LOG NO: /6-01	RD.
ACTION:	
FTLE NO:	

ASSESSMENT REPORT

ROCK GEOCHEMISTRY REPORT

TROITSA 1 MINERAL CLAIM

WHITESAIL RANGE, (93E/11E)

54⁰ 35' 42" 126° 02' 30"

for

Alpine Exploration Corporation #900, 474 Howe Street, Vancouver, B.C.

by

T.A. Richards, PhD Box 4186, Smithers, B.C. 1990

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,817

TABLE OF CONTENTS

Location and Access	1
Claims and Ownership	1
Previous Work	1
Present Work	5
Regional Geological Setting	5
Geology of the Troitsa 1 Mineral Claim	8
Mineralization and Alteration	10
Sampling Program	10
Discussion of Results and Conclusions	13
References	13
Statement of Author's Qualifications	16
Statement of Expenses	16

LIST OF FIGURES

1.	Location Map	2
2.	Regional Location and Access Map	3
3.	Troitsa 1 Mineral Claim	4
4.	Geologic Setting and Mineral Deposits of west-central B.C.	6
5.	General Geologic Elements of the Whitesail Range	7
6.	Geology of the Troitsa 1 Mineral Claim	9
7.	Sample Location Map	11
8.	Gold-Silver Values	11
9	Element distribution between quartz veins and altered rock	12

LIST OF TABLES

1.	Assay Certificates	
----	--------------------	--

14& 15

LOCATION AND ACCESS

The Troitsa 1 mineral claim is located in west-central British Columbia (figure 1), at north latitude 53° 35' 42" and west longitude 127° 02' 30" on NTS map sheet 93E/11E (Troitsa Lake, 1:50,000 scale) in the Whitesail Lake map shee 93E. The claims are centered immediately east of Troitsa Peak in the Whitesail Range, 130 kilometers due south of the town of Smithers and 12 kilometers south of the north shore of Tahtsa Reach of the Kemano Power Resevoir.

1.

Access onto the claims is by helicopter from Smithers or from the end of access and logging roads that terminate along the north shore of Tahtsa Reach (figure 2). These roads are open from snow by late spring to mid-late fall.

The claims are above tree-line, ranging between 1700 and 2100 meters in elevation.

CLAIMS AND OWNERSHIP

The claim consists of 16 units (4x4), of Record Number 4320. It expires on October 21, 1991, see figure 3.

The claim is owned 100% by Alpine Exploration Corp. of suite 900, 425 Howe Street, Vancouver, B.C.

PREVIOUS WORK

Evidence of precious metal mineralization on the Whitesail Range is indicated by an unspecified occurrence along the south flank on the range in a geologic report by Duffell (1959).

Mineralization on the claim was discovered in 1981 by prospector Pat Suratt with the discovery of quartz veins and stringers, containing to 750 ppb Au and to 5 oz/t Ag, at the head of the south fork of an unnamed east-flowing creek (Old Shovel Creek) in proximal boulders at the toe of a small pocket glacier. Subsequent work (1982-Union Carbide Corp., 1983-Canamax, 1986-87 -Alpine Exploration Corp.) concentrated on showings on the immediate adjacent mineral claims. The claims were mapped by Ms. H. Jamieson for Union Carbide in 1982. Other than mapping, no exploration has been done on the claim since 1981.

PRESENT WORK

The work program was designed to take rock samples of quartz veins, stockworks, altered rock and fresh rock to determine the geochemical signature of the mineralized system.

One day (October 19), with four men (geologist Tom Richards and prospectors Pat Suratt, Rob Reding and Ian Anderson), was spent collecting samples of the appropriate rocks for analysis. The time available to collect rocks was limited as a serious winter storm was encountered during the period of sampling. All samples collected were from the the boulder trains that constitute the original showing of 1981, the Discovery Showing. No samples of fresh rock where collected. Elsewhere, snow covered all exposures.

REGIONAL GEOLOGIC SETTING

The claims lie in the west-central part of the Intermontane belt of the Canadian Cordillera. Strata there comprise Upper Triassic to Middle Jurassic island arc volcanics (Stuhinni and Hazelton Group), Middle and Upper Jurassic fine grained clastics (Ashman Formation of the Bowser Lake Group), Lower Cretaceous fine-grained fluvial and littoral clastics (Skeena Group), and Upper Cretaceous to Eocene continental caldera-related volcanics of the Kasalka Group and the Ootsa Lake Group. Small Stocks and plugs related to the Kasalka and Ootsa Lake Groups are widespread through out the area.

The Ootsa Lake Group volcanics have been dated at 49 Ma, and are the host to the anomalous precious metal mineralizaton.

Regional geology has been done by Woodsworth (1980) at 1:250,000 scale and Diakow (1987) at 1:50,000 scale.

The claims lie along the south margin a highly mineralized belt across west-central British Columbia known as the Skeena Ach (figure 4) and includes the mineral deposits of Deer Horn, Equity Silver, Silver Queen, Duthie, Cronin and Dome precious metal deposits and the Granisle, Bell Copper, Berg, and Huckleberry porphyry deposits.

In the immediate regional setting, the claims area underlain by volcanic and intrusions of the Eocene Ootsa Lake Group and the Lower Jurassic Hazelton Group (figure 5). The Ootsa Lake volcanics comprise flows, lahars, breccias, tuffs and correlative high level intrusives. Lower strata of the Ootsa Lake group are mainly basalt and andesite, upper strata are rhyolite and andesite. These unconformabley overlie volcanics and

sediments of the Lower Jurassic Hazelton Group which form the basement to the Ootsa. The Ootsa Lake Group volcanics appear to have been deposited within a down-faulted basin, ether as a caldera or graben structure into the older Jurassic volcanic basement. Faults bounding the Ootsa Lake volcanic basin from the adjacent older Hazelton volcanics trend 060 and north-south. The claims appear to underlie a feeder complex for the Eocene volcanics.

GEOLOGY OF THE TROITSA 1 CLAIM

The geology of the claims has been outlined by Jamieson (1981) as part of the mapping of a larger, contiguous claim group then held by Union Cabide Exploration Corp. (figure 6).

The dominant rock type underlying most of the claim block is a feldspar phyric, blue-grey dacitic-andesite. Massive to well bedded bedded, flows, ash and lapilli welded tuff and bedded tuff, with and without fine-grained glassy plagioclase phenocrysts, comprise the major extrusive units. Massive units, of very highly variable thickness and commonly columnar jointed, likley represent flow-domes. In the southeast part of the claims, a prominent bladed feldspar porphyry appears to be an intrusive related to the extrusive units. In three localities, a distinctive polymicitic breccia, comprising propylite to early argillic altered, matrix supported, volcanic fragments to 1 meter diameter, crops out as limited exposures and proximal boulders. These represent either lahars or diatremes. This assemblage is interpreted as a dissected volcanic centre.

To the immediate east of the above volcanics, a sequence of well bedded basalt and andesite flows and flow breccias of the lower strata of the Ootsa Lake Group are in fault contact with the intrusive-extrusive complex. This fault is a major, north-trending structure that hosts anomalous mineralization immedietely north of the claims.

A series of east-northeast trending faults separated andesite and dacite maroon tuffs, lapilli tuffs and flows of the Jurassic Hazelton Group from the extrusive-intrusive complex of the Eocene Ootsa Lake Group. These faults are part of a regional east-northeast trending shear zone that parallel the trend of Whitesail Lake.

MINERALIZATION AND ALTERATION

All the mineralization noted on the Troitsa 1 claim comprises veins (2cm to 20cm width), quartz stringers and stockworks hosted in propylite to early argillic altered bladed feldspar porphyry intrusion. No direct exposures of the mineralizaton was noted, as it occurs in numerous boulders traceable for about 200 meters along the toe of a large ice patch, or pocket glacier. The eastern limit of mineralization is marked by unaltered bladed feldspar porphyry, gradational into the mineralized zone. The western limit of the mineralization is marked by large, friable boulders of polymictic lahar or diatreme breccia. The breccia is pervasively altered to propylite and early argillic mineral assemblates. No fragments of quartz or veined volcanics were noted in the breccia fragments.

10

Pyrite is distributed throughout the alteration zone.

Snow cover prevented the concluding if the mineralized zone extended to the south, above the ice patch.

SAMPLING PROGRAM

Chips of quartz vein, stringers and stockworks along with altered bladed feldspar porphyry and altered bladed feldspar porphyry and breccia were collected and analysed for gold, silver and 30 element ICP geochemical analysis. Seven quartz vein, nine stockwork + altered host and eight altered host rock samples were collected (total 24 samples). Sample locations are shown in figure 7 and gold/silver values plotted in figure 8.

Five elements (Au, Ag, As, Mo and Mn) showed geochemical variation between vein and altered host (figure 9). Other metals as lead, zinc, bismuth, cadmium, and antimony showed little variation between rock types. Lithophile elements were not plotted as such values by ICP are unreliable.

Analysis were done by Min En Laboratories of 705 West 15th Street, North Vancouver, B.C. Analytical values are shown in table 1.

△ TRIto7: Quartz Vein sample; 5 to 20 cm. width. ○ TR 500 to 509: stringer quartz + propylite altered rock. × AA 300 to 307: propylite altered rock (± argillic)

12.

DISCUSSION OF RESULTS AND CONCLUSIONS

Au, Ag, As, Mo and Mn values from the three rock types are plotted in figure 9 on a log scale. Samples have no geographic significance, as they were collected from float boulders and snow cover limited material available for sampling.

13

Gold values were weak to moderately anomalous. Gold to 0.48 gm/t were noted. Values greater than 0.10 gm/t were found in all rock types, with the highest grouping of values in the stockwork-altered rock suite.

Silver, arsenic and molybdenum all showed a positive correlation between the amount of silica and the value of metal analysed.

Manganese showed a negative correlation between the amount of silica and the value of the metal.

The range in metal values Ag, As, Mo and Mn and the correlation between value of metal and rock type indicates that soil and rock geochemistry may be useful in delineating future mineralized zones.

REFERENCES

Diakow, L, and Mihalynuk, M., (1987), Geology of Whitesail Reach and Troitsa Lake Areas, 93E/10W and 93E/11E, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987/4

Duffel, S. (1959), Whitesail Lake Map Area, Geo. Surv. of Canada, Memoir 299

Jamieson, H. (1982), Geology of the Troitsa Peak Area, Internal Report, Union Carbide Exploration Corp.

Woodsworth, G. (1986) Geology of Whitesail Lake Map Area (93E), 1:250000 Scale. Geol. Surv. of Canada, Open File 708 Table 1

网络拉拉拉

VANCOUVER OFFICE: 14 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.:

TELEPHONE/FAX (604) 847-3004

Assay Certificate

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS • ANALYSTS • GEOCHEMISTS

0S-0721-RA1

Companys TOM RICHARDS PROSPECTING Projects

Date: OCT-30-90 Copy 1. TOM RICHARDS PROSPECTING, SMITHERS, B.C.

TOM RICHARDS

Attn:

MINER

ENVERTORIES

(DIVISION OF ASSAYERS CORP.)

He hereby certify the following Assay of 25 ROCK samples submitted OCT-22-90 by TOM RICHARDS.

1

Sample Number	AU g/tonne	AU oz/ton	AG g/tonne	AG oz/ton	
90-TR-1	.02	.001	5	.01	anda ku da da na na na ku da ku da ku da da ku da da na na na na da da da da da da na na na na na na na na mar
90-TR-2	.32	.007	162.0	4.73	
90-TR-3	.04	.001	15.8	. 46	
90-TR-4	.03	.001	2.4	.07	
- 90-TR-5	.02	.001	4.1	.12	
90-TR-6	.21	.006	61.0	1.78	
<u>90-TR-7</u>	. 48	.014	82.0	2.39	
90-AA-300	.02	. 001	2.1	.06	
90-AA-301	.01	.001	2,5	.07	
90-AA-302	.01	.001	1.6	.05	
90-AA-303	.01	" 001	1.0	"03	
90-AA-304	.15	.004	4.0	.12	
90-AA-305	.15	.004	3.7	.11	
90-AA-306	.03	.001	1.9	.06	
90-AA-307	.06	.002	2.1	.06	
90-TR-501	.33	.010	4.6	.13	
70-TR-502	.24	.007	50.6	1.49	
90-TR-503	.24	.007	5.8	.17	
90-TR-504	.04	.001	1.3	.05	
90-TR-505	. 08	.002	4,9	. 14	
90-TR-506	.02	.001	4,6	.13	
90-TR-507	.09	.003	4.3	.13	
90-TR-508	.14	.004	10.5	.31	
90-TR-509	.05	.001	6.2	.18	
PS- 300	.02	.001	.3	"O1	

Certified by

MÍN-EN LABORATORIES

COMP: TOM RICHARDS PROSPECTING

ìS.

MIN-EN LABS - ICP REPORT

FILE NO: 0S-0721-RJ1 DATE: 90/10/30

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

F	ROJ: TTN: TOM RICHARDS	5								705	WEST	15TH (604	ST.,)980-5	NORTH 814 OF	VANCO	UVER,)988-4	B.C. 524	V7M 1	T2							* (D. ROCK	ATE: * (90/10/3 (ACT:F31
	SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	L I PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI P PPM PPM	PB PPM	SB PPM	SR PPM	TH PPM	U V PPM PPM	/ ZN 1 PPM	GA PPM	SN PPM F	W CR
	90-TR-1 90-TR-2 90-TR-3 90-TR-4 90-TR-5	.6 133.5 15.5 1.8 3.1	3410 5460 4310 980 460	210 94 105 484 107	14 19 11 6 2	486 115 46 133 172	.1 .4 .5 .1 .1	1 1 3 3	710 1420 1800 210 160	2.7 .3 1.2 3.9 .2	3 3 4 33 13	7 15 12 50 29	13170 5240 8310 41120 17180	420 3020 2360 230 190	9 4 5 2 1	620 460 660 70 80	262 41 85 4 42	8 1002 537 72 13	40 70 50 20 50	5 150 5 380 4 610 8 80 16 60	25 54 34 32 17	2 9 3 75 8	6 6 4 20 2	1 1 1 1	1 12.1 1 32.8 1 16.5 1 4.0 1 2.9	83 29 48 31 16	1 1 1 1	1 2 1 1	2 223 2 162 2 168 1 156 3 285
	90-TR-6 90-TR-7 90-AA-300 90-AA-301 90-AA-302	46.9 66.1 2.2 2.1 1.3	4190 5550 16610 16390 15830	174 129 19 30 78	22 105 4 6	89 114 85 70 64	.5 .2 .8 .9 .9	1 1 3 1 1	600 2080 20210 26110 8440	.1 .7 .1 .1 .1	3 4 13 9 12	12 22 22 14 7	8100 12810 33440 27030 31490	2520 3720 3450 4110 4900	2 1 21 20 17	300 410 10860 9210 7640	30 23 762 938 646	1820 <u>698</u> 45 12 10	40 30 270 300 120	4 400 2 910 4 1780 5 1810 5 1970	61 43 27 30 27	10 16 - 1 - 1	5 7 27 35 13	1 1 1 1	1 42.6 1 18.5 1 46.3 1 36.2 1 29.7	36 54 89 83 94	2 1 1 2 1	3 2 1 1	2 176 1 137 1 39 1 72 1 45
	90-AA-303 90-AA-304 90-AA-305 90-AA-306 90-AA-307	1.3 3.4 2.6 1.5 1.4	13160 13890 8090 15480 11120	29 118 73 54 73	4 7 3 5 4	64 55 38 124 47	.5 .8 .6 .9 .5	1 1 1 1 1 1 1	18100 5440 9320 21200 5970	.1 .3 .1 .1 .3	8 9 6 9 8	56 13 22 23 14	24280 28090 22010 27430 27670	3210 3820 2280 3820 3130	16 15 9 18 13	6540 6600 3620 8100 5500	723 415 363 754 342	5 28 49 9 27	200 130 200 160 230	1 1820 1 1600 1 1490 1 1750 1 1560	26 26 177 28 80	1 1 1 1	22 9 11 27 8	1 1 1 1	1 29.3 1 35.9 1 20.1 1 30.8 1 22.9	74 80 49 73 63	1 2 1 2 1	1 1 1 1	1 39 1 38 1 43 1 32 1 63
× -	90-TR-501 90-TR-502 90-TR-503 90-TR-504 90-TR-505	4.4 38.3 5.2 2.2 4.0	11990 6490 11060 8480 10560	107 81 204 102 109	4 10 5 2 7	85 49 76 62 183	.5 .8 .2 .4	1 1 1 1	9290 2180 5420 2270 2590	.1 .1 .6 .1 .1	8 3 6 5 5	17 16 11 7 6	24360 9440 20090 15670 18290	3420 3280 4080 3840 4050	13 5 8 5 4	6310 1890 4890 2750 2770	422 128 254 106 130	157 862 176 70 229	230 140 220 30 50	1 1470 2 490 1 1130 1 1010 1 1100	25 43 31 26 66	3 11 1 1 4	11 5 3 6	1 1 1	1 30.8 1 18.0 1 43.8 1 25.7 1 24.5	76 36 53 34 38	2 1 1 1	3 1 3 1	1 53 1 152 2 139 1 125 1 120
	90-TR-506 90-TR-507 90-TR-508 90-TR-509 PS-300	3.5 4.5 9.2 5.2 .6	11440 5720 2240 9850 7900	86 109 128 175 73	2 3 3 1	79 39 21 47 229	.5 .4 .1 .3 .6	1 1 1	2370 1090 370 3280 200	.1 .2 .8 2.8 .3	8 4 2 8 3	14 6 8 19 15	17800 9840 5700 25120 21480	3120 2420 1000 2910 190	16 5 3 10 7	6560 1910 690 4920 190	230 83 63 403 7	60 226 386 136 8	200 50 50 390 30	9 950 3 370 8 130 1 1320 1 220	44 58 35 95 11	2 5 4 1	5 3 2 7 115	1 1 1 1	1 25.0 1 12.9 1 11.8 1 29.7 1 13.7	54 33 16 490 11	2 1 1 1	3 1 1 2	2 184 2 213 3 376 1 112 1 73
																,								- 11-					
												, x _ u , u ,										-							·
							<u></u>										<u></u>			- <u>.</u>									
		•						_				<u>, , , , , , , , , , , , , , , , , , , </u>											<u></u>						<u></u>

STATEMENT OF THE AUTHOR'S QUALIFICATIONS

I, Tom Richards, of box 436, Hazelton, B.C., have been involved in geologic mapping and exploration in the B.C. Cordillera since 1963.

I hold a BSc (1965) and a PhD (1971) from the University of British Columbia, and am a Fellow of the Geological Association of Canada.

I am presently a director and hold shares in the company holding the Troitsa I Mineral Claim.

STATEMENT OF EXPENSES

Man-time:		
Geologist, T. Richards	\$400	
Prospector, P. Surat	250	
Prospector, R. Reding	200	
Propsector, I. Anderson	200	
Employee Expenses	135	1185
Transportation		
Helicopter, 2.5hrs	\$1750	
Truck, one day	50	1800
Geochemical Analysis, 24 samples	3	270
Supplies and Exquipment		
snowshoes	50	
sample bags, filament, ribbor	n 15	65
Report, preparation, drafting secr	etarial	400
	Total Expenses	\$3750