	LOG NO: 17-01	RD.
KOKANEE EXPLORATIONS LTD.	ACTION:	
	FILE NO:	

REPORT ON DIAMOND DRILL HOLES E90-1 AND 2

ENG PROPERTY

ENG 1 CLAIM

FORT STEELE MINING DIVISION

YAHK AREA

N.T.S. 82F/1E

CEOLOGICAL BRANCH LONG: 116º05'W LAT: 49°05'N A SSESSMENT REPORT

KOKANEE EXPLORATIONS LTD.

Suite 104, 135 - 10th Avenue South Cranbrook, B.C. VIC 2N1

Work Performed from August 5, 1990 to August 14, 1990

Report	by:	L.	Stephe	enson
Submitt	ed:	Dec	ember,	1990

TABLE OF CONTENTS

1.00	Introduction \ldots	1
2.00	Claims	1
3.00	Access and Location	1
4.00	Regional Geology	1
5.00	Property Geology	1
6.00	1990 Work Program	2
7.00	Diamond Drilling	2 2
8.00	Conclusion	3
	Exhibit "A" - Statement of Expenditures	4
	Affidavit \ldots	5
	Author's Qualifications	6
	Location Map	7
	Section A-Al	8
	Drill Logs Attache	d

5

PAGE

KOKANEE EXPLORATIONS LTD.

REPORT ON DIAMOND DRILL HOLES E90-1 and 2

ENG PROPERTY

FORT STEELE MINING DIVISION

L. Stephenson

December, 1990

1.00 Introduction

This report has been written to outline the exploration drilling work and results on the Eng claim group, at Yahk, British Columbia, 50 kilometres south of Cranbrook.

2.00 <u>Claims</u>

The property consists of three 4-post claims (Eng 1 = 15 units, Eng 2 = 16 units and Eng 205 = 20 units) and 206 2-post claims (Eng 3 to Eng 204 and 206 to 209) held directly by Kokanee Explorations Ltd. and eight 2-post claims (Yahk 1 to 8), under option.

3.00 <u>Access and Location</u>

These claims are located astride British Columbia Highway 3/95 around the town of Yahk, in southeastern British Columbia (see Location Map). Kokanee has built access roads into the main areas of the claim groups.

4.00 Regional Geology

The claims lie within the central portion of the Purcell Anticlinorium, which consists of sedimentary argillites, quartzites and related intruded gabbro sills and dykes of the Aldridge Formation. This formation hosts both the Sullivan deposit and the St. Eugene deposit approximately 72 kilometres north and 25 kilometres north, respectively.

5.00 Property Geology

The property is located within the Middle Aldridge rocks with the southern portion closely associated with the Lower Aldridge/Middle Aldridge contact (stratigraphic time horizon of the Sullivan Mine). Limited exploration mapping of the property by Cominco Ltd. and Kenneco Inc. have shown the presence of Moyie gabbro intrusive within the Aldridge quartzites. The reports also indicate a presence of quartz veins with sulphides and some disseminated pyrrhotite and sphalerite in samples taken on the northern part of the property.

6.00 <u>1990 Work Program</u>

Kokanee commenced exploration work on this project in early July of 1990. The exploration work consisted of base linecutting, soil geochem, geophysical surveying, geological mapping and diamond drilling of five drill holes.

7.00 Diamond Drilling

Five diamond drill holes were spotted to test the coincident geochem and geophysics anomalies on both the north and south grids and to drill test the Yahk vein at depth. A total of 1550 metres of core was drilled.

7.10	<u>Drill Holes E</u>	<u>90-1_and_2</u>	
E90-1	-45°	115°	Line 9600N, 2680E
E90-2	-45 ⁰	115°	Line 9600N, 2815E

These two holes were drilled to intersect the coincident geophysics and geochem zones on the north grid. Both intersected thick quartzite units with argillitic bands and sequences. Correlation between holes was excellent for markers and a thin, wispy pyrite stratiform zone that corresponds to the geophysical zones. Some minor beds of pyrite (3.5cm 10% pyrite) were located in hole E90-2, the zone in the deeper hole E90-1 was wider with less concentration of sulphides.

The stratiform nature of the sulphide mineralization and correlation with the Monroe "C" marker (approximately 40 - 50 metres below) is extremely encouraging given that this is the exact strata that hosts the zone intersected in Kokanee's Star property, 15 kilometres to the west.

Hole E90-2 intersected the gabbro dyke confirming the dyke nature of the intrusive and the estimated near vertical dip (86°) .

Although some base metals were identified in the core, assay values were very low. The geophysical target was explained but the geochem can only be inferred to be associated with the pyrite.

The strong geophysics anomaly to the west of the drill holes could be related to the pyrrhotite laminae which also was found at Kokanee's Star property.

8.00 <u>Conclusion</u>

The work completed to date on the Eng Property has not delineated any substantial zones of mineralization. However, it has outlined two areas for further exploration and confirmed some of the regional geological factors with respect to the vein (Vine, North Star) and stratiform (Sullivan, Star) type mineralization in the area.

STEPHENSON, B.Sc., M.B.A. P.Eng.

EXHIBIT "A"

STATEMENT OF EXPENDITURES

DIAMOND DRILLING PROGRAM

ON ENG 1 CLAIM FT. STEELE M.D.

Covering the period of August 5th to August 14th, 1990

INDIRECT

SALARIES: R. Edmunds - Geologist - Supervision/core logging, sampling - 10 days @ \$200/day \$ 2,000.00 L. Stephenson - P.Eng - Report Writing 2 days @ \$400/day 800.00 DOMICILE: 10 days @ \$65/day 650.00

TRANSPORTATION: 1 - 4X4 truck; 10 days @ \$50/day 500.00

DIRECT

Connor's Drilling Ltd. 2007 West Trans Canada Highway, Kamloops, B.C.

47,208.64

TOTAL INDIRECT AND DIRECT = $\frac{$51,158.64}{}$ CE STEPHENSON B.Sø., P.Eng., M.B.A.

- 4 -

IN THE MATTER OF THE

B.C. MINERAL ACT

AND

IN THE MATTER OF A DIAMOND DRILLING PROGRAM

CARRIED OUT ON THE ENG PROPERTY

YAHK AREA

in the Ft. Steele Mining Division of of the Province of British Columbia

More Particularily N.T.S. 82G/11W

AFFIDAVIT

I, L. Stephenson, of the City of Cranbrook, in the Province of British Columbia, make oath and say:

- 1. That I am employed as a Geologist by Kokanee Explorations Ltd. and as such have a personal knowledge of the facts to which I hereinafter depose:
- 2. That annexed hereto and marked as Exhibit "A" to this my Affidavit is a true copy of expenditures incurred on a diamond drilling program, on the Eng mineral claims;
- 3. That the said expenditures were incurred between the 5th day of August, 1990 and the 14th day of August, 1990 for the purpose of mineral exploration.

LAURENCE STEPHENSON B.Sc., M.B.A., P.Eng.

- 5 -

AUTHORS QUALIFICATION'S

I, Laurence Stephenson, of Cranbrook, B.C., in the Province of British Columbia, do hereby certify that:

- I graduated from Carleton University in 1975 with a Bachelor 1. of Science degree in Geology then, in 1985, graduated from York University with a Masters of Business Administration.
- 2. I am registered as a Professional Engineer for the Province of Ontario (1981) and currently a member in good standing.
- I have had over 23 years experience in the field of mining 3. exploration.

Β.

RENCE STEPHENSON LA Sc/, M.B.A., P.Eng

KOKANEE EXPLORATIONS LTD.

AND THE PROPERTY AND A REAL AND A DESCRIPTION OF A DESCRIPT

attai newarin

DRILL HOLE RECORD		Page No. 1									
Name of Property: ENG	Corr. Dip: -45°		Remarks:								
Hole No: E90-l	Length: 229.2 met	eters									
Location: Eng 1 Claim/North Grid	Start Date: Aug.	5/90	Finish Date	e: Aug.	8/90						
Elevation: 1208 m	Azimuth: 115°		Collar Dip	:							
Core Size: NQ Objective: Coincident I.P., EM, and ge METERAGE DESCRIP	Tests at: 216. cochemical anomalies T I O N	71 m Sample	Logged by:	F.R. E	dmunds	Date:A	ug 7/90				
From To		No. From To	Au daa	Ag ppm	Pb %	Zn	Cu PPM				
0.0 - 14.93 Casing 14.93 - 47.21 <u>Middle Aldridge</u> : graded thickness of ±50% qua through laminated sandy laminated (1-4 mm) argin strong rusty fracturing core axis at 18.59 m; 50 <u>14.93-28.04 m</u> - escess blocky. Quartzites frial Fractures coated with oxides. Frequent grindi <u>18.59 - 24.69</u> - frequent disseminated rust spots pyrite. <u>31.64 - 32.19</u> - lo disturbance with load ca	units of 5-6 m true artzite grading up argillites into thin llites. Moderate to . Bedding is 48° to 0° at 28.96 m. ively weathered + ble and decomposing. rust and manganese .ng. Recovery ~50%. t sections <u>+</u> 20 cm of to 2 mm - probaby ocal soft sediment asting.										

NAMES AND ADDRESS OF A DESCRIPTION OF A

Page 2

Property: ENG

terra d

22. The DATE of the State

Hole No.:

E90-1

FromToContinued modera rust specks in q 40.78 - 12 cm pa rods (3mmx1.5cm) inclined at ~20 4 41.45 - 42.52 - p consisting of de mm, dendritic i Probably related 42.67 m. 42.21 - 43.43 - 42.67 m zone of rust.47.21 - 78.64Thin bedded silty quartzites in laminated, freq dendtric mangane pyromorphite (? Poorly bedded. 9 gouge at 80 deg. 51.91 m fracture faced with pyromDownward increa proportion of da Occasional rare suggests cyclic	<u>CRIPTION</u>	<u>S</u>	<u>ampl</u>	e					
Continued modera rust specks in q <u>40.78</u> - 12 cm pa rods (3mmx1.5cm) inclined at ~20 <u>41.45 - 42.52 - p</u> consisting of de mm, dendritic i Probably related 42.67 m. <u>42.21 - 43.43 -</u> <u>42.67</u> m zone of rust. 47.21 - 78.64 Thin bedded silty quartzites in laminated, freq dendtric mangane pyromorphite (?) Poorly bedded. <u>9</u> gouge at 80 deg. <u>51.91 m</u> fracture faced with pyrom Downward increa proportion of da Occasional rare suggests cyclic		No.	From	To	Au	Ag	Pb	Zn	Cu
47.21 - 78.64 Thin bedded silty quartzites in laminated, freq dendtric mangane pyromorphite (? Poorly bedded. gouge at 80 deg. <u>51.91 m</u> fracture faced with pyrom Downward increa proportion of da Occasional rare suggests cyclic	<pre>:ate to heavy fracturing with quartzites (pyrite?). patch of quartzite containing m) of bioitite and feldspar) deg. to core axis. pervasive rust and alteration decomposed feldspar (?) to 2 iron and manganese oxides. ed to the fracture zone at - strongly fractured. of strong fracturing + heavy</pre>				<u>dqq</u>	<u>ppm</u>	 *δ		<u> </u>
	ty quartzites and argillaceous 10-20 cm units. Faintly equent rusty fractures with nese oxides and rare apparent ?); occasional gouge seams. <u>49.83 m</u> fracture with 2 cm 1 to core axis, moderate rust. Ire at ~45 deg. to core axis omorphite (?) and rust. ease in unit thickness and dark, fine grained quartzite. e unit to 2.5 m true thickness c change.								

. .

and the state of the second sta

Page 3

Property: ENG

Contractor and the second

Hole No.: E90-1

Location: ENG 1

ļ

rom To		No.	From	То	Au	Ag	Pb	Zn	Cu
					ppb	ppm	8	₹	ppm
	<u>57.06 - 57.30 m</u> - concretionary type patch of pale alteration, biotite development and pale pink garnet aggregates to 5 mm. <u>59.28 m</u> fracture set parallel to bedding containing rust and chlorite. <u>59.44 m</u> minor soft rock disaggregation of laminae, also at <u>59.89 m</u> . Bedding is 68° to core axis at <u>59.44 m</u> .								
	Gradual downward decrease in fracturing. Rust on fractures gives way to chlorite.								
	<u>61.36m</u> as <u>59.44 m</u> - soft rock effects. <u>61.72</u> - <u>65.22 m</u> - predominantly thin laminated argillite and quartzitic argillite, transitional back into thin bedded quartzites below.				•				
	<u>62.61 - 64.92 m</u> - irregular, longitudinal, rusty fracture and chloritic face. <u>69.22 - 69.43 m</u> - fracture faces coated with rust and purcemprise (2)	100 1	69.2 -	69.4	/		,005	.01	ÊB
	rust and pyromorphite (?). <u>70.10 m</u> fractures at ~20 deg. to core axis coated with pyrite. Disseminated aggregates of pyrite to 5 mm in quartzite adjacent. <u>71.45 m</u> 2 cm horizon of negative barite voids (<1mm). <u>71.48 m - 71.63 m</u> - ~3% disseminated pits of rusting pyrite (?). 70.200 72 60 m - m show								

Construction of the construction of the second s

Page 4

Property:

SPG - ALL TRACESSON 2000 100

Hole No.:

Location:

From To No. From To Au Ag Pb Zn Cu 73.76 - 73.91 m - pale pink garnets (to 3 mm) in clusters around 1 mm veinlet of pale alteration at 25 deg. to core axis. Bedding is 63° to core axis at 74.07 m. 76.50 - 78.39 m - occasional pyromorphite (?) fractures within fine laminated argillite. 78.64 - 89.73 Graded quartzites, fine to medium grained at bases, thick bedded (2 - 3.5 m), as above 47.21 m, transitional from above. Faintly laminated argillite and quartzitic argillite to ~40%. Occasional fractures coated with rust ±pyromorphite (?) at 10 - 20 deg. to core axis. 78.64 - 78.79 m - oval clasts of quartzitic argillite matrix. Soft rock conglomerate. 83.06 - 83.82 m - tight breccia zone at ~30 deg. to core axis associated with moderate rust and manganese oxides and rusty slip faces parallel to bedding. 84.49 - 85.65 m - zone of rusty fractures at ~10 deg. to core axis.	METE	RAG	E DESCRIPTION	S	a m p l	e					
73.76 - 73.91 m - pale pink garnets (to 3 mm) in clusters around 1 mm veinlet of pale alteration at 25 deg, to core axis. Bedding is 63° to core axis at 74.07 m. 76.50 - 78.39 m - occasional pyromorphite (?) fractures within fine laminated argillite. 78.64 - 89.73 Graded quartzites, fine to medium grained at bases, thick bedded (2 - 3.5 m), as above 47.21 m, transitional from above. Faintly laminated argillite and quartzitic argillite to ~40%. Occasional fractures coated with rust ±pyromorphite (?) at 10 - 20 deg. to core axis. 78.64 - 78.79 m - oval clasts of quartzitic argilite (max. 2x50m) supported by argillite matrix. Soft rock conglomerate. 83.06 - 83.82 m - tight breccia zone at ~30 deg. to core axis associated with moderate rust and manganese oxides and rusty slip faces parallel to bedding. 84.03 m minor rusty fracture parallel bedding. 84.49 - 85.65 m - zone of rusty fractures at ~10 deg. to core axis.	From	То		No.	From	То	Au Au	Ag Maa	Pb %	Zn B	Cu nom
	78.64 - 1	89.73	$73.76 - 73.91 \text{ m}$ - pale pink garnets (to 3 mm)in clusters around 1 mm veinlet of palealteration at 25 deg. to core axis. Beddingis 63° to core axis at 74.07 m. $76.50 - 78.39 \text{ m}$ - occasional pyromorphite (?)fractures within fine laminated argillite.Graded quartzites, fine to medium grained atbases, thick bedded (2 - 3.5 m), as above47.21 m, transitional from above. Faintlylaminated argillite and quartzitic argilliteto ~40%. Occasional fractures coated withrust ±pyromorphite (?) at 10 - 20 deg. tocore axis. $78.64 - 78.79 \text{ m}$ - oval clasts of quartziticargilite (max. 2x5cm) supported by argillitematrix. Soft rock conglomerate. $83.06 - 83.82 \text{ m}$ - tight breccia zone at ~30deg. to core axis associated with moderaterust and manganese oxides and rusty slipfaces parallel to bedding. 84.03 m minor rusty fracture parallelbedding. $84.49 - 85.65 \text{ m}$ - zone of rusty fractures at ~10 deg. to core axis.					ppm_	<u> </u>	8	<u>ppm</u>
				I							

Page 5

Property: ENG

and the standard states and the second second second states and the second second second second second second s

Hole No.: E90-1

Location: ENG 1

i

<u>METERAGE</u>	<u> </u>	S	<u>ampl</u>	e					
From To		No.	From	To	Au	Ag	Pb	Zn	Cu
89.73 - 134.72	Thin to medium bedded sequence of argillites and quartzitic argillites, all more or less laminated-interbedded with thin, poorly bedded quartzites 20 - 40 cm thick, amounting to about 15%. Sequence consists of cycles in which the above pass downwards with increasing thickness and proportion of quartzite to unit 60 cm - 1.5 m thick and $\pm 60\%$ quartzite. Cyclic bases occur at 103.63m; 107.78m; 121.46m; 124.94m; and 134.72 m; below which lithology returns to thin bedded and argillaceous. Throughout argillaceous sections frequent fractures at 30 - 50° to core axis faced with chlorite. 91.04 - 94.64 m - zone of chloritic fracture faces coated locally with fine pyrite. Mainly parallel bedding. Ghost breccia throughout quartzitic intervals. Bedding to core is 70° at 91.81 m. 97.35 - 97.74 m - zone of chloritic, locally rusty fractures. Majority at 45 deg. to core axis and associated with pale green alteration and pink garnets. 99.55 - 99.79 m - zone of longitudinal, chloritic fractures and minor rusty gouge.				ppb	<u>ppm</u>	<u> </u>		ppm

Page 6

Property:	ENG
-----------	-----

NAMES AND A DESCRIPTION OF A DESCRIPTION

Hole No.: E90-1

Location: ENG 1

METERAGE	DESCRIPTION	S	ampl	e					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
From To	<u>103.63 - 106.5 m</u> - heavily fractured on longitudinal trend. Faces coated with rust, chlorite and occasional pyrite smear. Bedding to corre is 72° at 104.24 m. <u>110.28 - 110.79 m</u> - fractured and locally brecciated on a fabric at ~45 deg. Chloritic faces and associated pale alteration and garnets. <u>111.31 - 111.62 m</u> - as above. Fabric of fracturing swings to longitudinal to base and alteration extends to 112.17 m. <u>117.56 m</u> - chlorite-faced fracture zone at ~15 deg. to core axis.	<u>No.</u>	From	To	<u></u> Au <u>ppb</u>	Ag ppm	Pb %	2n %	Cu ppm
	<u>120.55</u> - <u>121.01</u> m - quartz-chlorite fracture at \pm 5 deg. to core axis. <u>121.46</u> m - from here on fewer fractures. They are still chloritic, but rust is rare and there is no pyrite coating except where noted. Bedding to core axis is 75° at 121.92 m. <u>125.33</u> m - soft-sediment boudinage of 1.5 cm sand bed. <u>131.7</u> m - below here, bases of quartzite beds exhibit load casting.								

Page 7

Property: ENG

. A the second second

S. 16.

Hole No.: E90-1

METERAGE	DESCRIPTION	S	ampl	e					
From To		No.	From	To	Au	Ag	Pb	Zn	Cu
	<u>133.5 m</u> – rounded body 3 cm of greenish (chloritized?) biotite and carbonate.				<u>dqq</u>	ppin	.		
134.72 - 145.91	AE turbidites, frequently composite; medium grained, about 3 m thick on average. Argillite tops are faintly laminated and frequently of quartzitic argillite. Spaced cleavage fractures throughout at 35 to 45 ⁰ to core axis.								
145.91 - 150.82	Units of less than 1 cm of medium bedded quartzite at base grading to quartzitic argillite at top. Coarsely laminated. Quartzite about 50% throughout. Minor irregular chlorite-coated fracturing. <u>Very fine pyrite</u> disseminated through quartzites (<1%). <u>Pyrite and pyrhotite</u> is hairline fractures and bedded aggregates in argillaceous units. Bedding to core axis is 78° at 146.61 m.		·						
150.82 - 154.08	MINETTE DYKE: medium grained matrix of amphibole and chorite and epidote (?) with clasts of coarse biotite to 3 mm. Occasional rounded inclusions of sediment. Upper contact: ±5 mm of darkening (=chilling?). Very sharp brittle fracture against sediment. Trend ~40 deg. to core axis + ~50 deg. to bedding; but irregular and angular.								
						-			

Page 8

Property: ENG

Hole No.: E90-1

METE	RAGE	DESCRIPTION	<u> </u>	<u>ampl</u>	<u>e</u>					
From	То		No.	From	То	_ Au	Ag	Pb %	Zn %	Cu
		<u>LOWER CONTACT</u> : approx. parallel to core axis, core broken. Minor whitening in adjacent sediments for 1 - 3 cm on both contacts.				<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>			
154.08-	164.80	Medium bedded quartzites grading to argillites, as above dyke. Argillaceous sections very well laminated - rarely disturbed by soft- sediment effects; and locally contain $\underline{1}$ - 2% very fine pyrite or pyrrhotite in short hairline cracks, in adjacent sediments as bedded aggregates and lenses to 3 mm, and as smears on fracture faces.								
164.80-	· 176.27	Argillaceous quartzite. True quartzites appear towards base of sequence, but very little true argillite. Beds 40 - 80 cm thick at top; poorly defined, with vague fluidization. <u>2 to 4% pyrite (+</u> pyrrhotite) in short, hairline cracks, generally aligned and occasionally displaying rectilinear or conjugate pattern; as a dissemination of fine grains and bedded aggregates to 3 mm long; in biotitc laminae (<2 mm); and as fracture-face smears. Possible source of I.P. response. <u>164.96 m</u> - concretionary body containing occasional	1002	164.8	165.8	4 ,	Ø	.005	, 01	38

Page 9

Property: ENG

S.S.

4. 64

Hole No.: E90-1

METERAGE	DESCRIPTION Sample											
From To		No.	From	To	Au	Ag	Pb	Zn	Cu			
	2 mm aggregates of pyrite, coarse garnets and biotite within pale alteration. <u>165.38 m</u> - fracture or slip parallel bedding. 2 cm gouge and chlorite flakes. <u>169.71 - 170.57 m</u> - frequent fractures at \pm 50 deg. to core axis. Minor associated pale alteration. <u>172.00</u> - minor fracture parallel bedding with 1 cm gouge and fragments.	1003 1004 1005 1006	172.0 173.0 174.0 175.0	173.0 174.0 175.0 176.0	<u>אספס</u> 	 	,005 ,005 ,005 ,005	•01 •01 •01 •01	39 28 34 20			
176.27 - 186.84	Transitional from above. Units ~1.5 m thick (true) consisting of ± 45 % normal quartzites grading up into well laminated argillites and quartzitic argillites. Occasional short sections of blocky fracturing with chlorite, pyromorphite (?) and rare pyrite on faces. <u>177.39 m</u> - 20 cm of blocky fracturing in fine grained quartzites with clusters of fine <u>pyrite and galena</u> crystals on two faces at 20 deg. and 35 deg. to core axis.											
	Unit thickness increases downwards (1 - 2.5 m), quartzite about 55%. <u>180.14 - 181.36; 182.88 183.64; 185.01 - 186.35</u> - strong fracturing as spaced cleavage at 25-30 deg. to core axis.											

Page 10

Property: ENG

気が出るがない しんぼうえい 読み起き あいしい たんし

Hole No.: E90-1

METERAGE	DESCRIPTION	S	<u>ampl</u>	<u>e</u>					
From To		No.	From	To	Au	Ag	Pb	Zn	Cu
186.84 - 187.70	MINETTE-type DYKE. Generally fractured and decomposed. Chocolate-green colour. Upper contact appears chilled at $~27$ deg. to core axis, \pm 90 deg. to bedding. Lower contact frozen at 31 deg. to core axis, 85 deg. to bedding.				<u>ddd</u>	<u>ppm</u>		<u> </u>	ppm
187.70 - 229.21	Medium to thick bedded graded quartzite sequence as above minette. 187.70 - 191.44 m - argillaceous as from 164.8 m, but the lamination is not disturbed by soft rock effects. Instead, the hairline, pyrite-bearing fracturing unites to give the appearance of brecciation of partly indurated rock. ± 4 % pyrite (and pyrrhotite?) as fracture fill and coating and as disseminations. Variably blocky and fractured throughout. 188.21, 189.28, 190.20 m - loci of fracturing. Strong fracturing continues to 193.24 with further loci at 192.18 and 193.24 m. From about <u>198.0</u> m - dramatic downwards increase in quartzite % and thickness. <u>210.01</u> m - 2 cm of chlorite gouge parallel to bedding. <u>210.31</u> - <u>219.15</u> - generally extremely fractured. Spaced cleavage between 10 and 30% of core axis, other fractures parallel to bedding. Chlorite on faces and pale green mineral - possibly epidote. At <u>214.88</u> m - 3 cm of								

Page ll

Property: ENG

Hole No.: E90-1

METERAGE	DESCRIPTION	S	ampl	<u>e</u>		·····			
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
	gruphed rock at ~60 dag to gove avia				aqq	ppm	*	<u> </u>	ppm
	216.71 - 218.08 m - irregular								
	longitudinal fracture set; one faced								
	with pyromorphite (?). <u>218.85 m</u> - 1.5								
	cm crush zone apparently parallel								
	bedding.								
	218.11 - 220.2 m - guartzitic argillite								
	displays slight slumping of good								
	lamination. <u>222.2 - 228.3 m</u> - very well								
	laminated quartzitic argillite with								
	Lamination is 2 to 5 mm grading								
	accentuated by biotite.	1							
	• • • • • • • • • • • • • • • • • • • •								
		1							
EN	D OF HOLE AT 229.21 METERS								
		1							
		1							

KOKANEE EXPLORATIONS LTD.

DRILL HOLE	E RECORD				Page N	io. 1			
Name of Property:	ENG	Corr. Dip: -450			Remarks:				
Hole No: E90-2		Length:							
Location: Eng l Cl	aim	Start Dat	e: August 8	, 1990	Finish Date	: Aug	ust 14	, 1990	
Elevation:		Azimuth:			Collar Dip:				
Core Size: NQ		Tests at:			Logged by:	FRE		Date:	Aug.10/90
<u>M E T E R A G E</u> <u>From To</u> 0.00 - 7.32 7.32 - 16.09	DESCRIP <u>Casing.</u> <u>Middle Aldridge</u> : Collar into base quartzite cycle. Q to coarse grained; variably laminated blocky, fresh (not E90-1) and conti Fracture faces are thereafter faced pyromorphite (?). @ <u>7.46</u> , <u>7.77</u> , <u>8.7</u> cycle. <u>11.19</u> : 7cm rock; associated sur axis. <u>12.50</u> : base Bas <u>13.84</u> , <u>13.96</u> , <u>16.09</u> and chips. <u>16.09</u> should correlate wi	T I O N turbidite cycles. of thick bedded uartzites are medium interbeds are ~15%, . Core is very decomposing as in nuously fractured. rusty down to <u>15.54m</u> with chlorite and No core loss. Bases <u>5, 12.5</u> = base of of gouge and crushed rfaces @ ~80° to core of cycle. es of units @ <u>13.62</u> , . <u>15.76</u> : 5cm gouge : base of cycle; th 107.78 in E90-1.	Samp No. From	<u>l e</u> To	Au ppb	Ag ppm	Pb %	Zn %	Cu ppm

an a statute and the state of the

and the second second second second second second

Property: ENG

Location: Eng l Claim

METERAGE	DESCRIPTION	S	ampl	e					
From To		No.	From	To	Au	Ag	_	Pb Zn	Cu
					ppb	ppm	<u>*</u>	*	ppm
16.09 - 29.26	<u>Quartzitic Argillites</u> : at top of								
	section in poorly bedded, generally								
	laminated units showing little or no								
	grading. Quartzites ~15% as thin (5-								
	15cm) bases. Core is blocky and								
	fractured, as above, with chlorite and	ł							
	pyromorphite (?) faces. Beds average								
	"30cm at top. <u>17.74</u> : 4cm concretionary								
	body centred on bedding plane. 18.30:								
	0.5cm chloritic gouge on base of								
	quartzite bed parallel to bedding.	1							
	18.20 - 18.44: slump or fluidization								
	disturbance of laminae. 18.84 - 18.93:								
	argillite is hardened - appears								
	silicified, dark coloured.								
	<u> 19.05 – 19.26</u> : network of								
	short, hairline cracks similar to those								
	containing fine pyrite in E90-1. Cannot								
	see pyrite. <u>19.14 - 19.26</u> : zone of								
	irregular <u>+</u> longitudinal fracturing with								
	faces coated with pyromorphite. Patches	1							
	of pyrite and fine galena (??). Gradual								
	downward increase in fine to medium								
	grained quartzite and in unit size to a								
	base on the fracture @ <u>22.10</u> ; so								
	possibly the cycle is truncated. <u>22.10</u>								
	<u>– 22.40</u> : chloritic, pyritic and								
	pyromorphite (?) fracture = irregular <u>+</u>								
	15° to core axis. <u>24.23 - 65.00</u> : the	1							
	core is almost continuously excessively	1							

Page 2

Page 3

Property: ENG

Hole No.: E90-2

Location: Eng l Claim

METERAGE	DESCRIPTION	S a	ampl	e					
From To		No.	From	То	_ Au	Ag		Pb Zn	Cu
	fractured. Mostly irregular, but in quartzites appear based on the spaced cleavage at $20 - 30^{\circ}$ to core axis. Most faces are chlorotic (and possible epidote) with local pyrite aggregates.				<u>dqq</u>	ppm	00		ppm
29.26 - 36.70	Return to big quartzite cycles as above <u>16.09</u> . Coarse grained at base, less than 15% argillaceous material. AE turbidites, possibly correlates with 134.72 in E90-1. Bases @ <u>30.38</u> , <u>31.58</u> , <u>32.16</u> , <u>36.70</u> = Base of cycle. <u>32.16</u> - <u>36.70</u> : one composite unit 95% quartzite, 4.25m thick. <u>34.93</u> 5cm crush zone, apparently $$ parallel to bedding.								
36.70 - 53.77	<u>Quartzites</u> : medium bedded, grading to argillaceous quartzites and argillites. 2.4m of coarsely banded quartz-argillite at top, followed by graded quartzites in units 40cm - 1.2m, approximately 40% quartzite. <u>37.49 - 37.86</u> : incipient fracturing as at 19.05m contains chlorite and very occasional pyrite. Bases of graded units (<u>39.20</u> , 40.90, <u>41.20</u> , <u>42.24</u> , <u>42.61</u> , <u>42.89</u> , <u>43.25</u> , <u>43.74</u> , <u>45.48</u> , <u>45.72</u> , <u>69.40</u> , <u>47.24</u> m. There is no cyclic pattern to unit thickness, and from about 45m to 52m, the quartzites are less, finer grained, darker and argillaceous.								

Property: ENG

The Contraction of the Contracti

Hole No.: E90-2

Location: Eng l Claim

METERAGE	DESCRIPTION	Sa	ample	e					
From To		No.	From	То	_ Au	Ag		Pb Zn	Cu
	45.72: 3cm mud and chips associated with chloritic polish parallel bedding. <u>52.03 -</u> <u>52.18</u> : pale, cream alteration of guartzite unit, associated epidote on fractures. <u>53.77m</u> : base of vein low- energy cycle.				<u>ppb</u>	ppm	8		ppm
53.77 - 98.82	<u>Arbitrary Break</u> : transitional from above into low energy sequence of fine grained quartzites or siltites (\pm 20%) grading into thicker sections of quartz argillite in which lamination disturbed by slumping and partial fluidization. Blocky, moderately fractured, less chlorite on faces = more cream clay mineral. Very rare pyrite. <u>54.41</u> , <u>56.11</u> , <u>58.46</u> , <u>60.23</u> : 5cm - 10cm of hard, dark, very fine grained material, apparently silicification frequently at base of graded units and frequently associated with cream alteration and pink garnets. <u>59.13 - 59.44</u> : dark hair-line fractures as 19.05 - no pyrite. <u>61.48 - 61.57</u> : as 54.41 etc dark silica alteration + 3mm pyrite. <u>64.56 - 64.62</u> : crush zone; incipient brecciation, buff clay mineral in fractures. <u>66.42 - 66.57</u> : As 54.41 etc. Garnets and veinlets of pale green								

Page 4

Page 5

Property: ENG

and Provide a second second second and the second second second second second second second second second second

Location: Eng 1 Claim

.....

i

МЕТ	ERAGE	DESCRIPTION	S a	ampl	e					
From	То		No.	From	То	Au	Ag		Pb Zn	Cu
						ppb	ppm	8	8	ppm
		alteration. <u>66.75 - 70.74</u> : a unit								
		grading up into quartz argillite @ ~70m								
		from a crushed quartzite base. At <u>68.24</u>								
		faint parallel lamination is overlain by								
		semi-fluidized disaggregate lamination								
		and soft sediment slump effects. Top								
		4cm well laminated. Low (<u>+</u> 2%) variable								
		pyrite throughout as bedded aggregates								
		<pre>and rare bands (<lmm) coarse="" grains,<="" of="" pre=""></lmm)></pre>								
		as coatings on fractures, within fine								
		short dark cracks as at <u>19.05</u> m and as a								
		dissemination of visible and possibly								
		sub-visible grains. Possible source of								
		I.P. response. Gradual downward								
		increase in unit size and quartzite								
		proportion (to about 40%). Quartzite								
		bases @ <u>72.69</u> , <u>73.09</u> , <u>76.63</u> . Base of								
		cycle at <u>76.63</u> ; followed by banded								
		quartz argillites slightly disturbed by								
		soft sediment effects as before. Pyrite								
		is limited to fracture faces - often								
		associated with the cream alteration								
		clay mineral. 11.51 : 3.5cm band of +								
		10% disseminated pyrite. Coarsely								
		crystalline quartz and $(\frac{1}{4}0.6)$ pyrite at								
		base (ICM) and a bit at top. Band								
		fine purite 21 02 - 23 67: coorec								
		handed quarteritic arcillite with short								
		dark bairline gracks of fine purite								
		uark naterine cracks of time pyrice.								
			1							

Record and the second second

Page 6

Property: ENG

Hole No.: E90-2

Location: Eng l Claim

METE	ERAGE	DESCRIPTION	S	ampl	е					
From	То		No.	From	To	Au	Ag		Pb Zn	Cu
						ppb	ppm	8	8	ppm
		Lower contact transitional back to the								
		above. All fractures chloritic and								
		coated with open-spaced pyrite crystals.								
		Note: the frequent, pale +5mm argillite								
		bands may vary as much at 15° in								
		orientation. Very low energy slump								
		deposit. Becoming predominantly fine								
		grained quartzite to 60% by about								
		<u>91.44</u> . Bases ($\frac{87.72}{2}, \frac{88.73}{2}, \frac{89.21}{2},$								
		90.10, 90.74, 92.93, 92.96, 94.91, 96, 97.96								
		$\frac{96.19}{97.69}$, $\frac{97.69}{98.82}$. $\frac{92.41}{10}$ m: 4cm								
		5 cm 96 32: chloritic cruch and								
		fragments for 3-4cm approximating plane								
		of bedding. 97.69: as above 98.82:								
		base of poorly defined cycle.								
98.82 -	- 107.66	Normal Quartzitic Turbidite Sequence:								
		quartzites medium to coarse grained,								
		grading to laminated argillites, which								
		amount to ~50% at top of cycle, but								
		decrease downwards. Moderately								
		fractured at great variety of angles,								
		faces chloritic - rarely smeared with								
		pyrite. Occasional patches of pale								
		alteration and of concretionary material								
		in quartzites. Units 10cm to 40cm at								
		top. <u>105.61</u> : Dase of cycle on unit 2-m								
		thick. <u>107.66</u> ; base of cycle possible								
		107 53 - 107 69; bedding-								
		<u>107.33 107.89</u> . Deduing-	ł							

KOKANEE EXPLORATIONS LTD.

DRILL HOLE RECORD

.

Property: ENG

Hole No.: E90-2

Page 7 Location: Eng l Claim

i

MEIERAGE	DESCRIPTION	ð_ ð	mpi	e					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
					ppb	ppm	<u> </u>		ppm
	parallel fracture zone containing								
	chloritic faces (polished) and pale								
	alteration and apparent silicification								
	across 12cm.								
107.66 - 134.11	Thin Bedded Quartzites: interbedded								
	with variably laminated argillites								
	(these laminae are ~0.2 to ~lcm, graded								
	biotite/arenite alterations; and display								
	very low energy current effects) and								
	quartzitic argillites. Quartzitic								
	argillites frequently disturbed by soft								
	rock disaggregation effects. Quartzite								
	proportion ~25%. Units 5cm to 40cm								
	thick. Occasional hard, dark, very fine								
	grained sections of +5cm suggesting								
	silicification in the quartzites. The								
	softrock effects terminate at about								
	116.0m. 114.18 - 114.48: zone of								
	chloritic, bedding parallel slip faces								
	with minor pale alteration. 116.89 -								
	116.98: dark argillite, flecked with 2%								
	- 3% bedded lenticular aggregates (+2mm)								
	of pyrrhotite. Minor fractures within								
	contain pyrite. Gradually becoming								
	thicker-bedded (to ~1m) with increasing								
	guartzite (to $+60^{\circ}$) in cycles. 120.73:								
	base of cycle, 122.26: mini base.								
	126.10 and 126.19: minor chloritic								
	surfaces + <lcm bedding<="" gouge="" parallel="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lcm>								
	126 19 - 126.40:								
	<u>120.15 120.40</u> . algitite								

Page 8

Property: ENG

Hole No.: E90-2

Location: Eng 1 Claim

الهاري والمراجع المستحج فالمحاد المتحاج والم

METERAGE	DESCRIPTION	S	ampl	e					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
	= perhaps 219.21 or 220.68 in E90-1. <u>126.67 - 130.82</u> : LOST CORE-CAVE. Adjacent chloritic faces $^{50^{\circ}}$ to core axis and $^{60^{\circ}}$ to bedding. Below cave, thin bedded as at top of interval <u>107.66</u> , occasional soft rock effects.				<u>ppb</u>	ppm			ppm
134.11 - 150.54	Medium Bedded Quartz Turbidites: $(1.2m)$ grading to argillite. About 60% quartzite at top. Very much as above 107.66. Moderate chlorite faced fracturing throughout. <u>138.78</u> : fracture zone apparently parallel bedding. 15cm of chloritic chips and faces and gouge. <u>140.79 - 141.34</u> : quartzite bed hard, dark and very fine grained with associated pale alteration and rare garnets. <u>141.49</u> : base of cycle. <u>143.56</u> : MIS-LATCH. <u>145.57 - 146.00</u> : quartzite altered as 140.79 - 141.34 and pyrite smears on fractures. <u>146.76</u> : 8mm bedded band of <u>+</u> 90% fine to medium grained pyrite. <u>148.22</u> : irregular slip at ²⁰⁰ to core axis and bedding. Terminates cycle.								
150.54 - 157.58	Varying on 30cm scale from sandy argillite to argillaceous quartzite without internal structures. Probably fluidization product. Frequent short (<u>+</u> 20cm) sections of hard, dark, fine								

Page 9

Property: ENG

and the second secon

Hole No.: E90-2

Location: Eng 1 Claim

ł

METERAGE	DESCRIPTION	S	amplo	e					
From To		No.	From	To	Au	Ag	Pb	Zn	Cu
	grained material, sometimes associated with pale alteration and/or garnets. Moderately to strongly fractured, chloritic faces. Very rare thin-bedded quartzites (2cm - 10cm).				dqq	p pm	<u> </u>	<u> </u>	ppm
	<u>154.05; 155.23; 156.09m</u> : <0.5cm crush zones with gouge.								
157.58 - 169.32	Laminated Quartzitic Argillites: in graded units 10-15cm thick with argillaceous quartzite bases. Little fracturing. Occasional lithic clast in quartzitic sections. <u>157.70</u> : base of unit contains 5mm - 1cm layer 20% pyrite and pyrrhotite. <u>157.76 - 160.18</u> : variable dark, short, hairline fractures, locally in conjugate pattern containing very fine pyrite and minor dissemination adjacent pyrite. Major direction is about 15° to bedding. Gradual downward increase in fine grained quartzite as larger units to a base at <u>162.79</u> , then repeat of above. <u>161.39</u> : 6cm concretion of dark, fine, soft, vuggy matter and pyrite (weathered Fe sulphide?). <u>164.87</u> : tight 2cm crush zone parallel bedding. <u>164.99 - 165.14</u> : hard dark fine material as described at								

KOKANEE EXPLORATIONS LTD.

المتحديد والمتحد المحتان

ENG

1785.072

- -----

Hole No.: E90-2

Location: Eng l Claim

.

. . .

للمريد والمراجع والمريد والمراجع والمراجع

From To		No.	From	<u> </u>	Au	Ag	Pb	Zn	Cu
	start of interval. <u>165.51 – 165.84,</u> <u>166.02</u> (for 6cm) <u>166.88</u> (for 4cm): as above.				dqq	ppm	<u> </u>	<u> </u>	<u>ppm</u>
169.32 - 205.13	Transitional into Normal Middle Aldridge Graded Quartzites: as at 134.11. Coarse to medium grained bases, units 50 - 80% quartzite; argillites faintly fine laminated. Occasional cracks, veinlets and patches of pale cream alteration in quartzites. Units about 15m thick at top. Little fracturing except for occasional spaced cleavage in quartzites at 5 to 15° to core axis. <u>173.22</u> : 8cm of slump fold in argillite associated with 1mm spherical bodies with dark rims. Possibly primary (?). <u>182.27 - 189.13</u> : transition into argillaceous dominance, reduced quartz content but beds about same thickness - 1 to 1.3m. <u>188.67</u> : 7cm of strong gouge and chips in plane of bedding. <u>189.13</u> : 1.5cm as above. <u>189.28 - 191.23</u> : core very fractured. Little gouge or chlorite development. <u>192.54</u> : (for 6cm) and <u>192.69</u> (for 2cm): rounded specks to 1mm rimmed with biotite. Core perhaps feldspar because -> clay mineral. Possibly primary. <u>192.76 -</u> <u>192.94</u> : fractured core associated with								

A CALL AND A

Page ll

Property: ENG

No. Cite 1876

Hole No.: E90-2

Location: Eng l Claim

i.

METERAGE	DESCRIPTION	ន	amp l	e					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
					ppb	ppm	8	8	ppm
	chips, gouge; hardening (as 164.99) pale								
	alteration and pink garnets. 193.85 -								
	199.61: fractured as 189.28 - 191.23.								
	moderate chlorite on faces and buff clay								
	mineral. 195.07: from here down, beds								
	thinner (15cm - 1m), frequently altered								
	with "silicification" (= hardening								
	dark fine-grain) + nale alteration								
	incipient fracturing and local garnets								
	local development of biotitic clots to								
	lmm Frequent local soft-rock effects								
	such as minor slump and disaggregatic								
	Occasional turbidite slurry rin-un								
	claste 201 84 - 203 94m; fracture								
	$\frac{1}{200}$ $\frac{1}$								
	chlorite slip 0.20° to go a selective (:)								
	bedding) I over margin transitional								
	through set of chloritic brittle								
	fractures at 50 to 70° to core axis								
	Contents = angular braccia (fragments to)								
	5 contents - angular precera (fragments to 5 cm) in serigitie (2) gouget chloriter								
	faced fragments and short sections of								
	"ailigifigation" with pale alteration								
	silicification with pale alteration								
	around fractures.								
205.13 - 238.05	Medium to Thin Bedded (<30cm)								
	Quartaitaat avading abruntly to								
	<u>Quartzites</u> : grading abruptly to								
	and heave Execute and the								
	diagagrogation and minor alumn official								
	disaggregation and minor siump effects.								
	Downward increase in size of biotite and								

Page 12

Property: ENG

Sec. intering the

الالالالالال أيوار والمراجع والمتحد والمراجع والمطاهر والم

Hole No.: E90-2

Location: Eng l Claim

METERAGE	DESCRIPTION	Sa	mple	2					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
					ppb	ppm	8	8	ppm
	development of 1 - 2m clots of biotite.								
	Frequent "silicification" = dark, hard								
	fine grained material <u>+</u> garnets; and								
	general coarsening. <u>208.18 - 209.88</u> :								
	upgraded (but varying) quartz-argillite								
	containing close-spaced (<u>+</u> 1cm) laminae								
	of coarse (<u>+</u> lmm) biotite clots. <u>219.67</u>								
	and 220.52: hairline (<1m) veinlets @								
	15° to core axis (88° to bedding)								
	consisting of dark margins and light								
	core. They are retracted flatter (75°)								
	through argillite bands which are								
	bleached for $2mm$ on each side. 241.80 :								
	3cm angular fragments crush zone with								
	buff clay (sericite?) fill appears								
	origin of chlorite faced fracture @ 15								
	to core axis. $226.47 - 227.53$: zone of								
	(apprint 2) factors with minor burn								
	(sericite;) racing, <u>227.84</u> ; draping of								
	Precembrian dislocation (soft-rock?) at								
	25° to gove avis Serigite (2) filled								
	fractures between this and the previous								
	fracture zone suggest that the brittle								
	fracture at 226 47 is a propagation of								
	soft rock fault. 231.47: 3cm of larger								
	oval garnet-chlorite-feldspar-biotite								
	body. $234.85 - 237.07$: zone of								
	multiple fractures in guartzite								
	consisting of conjugate sets about 30°								
	apart and each 10 - 15° to core axis.								
		ŧ							

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

Page 13

Property: ENG

Hole No.: E90-2

Location: Eng l Claim

ł

rom To		No	From	ШO	Δ.,	Na	Ph	7	Cu
		NO.	FIOM	10	Au	Ag	PD 9	2 II 9	Cu nnm
	Chlorite and sericite (?) faced zero (?) movement.				<u>ppp</u>	<u>ppin</u>	<u> </u>		ppm
38.04 - 268.07	Medium-Thick Bedded Developed Turbidites: units average 3m thick, 40 - 50% quartzite. Consist of current worked basal plane, "Im quartzite base, then thin bedded quartzites and quartz argillites with a final section of "Im of quartz-argillite and argillite. Sections are either well laminated or disturbed (turbidite flow effects and soft sediments disaggregation effects). Magenta cast due to coarse metamorphic biotite development. Variation in core angles probably primary. Little chlorite faced fracturing. Local pale green alteration in quartzites, generally as fractures. <u>253.69</u> - <u>253.99</u> : vague angular clasts to 2cm = matrix supported fragmental. Major unit bases @ <u>243.96</u> , <u>241.60</u> , <u>244.54</u> , <u>248.14</u> , <u>250.61</u> , <u>251.76</u> , <u>253.14</u> , <u>257.50</u> . Transition downwards into simple stack of graded quartzites, 30 - 40% argillites and quartzite-argillite - still considerable fragmentation, apparently due to turbidite action. Units 60cm - Im thick. <u>260.45</u> - <u>261.12m</u> : incipient brecciation of quartzites; principle trend @ 77° to								

Page 14

Property: ENG

and a second second

. .

.

Hole No.: E90-2

METERAGE	DESCRIPTION	S	ampl	e					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
	core axis (parallel bedding?). Fractures filled with sericite (?) and, locally, carbonate. <u>265.63 - 267.61</u> : as above. <u>266.76</u> : 6cm body of coarse biotite and garnet within quartzite.				<u>ppp</u>	<u>ppm</u>	<u> </u>	0	<u>ppn</u>
268.07 - 279.56	Thin Bedded Quartzite: laminated or disturbed argillite alteration on 10 - 50cm scale - as 205.13 - 238.05. Metamorphic coarsened biotite throughout; frequent chloritic faces in plane of bedding.								
279.56	Contact @ 800 to core axis: apparently in plane of bedding. Biotitic quartzite against $12cm$ of coarse green-brown biotite-chlorite schist. Foliation parallel contact on which minor polish. Schist followed by $\pm 2m$ in which fine to medium grain chlorite rock contains smooth bodies of quartz-feldspar-biotite rock that may be either sediment (quartzite) xenoliths or leucocratic phase of gabbro. Either imply physical mixing prior to cooling - pass into gabbro as below.								
279.56 - 308.15	<u>Gabbro</u> : medium to fine grained, locally coarse grained, chloritized amphibole- feldspar rock, transitional into medium course grained amphibole gabbro by								

Page 15

Property: ENG

Hole No.: E90-2

Location: Eng l Claim

Ì.

METERAGE	DESCRIPTION	S	ampl	e					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
	285 m Occasional pyrite aggregate to					ppm			
	3mm. Frequent chloritic fractures at 10 - 30° to core axis. <u>282.98</u> : speck chalcopyrite in fine fracture and pyrite.								
308.15	END OF HOLE.	1							
		1							
		9							
		1							
							÷		
						-			