 10           | < 2          |
| Silver     | [Ag] | < 1          | < 1          | < 1          | i            | 1            | < 1          |
| Cadmium    | [Cq] | < 1          | < i          | < 1          | < i          | 3            | < 1          |
| Beryllium  | [Be] | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Boron      | [B ] | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |
| Antimony   | [Sb] | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Yttrium    | [Y]  | 4            | 3            | 2            | 4            | 7            | < 1          |
| Scandium   | [Sc] | < 1          | < 1          | < 1          | < i          | < 1          | < 1          |
| Tungsten   | [W]  | < 10         | < 10         | ₹ 10         | < 10         | < 10         | < 10         |
| Niobium    | [Nb] | < 10         | < 10         | < 10         | < 10         | ₹ 10         | < 10         |
| Thorium    | [Th] | < 10         | < 10         | < 10         | < 10         | ₹ 10         | < 10         |
| Arsenic    | [As] | . 15         | 10           | 5            | 20           | 20           | < 5          |
| Bismuth    | [Bi] | < 5          | < 5          | < 5          | < 5          | < 5          | < 5          |
| Tin        | [Sn] | < 10         | < 10         | ₹ 10         | < 10         | < 10         | < 10         |
| Lithium    | [Li] | 5            | < 5          | < 5          | 5            | 5            | < 5          |
| Holmium    | [Ho] | < 10         | ₹ 10         | < 10         | < 10         | < 10         | < 10         |

SIGNED: Bunie Oum

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

### I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1034 - 7 T.S.L. File No.: SE24MZ

T.S.L. Invoice No.: 15654

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2533 ALL RESULTS PPM

|            |      | PUPLIO 8+00N | PUPL10 8+50N | PUPL10 9+00N | PUPL10 10+00N    | PUPL10 10+50N | PUPL10 11+00N |
|------------|------|--------------|--------------|--------------|------------------|---------------|---------------|
| ELEMENT    |      |              |              |              |                  |               |               |
| Aluminum   | [A1] | 8200         | 9400         | 3200         | <b>85</b> 00     | 5500          | 3400          |
| Iron       | [Fe] | 20000        | 23000        | 14000        | 19000            | 21000         | 7700          |
| Calcium    | [Ca] | 320          | 520          | 400          | 2700             | 900           | 2000          |
| Magnesium  | {Mg} | 360          | 1300         | 440          | 3100             | 1600          | 760           |
| Sodium     | [Na] | 110          | 170          | 200          | 80               | 90            | 70            |
| Potassium  | EK I | 200          | 390          | 350          | 390              | 380           | 260           |
| Titanium   | [Ti] | 460          | 620          | 710          | 2 <del>6</del> 0 | 560           | 720           |
| Manganese  | [Mn] | 60           | 130          | 82           | 550              | 150           | 87            |
| Phosphorus | {P 1 | 470          | 380          | <b>45</b> 0  | 1100             | 500           | 430           |
| Barium     | [Ba] | 30           | 44           | 22           | 50               | 29            | 34            |
| Chromium   | [Cr] | 12           | 11           | 33           | 160              | 230           | 44            |
| Zirconium  |      | 5            | 3            | 4            | < 1              | 1             | 2             |
| Copper     | (Cu) | 23           | 17           | 23           | 38               | 32            | 22            |
| Nickel     | ENil | 4            | 10           | 12           | 69               | 92            | 20            |
| Lead       | (Pb] | 10           | 9            | 4            | 5                | 11            | 5             |
| Zinc       | [Zn] | 27           | 45           | 34           | <b>6</b> 5       | 53            | 44            |
| Vanadium   | [V ] | 64           | 56           | 45           | 32               | 61            | 23            |
| Strontium  | [Sr] | 12           | 7            | 5            | 12               | 15            | 17            |
| Cobalt     | [Co] | 2            | 3            | 2            | 10               | 5             | 3             |
| Molybdenum | [Mo] | < 2          | 6            | 4            | < 2              | 4             | 4             |
| Silver     | [Ag] | < 1          | < 1          | < 1          | < 1              | < 1           | < 1           |
| Cadmium    | [Cd] | < 1          | < 1          | < 1          | < 1              | < 1           | < 1           |
| Beryllium  | [Be] | < 1          | < 1          | < 1          | < 1              | < 1           | < 1           |
| Boron      | [8]  | < 10         | < 10         | < 10         | < 10             | < 10          | < 10          |
| Antimony   | [Sb] | ₹ 5          | < 5          | ₹ 5          | < 5              | ₹ 5           | ₹ 5           |
| Yttrium    | [Y]  | 2            | 4            | 1            | 2                | 2             | 1             |
| Scandium   | (Sc) | < 1          | < 1          | < 1          | < 1              | < 1           | < 1           |
| Tungsten   | [W ] | < 10         | < 10         | < 10         | < 10             | < 10          | < 10          |
| Niobium    | [Nb] | 10           | < 10         | < 10         | < 10             | < 10          | < 10          |
| Thorium    | [Th] | < 10         | < 10         | < 10         | < 10             | < 10          | < 10          |
| Arsenic    | [As] | . 15         | 15           | < 5          | 10               | 20            | 5             |
| Bismuth    | [Bi] | √ 5          | < 5          | < 5          | < 5              | ₹ 5           | < 5           |
| Tin        | [5n] | < 10         | < 10         | < <u>10</u>  | <10              | < 10          | <_10          |
| Lithium    | [Li] | < 5          | < 5          | < 5          | < 5              | < 5           | < 5           |
| Holmium    | (Ha) | < 10         | < 10         | < 10         | < 10             | < 10          | < 10          |

Bernie Aum

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

# Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2533

ALL RESULTS PPM

T.S.L. File No.: SE24MZ T.S.L. Invoice No.: 15654

T.S.L. REPORT No.: 5 - 1034 - 8

| ELEMENT    |       | PUPL10 11+50N  | PUPL10 12+00N | PUPL10 12+50N | PUPL10 13+00N | PUPL10 13+50N | PUPL10 14+00N |
|------------|-------|----------------|---------------|---------------|---------------|---------------|---------------|
|            |       |                |               |               |               |               |               |
| Aluminum   | [A]]  | 4500           | 3400          | 9500          | 13000         | 11000         | <b>980</b> 0  |
| Iron       | [Fe]  | 17000          | 16000         | 37000         | 52000         | 29000         | 15000         |
| Calcium    | [Ca]  | 1200           | 840           | 1500          | 2000          | 900           | 480           |
| Magnesium  |       | 1200           | 220           | 2900          | 3800          | 1800          | 1000          |
| Sodium     | [Na]  | 100            | 50            | 40            | 80            | 90            | 120           |
|            | EK 1  | 300            | 250           | 370           | 500           | 270           | 210           |
| Titanium   | [Ti]  | 420            | 1000          | 900           | 310           | 5 <b>6</b> 0  | 680           |
| -          | EMn 3 | 69             | 47            | 250           | <b>9</b> 50   | 150           | 57            |
| Phosphorus | [b ]  | 840            | 610           | 1900          | 2800          | 710           | 270           |
| Barium     | (Ba)  | 45             | 29            | 36            | 59            | 54            | 47            |
| Chromium   | [Cr]  | 31             | 30            | 73            | 83            | 130           | 46            |
| Zirconium  | [Zr]  | 3              | 3             | 2             | 2             | 2             | 2             |
| Copper     | {Cu]  | 2 <del>8</del> | 34            | 37            | 67            | 29            | 16            |
| Nickel     | [Ni]  | 10             | 16            | 36            | 43            | 52            | 15            |
| Lead       | [Pb]  | 10             | 5             | 10            | 15            | 18            | 17            |
| Zinc       | [Zn]  | 36             | <b>4</b> 7    | 67            | 57            | 67            | 36            |
| Vanadium   | (V )  | 41             | 42            | 7 <i>6</i>    | 120           | 90            | <b>6</b> 3    |
| Strontium  | [Sr]  | 9              | 9             | 15            | 12            | 15            | 11            |
| Cobalt     | [co]] | 2              | 4             | 4             | 13            | 5             | 2             |
| Molybdenum | [Ma]  | < 2            | 4             | 8             | 10            | 6             | 2             |
| Silver     | (Ag]  | < 1            | < 1           | < 1           | < 1           | < 1           | < 1           |
| Cadmium    | [Cd]  | < i            | < 1           | < 1           | < 1           | < 1           | < 1           |
| Beryllium  | [Be]  | < 1            | < 1           | < 1           | < 1           | < 1           | < 1           |
| Boron      | [B]   | < 10           | < 10          | < 10          | < 10          | < 10          | < 10          |
| Antimony   | [Sb]  | < 5            | < 5           | < 5           | < 5           | ₹ 5           | ₹ 5           |
| Yttrium    | [ Y ] | i              | 2             | 3             | 5             | 2             | 2             |
| Scandium   | (Sc)  | < 1            | < 1           | < 1           | < 1           | < 1           | < 1           |
| Tungsten   | [W ]  | < 10           | < 10          | < 10          | 10            | < 10          | < 10          |
| Niobium    | [Nb]  | < 10           | < 10          | . < 10        | < 10          | < 10          | < 10          |
| Thorium    | [Th]  | < 10           | < 10          | < 10          | 20            | < 10          | < 10          |
| Arsenic    | [As]  | . 10           | 15            | 15            | 20            | 30            | 15            |
| Bismuth    | [Bi]  | < 5            | < 5           | < 5.          | < 5           | < 5           | < 5           |
| Tin        | (Sn)  | ₹ 10           | < 10          | < 10          | < 10          | < 10          | < 10          |
| Lithium    | [Li]  | < 5            | < 5           | < 5           | < 5           | < 5           | < 5           |
| Holmium    | (Ho]  | < 10           | < 10          | < 10          | < 10          | < 10          | < 10          |

DATE : SEP-25-1990

SIGNED .

Beinie Oun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1034 - 13

T.S.L. File No.: SE24MZ T.S.L. Invoice No.: 15654

57K 6A4

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2533

ALL RESULTS PPM

| ELEMENT    |         | PUPL13N 1+75E | PUPL13N 2+00E | PUPL13N 2+25E | PUPL13N 2+50E | PUPL13N 2+75E  | PUPLI3N 3+00E  |
|------------|---------|---------------|---------------|---------------|---------------|----------------|----------------|
| A1 .       | 5413    | 40000         | 11000         | 45000         | 44000         | 47000          | 4 <b>0</b> 000 |
| Aluminum   | [A13    | 18000         | 11000         | 12000         | 16000         | 17000          | 18000          |
| Iron       | [Fe]    | 49000         | 72000         | 80000         | 54000         | 53000          | 37000          |
| Calcium    | [Ca]    | 1000          | 660           | 560           | 1600          | 2000           | 3700           |
| Magnesium  | -       | 3800          | 3400          | 4000          | 4500          | 4200           | 3300           |
| Sodium     | [Na]    | 110           | 190           | 120           | 420<br>540    | 350<br>570     | 490<br>400     |
| Potassium  | EK 1    | 350           | 500           | 500           | 540           | 560            | 600            |
| Titanium   | [Ti]    | 940           | 1500          | 920           | 1000          | 980            | 830            |
| Manganese  |         | 680           | 440           | 680           | 990           | 1100           | <b>47</b> 0    |
| Phosphorus |         | 1100          | 1800          | 2300          | 1400          | 1400           | 880            |
| Barium     | [Ba]    | 17            | 17            | 15            | 19            | 29             | 56             |
| Chromium   | [Cr]    | 15            | 6             | 7             | 9             | 13             | 14             |
| Zirconium  | [Zr]    | 3             | 7             | 8             | 8             | 8              | 8              |
| Copper     | (Cu)    | 170           | 280           | 380           | 310           | 430            | 270            |
| Nickel     | [Ni]    | 9             | 4             | 3             | 5             | 9              | 10             |
| Lead       | [Pb]    | 23            | 19            | 49            | 59            | 3 <del>9</del> | 25             |
| Zinc       | [Zn]    | 59            | 36            | 63            | 72            | 100            | 120            |
| Vanadium   | [ \( \) | 42            | 41            | 47            | 58            | 51             | 39             |
| Strontium  | [Sr]    | 17            | 21            | 15            | 29            | 30             | 39             |
| Cobalt     | [63]    | 13            | 6             | 10            | 13            | 17             | 8              |
| Molybdenum | [Mo]    | 8             | 18            | 22            | 6             | 6              | 8              |
| Silver     | [Ag]    | < i           | < 1           | < 1           | < 1           | 1              | < 1            |
| Cadmium    | [Cq3    | < 1           | < 1           | < 1           | < 1           | < 1            | < 1            |
| Beryllium  | (Be)    | < 1           | < 1           | < 1           | < i           | < i            | 1              |
| Boron      | [B]     | < 10          | < 10          | < 10          | < 10          | < 10           | < 10           |
| Antimony   | (Sb)    | < 5           | < 5           | 5             | < 5           | < 5            | < 5            |
| Yttrium    | [Y]     | 6             | 4             | 4             | 5             | 9              | 11             |
| Scandium   | {Sc}    | < 1           | 1             | 2             | 2             | 1              | < 1            |
| Tungsten   | [W]     | < 10          | 30            | 80            | < 10          | < 10           | 10             |
| Niobium    | [Nb]    | < 10          | < 10          | < 10          | < 10          | < 10           | < 10           |
| Thorium    | ETh3    | 110           | 40            | 60            | 80            | 70             | < 10           |
| Arsenic    | [As]    | 50            | 25            | 45            | 40            | 30             | 40             |
| Bismuth    | [Bi]    | 1 < 5         | < 5           | < 5           | < 5           | < 5            | < 5            |
| Tin        | [Sn]    | < 10          | < 10          | < 10          | < 10          | < 10           | < 10           |
| Lithium    | [Li]    | < 5           | < 5           | < 5           | < 5           | < 5            | < 5            |
| Holmium    | (Ho)    | < 10          | < 10          | < 10          | < 10          | < 10           | < 10           |

DATE : SEP-25-1990

Bernie Aum

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

FAX #:

I.C.A.P. PLASMA SCAN

## Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: S - 1034 - 9

T.S.L. File No.: SE24MZ

T.S.L. Invoice No.: 15654

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS R-2533

ALL RESULTS PPM

|            |       | PUPL10 14+50N    | PUPL10 15+00N | PUPL10 15+50N | PUPL10 16+00N | PUPL10 16+50N | PUPL10 17+00N |
|------------|-------|------------------|---------------|---------------|---------------|---------------|---------------|
| ELEMENT    |       |                  |               |               |               |               |               |
| Aluminum   | [A]]  | 8700             | 6100          | 10000         | 33000         | 5300          | 7800          |
| Iron       | [Fe]  | 44000            | 27000         | 35000         | 48000         | 17000         | 42000         |
| Calcium    | [Ca]  | 2700             | 1100          | 720           | 1100          | 1000          | 980           |
| Magnesium  | [Mg]  | 3600             | 1900          | 2200          | 1700          | 240           | <b>78</b> 0   |
| Sodium     | {Na}  | 50               | 40            | 60            | 60            | 60            | 20            |
| Potassium  | EK 1  | 270              | 350           | 280           | 460           | 230           | 280           |
| Titanium   | [Ti]  | 2 <del>9</del> 0 | 500           | 1100          | 230           | 550           | 1700          |
| Manganese  | [Mn]  | 420              | 71            | 100           | 350           | 47            | 120           |
| Phosphorus | [P ]  | 1600             | 820           | 320           | 3200          | 520           | 380           |
| Barium     | [Ba]  | 34               | 43            | 59            | 74            | 10            | 86            |
| Chromium   | [Cr]  | 200              | 150           | 190           | 75            | 45            | 27            |
| Zirconium  | [Zr]  | 2                | 2             | 2             | 7             | 7             | 4             |
| Copper     | {Cu]  | 48               | 37            | 31            | 110           | 44            | 76            |
| Nickel     | [Ni]  | 81               | 69            | 73            | 36            | 19            | 38            |
| Lead       | [Pb]  | 15               | 9             | 19            | 22            | 9             | 29            |
| Zinc       | [Zn]  | 29               | 22            | 49            | 62            | 57            | 140           |
| Vanadium   | [V ]  | 88               | 79            | 130           | 22            | 33            | 170           |
| Strontium  | [Sr]  | 8                | 6             | 14            | 5             | 3             | 4             |
| Cobalt     | (Co)  | 9                | 4             | 5             | 18            | 3             | 11            |
| Molybdenum | [Ma]  | 12               | 14            | 8             | 8             | 16            | 18            |
| Silver     | [Ag]  | < 1              | < 1           | < 1           | < 1           | < 1           | < 1           |
| Cadmium    | [63]  | < i              | < 1           | < 1           | < 1           | < 1           | < 1           |
| Beryllium  | (Be)  | < 1              | < 1           | < 1           | < 1           | < 1           | < i           |
| Baron      | [B ]  | < 10             | < 10          | < 10          | < 10          | < 10          | < 10          |
| Antimony   | [Sb]  | < 5              | < 5           | ₹ 5           | < 5           | < 5           | ₹ 5           |
| Yttrium    | [ Y ] | 8                | 3             | 2             | 9             | 3             | 4             |
| Scandium   | (Sc)  | < 1              | < 1           | i             | 2             | < 1           | 2             |
| Tungsten   | [W]   | < 10             | < 10          | < 10          | < 10          | < 10          | < 10          |
| Niobium    | [Nb]  | ₹ 10             | < 10          | < 10          | < 10          | < 10          | < 10          |
| Thorium    | [Th]  | < 10             | < 10          | < 10          | < 10          | < 10          | < 10          |
| Arsenic    | [As]  | 5                | 15            | 20            | 20            | 10            | 45            |
| Bismuth    | [Bi]  | < 5              | < 5           | < 5           | < 5           | < 5           | < 5           |
| Tin        | [Sn]  | ₹ 10             | ₹ 10          | < 19          | < 10          | < 10          | <_ 10         |
| Lithium    | [Li]  | < 5              | < 5           | < 5           | ₹ 5           | < 5           | < 5           |
| Holmium    | (Ha)  | < 10             | < 10          | < 10          | < 10          | < 10          | < 10          |

DATE : SEP-25-1990

SIGNED: Bernie Our

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. REPORT No.: S - 1034 - 10 T.S.L. File No.: SE24MZ

808 West Hastings St.

T.S.L. Invoice No.: 15654

57K 6A4

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2533

ALL RESULTS PPM

|            |       | PUPL10 17+50N | PUPL10 18+00N | PUPL10 18+50N | PUPL10 19+00N | PUPL10 19+50N | PUPL12N 2+75E   |
|------------|-------|---------------|---------------|---------------|---------------|---------------|-----------------|
| ELEMENT    |       |               |               |               |               |               |                 |
| Aluminum   | [A]]  | 12000         | 15000         | 9700          | 11000         | 6600          | 17000           |
| Iron       | [Fe]  | 54000         | 49000         | 28000         | 21000         | 47000         | 62000           |
| Calcium    | [Ca]  | 2500          | 1000          | 960           | 660           | 1300          | 2200            |
| Magnesium  | [ pM] | 4100          | 1500          | 1300          | 690           | 910           | 4300            |
| Sodium     | [Na]  | 180           | 60            | 810           | 60            | 30            | 220             |
| Potassium  | £K ]  | 840           | 400           | 760           | 200           | 550           | 440             |
| Titanium   | [Ti]  | 1100          | 2100          | 1000          | <b>69</b> 0   | 3200          | <del>98</del> 0 |
| Manganese  | EMn 3 | 1000          | 130           | 450           | 57            | 71            | 1000            |
| Phosphorus | [P ]  | 1100          | 710           | 390           | <b>4</b> 20   | 1700          | 1300            |
| Barium     | {Ba]  | 46            | 35            | 86            | 29            | 65            | 20              |
| Chromium   | [Cr]  | 110           | 56            | 19            | 43            | 33            | 16              |
| Zirconium  | [7r]  | 4             | 14            | 6             | < 1           | 4             | 5               |
| Copper     | [Cu]  | 97            | 47            | 15            | 26            | 80            | 270             |
| Nickel     | ENi]  | 58            | 17            | 8             | 10            | 39            | 8               |
| Lead       | [Pb]  | 18            | 9             | 10            | 11            | 9             | 100             |
| Zinc       | [Zn]  | 81            | 31            | 46            | 21            | 33            | 94              |
| Vanadium   | [V]   | <b>64</b>     | 130           | 54            | 88            | 110           | 57              |
| Strontium  | [Sr]  | 11            | 10            | 8             | 11            | 9             | 37              |
| Cobalt     | [Co]  | 31            | 4             | 4             | 3             | 9             | 16              |
| Molybdenum | [Ma]  | 2             | 8             | 4             | 10            | 14            | 6               |
| Silver     | [6A]  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1             |
| Cadmium    | [Cq]  | < i           | < i           | < 1           | < 1           | < 1           | < 1             |
| Beryllium  | [Be]  | < 1           | < 1           | < 1           | < i           | < 1           | < 1             |
| Baron      | (B ]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10            |
| Antimony   | [Sb]  | ₹ 5           | < 5           | ₹ 5           | < 5           | ₹ 5           | < 5             |
| Yttrium    | £ Y 3 | 7             | 5             | 8             | 2             | 3             | 6               |
| Scandium   | [Sc]  | 1             | <u> </u>      | < 1           | < 1           | 1             | 1               |
| Tungsten   | [W]   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10            |
| Niobium    | [Nb]  | < 10          | < 10          | 10            | < 10          | < 10          | < 10            |
| Thorium    | [Th]  | < 10          | < 10          | < 10          | < 10          | < 10          | 40              |
| Arsenic    | [As]  | 35            | 15            | 5             | 10            | 15            | 40              |
| Bismuth    | [Bi]  | √ < 5         | < 5           | < 5           | < 5           | < 5           | < 5             |
| Tin        | (Sn)  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10            |
| Lithium    | [Li]  | < 5           | < 5           | < 5           | < 5           | < 5           | < 5             |
| Holmium    | (Ho)  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10            |

DATE: SEP-25-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

## Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

T.S.L. REPORT No. : S - 1034 - 11 T.S.L. File No.: SE24MZ T.S.L. Invoice No.: 15654

57K 6A4

Vancouver B.C. V&C 2X&

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2533

ALL RESULTS PPM

|            |       | PUPL12N 3+00E | PUPL12N 3+25E | PUPL12N 3+50E | PUPL12N 3+75E | PUPL12N 4+00E | PUPL12N 4+25E  |
|------------|-------|---------------|---------------|---------------|---------------|---------------|----------------|
| ELEMENT    |       |               |               |               |               |               |                |
| Aluminum   | [A]]  | 1B000         | 19000         | 10000         | 20000         | 19000         | 16000          |
| Iron       | [Fe]  | 36000         | 100000        | 60000         | 36000         | 30000         | 29000          |
| Calcium    | [Ca]  | 1100          | 840           | 880           | <b>4</b> 300  | 2200          | 2400           |
| Magnesium  | [Mo]  | 3500          | 4300          | 3300          | 5400          | 5500          | 5900           |
| Sodium     | (Na)  | 330           | 190           | 170           | 410           | 140           | 200            |
| Potassium  | €K 3  | 510           | 350           | 700           | 2000          | 310           | 310            |
| Titanium   | [Ti]  | 1000          | 1000          | 1100          | 1100          | 720           | 820            |
| Manganese  | EMn 3 | 260           | 610           | 510           | 530           | 270           | 390            |
| Phosphorus | EP 3  | 720           | 1300          | 1500          | 1200          | 680           | <b>67</b> 0    |
| Barium     | [Ba]  | 20            | 16            | 27            | 44            | 22            | 24             |
| Chromium   | (Cr)  | 28            | 16            | 50            | 36            | 100           | 100            |
| Zirconium  | [Zr]  | 5             | 8             | 4             | 5             | 2             | 2              |
| Copper     | [Cu]  | 130           | 380           | 220           | 84            | 100           | 57             |
| Nickel     | [Ni]  | 13            | 12            | 23            | 22            | 59            | <del>5</del> 9 |
| Lead       | [Pb]  | 18            | 18            | 17            | 19            | 8             | 10             |
| Zinc       | [Zn]  | 41            | 36            | 23            | 75            | 46            | 44             |
| Vanadium   | [V ]  | 58            | 37            | 31            | 110           | 89            | <del>9</del> 5 |
| Strontium  | [Sr]  | 17            | 12            | 11            | 84            | 14            | 13             |
| Cobalt     | [Co]  | 5             | 13            | 11            | 12            | 9             | 12             |
| Molybdenum | [cM3  | 10            | 16            | 20            | < 2           | 10            | < 2            |
| Silver     | [Ag]  | < 1           | < 1           | < 1           | < 1           | < 1           | < 1            |
| Cadmium    | [Cd]  | < 1           | < 1           | < 1           | < i           | < i           | < i            |
| Beryllium  | (Be)  | < 1           | < 1           | < 1           | < 1           | < i           | < 1            |
| Baron      | [B ]  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10           |
| Antimony   | (Sb]  | < 5           | 5             | < 5           | ₹ 5           | < 5           | < 5            |
| Yttrium    | [Y]   | 5             | 6             | 5             | 8             | 5             | 5              |
| Scandium   | {S∈}  | ì             | < 1           | 1             | 2             | 1             | 2              |
| Tungsten   | EM 3  | < 10          | < 10          | < 10          | < 10          | < 10          | < 10           |
| Niobium    | (Nb)  | ₹ 10          | < 10          | < 10          | < 10          | < 10          | < 10           |
| Thorium    | [Th]  | < 10          | 50            | 40            | 70            | 10            | < 10           |
| Arsenic    | (As)  | 30            | 25            | 25            | 15            | 20            | 15             |
| Bismuth    | [Bi]  | < 5           | < 5           | < 5           | < 5           | < 5           | < 5            |
| Tin        | [5n]  | < 10          | < 10          | < 10          | < 10          | < 10          | ( <u>10</u>    |
| Lithium    | [Li]  | <b>( 5</b>    | < 5           | ₹ 5           | 5             | 5             | < 5            |
| Holmium    | [Ho]  | < 10          | < 10          | < 10          | ( 10          | < 10          | < 10           |

SIGNED: Bernie Our

DATE : SEP-25-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (304) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2X6

PROJECT: PUP

OREQUEST CONSULTANTS

R-2533

T.S.L. Invoice No.: 15654

REPORT No.: S - 1034 - 12

File No.: SE24MZ

S7K 6A4

T.S.L.

T.S.L.

ATTN: J. FOSTER ALL RESULTS PPM PUPL12N 5+75E PUPL12N 4+50E PUPL12N 4+75E PUPL12N 5+00E PUPL12N 5+25E PUPL12N 5+50E ELEMENT 17000 12000 Aluminum [A]] 19000 16000 22000 19000 [Fe] 29000 20000 34000 36000 35000 29000 Iron 1400 1600 2000 Calcium [Ca] 2300 1100 2100 2300 3600 3300 3600 4800 Magnesium [Ma] 5800 920 70 390 Sodium [Na] 200 610 110 590 270 Potassium EK 1 340 810 260 550 Titanium [Ti] 930 940 1200 1300 1100 990 Manganese [Mn] 190 490 690 360 430 770 Phosphorus [P ] 690 420 400 610 630 680 23 35 Barium [Ba] 24 28 35 32 Chromium [Cr] 96 25 46 22 40 41 3 7 3 4 Zirconium [Zr] 2 12 38 29 340 94 65 (Cu) 58 Copper 22 24 [Ni] 65 11 13 16 Nickel 9 9 25 9 21 Lead [Pb] 11 [Zn] 46 35 46 61 71 130 Zinc 88 41 100 52 87 65 [V] Vanadium 14 13 7 12 13 14 Strontium [Sr] 4 7 14 17 14 Cobalt 12 [Co] 2 2 2 < 2 Molybdenum [Mo] ₹. 2 ⟨ | 2 < < < ₹ < 1 < i 1 Silver ₹ 1 1 ₹ ₹ 1 [Aq] [Cd] < ₹ i ₹ i < 1 < 1 Cadmium < 1 í ₹ ₹ < 1 < < 1 < 1 İ 1 i Beryllium [Be] < 10 < 10 < 10 [B] < 10 10 10 Boron 5 5 5 ₹ 5 < 5 ₹ 5 < [Sb] ₹ Antimony [[ ]] 5 4 3 7 6 7 Yttrium 2 ₹. < 1 2 į 1 i Scandium [Sc] < ₹ [W] < 10 < 10 ₹ 10 10 10 < 10 Tungsten 10 10 < 10 ₹ 10 < 10 < 10 [Nb] < <. Niobium < 100 Thorium [Th] < 10 < 10 < 10 10 < 10 15 15 5 25 20 15 Arsenic [As] 5 < 5 5 < 5 Bismuth [Bi] < 5 5 10 10 10 10 10 10 Tin [Sn] 5 ₹ 5 10 ₹ 5 < 5 5 Lithium [Li] < 10 10 < 10 10 10 < 10 Holmium [Ho]

Bunie Our

DATE: SEP-25-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

## Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PRO

PROJECT: PUP

OREQUEST CONSULTANTS

R-2533

ALL RESULTS PPM

T.S.L. File No.: SE24MZ

T.S.L. Invoice No.: 15654

T.S.L. REPORT No. : 5 - 1034 - 14

|   | ELEMENT    |        | PUPL13N 3+25E | PUPL13N 3+50E | PUPL13N 3+75E | PUPL13N 4+00E | PUPL13N 4+25E | PUPL13N 4+50E |
|---|------------|--------|---------------|---------------|---------------|---------------|---------------|---------------|
|   | CCC: 10111 |        |               |               |               |               |               |               |
|   | Aluminum   | (A1)   | 21000         | 15000         | 24000         | 23000         | 22000         | 14000         |
|   | Iron       | [Fe]   | 30000         | 34000         | 40000         | 37000         | 37000         | 24000         |
|   | Calcium    | [Ca]   | 720           | 440           | 600           | 620           | 2200          | 860           |
|   | Magnesium  | [Mg]   | 1700          | 2200          | 2600          | 2900          | 5100          | 3400          |
|   | Sodium     | [Na]   | 100           | 150           | 60            | 210           | 120           | 520           |
|   | Potassium  | [K ]   | 320           | 310           | 200           | 360           | 320           | 610           |
|   | Titanium   | [Ti]   | 1100          | 1100          | 960           | 950           | 680           | <b>95</b> 0   |
|   | Manganese  | [Mn]   | 330           | 190           | 210           | 460           | 440           | 510           |
|   | Phosphorus | [P ]   | 480           | 370           | 370           | 580           | 480           | 5 <b>9</b> 0  |
|   | Barium     | [Ba]   | 25            | 26            | 19            | 19            | 23            | 22            |
|   | Chromium   | [Cr]   | 10            | 20            | 72            | 30            | 67            | 46            |
|   | Zirconium  | [Zr]   | 8             | 4             | 3             | 6             | 4             | 6             |
| 1 | Copper     | [Cu]   | 93            | 30            | 48            | 77            | 110           | 36            |
|   | Nickel     | [Ni]   | 5             | · 5           | 17            | 9             | 48            | 24            |
|   | Lead       | [Pb]   | 22            | 20            | 13            | 10            | 10            | 12            |
|   | Zinc       | [ Zn ] | 38            | 37            | <b>4</b> 2    | 35            | <b>39</b>     | 37            |
| 1 | Vanadium   | [V ]   | 50            | 54            | 120           | 58            | 75            | 47            |
|   | Strontium  | [Sr]   | 10            | 8             | 9             | 8             | 13            | 8             |
| - | Cobalt     | [Co]   | 4             | 3             | 4             | 7             | 15            | 8             |
| 1 | Molybdenum | [Mo]   | 6             | 10            | 6             | 10            | 4             | 6             |
| ! | Silver     | [Ag]   | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| í | Cadmium    | [Cq]   | < 1           | < 1           | < 1           | < 1           | < 1           | < 1           |
| 1 | Beryllium  | {Be}   | < i           | < 1           | < 1           | < 1           | < 1           | < 1           |
| 1 | Baron      | EB 1   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| 1 | Antimony   | (Sb)   | < 5           | < 5           | ₹ 5           | < 5           | ₹ 5           | < 5           |
|   | Yttrium    | ξY ]   | 5             | 5             | 3             | 5             | 5             | 5             |
|   | Scandium   | (Sc)   | < 1           | < 1           | < 1           | < 1           | 2             | < 1           |
| • | Tungsten   | [W ]   | < 10          | 20            | < 10          | < 10          | < 10          | < 10          |
| 1 | Wiobium    | (Nb)   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| • | Thorium    | ETh3   | < 10          | < 10          | < 10          | < 10          | 40            | < 10          |
| í | Arsenic    | [As]   | 35            | 15            | 20            | 25            | 25            | 10            |
| l | Bismuth    | [Bi]   | ∘ < 5         | < 5           | ₹ 5           | < 5           | < 5           | < 5           |
|   | Tin        | [Sn]   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
|   | Lithium    | [Li]   | < 5           | < 5           | < 5           | < 5           | < 5           | < 5           |
| 1 | Holmium    | [Ho]   | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |

DATE: SEP-25-1990

SIGNED :

Bunielum

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1034 - 15

T.S.L. File No.: SE24MZ T.S.L. Invoice No.: 15654

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2533

ALL RESULTS PPM

|            |              | PUPLISM 4+75E   | PUPL13N 5+00E      | PUPL14N 1+25E | PUPL14N 1+50E | PUPL14N 1+75E | PUPL14N 2+00E |
|------------|--------------|-----------------|--------------------|---------------|---------------|---------------|---------------|
| ELEMENT    |              |                 |                    |               |               |               |               |
| Aluminum   | (A1)         | 19000           | 15000              | 21000         | 22000         | 17000         | 17000         |
| Iron       | [Fe]         | 43000           | 45000              | 51000         | 45000         | 47000         | 59000         |
| Calcium    | {Ca}         | 3300            | 1500               | 1500          | 1200          | 1700          | 1500          |
| Magnesium  | [Mg]         | 5200            | 4700               | 5200          | 4800          | 4700          | <b>49</b> 00  |
| Sodium     | [Na]         | 190             | 100                | 100           | 230           | 70            | 130           |
| Potassium  | EK 1         | 380             | 400                | 560           | 610           | 490           | 520           |
| Titanium   | [Ti]         | 640             | 450                | 980           | 910           | 760           | 840           |
| Manganese  | [Mn]         | 1200            | 2500               | 1500          | 1600          | 1000          | 1200          |
| Phosphorus | [P ]         | 730             | 920                | 960           | 860           | 1300          | 1500          |
| Barium     | [Ba]         | 42              | 25                 | 41            | 41            | 33            | 30            |
| Chromium   | [Cr]         | 48              | 51                 | 27            | 2 <i>6</i>    | 28            | 17            |
| Zirconium  | [[7]         | 4               | 3                  | 1             | 2             | 2             | 4             |
| Copper     | (Cu)         | 160             | 170                | 210           | 120           | 230           | 250           |
| Nickel     | [Ni]         | 29              | 28                 | 27            | 20            | 24            | 18            |
| Lead       | (Pb)         | 11              | 14                 | 23            | 25            | 21            | 23            |
| Zinc       | [Zn]         | 120             | 87                 | 130           | 120           | 80            | 97            |
| Vanadium   | [ V3         | 73              | 70                 | 62            | 59            | 50            | 57            |
| Strontium  | [Sr]         | 15              | 11                 | 26            | 21            | 22            | 23            |
| Cobalt     | [60]         | 31              | 53                 | 31            | 27            | 22            | 25            |
| Molybdenum |              | < 2             | < 2                | < 2           | 4             | 6             | 8             |
| Silver     | [Ag]         | < 1             | < 1                | < 1           | < 1           | < 1           | < 1           |
| Cadmium    | (Cd1         | < 1             | < 1                | < 1           | < 1           | < 1           | < 1           |
| *          | [Be]         | < 1             | < 1                | < 1           | < 1           | < i           | < 1           |
| Boron      | {B }         | < 10            | < 10               | < 10          | < 10          | < 10          | < 10          |
| Antimony   | [56]         | < 5             | ₹ 5                | ₹ 5           | ₹ 5           | < 5           | ₹ 5           |
| Yttrium    | [Y ]         | 7               | 3                  | 11            | 8             | 7             | B             |
| Scandium   | [Sc]         | 1               | < 1                | 1             | 1             | 1             | i             |
| Tungsten   | EW 3         | < 10            | < 10               | < 10          | < 10          | < 10          | < 10          |
| Niobium    | [Nb]         | < 10            | < 10               | < 10          | < 10          | < 10          | < 10          |
| Thorium    | [Th]         | 30              | 40                 | 30            | 80            | 70            | 40            |
| Arsenic    | [As]         | 40              | 20                 | 70            | 55            | 50            | 85            |
| Bismuth    | [Bi]         | 1 <b>&lt; 5</b> | < 5                | < 5           | < 5           | ₹ 5           | < 5           |
| Tin        | [5n]<br>[Li] | < 10<br>< 5     | < 10<br>< 5        | < 10<br>< 5   | < 10<br>< 5   | < 10<br>< 5   | < 10<br>< 5   |
| Lithium    | (Ho)         | √ 5<br>← 10     | √ <b>3</b><br>← 10 | √ J<br>← 10   | √ 3<br>√ 10   | < 10          | √ J<br>⟨ 10   |
| Holmium    | เทยว         | 10              | \ 10               | \ 10          | $\chi = 10$   | N 1V          | \ 1V          |

Bernie Oun

DATE: SEP-25-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1034 - 16

T.S.L. File No.: SE24MZ

S7K 6A4

T.S.L. Invoice No.: 15654

Vancouver B.C. V6C 2X6 ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS R-2533

ALL RESULTS PPM

|            |                 | PUPL14N 2+25E | PUPL14N 2+50E | PUPL14N 2+75E | PUPLIAN 3+00E | PUPL14N 3+25E | PUPL14N 3+50E |
|------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|
| ELEMENT    |                 |               |               |               |               |               |               |
| Aluminum   | [A]]            | 20000         | 16000         | 15000         | 16000         | 17000         | 15000         |
| Iron       | (Fe)            | 45000         | 42000         | 44000         | 42000         | 36000         | 48000         |
| Calcium    | [Ca]            | 1800          | 2200          | <b>290</b> 0  | 2800          | 1200          | 2400          |
| Magnesium  | [Mg]            | 5000          | 5400          | 5600          | 4700          | 3500          | 4900          |
| Sodium     | [Na]            | 250           | 110           | 100           | 270           | 450           | 110           |
| Potassium  | €K 3            | 680           | 730           | 770           | 700           | 550           | 730           |
| Titanium   | {Ti}            | 850           | 600           | <b>64</b> 0   | 570           | 610           | 300           |
| Manganese  | [Mn]            | 1200          | 1500          | 1300          | 1300          | 720           | 2100          |
| Phosphorus | <pre>{P ]</pre> | 1100          | 880           | 840           | 930           | 500           | 1000          |
| Barium     | (Ba)            | 35            | 39            | 34            | 40            | 50            | 47            |
| Chromium   | {Cr}}           | 25            | 90            | 130           | 27            | 19            | 24            |
| Zirconium  | {Zr}            | 3             | i             | 1             | 3             | 4             | < 1           |
| Copper     | [Cu]            | 170           | 110           | 100           | 160           | 130           | 130           |
| Nickel     | [Ni]            | 25            | 46            | 67            | 30            | 14            | 33            |
| Lead       | [Pb]            | 23            | 22            | 18            | 23            | 17            | 27            |
| Zinc       | [Zn]            | 120           | 120           | 130           | 140           | 83            | 170           |
| Vanadium   | (V)             | 57            | 50            | 47            | 41            | 3 <b>6</b>    | 43            |
| Strontium  | [Sr]            | 24            | 19            | 21            | 20            | 12            | 18            |
| Cobalt     | [63]            | 25            | 23            | 30            | 29            | 17            | 41            |
| Molybdenum | [cM]            | 4             | < 2           | < 2           | < 2           | < 2           | < 2           |
| Silver     | [Ag]            | < 1           | < 1           | < 1           | < i           | < 1           | < 1           |
| Cadmium    | [Cq]            | < 1           | < 1           | < i           | < 1           | < 1           | < 1           |
| Beryllium  | [Be]            | < 1           | < <b>1</b>    | < 1           | < 1           | < 1           | $\sim$ $<$ 1  |
| Baran      | (B)             | < 10          | < 10          | < 10          | < 10          | ₹ 10          | < 10          |
| Antimony   | (Sb)            | < 5           | ₹ 5           | < 5           | < 5           | ₹ 5           | ₹ 5           |
| Yttrium    | [ Y ]           | 9             | 5             | 4             | 8             | 8             | 6             |
| Scandium   | [Sc]            | 1             | < 1           | < 1           | < 1           | < 1           | < 1           |
| Tungsten   | [₩]             | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |
| Niobium    | [Nb]            | < 10          | < 10          | . < 10        | < 10          | < 10          | < 10          |
| Thorium    | [Th]            | 70            | < 10          | < 10          | 70            | < 10          | 70            |
| Arsenic    | [As]            | . 50          | 20            | 35            | 25            | 15            | 30            |
| Bismuth    | [Bi]            | . ₹ 5         | < 5           | < 5           | < 5           | < 5           | < 5           |
| Tin        | (Sn)            | < 10          | < 10          | < 10          | 10            | < 10          | < 10          |
| Lithium    | [Li]            | < 5           | 5             | < 5           | < 5           | < 5           | < 5           |
| Holmium    | (Ho)            | < 10          | < 10          | < 10          | < 10          | < 10          | < 10          |

DATE : SEP-25-1990

Bunie Oun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10 808 West Hastings St.

Vancouver B.C. V6C 2X6

T.S.L. File No.: SE24MZ

T.S.L. Invoice No.: 15654

T.S.L. REPORT No. : S - 1034 - 17

S7K 6A4

ATTN: J. FOSTER OREQUEST CONSULTANTS R-2533 ALL RESULTS PPM PROJECT: PUP

|            |       | PUPL14N 3+75E | PUPLIAN 4+00E | PUPL14N 4+25E | PUPL14N 4+50E  | PUPL14N 4+75E  | PUPL14N 5+00E |
|------------|-------|---------------|---------------|---------------|----------------|----------------|---------------|
| ELEMENT    |       |               |               |               |                |                |               |
| Aluminum   | [A1]  | 17000         | 16000         | 15000         | 17000          | 19000          | 21000         |
| Iron       | [Fe]  | 52000         | 42000         | 42000         | 48000          | 33000          | 31000         |
| Calcium    | [Ca]  | 1500          | 1700          | 2400          | 1600           | 1300           | 640           |
| Magnesium  | [ pM] | 5600          | 4800          | 5600          | 5200           | 4700           | 3400          |
| Sodium     | [Na]  | 110           | 450           | 130           | 2 <b>9</b> 0   | 320            | 220           |
| Potassium  | ₹K ]  | 690           | 740           | 660           | 810            | 510            | 310           |
| Titanium   | [Ti]  | 690           | 649           | 690           | 850            | 810            | 1300          |
| Manganese  | [Mn]  | 1500          | 930           | 1000          | 890            | 460            | 280           |
| Phosphorus | [P]   | 1000          | 910           | <b>89</b> 0   | 1100           | 840            | 740           |
| Barium     | [Ba]  | 34            | 38            | 32            | 32             | 24             | 15            |
| Chromium   | [Cr]  | 25            | 23            | 50            | 29             | 65             | 23            |
| Zirconium  | [Zr]  | 3             | 4             | 3             | 4              | 3              | 3             |
| Copper     | [Cu]  | 170           | 170           | 150           | 170            | 130            | 41            |
| Nickel     | [Ni]  | 34            | 29            | 43            | 29             | 28             | 5             |
| Lead       | [64]  | 25            | 25            | 19            | 2 <del>9</del> | 12             | 12            |
| Zinc       | [Zn]  | 150           | 130           | 130           | 120            | 48             | 37            |
| Vanadium   | (V ]  | 49            | 41            | 44            | 52             | <del>6</del> 7 | 52            |
| Strontium  | (Sr)  | 17            | 17            | 21            | 18             | 16             | 8             |
| Cobalt     | (Co)  | 31            | 19            | 20            | 18             | 11             | 4             |
| Malybdenum | [off] | 2             | 2             | < 2           | 6              | 8              | 12            |
| Silver     | [Ag]  | < 1           | < i           | < 1           | < 1            | < 1            | < 1           |
| Cadmium    | [Cd]  | < 1           | < 1           | < 1           | < 1            | < 1            | < 1           |
| Beryllium  | [Be]  | < i           | < i           | < 1           | < 1            | < i            | < 1           |
| Boron      | [B ]  | < 10          | < 10          | < 10          | < 10           | < 10           | < 10          |
| Antimony   | [5b]  | < 5           | ₹ 5           | 10            | < 5            | < 5            | < 5           |
| Yttrium    | {Y }  | 9             | 9             | 7             | 10             | 7              | 5             |
| Scandium   | (Sc}  | 2             | 1             | 1             | 2              | 2              | < 1           |
| Tungsten   | [#]   | < 10          | < 10          | < 10          | < 10           | < 10           | < 10          |
| Niobium    | [Mb]  | < 10          | < 10          | < 10          | < 10           | < 10           | < 10          |
| Thorium    | [Th]  | 20            | 50            | 30            | <b>6</b> 0     | 20             | < 10          |
| Arsenic    | [As]  | 40            | 30            | 35            | 40             | 15             | 10            |
| Bismuth    | [Bi]  | . < 5         | ₹ 5           | < 5           | < 5            | < 5            | < 5           |
| Tin        | [Sn]  | < 10          | < 10          | < 10 €        | < 10<br>< 5    | < 10<br>< 5    | < 10<br>< 5   |
| Lithium    | ELi]  | < 5           | < 5           | 5<br>/ 46     |                |                |               |
| Holmium    | (Ha)  | < 10          | < 10          | < 10          | < 10           | < 10           | < 10          |

SIGNED: Beinie Dun

DATE: SEP-25-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. VAC 2X6 T.S.L. REPORT No.: S - 8072 - 18

T.S.L. File No.: SE24MZ T.S.L. Invaice No.: 15654

S7K 6A4

| ARKCORAC | t D.C. VOC ZNO |              |                      |        |                 |
|----------|----------------|--------------|----------------------|--------|-----------------|
| ATTN: J  | . FOSTER       | PROJECT: PUP | OREQUEST CONSULTANTS | R-2533 | ALL RESULTS PPM |

|            |               | PUPL14N 5+25E  | PUPL14N 5+50E  | PUPL14N 5+75E | PUPL14N 6+00E | PUPL14N 6+25E | PUPL14N 6+50E |
|------------|---------------|----------------|----------------|---------------|---------------|---------------|---------------|
| ELEMENT    |               |                |                |               |               |               |               |
| Aluminum   | [Al]          | 19000          | 21000          | 13000         | 13000         | 10000         | 6500          |
| Iron       | [Fe]          | 59000          | 27000          | 20000         | 20000         | 19000         | 14000         |
| Calcium    | [Ca]          | 1000           | 3900           | 1000          | 760           | 1200          | 720           |
| Magnesium  | [Mg]          | 4100           | 6000           | 3100          | 2000          | 2800          | 1200          |
| Sodium     | [Na]          | 180            | 330            | 230           | 570           | 360           | 610           |
| Potassium  | EK 1          | 230            | 470            | 350           | 670           | 640           | 690           |
| Titanium   | [Ti]          | 800            | 500            | 690           | 540           | 570           | 7 <i>6</i> 0  |
| Manganese  | [Mn]          | 850            | 730            | 290           | 250           | 380           | 210           |
| Phosphorus | [P ]          | 1100           | 940            | 530           | 570           | 590           | 450           |
| Barium     | [Ba]          | , 9            | 28             | 14            | 20            | 19            | 16            |
| Chromium   | (Cr)          | 7              | 130            | 41            | 28            | 79            | 21            |
| Zirconium  | [Zr]          | 5              | 2              | 2             | 4             | 2             | 7             |
| Copper     | (Cul          | 2 <b>9</b> 0   | 3 <del>9</del> | 20            | 15            | 20            | 9             |
| Nickel     | [Ni]          | 2              | 82             | 13            | 11            | 29            | 7             |
| Lead       | [Pb]          | 18             | 12             | 11            | 11            | 12            | 10            |
| Zinc       | [Zn]          | 27             | 57             | 33            | 34            | 51            | 34            |
| Vanadium   | EV 3          | 28             | 44             | 48            | 29            | 38            | 22            |
|            | [Sr]          | 6              | 14             | 9             | 6             | 12            | P             |
| Cobalt     | [Co]          | 24             | 15             | 5             | 3             | 5             | 2             |
| Molybdenum |               | <del>9</del> 8 | 2              | < 2           | < 2           | < 2           | < 2           |
| Silver     | [Ag]          | < 1            | < 1            | < 1           | < 1           | < 1           | < 1           |
| Cadmium    | [Cd]          | < 1            | < 1            | < 1           | < 1           | < 1           | < 1           |
| Beryllium  | [Be]          | < 1            | < 1            | < 1           | < 1           | < 1           | < 1           |
| Boron      | [B]           | < 10           | < 10           | < 10          | < 10          | < 10          | < 10          |
| Antimony   | [ <b>S</b> b] | < 5            | < 5            | < 5           | < 5           | ₹ 5           | < 5           |
| Yttrium    | EY 3          | 7              | 10             | 3             | 4             | 3             | 2             |
| Scandium   | [Sc]          | < 1            | < i            | < 1           | < 1           | < 1           | < 1           |
| Tungsten   | [W]           | < 10           | < 10           | < 10          | < 10          | < 10          | < 10          |
| Niobium    | [Nb]          | < 10           | 10             | < 10          | < 10          | < 10          | 10            |
| Thorium    | ETh1          | 70             | < 10           | < 10          | < 10          | < 10          | < 10          |
| Arsenic    | [As]          | 20             | 15             | 10            | < 5           | 10            | 5             |
| Bismuth    | [Bi]          | < 5            | < 5            | < 5           | < 5           | < 5           | < 5           |
| Tin        | (Sn)          | < 10           | < 10           | < 10          | < 10          | < 10          | < 10          |
| Lithium    | [Li]          | < 5            | < 5            | < 5           | < 5           | < 5           | < 5           |
| Holmium    | (Ha]          | < 10           | < 10           | < 10          | < 10          | < 10          | < 10          |

SIGNED: Bernie Oun DATE: SEP-25-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

S7K 6A4

I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1034 - 19

T.S.L. File No.: SE24MZ T.S.L. Invoice No. : 15654

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

**OREQUEST CONSULTANTS** 

R-2533

ALL RESULTS PPM

| ELEMENT    |       | PUPL14N 6+75E      | PUPL14N 7+00E | PUPL14N 7+25E | PUPL14N 7+50E |
|------------|-------|--------------------|---------------|---------------|---------------|
| 66616141   |       |                    |               |               |               |
| Aluminum   | [A]]  | 16000              | 14000         | 18000         | 18000         |
| Iron       | [Fe]  | 31000              | 20000         | 33000         | 35000         |
| Calcium    | [Ca]  | 4100               | 1300          | 2500          | 4000          |
| Magnesium  | [Mg]  | 4800               | 3800          | 6100          | 6700          |
| Sodium     | [Na]  | 240                | 660           | 290           | 70            |
| Potassium  | €K 1  | 600                | 650           | 880           | 420           |
| Titanium   | [Ti]  | 400                | <b>66</b> 0   | 890           | 830           |
| Manganese  | [Mn]  | 1500               | 360           | 920           | 840           |
| Phosphorus | [P]   | 880                | 580           | 790           | 830           |
| Barium     | (Ba)  | 48                 | 23            | 32            | 39            |
| Chromium   | [[7]] | 82                 | 34            | 56            | 72            |
| Zirconium  | [Zr]  | 3                  | 4             | 4             | 4             |
| Copper     | (Cu)  | 76                 | 78            | 120           | 120           |
| Nickel     | [Ni]  | 31                 | 12            | 37            | 33            |
| Lead       | [Pb]  | 23                 | 13            | 15            | 18            |
| Zinc       | {Zn]  | 160                | 53            | 80            | 90            |
| Vanadium   | [ V]  | 49                 | 41            | 75            | 81            |
| Strontium  |       | 24                 | 9             | 16            | 19            |
| Cobalt     | [[0]] | 21                 | 8             | 18            | 18            |
| Molybdenum |       | < 2                | < 2           | < 2           | < 2           |
| Silver     | [Ag]  | < 1                | < 1           | < 1           | < 1           |
| Cadmium    | [6d]  | < 1                | < 1           | < 1           | < 1           |
| Beryllium  | [Be]  | < 1                | < 1           | < i           | < 1           |
| Boran      | [8]   | < 10               | < 10          | < 10          | < 10          |
| Antimony   | (Sb)  | < 5                | < 5           | < 5           | ₹ 5           |
| Yttrium    | [Y]   | 9                  | 6             | 7             | 6             |
| Scandium   | [Sc]  | < 1                | < 1           | 2             | 2             |
| Tunosten   | [W]   | < 10               | < 10          | < 10          | < 10          |
| Niobium    | [Nb]  | < 10               | < 10          | . 10          | < 10          |
| Thorium    | [Th]  | 20                 | ₹ 10          | 30            | 40            |
| Arsenic    | [As]  | 10                 | 15            | 15            | 25            |
| Bismuth    | [Bi]  | . < 5              | < 5           | < 5           | < 5           |
| Tin        | [Sn]  | < 16<br>< <b>5</b> | < 10<br>< 5   | < 10          | < 10          |
| Lithium    | [Li]  |                    |               | < 5           | < 5           |
| Holmium    | (Ho)  | < 10               | < 10          | < 10          | < 10          |

DATE: SEP-25-1990

Bernie ann



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

## CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

// REPORT No.

S1116

INVOICE #:

15635

R2623 P.O.:

SAMPLE(S) OF Soil

Marco V. Project PUP

**REMARKS:** Wrangell Samples-Orequest Consultants

Au

|    |        |       | ppb |
|----|--------|-------|-----|
| ЕН | L2+00N | 2+00W | 70  |
| EΗ | L2+00N | 1+75W | 20  |
| EΗ | L2+00N | 1+50W | 40  |
| EΗ | L2+00N | 1+25W | 5   |
| EH | L2+00N | 1+00W | 20  |
| ЕН | L2+00N | 0+75W | <5  |
| EΗ | L2+00N | 0+50W | <5  |
| EΗ | L2+00N | 0+25W | <5  |
| EΗ | L2+00N | 0+00  | 5   |
| EH | L2+00N | 0+25E | <5  |
| EH | L2+00N | 0+50E | 20  |
| EΗ | L2+00N | 0+75E | <5  |
| EΗ | L2+00N | 1+00E | <5  |
| EH | L2+00N | 1+25E | <5  |
| EH | L1+00N | 2+00W | <5  |
| ЕН | L1+00N | 1+75W | 25  |
| EΗ | L1+00N | 0+75W | 5   |
| EΗ | L1+00N | 0+25W | 20  |
| EΗ | L1+00N | 0+50W | 10  |
| EΗ | L1+00N | 0+00  | 10  |
|    |        |       |     |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 26/90

SIGNED .

Bernie Vun



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

## **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1116

SAMPLE(S) OF Soil

INVOICE #: 15635

P.O.: R2623

Marco V. Project PUP

Project Por

REMARKS: Wrangell Samples-Orequest Consultants

|    |              | Au<br>ppb |
|----|--------------|-----------|
| EH | L1+00N 0+25E | 10        |
| EH | L1+00N 0+50E | 15        |
| EH | L1+00N 0+75E | <5<br>25  |
| EH |              | 35        |
| EH | L1+00N 1+25E | <5        |
| ЕН | L1+00N 1+50E | <5        |
| EΗ | L1+00N 1+75E | <5        |
| EH | L1+00N 2+00E | <5        |
| EΗ | LO+00 2+00W  | <5        |
| EΗ | LO+00 1+75W  | <5        |
|    |              |           |
| EH | LO+00 1+50W  | <5        |
| EH | LO+00 1+25W  | <5        |
| EH | LO+00 1+00W  | <5        |
| EΗ | LO+00 O+75W  | <5        |
| EΗ | LO+00 O+50W  | <5        |
|    |              |           |
| EΗ | LO+00 O+25W  | 65        |
| EΗ | LO+00 O+00   | 20        |
| EH | LO+00 O+25E  | 90        |
| EΗ | LO+00 O+50E  | <5        |
| EΗ | LO+00 O+75E  | <5        |
|    | •            | _         |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime - Vancouver

Sep 26/90

SIGNED \_\_\_\_Beine Vian

**T** 



2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1116

SAMPLE(S) OF Soil

INVOICE #: 15635

R2623 P.O.:

Marco V. Project PUP

**REMARKS:** Wrangell Samples-Orequest Consultants

|                 | Au<br>ppb |
|-----------------|-----------|
| EH LO+00 1+00E  | <5        |
| EH LO+00 1+25E  | 45        |
| EH LO+00 1+50E  | <5        |
| EH LO+00 1+75E  | <5        |
| EH LO+00 2+00E  | <5        |
| EH L1+00S 1+00W | 5         |
| EH L1+00S 1+25W | <5        |
| EH L1+00S 1+50W | 5         |
| EH L1+00S 1+75W | 10        |
| EH L1+00S 2+00W | <5        |
| EH L2+00S 2+00W | 15        |
| EH L2+00S 1+75W | <5        |
| EH L2+00S 1+50W | 5         |
| EH L2+00S 1+25W | <5        |
| EH L2+00S 1+00W | 10        |
| EH L2+00S O+75W | 10        |
| EH L2+00S O+50W | <5        |
| EH L2+00S O+25W | 75        |
| EH L2+00S O+00  | 60        |
| EH L2+00S O+25E | 35        |

COPIES J. Foster, P. Lougheed TO:

INVOICE TO: Prime - Vancouver

Sep 26/90

SIGNED .

Page



DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

## **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1116

SAMPLE(S) OF Soil

**REMARKS:** 

INVOICE #: 15635

P.O.: R2623

Marco V. Project PUP

Wrangell Samples-Orequest Consultants

Au ppb

EH L2+00S 0+50E

5

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 26/90

SIGNED \_

Page 4 of 4

**T**A

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

T.S.L. File No.: M - 8166 T.S.L. Invoice No.: 15793

T.S.L. REPORT No. : S - 1116 - 1

Vancouver B.C. V6C 2X6

ATTN. J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

EH L2+00N 2+00W EH L2+00N 1+75W EH L2+00N 1+50W EH L2+00N 1+25W EH L2+00N 1+00W EH L2+00N 0+75W

S7K 6A4

| ELEMENT    |        | Ell Ez-voll Z-voll Z | ar crook river | CIT EE-VOIT 1-00# 1 | EN CENTRE INES | 11 62.004 1.004 | Lii C2700R 0773 |
|------------|--------|----------------------|----------------|---------------------|----------------|-----------------|-----------------|
| Aluminum   | [A1]   | 15000                | 19000          | 20000               | 15000          | 18000           | 23000           |
| Iron       | [Fe]   | 36000                | 53000          | 40000               | 46000          | 47000           | 30000           |
| Calcium    | [Ca]   | 11000                | 8800           | 1400                | 5100           | 5000            | 9700            |
| Magnesium  | EMg 1  | 2000                 | 5900           | 5200                | 2900           | 4000            | 3200            |
| Sodium     | [Na]   | 120                  | 120            | 200                 | 180            | 110             | 460             |
| Potassium  | EK 1   | 640                  | 1800           | 550                 | 560            | 600             | 670             |
| Titanium   | [Ti]   | 260                  | 450            | 560                 | 300            | 770             | 640             |
| Manganese  | [Mn]   | 1700                 | 510            | 350                 | 910            | 1100            | 830             |
| Phosphorus | [P]    | 1500                 | 1600           | 640                 | 730            | 730             | 1100            |
| Barium     | [Ba]   | 110                  | 280            | 170                 | 140            | 140             | 58              |
| Chromium   | [Cr]   | 28                   | 96             | 120                 | 3 <del>6</del> | 42              | 27              |
| Zirconium  | [Zr]   | 8                    | 6              | < 1                 | < 1            | 1               | 15              |
| Copper     | [Cu]   | 51                   | 160            | 45                  | 89             | 34              | 44              |
| Nickel     | [Ni]   | 52                   | 120            | 62                  | 30             | 32              | 21              |
| Lead       | [Pb]   | 72                   | 29             | 100                 | 60             | 37              | 27              |
| Zinc       | { Zn } | 350                  | 260            | 220                 | 190            | 210             | 240             |
| Vanadium   | [V ]   | ₽0                   | 59             | 110                 | 68             | 92              | 32              |
| Strontium  | [Sr]   | 18                   | 32             | 13                  | 14             | 15              | 15              |
| Cobalt     | [Co]   | 26                   | 35             | 10                  | 16             | 20              | 7               |
| Molybdenum | [Mo]   | < 2                  | 10             | 10                  | 2              | < 2             | 2               |
| Silver     | [Ag]   | 1                    | < 1            | < 1                 | < 1            | < 1             | < 1             |
| Cadmium    | [Cd]   | 10                   | 4              | 2                   | 2              | 2               | 4               |
| Beryllium  | [Be]   | i                    | < 1            | < 1                 | i              | < 1             | 2               |
| Boron      | (B ]   | < 10                 | < 10           | < 10                | ₹ 10           | < 10            | < 10            |
| Antimony   | (Sb)   | < 5                  | < 5            | 5                   | ₹ 5            | ₹ 5             | ₹ 5             |
| Yttrium    | [Y ]   | 96                   | 30             | 6                   | 11             | 12              | 65              |
| Scandium   | [Sc]   | 4                    | 6              | i                   | < 1            | 1               | 1               |
| Tungsten   | [W ]   | < 10                 | < 10           | < 10                | < 10           | < 10            | < 10            |
| Niobium    | [Nb]   | 10                   | ₹ 10           | < 10                | < 10           | < 10            | 30              |
| Thorium    | [Th]   | ₹ 10                 | 30             | < 10                | 40             | 30              | 70              |
| Arsenic    | [As]   | 55                   | 40             | 35                  | 30             | 25              | < 5             |
| Bismuth    | [Bi]   | < 5                  | 5              | ₹ 5                 | ₹ 5            | < 5             | < 5             |
| Tin        | [Sn]   | < 10                 | < 10           | < 10                | < 10           | < 10<br>5       | < 10<br>10      |
| Lithium    | [Li]   | < 5                  | 5              | 10                  | 5<br>< 10      |                 |                 |
| Holmium    | (Ho)   | < 10                 | < 10           | < 10                | < 10           | < 10            | < 10            |

DATE: OCT-03-1990

Denn Pilpich

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

ATTN: J. FOSTER

Vancouver B.C. V6C 2X6

PROJECT: PUP

**OREQUEST CONSULTANTS** 

R-2623

ALL RESULTS PPM

T.S.L. File No.: 0C02MB T.S.L. Invoice No.: 15793

T.S.L. REPORT No.: S - 1116 - 2

EH L2+00N 0+50W EH L2+00N 0+25W EH L2+00N 0+00 EH L2+00N 0+25E EH L2+00N 0+50E EH L2+00N 0+75E

S7K 6A4

| ELEMENT    |        |       |       |       |       | •              |              |
|------------|--------|-------|-------|-------|-------|----------------|--------------|
| Aluminum   | [A1]   | 16000 | 18000 | 23000 | 26000 | 26000          | 26000        |
| Iron       | [Fe]   | 27000 | 38000 | 37000 | 36000 | 35000          | 25000        |
| Calcium    | [Ca]   | 10000 | 23000 | 14000 | 9600  | 7800           | <b>98</b> 00 |
| Magnesium  | [Mg]   | 3900  | 5100  | 4300  | 7700  | 5000           | 2400         |
| Sodium     | [Na]   | 760   | 160   | 230   | 110   | 260            | 1100         |
| Potassium  | EK 1   | 760   | 1600  | 610   | 780   | 850            | 860          |
| Titanium   | [Ti]   | 1200  | 470   | 830   | 730   | 820            | 1300         |
| Manganese  | EMn 3  | 820   | 790   | 1800  | 620   | 700            | 270          |
| Phosphorus | [P]    | 420   | 1100  | 1200  | 1100  | 1500           | 330          |
| Barium     | [Ba]   | 78    | 82    | 66    | 57    | 100            | 46           |
| Chromium   | {Cr}   | 24    | 18    | 43    | 190   | 78             | 20           |
| Zirconium  | [77]   | 17    | 7     | 10    | 9     | 10             | 160          |
| Copper     | [Cu]   | 25    | 160   | 45    | 110   | 56             | 29           |
| Nickel     | ENi I  | 16    | 22    | 31    | 84    | 71             | 12           |
| Lead       | [Pb]   | 26    | 26    | 81    | 37    | 41             | 28           |
| Zinc       | [ Zn ] | 210   | 180   | 370   | 160   | 390            | 130          |
| Vanadium   | [ V]   | 39    | 110   | 51    | 91    | <del>6</del> 0 | 26           |
| Strontium  | [Sr]   | 15    | 22    | 18    | 14    | 22             | 14           |
| Cobalt     | [Co]   | 6     | 17    | 10    | 18    | 14             | 3            |
| Molybdenum | [Mo]   | < 2   | < 2   | < 2   | < 2   | < 2            | 2            |
| Silver     | { gA } | < 1   | < 1   | < 1   | < i   | < 1            | < 1          |
| Cadmium    | [Cq]   | 3     | 4     | 9     | 2     | 5              | 2            |
| Beryllium  | [Be]   | i     | 1     | 2     | < 1   | 2              | 3            |
| Boron      | (B)    | < 10  | < 10  | < 10  | < 10  | < 10           | < 10         |
| Antimony   | [56]   | ₹ 5   | 5     | < 5   | < 5   | < 5            | ₹ 5          |
| Yttrium    | [ Y ]  | 22    | 35    | 120   | 41    | 72             | 35           |
| Scandium   | [Sc]   | 2     | 2     | 3     | 9     | 3              | 2            |
| Tungsten   | [W]    | ₹ 10  | < 10  | < 10  | < 10  | < 10           | < 10         |
| Niobium    | [Nb]   | 30    | 10    | 20    | < 10  | 20             | 40           |
| Thorium    | [Th]   | 80    | 30    | 20    | < 10  | 30             | < 10         |
| Arsenic    | [As]   | 5     | 30    | 15    | 20    | 15             | ₹ 5          |
| Bismuth    | [Bi]   | . < 5 | 10    | < 5   | 5     | < 5            | ₹ 5          |
| Tin        | [Sn]   | < 10  | < 10  | < 10  | < 10  | < 10           | < 10         |
| Lithium    | [[i]]  | 10    | 5     | 10    | 10    | 10             | 10           |
| Holmium    | [Ho]   | < 10  | < 10  | < 10  | < 10  | < 10           | < 10         |

DATE: OCT-03-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

T.S.L. File No.: OCO2MB T.S.L. Invoice No.: 15793

T.S.L. REPORT No. : S - 1116 - 3

808 West Hastings St. Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

EH L2+00N 1+00E EH L2+00N 1+25E EH L1+00N 2+00W EH L1+00N 1+75W EH L1+00N 0+75W EH L1+00N 0+25W

| ELEMENT        |              |           |             |             |              | •           |         |
|----------------|--------------|-----------|-------------|-------------|--------------|-------------|---------|
| Aluminum       | [A1]         | 13000     | 22000       | 19000       | 18000        | 11000       | 23000   |
| Iron           | [Fe]         | 17000     | 24000       | 65000       | 62000        | 40000       | 42000   |
| Calcium        | [Ca]         | 25000     | 4800        | 1300        | 640          | 1800        | 12000   |
| Magnesium      | [Mg]         | 3000      | 2000        | 6600        | 4200         | 2300        | 7600    |
| Sodium         | [Na]         | 270       | 660         | 130         | 70           | 190         | 150     |
| Potassium      | EK 3         | 520       | 610         | 2700        | 820          | 540         | 1400    |
| Titanium       | [Ti]         | 320       | <b>69</b> 0 | 3600        | 820          | 1000        | 810     |
| Manganese      | [Mn]         | 630       | 1400        | 230         | 190          | 92          | 450     |
| Phosphorus     | [P]          | 1000      | <b>78</b> 0 | 2000        | 660          | 640         | 1000    |
| Barium         | [Ba]         | 55        | 35          | 190         | <b>6</b> 0   | 39          | 42      |
| Chromium       | [Cr]         | 20        | 23          | 98          | 56           | 16          | 150     |
| Zirconium      | [7]          | 12        | 23          | 7           | < 1          | 7           | 9       |
| Copper         | [Ca]         | 44        | 30          | 110         | 67           | 140         | 440     |
| Nickel         | [Ni]         | 13        | 15          | 33          | 22           | 15          | 94      |
| Lead           | (Pb)         | 26        | 63          | 28          | 47           | 23          | 530     |
| Zinc           | [20]         | 150       | 350         | 67          | 150          | 65          | 800     |
| Vanadium       | {V }         | 27        | 30          | 130         | 87           | 45          | 92      |
| Strontium      | [97]         | 22        | 10          | 32          | 7            | 7           | 16      |
| Cobalt         | {Co}}        | 4         | 6           | 5           | 7            | 7           | 24      |
| Molybdenum     |              | < 2       | < 2         | 2           | 6            | 2           | < 2     |
| Silver         | [Ag]         | < 1       | < 1         | < 1         | < 1          | < 1         | < 1     |
| Cadmium        | [Cq3         | 2         | 5           | 1           | 1            | < 1         | 13      |
| Beryllium      | (Be)         | 1         | 3           | < 1         | < 1          | < 1         | < 1     |
| Boron          | CB 3         | ₹ 10      | < 10        | < 10        | < 10         | < 10        | < 10    |
| Antimony       | [56]         | ₹ 5       | < 5         | < 5         | < 5          | < 5         | 5       |
| Yttrium        | [Y]          | 34        | 44          | 5           | 9            | 8           | 24      |
| Scandium       | [Sc]         | < 1       | 1           | 4<br>< 10   | 1<br>< 10    | 2<br>< 10   | 9<br>20 |
| Tungsten       | [W]          | 10        | < 10<br>70  |             | < 10<br>< 10 | 10          | < 10    |
| Niobium        | [Nb]         | 20        | 30<br>< 10  | < 10<br>30  | 20           | 70          | 20      |
| Thorium        | [Th]         | < 10<br>5 | < 10<br>10  | 10          | 40           | 15          | 15      |
| Arsenic        | [As]         |           | 10<br>< 5   | 10<br>< 5   | 40<br>< 5    | ( 5         | 10      |
| Bismuth<br>Tin | [Bi]<br>[Sn] |           | √ 5<br>← 10 | < 16        | < 10         | √ 3<br>← 10 | ( 10    |
| in<br>Lithium  | [Li]         | 5         | 10          | \ 10<br>\ 5 | \ 10<br>\ 5  | \ 10<br>\ 5 | 10      |
| Holmium        | [Ho]         | ,<br>( 10 | < 10        | ₹ 10        | ⟨ 10         | ₹ 10        | < 10    |
| COTESTAN       | 11101        | V 40      | \ 4V        | ) AV        | V 10         | V 4V        | \ AV    |

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

S7K 6A4 TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

808 West Hastings St.

T.S.L. REPORT No. : S - 1116 - 4

T.S.L. File No.: OCO2MB

T.S.L. Invoice No.: 15793

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP

DREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

EH L1+00N 0+50W EH L1+00N 0+00 EH L1+00N 0+25E EH L1+00N 0+50E EH L1+00N 0+75E EH L1+00N 1+00E

| ELEMENT    |        | C11 C1: VOIC V: VOIC | Cir cirovic vivo | EN C1700N 0.25E | C11 C1.0011 0.00C |       | En er ook roo |
|------------|--------|----------------------|------------------|-----------------|-------------------|-------|---------------|
| Aluminum   | [Al]   | 23000                | 21000            | 14000           | 19000             | 25000 | 24000         |
| Iron       | [Fe]   | 51000                | 40000            | 32000           | 33000             | 25000 | 41000         |
| Calcium    | (Ca)   | 4200                 | 23000            | 34000           | 25000             | 10000 | 8500          |
| Magnesium  | [Mg]   | 4500                 | 4700             | 3300            | 2600              | 3500  | 6500          |
| Sodium     | [Na]   | 250                  | 100              | 90              | 480               | 1400  | 310           |
| Potassium  | £K 1   | 760                  | 800              | 670             | 730               | 1200  | 890           |
| Titanium   | [Ti]   | 650                  | 390              | 190             | 450               | 890   | 880           |
| Manganese  | [Mn]   | 1700                 | 920              | 1900            | 1300              | 1000  | 790           |
| Phosphorus | [P ]   | <b>96</b> 0          | 1600             | 2300            | 1500              | 900   | 1400          |
| Barium     | [Ba]   | 65                   | 75               | 77              | 46                | 76    | 49            |
| Chromium   | {Cr}}  | 41                   | 50               | 33              | 17                | 32    | 120           |
| Zirconium  | {Zr}   | 1                    | 4                | 7               | 20                | 31    | 10            |
| Copper     | [Cu]   | 110                  | 300              | 160             | 1800              | 130   | 260           |
| Nickel     | (Ni)   | 31                   | 86               | 48              | 28                | 32    | 100           |
| Lead       | [Pb]   | 620                  | 42               | 39              | 130               | 44    | 48            |
| Zinc       | [Zn]   | 400                  | 360              | 310             | 540               | 200   | 240           |
| Vanadium   | [V ]   | 61                   | 46               | 38              | 35                | 24    | 64            |
| Strontium  | [Sr]   | 12                   | 24               | 27              | 26                | 15    | 16            |
| Cobalt     | [Co]   | 20                   | 23               | 20              | 14                | 8     | 23            |
| Molybdenum |        | < 2                  | < 2              | < 2             | < 2               | < 2   | < 2           |
| Silver     | [Ag]   | < 1                  | < 1              | < i             | 3                 | < i   | < 1           |
| Cadmium    | [Cd]   | 5                    | 6                | 8               | 11                | 4     | 4             |
| Beryllium  | [Be]   | i                    | < 1              | < 1             | 2                 | 3     | 2             |
| Boron      | (B 3   | < 10                 | < 10             | < 10            | < 10              | < 10  | < 10          |
| Antimony   | { Sb } | < 5                  | < 5              | 5               | < 5               | < 5   | < 5           |
| Yttrium    | [ Y ]  | 34                   | 48               | 88              | 57                | 50    | 69            |
| Scandium   | (Sc)   | 2                    | 2                | 2               | 1                 | 1     | 4             |
| Tungsten   | [W]    | < 10                 | < 10             | 10              | 10                | < 10  | < 10          |
| Niobium    | [Nb]   | 10                   | < 10             | < 10            | 30                | 40    | 20            |
| Thorium    | [Th]   | 40                   | 40               | 40              | < 10              | 70    | 20            |
| Arsenic    | [As]   | 55                   | 25               | 20              | 10                | 10    | 10            |
| Bismuth    | [Bi]   | < 5                  | 5                | 10              | 10                | < 5   | 5             |
| Tin        | [Sn]   | < 10                 | < 10             | < 10            | < 10              | < 10  | < 10          |
| Lithium    | [Li]   | 10                   | < 5              | < 5             | 10                | 10    | 10            |
| Holmium    | [Ho]   | < 10                 | < 10             | < 10            | < 10              | < 10  | < 10          |

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033

FAX #:

(306) 242 - 4717

57K 6A4

T.S.L. REPORT No. : S - 1116 - 5

File No.: OCO2MB

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.5.L. T.S.L. Invoice No.: 15793

808 West Hastings St. Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2623 ALL RESULTS PPM

EH L1+00N 1+25E EH L1+00N 1+50E EH L1+00N 1+75E EH L1+00N 2+00E EH L0+00 2+00W EH L0+00 1+75W

| ELEMENT    |       |       |       | 21 22 001 1702 | 11 C1100N 2100E |       | ER EV700 17/3 |
|------------|-------|-------|-------|----------------|-----------------|-------|---------------|
| Aluminum   | [A]]  | 22000 | 30000 | 39000          | 27000           | 7900  | 5300          |
| Iron       | [Fe]  | 31000 | 48000 | 47000          | 77000           | 67000 | 38000         |
| Calcium    | [Ca]  | 9100  | 6700  | 5000           | 1100            | 1300  | 1100          |
| Magnesium  | [Mg]  | 3500  | 8700  | 11000          | 7000            | 2700  | 1800          |
| Sodium     | (Na)  | 750   | 270   | 30             | 320             | 270   | 300           |
| Potassium  | €K 3  | 880   | 1300  | 14000          | 3300            | 2200  | 1700          |
| Titanium   | [Ti]  | 610   | 4000  | 2800           | 810             | 1000  | 530           |
| Manganese  | [Mn]  | 780   | 430   | 300            | 660             | 530   | 130           |
| Phosphorus | [P ]  | 1500  | 580   | 690            | 820             | 2500  | 1700          |
| Barium     | [Ba]  | 55    | 37    | 37             | 25              | 570   | 210           |
| Chromium   | [Cr]  | 42    | 270   | 500            | 62              | 42    | 33            |
| Zirconium  | [Zr]  | 13    | 12    | 1              | 9               | 2     | < 1           |
| Copper     | [Cu]  | 83    | 140   | 31             | 210             | 87    | 52            |
| Nickel     | ENi 3 | 28    | 130   | 200            | 100             | 23    | 16            |
| Lead       | [Pb]  | 38    | 11    | 1              | 5               | 14    | 13            |
| Zinc       | [Zn]  | 240   | 63    | 23             | 29              | 32    | 40            |
| Vanadium   | [V]   | 37    | 72    | 67             | 110             | 110   | 61            |
| Strontium  | [Sr]  | 15    | 10    | 15             | 5               | 40    | 23            |
| Cobalt     | [Co]  | 8     | 23    | 45             | 50              | 6     | 5             |
| Molybdenum | [Mo]  | < 2   | < 2   | < 2            | < 2             | 42    | 22            |
| Silver     | [Ag]  | < 1   | < 1   | < 1            | < 1             | < 1   | < 1           |
| Cadmium    | £643  | 3     | < 1   | < 1            | < 1             | < 1   | < 1           |
| Beryllium  | [Be]  | 2     | < 1   | < 1            | < 1             | < 1   | < 1           |
| Boron      | (B)   | < 10  | < 10  | < 10           | < 10            | < 10  | < 10          |
| Antimony   | [Sb]  | < 5   | 5     | 20             | < 5             | < 5   | ₹ 5           |
| Yttrium    | EA 3  | 66    | 17    | 6              | 16              | 5     | 4             |
| Scandium   | [Sc]  | 2     | 3     | 2              | 14              | < 1   | < 1           |
| Tungsten   | [W]   | < 10  | < 10  | < 10           | < 10            | < 10  | < 10          |
| Niobium    | [Nb]  | 20    | < 10  | < 10           | < 10            | < 10  | ₹ 10          |
| Thorium    | [Th]  | 50    | < 10  | < 10           | 40              | 40    | < 10          |
| Arsenic    | [As]  | 15    | < 5   | < 5            | 10              | 25    | 15            |
| Bismuth    | [Bi]  | < 5   | 10    | 20             | 5               | < 5   | < 5           |
| Tin        | [Sn]  | < 10  | < 10  | < 10           | < 10            | < 10  | < 10          |
| Lithium    | [Li]  | 10    | 10    | 5              | 10              | < 5   | < 5           |
| Holmium    | (Ha)  | < 10  | ₹ 10  | 10             | < 10            | < 10  | < 10          |

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

T.S.L. File No.: OCO2MB T.S.L. Invoice No.: 15793

REPORT No.: S - 1116 - 6

S7K 6A4

T.S.L.

808 West Hastings St. Vancouver B.C. V&C 2X6

ATTN: J. FOSTER

PROJECT: PUP

OREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

EH LO+00 1+50W EH LO+00 1+25W EH LO+00 1+00W EH LO+00 0+75W EH LO+00 0+50W EH LO+00 0+25W ELEMENT [A1] Aluminum 11000 12000 11000 14000 14000 14000 Iron [Fe] 65000 49000 42000 00068 56000 55000 Calcium [Ca] 2300 4300 2400 1100 2600 1600 4300 Magnesium [Mg] 3100 4900 4200 4600 5100 80 160 200 Sodium [Na] 170 300 140 1700 1300 1200 Potassium [K ] 840 2200 1300 780 1700 3000 1200 1100 Titanium [Ti] 510 420 870 130 220 670 680 Manganese [Mn] 2900 2300 2000 1900 2500 1700 Phosphorus (P ] 99 130 42 120 85 67 Barium [Ba] 45 85 43 95 58 36 Chromium (Cr) 8 2 2 Zirconium [Zr] < 1 < 1 2 Copper (Cu) 110 90 110 230 220 110 25 51 42 25 Nickel [Ni] 47 46 23 13 24 12 19 Lead [Pb] 13 25 34 34 56 60 33 Zinc [ Zn ] 58 55 64 71 69 [V ] 46 Vanadium 19 9 21 8 Strontium [Sr] 17 28 Cobalt [Co] 14 31 7 16 19 13 2 2 < 2 ₹ Molybdenum [Mo] 16 6 6 [Aq] Silver < 1 < 1 < 1 < 1 < 1 < 1 < < 1 Cadmium [[7] < 1 < 1 < 1 1 < 1 Beryllium [Be] < 1 < 1 ₹ 1 ₹ 1 < i < 1 Boron [B] < 10 < 10 < 10 < 10 < 10 < 10 [Sb] < 5 < 5 < 5 < 5 < 5 < 5 Antimony 7 9 5 Yttrium [ Y] 6 6 6 Scandium (Sc) < 1 ₹ 1 2 3 2 1 < 10 < 10 ₹ ₹ Tungsten [W] < 10 10 10 10 Niobium [Nb] < 10 < 10 10 10 10 10 < 30 Thorium [Th] 40 10 20 20 40 5 Arsenic [As] 15 10 15 10 10 < 5 < 5 < 5 Bismuth [Bi] < 5 < 5 < 5 < 10 < 10 Tin [5n] < 10 10 < 10 < 10 < 5 < 5 < 5 5 < 5 < 5 Lithium [Li] ₹ Holmium [Ho] < 10 < 10 < 10 10 < 10 < 10

DATE: OCT-03-1990

Um Pilmih

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

T.S.L. REPORT No.: S - 1116 - 7

10th Floor Box 10 808 West Hastings St. T.S.L. File No.: OCO2MB T.S.L. Invoice No.: 15793

S7K 6A4

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2623

ALL RESULTS PPM

EH L0+00 0+00 EH L0+00 0+25E EH L0+00 0+50E EH L0+00 0+75E EH L0+00 1+00E EH L0+00 1+25E ELEMENT [A1] 18000 Aluminum 17000 11000 13000 10000 9300 Iron [Fe] 45000 66000 64000 54000 39000 48000 Calcium [Ca] 12000 7100 1900 4000 6700 4300 Magnesium [Mg] 5400 4900 3300 4200 4600 3500 Sodium [Na] 180 230 100 920 160 170 Potassium [K ] 920 870 1400 1800 1600 1000 Titanium [Ti] 560 730 670 910 1000 610 Manganese [Mn] 810 1700 380 960 840 840 Phosphorus [P ] 1500 2800 1900 3100 1700 1600 Barium 76 80 74 47 79 95 [Ba] 47 57 42 42 Chromium [Cr] 42 48 7 3 3 2 < 1 < 1 Zirconium [Zr] 190 97 280 210 150 110 Copper [Cu] Nickel [Ni] 45 71 49 37 53 49 [Pb] 54 220 22 12 11 10 Lead 44 43 51 52 [Zn] 190 320 Zinc 34 49 64 55 110 Vanadium [[ [] 47 25 15 24 19 19 13 Strontium [Sr] 37 57 28 34 Cobalt (Co) 24 16 < 2 2 2 < 2 14 < 2 < Molybdenum [Mo] < 1 ₹ 1 < 1 < 1 < 1 < 1 Silver [Aq] 3 3 1 < 1 < 1 < 1 Cadmium [Cd] < < 1 ₹ < 1 < 1 < 1 < 1 1 Beryllium [Be] < 10 < 10 < 10 < 10 < 10 < 10 Baron (B) < 5 < 5 5 5 5 < 5 [Sb] < Antimony 7 33 23 7 14 6 Yttrium EY 1 2 2 < i 1 1 ⟨ 1 [Sc] Scandium < < 10 10 < 10 10 < 10 [W] 10 Tungsten 10 10 10 10 10 10 [Nb] Niobium 50 30 20 40 30 20 Thorium [Th] 10 25 55 25 15 15 [As] Arsenic < 5 < 5 < 5 < 5 < 5 < 5 Bismuth [Bil < 10 < 10 ₹ 10 10 10 < 10 [Sn] Tin < 5 < 5 5 < 5 < 5 5 Lithium [Li] < 10 < 10 < 10 < 10 10 < 10 Holmium [Ho]

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. REPORT No. : S - 1116 - 8 T.S.L. File No.: OCO2MB

808 West Hastings St.

T.S.L. Invoice No.: 15793

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

EH L0+00 1+50E EH L0+00 1+75E EH L0+00 2+00E EH L1+00S 1+00W EH L1+00S 1+25W EH L1+00S 1+50W

|                |              | EN FALA TARE  | EN LUTUU ITIJE | EN LUTUU ZTUUE   | EN LITUUS ITUUM | EH E1+003 1+20W | EN E17005 17301 |
|----------------|--------------|---------------|----------------|------------------|-----------------|-----------------|-----------------|
| ELEMENT        |              |               |                |                  |                 |                 |                 |
| Aluminum       | [A]]         | 9300          | 7600           | 9100             | 10000           | 13000           | 9900            |
| Iron           | [Fe]         | 34000         | 61000          | 57000            | 51000           | 60000           | 67000           |
| Calcium        | [Ca]         | 3100          | 2800           | 2300             | 3700            | 15000           | 3300            |
| Magnesium      | [Mg]         | 2800          | 3000           | 1500             | 2100            | 2000            | 3200            |
| Sodium         | [Na]         | 470           | 290            | 390              | 70              | <del>9</del> 0  | 70              |
| Potassium      | EK 1         | 1200          | 2200           | 750              | <b>69</b> 0     | 410             | 600             |
| Titanium       | [Ti]         | 460           | 2400           | 900              | 930             | 460             | 520             |
| Manganese      | (Mn)         | 910           | 770            | 590              | 610             | 1700            | 500             |
| Phosphorus     | [P]          | 1600          | 1300           | 1500             | 2600            | 3200            | 2400            |
| Barium         | [Ba]         | 87            | 140            | 62               | 73              | 86              | 92              |
| Chromium       | (Cr)         | 45            | 110            | 22               | 34              | 45              | 55              |
| Zirconium      | [[7]         | < 1           | 4              | 7                | 2               | 3               | < 1             |
| Copper         | [Cu]         | 31            | 51             | 51               | 430             | 350             | 120             |
| Nickel         | ENi ]        | 31            | 43             | 26               | 57              | <b>9</b> 5      | 51              |
| Lead           | [Pb]         | 10            | 14             | 12               | 14              | 15              | 16              |
| Zinc           | [Zn]         | 75            | 64             | 56               | 24              | 24              | 35              |
| Vanadium       | [V ]         | 42            | 44             | 23               | 29              | 21              | 47              |
|                | [Sr]         | 17            | 34             | 13               | 15              | 36              | 20              |
| Cobalt         | {Co3}        | 26            | 17             | 22               | 25              | 5₺              | 23              |
| Molybdenua     |              | 4             | < 2            | < 2              | < 2             | < 2             | 6               |
| Silver         | [Ag]         | < 1           | < 1            | < 1              | < 1             | < 1             | ₹ 1             |
| Cadmium        | [Cq]         | < 1           | < 1            | < 1              | < 1             | < 1             | < 1             |
| •              | {Be}         | < 1           | ₹ 1            | < 1              | < 1             | < 1             | < 1             |
| Boron          | EB 1         | < 10          | < 10           | < 10             | < 10            | < 10            | ₹ 10            |
| Antimony       | [56]         | < 5           | < 5            | < 5              | < 5             | ₹ 5             | < 5             |
| Yttrium        | [Y]          | 6             | 4              | 8                | 12              | 14              | 5               |
| Scandium       | (Sc)         | < 1<br>□      | 2              | < 1              | 2               | 2               | < 1             |
| Tungsten       | EW 3         | 20            | < 10           | < 10             | < 10            | < 10            | < 10            |
| Niobium        | [Nb3         | 10<br>50      | < 10<br>< 10   | 10<br><b>5</b> 0 | < 10<br>Fo      | < 10            | < 10            |
| Thorium        | [Th]<br>[As] |               |                |                  | 50              | 10              | 30              |
| Arsenic        |              | < 5           | 5              | < 5              | < 5             | ⟨ 5             | 10              |
| Bismuth<br>Tin | [Bi]<br>[Sn] | · < 5<br>< 10 | < 5<br>< 10    | < 5              | < 5<br>/ ·^     | < 5             | < 5             |
| Lithium        | (Li]         | < 10<br>< 5   | < 10<br>< 5    | < 10<br>< 5      | < 10            | < 10            | < 10            |
| Holmium        | (Ho)         |               |                |                  | < 5             | ₹ 5             | ⟨ 5             |
| LOTHION.       | F1001        | < 10          | ( 10           | < 10             | < 10            | < 10            | < 10            |

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No.: 5 - 1116 - 9 T.S.L. File No.: DC02MB T.S.L. Invoice No.: 15793

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

PROJECT: PUP OREQUEST CONSULTANTS R-2623

ALL RESULTS PPM

EH L1+00S 1+75W EH L1+00S 2+00W EH L2+00S 2+00W EH L2+00S 1+75W EH L2+00S 1+50W EH L2+00S 1+25W

| ELEMENT    |       |             |             |             |             |              | L., CL. 444 1. 24           |
|------------|-------|-------------|-------------|-------------|-------------|--------------|-----------------------------|
| Aluminum   | [A1]  | <b>8400</b> | 9700        | 10000       | 14000       | 6500         | 5300                        |
| Iron       | [Fe]  | 60000       | 37000       | 22000       | 45000       | 24000        | 38000                       |
| Calcium    | [Ca]  | 3100        | 1700        | 600         | 520         | 1300         | 2500                        |
| Magnesium  | [Mg]  | 1800        | 2700        | 1300        | 2000        | 1600         | 920                         |
| Sodium     | [Na]  | 90          | 580         | 70          | 70          | 640          | 60                          |
| Potassium  | [K ]  | 1300        | 1200        | 240         | 260         | 750          | 450                         |
| Titanium   | [Ti]  | 710         | 230         | 460         | 1000        | 410          | 550                         |
| Manganese  | [Mn]  | 32          | 610         | 87          | 95          | 620          | 110                         |
| Phosphorus | [P ]  | 1700        | 1400        | 510         | 680         | 630          | 2200                        |
| Barium     | [Ba]  | 280         | 120         | 45          | 41          | 81           | 63                          |
| Chromium   | [Cr]  | 42          | 25          | 21          | 35          | 32           | 34                          |
| Zirconium  | [Zr]  | 1           | < i         | < 1         | 6           | 1            | < 1                         |
| Copper     | [Cu]  | 59          | 38          | 27          | 28          | 18           | 100                         |
| Nickel     | [Ni]  | 10          | 14          | 6           | 13          | 15           | 28                          |
| Lead       | [Pb]  | 7           | 33          | 16          | 17          | 12           | 10                          |
| Zinc       | [Zn]  | 26          | 89          | 28          | 35          | 47           | 24                          |
| Vanadium   | [V ]  | 49          | 42          | 59          | 110         | 37           | 24                          |
| Strontium  | [Sr]  | 34          | 17          | 12          | 8           | 12           | 11                          |
| Cobalt     | [Co]  | < 1         | 14          | 2           | 3           | 7            | 10                          |
| Molybdenum | [Mo]  | 18          | 6           | 4           | 2           | 6            | 2                           |
| Silver     | (Ag ] | < 1         | 1           | < 1         | < 1         | < 1          | < 1                         |
| Cadmium    | [Cq]  | < 1         | 2           | < 1         | < 1         | < 1          | < 1                         |
| Beryllium  | [Be]  | < 1         | < 1         | < 1         | < 1         | < 1          | $\langle \cdot   1 \rangle$ |
| Boron      | [B ]  | < 10        | < 10        | < 10        | < 10        | < 10         | < 10                        |
| Antimony   | [Sb]  | < 5         | < 5         | < 5         | < 5         | ₹ 5          | < 5                         |
| Yttrium    | [ Y ] | 3           | 5           | 2           | 3           | 4            | 3                           |
| Scandium   | {Sc}  | < 1         | < 1         | < 1         | < 1         | < 1          | < 1                         |
| Tungsten   | EW 3  | < 10        | 10          | < 10        | < 10        | < 10         | < 10                        |
| Niobium    | [Nb]  | < 10        | ₹ 10        | < 10        | < 10        | < 10<br>/ 10 | < 10<br>< 10                |
| Thorium    | [Th]  | 30          | 40          | < 10 €      | 60<br>15    | < 10<br>10   |                             |
| Arsenic    | [As]  | 10          | 10          | 5           | 15<br>< 5   | 10<br>< 5    | 〈 5<br>〈 5                  |
| Bismuth    | (Bi)  | · < 5       | < 5<br>< 10 | < 5<br>< 10 |             |              | √ 3<br>← 10                 |
| Tin        | [Sn]  | < 10        |             | < 10<br>< 5 | < 10<br>< 5 | < 10<br>< 5  | \ 10<br>\ 5                 |
| Lithium    | [Li]  | < 5         |             |             | √ 3<br>← 10 | < 10         | ⟨ 10                        |
| Holmium    | (Ho)  | < 10        | ₹ 10        | < 10        | √ 10        | / 10         | / 1V                        |

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

T.S.L. File No.: 0C02MB T.S.L. Invoice No.: 15793

T.S.L. REPORT No. : S - 1116 - 10

808 West Hastings St. Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

2X6
PROJET: PUP OREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

EH L2+00S 1+00W EH L2+00S 0+75W EH L2+00S 0+50W EH L2+00S 0+25W EH L2+00S 0+00 EH L2+00S 0+25E

| Ŀ | Ľ | Ŀ | ľ | Ł | ١ | ı |  |
|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |  |

| Aluminum   | [A1] | 26000 | 9000        | <b>94</b> 00  | 11000 | 7400  | 8200  |
|------------|------|-------|-------------|---------------|-------|-------|-------|
| Iron       | (Fe) | 53000 | 25000       | <b>500</b> 00 | 41000 | 29000 | 37000 |
| Calcium    | [Ca] | 460   | 340         | 640           | 320   | 920   | 360   |
| Magnesium  | [Mg] | 1600  | <b>89</b> 0 | 1300          | 1300  | 1800  | 600   |
| Sodium     | [Na] | 50    | 160         | 50            | 40    | 60    | 40    |
| Potassium  | EK 1 | 170   | 250         | 140           | 100   | 280   | 190   |
| Titanium   | [Ti] | 1300  | 1400        | 2600          | 1500  | 870   | 1600  |
| Manganese  | (Mn) | 90    | 83          | 77            | 86    | 100   | 56    |
| Phosphorus | [P]  | 380   | 300         | 510           | 400   | 580   | 480   |
| Barium     | [Ba] | 43    | 38          | 87            | 42    | 42    | 37    |
| Chromium   | [Cr] | 43    | 20          | 11            | 12    | 21    | 23    |
| Zirconium  | [2r] | 36    | £           | 5             | 9     | 4     | 5     |
| Copper     | [Cu] | 37    | 18          | 70            | 43    | 31    | 63    |
| Nickel     | [Ni] | 11    | 6           | 8             | 8     | 10    | 20    |
| Lead       | (Pb) | 27    | 16          | 13            | 11    | 11    | 24    |
| Zinc       | [Zn] | 56    | 34          | 22            | 20    | 26    | 50    |
| Vanadium   | [V ] | 110   | 75          | 78            | 76    | 63    | 91    |
| Strontium  | [Sr] | 7     | 6           | 9             | 7     | 16    | 6     |
| Cobalt     | [Co] | 2     | 2           | 4             | 2     | 3     | 5     |
| Molybdenum |      | 2     | 4           | < 2           | < 2   | 2     | < 2   |
| Silver     | [Ag] | < 1   | < 1         | < 1           | < i   | < 1   | < 1   |
| Cadmium    | [Cq] | < 1   | < 1         | < 1           | < 1   | < 1   | < 1   |
| Beryllium  | [Be] | < 1   | < i         | < 1           | < i   | < 1   | < 1   |
| Baron      | (B)  | < 10  | < 10        | < 10          | < 10  | < 10  | < 10  |
| Antimony   | [Sb] | < 5   | < 5         | < 5           | ₹ 5   | < 5   | < 5   |
| Yttrium    | [Y]  | f     | 2           | 3             | 3     | 2     | 2     |
| Scandium   | {S∈} | 1     | < 1         | < 1           | < 1   | < 1   | < 1   |
| Tungsten   | €₩ 3 | < 10  | < 10        | < 10          | < 10  | < 10  | 10    |
| Niobium    | [Nb] | 20    | < 10        | < 10          | < 10  | < 10  | < 10  |
| Thorium    | [Th] | 40    | < 10        | 60            | < 10  | < 10  | < 10  |
| Arsenic    | [As] | . 15  | 5           | < 5           | 10    | 5     | 15    |
| Bismuth    | (Bi] | < 5   | < 5         | < 5           | < 5   | < 5   | < 5   |
| Tin        | [Sn] | < 10  | < 10        | < 10          | < 10  | < 10  | ← 10  |
| Lithium    | (Li) | < 5   | ⟨ 5         | < 5           | < 5   | < 5   | < 5   |
| Holmium    | [Ho] | < 10  | < 10        | < 10          | < 10  | < 10  | < 10  |

DATE: OCT-03-1990

SIGNED :

2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

OREQUEST CONSULTANTS

R-2623

ALL RESULTS PPM

T.S.L. File No.: 0C02MB

T.S.L. Invoice No.: 15793

T.S.L. REPORT No. : S - 1116 - 11

S7K 6A4

EH L2+005 0+50E

PROJECT: PUP

| P1         |      | CIT CZ: 000 0:01 |
|------------|------|------------------|
| ELEMENT    |      |                  |
| Aluminum   | [A1] | 7900             |
| Iron       | [Fe] | 20000            |
| Calcium    | (Ca) | 540              |
| Magnesium  | [Mg] | 670              |
| Sodium     | [Na] | 90               |
| Potassium  | £K ] | - 240            |
| Titanium   | [Ti] | 750              |
| Manganese  | [Mn] | 46               |
| Phosphorus | [P]  | 340              |
| Barium     | [Ba] | 40               |
| Chromium   | [Cr] | 8                |
| Zirconium  | [Zr] | 4                |
| Copper     | (Cu) | 25               |
| Nickel     | [Ni] | 8                |
| Lead       | (Pb) | 6                |
| Zinc       | [Zn] | 20               |
| Vanadium   | (V ) | 35               |
| Strontium  | [Sr] | 7                |
| Cobalt     | [Co] | 1                |
| Molybdenum |      | 2                |
| Silver     | [Ag] | < 1              |
| Cadmium    | (Cq) | < 1              |
| Beryllium  | [Be] | < 1              |
| Boron      | (B ] | < 10             |
| Antimony   | (Sb) | ₹ 5              |
| Yttrium    | [Y ] | 3                |
| Scandium   | (Sc) | < 1              |
| Tungsten   | [W]  | < 10             |
| Niobium    | [Nb] | ₹ 10             |
| Thorium    | [Th] | < 10             |
| Arsenic    | [As] | 15               |
| Bismuth    | [Bi] | √ 5              |
| Tin        | [Sn] | < 10             |
| Lithium    | [Li] | < 5<br>< √0      |
| Holmium    | (Ha) | < 10             |



DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1158

SAMPLE(S) OF Soils

INVOICE #: 15716

P.O.: R-2628

Marco V. Project PUP

REMARKS: Wrangell Samples-OreQuest Consultants

|                      |                                           | Au<br>ppb                 |
|----------------------|-------------------------------------------|---------------------------|
| PL15                 | 0+00<br>0+50W<br>1+00W<br>1+50W<br>2+00W  | 10<br>5<br><5<br><5<br>5  |
| PL15<br>PL15<br>PL15 | 2+50W<br>3+00W<br>3+50W<br>4+00W<br>4+50W | <5<br>10<br><5<br>5<br>15 |
| PL15<br>PL15         | 5+00W<br>5+50W<br>6+00W<br>6+50W<br>7+00W | 5<br>10<br><5<br>5<br><5  |
| PL15                 | 7+50W<br>8+00W<br>8+50W<br>9+00W          | 5<br><5<br><5<br><5       |

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Oct 02/90

SIGNED \_\_\_\_

Page 1 of 1

Ŵ

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

57K 6A4 TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1158 - 1 T.S.L. File No.: F:M8202

T.S.L. Invoice No.: 15851

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP OREQUEST CONSULTANTS

ALL RESULTS PPM

| ELEMENT             |        | PL15 0+00    | PL15 0+50W   | PL15 1+00W | PL15 1+50W  | PL15 2+00W   | PL15 2+50W | PL15 3+00₩ |
|---------------------|--------|--------------|--------------|------------|-------------|--------------|------------|------------|
|                     |        |              |              |            |             |              | •          |            |
| Aluminum            | [A]]   | <b>9</b> 500 | 18000        | 23000      | 20000       | 15000        | 19000      | 20000      |
| Iron                | [Fe]   | 17000        | 26000        | 46000      | 35000       | 16000        | 34000      | 35000      |
| Calcium             | (Ca)   | 1600         | 3300         | 3100       | 1400        | 780          | 2000       | 1600       |
| Magnesium           | [Mg]   | 2200         | <b>48</b> 00 | 4300       | 4300        | 2000         | 3200       | 4100       |
| Sodium              | [Na]   | 460          | 100          | 220        | 210         | 590          | 250        | 250        |
| Potassium           | EK 1   | 640          | 410          | 340        | 500         | 5 <b>8</b> 0 | 450        | 420        |
| Titanium            | [Ti]   | 590          | 400          | 750        | 1200        | 1000         | 700        | 910        |
| Manganese           | [Mn]   | 480          | 800          | 1400       | <b>6</b> 20 | 230          | 1200       | 990        |
| Ph <b>asph</b> orus | [P ]   | 580          | 1300         | 1100       | 1200        | 570          | 950        | 1200       |
| Barium              | [Ba]   | 68           | 48           | 41         | 32          | 37           | 53         | 35         |
| Chromium            | (Cr)   | 36           | 120          | 41         | 55          | 41           | 49         | 43         |
| Zirconium           | [Zr]   | 5            | 2            | 5          | 3           | <b>i</b> 0   | < 1        | 1          |
| Copper              | [Cu]   | 15           | 71           | 150        | 100         | 38           | 100        | 69         |
| Nickel              | [Ni]   | 24           | 77           | <b>4</b> 5 | 38          | 18           | 28         | 27         |
| Lead                | (Pb)   | 10           | 8            | 46         | 12          | 9            | 10         | 12         |
| Zinc                | [ Zn ] | 56           | 82           | 170        | 94          | 42           | 74         | 93         |
| Vanadium            | [V ]   | 21           | 38           | 53         | 59          | 23           | 37         | 41         |
|                     | [Sr]   | 10           | 17           | 17         | 12          | 7            | 19         | 12         |
| Cobalt              | [Co]   | 5            | 15           | 24         | 16          | 3            | 18         | 16         |
| Molybdenum          |        | < 2          | < 2          | 4          | 2           | 4            | 2          | 4          |
| Silver              | [Ao]   | < 1          | < 1          | < 1        | < 1         | < 1          | < 1        | < 1        |
| Cadmium             | (Cd)   | < 1          | < 1          | < 1        | < 1         | < 1          | < 1        | < 1        |
| Beryllium           | [Be]   | 2            | < 1          | 1          | < 1         | 1            | < 1        | < 1        |
| Boron               | [B]    | < 10         | < 10         | < 10       | < 10        | < 10         | < 10       | < 10       |
| Antimony            | [Sb]   | < 5          | ₹ 5          | < 5        | < <u>5</u>  | ( 5          | < 5        | < 5        |
| Yttrium             | [Y]    | 5            | 6            | 14         | 12          | 7            | 9          | 8          |
| Scandium            | [Sc]   | < 1          | < 1          | 2          | 5           | \ <u>1</u>   | 1          | 2          |
| Tungsten            | [₩]    | < 10         | < 10         | < 10       | < 10        | 20           | < 10       | < 10       |
| Niobium             | [Nb]   | 20           | < 10         | 20<br>•-   | 10          | 20           | < 10       | < 10       |
| Thorium             | [Th] . | . < 10       | < 10<br>-    | 30<br>     | 30          | < 10         | 30         | 20         |
| Arsenic             | [As]   | 20           | 5            | 25         | 15          | < 5          | 10         | < 5        |
| Bismuth             | [Bi]   | < 5          | < 5          | 5          | < 5<br>     | < 5          | < 5        | < 5        |
| Tin                 | (Sn)   | < 10         | ( 10         | < 10<br>-  | < 10<br>    | < 10         | < 10       | < 10       |
| Lithium             | [Li]   | < 5          | 5            | 5<br>      | 5           | ( 5          | < 5        | 5          |
| Holmium             | [Ho]   | < 10         | 10           | 20         | 26          | < 10         | < 10       | 10         |

DATE: 0CT-09-1990

SIGNED: Bernie Oun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10 808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: PUP

OREQUEST CONSULTANTS

T.S.L. Invoice No.: 15851

97K 6A4

ALL RESULTS PPM

T.S.L. File No.: F:M8202

T.S.L. REPORT No. : S - 1158 - 2

| ELEMENT    |        | PL15 3+50W     | PL15 4+00W | PL15 4+50W  | PL15 5+00W | PL15 5+50W     | PL15 6+00W  | PL15 6+50W |
|------------|--------|----------------|------------|-------------|------------|----------------|-------------|------------|
| Aluminum   | [A1]   | 11000          | 20000      | 19000       | 23000      | 1 <b>9</b> 000 | 9900        | 11000      |
| Iron       | [Fe]   | 21000          | 29000      | 29000       | 30000      | 22000          | 9700        | 18000      |
| Calcium    | [Ca]   | 940            | 1100       | 860         | 1800       | 780            | 480         | 1200       |
| Magnesium  |        | 1900           | 3700       | 3000        | 3700       | 1500           | <b>98</b> 0 | 2200       |
| Sodium     | [Na]   | 810            | 120        | 130         | 370        | 120            | 2000        | 690        |
| Potassium  | EK 1   | 810            | 320        | 360         | 560        | 210            | 1600        | 740        |
| Titanium   | [Ti]   | 480            | 1500       | 1800        | 1600       | 2200           | 520         | 1100       |
|            | [Mn]   | 510            | 490        | 230         | 460        | 160            | 160         | 330        |
| Phosphorus |        | 510            | 590        | <b>78</b> 0 | 1100       | 610            | 150         | 610        |
| Barium     | [Ba]   | 53             | 25         | 23          | 32         | 22             | 7           | 35         |
| Chromium   | (Cr]   | 31             | 41         | 34          | <br>39     | 20             | 5           | 44         |
| Zirconium  | [Zr]   | 24             | 3          | 5           | 5          | 14             | 71          | 12         |
| Copper     | (Cu)   | 3 <del>9</del> | 46         | 29          | 48         | 23             | 6           | 21         |
| Nickel     | [Ni]   | 16             | 26         | 15          | 24         | 7              | 5           | 19         |
| Lead       | [Pb]   | 5              | 10         | 11          | 4 4        | 9              | 4           | 11         |
| Zinc       | [ Zn ] | 58             | <b>7</b> 5 | 51          | 77         | 43             | 32          | 56         |
| Vanadium   | EV 3   | 19             | 52         | 60          | 50         | 46             | 7           | 32         |
| Strontium  | [Sr]   | 10             | 11         | 10          | 14         | 7              | 4           | 10         |
| Cobalt     | [Co]   | 7              | 8          | 4           | 7          | 2              | 1           | 4          |
| Molybdenum | [Ma]   | 4              | 4          | 2           | 4          | < 2            | < 2         | 4          |
| Silver     | [Ag]   | < 1            | < 1        | < 1         | < 1        | < 1            | < 1         | < 1        |
| Cadmium    | [Cd]   | < 1            | < 1        | < 1         | < 1        | < 1            | < 1         | < 1        |
| Beryllium  | [Be]   | 1              | < 1        | < 1         | < 1        | < 1            | 2           | < 1        |
| Boron      | [B ]   | < 10           | < 10       | < 10        | < 10       | < 10           | < 10        | < 10       |
| Antimony   | (Sb)   | < 5            | < 5        | < 5         | < 5        | < 5            | < 5         | < 5        |
| Yttrium    | [Y ]   | 12             | 4          | 7           | 9          | 8              | 8           | 5          |
| Scandium   | [Sc]   | 2              | 2          | 3           | 2          | 1              | < 1         | < 1        |
| Tungsten   | [W]    | < <b>1</b> 0   | < 10       | < 10        | < 10       | < 10           | < 10        | < 10       |
| Niobium    | [Nb]   | 10             | < 10       | 10          | 20         | 10             | 10          | 20         |
| Thorium    | ETh] . | . < 10         | 40         | 20          | 50         | < 10           | < 10        | < 10       |
| Arsenic    | [As]   | < 5<br>-       | 5          | 16          | < 5        | 5              | < 5         | 10         |
| Bismuth    | [Bi]   | < 5            | < 5        | < 5         | < 5        | < 5            | ₹ 5         | < 5        |
| Tia        | [Sn]   | < 10           | ₹ 10       | t 10        | 10         | < 10           | < 10        | < 10       |
| Lithium    | ELi]   | < 5            | < 5        | < 5         | < 5        | < 5<br>        | < 5         | < 5        |
| Holmium    | [Ha]   | ₹ 10           | 20         | 20          | 20         | 20             | < 10        | < 10       |

DATE: OCT-09-1990

SIGNED: Bernie Our

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT PUP OREQUEST CONSULTANTS

T.S.L. REPORT No. : S - 1158 - 3 T.S.L. File No.: F:M8202

T.S.L. Invoice No.: 15851

ALL RESULTS PPM

|            |        | PL15 7+00W  | PL15 7+50W   | PL15 8+00W  | PL15 B+50W  | PL15 9+00W |
|------------|--------|-------------|--------------|-------------|-------------|------------|
| ELEMENT    |        |             |              |             |             |            |
| Aluminum   | [A]]   | 8600        | 16000        | 26000       | 23000       | 23000      |
| Iron       | [Fe]   | 15000       | 32000        | 32000       | 31000       | 29000      |
| Calcium    | [Ca]   | 720         | 1600         | 1900        | <b>96</b> 0 | 2500       |
| Magnesium  | [Mg]   | 1400        | <b>38</b> 00 | 6000        | 5500        | 5700       |
| Sodium     | [Na]   | 950         | 460          | 140         | 250         | 370        |
| Potassium  | EK 1   | <b>82</b> 0 | <b>6</b> 30  | 1400        | 740         | 2600       |
| Titanium   | [Ti]   | 1000        | 1300         | 2300        | 2800        | 1900       |
| Manganese  | ( nM3  | 350         | 1100         | 700         | 400         | 600        |
| Phosphorus |        | 480         | 1100         | <b>6</b> 50 | 700         | 680        |
| Barium     | [Ba]   | 27          | 76           | 14          | 16          | 28         |
| Chromium   | (Cr)   | 32          | 38           | 160         | 180         | 80         |
| Zirconium  | [Zr]   | 13          | 8            | 1           | 3           | 4          |
| Copper     | [Cu]   | 12          | 72           | 57          | 43          | 75         |
| Nickel     | [Ni]   | 12          | 23           | 45          | 55          | 30         |
| Lead       | [64]   | 9           | 9            | 5           | 5           | 5          |
| Zinc       | [ Zn ] | 39          | 93           | <b>6</b> 3  | 60          | 80         |
| Vanadium   | [ [ [  | 19          | 48           | 94          | 110         | 76         |
| Strontium  | [Sr]   | 5           | 14           | 11          | 6           | 14         |
| Cobalt     | [Co]   | 3           | 13           | 19          | 9           | 14         |
| Molybdenum | [Mo]   | < 2         | 2            | < 2         | < 2         | < 2        |
| Silver     | (Ag )  | < 1         | × 1          | < 1         | < 1         | < i        |
| Cadmium    | [Cd]   | < 1         | < 1          | < 1         | < 1         | < 1        |
| Beryllium  | [Be]   | < 1         | < 1          | ( 1         | < 1         | < 1        |
| Boron      | (B)    | < 10        | < 10         | < 10        | √ 10        | < 10       |
| Antimony   | [55]   | < 5         | < 5          | 10          | ₹ 5         | < 5        |
| Yttrium    | [ Y]   | 5           | 12           | 4           | 4           | 7          |
| Scandium   | [Sc]   | < 1         | 3            | 2           | ĺ           | 2          |
| Tungsten   | [W]    | < 10        | < 10         | < 10        | < 10        | < 10       |
| Niobium    | CNb]   | 20          | 10           | 10          | < 10        | < 10       |
| Thorium    | [Th]   | < 10        | 50           | < 10        | 10          | 30         |
| Arsenic    | [As]   | < 5         | 10           | < 5         | < 5         | < 5        |
| Bismuth    | [Bi]   | , ← 5       | < 5          | 5           | < 5         | < 5        |
| Tin        | [Sn]   | < 10        | < 10         | ( 10        | < 10        | < 10       |
| Lithium    | ELil   | ₹ 5         | < 5          | 10          | 10          | 10         |
| Holmium    | (Ho)   | < 10        | 10           | 40          | 40          | 30         |
|            |        |             |              |             |             |            |

DATE: OCT-09-1990

SIGNED: Bernie Our

# APPENDIX C ANALYTICAL PROCEDURES



DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver, B.C. V6C 2T5 Jan.9/90

- 1 SAMPLE PREPARATION PROCEDURES Rock and Core
  - Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.

Soils and Silts

- Sample is dried and sieved to -80 mesh.
- 2 FIRE ASSAY PROCEDURES

Geochem Gold (Au ppb) -

A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -

A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

3 - Geochem Silver (Ag ppm) -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the Atomic Absorption.

Assay Silver (Ag oz/ton) -

A 2.00g sample is digested with 15mls HCl plus 5mls HNO3 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCl. The solution is run on the Atomic Absorption.

- 4 BASE METALS
  - Geochem A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the Atomic Absorption.
  - Assay A 0.500g sample is taken to dryness with 15mls
    HCl plus 5mls HN03, then redissolved with 5mls
    HN03 and diluted to 100mls with DI H20. The solution
    is run on the Atomic Absorption.



DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

Yours truly,

Bernie Dunn

Bernie Dunn

BD/vh





INTRUSIVE ROCKS
TERTIARY Dykes and Sills

14 Undivided, probable Tertiary dykes 14a Feldspar or hornblende-feldspar porphyry 14b Basalt (gabbro) 14c Lamprophyre (biotite minette)14d Diabase

MIDDLE TRIASSIC to ? MIDDLE JURASSIC Galore Creek Intrusions 11 Undivided Galore Creek intrusive rocks

**11a** Syenite 11b Orthoclase porphyritic monzonite 11c Biotite-hornblende quartz monzonite-to-granodiorite

STRATIFIED ROCKS

MESOZOIC "STIKINIAN" STRATA
UPPER TRIASSIC
Stuhini Group

Undivided volcanic, pyroclastic and volcaniclastic rock

8a Shale, siltstone, argillite, limestone, conglomerate

8b Augite porphyritic basalt and andesite flows, breccia and

agglomerate; aphanitic and plagioclase-porphyritic andesite Bedded augite crystal tuff, tuffaceous siltstone

Volcaniclastic agglomerate with subangular-to-subrounded clasts

Lapilli tuff 8s Ash tuff

Crystal tuff Andesite flow

MIDDLE to UPPER TRIASSIC (Un-named)

7 Undivided post-Permian, pre-Stuhini Group sedimentary strata, including pyroclastic rocks **7a** Siliciclastic and pyroclastic **7b** Chert

PALEOZOIC "STIKINE ASSEMBLAGE"

(Un-named)

6 Undivided Permian strata 6a Upper member Permian limestone-masssive, light coloured

SYMBOLS

—— - Geological boundary (defined, approximate)

Bedding, tops known (horizontal, inclined, vertical, overturned, dip unknown)

Schistosity, gneissosity, cleavage, foliation (horizontal, inclined, vertical, dip unknown)

www www Fault (defined, approximate)

▲ ▲ Thrust fault

Dyke, vein (dip, width indicated)

Quartz vein stockwork Fold axis plunge of folds

47 Isoclinal fold overturned (nappe)

Zone of bleaching Gossan

**ABBREVIATIONS** 

malachite andesite limestone sltst siltstone porphyry sericite ppy ser

argillite hornblende quartz magnetite

chalcopyrite pyrrhotite

GEOLOGICAL BRANCH ASSESSMENT REPORT

OREQUEST

CONSOLIDATED GOLDWEST RESOURCES LTD.

**PUP PROJECT** 

Figure 5

PROPERTY GEOLOGY

Liard Mining Division British Columbia NTS 104G/3W,4E

January 1991





<u>OREQUEST</u>



CONSOLIDATED GOLDWEST RESOURCES LTD.

Figure 9
PUP PROJECT
Liard Mining Division

SADDLE ZONE GEOCHEMISTRY

British Columbia NTS: 104 G/3W, 4E

JANUARY 1991

Drafting RWR

LEGEND:

35 Au VALUE ppb 140 Cu VALUE ppm 12 Pb VALUE ppm 63 Zn VALUE ppm

50 ppb Au CONTOUR 250 ppb Au CONTOUR

0 100 200 metres



PLATE G1A

SJ GEOPHYSICS LTD.

AUGUST 1990



CONTOUR INTERVAL: 20 NT LABELLED INTERVAL: 100 NT MINIMUM VALUE: 56,947 NT MAXIMUM VALUE: 58,053 NT

INSTRUMENTATION: FIELD UNIT: EDA OMNI PLUS PROTON PRECESSION MAGNETOMETER BASE STATION: EDA OMNI IV PROTON PRECESSION MAGNETOMETER

> GEOLOGICAL BRANCH \* ESSMENT REPORT

CONSOLIDATED GOLDWEST RESOURCES LTD.

PUP PROJECT

MAGNETOMETER SURVEY

CONTOURED TOTAL FIELD

104G/4 LIARD, M.D.

SCALE 1 : 5000

100 200 300 100

METRES

AUGUST 1990

PLATE G1B



PROFILES POSITIVE UP

DIP ANGLE - SOLID LINES

PROFILE SCALE: 10% / CM

BASE VALUE: 0%

QUADRATURE - DASHED LINES

PROFILE SCALE: 10% / CM

BASE VALUE: 0%

INSTRUMENTATION: EDA OMNI PLUS

VLF-EM SYSTEM

STATION: NLK, 24.8 KHZ (JIM CREEK)

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,012

CONSOLIDATED GOLDWEST RESOURCES LTD.

PUP PROJECT

VLF-EM SURVEY

DIP ANGLE AND QUADRATURE

LIARD, M.D.

104G/4

SCALE 1 : 5000

00 0 100 200 300

METRES

AUGUST 1990

PLATE G2A



DIP ANGLE - SOLID LINES
PROFILE SCALE: 10% / CM
BASE VALUE: 0%

INSTRUMENTATION: EDA OMNI PLUS VLF-EM SYSTEM STATION: NLK, 24.8 KHZ (JIM CREEK)

> GEOLOGICAL BRANCH ASSESSMENT REPORT

20,212

CONSOLIDATED GOLDWEST RESOURCES LTD.

PUP PROJECT

VLF-EM SURVEY

FRASER FILTERED DIP ANGLE

LIARD, M.D. 104G/4 SCALE 1:5000

100 0 100 200 300

AUGUST 1990

PLATE G2B



NEGATIVE CONTOURS SUPPRESSED CONTOUR INTERVAL: 2% LABELLED INTERVAL: 10%

INSTRUMENTATION: EDA OMNI PLUS VLF-EM SYSTEM STATION: NLK, 24.8 KHZ (JIM CREEK)

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,012

CONSOLIDATED GOLDWEST RESOURCES LTD.

PUP PROJECT

VLF-EM SURVEY

CONTOURED FRASER FILTERED DIP ANGLE

LIARD, M.D. 104G/4

SCALE 1 : 5000

100 0 100 200 300



AUGUST 1990

PLATE G2C