SUMMARY REPORT ON THE JACK WILSON PROPERTY

1990 EXPLORATION PROGRAM

FOR BELLEX MINING CORP. QUATTRO RESOURCES CORP.

NTS: 104G/4E LATITUDE: 57⁰ 10' LONGITUDE: 131⁰ 35'

LIARD MINING DIVISION

BY

D.E. BLANN, P.Eng. M.R. VULIMIRI, M.Sc., F.G.A.C.

VANCOUVER, B.C. CANADA NOVEMBER, 1990

	TABLE OF CONTENTS	LOG NO: OCT 16 1991 RD. ACTION: Contract Menter
Summary Introducti Location a Topography History Property d Regional o Property o Structure Alteration Soil geoch Trenching Geophysics Drill resu Discussion Conclusion Recommenda Estimated References Statement Geophysics Statement Geophysics Statement Geophysics Trench map	on and access and physiography lescription geology and mineralization hemistry results results results a results a results	FILE NO: 2 2 2 3 4 5 6 6 7 8 8 9 10 11 12 12 12 13 14 15 16 Appendix B Appendix C Appendix D
Table 1 Table 2 Table 3 Table 4	Claim information Regional geology - Stikina Terra Trenching summary Drilling summary	ne 5/ 9/ 11/
	TABLE OF ILLUSTRATION	IS
FIGURE		FOLLOWING PAGE
1	Property location (1:250,000)	2/

-	$\mathbf{FIOPETCY} = \mathbf{TOCACTON} \left(\mathbf{T} \cdot \mathbf{Z} \mathbf{O} \cdot \mathbf{O} \mathbf{O} \right)$	Z /
2	Claim layout (1:50,000)	43/
3	Regional geology (After Souther, 1969)	່ 5` ⁄
4	Geophysics compilation (1:10,000)	9
5,6	Property geology and alteration,	
	- 2 sheets (1:5,000)	Pocket
	- drill, trench locations	
7-11	Drill hole cross sections (1:500)	Pocket
12	Central Zone level plan (1:500)	Pocket
13-26	Induced polarization survey pseudo-sections (To accompany Appendix A)	Pocket /

SUMMARY

The Jack Wilson property lies on the headwaters of Jack Wilson Creek and its North Fork on the east side of the Stikine River in the Galore Creek area of northwestern British Columbia.

Highly sheared Jurassic to Triassic aged Stuhini volcanics and diorite based intrusive rocks are pervasively altered to chlorite-epidote and locally to quartz-anhydrite-Kfeldspar. The strongest copper-gold mineralization appears to be present at the intermittent juncture of fractures, faults and shears trending 020° and 150° ; this configuration developed subparallel zones of mineralization that are roughly lenticular in shape with a long northerly axis.

Mineralization and associated alteration on the property appears consistent with an upper level volcanic and intrusive hosted copper-gold porphyry model. The best copper-gold values found to date are in the central zone of the property. Drill hole 90JW-3 intersected 45 metres of 0.237 %Cu and 0.011 oz/t Au within highly sheared and chlorite-epidote altered andesite tuff. lapilli In a subparallel zone, drill hole JW90-1 intersected 25 metres of chalcopyrite-pyrite-pyrrhotite quartz vein, including an unmineralized three metre dike. With wall rock mineralization, the entire zone assayed 0.215% Cu, 0.012 oz/t Au, and 0.06 oz/t Ag over 60.0 metres. A 13.4 metre portion of the vein averaged 0.481% Cu, 0.019 oz/t Au, and 0.14 oz/t Ag. Anomalous copper and gold values are also found within ribboned quartz-chlorite shear zones and limonitic shears.

A 17 metre wide magnetite breccia zone, intersected in 90JW-3, assayed 0.172% Cu, 0.012 oz/t Au, and 0.05 oz/t Ag. This breccia zone grades southwards (90JW-1) into a wide zone of patchy magnetite clots carrying weak copper-gold values.

High grade gold quartz veins assaying up to 5.2 oz/t Au are commonly found peripheral to the central zone. The veins found to date are narrow and/or discontinuous.

Some potential exists for small high grade porphyry deposits and high grade gold-quartz veins to be found within the Jack Wilson property, and further work should focus on these targets.

INTRODUCTION

The 1990 exploration program on the Jack Wilson property was carried out between June and September, 1990. During this time, a program of line cutting, soil sampling, trenching, I.P., V.L.F. and magnetometer geophysics, geological mapping, surface sampling and 1,392. metres (4,565.8 feet) of NQ diamond drilling was completed. This report is based on the results of the work completed by the 1990 program on the Jack Wilson property.

LOCATION/ACCESS

The Jack Wilson property is situated on the headwaters and tributaries of Jack Wilson Creek in the Galore Creek area of northwestern British Columbia. It is centred around 57^0 10' latitude and 131^0 35' longitude, approximately 90 kilometres south of Telegraph Creek on the east side of the Stikine River. The Galore Creek mineral deposit (Hudson Bay Mining, Kennocott, Cominco) lies 5 kilometres to the east of the JW property.

Presently, the best access to the property is via helicopter 20 kilometres southeast from the Scud airstrip at the mouth of the Scud River. The airstrip is readily accessible to fixed wing aircraft such as a DC-3 or Bristol Freighter from Smithers, Wrangell Alaska, Dease Lake, and Bronson Creek.

TOPOGRAPHY/PHYSIOGRAPHY

The central portion of the Jack Wilson property is a bowl on the north fork of Jack Wilson creek, at an elevation of around 300 meters. It was shaped by extensive glaciation and is surrounded on all sides by steep slopes to more than 1500 meters elevation. The south side of the property includes Saddle Mountain and Saddle Ridge from which tributaries drain northwards into the Jack Wilson Creek, a glacial fed river. The northern end of the property is bounded by the headwall of the North Fork creek.

Below 1000 metres elevation, the ground is covered by hemlock, spruce and balsam with an undergrowth of devil's club, blueberry and alder. Numerous avalanche paths are covered by thick slide alder. Above 1000 metres elevation, grasses, meadow flowers and stunted spruce are the dominant forms of vegetation. Annual precipitation is estimated at over 200 cm., including several meters of snowfall during the winter months from October to April.

Temperatures are moderated by the proximity to the Pacific weather systems and rarely exceed -20 to +25 ⁰C.

HISTORY

The discovery of the Galore Creek and Copper Canyon coppergold deposits in 1955 prompted Kennco Exploration Ltd. and Conwest Explorations Ltd. to seek other properties of interest in the area. During the follow-up to a regional stream sediment geochemistry survey, Kennco discovered a narrow quartz-pyrite vein containing 3.3 oz/t gold in the North Fork Creek Canyon of the Jack Wilson Valley. Between 1963 and 1965, Kennco explored the Jack Wilson area with geological mapping, soil geochemistry, trenching and I.P. geophysics. Conwest mapped and sampled areas outside of the North Fork Creek area.

Anuk River Mines Ltd. mapped, trenched and drilled 212 metres (695 ft.) on the Devils Club showing on the southwest portion of Saddle Ridge during 1966 and 1967. Results published were mixed, and no further work was performed.

In 1981, Teck Corporation followed up on a regional stream sediment geochemistry survey, however the source of their anomalies were not found.

After acquiring an option of the JW claims in 1988, Bellex Mining Corporation funded a grass roots program consisting of linecutting, geological mapping, prospecting, stream sediment and soil geochemistry. Results of this program delineated a large copper and gold soil anomaly. Several high grade gold-quartz veins were also discovered in the area. Bellex continued work on the property in 1989, further defining the extent of soil anomalies, and prospected and mapped outlying areas. This program included trenching of a copper-gold mineralized shear zone located at the junction of creek 11 and the North Fork creek (Central Zone) which averaged 0.978 %Cu, 0.015 oz/t Au over approximately 14 metres.

PROPERTY DESCRIPTION

The Jack Wilson property includes an area on the headwaters of Jack Wilson Creek and its tributaries. The property consists of eight claims totalling 153 units, located in the Liard Mining Division at 57^0 10' latitude and 131^0 longitude, NTS 104G/4E. Refer to Figures 1 and 2. The following table summarizes the available claim information.

TABLE 1 CLAIM INFORMATION

<u>Claim</u>	Record No.	Units	Expiry Date	<u>Owner</u>
JW 2	4272	20	10/20/2000	Bellex
JW 4	4336	20	11/9/1999	Bellex
JW 5	4337	20	11/9/1993	Bellex
JW 6	4338	20	11/9/2000	Bellex
JW 7	4339	20	11/9/1993	Bellex
JW 8	4340	20	11/9/1993	Bellex
RB 7	5634	18	01/13/1993	Bellex
RB 9	5636	15	01/13/1993	Bellex
	TOTAL	153		

The JW 2,4,6 are grouped as the JW North Claim Group and the JW 5,7,8,RB 7,RB 9 are grouped as the JW South Claim Group. The claims overlap somewhat, with the total area covered estimated at 2250 hectares (BOA 1990).

<u>CLAI</u>

REGIONAL GEOLOGY

The Galore Creek area consists of stratigraphic and intrusive sequences of Upper Paleozoic to Tertiary Stikina Terrane rock units bounded to the west by the Coast Range plutonic complex and to the east by the Intermontaine belt (Figure 3). The Stikina Terrane is composed of the following:

TABLE 2 STIKINA TERRANE

	- Mesozoic-Tertiary	Plugs and dikes
Stikina	- Mid Jurassic-Tertiary Sloko Group, Edziza/Spectrum Range volcanic arc basalts	Coast Range Plutonic Complex
Terrane	 Upper Triassic Stuhini Group flows, tuffs, breccia, sediments +Hazelton Group equivalents Mid Triassic silty shales, argillites, limy dolomitic siltstone, cherty and rare 	Hickman Plutonic Suite
	- Pre Permian to Mid Jurassic Stikine Assemblage sediments, tuffs, in volcanics, limestone	termediate

The accretion of the Stikina Terrane developed various penetrative planar foliations in the Paleozoic and mid-Triassic strata. Upper Triassic and younger rocks have dominantly northward trending zones of schistosity and foliation.

For a complete and detailed description of the regional geology of the Galore Creek area, works of Souther(1971), Allen/Panteleyev (1976), and Logan/Koyanagi (1989) can be referred to.

PROPERTY GEOLOGY

The dominant rock units in the Jack Wilson/North Fork creek area are Stuhini Group Triassic-Jurassic aged andesitic-basaltic volcanic flows, tuffs and coeval subvolcanic to intrusive diorite/quartz diorite. The eastern portion of the property is underlain by greywackes, pyritic argillites, siltstone and/or sandstone, volcanic agglomerates, tuffs and flows. The volcanic rocks within the North Fork creek basin are probably steeply dipping, although it is difficult to get original bedding attitudes in the highly sheared rocks. Volcanic and sedimentary rocks to the east of the North Fork basin have been folded into a tight, steeply east dipping anticline, with the axis trending approximately $020^0/80^0E$.

The volcanic flows and tuffs commonly exhibit a broken crystal matrix, and are weakly porphyritic with plagioclase phenocrysts. Augite megaporphyry is generally found peripheral to the North Fork area. Highly altered volcanic agglomerates, present near the intrusive-subvolcanic boundaries, are difficult to distinguish.

Jurassic intrusive rocks of the Coast Plutonic Complex trend northwards along the western edge of the JW property. This unit is a medium to coarse grained granodiorite. Coarse grained to pegmatitic quartz monzonite and biotite hornblende diorite occur as small stocks or plugs within the western contact of the volcanic and Coast intrusive rocks. These rocks have only been located on the Saddle Ridge. Diorite, monzonite and lamprophyre dikes cut through the volcanics; the dikes dominantly trend East-West in the Saddle Ridge area and Northeast to Northwest in the North Fork creek area. They range from 30 cm to 6 metres in width. Late stage hornblende lamprophyre dikes in the North Fork area cut through and subparallel mineralization and are relatively unaltered.

STRUCTURE

Ribboned, schistose quartz-chlorite strain zones and wide zones of extremely broken and sheared chlorite to sericite altered rocks are found within the Jack Wilson property.

A northward trending complex array of block faulting, shearing, and shear splays are crosscut by faults and shears trending 150° and 090° . The west side of the North Fork Creek shows strong east dipping and minor west dipping faulting, while the east side shows strong west dipping and minor east dipping structures. The central portion of the North Fork Creek area contains dominantly subvertical structures trending 020° and intermittent structures trending 150° and 090° (figure 6). The orientations of structures on the Saddle Ridge area are similar to those of the North Fork Creek basin. There is also a regular set of faults and joints trending E-W and dipping north. These cut other structures and their slickensides suggest a late normal displacement.

MINERALIZATION AND ASSOCIATED ALTERATION

Moderate to intense propylitic alteration occurs on the Jack Wilson Property from the Saddle Ridge to the Boundary Zone. Copper and gold fracture controlled disseminations are generally concentrated proportionately to the intensity of chlorite-epidote alteration. Subvolcanic diorite and volcanic flows, tuffs and agglomerates are highly fractured and chlorite-epidote altered beyond easy identification; the volcanic rocks, however, tend to exhibit stronger epidote alteration than the diorite. Chlorite is ubiquitous throughout the property and is locally concentrated within strong shear zones. The significant chalcopyrite and associated gold mineralization found in Trench 3 and drill hole 90JW-3 is in a notably highly chloritic, sheared matrix.

Drilling has shown that beneath the central propylitic zone are weak to strong 'flooded' zones of quartz-anhydrite-Kfeldspar alteration. Copper and gold values do not seem to increase with the Kfeldspar alteration. The rock matrix is generally more competent than the propylitic zone.

Magnetite occurs as disseminated veinlets, clots and breccias within northerly trending subparallel sheet to lens like bodies along the east central grid area (Figure 4). These zones appear spatially associated with or near k-feldspar alteration. A magnetite breccia with chalcopyrite fillings was intersected in drill hole 90JW-3. Copper-gold values were similar to other mineralized zones encountered (17 metres of 0.172% Cu and 0.012 oz/t Au). Between creeks 6 and 7, on the south side of Jack Wilson creek, a float sample of magnetite bearing silicified andesite breccia was found to contain up to 2.056 oz/t gold (Awmack,1988). The in-place location of this mineralization has yet to be found.

Disseminated pyrite, with values up to 3%, occurs peripheral and parallel to the Central Zone. These pyritic zones are seen on surface as gossanous outcrops trending northwards along the sides of the North Fork Creek valley from the Saddle Ridge to the Boundary Zone. A strong quartz-sericite-pyrite altered zone occurs down Creek 5 into the Jack Wilson Creek valley, then trends northwards along the west side of the North Fork Creek valley. Anomalous copper-gold-silver values can be found in several irregular quartz veins along this pyritic zone. At the upper elevations of the Saddle Ridge area, between creeks 6 and 7, chalcopyrite-gold mineralization and associated alteration is similar to the Central Zone. Some of the higher grade mineralization ocurrs within this area. A shear zone 2 metres in width extends for about 10 metres; channel samples across the shear averaged 3.31% Cu and 0.124 oz/t Au. Two hundred meters above this shear, on the western edge of the Saddle Ridge porphyry zone, is the Ridley vein. It is a chalcopyrite-pyrite quartz vein 5-10 cm in width that is sigmoidal in shape and exends for about 10 meters. It assayed 5.5 % Cu, 5.2 oz/t Au and 4.1 oz/t Ag. Other areas of interest on the Jack Wilson property include the Boundary Zone and the Clagg Creek Zone.

The Boundary Zone is located at the north end of the Jack Wilson property where the North Fork Creek enters a canyon. This area contains a copper-gold porphyry shear zone and a 2-3 meter wide quartz vein that, sampled in 1986, assayed 0.329 oz/t Au over 3.4 metres (BOA, 1990).

The Clag Creek zone is located around line 400S/600W and consists of chlorite-epidote altered andesite feldspar porphyry flows. Strong fracturing at 0.36° and 154° is prominent. Finely disseminated pyrite and chalcopyrite occurs within these fractures and grades of up to 1.3% Cu, 0.019 oz/t Au and 0.24 oz/t Ag were obtained. The zone extends for approximately 250 metres northwards and is about 30 metres in width.

SOIL GEOCHEMISTRY RESULTS

Results of the 1988-89 soil geochemistry program were used to design a fill in program for 1990. Fifty metre lines were flagged and soil sampled to fill-in the 100 metre lines of the 1989 program, and extend lines up both sides of the North Fork creek valley. Assays for the north central portion of the property were extremely anomalous, however further investigation showed that this area is covered by thick glacio-fluvial gravel, and the anomalies were discounted as transported. Trenching the highest gold soil anomalies indicated that they are the result of residual concentration of minor gold mineralization within 1-2 metre wide limonitic shears.

TRENCHING RESULTS

The 1990 trenching program was directed at known surface showings and soil anomalies in relatively shallow overburden (Figure 5). The following table provides a summary of composites and values obtained from this program.

TRENCH #	TOTAL LENGTH	LENGTH	CU(%)	AU(OZ/T)
1	17.0 M	5.0 M	0.05	0.056
2	15.0	11.0	0.06	0.021
3	32.0	14.0	0.98	0.015
4	35.0	11.0	0.02	0.010
5	16.0	1.0	0.02	0.019
6	46.0	N.	S.A.	
7	20.0	N	S.A.	
8	16.0	N	S.A	
	1 197 0 metre	<u>a</u>		

TABLE 3 TRENCHING SUMMARY

Results of the trenching indicate that high background values of copper (100-500 ppm) are common throughout the host rocks, while the more significant mineralization is restricted to subparallel zones of intensely sheared and altered volcanic rocks and subvolcanic diorite. Anomalous gold values exist over several metres without appreciable copper values; these zones are mainly highly limonitic shears.

GEOPHYSICS RESULTS

The 1990 geophysical program consisted of approximately 11.0 line kilometres of magnetometer, VLF-EM, and induced polarization methods. The geophysics covered the cut grid lines (100 metre intervals) with 12.5 and 25 metre spacings. The IP survey was a dipole-dipole array with 25 metre and, where overburden was suspected to be deep, 50 metre dipole spacings.

This work outlined several areas of coincident anomalies that best represented the porphyry type of mineralization sought. The anomalous zones are in four sections of the grid area (Figure 5). It is of interest that the mineralization encountered in 90JW-3 did not show any significant geophysical signature. The anomalous chargeability zones may be due to pyrite-chalcopyrite mineralization, pyrite-quartz-chlorite strain zones or parts of the pyritic halos that surround the central porphyry zone. Magnetic zones are interpreted to be subparallel sheet like zones trending northwards (Pezzot, 1990). Drilling has helped to confirm this interpretation. Refer to Pezzot (1990) for more detail on the methods used and the interpretations.

DRILL RESULTS

The 1990 diamond drilling program was carried out between July and September, 1990. During this time 5 NQ drill holes totalling 1,392 metres (4,566 feet) were drilled. Core recovery was excellent, averaging 95%. The purpose of the drilling program was to test defined surface trench mineralized zones and coincident geophysical anomalies for porphyry copper-gold mineralization (Table 4, Figures 5-11). Several zones of coppergold mineralization were encountered with the drill program. The best results obtained were from drill holes 90JW-1 and 90JW-3 (Figures 7,9).

Hole 90JW-1 was drilled to test Trench 3, the best surface showing on the property. The projected zone that was intersected however, was much narrower and contained dominantly pyrite mineralization up to 5%. Further down the hole, a wide chalcopyrite-pyrite-pyrrhotite quartz vein was intersected within the quartz-Kfeldspar alteration. The vein has an average total sulphide content of about 25%, with roughly 10% of this as pyrrhotite. The vein assayed only slightly better than other zones encountered. Drill holes 90JW-2 and 90JW-3 attempted to intersect this vein with a 75 metre and 50 metre stepout, respectively. The vein was intersected with both holes, however its width had narrowed down to tens of centimetres.

The top of drill hole 90JW-3 intersected the northerly extension of Trench 3, and a magnetite (+chalcopyrite/pyrite) fracture filled breccia zone was intersected from 132.0 to 149.0 metres. The breccia returned values a little lower in copper but equal in gold values to other zones encountered.

Drill hole 90JW-4 was directed at the #2 coincident geophysical anomaly containing the highest chargeability values (Pezzot,1990). The hole intersected several ribboned quartzchlorite strain/shear zones containing up to 5% pyrite and 0.3% chalcopyrite and numerous diorite dikes.

Similar pyrite-quartz-chlorite strain zones were encountered in drill hole 90JW-5. These carried moderate copper values and low gold values.

<u>DH #</u>	LENGTH(M)	FROM	TO WI	DTH(M)	CU% AU(OZ/T) AG	(OZ/T)
1	281.94	210.0	270.0	60.0	0.215	0.012	0.06
INCL	QUARTZ VEIN	223.0	236.4	13.4	0.481	0.019	0.14
	OR QVN+DIKE	223.0	248.4	25.4	0.300	0.017	0.10
2	278.28	54.0	68.5	14.5	0.106	0.008	0.05
		216.0	219.0	3.0	0.080	0.054	0.04
		252.0	273.0	21.0	0.135	0.004	0.03
	INCL.	261.0	264.0	3.0	0.485	0.019	0.13
3	286.51	18.0	63.0	45.0	0.237	0.011	0.05
	INCL.	36.0	63.0	27.0	0.349	0.011	0.07
	MAG. BX.	132.0	149.0	17.0	0.172	0.012	0.05
4	258.8	115.8	132.7	16.9	0.114	0.001	0.03
		151.0	181.0	30.0	0.130	0.002	0.04
5	286.5	121.5	160.0	38.5	0.253	0.002	0.06
	INCL.	127.5	135.6	8.1	0.556	0.006	0.12
		280.7	286.5	5.8	0.256	0.000	0.06

TABLE 4 DRILLING SUMMARY

DISCUSSION

Widespread fracture controlled chlorite-epidote alteration with associated disseminated chalcopyrite (+/qold) mineralization occurs throughout the North Fork Creek valley and the Saddle Ridge. Diamond drilling has shown that quartzanhydrite-Kfeldspar alteration occurs below the propylitic alteration of the central zone. The extent of this alteration is unclear, however it could extend northwards to the Boundary The prominent gossans found along the sides of the North Zone. Fork creek valley and on the Saddle Ridge suggest a pyritic alteration halo envelopes the central porphyry zone. Narrow, discontinuous quartz veins carrying high values in gold and copper were found within or near the pyritic halo.

The highest grade porphyry copper-gold zones encountered appear discontinuous and reflect mineralization tied to strong subparallel shear zones trending 020° crossed by intermittent shearing/faulting at 150° and 090° . The effect has been to produce a series of lenticular zones with a long northerly axis, and rarely exceeding 30-50 metres in width.

Some movement along the structures appears to postdate the emplacement of the various intrusive, volcanic, and mineralization events. Mapping has indicated that a large north dipping normal fault along the Jack Wilson creek valley may have dropped the Main Zone northwards into the North Fork (central) area; this event has left the southern end of the main porphyry zone on the ridge of the Spire Zone between creeks 6 and 7. The Spire Zone appears to be the southern limit of the porphyry system on the Jack Wilson property.

The wide quartz vein encountered in drill hole 90JW-1 appears to have been due to a quartz rich phase of the porphyry development. It is similar in texture and sulphide content to the narrow, high grade veins found peripheral to the central porphyry zone on the Jack Wilson property, the only differences noted being the presence of appreciable pyrrhotite, the width, and the lessor gold-silver values.

CONCLUSIONS

Jack The Wilson Property contains alteration and mineralization consistent with an upper level volcanic and intrusive hosted copper-gold porphyry system emplaced in a strong northerly trending shearing regime. Anomalous copper-gold values are found from the Saddle Ridge to the Boundary Zone; the highest grade mineralization occurs within subparallel shear and fracture zones formed where structures trending 020° and 150° cross. High grade gold quartz-chalcopyrite-pyrite(+/- magnetite) veins found peripheral to the central zone are generally narrow and/or The large quartz vein encountered in 90JW-1 discontinuous. carries similar copper-gold grades to its surrounding host rocks and may have been part of a quartz rich phase of the porphyry development.

The large soil anomalies developed on the property may be highly suspect; residual concentration of limonitic shears, glacio-fluvial gravel and avalanche debris have masked much of the in-situ soil development. Trenching of the soil anomalies has shown that anomalous gold values exist within limonitic shear zones without carrying significant values of copper.

Geophysical responses indicate relatively narrow, discontinuous and subparallel zones of disseminated sulphide mineralization occurs within the grid area. Magnetite rich areas may be sheet or lens like bodies trending north-northeast. High chargeability may be caused by pyrite-chalcopyrite disseminations, pyritic quartz-chlorite strain zones or the pyritic halos peripheral to the central zone.

RECOMMENDATIONS

The northern portion of the JW property presently offers the best potential for economic gold quartz veins, and the central porphyry zone may extend, intermittently, from the 1965 I.P. anomalies (Kennco) north to the Boundary Zone. Much of this area is covered by thick overburden and fairly long drillholes would be required to test each area. Between creeks 6 and 7, the in-place location of the silicified, brecciated magnetite bearing andesite float that assayed up to 2.056 oz/t gold (Awmack,1988) has yet to be found. Prospecting for the source of this float would be worthwhile.

1.) Diamond drill 5 or 6 holes (1500 m) to test for possible small high grade copper-gold porphyry deposits and for high grade gold quartz veins. The proposed hole locations are shown in Figure 5.

2.) Prospecting for the source of the silicified, brecciated magnetite enriched andesite float on the Saddle Ridge area.

3.) No further soil geochemistry is advised for areas within the North Fork Creek basin.

ESTIMATED COST OF PROGRAM

The cost of the proposed program assumes a camp with complete facilities would be available at the Scud River airstrip.

\$12,000.00 \$ 6,750.00
\$103,320.00 \$40,000.00
\$35,000.00
\$26,100.00
\$ 8,662.50
\$ 8,000.00
\$ 5,000.00
\$ 8,000.00
\$ 5,000.00
\$257,832.50 \$25,783.25
\$35,452.00 \$319,070.00

REFERENCES

Allen, D.G., A. Panteleyev, A.T. Armstrong, 1976, Galore Creek, CIM Special Volume 15, pp.402-414.

Awmack, Henry J., Equity Engineering Ltd., 1988 Summary Report on the Jack Wilson Property, Liard Mining Division, British Columbia.

Chung, P.L., Boa Services Ltd., 1989 Report on the Jack Wilson Property, Liard Mining Division, British Columbia.

Logan, J.M. and V.M. Koyanagi, 1989, Geology and Mineral Deposits of the Galore Creek Area, Northwestern B.C. (104G/3,4), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, Paper 1989-1, pp. 269-284.

Pezzot, Trent E., GeoSci Data Analysis Ltd., 1990, Memorandum for Quest Canada Exploration Services Ltd., Interpretation of induced polarization, magnetic and VLF-EM data on the Jack Wilson Property, Liard Mining Division.

Souther, J.G., Geological Survey of Canada, 1971, Map 11-1971, 1:250,000 geology map, Telegraph Creek, British Columbia, pp. 71-44.

STATEMENT OF EXPENDITURES

<u>Personnel: Coast Mountain Geological</u> M.R. Vulimiri- Project Consultant D.E. Blann, P.Eng. Project Geologist T. Faragher- chief field geologist	\$78,401.25
Misc. Coast Mountain employees-VLF+Mag	geophysics
<u>Subcontractor:Quest Canada Exploration</u> Linecutting I.P. geophysics 11.0 line-km Misc. personnel	\$16,967.00 \$12,394.29 \$27,887.77
<u>Helicopter</u> 118.65 hrs. @ \$700.00/hr	\$75,350.00
<u>Camp</u> Scud camp charges include personnel, pilot (pro rata), communications	\$67,011.00
<u>Field Gear</u> Includes consumables and rentals	\$4,373.60
<u>Mob/Demob</u> Vancouver to Scud Camp.	\$15,529.58
<u>Kubota excavator</u> Includes mob/demob from property	\$21,325.00
<u>Diamond Drilling</u> 4556 feet of NQ diamond drilling Drill mob/demob	\$108,682.20 \$36,292.22
Assays	\$8,505.20
Freight	\$16,560.54
Project Preparation	\$10,828.04
Reproduction/drafting	\$2,147.48
Expediting	\$750.00
Total	\$503,005.17
Project Management	\$75,343.81
Total expenditures:	\$578,348.98

STATEMENT OF QUALIFICATIONS

I, David E. Blann, of 83233 View Place, Squamish, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1.) THAT I am a member of the Association of Professional Engineers of the Province of British Columbia.
- 2.) THAT I am a graduate of the British Columbia Institute of Technology in Mining Engineering Technology, and the Montana College of Mineral Science and Technology, Butte, Montana, in Geological Engineering (1986).
- 3.) THAT I was employed by Coast Mountain Geological Ltd. as the project geologist for the Bellex/Quattro J.V. on the Jack Wilson property.
- 4.) THAT I worked on the property between July 9th and August 31st, 1990.
- 5.) THAT this report is based on fieldwork conducted by Coast Mountain Geological Ltd. and Quest Canada Exploration Ltd. under my direct supervision from June to September, 1990, and government publications and reports filed with the Government of British Columbia.
- 6.) THAT I have no direct or indirect interest in either Bellex Mining Corp. or Quattro Resources Corp., nor do I expect to receive any.

DATED at Vancouver, British Columbia, this 28 day of January, 1991.

David Ellis Blann, P.Eng.

16.

CERTIFICATE OF QUALIFICATIONS

I, Mohan R. Vulimiri, hereby certify that:

I am a Consulting Geologist, with business address at 822 East 12th Street, North Vancouver, B.C. V7L 2L1.

I am a graduate of the Indian Institute of Technology, Kharagpur, India with a B.Sc. Honours in Geological Sciences.

I received a Master of Science degree in Economic Geology from the University of Washington, Seattle, U.S.A.

I am a Member of the Society of Economic Geologists, Society of Mining Engineers and a Fellow of the Geological Association of Canada.

I have practiced my profession as a Geologist since 1970, and in responsible positions since 1974, in British Columbia, Yukon, Saskatchewan, Washington, Idaho and South Western U.S.A.

The work on the Jack Wilson property was conducted under my guidance. I have no interest in the property or in the securities of Bellex Mining Corp. or Quatrro Resources Corp.

Dated at Vancouver, B.C., This 3/ day of January, 1991.

Mohan & Vuling

Mohan R. Vulimiri

APPENDIX A

,...

GEOPHYSICAL REPORT

PEZZOT, 1990

GeoSci Data Analysis Ltd.

3740 Lockhart Rd., Richmond, B.C. Canada V7C 1M3

Tel: (604) 271-6959

MEMORANDUM

Quest Canada Exploration Svcs. Ltd. Suite 840 650 West Georgia Vancouver, B.C. V6B 4N8

August 17, 1990

Re: Interpretation of induced polarization, magmetic and vlf-em data on the Jack Wilson Property, Liard Mining Division, NTS 104G/4E.

Induced polarization, total field intensity magnetics and vlf-electromagnetic surveys were completed across a portion of the Wilson property in August, 1990. The surveys were run on a Jack pre-existing grid centred across the North Fork Creek zone. They were conducted by Quest Canada Exploration Services Inc. as part of an ongoing exploration program for Bellex Gold Corporation. subject grid consists of 12 lines (300S to 800N inclusive), The oriented east-west and spaced 100 metres apart. The IP survey was conducted using a Scintrex IPR-8 receiver and Scintrex TSQ-3 transmitter, configured in a dipole-dipole array with "a" spacings and 50 metres and "n" values of 1, 2, 3 and 4. Data was of 25 gathered at station intervals equal to the "a" spacing used. The magnetic and vlf-em information was recorded on an EDA-OMNI Plus at station intervals of 12.5 metres and 25 metres.

The induced polarization data was presented to Geosci Data Ltd. in two formats: as contoured pseudo-sections Analysis chargeability and metal illustrating the apparent resistivity, factor of each line and as edited data files on 3.5 inch floppy No further reduction or editing of the data files was disk. The data was processed as plan maps and 2 dimensional requested. identify and highlight linear trends filtering was used to magnetic and vlf-em The (inphase and quadrature observed. component) data were presented in a stacked profile format on a This data was also provided on a 3.5 inch 1:2500 scale maps. to assist the interpretation floppy disk. Also made available a compilation map which outlines the topographic map, were a limits of disseminated copper, pyrite, magnetite, epidote, faults trenches and a summary report (dated April 11, 1990 and and authored by Paul P.L. Chung) on an exploration program consisting soil geochemistry and rock prospecting, trenching, of geochemistry. Additional information concerning past exploration was found in B.C. assessment reports 501 and 669.

The Jack Wilson Property is catagorized in the B.C. MinFile 104G 021 as a copper and gold prospect. The property was initially 1955 by Kennco Explorations Ltd. and Conwest explored in Explorations for its' copper potential. Work over a 10 vear period included geological mapping, induced polarization surveys, In 1988, hand trenching and soil geochemistry. Bellex Mining Corp. carried out a preliminary exploration program which suggests two types of exploration targets: a copper-gold porphyry and gold veins. Further work in 1989 extended a rich quartz-sulphide Creek copper-gold soil anomaly on the North Fork Zone and copper-gold mineralization and of areas delineated areas of gold-rich quartz-pyrite-chalcopyrite veins.

The North Fork Creek Zone is a mineralized shear zone. The host epidote-chlorite altered volcanic that is highly rock is an fractured. Mineralization includes pyrite, sheared and malachite. Assay results from trenching chalcopyrite and operations show consistently high copper values and moderate gold IP survey conducted by Kennco in 1965 showed strong values. The IP effects correlated with the known copper mineralization.

The results of this latest geophysical surveying provide a number of targets for further exploration. Anomalous trends mentioned in this text have been flagged on the profiles and pseudo-sections provided and on the geophysical compilation map attached. Anomalies have been numbered and identified with a prefix letter to indicate the geophysical parameter measured.

- ie) M = magnetic anomaly.
 - C = chargeability anomaly.
 - R = apparent resistivity anomaly.
 - V = vlf-em anomaly.

Induced Polarization Survey

induced polarization survey was run with an "a" spacing of 25 The metres on lines 300S (west half), 200S to 300N inclusive and 800N. Station spacing was set at 25 metres. Lines 300S (east half) and 400N to 700N inclusive were surveyedn with an "a" spacing and station interval of 50 metres. Although the absolute values of chargeability and apparent resistivity cannot be directly compared between the two data sets, lineations, trends and anomalies can be Three physical parameters are correlated across the boundaries. calculated from the induced polarization data: chargeability, apparent resistivity and metal factor. Chargeability data is expressed in milliseconds (ms) and in many instances can be used as a measurement of the sulphide content in the rock. Apparent resistivity is expressed in (ohm-metres) and is a measure of the rocks ability to conduct an electrical current. This property may sulphide mineralization. The enhanced in the vicinity of be chargeability effect varies with the effective resistivity of the host rock. The metal factor component of the induced polarization technique is related to the ratio of chargeability/resistivity and is used to correct, to some extent, for this variable.

Both the chargeability and apparent resistivity data reflect two background responses. The northwest and southeast portions of the are characterized by quiet, low amplitude chargeability and arid resistivity values. These areas are separated by a northeast trending band of high amplitude and variable resistivity and chargeability readings. This pattern is also evident in the magnetic data as will be discussed below. These effects are most likely caused by variations in the overburden thickness rather lithological changes with the northwest and southeast than portions of the grid being covered by a thicker layer of Furthermore, the apparent resistivity unconolidated material. indicate that the overburden becomes less pseudo sections resistive with depth, probably a result of dry surficial layers and water saturation at depth.

The large areas reflecting higher amplitude and more variable chargeability and apparent resistivity readings are likely places where overburden cover is relatively thin and it is in these areas that a number of isolated anomalies are mapped. Two types of localized anomalies are observed in the apparent resistivity data. Firstly, a number of narrow, surficial, high resistivity zones are observed. They appear to align to form northeasterly trending lineations, extending from 2005,50W to 400N,450E. Secondly, four anomalies indicative of localized, near surface, low resistivity lenses have been identified.

- R1:This well developed resistivity low is traced from 300S,150W to 100S,125W. It is coincident with anomalies M1,C1 and V1.
- R2:This anomaly is located on line 100S and station 125E, coincident with North Fork Creek. This anomaly should be considered questionable at this time because of gaps in the data in this area.
- R3:Located on line 100S and station 275E, this anomaly is relatively small and weak and is not evident on any of the other geophysical surveys.
- R4:Located at 200S,175W, this weak anomaly is in the vicinity of anomalies C4, M4 and R4.

Four areas of anomalous chargeability values have been mapped within the large area of high background chargeabilities.

C1:Traced from 3005,160W to 2005,175W this chargeability high correlates with anomalies M1,R1 and V1. It appears as a well developed pantleg on line 2005, double the background value and is likely caused by a source which approaches the ground surface.

- C2:Mapped from 200N,375E to 300N,375E, this is the strongest anomaly observed, reachings a chargeability of 99 ms over a 20 ms. background on line 200S. This anomaly correlates with anomalies M2 and V2.
- C3:This anomaly is most obvious at 100S,25W but is also evident on line 00N,25W. The anomaly is strongest at the wider array separations indicating a relatively deep source (greater than 40 metres). This zone may be interpreted as a northern extension to anomaly C1 however it is not reflected in the resistivity data.
- C4:This anomaly is located at 200S,150E and appears as a localized, near surface feature. It correlates with anomalies M4 and V4.

The metal factor component of the induced polarization technique is not used primary interpretation tool but can highlight some interesting features. In this instance, the pseudo-section display on lines 300S to 200N, highlights the difference between a localized anomaly, such as the narrow, linear feature mapped by C1, R1 and V1 and a broad formational feature, such as increasing depth to bedrock to the northwest.

Vlf-em Survey

Data was gathered for both the Seattle and Cutler transmission frequencies across the entire grid. Both data sets showed similiar responses with the quadrature response typically very weak or paralleling the inphase anomalies. Removal of a strong topographic component left 5 residual anomalies, all representive of narrow, near surface zones of poor to moderate conductivity.

- V1:This anomaly is observed in both the Seattle and Cutler frequency data as a narrow lineation extending from 300S,100W to 200N,75E. It is coincident with anomalies M1,C1 and R1.
- V2:This anomaly is also observed in both data sets and extends from 100N,300E to 300N,400E. It is coincident with anomalies M2 and C2.
- V3: This anomaly is observed in both dat setsa and extends from 100N,160W to 200N,110W. No coincident anomalies are observed on any of the other geophysical surveys.
- V4:V4 is a very weak anomaly observed on the Seattle frequency only and occurs on line 200S, station 210E. It appears to be offset some 25 metres east

of anomalies M4 and C4. It may be related to the nearby creek.

V5:This is also a very weak anomaly, observed only in the Seattle data. It is located on line 100N at station 425E and is not coincident with any other geophysical anomalies.

The vlf-em field strength for Seattle, shows a strong high on the western end of line 100S. This response is coincident with a topographic high and is likely related.

Magnetic Survey

The magnetic data contains both large scale regional information and identifies a number of specific localized features. A broad area of quiet magnetic variations covering the northwest portion of the grid likely reflects increased overburden. The data across the balance of the grid is much more variable and appears to reflect a complex series of narrow, near surface lenses or plates which aligned to form north and northeasterly trending lineations.

Four discreet magnetic anomalies have been identified.

- M1:This broad, 2000 nT high zone is mapped from 300S to 200S near 100W. It can be adequately modelled as either a large intrusive mass (possibly simply related to a thinning of the overburden) or as a series of closely spaced plate like zones. It is associated with anomalies C1,R1 and V1 and may be related to a controlling structure.
- M2: This anomaly is formed by a series of narrow, closely spaced, near surface magnetic highs which extend northerly between 100N,350E and 500N,430E. Anomalies C2 and V2 occur along this trend.
- M3:This anomaly is also comprised by a series of narrow, closely spaced, magnetic highs which form a large arcuate lineation extending from 100S,100E to 800N,275E. Individual anomalies along this trend are weaker and slightly wider than those observed in M2, suggesting a slightly deeper source. This trend parallels the edge of the thickening overburden as delineated by the IP survey and may well reflect the normal magnetic signature of the underlying bedrock with the narrow lineations mapping structural and/or lithological trends.
- M4:This anomaly is a very strong magnetic high centred on line 200S, station 150E. It correlates with anomalies V4 and C4 and is likely caused by a small target, at or near ground surface.

An extremely sharp magnetic gradient has been formed between anomalies M2 and M3 extending from 100N,325E to 600N,400E. Since these two anomalies reflect similiar lithologies but slightly different strikes, this gradient may be tracking a fault.

summary, both the magnetic and resistivity techniques indicate In the bedrock is generally comprised inhomogeneous materials, which give rise to a numerous narrow, high amplitude anomalies. These responses are likely generated by narrow, veins or shears which are aligning along faults. Detailed mapping of these lineations would likely reveal localized patterns of faulting or folding. Large areas in the northwest and southeast portions of the grid are characterized by subdued geophysical responses. These are likely areas covered by a thick layer of overburden. This overburden effectively masks the bedrock generated geophysical responses in these areas and no conclusions concerning the geological environment are drawn.

Based on this interpretation, four areas of interest have been identified as indicated on the attached geophysical complilation map.

- Area 1) Coincident vlf-em (V1), chargeability (C1) and resistivity (R1) anomalies and a parallel magnetic (M1) anomaly suggest an accumulation of sulphide mineralization in a plate like zone, immediately west of and likely controlled by a northerly trending structure. The area of known copper mineralization near grid location ON,OE may be part of this trend.
- Area 2) Coincident vlf-em (V2), chargeability (C2) and magnetic (M2) anomalies suggest a series of parallel, narrow, sulphide enriched veins, striking north. These have been mapped for a limited strike length however they may continue into the hillside to the north and the anomalies are considered open in this direction.
- Area 3) This could be considered as a northern extension to Area 1. It includes anomaly C3 and the northern portion of V1. This zone is very close to the area explored by Kennco where IP responses were correlated to copper mineralization. Previous exploration may have already identified the source of this anomaly.
- Area 4) Coincident chargeability (C4), magnetic (M4) and vlf-em (V4) anomalies define a small target along the creek bed. Although smaller than the other anomalies the source is likely at the surface (possibly mineralized boulders) and identification

could help in the understanding of the geological environment.

Areas 1 and 2 warrant top priority for continued exploration for sulphide mineralization. The sources are likely fairly close to the surface and contingent upon local overburden may be identified by normal geological, prospecting and trenching techniques. It is more likely though that shallow diamond drilling along the anomalous trends will be necessary. The targets are sulphide enriched zones, probably occuring as closely spaced mineralized veins or fracture fillings and likely associated with northerly Because of the averaging effect in the induced trending faults. technique, precise location of the source bodies is polarization rarely predictable. Drill targets should be selected to test for vertically dipping sheets, striking north-south along the anomalous trends. Initial efforts should be centred on the main chargeability highs and extend to both the east and west as necessary.

Area 3 is likely related to the area of copper mineralization known since 1955. The geophysical data suggests that the bulk of the mineralization identified near the creek fork is located to the south. Diamond drilling may be necessary to confirm this interpretation.

The source of the anomalous geophysical readings in Area 4 is likely at the surface. The vlf-em anomaly may be a direct result of the creek at this location however the magnetic and chargeability anomalies are not as easily explained. Surface prospecting and/or trenching efforts will likely identify this target.

If you have any questions concerning this interpretation or require clarification, please contact me at your convenience.

Respectfully submitted per GeoSci Data Analysis Ltd.

E. Trent Pezzot BSc. Geophysics, Geology

ETP/skp encl.

See Figures 13-26 in pocket for pseudo-sections assosiated with this report.

.

APPENDIX B

. .

ASSAY REPORT SHEETS

Pn Sr Sb FLEFENT ۳ô Cu 7n Ao Ni ſn =n Fe As 11 Au īh Êđ Ri Ca La Cr Ma 8a Ti ß AÌ Na Au 2 ۶ 2 ž 2 2 ŝ DDA DOG 000 ž SANDI ES 007 bbe 009 DD® 225 DDA 000 00a ວດສ 000 DD® DЮ 000 nna 003 000 nna 000 ວວຂ ด่ออ .63 .3 1.2 93 7 16 1.11 19-14 4+504 0+25F 5 972 54 ΞÓ 21 559 5.19 5 2 44 2 . 192 94 .06 3 1.25 .01 .77 14 10 7 1 52 21 504 5.26 5 2 45 .8 2 2 96 .72 .198 14 1.20 6 1.28 19-IN 4+508 0+50F 5 816 13 . 4 i4 11 î 7 114 . 07 .01 .75 1 77 11 58 .4 23 5 2 2 2 .71 19-1 N 4+50N 0+75F 5 1022 16 627 5.94 Q 46 1.0 101 .216 8 18 1.11 60 .06 10 1.27 .01 .16 í 10 5 2 .69 7 16 .05 14 1.03 .01 .:5 2 52 19-LN 4+50N 1+00E 4 619 13 50 .3 22 484 5.24 11 2 47 2 93 .204 .99 66 14 .4 49 458 5.33 45 1.1 2 93 .74 .199 7 14 .99 77 .05 6 1.06 .01 .15 5 714 11 . 4 14 22 12 5 2 Δ 550 19-LN 4+50N 1+25E .55 .244 .01 41 2 108 18 1.18 38 .06 4 1.40 11 52 13 24 837 5.86 5 ì.ΰ 4 6 .16 1 230 19-1N 4+50N 1+50F 5 584 .4 10 12 35 .3 5 47 2 .54 .250 7 .07 4 1.47 .01 .18 54 19-LN 4+50N 1+75E 4 404 Q 15 427 5.90 2 4 111 11 1.06 24 ۵ 62 5 5 43 .2 2 2 5 .30 .682 2 .04 .01 8 .17 .01 .63 1 19-LN 4+50N 2+00E 1 25 3 .4 1 53 .29 2 2 33 4 .27 .01 33 12 33 .7 45 . 75 2 5 27 .2 2 2 20 .15 .656 2 6 .09 52 .02 6 .03 1 220 19-LN 4+50N 2+25E 1 Δ 2 5 22 .2 2 3 .02 .21 .01 19-1N 4+50N 2+50E 1 49 5 43 .4 5 3 35 1.07 2 23 .09 .071 2 4 .08 25 6 .63 1 16 2 1.75 .01 6 147 13 27 .6 3 146 5.93 C 33 .7 2 3 .12 .222 10 .19 33 .09 .02 4 200 19-IN 4+50N 2+75E 8 114 6 2.35 5 43 19-LN 4+50N 3+00E 3 334 9 67 .6 4 10 526 7.63 4 2.1 2 2 119 .34 .200 3 11 1.38 23 .12 .01 .18 18 1400 19-LN 4+50N 3+25E 28 g 25 2.3 3 2 45 1.31 3 5 12 .1 2 2 23 .05 .106 5 5.06 18 .03 .44 .01 . 64 71 3 6 1 25 2 17 .2 3 38 1.69 2 ς 24 .2 2 3 43 5 .03 .16 .01 2 10 19-LN 4+50N 3+50E 4 5 .13 .046 2 11 .114 5 .02 13 19-1N 4+50N 3+75E 9 . 4 2 .30 2 5 16 .2 2 3 .06 .557 .03 12 .01 .18 .01 .67 1 101 64 ۵ 2 ۵ б 1 19-LN 4+50N 4+00E 23 2 51 2 31 .27 2 5 24 .ź 2 ? 5 .15 .355 2 2 .05 .01 .iî .01 ì Q 1 . 4 40 10 . <u>(</u>4 19-LN 4+50N 4+25E 2 Ŷ 39 . Ś 113 2.52 2 5 2 10 .2 2 3 .10 .147 б .12 15 .04 7 .39 .01 .03 Ŷ -111 3 38 3 1 18 .2 .01 7 19-LN 4+505 4+50E 61 12 53 .7 3 135 1.11 2 5 2 2 2 .110 2 5 .13 21 11 .29 .63 i 2 20 .25 .02 1 19-LN 4+50k 4+75E 6 414 35 60 . ó 11 25 960 8,10 16 5 2 31 2.6 3 7 130 .55 .308 10 1.31 25 .06 2 1.81 .01 .14 2 10 ĥ 19-1N 3+50N 0+25E g .2 5 2 10 1.08 .0ì .i2 4 473 34 11 21 491 5.57 8 49 .3 2 3 105 .197 16 .95 57 .06 4 270 .66 б 19-LN 3+50# 0+50E 5 461 37 5 2 5 . 4 13 19 491 5.83 11 1 48 1.0 2 5 105 .64 .221 8 17 1.06 27 .06 5 1.22 .01 .12 2 370 19-LN 3+50N 1+00E 6 458 8 42 .4 17 468 5.76 5 2 47 2 2 112 .69 .735 17 1.19 39 4 1.33 .01 3 290 14 10 .4 6 .06 .14 19-LN 3+50N 1+25E .5 18 1.14 5 648 14 41 11 23 562 5.81 7 5 2 50 .6 2 2 106 .68 .221 8 46 .06 6 1.29 .01 .11 3 380 19-LN 3+50N 1+50E 5 245 15 39 .2 537 5.70 5 2 42 .3 2 8 20 1.38 5 1.56 .01 3 133 11 12 7 118 .41 .149 5 21 .08 .08 19-LN 3+50N 1+75E 5 277 8 28 .2 9 10 226 4.99 7 5 2 42 .2 2 2 98 .47 .200 6 1.04 .01 2 270 1 6 14 .85 24 .05 .08 32 19-LN 3+50N 2+00E 7 316 3 39 .5 2 7 20 648 7.77 12 5 1.6 2 2 134 .47 .369 6 13 1.26 19 .06 12 1.69 .01 .12 2 260 19-LN 3+50N 2+25E 5 37 .01 7 496 11 46 1.1 8 31 961 8.51 16 2 2.5 2 2 .66 .311 8 1.26 19 7 1.80 3 212 113 .06 .11 5 19-LN 3+50N 2+50E 317 13 40 .8 9 23 628 7.29 19 5 2 34 1.3 3 7 113 .57 .267 б 12 1.18 16 .05 9 1.51 .01 .10 2 200 19-LN 3+50N 2+75E 5 167 9 32 11 316 6.75 9 5 2 34 .9 2 2 139 .30 .192 13 1.00 9 1.27 .01 .05 86 .4 11 .10 1 4 4 19-LN 3+50N 3+00E 5 181 10 31 .01 20 .2 11 162 5.65 5 5 .2 2 2 3 8 .49 18 10.72 2 560 4 113 .24 .219 .06 .06 19-LN 3+50N 3+25E 2 104 6 23 .3 7 7 215 2.81 2 5 2 1 34 .2 2 2 59 .57 .157 3 12 .58 24 .05 2.78 .01 .07 1 16 19-LN 3+50N 3+50E 26 35 3 2 8 2 5 .2 2 2 .10 26 .28 .01 1 12 .4 1 60 1.75 34 .21 .115 2 6 .04 5 .03 4 19-LN 3+50N 3+75E 17 6 237 11 21 .3 5 10 289 8.58 2 5 2 2 1.2 2 2 122 .10 .135 18 .47 23 .08 8 2.77 .01 .02 4 ۵ б 19-LN 3+50N 4+00E 4 18 2 12 .2 2 59 2 5 36 .2 2 3 6 .17 .084 2 2 .04 19 .01 .17 .01 .05 1 .40 4 1 1 37 9-LN 3+50N 4+25E 7 7 .9 5 2 25 .2 2 2 .02 4 1 1 17 .49 2 1 2 4 .28 .086 5 30 .01 7.40 .01 .02 1 1 19-LN 3+50N 4+50E 2 37 11 1.1 1 60 .37 2 5 19 .2 2 2 .21 .060 2 2 .02 41 .01 7 .15 .01 .02 1 1 4 1 4 19-LN 3+50N 4+75E 2 51 2 17 .6 1 110 1.70 2 5 2 1 47 .2 2 2 33 .39 .123 2 5 .10 63 .02 5.32 .01 .04 1 10 4 19 LN 2+50N 0+25E 4 340 9 38 .7 12 17 444 6.03 5 5 94 1.1 3 2 141 .87 .219 7 15 1.01 57 .10 6 1.25 .01 4 470 .15 19 LN 2+50N 0+50E .3 2 92 2 6 346 9 46 12 14 444 5.72 15 5 .8 2 137 .79 .195 15 1.06 29 .11 4 1.53 .01 1 8 .11 3 136 19 LN 2+50N 1+00E 6 451 14 37 .5 12 13 316 6.17 .9 5 2 93 1.2 2 2 136 .73 .198 8 16 1.12 27 .11 14 1.53 .01 .12 5 270 19 LN 2+50N 1+25E 6 634 14 50 .5 15 22 647 6.67 5 2 94 2 148 19 1.31 10 1.4 3 .81 .263 .11 13 1.72 .01 .16 2 260 1 9 44 19 LN 2+50N 1+50E 3 115 4 43 .3 8 17 5 2 717 4.83 3 2 48 .2 2 80 .41 .178 4 7.51 96 .07 10.70 .01 .13 2 304 19 LN 2+50N 1+75E 17 6 441 50 .2 5 26 782 8.77 21 5 2 71 2.0 2 2 152 .74 .301 7 1.47 9 2.08 .01 9 22 .10 .15 1 146 1 19 LN 2+50N 2+00E 22 7 1232 78 .3 12 31 2 2.12 .01 911 9.14 34 5 2 110 3.4 2 2 147 1.05 .277 9 1.38 76 .09 Q .12 1 132

Au Ĺr Вa īi В Na ۲ ELEMENT Mo Cu Pb Zn Âq h. Co Ħn Fe ÂS. U Au Ī'n Sr Сc SD. βi Ca La TG. Ai ò 8 ž 8 % 3 DDM DDM DDD: ž DDB ż 306 500 SAMPLES pph pph DDF DDR DDA 300 DDM 000 nqq ₽D@ DDM 205 ODR DDE. ດວກ aco 200 2.1 ,56 8 13 1.23 18 .08 10 2.00 .01 2 2 2 158 .303 .08 250 19 LN 2+50N 2+25E 7 420 23 45 .7 10 15 437 8.19 13 5 2 1 64 5 2 .37 .227 б 17 .54 6 1.91 .01 18 470 9 21 .8 б 22 580 7.94 6 2 67 .8 2 84 14 .11 .03 2 103 19 LN 2+50N 2+50E 15 270 5.92 33 . 4 2 136 .18 .210 6 15 .19 36 .12 3 1.88 .01 .03 3 52 19 LN 2+50N 2+75E 7 113 16 .6 6 .02 .10 .026 .09 9.42 19 LN 2+50N 3+00E 3 11 17 .1 7 4 73 1.61 2 16 .2 2 2 54 ĥ 31 18 .10 .Û4 1 60 2.3 77 .2 12 5 95 2 175 .92 .260 8 12 1.69 41 .11 3 2.64 .01 1 270 19 LN 2+50N 3+25E 18 848 26 10 25 900 8.97 .11 19 LN 2+50N 3+50E 15 .3 3 133 4.47 8 5 62 .2 2 2 147 .26 .146 12 .10 29 .18 2.70 .01 .03 2 131 16 53 7 4 5 95 .2 .01 3 13 .2 83 1.86 2 2 61 .34 .038 4 4 .08 2Û .11 5.50 .03 2 57 19 LN 2+50N 3+75E 4 18 Δ 12 2 5 53 .2 2 3 61 .21 .042 5 5 .Û4 19 .07 2.34 .02 .03 46 19 LN 2+50N 4+00E 2 10 .1 3 3 68 2.46 1 39 1.3 5 73 .4 2 124 .20 .516 9 .20 26 .06 2 2.63 .01 .02 19 LN 2+50N 4+25E 10 270 8 17 265 7.33 7 4 167 5 .2 2 49 2 89 .20 .643 .03 4 .66 .01 19 LN 2+50N 4+50E 10 .2 3 52 2.11 4 б 27 .18 .Û2 i 180 3 14 6 3 4 .2 5 2 .29 .084 .03 3,48 .01 19 LN 2+50N 4+75E 3 -19 Q î0 .2 3 57 2.46 2 69 62 4 б 12 .11 .03 4 78 19 LN 2+50N 5+00E 2 26 2 28 .1 18 .22 2 5 2 i 64 .2 2 2 5 .59 .052 2 2 .03 33 .01 4 .11 .01 .02 1 Ź ۲ 1 1.6 45 .2 .04 .44 .01 19 LN 2+50N 5+25E 3 97 8 17 4 6 190 3.78 5 2 3 б2 .30 .173 3 5 .14 42 . 83 1 4 Ŕ

ELEMENT Sp p Ti R A Au* 10 Си 95 Zn ÂQ hi ÛΟ Fe As U Au Τ'n Ûб -8i ¥ Ca La Cr f.o ġэ 113 -En SAMPLES ş 6 ž DDD DD∰ רסס DDD 000 DDD % 000 20h רפכ 1 001 003 600 ž מספ Ś 201 CQC 000 201 DDa DDA DDO 200 600 007 19 L1+50N 2+50W ĥ 30 11 36 11.5 4 8 219 8.71 -19 5 52 .03 .657 4 2 .ÛÝ 18 2 .37 .61 .05 i 1 19 L1+50N 2+25W 29 1Ū 32 3.5 167 5.22 5 .2 2 41 .03 .395 3 .Ü4 14 .05 б .29 .ÛŻ 6 Ą. 6 13 2 ó .05 Δ í 19 L1+50N 2+00W 52 49 .02 .637 3 .07 18 .52 5.35 .01 33 7.2 176 7.07 15 5 .05 2 4 8 4 2 2.09 19 L1+50N 1+75W б 785 2 57 .9 13 34 935 8.52 17 5 57 1.5 Ź 136 .66 .297 8 19 1.80 55 .12 .Û1 .33 î 48 2 1.88 19 L1+50N 1+50W 5 632 8 48 .7 10 29 836 7.70 18 5 124 .69 .320 7 16 1.65 46 .11 .01 .28 1 125 2 2 26 1170 6.92 19 L1+50N 1+25W 4 543 21 148 .48 .200 32 1.46 36 .08 3 2.22 .01 84 113 .δ 22 51 5 46 1.1 2 2 10 .11 19 L1+50N 1+00W 8 227 9 48 .5 16 13 291 6.05 17 54 1.2 2 2 137 .47 .309 7 20 1.14 23 .08 4 1.43 .02 .10 3 153 19 L1+50N 0+75W 11 403 21 59 .3 19 16 491 7.28 21 5 58 .2 3 2 146 .45 .192 6 25 1.43 24 .09 2 1.82 .02 .06 165 19 L1+50N D+50W 265 2 40 .5 60 .2 112 .63 .262 6 17 .99 29 .06 6 1.13 .01 3 136 6 14 14 434 4.83 14 .12 19 L1+50N 0+25W .65 .212 16 1.07 27 2 1.29 470 6 486 2 45 .4 14 20 552 5.46 9 5 69 .2 2 5 115 8 .08 .01 .14 2 19 LO+50N 4+50W 18 5.35 3 86 6 24 3 5 243 2.08 2 19 .2 2 43 .19 .094 2 4 .17 .03 .01 .04 3 45 .1 19 LO+50N 4+25W 2 19 2 15 30 .2 2 46 .24 .088 2 4 .08 20 .07 5.30 .01 16 .1 2 4 169 1.39 6 5 4 .06 19 L0+50N 4+00W 5 14 6 23 .3 5 159 2.99 9 5 .2 2 100 .05 .107 6 4 .13 20 .11 6 .59 .01 .05 6 162 4 19 LO+50N 3+75W .10 .078 .09 17 .23 10 33 9 16 6 131 3.20 21 .2 2 5 136 6 6 .40 .01 13 .4 10 5 1 4 .04 2 19 LO+50N 3+50W .02 37 .30 7 18 6 19 6 5 101 1.90 2 5 16 .2 2 51 .11 .068 8 8 9 .10 .03 .03 1 13 19 L0+50N 3+25W 5 166 6 73 .4 8 13 555 6.91 15 5 1 15 .2 2 2 131 .18 .166 4 5 .59 36 .10 3 1.24 .01 .06 1 4 19 LO+50N 3+00W 67 .13 .211 8 .42 22 .04 3 3.42 .01 3 140 9 670 24 42 1.6 12 .2 3 5 6 .02 14 47 1074 8,48 41 19 LO+50N 2+75W .12 .261 .47 17 .05 2 1.26 2 35100 12 10 2 2 130 9 8 .01 .04 8 198 53 2.3 6 11 468 8.57 28 5 21 1 .2 19 LO+50N 2+50W .18 .157 3 6 .24 6 5.64 78 3 133 5 63 .5 7 257 3.91 8 20 .2 2 2 57 .03 .01 .04 1 19 LO+50N 2+25W 82 15 2 2 72 .11 .327 7 .10 11 .04 4 .44 .01 .03 2 171 6 7 43 .3 5 7 113 4.75 9 5 .2 4 19 LO+50N 2+00W .14 .400 5 9 .38 10 .07 3 .71 .01 74 5 82 9 2 3 110 .04 1 55 .5 4 8 254 6.00 11 19 .2 19 LO+50N 1+75W .22 22 4 .61 95 .21 .01 27 ۵ 56 7 19 .3 6 7 124 4.00 7 1 16 .2 2 б .15 .143 3 9 .04 1 19 LO+50N 1+50W 2 42 5 25 108 .16 .370 4 17 .47 22 .14 5 1.04 .01 .06 1 20 22 .3 5 193 5.68 3 .2 2 2 19 LO+50N 1+25W 28 3 .80 88 4 1.39 .01 17 3 35 177 5.09 22 2 2 131 .11 .149 3 10 .16 .05 1 .2 5 10 1 .2 4 19 LO+50N 1+00W 5 .42 .226 2 2.00 .01 39 571 7 76 764 8,08 5 1 39 2 142 6 15 1.62 43 .12 .27 1 . 4 9 19 13 .2 4 19 LO+50N 0+75W 57 614 2 67 .5 13 23 684 6.15 18 5 80 .2 2 2 128 .83 .199 7 18 1.20 .09 7 1.66 .02 .14 1 120 4 2 19 LO+50N 0+50W 22 5 36 8 327 6 5 2 125 19 .98 .09 2 1.39 .01 .08 1 159 44 .2 8 15 474 6.22 1 56 .2 7 .44 .121 19 LO+50N 0+25W 13 23 2 .54 .045 2 1.04 .01 4 .07 .01 .03 1 1 2 98 .1 5 1 25 .17 2 5 2 1 150 .2 2 3 264
		_	-	_																									
ELERENT	Mo	Cu	Pb	Zn	Ag	Ni	ÛO	En Fe	As	U	Au	ĩn	Sr	Cđ	Sd	Bi	۷	Ca	£	La	Cr Mg	Ba	Īi	B A'i	Na	K	¥	Au*	
SAMPLES	ppm	ppm	ppm	ppm	ppm	pps	ppm	ppn %	ppn	ppm	ppm	ppa	ppm	ppm	ppa	ppm	DDM	ş	ě	DDM	ppn %	ppn	Ŷ	ppn 🎖	*	8	ppa	ppd	
19 LO+50N O+25E	7	87	Ì	24	.1	6	g	133 4.30	2	5	2	1	50	.2	2	2	114	.21	.046	5	15 .41	42	.15	5.81	.02	. 11	2	137	
19 L0+50N 0+50E	5	772	2	44	.ń	17	22	520 5 64	13	5	2	1	73		2	2	110	75	187	8	16 1.02	97	07	4 1 17	<u>. 1</u> 2	16	, ,	270	
10 1 0+50N 0+75E	2	046	15	80	.0	22	14	672 # 56	15	5	2	1	62	2	2	2	123	64	222	5	27 7 77	60	15	2 2 28	.02 በ1	66	2	270	
10 10 501 1.005	2	270	15	34	.0 5	22	5	170 6 44	2	5	2	1	20	• • •	2	7	154	1.04	•22J	2	10 52	57	1.1.5	2 2.20	.01	.00	2	20	
19 LUTOUN 1TUUE	4	55	10	J4 11		د ء	2	1/9 0.44	0) r	2	1	29	•2	2	1	134	.14	.400	0	10 .00	57	•14	2 2.24	.01	.04	2	39	
19 LU+5UN 1+25E	4	50	11	44	و.	<u> </u>	D	250 5.52	2	5	2	1	33	.2	2	3	140	.20	.222	0	14 .50	49	.15	3 1.85	.01	.05	2	34	
19 LO+50N 1+50E	5	61	12	49	1.3	6	8	691 7.24	14	5	2	2	32	•2	2	2	168	.08	.353	6	15.74	61	.21	4 2.88	.01	.04	1	49	
19 LO+50N 1+75E	4	24	12	36	1.1	4	5	261 5.54	11	5	2	1	27	.2	2	2	118	.12	.471	6	13.35	58	.11	4 1.90	.01	.05	1	26	
19 LO+50N 2+00E	5	83	3	50	1.4	8	6	446 5.77	5	5	2	1	42	.2	2	4	128	.20	.112	11	35.47	14	.13	2 2.46	.02	.03	3	102	
ELEMENT	Мо	Cu	Рb	Zn	Aq	Ni	Co	Min Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Ρ	La	€r Mø	8a	īi	B A]	Na	K	¥	Å11 [#]	
SAMPLES	DDC	DDR	DDA	DDa	DDm	DDa	DDm	DDA %	DDA	000	שממ	יייי	 תחח	000	000	000	നനത	2	2	000	nom 2	000	2	ດດຄ 2	8	2	п 00ф	nnh	
19 1 0+50N 2+25E	7	72	16	64	.4	11	18	954 6 23	<u>۲</u> ۳	5	2	۳ <i>-</i> ۳	147	2 0	2	2	133	56	191	۳44 ۵	21 00	20	10	2 2 01	° 10	00	2	22	
19 1 0+50N 2+50E	۵	30	3	33	7	Ĩ	Q	245 6 47	7	5	ົ້	2	76	1 1	2	10	101	. 30	150	10	JI .JJ	20	22	2 3.04	.01	.00	ר ה	22 210	
19 10+50N 2+75E	Å	A1	2	38	1 1	2	7	106 7 12	2	5	2	ך ז	10	7 114	2	10	100	•21	172	10	24 .30	27	1 JZ	2 2.3/	.01	.03	2	310	
10 10450N 2470E	יי ג	-11 7/	י גר	20 20	1.1 7	ر ۱۸	11	100 /.13	2	5 r	4	1	4/	.1	2	2	123	.10	.140	У ^	19 .21	52	.14	4 2./1	.01	.03	Ţ	39	
10 L0+J0N J+00E	5	14	17	00	• /	14	11	222 6.33	12	2	2	I	33	1.1	2	9	143	.25	.18/	9	43.61	4/	.09	2 3.26	.01	.04	1	33	
19 LUTOUN 3723E	2	40	10) C	.8	۲ ۲	10	008 8.25	13	2	2	1	26	.8	2	/	132	.15	. 386	13	34 .27	27	.14	2 4.25	.01	.04	1	23	
19 LU+SUN 3+SUE	2	14	2	30	.5	2	3	45 2.08	2	5	2	1	48	-2	2	2	54	.20	.148	4	9.08	34	.13	2.70	.01	.04	1	60	•
19 LU+5UN 3+/5E	1	30	6	46	.3	8	9	95 4.42	4	5	2	1	51	.2	2	2	110	.18	.179	3	16 .13	51	.12	2.75	.01	.04	1	55	
19 LU+5UN 4+UUE	3	21	12	31	.3	2	5	68 2.34	4	5	2	1	52	•2	2	2	73	.20	.070	5	10 .10	36	.19	4.80	.02	.05	1	39	
19 LU+5UN 4+25E	6	111	2	68	.9	2	5	30 1.85	3	5	2	1	36	.2	2	2	42	.22	.122	7	4.09	60	.04	2.34	.02	.04	1	24	
19 LO+50N 4+50E	3	206	7	45	.4	7	8	323 3.40	6	5	2	1	65	.2	2	2	70	.53	.172	7	6.57	40	.05	8.86	.02	.08	1	440	
19 L3+00N 0+50E	4	501	17	73	.6	23	24	945 5.65	15	5	2	1	87	1.2	2	4	98	.84	.183	11	23 1.02	102	.08	2 1.27	.02	.17	1	2480	
19 L3+00N 0+75E	3	234	18	118	.5	49	29	1510 5.97	22	5	2	1	92	1.4	2	5	84	1.11	.198	13	46 1.49	120	.09	2 1.72	.02	.19	1	770	
19 L3+00N 1+00E	3	204	12	107	.3	40	25	1456 5.46	21	5	2	1	80	1.3	2	3	75	.95	.187	12	41 1.30	104	.08	3 1.55	.01	.16	1	24	
19 L3+00N 1+75E	3	197	17	98	.4	36	22	1079 5.47	19	5	2	1	76	.8	2	2	80	.79	.218	13	43 1.25	93	.08	3 1.56	.01	.15	1	19	
19 L3+00N 2+00E	3	212	16	104	.2	38	23	1349 5.22	14	5	2	1	92	1.1	2	2	76	1.08	.212	11	32 1.20	141	.08	7 1.42	.02	.19	1	14	
19 L3+00N 2+25E	3	182	3	109	.4	35	26	1584 5.75	19	6	2	1	89	1.3	2	4	83	.98	.234	12	36 1 31	112	08	4 1 54	01	10	î	22	
19 L3+00N 2+50E	3	222	13	114	.6	34	30	1568 6.18	30	5	2	1	89	1 2	2	2	87	Q1	235	13	35 1 32	145	00	3 1 60	.01	20	1	20	
19 L3+00N 2+75E	6	85	12	124	2.2	q	24	3514 5 17	5	5	2	1	59	1 5	2	Ă	109	.71	212	13	14 1 56	102	12	2 1 02	.01	.20	1	20	
19 L7+50N 0+25E	4	78	4	20	2	7	0	162 6 22	2	5	2	1	25	1.5	2	12	100	•¶J 22	•21J	7	14 1.00	107	•12	2 1.03	.02	.32	1	23	
19 17+50N 0+50E	5	253	A I	18	•2	26	27	660 7 20	10	. С	2	1	25	•4	2	12	02	•22	100	2	40.33	20	.00	2 .90	.01	.07	1	/4	
10 17+50N 0+75E	5	120	2	70 24	•J 1	20 C	37 10	120 4 00	10	י ד	2	1	00	.0	4	2	92	•11	.100	9	31 1.07	27	.09	3 2.10	.02	.10	1	94	
10 1 7+50N 1+00E	2	120	2	24	1 I	ס ר	10	130 4.00	1	2	4	1	01	•2	2	2	91 110	. 54	.133	5	17 .40	25	.0/	0.0/	.01	.08	2	220	
10 1 7+50N 1+00E	J	166	2	20 22	•1	1	13	239 5.05	ŏ	5 5	2	1	05	•2	2	9	118	.42	•193	6	17.96	32	.10	5 1.24	.02	.21	2	139	
10 17450N 1420E	4	200	11	22	•1	1	10	222 4.30	2	5	2	1	62	.2	2	6	100	.36	.250	6	18.66	43	.09	11 .96	.02	.22	1	250	
17 L/TOUN 1700E	[r	212	11	29	.1	1	9	191 4.87	5	5	2	1	/4	.2	2	4	117	.45	.226	6	19.73	41	.08	2 1.12	.01	.08	1	560	
17 L7TOUN 2100L	2	845	2	41	.3	18	25	4/2 6.00	13	5	2	1	85	1.4	2	2	114	.82	.191	9	19 1.10	115	.09	7 1.24	.02	.19	4	1240	
19 L/+DUN 2+25L	3	/1	16	26	.1	5	6	67 3.32	4	5	2	1	41	.2	2	2	91	.21	.072	8	14 .07	35	.14	2.90	.01	.03	2	101	
19 L/+DUN 2+DUE	4	49	2	16	•6	5	5	68 2.90	6	5	2	1	42	.2	2	2	88	.23	.069	6	13.12	18	.14	5.58	.02	.05	2	113	
_9 L/+5UN 2+/5E	2	16	5	8	.3	4	6	41 2.40	3	5	2	1	41	.2	2	2	68	.19	.030	4	13 .03	12	.11	4.33	.01	.04	1	125	
19 L7+5UN 3+00E	3	35	4	31	.5	3	5	69 1.66	2	5	2	1	48	.2	2	2	40	.23	.061	3	10.09	22	.04	3.31	.01	.04	1	94	
19 L7+5UN 3+25E	5	77	2	23	.5	6	6	96 3.73	2	5	2	1	43	.2	2	2	60	.16	.183	5	13.12	16	.06	3.50	.01	.05	2	131	
19 L7+50N 3+50E	5	136	15	51	.4	7	13	334 5.61	2	5	2	1	64	.2	2	4	126	.19	.278	6	20.99	18	.07	2 1.36	.01	.07	2	76	
19 L7+50N 3+75E	5	154	2	47	.3	7	13	364 5.87	4	5	2	1	74	.5	2	2	161	.35	.218	5	15 1.22	24	.10	2 1.69	.01	.19	ī	103	
· · · · · · · · · · · · · · · · · · ·	•	~	-																							- 7 -	-		

•

	ELEMENT	No	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ва	Ti	B AI	Na	K	W	Au*
	SAMPLES	ppa	ppa	ppm	ppa	ppm	ppn	рра	ppa	*	ppm	ppm	ppm	ppn	ppm	ppm	pp≞	ppm	рра	*	5	ppm	ppm	8 1	ppn	%	ppm 🖁	ş	\$	DDa	ppb
19-L1+50I	1 4+00W	10	1988	18	80	2.2	12	57	2573	13.59	85	7	2	2	29	2.3	2	2	144	.32	.217	15	71.	54	73	.07	5 2.96	.01	.15	1	260
19-L1+50	3+75	5	270	14	50	.6	10	30	853	11.63	32	8	2	1	24	.7	2	2	103	.31	.182	8	7.	69	42	.06	6 1.45	.01	.09	1	23
19-L1+50	3+50W	1	81	2	40	.4	2	3	131	1.55	2	5	2	1	26	.4	2	2	36	.34	.104	2	2.	24	37	.Oi	4.4	.01	.04	1	2
19-L1+50	₹ 3+25₩	1	75	2	37	.2	- 3	2	113	1.25	2	5	2	1	23	.2	2	2	8	.27	.104	2	1.	05	24	.01	4.16	.01	.02	1	3
19-L1+50	3+00W	8	109	8	52	.5	4	13	527	7.77	18	5	2	1	14	.2	2	2	144	.12	.516	5	8.	45	29	.04	5.9	.01	.04	1	1
19-L1+50	2+75#	5	157	12	29	.5	2	12	159	7.16	10	5	2	1	19	.2	2	2	121	.09	.586	5	8.	17	25	.06	4.6	.01	.05	2	9
19-L1+50	₹ 2+50₩	3	82	2	25	.9	3	6	107	5.54	2	5	2	1	5	.2	3	2	81	.04	.373	4	3.	57	30	.12	6.7	.01	.14	1	28
19-L1+00	↓ 4+25₩	1	28	11	50	.3	3	2	157	.57	2	5	2	1	17	.2	2	2	8	.24	.128	2	3.	06	17	.01	3.20	.01	.04	1	2
19-L1+00I	4+00W	3	19	5	29	.7	7	3	81	1.64	4	· 5	2	1	15	.3	2	2	51	.10	.071	7	9.	06	19	.10	4.5	.02	.05	1	· 6
19-L1+00#	3+75₩	2	18	6	47	.7	3	2	54	.65	2	5	2	1	19	.6	2	2	16	.13	.115	2	3.	08	156	.02	2.4	.02	.04	1	3
19-L1+00	1 3+50W	3	115	7	46	.9	7	14	289	4.24	2	5	2	1	31	.2	2	2	40	.24	.155	2	4.	37	27	.02	7.7	.02	.06	1	1
19-L1+00	3+25₩	4	295	22	65	1.9	7	13	386	8.71	6	5	2	1	21	.2	2	2	47	.17	.198	5	7.	40	14	.02	4 1.0	.01	.03	1	5
19-L1+00	1 3+00w	б	195	8	50	.4	8	20	721	7.98	12	5	2	1	35	.2	2	2	б5	.31	.244	5	6.	36	46	.Û4	8 1.0	.01	.05	1	8
.9-L1+00	2+75	2	134	5	42	.1	17	20	945	9.68	9	5	2	1	18	.7	2	2	175	.43	.538	6	16 1.	95	65	.15	2 2.4	.01	.31	1	22
19-L1+00	1 2+50W	7	135	17	29	.4	3	12	419	10.55	49	б	2	1	8	.3	3	2	201	.06	.558	5	6.	46	34	. 06	61.0	.01	.06	1	16
19-L1+00	₹ 2+25₩	1	38	2	40	6.4	1	1	55	.21	2	5	2	1	23	.2	2	2	3	.20	.04Û	2	1.	02	49	.01	2.1	.01	.01	1	12
19-L1+00	1 2+00W	ó	89	7	23	2.1	5	9	156	6.84	6	5	2	1	12	.2	2	2	106	.05	.641	5	10.	33	33	.û9	4.7	.01	.05	1	16
19-L0+00	4+25₩	9	121	27	99	.1	7	28	1847	8.76	30	7	2	1	27	1.3	2	2	127	.26	.256	4	91.	16	15	.06	7 2.0	.01	.08	2	32
19-L0+00	4+00W	5	28	9	30	.1	4	7	345	3.87	5	5	2	1	23	.2	2	2	97	.13	.237	4	10 .	31	25	.09	6.6	.01	.08	9	220
19-L0+00	3+75₩	10	36	11	34	.3	5	8	161	6.07	24	5	2	1	11	.2	3	2	208	.08	.157	12	11.	19	24	.23	5.9	.02	.06	3	440
19-L0+00	3+50¥	5	42	2	35	.1	3	3	49	1.72	2	5	2	1	23	.2	2	3	36	.22	.065	4	4.	02	30	.08	3.4	.02	.02	1	20
19-L0+00	3+25₩	7	44	13	38	.4	14	7	174	3.63	2	5	4	1	21	.2	2	2	126	.10	.062	4	12.	24	30	.27	3.8	.01	.04	239	2660
19-L0+00	3+00W	б	275	4	25	.5	2	4	53	3.73	3	5	2	1	11	.2	2	2	98	.05	.042	5	14.	04	33	.17	4.6	.01	.02	6	28
19-L0+00	2+75₩	5	52	7	21	.2	5	6	43	3.49	7	5	2	1	25	.2	2	2	122	.13	.104	4	8.	03	33	.18	4.6	.01	.02	1	10
19-L0+00	2+50₩	3	273	7	53	.1	6	14	788	10.00	9	5	2	2	45	1.3	2	2	183	.32	.216	7	12 1.	78	32	.14	4 3.0	.01	.08	1	16
19-L0+00	2+25₩	5	495	14	68	.3	11	17	672	9.05	• 12	5	2	1	53	1.6	2	2	218	.51	.250	8	15 2.	22	35	.14	4 3.3	.01	.25	1	64
19-L0+00	2+00W	3	72	2	22	1.6	5	7	126	4.62	2	5	2	1	13	.2	2	8	104	.07	.271	5	11.	41	33	.09	4 1.2	.02	.07	1	28
19-L0+50	5 4+25₩	4	45	5	17	.2	6	5	88	3.39	2	5	2	1	19	.2	2	2	44	.10	.199	6	11.	10	16	.06	5.6	i .01	.04	1	18
19-L0+50	5 4+ 00W	11	134	11	56	.1	5	7	291	6.54	2	5	2	1	25	.2	2	3	87	.14	.220	5	10 .	08	34	.10	5.6	5.01	.02	1	25
19-L0+50	S 3+75¥	7	84	19	37	.4	6	8	228	9.09	2	5	2	1	17	.2	2	2	124	.09	.586	6	8.	10	21	.10	4.7	.01	.03	1	13
19-L0+50	S 3+50W	9	322	19	306	.1	12	23	1339	6.50	27	5	2	1	79	.7	2	2	116	1.14	.151	7	10 1.	23	53	.09	6 1.8	.01	.16	5	1600
19-L0+50	S 3+25₩	3	83	5	23	.8	8	4	141	2.93	2	5	2	1	16	.2	2	3	35	.09	.115	7	8.	17	14	.07	5 1.0	2.04	.05	1	38
19-L0+50	5 3+00W	3	20	2	21	.1	1	4	82	1.49	2	5	2	1	12	.2	2	2	55	.06	.024	5	9.	03	24	.19	5.3	.03	.03	1	12
19-L0+50	5 2+75W	5	82	8	13	.6	4	6	67	3.44	7	5	2	1	20	.2	2	5	175	.07	.041	3	8.	08	39	.28	6.5	2.01	.02	1	78
19-L0+50	S 2+50W	3	32	2	19	.6	4	6	66	1.65	2	5	2	1	12	.2	2	2	55	.05	.049	5	7	10	22	.08	5.4	.02	.03	1	81
19-L0+50	S 2+25₩	3	216	9	44	.5	5	7	279	4.81	2	5	3	1	62	.2	2	2	97	. 39	.243	3	71.	04	26	.16	4 1.8	.01	.07	.1	4690
19-L0+50	5 2+00₩	3	133	11	42	.1	6	8	365	7.06	2	5	2	1	45	.2	2	2	237	.17	.159	3	12 1.	37	30	.15	6 2.3	.01	.08	1	48
19-L0+50	5 1+75₩	5	286	2	64	.2	5	7	964	9.50	4	5	2	1	41	1.9	2	2	207	.20	.389	3	12 1.	79	49	.14	7 2.3	5.01	.11	1	38

}

.

. i 👌

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V Ca P	La	Cr Mg	Ba	Ti	8 A1	Na	K	W	Åυ*
SAMPLES	ррм	ppm	ppn	pom	ppm	рря	ppm	ppa 🎖	ppa	ppm	ppa	ppm	ppm	ppn	ppm	ppn	pom % %	ppm	ppn %	ppm	8	ppn %	8	\$	0DA	ppb
90-JT6-2M	7	339	6	31	.3	13	17	652 4.19	11	5	2	3	56	.2	3	2	83 .52 .159	7	12 1.32	32	.04	7 1.68	.01	.24	1	40
90-JT6-4M	1	196	б	42	.2	17	21	582 4.04	7	5	2	3	127	.2	3	2	139 .97 .173	8	22 1.86	55	.14	5 1.99	.04	.17	1	23
90-JT6-6M	3	155	5	37	.4	15	16	414 3.37	4	5	2	4	144	.2	3	2	115 .91 .172	7	17 1.26	27	.18	7 1.48	.03	.16	1	57
90-JT6-8M	1	153	5	40	.4	15	13	454 4.07	10	5	2	2	122	.2	2	2	108 .80 .166	9	15 1.41	36	.13	3 1.91	.02	.28	5	56
90-JT6-10M	1	104	3	42	.1	15	15	369 3.02	5	5	2	4	230	.2	2	2	86 1.22 .197	11	21 .97	31	.19	7 1.29	.04	.10	1	15
90-JT6-12M	1	84	3	31	.1	14	16	299 2.64	6	5	2	3	193	.2	2	2	79 1.09 .164	6	17 1.05	28	.19	3 1.40	.03	.18	1	27
90-JT6-14M	1	223	2	37	.2	18	15	365 3.05	10	5	2	3	190	.2	2	2	102 1.05 .167	7	50 1.16	42	.17	2 1.39	.04	.14	1	74
90-JT 6-16 M	1	182	2	16	.4	10	14	228 2.30	13	5	2	2	174	.2	2	2	97 1.47 .313	10	17.72	28	.18	2.94	.04	.10	1	67
90-JT6 -18M	1	234	3	25	.3	13	14	256 4.29	7	5	2	3	186	.2	2	2	143 1.31 .267	11	16 .84	31	.15	3 1.09	.04	.10	1	62
90-JT 6-20 M	1	166	3	17	.4	11	9	164 3.15	12	5	2	4	213	.2	2	2	98 1.32 .248	11	17.42	18	.13	7.84	.04	.08	1	45
90-JT6- 22M	1	129	2	21	.4	7	8	222 2.92	8	5	2	2	245	.3	2	2	100 1.49 .292	10	9.58	17	.15	8 1.06	.02	.04	1	80
90-JT6-24M	1	103	2	21	.4	8	9	264 3.48	2	5	2	1	172	.3	2	2	120 1.32 .275	9	14.76	14	.15	8 1.04	.02	.06	1	74
90-JT6 -26M	1	186	4	16	.7	6	8	195 2.01	7	5	2	2	189	.2	2	4	76 1.41 .296	10	18.50	17	.14	2,91	.02	.06	1	120
90-JT6- 28m	1	202	2	22	.7	8	11	217 2.90	5	5	2	1	169	.2	2	2	117 1.28 .248	9	11 .66	18	.18	2.96	.03	.09	1	89
90-JT6-30M	1	271	2	30	.7	10	14	313 3.53	5	5	2	2	165	.3	3	2	119 1.20 .222	9	13.98	27	.19	3 1.23	.04	.14	1	84
90-JT6-32M	1	293	3	47	.6	11	11	395 3.22	4	5	2	1	216	.2	2	2	105 1.36 .246	17	15.95	37	.23	12 1.29	.04	.09	1	75
90-JT6-34M	1	257	2	22	.9	8	9	243 3.87	4	5	2	2	244	.3	2	2	147 1.40 .268	10	14 .54	18	.18	3.97	.03	.09	1	162
90-JT 6-36M	1	152	2	18	.5	5	б	218 2.18	4	5	2	1	234	.2	2	2	81 1.17 .209	8	8.50	15	.13	8 .89	.03	.06	1	94
90-JT6-38M	1	142	3	31	.4	10	11	351 5.74	10	5	2	2	180	.5	2	3	183 1.04 .220	6	13 .81	25	.17	8 1.19	.02	.09	1	59
90-JT6-40M	1	138	2	23	.7	7	7	287 3.06	5	7	2	3	217	.2	3	2	116 1.16 .208	8	10.59	23	.17	2 1.09	.02	.07	1	98
90-JT6-42M	1	263	2	24	.6	11	9	282 3.34	6	5	2	2	145	.3	2	2	116 .91 .182	7	13.61	31	.13	5,91	.03	.07	ī	109
90-JT6-44M	1	450	3	30	.5	14	11	379 3.30	7	5	2	2	134	.3	2	2	103 .81 .163	7	14 .87	47	.16	6 1.22	.02	.12	1	53
90-jt6 -46 M	1	229	2	36	.4	10	10	435 3.30	5	5	2	2	283	.4	2	2	130 1.26 .242	10	10 1.26	18	.17	2 1.50	.03	.04	1	47
90-JT7-1M	2	152	3	12	.8	3	9	251 2.06	4	5	2	1	207	.2	2	2	55 1.51 .204	6	5.17	17	.20	8.91	.01	.03	2	22
90-JT 7-2M	3	208	5	31	1.1	4	15	573 3.45	9	5	2	1	181	.3	3	2	78 1.16 .173	6	6.46	27	.19	19 1.09	.02	.04	4	91
90-JT 7-3 M	1	144	2	10	1.2	4	7	267 1.71	9	5	2	2	176	.2	2	2	46 1.31 .190	6	6.12	20	.19	53.69	.01	.04	5	66
90-JT7-4M	2	160	3	б	.9	3	9	279 1.80	5	5	2	2	240	.2	2	3	50 1.40 .174	6	5.07	21	.22	37.76	.01	.04	2	69
90-JT7-5M	2	114	5	5	.8	5	9	261 1.32	5	5	2	2	262	.2	3	3	44 1.63 .169	6	7.05	16	.19	72.89	.02	.04	1	43
90-JT7-6M	2	108	3	8	.5	4	8	242 1.49	4	5	2	1	173	.2	2	2	36 1.15 .143	5	7.07	19	.16	117 .69	.02	.03	2	68
90-JT 7-7 M	3	127	2	21	.7	4	10	257 2.22	5	5	2	1	125	.2	2	2	40 .99 .172	5	7.27	28	.18	45.66	.02	.05	1	55
90-JT 7-8M	2	268	2	56	1.2	10	11	488 2.76	5	5	2	1	121	.2	2	2	53 .97 .175	5	19.79	30	.19	34 1.09	.02	.18	1	95
90 -jt7-9m	2	175	2	43	1.1	5	11	452 2.78	3	5	2	2	71	.3	2	2	51 .60 .109	5	5.59	35	.18	8.84	.02	.10	1	61
90-JT 7-10M	2	123	2	30	.6	6	8	295 1.85	8	5	2	2	108	.2	2	2	40 .87 .135	6	7.40	35	.17	43 .69	.03	.06	1	38
90-JT 7-11M	2	149	3	19	.9	4	7	254 1.48	11	5	2	1	122	.2	2	2	43 1.13 .187	7	20.33	23	.18	78.64	.03	.05	1	65
90-JT7-12M	3	112	2	11	.6	5	6	204 1.07	6	5	2	1	106	.2	2	2	25 .92 .145	5	6.15	29	.13	155 .50	.02	.06	1	69
90-JT7-13M	3	131	3	15	.8	7	8	306 1.51	7	5	2	1	159	.2	2	2	37 1.11 .140	5	9.20	18	.16	86 .71	.02	.06	3	38
90-JT7-14N	3	227	3	36	1.1	10	11	351 2.22	2	5	2	2	164	.2	2	2	46 1.18 .172	6	13.52	20	.17	12.99	.02	.13	1	63
90-JT7-15M	1	147	5	58	.6	15	11	542 2.62	7	5	2	3	97	.2	2	2	54 .94 .164	5	27 1.09	29	.19	15 1.30	.03	.09	1	38
90-JT7-16M	1	107	4	47	.2	10	9	433 1.95	7	5	2	2	124	.2	2	2	47 1.02 .155	4	17.68	25	.18	8 1.01	.02	.08	1	68
0-JT7-17M	4	204	5	29	1.6	4	11	278 2.94	2	5	2	1	95	.2	2	3	37 .86 .177	4	4.33	32 [.]	.20	13.70	.02	.08	10	113
90-JT/-18N	2	94	6	7	.7	3	8	165 1.99	4	5	2	1	209	.2	2	2	40 1.34 .172	5	6.07	22	.22	9.77	.02	.04	4	149
10-JT7-19M	2	228	4	44	.9	9	11	345 2.63	2	5	2	1	105	.2	2	3	47 .90 .163	4	9.59	35	.20	9.87	.02	.11	1	54
90 -JT7-20X	2	91	4	6	.4	3	9	168 1.49	3	5	2	1	195	.2	2	3	37 1.27 .168	4	4 .09	25	.72	16 .65	.02	.05	2	56

Au* ß Ħg Вa 11 AI Na Sb Bi V Са La ٦Ĉ٢. Cđ Th Sr Au Cu Pb Zn Åg Ni Сo ₿n Fe As H ELEMENT Mo 2 2 ž 8 % DOM ppin % DOR 8 DDA DDG לכפ DDB DDB DDA DDR ž DDW DD 🗈 DDM DD DDß DDÐ DD® DDP ppn DDM DDG DDR SAMPLES DDN .11 28 1.01 .01 .04 2 40 10 .04 19 2 46 1.88 .147 3 .2 2 2 5 2 1 301 227 1.06 32 7 1.0 7 9 2 649 90-JT8-G6 32 13 1.01 .02 .80 39 .17 .06 1 24 3 7 56 1.03 .172 4 12 393 2.15 5 2 1 148 1.0 4 53 .6 13 1 127 80 90-JT8-1M 20 .68 .01 7 42 1.49 .174 5 6 .07 22 .16 182 .05 1 2 2 1 186 .2 5 9 .5 3 290 .81 3 76 7 4 2 90-JT8-2M 32 .19 78.51 .02 .07 64 5 .11 42 1.14 .166 g 2 8 174 1.08 3 5 2 160 .2 3 8 1.1 6 1 103 2 90-JT8-3M 88 .12 30 .16 76 .57 .02 .06 1 9 53 1.04 .170 6 .2 2 4 5 2 1 164 224 2.70 10 .8 9 5 148 7 11 6 90-JT8-4M 32 33 17.74 .02 2 5 9 .18 .17 .05 8 52 1.43 .201 279 .2 2 5 2 12 .5 5 201 1.41 4 1 2 115 4 90-JT8-5M 3 44 2 74 1.12 .203 34 .16 18 1.33 .02 .07 26 1.19 1 170 б 699 3.01 5 5 2 .4 3 77 .9 15 11 1 205 6 90-JT8-6M 38 32 11 .30 34 .84 .02 .06 10 43 1.38 .194 .18 4 273 2 13 293 2.09 8 5 .4 1 3 142 14 1.0 9 90-JT8-7M 36 2 .20 24 .17 61 .85 .02 .05 8 48 1.72 .230 б 10 2 5 5 2 1 225 .3 318 1.43 3 12 1.0 7 8 1 158 90-JT8-8M 37 59 1.03 .01 9 53 2.08 .215 .15 .04 5 8 .06 19 5 2 1 275 .3 2 246 1.64 3 154 2 8 1.0 8 90-JT8-9M 55 2 .15 21 .77 .02 .04 7 45 1.70 .224 18 б 5 .06 1 208 .2 2 5 5 2 1 206 2 6 1.1 12 199 1.43 90-JT8-10M .66 2 42 5 .13 31 .16 23 .02 .05 5 48 1.38 .184 2 8 2 1 183 .2 2 103 .8 9 235 1.50 6 12 4 90-JT8-11M 32 6 1.02 .02 .Û6 1 44 4 64 1.30 .192 5 .65 .15 13 5 1 204 .6 2 468 2.15 4 5 43 1.3 11 12 90-JT8-12M 1 275 2 28 5 32 .20 8 . 89 .02 .07 5 99 1.23 .187 15 .66 5 2 1 144 .7 .8 11 12 455 3.93 5 7 49 90-JT8-13M 1 230 17 64 1.02 .159 .38 37 .15 9 .ó5 .02 .09 3 5 13 132 .2 2 9 5 291 2.25 2 5 1 .6 8 2 23 1 115 50-JT8-14M 2 33 32 .14 25 .56 .02 .Ûó 36 1.12 .172 б 8 .13 139 .2 2 5 5 2 1 8 305 1.13 3 2 10 1.0 4 90-JT8-15M 1 140 2 11 .81 .01 .04 49 1.57 .176 5 6 .lÛ 22 .14 19 .2 2 6 218 2 1 3 9 438 1.16 3 5 92 2 .4 4 30-JT8-16M 1 Au' 6 A. Na Ĵδ La Cr Mg SЗ Ti ۷ Th Sr Cd Sb Bi U Au ELEMENT PD Zn Ag. tij. C٥ Ën Fe As ĦО. Cu ŝ ž 8 DDR % DDA DDM DDD 8 % DDA 0D0 **DD**D DD∄ ž DDA DDA DOW DDa 000 DDB DDA SAMPLES DDM DDD 000 DDM DDa DDA ppm DD® .85 32 .02 .18 1 -92 15 .07 6 1.26 5 112 .40 .222 6 4.54 5 2 60 .2 3 4 1 51 .4 10 9 243 19 LN 6+50N 0+25E 4 138 9 .02 .08 1 48 4 .45 3 7 .18 19 .09 2 80 .28 .108 2 1 59 .2 2 5 5 2 7 74 2.93 19 LN 6+50N 0+50E 5 99 2 20 .2 .22 6 .02 .08 200 10 43 .06 .45 1 71 .29 .156 4 2 4 6 5 2 1 40 .4 7 7 107 2.79 5 98 б 40 .3 19 LN 6+50N 0+75E 5 .30 .01 .05 1 61 .12 38 .04 33 .33 .072 2 5 2 2 5 2 1 33 .2 .2 8 74 1.44 19 LN 6+50N 1+00E 98 44 4 2 4 3 460 17 1.21 3 1.49 .02 .15 43 .09 2 2 124 .71 .195 9 5 2 72 1.5 5.98 17 15 25 551 19 LN 6+50N 1+50E 7 677 19 46 .4 2.94 .01 .07 8 130 б 9 .21 21 .15 51 .2 3 129 .26 .146 5 2 1 10 155 5.17 41 4 183 5 20 .6 6 19 LN 6+50N 1+75E .15 3.40 .01 .05 1 41 34 .07 4 .14 .133 2 1.91 5 2 1 36 .2 2 2 63 69 10 58 4 60 4 .4 4 19 LN 6+50N 2+00E 4 4 51 2 2.78 .01 .10 30 1.02 30 .16 2 164 .34 .128 8 444 7.79 2 56 1.0 5 1 18 9 4 4 372 11 57 .3 17 19 LN 6+50N 2+25E 2 34 32 .11 2.96 .01 .04 .11 .328 10 11 .06 5 2 1 25 .2 2 125 4 135 8 74 6.52 19 5 30 .8 7 19 LN 6+50N 2+50E .01 1 37 25 .05 3 .37 .05 2 8 .08 .16 .081 2 32 .2 2 2 48 2.13 2 5 1 5 68 58 2 22 .1 19 LN 6+50N 2+75E 3 81 6.67 .02 .10 1 .27 15 .10 .2 .29 .164 4 7 2 1 81 2 4 107 5 2 97 5 21 .3 3 8 97 4.19 19 LN 6+50N 3+00E 4 .01 .09 1 61 5 10 .67 19 .09 2 1.00 .24 .325 50 .2 2 2 150 2 13 172 7.82 5 1 6 400 7 37 .6 5 19 LN 6+50N 3+25E 4 .57 .01 .08 1 63 21 .06 3 7 .29 .21 .259 2 35 .2 2 3 94 4 129 .5 121 4.66 12 36 7 19 LN 6+50N 3+50E 1 10 .27 .55 .01 .07 5 27 .07 4 .2 2 3 93 .22 .157 4 2 40 5 101 4.16 19 LN 6+50N 3+75E 4 169 5 27 .5 2 9 6 .33 2.69 .01 .07 1 -34 8 16 .05 .2 2 2 .16 .277 4 37 97 114 5.08 5 5 4 197 Q 26 .3 8 19 LN 6+50N 4+00E 3 3.58 .01 .06 1 21 8 .23 45 .04 29 .2 2 5 68 .15 .223 4 89 3.92 2 5 .5 19 LN 6+50N 4+25E 3 161 30 8 4 .01 .12 42 4 1.00 1 .26 .177 10 .69 28 .07 .2 2 2 110 4 39 5 19 LN 6+50N 4+50E 4 337 11 5 8 195 4.89 42 . 4 .02 2 510 2 1.19 .13 .67 .207 41 .09 3 123 6 13 1.00 79 .3 2 305 5.05 10 5 12 19 LN 1+50N 0+25E 5 254 9 36 .1 11 2 1.63 .02 .13 2 360 17 1.31 47 .10 8 .3 2 2 145 .84 .244 91 9 19 LN 1+50N 0+50E 6 477 15 23 709 6.48 14 44 .4 .01 4 370 2 1.35 .20 15 1.19 93 .10 2 143 .96 .211 9 2 91 1.4 19 LN 1+50N 0+75E 5 767 22 .5 15 26 481 6.75 10 45 5 430 2 1.44 .01 .13 7 16 1.09 51 .09 .67 .255 2 2 82 .2 144 6 249 265 5.45 6 19 LN 1+50N 1+00E 39 .3 9 12 g 1 180 13 1.36 53 .12 2 1.81 .02 .39 .71 .302 92 .6 2 2 101 4 12 976 5.36 2 19 LN 1+50N 1+25E .6 9 7 441 8 63 3 .70 .01 .06 1 44 8 .10 39 .24 3 50 .2 2 2 94 .21 .056 54 7 5 2 1 19 LN 1+50N 1+50E 3 1.47 3 19 14 14 .5 5 1 370 38. 2 01 .04 26 15 2 2 67 18 021 3 ٨ 04 ٩ 10 2 20 72 5 c 2 10 10 1. CON 1. TEP

with white the second state

See. 33

ELEMENT Мo £и Pb Zn Aq Ni C٥ ສົກ Fe As H Au Th Sr C٥ Sb Bi ۷ Са La Cr ₩g 8a Ti ₩ Au* % DOM DOM DOM 8 8 DDQ DOM DDM DDM DDA DDa DDa DDD DDa 000 DDD DDM 8 ppn DDM % 5 SAMPLES 007 ppa DDA ០០គា DOM DOD 50 .24 .323 18 13 5 2 .2 2 6 19 LN 1+50N 2+00E 4 43 24 .8 4 9 115 7.99 4 1 7 260 . 48 43 .20 6 2.03 .01 .64 1 40 2 13 14 2 281 1.03 3 5 2 1 57 .8 2 2 47 .27 .102 5 5.08 24 .21 4 .81 .01 19 LN 1+50N 2+25E - 7 1.1 1 .25 1 2 8 26 6 329 5.85 2 5 .24 .199 17 3 118 .6 9 2 1 58 .2 2 2 5 19 LN 1+50N 2+50E 140 .65 29 .15 2 2.01 .01 .04 2 11 12 .6 5 5 1 44 .2 2 51 .24 .028 5.09 9 2 59 .76 2 2 5 22 .17 4.84 19 LN 1+50N 2+75E 2 8 1 .02 . (i4 1 5 28 5 5-2 3 26 .2 2 2 151 .17 .426 19 LN 1+50N 3+00E 6 114 16 .3. 11 763 7.99 4 9 14 .56 34 .19 10 3.13 .01 .03 1 4 29 .2 2 13 28 1.2 2 3 646 1.94 5 2 6 .13 19 LN 1+50N 3+25E 2 17 4 1 44 .15 .146 15 .08 4 .78 .04 .67 1 3 5 113 12 39 15 19 LN 1+50N 3+50E 2.0 11 22 380 11.71 47 1.7 2 2 285 .21 .294 7 11 .26 51 .09 2 1.65 3 .01 .02 47 19 LN 1+50N 3+75E 6 128 8 32 .8 5 13 305 9.78 9 5 2 1 34 1.0 2 3 201 .21 .374 7 12 .16 32.09 2 1.58 .01 .02 1 200 7 .3 3 2 5 1 75 2 19 LN 1+50N 4+00E 1 15 13 8 99 3.86 2 .2 2 101 .33 .016 3 8 .04 14 .10 3.37 .01 .01 1 29 26 7 63 .6 4 2 39 .48 3 5 2 1 87 :2 2 2 19 LN 1+50N 4+25E 1 2 10 .67 .096 2 .06 125 .01 8 .21 .01 3 .64 1 2 17 19 LN 1+50N 4+50E 12 17 .7 6 6 70 3.87 3 5 2 1 45 **.**2 2 2 122 .16 .074 3 9 .10 37 .18 3.67 2 .01 .25 18 16 1.6 36 16 3 5 2 48 .2 2 2 145 .20 .302 11 .18 19 LN 1+50N 4+75E 4 3 7 90 5.02 1 58 .18 8 1.15 4 .01 .07 2 18

Cu Po Zn Ag Ni Co ELEMENT NO Ħn fe As U Au Th Sr Cd Sb Bi V Сa P La Cr mg 8a Ti Al Na ₩ Au' 8 SAMPLES DOM DOM DON COM DOM DOM DOM DOM š 200 200 % DDM % DDm % ž daa maa s 19 LN 1+50N 5+00E 2 54 .4 5 2 14 .32 .071 2 2 .04 19 .03 5 46 1 75 .77 2 5 2 1 31 .2 2 3 .26 .01 .03 1 ó 19 LN 1+50N 5+25E 2 53 2 68 3.3 5 2 185 :.52 2 5 2 1 51 .2 2 2 27 .24 .101 2 2 .06 41 .04 3 .13 .01 .06 1 5 19 L 6N 3+75E 13 2 257 .39 .291 6 13 1.40 31 .10 15 50 .1 12 13 346 8.57 5 2 1 51 .3 2 14 121 2 1.62 .01 .27 2 40 6 12 .47 19 L 6N 4+00E 7 109 21 39 10 5.78 30 .2 2 2 182 .7 10 193 4 2 1 .12 .457 19.07 2 1.01 .01 .07 3 760 19 L 6N 4+25E 6 159 11 49 .3 7 9 107 4.52 6 5 2 27 .2 2 2 117 .12 .228 1 5 9.20 22.08 2 .58 .02 .07 2 100 19 L 6N 4+50E 3 154 13 44 4.57 5 5 2 .2 2 98 .11 .254 .2 8 128 2 26 4 9 .39 16 .04 2 .71 .01 .10 1 29 19 L 6N 4+75E 81 3 71 .6 2 3 31 1.11 2 5 2 1 .3 2 2 23 .14 .098 13 2 2 .04 12.02 2 .28 .01 .03 1 21 19 L 6N 5+00E 98 5 55 .3 6 14 179 3.38 6 5 2 .2 2 63 6 1 24 2 .35 .156 3 5.48 25.04 4 .67 .01 .09 1 84 19 L 5+50N BL .2 14 7 178 3 39 10 173 5.99 6 2 52 2 2 141 19 1 .2 .43 .529 7 21 .80 29.07 2 1.24 .02 .08 4 85 19 L 5+50N 0+25E .1 11 10 242 5.16 5 50 .3 4 144 3 5 2 1 56 2 2 134 .44 .203 6 16 1.00 36 .10 2 1.26 .02 .18 2 113 19 L 5+50N 0+50E 7 152 2 34 .1 10 10 171 5.20 10 5 2 54 .2 2 .31 .227 1 2 121 6 17 .59 19.08 7 .87 .02 .08 4 350 19 L 5+50N 0+75E 6 178 11 165 5.52 16 10 39 .2 17 5 2 .4 2 144 .38 .262 1 55 2 6 20 .82 34 .08 8 1.11 .02 .08 4 320 19 L 5+50N 1+00E 50 6 724 2 .4 16 24 525 5.86 10 5 2 1 82 .7 2 2 128 .82 .222 9 16 1.25 92 .10 10 1.43 .02 .19 3 330 19 L 5+50N 1+25E 2 2 140 .88 .226 10 17 1.30 114 .10 13 1.47 .02 .22 6 993 10 56 .5 18 28 573 6.52 19 5 1 81 1.1 4 3 950 19 L 5+50N 1+50E 5 381 2 68 13 17 306 4.95 5 2 .2 3 .72 .175 6 15 .96 61 .08 .4 7 1 77 3 119 4 1.12 .02 .15 1 308 19 L 5+50N 1+75E 77 8 15 1.63 38 .11 5 3445 24 60 2.4 14 30 1016 9.64 9 5 2 1 1.9 6 2 125 .77 .331 3 2.91 .01 .27 23 920 19 L 5+50N 2+00E 2 19 2 115 6 56 .5 3 2 122 1.39 2 5 2 1 16 .2 2 .08 .058 6 .07 27 .10 7 7 .36 .04 .06 2 86 19 L 5+50N 2+25E 14 14 323 9.22 3 317 4 48 .7 16 5 2 1 51 .9 3 2 110 .21 .118 14 20 .95 25 .16 7 2.17 .01 .05 17 200 19 L 5+50N 2+50E 7 158 16 35 1.0 4 12 277 12.32 29 5 2 1 41 2.4 7 2 136 .18 .204 13 12 1.22 73 .12 2 3.05 .01 .08 2 9 19 L 5+50N 2+75E 54 11 25 .1 2 8 78 3.65 2 98 4 9 5 2 1 34 .2 2 .14 .091 3 7 .20 25 .11 2 .52 .01 .06 2 16 19 L 5+50N 3+00E 5 149 12 50 .5 7 179 4.90 2 5 2 .2 2 7 1 47 2 106 .22 .273 9 10 .36 44 .07 2 .78 .01 .07 6 15 19 L 5+50N 3+25E .2 3 3 38 8 66 .3 7 8 313 5.11 4 5 2 1 40 2 121 .22 .223 4 7 1.08 89 .18 10 1.53 .01 .36 3 33 19 L 5+50N 3+50E 7 188 55 .5 10. 5 .9 2 2 203 7 14 453 8.74 13 2 1 40 .22 .316 5 14 1.04 19 .08 3 1.60 .01 .08 3 4 19 L 5+50N 3+75E 55 13 42 2 207 .25 .403 5 15 .89 24 .08 10 144 19 .4 8 16 504 8.08 5 2 1 .2 2 3 8 3 1.38 .01 .09 19 L 5+50N 4+00E 6 198 63 1.3 9 3 2 139 2.09 274 .2 2 2 27 3.65 .153 20 10 .08 159 .03 2 .97 .02 .03 1 2 19 L 5+50N 4+25E 16 69 13 27 1.1 3 11 118 6.04 5 5 2 1 52 2 2 290 .24 .064 .4 8 .12 25 .37 4 2 .72 .01 .04 3 29 19 L 5+50N 4+50E 3 24 12 28 .1 3 8 2 5 7 96 2.85 2 1 57 .2 2 3 100 .25 .082 3 .04 30 .21 7 .35 .01 .04 2 450 19 | 5+50N 4+75F 4 77 2 94 30 7 70 1 1 7 2 ٢ 2 4 10 2 2 n 00 f:f . Ω. 01 : 0 . .

																										1	
	ELEHENT	Ħо	Cu	РЬ	Zn	A 9	Ni	Co	¥n Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V Ca	Ρ	La	Cr Mg	Ba	Ti	B A1	Na K	¥	Au*
	SAMPLES	ppa	ppm	ppa	ppm	ppm	₽₽₩	ppn	ppe %	pp≞	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppa %	*	DDW	ppm 🎖	ppn	ŝ	ppn %	% %	opa	ppb
90J	T3-1M	2	4444	2	57	3.5	13	12	938 3.22	7	5	2	1	90	.4	4	2	89.8	1.165	4	20 2.20	91	.23	15 2.03	.04 1.28	7	220
90J	T3-2M	4	1329	3	53	1.6	10	12	919 3.76	3	5	2	1	152	.3	3	2	85 1.0	0.173	4	6 1.79	73	.23	4 1.89	.04 .78	4	46
90J	T3-3M	2	1437	5	58	.8	10	11	1047 3.46	7	5	2	1	138	.2	3	2	93 1.1	6.164	4	9 1.99	92	.24	4 2.04	.03 1.31	2	26
90J	T3-4M	2	999	3	57	.7	11	13	928 3.71	11	5	2	1	110	.2	3	2	83 1.1	6.169	5	8 1.85	92	.21	12 1.88	.04 1.09	1	80
903	T3-5M	1	1250	3	68	.8	13	12	931 3.70	2	5	2	1	165	.4	2	2	85 1.5	6.182	4	11 1.99	84	.22	2 2.06	.02 1.17	1	60
90J	T3-6M	4	502	4	34	.5	10	9	444 4.92	5	5	2	1	33	.2	2	2	106 .6	5.165	4	16 1.00	59	.26	3.90	.03 .48	8	42
900	T3-7M	4	112	3	38	.2	8	8	413 4.02	2	5	2	1	49	.2	2	2	97.7	9.168	3	9 1.21	57	.26	7 1.05	.03 .70	14	25
90J	T3-8M	12	260	4	41	.3	9	10	471 5.87	9	5	2	1	77	.2	4	2	101 .8	9.173	3	10 1.18	50	.25	10 1.20	.04 .60	11	28
90J	T3-9M	5	295	7	48	.4	13	13	589 4.79	5	5	2	1	81	.2	2	3	114 1.2	1.169	4	20 1.34	73	.29	8 1.37	.05 .88	23	28
90J	T3-10N	13	160	30	55	2.1	8	7	509 6.18	7	5	2	1	40	.2	2	7	120 .6	4.177	3	10 1.67	53	.26	5 1.37	.03 .99	16	52
90J	T3-11M	5	457	12	81	.8	13	27	1052 5.53	6	5	2	1	89	.2	. 2	2	133 1.6	7.187	5	15 2.26	64	.25	2 2.22	.04 .89	1	19
90J	T3-12M	4	204	4	80	.6	9	15	902 4.29	9	5	2	1	112	.2	2	2	118 1.0	1.178	5	10 2.19	124	.25	7 2.19	.03 .93	1	8
90J	T3-13M	2	86	4	111	.4	17	12	998 4.40	12	5	2	1	177	.2	3	2	133 1.2	8.239	3	13 2.72	127	.28	4 2.78	.03 1.78	1	б
90J	T3-14M	2	143	4	83	.4	38	17	939 4.43	3	5	2	1	115	.2	2	2	117 1.2	5.178	3	54 2.38	105	.35	2 2.36	.03 1.45	2	8
90J	T3-15M	3	306	4	95	.6	12	22	1115 4.54	13	5	2	1	131	.2	3	2	133 1.2	5.201	3	12 2.36	104	.27	9 2.47	.04 1.49	1	7
90J	T3-16M	3	251	4	83	.3	15	17	983 4.50	9	5	2	1	138	.2	4	2	130 1.0	8.170	3	21 2.29	110	.29	2 2.49	.04 1.59	1	9
900	T3-17M	4	156	4	74	.5	10	16	905 4.32	8	5	2	1	118	.2	2	2	108 .9	8.183	3	9 2.08	108	.27	2 2.18	.04 1.29	1	18
90J	T3-18₩	3	177	3	76	.5	12	15	857 4.69	10	5	2	1	112	.2	2	2	120 1.0	3.184	3	11 2.13	94	.26	13 2.15	.04 1.25	1	17
90J	T3-19M	3	277	6	83	.4	18	16	932 4.66	16	5	2	1	161	.2	3	2	114 1.2	9.204	3	26 2.32	89	.26	2 2.45	.03 1.07	1	6
90J	T4-1M	1	61	2	29	.2	7	10	355 3.62	7	5	2	1	226	.2	2	2	84 1.5	8.252	8	7.61	32	.18	4 1.17	.04 .08	1	20
90J	14-2M	2	189	4	31	.4	8	16	444 4.83	10	5	2	1	192	.2	2	2	103 1.3	7 .181	6	11 .88	21	.21	5 1.35	.04 .09	1	30
90J	T4-3M	1	206	3	59	.3	29	23	638 6.71	18	5	2	1	159	.3	4	2	174 1.4	7.271	8	56 1.50	50	.19	2 1.95	.04 .15	1	18
90J	T4-4M	3	169	5	46	.4	11	19	588 6.30	15	5	2	1	156	.3	2	2	155 1.2	6.253	6	13 1.25	41	.19	2 1.79	.02 .16	2	43
90J	T4-5M	16	636	6	63	.8	13	32	647 9.05	20	5	2	1	118	.4	3	2	214 1.3	8.386	9	27 .82	31	.16	2 1.67	.02 .13	1	67
90J	T4-6M	3	147	5	19	.3	4	14	306 4.41	9	5	2	1	193	.2	2	2	76 1.6	1.307	7	4.45	20	.18	8 1.01	.03 .08	1	24
90J	14-7M	1	73	2	27	.1	6	10	390 3.64	9	5	2	1	284	.2	2	2	89 2.2	5.377	7	7.60	10	.19	7 1.35	.01 .04	1	11
90J	T4-8M	1	109	2	24	.2	б	13	393 3.19	5	5	2	1	233	.2	2	2	84 2.0	4 .340	7	7.54	20	.17	8 1.31	.02 .14	1	21
90J	T4-9N	1	154	3	35	.3	10	18	404 5.41	6	5	2	1	174	.2	2	2	124 1.7	8.334	7	11 .75	39	.17	2 1.25	.02 .24	1	38
90J	T4-10N	- 1	308	3	33	.3	9	23	581 4.39	5	5	2	1	187	.2	2	2	101 1.6	.297	7	11 .91	61	.17	2 1.54	.02 .29	2	36
90J	T4-11N	6	776	5	59	.6	11	37	715 5.72	12	5	2	1	194	.2	2	2	131 1.7	1.385	8	14 1.32	66	.20	6 1.98	.02 .38	1	75
90J	T4-12M	1	143	2	41	.1	13	20	482 5.15	8	5	2	1	154	.2	2	2	134 1.7	5.257	5	27.78	38	.23	5 1.40	.01 .22	1	24
90J	T4-13M	2	71	2	23	.1	6	11	328 3.32	8	5	2	1	222	.2	2	2	81 1.8	.284	7	5.45	27	.17	8 1.15	.02 .07	1	45
90J	T4-14M	13	42	2	18	.2	4	9	254 2.84	2	5	2	1	149	.2	2	2	61 1.1	3 .191	7	5.34	37	.16	2.80	.02 .09	1	99
90J	T4-15M	2	114	2	48	.2	9	14	499 5.73	13	5	2	1	164	.2	2	2	110 1.6	3.340	7	11 1.02	30	.21	11 1.48	.02 .18	1	70
90)	T4-16N	6	190	4	39	.4	8	23	571 7.79	18	5	2	1	167	.4	5	2	153 .9	6.146	4	9 1.24	36	.22	5 1.81	.02 .15	1	85
90J	T4-17M	5	203	4	47	.7	10	25	742 6.49	11	5	2	1	149	.2	2	2	136 .9	7 .162	4	9 1.79	33	.17	2 2.03	.02 .17	1	138
90)	T4-18N	2	107	2	40	.3	9	22	651 5.98	9	5	2	1	127	.2	3	3	139 .9	8.192	6	8 1.54	36	.15	2 1.66	.02 .15	1	45
90J	14-19M	3	267	4	33	.4	7	16	795 4.43	11	5	2	1	67	.2	2	2	61.6	4 .152	8	3 1.24	95	.17	4 1.78	.01 .45	5	95
900	T4-20M	2	177	2	32	.2	7	14	777 4.06	9	5	2	2	56	.2	2	4	86 .5	1.104	8	4 1.16	184	.15	2 1.57	.02 .40	1	35
90J	14-21M	3	142	3	33	.2	13	14	953 3.59	7	5	2	2	33	.2	2	2	58 .5	3 .170	7	12 1.24	158	.05	2 1.84	.01 .47	1	64
90J	14-22M	8	97	3	42	.1	14	14	809 3.94	16	5	2	1	109	.2	2	2	89.8	2 .150	6	14 1.62	70	.16	2 1.89	.03 .30	1	410
901	14-25M	1	157	6	20	.6	5	8	346 4.75	7	5	2	2	81	.2	2	5	80 .5	.121	6	4 .74	67	.23	2.96	.02 .11	2	330
901	14-24N	2	93	4	44	.1	7	9	662 4.10	6	5	2	1	99	.2	2	3	101 .7	1 .138	8	5 1.54	39	.19	7 1.75	.03 .17	1	134
901	14-251	2	119	7	56	.1	9	18	853 5.64	17	5	2	3	70	.2	2	2	106 .0	.134	10	5 1.67	39	.18	2 2.04	.03 .14	1	61

}

EL	No	~	Pb	-	Ag		Co		Fı		l.	· 1	T!	^.	۲. ۵۵۵	<u>ر</u> ب ۱۳۵۵	B	Y	׀ <u>ֶ</u>	0 %	۱- ۵۵۳	r r	°а	т: У	8 ^{x1}	Na %	v ž	\₩ DOB	A*
SAMPLES	ppn 2	ppn 64	o bbw	58 ₩dd	ppm 1	pps 7	ppm 14	ppn 564	6 1 5 9	ppm ס	ppm S	рря С	рра 1	bbii bbii	204 2	2 11 11	γµm γ	אַנקק קס	70 70	150	۳ ۲	21.35	26	.12	2 1.61	.01	.11	2	86
90J 14-20M 001 TA-27M	5	134	q	۵۵ ۵۵	•1	' '	10	724	4.30	2	5	2	2	112	.2	2	2	104	78	140	8	4 1.52	46	.18	2 1.66	.02	.14	2	200
003 TA-29M	3	238	2	17	.3	7	14	257	3 60	2	5	2	1	144	.2	2	2	89	1.12	.171	7	8.67	35	.12	4 1.08	.02	.08	2	62
001 TA-20H	3	188	2	23	.?	8	13	337	3.00	2	5	2	1	118	.2	2	2	95	.94	.184	, 6	8.74	28	.11	4 1.16	.02	.08	2	42
Q01 TA-20M	12	121	à	25	.2	5	13	383	A 45	2	6	2	1	156	.2	2	3	90	.78	.117	4	5.71	28	.17	2 1.05	.02	.08	3	29
901 T4-31M	2	40	6	23	.1	5	Ĩ	239	3.66	2	5	2	1	189	.2	2	2	91	1.15	.177	7	7.47	24	.15	9,96	.02	.08	1	24
Q01 T4-32M	ς	100	8	24	.2	5	11	307	4.14	2	5	2	1	267	.2	2	2	95	1.49	.233	5	9.74	23	.20	3 1.26	.02	.05	1	46
Q01 T4-33M	۵	120	. 2	28	.2	5	8	386	4 03	วิ	5	2	1	201	.2	2	2	108	1.72	.287	7	11 .88	20	.17	4 1.35	.02	.05	3	50
901 TA-34H	q	65	2	19	.2		16	270	6.61	2	5	2	1	236	.2	2	2	102	1.31	.176	4	5 .53	23	.17	2 1.05	.02	.05	2	27
90.1 T4-35M	ź	74	7	30	.1	8	10	384	2.95	2	5	2	1	275	.2	2	2	82	1.68	.223	6	9.82	22	.16	6 1.34	.02	.05	2	17
90.18-65	4	871	2	1	.1	3	14	186	.21	2	5	2	2	21	.2	2	2	8	.57	.208	5	3.01	348	.01	7 .53	.05	.11	1	12
90JT2-62	10	776	17	46	6.5	8	43	866	17.25	11	5	2	2	28	.9	2	2	44	.26	.146	4	6.81	55	.10	2 1.60	.01	.18	16	5150
90JT2-G3	1	352	3	113	.6	8	15	1540	4.57	2	5	2	1	104	.4	2	2	74	.79	.254	6	8 1.80	85	.14	5 2.09	.01	.30	9	99
90JT2-G4	2	87	9	49	.3	8	9	472	5.77	4	5	2	1	53	.5	2	2	124	.28	.191	6	16.73	55	.20	4 2.21	.01	.10	2	61
90JT5-1M	5	336	6	45	.1	10	14	671	4.21	5	5	2	1	34	.2	2	2	108	.51	.160	8	12 1.70	29	.10	4 1.79	.01	.11	2	27
90JT5-2M	4	257	7	53	.1	14	17	864	5.52	2	5	2	1	24	.2	2	2	110	.52	.203	6	12 2.18	27	.05	3 2.34	.01	.19	1	56
90JT5-3M	3	223	4	49	.2	10	12	613	3.50	2	5	2	1	85	.4	2	2	79	.70	.154	5	9 1.74	23	.12	2 1.77	.02	.22	2	11
ELEMENT	Но	Cu	РЪ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	¥	Ca	р	La	Cr Mg	ва	Ti	B Aĩ	Na	K	H	Au*
SAMPLES	ppa	ppm	ppn	DDM	ppn	ppn	ppa	ppa	8	ppa	ppm	ppn	ppn	ppm	ppm	DDM	PPn	ppn	*	8	ppm	ppm 🖇	ppm	8	ppm %	%	2	SDB	ppb
90JT5-4M	1	194	8	67	.2	12	15	699	4.64	5	5	2	2	124	.4	2	2	103	.89	.140	5	14 2.21	31	.19	5 2.45	.02	.33	1	92
90JT5-5M	2	107	7	45	.1	12	14	557	3.35	5	5	2	1	135	.2	2	2	73 :	1.01	.153	4	9 1.73	29	.15	5 1.84	.02	.27	1	37
90JT5-6M	1	119	4	52	.2	12	13	608	3.99	2	5	2	2	127	.6	2	2	83	.92	.156	4	9 1.99	24	.15	5 2.06	.02	.25	1	100
90JT5-7M	1	89	5	40	.1	11	10	493	3.18	8	5	2	2	151	.3	2	2	69	.99	.152	5	8 1.53	29	.18	5 1.69	.02	.32	1	48
90JT5-8M	2	111	3	18	.2	4	8	286	1.75	4	5	2	1	127	.2	2	2	49	.97	.136	5	3.52	24	.14	7.83	.02	.12	1	29
90JT5-9M	1	148	4	29	.1	5	8	375	2.33	2	5	2	1	105	.2	2	2	63	.85	.129	6	3.78	23	.14	5 1.00	.02	.13	1	54
90JT5-10M	1	- 77	5	33	.1	7	9	402	3.16	2	5	2	2	115	.2	2	2	78	.82	.135	6	4.95	29	.14	6 1.08	.02	.08	1	39
90JT5-11M	2	100	2	24	.1	5	7	362	2.14	2	5	2	2	127	.2	2	2	58	.85	.126	6	3.68	37	.14	4.90	.02	.13	1	38
90JT5-12M	1	190	3	50	.4	10	14	549	2.76	2	5	2	2	166	.3	2	2	70	.90	.142	5	8 1.41	25	.16	5 1.45	.02	.12	1	240
90JT5-13N	3	252	5	43	.3	7	15	541	3.36	9	5	2	1	135	.3	2	2	90	.79	.137	5	6 1.29	27	.15	5 1.45	.02	.13	1	42
90JT5-14M	1	197	5	31	.1	9	12	435	2.39	- 2	5	2	1	148	.2	2	2	67	.93	.145	5	8 1.05	30	.13	3 1.23	.02	.10	1	26
90JT5-15M	1	164	2	33	.1	9	11	423	2.53	4	5	2	2	197	.2	2	2	71	1.02	.150	5	8 1.07	23	.13	6 1.32	.02	.09	1	80
90JT5-16M	10	164	5	24	.2	5	20	285	3.93	6	5	2	2	73	.2	2	2	66	.52	.117	4	3.68	54	.19	6.82	.03	.14	1	640

.

	ŧc	÷.,	D -	7-	åc	63	fo	P -	Fe	AS	ü	Au	Th	Sr	ÛG	Sid	8i	۷	Ca	p	La	îr	۳q	Бa	11	8 AI	Na	•	W	* ¹
5640: ES	901	507.	000		09 505	-00	-00 -00	001	. • %	200	רפס	DDD	202	הספ	100	הפס	הספ	DDB	š	8	ppa	ppa	ŝ	₽D≞	<u>.</u>	DDn 🍾	\$	÷	005	::::
- 19-FA-R11	- T- 2	143	19	38	.5	13	20	6779	9.87	5	5	2	1	226	.5	3	2	218	2.43	.346	i2	44	. 94	135	.16	9 1.15	.02	.25	2	51
19-FD-012	-	125	45	452	.3	10	18	10994	4.21	7	5	2	1	130	3,4	2	2	123	1.20	. 199	7	17 (1.46	110	.15	8 1.82	.01	.24	1	- 5
119-FA-A12A	6	772	28	262	.8	13	46	16826	6.55	12	5	2	1	112	2.7	3	2	100	.81	.247	8	20	1.11	118	.14	2 2.04	.01	.:2	1	43
19-50-012	5	669	35	228	.8	12	41	15736	6.64	12	5	2	1	106	2.3	3	2	97	.74	.245	8	19	1.05	111	.14	9 1.90	.01	.1Û	1	74
90-619-201	1	466	6	92	.9	10	15	16034	4.80	б	5	2	1	37	.2	2	2	82	.56	.168	7	7	1.58	76	.08	5 1.98	.03	.23	5	50
905-19-X03	1	111	2	17	.5	25	17	2171	12.68	17	5	2	2	105	.3	2	2	339	1.12	.218	8	6	.18	112	.10	13.55	.11	.25	1	1
90F-19-X04	53	988	8	69	1.7	14	42	8601	10.52	13	5	2	2	56	.8	2	2	163	1.35	.297	9	10	2.74	118	.14	7 3.33	.01	.8Û	1	97
90F-19-X05	2	1182	14	43	3.1	12	19	366	6.45	17	5	2	4	92	1.3	2	2	102	1.72	.179	5	10	.93	205	.11	3 1.72	.08	.81	1	48
906-19-503	i	879	10	9	1.0	12	42	408	22.24	11	5	2	1	76	.3	2	2	965	2.28	.412	9	13	.17	26	.12	13 .4£	.02	.66	1	530
906-19- 504	1	827	2	.12	.6	11	17	219	10.54	6	5	2	1	159	.8	2	2	333	1.13	.290	7	11	.44	48	.11	11 .74	.06	.09	1	250
906-19-X02	2	5130	2	11	3.1	11	10	203	4.12	5	5	2	1	86	.7	3	2	56	.72	.140	4	29	.60	85	.08	10 .80	.04	.2Û	606	370
908-19-11	3	198	5	.90	.5	15	29	1842	7.01	2	5	2	1	42	1.6	2	2	42	.45	.149	19	8	.42	429	.01	2 1.57	.01	.13	1	11
905-19-W2	2	158	20	95	.4	9	28	2006	6.09	7	5	2	1	133	1.5	3	2	55	.94	.184	16	11	.53	795	.02	3 1.71	01	.11	1	13
90F-19-403	18	211	7	45	1.0	19	29	482	9.05	4	5	2	1	121	.5	2	2	8ó	. ວີບິ	.164	2	24	1.03	60	.10	2 1.40	.ÛÓ	.05	19	35
90G-19-W1	Z	188	8	8	7.5	6	2	72	2.72	73	5	2	14	9	.2	3	3	1	.Û4	.016	14	4	.02	175	.01	2.34	.03		i	-2
906-19-W2	-	98	6	59	.3	7	19	1405	4.87	2	5	2	1	270	.5	á	2	35	7.74	.151	4	13	1.83	191	.01	5.73	.02	.35	1	
90C19-R35	۲	11722	5	45	5.0	21	30	351	4.66	2	5	2	1	6 <u>9</u>	1.5	2	2	104	.55	.177	б	2	1.50	55	.14	31.43	i .03		1	41
90F-19-010		35248	11	12	25.7	64	141	37	13.36	15	5	2	1	i v t	4.3	4	ş	Ī	.53	4	2	÷	.08	ć	.01	11 .13	. 01	.15	1	
906-9-237	2	114	3	12	.1	с. С	22	215	4.11	5	5	2	í	94	.3	2	2	35	1.83	: 183	5	3	.91	27	.08	2.8	5 . 05	•	i	
986-19-011	5	1 55	ġ	17	.2	1.	13	231	2.91	7	5	2	Ź	95	, ź	2	Ż	57	.62	.153	б	10	.83	15	.19	91.0	1.09	.12	-	
906-19-012	3	159	3	15	.4	11	18	244	2.94	9	9	2	б	87	.2	2	2	83	1.3:	. 153	Ĩ	9	.79	22	.15	÷. 3	i. i	•••	1	-
905-19- 015	6	132	2	7	.2	3	24	102	3.44	2	5	2	3	64	.2	2	2	50	.89	. 174	5	5	. 47	55	.14	2.0	5 .0 5	•	÷	:
90G-19-R38	4	80	3	17	.1	8	26	257	3.90	11	5	2	б	100	.2	2	2	79	.99	.142	9	5	1.03	2:	.14	6 1.2	3.0/		1	
906-19- R39	5	184	4	15	.1	11	15	206	3.22	7	5	2	3	109	.2	2	3	76	1.11	.226	7	8	.53	25	.17	9.9) .08	i .10	1	3
906-19-R40	б	171	2	16	.2	9	15	278	3.08	10	5	2	4	121	.2	2	2	92	2.22	2 .171	5	8	.82	15	.13	8.9	30.6		1	
906-19-R41	3	99	4	12	.1	14	18	209	2.99	6	5	2	2	121	.2	2	Ź	60	1.83	.190	7	7	.46	21	.16	24 .8	U.U	- .	1	
906-19-R43	62	88	2	9	.2	8	7	124	1.91	2	5	2	1	30	.2	2	2	4Û	.23	3.059	2	7	.52	34	.06	3.6	3.03	لايه ا	3	و ا
90G-19-R44	7	121	4	20	.4	10	17	326	3.67	9	5	2	2	48	•2	2	2	108	.7	5 .177	5	12	1.43	41	.16	81.4	8.00) .22	1	34
90L-19-C1	2	140	2	75	.1	42	19	644	4.02	17	5	2	1	112	.5	2	3	59	2.10	J .118	7	29	.71	87	.05	6 1.6	8 .01	13	1	У
FI FMENT	м.	C	DL.	7				1	F . A.			TL C		4 01	n:	u	6 -	n		n Nia	0-	τ:	۵.	N1 N 1	. v	1.) Au	*			
	70 00		20	20	89	ט וא 	0 7	7/1 D.D.	re AS	U 	HU .	111 9	г i • • • •	U 3D	DI	¥ 700	ud 9	ר 1 א הי	Ld U	, riy • %	DD	וו איז 2	י ע חר	אוי ור פ פ	1 N 2 S	חח אד מת אחת:	h			
00_010_816	µµ≋ 1	201 271	451 4	אַק או	μμπ 1 1	ר פו גר אוי	a pl z v.	ノIII 75、つ	sµµ⊪ s7 ⊏	с hhш t	אן אין pi	pm pp 1 ⊑	µ µp ז	у у жүүм) ארש ארש	איץ 57 1	57 1	062 19	2 70. 2 70.	"° 7 ₹ <u>≬</u> ∩	۳۲۳ ۵5	.16	5 2 3	20 1	5.08	ייאק 1	1			
00-019-010 00-108-01	3	110	i A	۶۲ ۳۲	·1]	107 Z	5 41 6 30	10 2.	ניוט ארב	י ב	2	1 27	, . 5	22 02	2	J/ 1 75 A	12	137	Q S	, J.70 R QK	156	18	81	37 N	7 .02	, 1 3 ^r	â			
00-100-01 00-108-07	2	4900	4	20	2.2 1	7 I 10 2	U 33 N 24	50 J. 35 E	א זכ 27 ס	ວ ເ	2	7 21	с. С	, 2 , 1	2	75 4 130 1	27	183	6 (0.50 Q 53	31	.18	Δ (97 .01	8.09	1 1	0 0			
00~190 02 00~198-03	<u>р</u>	101	י ג	2.J 16	۰۱ ۲۰	10 2	U Z: 1 10	0K 3 27 J'	01 Z 00 7	ן ג	2	2 21	, , 7	2 2 7 7	2	75 1	24	202	4 1	7.48	78	.23	2	97 .04	5.15	2 20	0			
90 190 00 00-198-04	1	508	2	16	.U 5	ע כ 10	1 1) 1 1)	50 J. 87 1	ז ככ 75 7	5	2	1 27	ά.	<u>,</u> ,	2	102 1	.28	186	4	9 .63	42	.13	21.	06 .0	7 .10	1 1 3	9			
90 190 09 90-6198-05	1	170	2	0	.0 1	11 1	τι 2' Δ 1'	76 I. 27 O	AG 12	ן ב	2	2 14	у. 6	Δ	2	473 1	.43	405	Q 1	6.30	85	.12	3 .	61 .0	7.16	5 1 1	6			

90-0190-00 •1 II 14 2 50 1.41 .189 10 7 .35 116 .16 3 148 .2 90-G19B-07 .3 13 12 125 1.70 5 4 .79 .08 .18 1 3 14 2 2 3 349 4 .6 13 23 1222 5.85 5 .2 2 125 1.18 .211 7 8 1.67 67 .18 5 2.01 .05 .17 19 90-619-812 5 2 3 224 1 1 594 4 83 2 .2 2 2 70 1.27 .222 8 7 .23 44 .26 17 .61 .05 .10 90-619-813 .1 12 23 158 3.97 5 2 2 104 1 7 104 39 4 2 126 .2 3 124 .2 1 133 1.1 12 .7 10 18 230 4.30 13 3 60 1.03 .193 7 7 .33 94 .21 2 .71 .06 .16 90-619-814 2 2 1 349 5 6 5 5 4 7 40 29 6 .14 44 .17 29 .50 .05 .15 90-619-817 1.2 8 16 333 2.83 2 2 2 2 55 1.14 .175 7 1 3329 1 3 13 260 5 4 .10 71 .15 54 .47 .04 .16 4 46 1.47 .189 90-G19-B18 4 3209 2 10 3.0 3 1 186 1.45 2 2 2 1 2 2 23 .29 .171 15 1 .15 62 .01 3 .63 .03 .32 10 2 30 90-G19-F01 .1 3 9 183 4.55 3 2 .3 1 9 171 19 13

8

4

7 • 00 01 01 . 00 010 E01 4.4 5 3 005 03 33 000 3 5 6 4

ELEREN	Mo	้เม	Pb	11	Ag	81	ĩo	101	Fe	กจ	J	Au		Sr	υu	Sb	Ê.	•	٤Ĵ		La .	-	Ħg		i	l	i t	6		W		
SAMPLES	ppn	ppm	ppn	poñ	ppm	ppe i	DDR	ppm	ا %	DDW DI	DR P	DR C	opa p	pn	DDM	ppm	por	000	%	ŝ	DOE D	07	5.5	DDR	۵ DD	a(8	<u>,</u>	ۇ pd	r: Ç	DDD	
90-619 - FD3	3	100	2	106	.1	4	15 1	.155	4.76	26	5	2	13	136	1.1	2	2	24	3.30	.161	10	2	.35	63	.02	5.	68 .0	3. 80	9	1	1	
90-619-FÓ4	4	84	114	125	.4	3	5	137	4.12	50	5	2	2	34	1.0	3	3	33	.10	.165	16	2	.44	374	.02	5.	81 .()4 .4	9	1	4	
90-619-F05	5	96	5	14	.1	4	9	345	4.87	2	5	2	11	.14	.3	2	5	85	.80	.178	5	6	.53	49	.16	2.	87.(DE .1	0	1	9	
90-G19-F06	3	270	2	33	.1	. 9	25	878	5.13	9	5	2	14	150	1.7	2	Ź	92	5.43	.157	3	81	.22	95	.02	21.	21.0	06.2	27	1	7	
90-619-F07	42	1102	32	125	11.4	7	28	274	12.29	57	5	2	3	25	2.2	3	2	106	.26	.174	6	71	.33	117	.03	81.	94 .0	ja .2	1	1 (520	
90-619-F08	5	247	2	37	.2	5	19	434	6.10	6	5	2	1	91	.9	2	2	128	.77	.190	8	81	ŪÚ	89	.17	21.	36 .	07 .1	.4	2	39	
90-G1 9-Q01	8	2937	2	46	3.3	6	71	126	4.58	6	5	2	14	145	3.2	2	2	23	6.79	.073	3	31	.20	48	.01	2.	42 .1	. 20	.7	1	14	
90-617-808 (19)	5	68	4	6	.5	3	5	178	2.01	8	5	2	11	183	.9	2	2	47	1.85	.303	8	3	.14	47	.14 2	27.	64 .	03.0)7	1	19	
90-G17-B10 (19)	5	527	2	17	.1	9	30	273	6.06	5	5	2	2	64	.5	2	9	112	.82	.151	5	51	.05	41	.15	51.	10.	D4 .1	0	1	5	
90-G17-D09 (19)	3	123	5	43	.4	19	36	515	22.08	12	5	2	2 1	100	1.7	2	- 7	449	.77	.192	5	9	. 48	31	.10	4.	74 .	04 .0)6	1	11	
90F-17-811 (19)	4	7067	17	193	6.7	9	4	51	3.41	2	5	2	1	3	8.0	2	2	1	.03	.001	2	9	.01	1	.01	4.	02.1	01 .0)1	1 2	310	
	м.	r	DL	7		и:	^	M.,	<i>.</i>		_			r 4.	C	د م	6 5	01	u	٢.	Б		r		P.a	т:	D	43	N a	v	ы	Au*
. ELEMENT	50	LU	70	Zn	89	1	10	50	re پ	R	s 	0 1	1U	1 N	۶r عد	10	30	DI	V	5 ا م	۲ چ	Lð	Ur Doo	m9 9	Dd	11	D	n i 9	nd 9	л 9,	# • • • •	nu 000
000 10 000	ppa c	200	ppa	ppa	ppm 1 0	pp:: o	pp:n c	ppm 01	6 ۲۰۰۶	pp r1	n pp c	na p∤ ⊑	ງຟ bt	עת µ 1	ppm co	pps o	Rod	pp:s	ppm 10	ہ ج	6 C 1 0	ρ <u>ο</u> 2	د Mdd	° 02	۲ ۳۲۹	° 02	ے ۳44	ົ້	∿ ∩1	01	ppa 1	250
900-19-020 000 10 001	່ ວ	20 80) 0	4 4	1.0	07) 10	220	1.07) 1	0	ງ ເ	2	1	107	•2	2	4	12	1 04	-04Z	2	/ c	1 24	4 20	-03 25	2	.JZ	.01	11	1	200
900-19-021 000-10 000	2	43	0 2	40	•1	/	10	320	3.03	1	9 C	ך ב	2	1.	130	•2	2	2	סכ ר	1.00	.200	4) 2	1.24	00	.20	2	1.31	•04 01	11.	1	10
906-19-022	2	40	ے د	10	ر ۲۰	. 9	0	103	.50	1	0	о г	2	1	0 1 7 0	•4	4	2	25	.07	.022	2	0	.30	29	•01	4	.43	•01	.04 05	1	270
906-19-023	2	49		20	.2	ີ ວ ເ	0 10	207	2.10	1	0 2	2	2	2.	138	•2	4	2	32	1.00	.127	5	2	.29	42	•11	2	.01	.04	.00 no	1 5	320
900-19-020 000 10 806	2	2000) ()	122	.1	.) . (10	0/1	3.23	3	3	ר ר	2	2	04 100	.0	2	2	31	1.29	102	-	2	.91	11	.10	0 2	1.4/ CO	.02	.20) 1	410
906-19-020 006-16-927	4 2	431	04	133	1.0	0	13	1472	2.00	1	5 E	5 5	2	2.	109	5.1	2	2	12	3.3/	143	3 10	2	.32	101	•UI	2	.00	10.	.23	1	33 17
900-19-027	2	01 55 40C	2	01 55	141 2	2	72	100	3.02		ງ າ	ר ב ב זו	2	2	241 C	.4	2	2	43	1.91	101	10	4 16	.70	1010	.01	2	۲۶. ۲۲	.02	.20	C L	170067
900-19-F12 000-10-F12	3	1017) 4	100	141.3	ן ר	22	100	2.73		27	01:	00 20	1	0 1 2 E	4.0	2	20	0 60	1 12	.009	2	10	11.	15	•U1 1E	2	.30 2 A2	.01	.1/	0	179000
900-19-113 GOC_10_514	1	1017	4	111	1.4	14	23	1710 2771	2.93		1	ך ב	2	1	120	۰. د) ເ	2	00 52	1.10	1102			2.40	47	10	2	2.43	.02	, JZ 00	1	J09 11
900-19-F14 00C-10-E1E	1	131	:	00 5	• • • •	14	22	1000	2.91		ა ე	5 r	2	1.	10/	•4	2	2	52	1.24	.14/	2	10	2.21	۲۲ ۲۲	•10	2	2.30	.03	.00	1	11
900-19-119	1	20		עס כ זר ה	•1	. 13	15	1023	4.00		2	5 r	2	2	110		3	2	44 50	3.21	.11/	2	12	2.09	1/5	.01	2	2.10	.03	C1.	1	1
900-19-F10 00c_10_821	1	0C 272		9/0 < 30	1.	. 13 7	12	140	9.9U		2	5 5	2	1	101	•2	2	2	20	./5	.13/	2	1/	3.17	4/	.30	2	2.40	•01	.07	1	ע חיד
900-19-D31 00c_10-832	0	212		D 20 D 40	ייי איי	1	0	140	4.00	•	0	5	2	1	44	•2	2	5	70 70	. 39	.110	2	10	1 47	113	•21	10	.15	.04	-13	1	/0
900-19-03Z 000-10-872	1	740		2 42 D DC	.4 .1 r	y 7	3	309	2.00	1	U ว	5	2	1	235	•4	2	4	79	1.3/	.1/0	0	щ	1.4/	/9	.10	10	1.02	.04	. 39	2	4J 00
906-19-033 000-10-824	2	2440		2 20 2 27	2 3 0 2 1 3	0 0	1	335	1.91		3	2	2	1	238	•/	2	. 2	5/	1.80	.109	Ö	D	1 1 2	44	.13	8	1.10	.03	.08	1	92
900-19-034 00c-10-825	۲ ۲	3233		5 J/ 5 10	ν Ζ.U	ו י	13	932	2.50		3 5	5	2	1	190	.4	2	4	69	1.25	.183		9	1.12	22	.14	4	1.28	.04	.10	1	82 45
900-19-035 000-10-836	י ר	22 ۵۲ ا	2	5 10 5 107) .	. 1	1	240	1.90		о 0	5 r	2	1	42		2	4	4/ 10	. 33	105	4	0 17	.50	40	.09	0 7	.04	.03	.10	1	40
00C-10-836 A	2	1001	J: 	5 193	1. 1 . 7		3/3	7000	2.00		ץ ר	ב ב	2	1	30	2.0	2	2	13	.11	-105	10	17	•11	400	12	1	3.00	10.	• 41	1	50 TD
906-19-030 n 906-19-837	1	200		D 3 7 105) ./ : 0	23	20	// دده	2.40		L	5	2	1	97	•4	2	2	29	.39	1002	4	13	11. 70	. 03	.13	2	.19	.00	.07	1	39
00C-10-838	2	1701		/ 103 / 11	צי (10	10	0//	1.09		0 ว	2	2	۲ 11	292	1.1	2	2	5U 2	2.10	•20U	11	13	.13	21	•10	2	1.41	.03	.04	1	۲ ۲
900 19 000 900-10-F17	2	20	A.	4 11 6 25	/		- 1 e	223			2	9 C	2	11	04	•2	2	2	3	.40	.013	11	4	.00	120	.03	4	. 39	.02	.10	2	10
00C-10-F18		37 125	4) 11	4 JJ 5 199) .J	4	2	303	1.42		۲ ۲	0 E	2.	2 12	0 (72	•4	2	2	1	.UZ	-010	10	0	1 00	134	.01	3	.32	.03	10	2 1	10
00_C10_F10	47	20710	1:	5 122	L	10	23	122/	2,21		כ	ך ב	2	3	072	1.0	2	4	03	1.33	.200	10	У с	1.00	1007	.02	0	1.10	101	.40	1	1
00C-10-W11	41 E	JZ/12 147	1	5 ICI C	10.0	12	22	20/	5.03	1	1	ר ר	2	1	92	4.1	2	ð	42	1.15	.128	2	2	.40	24	.09	2	1.10	- UZ	.05	2	230
00_C10_F37	5	247	1:	D J/ D 110	.0) ð	0 25	115/	2.81		2	ר ד	2	1	21	•3	2	2	10	3.83	.003	4	0	.00	100	.01	2	.51	.01	.28	1	5
00C-19-F/2	4 2	400		9 110 1 1 20	.4	10	25	2219	0.49		1	2	2	1	417	• 9	2	4	22	9.10	.182	1	2	1.90	103	.01	2	.34	-01	.23	1	14
906-19-F40	1	450	⊨ ⊥ .	130 2 130	0. (: 1		1/	920 1154	5.99	;	2	ב ב	2	1 1	143	•2	2	2	00 1/17	.99 0 0	.204 1 AC	ک د	ชั ว	2 12	1 30	11.	4	2.10	04 מ	-12	1	15
906-19-F41	1	0.01		U 43 A 54	, ./ 1 7	. 0 1 r	10	000	0.10	1	2	ך ב	2	1	00 44	.3	2	2	147	1 02	•140 •140	0 2	4	2.13	כס (רב (15	2	2.70	.03	10	1 1	0 1 5
906-19-F43	ů.	721 7901		90 H D 10) <u>1.</u> /	ם ו	لا 10	000 410	0.09	•	ן ב	D E	2	1	40 100	۰0 م	2	. <u> </u>	144	2 22	1 100	J A	4	1 02	י גר בב ו	·	2	2.03	- UC	51	1	103
90G-19-F44	2	2071 110	41 : 1	U 40 1 ⊑4) J./	0 12	10	410 A A 1	2.30 5 AD	•	5	ך ב	2	2	0¥ 122	لاد د	2	2	124	3.23 2 02	176	4 Q	ע רר	1 77	1 20 1 23	17 17	2	.0/	.02	, 34 27	1	101
	-	110	· 1.	י טע	/ .)	, 13	- T J		. 0142		U	J	4	4	24	• 4	- 4	. 4	134	J			- 44	- * * / /	ູ່ມູ		~ ~	****	102		_	17

El	ho	- 1	РЪ	-	A	•••	Co "	Fe		η.	Th	^	Cd	**	^i	۷	â	.	' C	r *-	Ва	т: ц.	В	41 Q	Na ^µ	A	* 	
SAMPLES	ppn	ppm	ppn ₁		ppm	ppn p	10 E00	چ ۱۱۲	ppm p		n ppn ว่า	210	ppn 6	ppn 2	<u>ס מקר</u> 11 כ	DN 6	چ 57	∛3 p 107	papp ⊿ 1	אם ז קרב 1 גות	, ppn. 19.	4 ¥ 08	оря 21	ۍ ۵۵	6 6 ppm 10 20 1	Р	20 70	
906-19-145 000 10 E46	2	33/	11	51 6 A	.D 2	9 10	12 320	3.00	10	5	21	125	יי. היג	י 5	2 1	63 2	9 QK	149	י ד 11 1	2 1 35	20	.00	21.	44	N4 N6 1		7	
906-19-F40 906-10-E47	С /	40 202	40	04 20	.5 6	52	28 356	7.69	20	5	2022	61	5.0	ς Γ	2	81 1	. 77	142	7 5	21.07	37	.14	4 1.	09	03.11 1		ģ	
900-19-147 900-19-147	ч Л	203	1520	22	14 4	12	1 52	86	135	5	2 1	2	Q	5	5	1	.02	001	2	5 .01	5	.01	2	.02	01 .02 1		11	
QNG-19-F/Q	2	103	10	30	1	8	8 963	1 83	233	5	2 1	220		ž	5	13 5	.35	100	6	7 .33	601	.01	2	.62	.03 .25 3		3	
006-19-149	1	103	11	112	•1	7	25 1125	5 36	ว้	5	21	186	.2	2	2	87 2) <u>4</u> 5	149	Δ	7 2.7	28	.14	22	89	02 .05 1		3	
900-19-150 900-19-F51	2	604	112	132	1 1	26	32 146	A 11	Q	5	2 1	121	21	2	2	53 1	32	253	q	7 .16	с <u>г</u> б	.13	2	55	.03 .03 1		8	
906 19 191 906-10-F52	1	270	112	38	1.1	12	17 482	3 56	14	5	21	67	7	Δ	21	67 1	07	235	8 2	9 2.26	, 2Q	.00	22	41	.04 .09 1		5	
908-19-1 JZ 906-19-1 JZ	2	160	11	20	. 1	13	17 326	5 30	רב ג	5	22	88	יי ז	2	21	11 2	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	233	7 1	6 1.11	23	13	21	.00	.03 .07 1		3	
500 15 1 55	2	100	r	22	•1	10	17 320	J.J)	5	J	4 1	00	• •	2	71	** *		210	, 1		25	•15	6 4 9				•	
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn Fe	As	U	Au	Th	Sr	Cd	Sb	8i	V	Ca	P	La	Cr	Mg	Ba	Ti	B A1	Na	K	₩ Au*
SAMPLES	ppm	ppm	ppm	ppm	ppn	рра	ppn p	pa %	ppm	ppm	ppm	ppm	ppm	рра	ppm	ppm	ppm	ş	*	ppa	ppm	8	ppa	8	ppn 😵	ž	\$ 8	ppm ppb
90-JT1-1M	2	339	4	62	.4	15	14 16	55 3.49	7	5	2	2	27	.8	2	2	56	.36	.145	8	21 1.	14	101 .	.07	11 1.73	.03	.35	1 55
90-JT1-2M	1	441	2	102	.6	13	11 12	42 4.27	3	5	2	2	29	.8	2	2	. 49	.65	.206	10	13 1.	69 (129	.04	3 2.17	.02	.38	1 24
90-JT1-3M	1	267	7	104	.5	9	17 12	47 5.97	2	5	2	1	38	.8	4	2	114	.56	.204	9	15 1.	88	110	.11	3 2.14	.04	.24	1 77
90-JT1-4M	1	307	7	105	.3	9	15 11	15 4.96	2	5	2	1	111	.7	2	2	114	.71	.200	6	14 1.	87 (108	.16	4 2.12	.07	.28	2 230
90-JT1-5M	1	617	2	104	.6	12	11 11	09 5.73	2	5	2	1	98	1.2	3	2	119	.80	.244	8	17 1.	78	175	.15	5 1.92	.05	.54	4 169
90-JT1-6M	1	692	2	147	.6	12	15 12	60 6.05	2	5	2	1	155	.8	2	2	139	.86	.239	7	18 1.	84	189	.16	5 2.19	.09	.64	1 48
90-JT1-7M	1	370	2	144	.5	11	14 11	76 6.05	2	5	2	1	96	1.1	2	2	126	.68	.228	6	17 1.	63	248	.15	8 1.87	.06	.80	5 141
90-JT1-8M	1	594	2	235	.6	12	14 17	11 5.84	5	5	2	1	111	1.4	2	2	114	.80	.208	7	16 1.	81	206	.15	8 2.03	.05	.77	4 97
90-JT1 -9 M	1	541	6	161	2.1	9	15 15	46 5.53	2	5	2	1	178	1.0	2	2	98	.78	.254	7	18 1.	36	206	.13	4 1.84	.05	.65	1 620
90-JT1-10M	1	395	б	163	.7	8	13 17	10 3.94	2	5	2	1	111	.7	2	3	98	.55	.181	7	26 1.	48	153	.12	5 1.66	.05	.35	6 800
90-JT1-11M	1	715	3	200	.7	11	14 17	14 5.03	2	5	2	1	139	1.3	2	2	102	.58	.193	7	23 1.	.73	222	.15	2 2.04	.04	.71	6 1560
90-JT1-12M	1	563	2	209	.5	11	10 14	32 4.36	2	5	2	1	94	.7	2	2	95	.60	.175	9	15 1.	.50	205	.14	8 1.78	.04	.59	2 2030
90-JT1-13M	1	458	9	172	1.0	10	11 11	76 3.54	2	5	2	2	43	.6	2	2	71	.47	.168	8	13 1.	.27	333	.13	10 1.49	.05	.40	4 1920
90-JT1 -14 M	1	443	5	212	.4	12	15 18	51 4.99	2	5	2	1	85	.7	2	2	138	.61	.193	8	28 2.	.00	126	.15	7 2.14	.06	.43	1 117
90-JT1-15M	1	688	16	207	.4	14	19 17	47 5.57	4	5	2	1	250	1.0	2	2	148	.98	.222	7	17.1	.79	128	.14	6 2.12	.05	.52	1 /1
90-JT1-16M	1	289	9	185	.1	11	16 16	29 4.38	8	5	2	1	176	1.1	2	2	120	.81	.180	7	23 1	.75	89	.11	3 2.00	.04	.30	1 67
90-JT2-1M	3	416	8	81	1.2	13	20 11	93 4.92	4	5	2	1	96	1.1	2	2	68	.68	.197	5	20 1	.43	114	.13	7 1.92	.02	.32	119 103
9D-JT2-2M	3	361		71	1.2	12	19 10	67 4.39	9	5	2	1	89	1.0	2	2	69	.67	.185	6	21 1	.11	101	.11	/ 1.59	.02	.21	130 /3
90-JT2-3M	3	1274	11	74	3.2	12	32 10	44 8.39	8	5	2	1	76	.8	3	2	61	.71	.259	1	22 1	.40	119	.14	11 1.9/	.01	.36	103 720
90-JT2-4M	5	451	11	121	2.4	11	33 19	09 8.74	8	5	2	1	133	.9	3	2	107	.66	.282	11	23 1	.65	125	.15	2 2.21	.03	.32	3 1930
90-JT2-5M	3	431	8	133	1.0	10	23 20	12 6.19	9	5	2	1	150	1.0	3	2	10/	.12	.261	10	20 1	.6/	135	.14	2 2.08	.03	.30	3 310
90-JT2-6M	1	641	2	212	.5	12	22 21	08 4.86	5	5	2	1	269	1.1	2	2	133	.90	.218	9		.95	103	.16	2 2.21	.07	.2b	2 110
90-J12-/M	1	590		191	.8	9	21 16	27 5.68	10	5	2	1	345	1.4	3	2	138	1.11	.260	9	10 1	.50	110	.14	4 1.91	.05	. 30	1 95
9U-J12-8M	1	454		231	.8	15	23 19	85 5.33	6	5	2	1	234	1.1	2	2	125	.84	.202	5	32 Z	.08	153	.19	5 2.45	.05	.49	1 3/
90-J12-98	5	/94	4	1/5	3.5	11	21 22	25 5.4]		5	2	1	105	1.2	2	2	9/	.58	.105	2	20 1	.12	174	11	10 2.20	.04	•0/	2 1020
90-J12-10M	4	0/5	2	1/2	1.0	10		1 4.9t) 3	5	2	1	153	٥. ۱۱	2	2	90	•22	.1/8	2	1/ 1	. 57	1/3	10	2 2.00	•U4	.04	2 240
90-J12-118 00.112-12W	1	120	2	210	צ. ד	0 10	15 20	105 3.77	<u> </u>	5	2	1	1/0	1.1	2	3	00	. 30	140 210	- D	17 1	.31	247	14	£ 1.73	•04 0.4	۲0، ۲۱	3 300
90-J12-12M	1	. 409 222	2	210	/	13	18 23	193 4.83	5 Y	5	2	1	1/0	1.3	2	2	104 U	•/J	.213	- 0 7	10 1	•00 20	201	•14	6 2.03	.04 06	.04	E 1320
90-912-198 90-112-198	1	. 332 202		204	1•1 *	ץ ר	20 19	10/ 4.0l	, y	5	2	1	200	1.2	4	2	104	2.03	•204 11⊑	2 2	10 1	•00 2A	107	-14	10 1 20	.00. DE	101 10	1 200
90-912-19H	1	. 202 220	0	202	۹، ۲	1	15 13	01 2.90) () ^) 5	2	1	200	1.0	3	2	02 0 02	1.30	120	0 A	14 1	•24 25	190	11	6 1 56	-03 20	•24 २४	1 91
90-1T2-17M	1	. JZU) 505	0	202	0. 0	0 10	10 13	000 3.3.	ι ŏ	י כ ב	2	1	170	1.3	3	2	00 125	ΟΠ.Ι. Ω1.10	195	U 6	10 1	. JJ 74	80 102	13	3 2 01	.03		1 78
90-JT2-G1	2	. JUJ 1917	4	61	.0 २२	10	56 SC 10	713 3./2 163 11 61	י א 10 ג) []	2	1	1/0	1.J	- L - K	נ ז) <u>77</u>	.00	.237	۵ ۱	43.1	.14	74	.11	7 1.70	.01	.35	684 950
		* ****	,	U 1	ູ່	10	00	UJ II.U.	, 7	່ງ	- 2	1	UZ	• 4		- 4	. 77			- 1	i ∉	• • 7		***	1 2110			

APPENDIX C

.

DRILL LOGS and CORE STORAGE LOCATION

DRILL CORE STORAGE

The complete drill core for all holes drilled on the Jack Wilson property in the summer of 1990 are located in a solidly-built core rack at the site of Scud Camp near the Scud River airstrip, located at the confluence of the Scud and Stikine rivers.

The following pages of drill logs describe the core obtained and studied during the 1990 drill program.

COAST MOUNTAIN GEOLOGICAL LTD. DIAMOND DRILL LOG

CLIENT: BELLEX / QUATTRO PROJECT: JACK WILSON 57⁰10' N, 131⁰42' W NTS: 104G/4E MINING DIVISION: LIARD

LOGGED BY: D.BLANN SAMPLED BY: S.M / T.F. DATE LOGGED: AUG-12-14 ASSAYS RECEIVED: ang 28,90

DRILL HOLE # 905W-DH COORDINATES N 0400 0700 E 350m ELEVATION 090 AZIMUTH DATE STARTED AUG12 AUG14 DATE FINISHED VA CORE SIZE 95% RECOVERY

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. • *		SI	GNIFICA	NT INT	TERSEC	CTION	5					
1NCL. 270.0 60.0 .0/17 .062 .215 1NCL. 223.0 248.4 25.4 0.017 0.10 300 QVN + DIKE		FROM	TO	WIDTH (m)	Au (oz/t)	Ag (oz/t)	Cu (%)		L				•
INCL. 22302484 25.4 0.017 0.10 300 DEPTH DIP AZ QVN + DIKE		210.0	270.0	60.0	,0/17	.062	.215						
$ \frac{2 - 3.0 \times 10.4 \times 2011 \times 2011 \times 1001}{2001 \times 1001} = \frac{10000}{1000} = \frac{10000}{152} = 10$	INGL	7230	7 48 U	25.4	710.0	0.10	300	-			DEPTH	DIP	AZ
E.O.H 152M -43 ACID E.O.H 281.94 -42° ACID	QUN + DIKE		~ (2.7.								COLLAR	-45	090
E.O.H 281.94 -42° ACID	, •			<u> </u>]	152M	-43	ACID
				、						E.O.H	281.94	-42°	ACID
	· ·												
	•												
							-						

D RILL	HOLE *1	$\neg \omega \partial H^{\#} / PAGE _ / of _ 8$			AL	.TER/ 1-5 (n	ATIO nax)	n ^{eite} N				_				
FROM	TO	DESCRIPTION	% Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Seri	Sample Number	FROM	10	WIDTH (m)	(qdd) nv	(mqq) gA	Cu (ppm)	
0	6.10	CASING														
6.10	15.0	FINE GRAINAD DIORITE / VOLCANICS	3	3	3	4			56901	610	8.0	1.9	2	,3	29	
		HIGHLY SHEARED. PYRITE IS DISS.							56902	8.0	10.0	2	10	.4	142	
		THROUGHOUT OND CONPATRATED ALON							56903	10.0	12.0	2	18		130	
		CHLORITE-JEPUDOTE FRACTURES TO 5							56904	12.0	150	3	14	<u>. 2</u>	116	
		SINFRAL COMOSET GARANTEN (AUTOLITHS														
		FRAGMIENTS WITHIN MATRIX (UP TO		ļ												
		5 cm), ROD = 10%		ļ												
15.0	19.5	FINE GRAINSTO DIORITE, HIGHLY SHARADED	5	0	4	4			56905	15.0	18.0	3	12	,1	126	
		CA=150/450 PIRITE/EPIDOTE				 			56906	18.0	20.0	2	13	.1	105	
	<u> </u>	VEINLETS ZMMWIDE + CLOTS UP TO		ļ						ļ				 		
		5mm EVERY 2-3cm. PYRITE DISSEM		ļ				· · · · · · · · ·					ļ	 		
		+ ALONG CHLORITE - EPIDOTE VEINLETS -		ļ						ļ						
		ALL IFELDSPARS GONE, ROD'0%				ļ										
19.5	23.5	Fine - med Grained Disrite Less Fractured and	2	0	3	2			56907	20.0	23.0	3	iZ	.)	80	
		Altered RQD 15% Fine Epidote Veinlets < Imm		ļ		ļ		. <u> </u>		 			ļ	 		
		every 1-2cm Rack is Lighter in Color-Less Pervasive		ļ		ļ				ļ			ļ			
		Chlorite; Quartz-Epidote Veinlets not calcareous													-	
23.5	46.0	Subvolcanic Diorite Andeside : Highly Altered - with	3	1	4	4			56908	23.0	26.0	3	io	1	113	
	<u> </u>	Coarser Grained Fragments Variably Altered Epidot	-						56909	26.0	29.0	3	12	.3	84	

RILL	iole *.	JWDH#1 PAGE_2 of 8			AL	TER. 1-5 (1	AT I OI nax)	N								
ROM	то	DESCRIPTION	% Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Serio	Sample Number	FROM	T0	WIDTH (m)	Au (ppb)	Ag (ppm)	Cu (ppm)	
		in Venlets 7-5 mm over 1-2 cm and in clots we							56910	29.0	31.0	2	15	,1	109	
		to 3-4cm Veinlets C.A. = 45-60 (Same as fracturine).						56911	31.0	33.0	2	13	5	274	
		Chlorite Pervasive Patchy Areas of Magnetite Pyrite	,						56912	33.0	36.0	3	8	.4	133	
		is finely Disseminated and in Clots with Chlorite -							56913	36.0	38.0	2	10	3،	208	
		Evidote Along Fractures, Several Bands of Calcite							56914	38.0	41.0	3	21	. 3	248	
		Within Short Sections of Brecciation. 5 cm Band							56915	41.0	44.0	3	30	.3	258	
		of Pink-orange Calcite at 31.0 m ROD 15%.							56916	44.0	47.0	3	31	.3	322	
		Trace Chalcodurte within Quartz-Chlorite-Epidet	e				ļ			ļ			ļ			
		Veinlets							·	ļ						
16.0	65.0	Sabvolcanic Diorite (Andesite: Highly Chlorite -	3		3.5	4			56917	47.0	50.0	3	45	.6	468	
		calcite - Epidote Altered Rock is Laminated with	 						56 918	50.0	53.0	3	35	. 4/	368	
		Chlorite Clay CA. = 45°; and Brecciated with							56919	53.0	56.0	3	29	.4	361	
		Abundant Epidote clots and Wisps that are	ļ				<u> </u>		56920	56.0	54.0	3	30	2،	345	
		Brecciated. Calcite occurs as Sab Angular	ļ						56921	59.0	62,0	3	38	.3	290	
		Flagments and Clots along Flactured and throughour	ł				ļ		56922	620	65.0	3	43	.4	241	
		the Matrix - Moderate - Grongly Calcareous.											ļ			
		RQD = 25%; Fault 56.0-65.0 (RQD = Q)								ļ						
65.D	80.0	Subvolcanic Diorite , Highly chlorite - carbonate	2		1	3	ļ		56923	65.0	68,0	3	46	.4	340	
		Altered: Matrix is Notably Lacking Epidote.					ļ		56924	68,0	71.0	3	75	. 4	434	
		Chlorite - Calcite Fracture Fillings are 1-3m Wi	0						56 925	71.0	74.0	3	120	.4	268	

and so the second second second second

	HOLE *.	JWDH PAGE 3 of 8			AL	.TER/ 1-5 (n	A (IU nax)	eite N	- •			~			
DOM	тп	DESCRIPTION	x Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Seri	Sample Number	FROM	10	WIDTH (m	Au (ppb)	Ag (ppm)	Cu (ppm)
KOIT		and in a Broken Stockwork: Purite occurs in							56926	74.0	0.77	3	57	1.0	74
		Small Clots and Verilets 1-2 mm Wide every							56927	77.0	80.C	3	54	.6	47
		2-5 cm with Chlorite and Calcite.								<u>.</u>					
		RaD = 25% Fracturing C.A. = 45°						 							ļ
80.0	88.4	Mixed Subvolcanics/Diorite: Grey-Black Calcarea	<u>s 5</u>		1	4			56928	800	63.0	3	52	.6	46
		Brecciated Matrix with Chloritic and Qay		·			ļ		56929	<u>83.i</u>	86.0	3	53	.9	78
		Fracture Fillings, Parite occurs as clots and					ļ		56930	86.0	89.0	3	50	1.6	41
	1	Stringers Throughout the Matrix and Along				ļ		Ĺ					ļļ		
		Fractures, Schistose Chloritic Fabric C.A = 3045°	<u> </u>		<u> </u>			ļ					<u> </u>		
		RQD 35%	. 	ļ		ļ	ļ	ļ		ļ			 	 	<u> </u>
88.4	112,0	Diorite: Highly Altered Chlorite -Epidote and	2	١	4	3	<u> i</u>	ļ	56931	89.0	92.0	3	27	.3	28
		Calcareous. Matrix is A mottled Texture		ļ	ļ	ļ			56932	92.0	95.0	3	17	.3	36
		with Chlorife - Epidote - Quartz - Ryrite Fraction	<u>k</u>		ļ	ļ	ļ	ļ	56933	950	98.0	3	16	.4	30
		Fillings in a Broken Stockwork. Epidete Bands				ļ		ļ	56934	98.0	101.0	3	12	<u>.2</u>	<u>23</u>
		up to 6 cm Wide at C.A. = 45° Minor Left		ļ	ļ	ļ	<u> </u>	ļ	56935	id,c	104.0	3	17		12
		Lateral offsets of Epidote Bands From Chlorith	<u> </u>	ļ	ļ	ļ	<u> </u>	 	56936	104.0	0.0010	3	40	-3	112
		Fractures C.A. = 15/45/90° Several calcite				ļ	ļ		56937	107.0	110.0	3	20	-3	13
		filled Breccia Zones 5-10 cm RQD= 60%:	 	ļ	ļ	·	_		56938	1101	113.0	3	25	-3	23
		Ryrite Found along the Chlorite-Epidote Fracture	<u>.</u>	ļ	ļ	_	<u> </u>	<u> </u>	ļ	 		 	ļ		+
		as Stringers clots and Fine Grained Slightly										l	L	l	

RILL HOL	.E 🐔	$SWDH^{\#}$ PAGE 4 of 8			AL	.TER/ 1-5 (m	ATIO nax)	N <u>t</u> en				_				
	7.0	DESCRIPT (AN	z Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Seric	Sample Number	FROM	τ0	wibth (m)	(ddd) ne	Ag (ppm)	Cu (ppm)	
	10	DESCRIPTION														
		Areas Southy Patches of Kspar noted (Grey-														
		White Repacement of Matrix)														
12.0 13	5.6	Diorite/Subvacanic Andesite chlorite-Epidote-	2	3	4	4	2		56939	113.0	116.0	_3	47	3	119	
		Ksoor Altered: Magnetite in Clots up to 3×5 cm		ļ	ļ	 			56940	1160	<u> 19.0</u>				127	
	M TO DESCRIPTION Disseminated through Matrix of Epidote R Areas Southy Pateness of Kspar noted (G White Replacement of Matrix) .0 135.6 Disrite Subvolcanic Andesite Chlorite-Eau Kspar Attered; Magnetite in Clots up to 3×5 Disseminated in Matrix Sharp Drop in Calcite - Found within Narrow Stringers with Chlorite Pink Grey Ksoar X-cut by Chloritic Fri with minor Sericite Matrix & Becoming Siliceous R&D 70% 5.6 138.7 Dark Uniform Fine-Med Scauned Hernblender Biotite DUSE; Weakly Flactured, slight magnetic. 8.7 174.5 Medium Grained Disrite; Chlorite - Epidet Kspar Altered Mottled Texture X-cuttin Epidete and Chlorite (t sericite) Bands In 5 cm in Width and Clots over Entire Ser Kspar is Grey-White and Occurs as Clots Wisps Throughout Matrix. Some Silicificature	ļ				 		56941	119.0	1720	3	104	1.5	1717	·	
		Found within Narrow Stringers with Chlorite and		ļ					56942	1220	125.0	3	45	-8	933	
		Pink Grey Ksoar X-cut by Chloritic Fracture	<u>s</u>	 	 				56943	125.c	128.0	3	44	-9	461	
		with minor Sericite Matrix is Becoming	 			ļ			56944	128.0	(31.0	3	36	.6	567	
		Siliceous ROD 70°lo	ļ				<u> </u>		56945	131.0	134.0	3	27	1.5	50+	F
35.6 13	Areas Sportly Patches of Kspar noted (Grey White Replacement of Matrix) D 135.6 Diorite/Subvolcanic Andesite Chlorite-Eoudote Kspar Altered; Magnetite in Clots up to 3×5 cm Disseminated in Matrix Sharp Drop in Calcite - no Found within Marrow Stringers with Chlorite, = Pink Grey Kspar X-cut by Chloritic Fracte with minor Sericite Matrix & Becoming Siliceous ROD 70°lo Siliceous ROD 70°lo Siliceou	1	1	<u> </u>	<u> </u>	 		56946	134.0	<u>137.C</u>	3	17	1.2	264	┢	
		Biotite DUKE ; Weakly Flactured, slightly	 					<u> </u>	56947	137.0	140.c	3	<u>42</u>	1.2	235	┝
		magnetic.		+						 	<u> </u>		+			┢─
138.7 17	14.5	Medium Grained Diorite: Chlorite - Epidete -		3	5	3	3		56948	140.0	<u>143.c</u>	3	118	1.5	451	┢
		Kspar Altered Mottled Texture X-authing							21916	143.0	146.0	$\frac{1}{3}$			1317	┢
		Epidete and Chlorite (+ sericite) Bands Imm-		_					21917	14/20	7 149.0	13		1.0	503	┢
		5 cm in whath and clots over Entire Section			 			ļ	21918	149.0	×152.0	13	49	<u>+•9</u>	15+7	+
	10 DESCRIPTION N Disseminated through Matrix of Epidote Rick Areas Spotty Patches of Kspar noted (Grey- White Peplacement of Matrix) 35.6 Diorite/Subvacanic Andesite Chlorite-Epidote- 2 Kspar Altered; Magnetite in Clots up to 3×5 cm Disseminated in Matrix sharp Drop in Calcute - now Found within Narrow Stringers with Chlorite, cm Pink Grey Ksoar X-cut by Chloritic Fractures with minor Sericite Matrix & Becoming Siliceous R&D 70°lo 38.7 Dark Uniform Fine-Med Gravined Hernblende - 1 Biotite DUKE; Weakly Fractured, slightly magnetic. 14.5 Medium Gravined Diorite; Chlorite X-cutting Epidete and Chlorite (t Sericite) Bands Imm- 5 cm in width and Clots over Entire Section; Kspar is Grey-White and Occurs as Clots and Warm Throwshart Matrix, Sme, Silicification						21919	1520	155.0	23	25	<u>.</u> 7	1370	┢		
		Wisps Throughout Matrix. Some Silicification							21920	155.	0158.0	>3	123	+7	14+0	+
		when with stome Kson Altered Zones RGD=80	4		<u> </u>	<u> </u>		<u> </u>	21921	158	0 161.0	3	123	1.8	1329	1

• · · · • •

Ì

RILL H	IOLE 🐔	JWDH ^{#1} PAGE 5 of 8			AL	TER/ 1~5 (n	ATIO nax)	N				_			
PUM	тп	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Serio	Sample Number	FROM	10	WIDTH (m)	Au (ppb)	Ag (ppm)	Cu (ppm)
174 5	194 0	Uniform Med Gained Diorite Matrix is	1	3	4	2	2		21922	1610	164.0	3	_13	7	37
1,7.0	1010	Moderately - Highly Magnetic Epidote Veinlets							21923	164.0	167.0	_3	26	Ŧ	315
		1-10 mm X-cut Left Laterally by Chloritic							21924	167.0	170.0	3	_53	.4	170
		Veinlets some Feldspars Visible, Moderately							21925	1700	173.0	3	30	Ŧ	175
		Altered to Epidote - Albite, Matrix Becomes							21926	173.0	1760	3	7	.5	103
		more Epidote epriched down Sections, clots					ļ		21927	1760	179.0	3	13	.5	112
	TO DESCRIPTION DESCRIPTION DESCRIPTION Description De					ļ		21928	179.0	1820	3	6	<u>e4</u>	115	
184.0	191.5	Diorite Fine - Med Grained Matrix Mottled Texture	1	2	4	3	3		21929	182	185.0	3	4	.5	213
		Epidote clots and Wisps Throughout. Quartz-			ļ		ļ		21930	185.0	188.0	3	15	.7	24
		Chlorite and Kspar Veinlets 1-5mm Wide							21931	188.0	1910	3	18	.5	172
		throughant C.A. = 45° 191.0 - 191.5 Kspar and			ļ	ļ	ļ	ļ	21932	191.0	i94.0	3	31	.8	30
		Quartz flooded Matrix				 				<u> </u>	 		<u>↓</u> J		
191.5	204.0	Light Grey-Black fine grained Diorite, Chlorite	1	2	3	3	3		21933	194.0	KM.0	3	28	.6	38
		and Epidote - Altered and moderately Silicour	<u> </u>					<u> </u>	21934	1970	,2000	3	43	.6	23
		Matrix, 194.0-194.3 Gray Quartz Vein with			ļ	ļ		ļ	21935	200.0	203.0	3	31	-4	230
		Chloritic Fractures Highly Jointed. Quartz							21936	203	2060	3	26	.6	28
		and Carbonate - Chlorite - Epidote Fracture			ļ	 					ļ			 	
		Fillings Imm-2 cm GA. = 30-45° Several			ļ			 	<u> </u>	+		 	 		+
		are Subparallel Core Axis. Clots (Banils) of			ļ	ļ					<u> </u>	 	──	 	
		Epidote 10 cm wide RaD = 90%			<u> </u>				<u> </u>	<u> </u>		<u> </u>		<u> </u>	

.

DRILL I	HOLE $\neq \exists W DH \neq 1$ PAGE 6 of 8			Â	LTER 1-5 (i	AT I O nax)	N ž								
FROM	TO DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Serio	Sample Number	FROM	Τ0	WIDTH (m)	Au (ppb)	(mqq) gA	Cu (ppm)	Mo
204.0	2010 Unitime Med Ground Discite: Moderately	1	2	4	3	3		21937	Zitha	208.5	25	38	.7	391	
	Silverus and Weak adamate Veinlets x-cutt	v													
	(A. = 30-45° Fairly Uniform Magnetite	1													
	Distribution RaD = 80%										<u></u>				ļ
207.0	223.0 Diorite : Strong Epidde - Chlorite - KSpar Alter	2 10	3	ц	4	3		21938	2085	2100	1.5	46	.5	402	<u> </u>
	Silicified Patches as pervassive Replacement		<u> </u>			<u> </u>		56949	210,0	2130	3	230	1.8	1793	\square
	Magnetite in Patches: Sharp drop in Number					· ·		56950	2130	2160	3			ļ	_
	of carbonate Fractures: Pyrite and Minor				<u> </u>			21901	216,0	219.0	36	4	.5	310	_
	Chalcoourite occurs in fractures and Bar	de						21902	219.0	2220	3	155	1.3	1413	ļ
	C.A. = 45° ± Epidote in Clots and Veinlets							21903	222.0	2230	1	610	20	2931	ļ
•	3mm-5mm Matrix is Brecciated. RQD=&	57						21904	223	225.0	2	350	4.7	4747	·
	Silicification Increases down Section and							21905	2250	2260	21	700	6.5	5116	ļ
	Sulprise Content of Fractures increasing						L	21906	2260	227.0	1	73	1.Z	197	ļ
	222.0-223.0 Chlorite and Sericite						ļ	21907	227.0	228.0		37	1.0	1229	6
	Shearing occurs Subparallel to C.A.					ļ	<u> </u>	21908	2280	229.0		850	4.7	6053	75
	Slickensides are perpendicular to the Chlorit	e				ļ		·						ļ!	_
	Shears (L bat). Magnetite grains (15-1.0 m	m				 			ļ	ļ					_
	with Quartz Veinlets,				ļ	ļ			ļ			 	 	ļ	
223.0	2484 Evalco pyrite - Pyrite/Pyrrhotite Quartz Vein:	25	(3)	 	ļ	ļ	ļ	21909	229	231.0	2	1310	2.9	1983	19
	Disseminated and clots of sufficies. (Fine	-						21910	2310	232.0		29	1.2	1758	1 Z

.

TO DESCRIPTION Med/Coarse grained) Sections up to 70% Salf. Molybdenite occurs along fine Fractures with Chlorite/Serieite. Sulfides Patchy but banded locally (30°-45°) Pyrrhotite is Stree Magnetic. 227-229: Section of Highly Atter host rock with pyrite and chalcopyrite Stringers and Dissemination. 2364-2388 Fresh med Grained Hornblende Feldspar Dik (), C.A. = 80° with Quartz: Dike is Weakly Boken (ROD 100%) with Feldspars Occas Milaly Epidote Altered: Contacts are very She ond Chilled to 30 cm. Top of Dike: Chalcopyrite and Pyrite right to Contact (in Quartz). Footwall: Quartz is devoid of Significant Sal for 3 m. 246.4-248.4-25% Sulfides. with Highly Chloritic and Carbonaceous Frac Chlorite. Guad Calcite in Clots. Cove is	X Pyrite	Magnetite	Epidote	hlorite	spar	z - Seri				<u>ع</u>	2	ê	2
ins up to 70% Sulfide ng fine Fractures ulfides Patchy but			and the second second	<u>ں</u>	ï ¥	Quart	Sample Number	FROM	10	WIDTH	Au (ppt	Ag (ppn	Cu (ppr
ng fine Fractures ulfides Patchy but							21911	232.	233	1	34	1.6	3607
ulfices Patchy but							21912	2330	234.0	1	150	3.1	3703
Alfredes ratery out							21913	234.0	235.0	1	1170	5.0	4687
							21914	2350	2364	1.4	390	18.4	24590
Pyrnotire is slight	}						21915	2364	237.5	-	3	.3	12
etton of Highly Miterea							21939	2375	2388	1.3	6	•	15
1d chalcopy/12							21940	2388	2410	2.2	29	.4	240
on. 2364 - 2388-							21941	2410	2430	2	84	.7	201
lende Felaspar Dike							71947	7420	7450	2	590	3.5	2790
h quartz! Dike 15	 		<u> </u>				71942	7450	247	2	1700	3.5	2003
with Feldspars Occasion	aly						2193	747.	248.0	1.4	630	1-4	1104
marts are very share	2						21771				630	10 1	
of Dike: Chalcopylite								+					<u> </u>
t (in Quartz).								+					
d of significant SalAid	<u>\$</u>									<u> </u>	<u> </u>		
4 - 25% Sulfides	<u> </u>		 	 	<u> </u>					<u> </u>	+		
Carbonaceous Fractu	esi_				<u> </u>								+
	ļ		ļ	ļ	ļ					<u> </u>	+		+
Clots. Core is			 	ļ							┢───		+
Clots. Core is Fractures 45°/30°/	1		1						<u> </u>	 			+
ť	1 Carbonaceous Fractur 1 Clots. Cove is Fractures 45°/30°/	1 Carbonaceous Fractures: 1 Clots. Cove is Fractures 45°/30°/	i Carbonaceous Fractures: 1 Clots. Cove is Fractures 45°/30°/	I Carbonaceous Fractures: 1 Clots. Core is Fractures 45°/30°/ = 50%	I Carbonaceous Fractures: n Clots. Cove is Fractures 45°/30°/	I Carbonaceous Fractures: n Clots. Cove is Fractures 45° /30°/	I Carbonaceous Fractures: 1 Clots. Core is Fractures 45°/30°/ = 50%	I Carbonaceous Fractures: 1 Clots. Cove is Fractures 45°/30°/ = 50°/0	i Carbonaceous Fractures: 1 Clots. Cove is Fractures 45° /30°/ = 50%				

DRILL H	IOLE #5	JWDH [#] PAGE 8 of 8			AL 1	TER/ 1-5 (1	ATIO nax)	N .				~				
	то	DESCRIPTION	z Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Seri	Sample Number	FROM	10	WIDTH (m	Au (ppb)	Ag (ppm)	Cu (ppm)	
FRUM	10	The with the state of the provide the providence	5	·	١	5	3		21945	248.4	249.5	1.1				
248.4	250,0	tootwall- Dark Highly Hitter Dibities Calcite	~						21946	249.5	252.0	2.5	310	۰7	98Z	
		Stringare, Eractures C.A. = Strong Subgarallel														
		and $30^{\circ} 45^{\circ}$ RaD = 40%														
2500	259 D	Dark Gran-Black Altered Diaite: Chloritic and	15	-	1	4	2		21947	252.0	255.0	3	31	.4	664	
230,0	G- 110_	Societic Flactures 45° 30° / Sub parallel Fragme	otect						21948	255.0	258.0	3	230	1.8	1516	
		Carbonate Stockwork Minur Slification, RQD= 50%					ļ		21949,	2580	2600	2	zz40	4.5	4126	
259.0	26213	Diorite: Dark Grev - Elack weak-moderately	10	-	l	4	2		21950	260.0	2620	2	240	1.2	419	·
		Calcareous, Mottled Texture. Masive pyrite					ļ	ļ								
		Bands 5.0-80 cm X7 cm wide. C.A = 15°		ļ		ļ	ļ	ļ				ļ				
		Host Fabric also Sheared CA= 15°/45°	L	ļ			<u> </u>		· · · · · ·		<u> </u>					
262.3	274.0	Diorite: Dark-Green Black Mottled Texture. Chlorite		2	3	3	2	ļ	21951	2620	264,0	2	GH	.8	472	
		sericite and calcaleous Flacture Filling, and					<u> </u>	 	21952	2640	267.0	3	1090	1.3	1180	14
		Broken stockwork; Epidote in large clob and						ļ	21953	267.0	270.	3	330	1.6	2261	
		Bands 1-5 mm wide C.A. = 30° RQD = 70%	<u> </u>	<u></u>	ļ			 	21954	270.0	273	<u>b 3</u>	25	.6	458	┢━━━╋
274.0	281,94	Uniform fine - Medium Grawed Divite: Moderate	y		2	3	1		21955	2730	276.	<u> </u>	34	18	906	
		Chlorite - Epidote Altered with Strong Quartz.	[·	<u> </u>			 	21956	276.	¢ 2.79.	03	13	14	476	
		KSpar, Sume relict feldsars evident RDQ = 50	×	<u> </u>	ļ	<u> </u>		<u> </u>	21957	279.0	284	4/2.9	14	.4	351	+
		Epidote and Service Veinlets 1-2 mm every 5-100	2m_	<u> </u>	ļ					-						
		Minor carbonate Vernilets]	l			<u> </u>	L

Ì

E.O.H. 281.94

• • -• •

COAST MOUNTAIN GEOLOGICAL LTD. DIAMOND DRILL LOG

CLIENT: BELLEX / QUATTRO PROJECT: JACK WILSON 57°10' N, 131°42' W NTS: 104G/4E MINING DIVISION: LIARD	DRILL HOLE * <u>40 JWDH</u> #2 COORDINATES N <u>87.5 S</u> E <u>0+50E</u> ELEVATION <u>355 M</u>
	AZIMUTH <u>082</u>
LOGGED BY: D.O.L.C.	DATE STARTED AUG-16 DATE FINISHED AUG-20
SAMPLED BY: <u>G. M.</u>	zi/90 · CORE SIZE ALQ
ALL ASSAYS RECEIVED: AUG 2	28/90 RELOVER-1 95%

SIGNIFICANT INTERSECTIONS

	FROM	, то ,	WIDTH (m)	Au (oz/t)	Ag (oz/t)	Cu (%)	 <u></u>
	54.0	68.5	14.5	.008	.05	.106	
	216.0	219.0	3	.054	.04	.080	
	261.0	264.0	3	.019	.13	,485	
012	2.52.0	273	21	.004	103	.135	
					<u> </u>		

DEPTH	DIP	AZ
COLLAR	-50	082
152.4	-45°	ALID
278.28	-41°	ACID
298.25		

4

٤.

RILL	HOLE #	JWDH C PAGE OT			AL	1-5 (n	nax)	oite				~			
POM	тп	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Seri	Sample Number	FROM	T0	WIDTH (m	Au (ppb)	Ag (ppm)	Cu (ppm)
		Casino													
11 -	11.5	Mad Cravid Dischart Durch - Evidate Purche	2	1	4.	3	1		29051	11.5	15.0	3.5	52	.6	194
<u></u>	191.0	ried Graines Uporte Verslets 1-5 mm Wide							29052	15.0	19.0	3	45	5	401
		Diele 1-2 cm (Strang Stockwork). Magnetite grains							29053	18.0	21.0	3	11	.5	738
· · · · · ·		with leinlets (ore is withly broken up - due to													
		missistères, and blocky around. Malachite occurs				·								,	
-		as fine Flakes along Caloritic Fractures (trace)													
		Endate is in clots up to 3 cm and is Brecciated													
		Non Calcareous. Epidote Veinlets 5-10 mm Wide													
		are at C.A.= 47° and are offset Left Laterally													
		by hairline Chlorife-Enidole Filled Fractures at			·							-			
		$CA = 30^{\circ}$ $BQD = 0$				ļ	ļ	ļ	ļ				ļ		
19.0	33.5	Diorite: Light Green - Epidote rich Matrix	2	2	4	3	1	ļ	29054	21.0	24.0	3	200	5	615
		Strong Epidote Fracture Fillings in a Broken						ļ	29055	24.0	27.0	3	18	.9	939
		Stockwork 1mm to 2cm wide C.A.= 30-50°						ļ	29056	270	30.0	3	65	.7	710
		and Subparallel; Pyrite and Trace chalwayith	<u> </u>		ļ	ļ	ļ	ļ	29057	30.0	33.0	3	240	15	1384
<u> </u>		occurs along Epidote Chloritic Fractures			<u> </u>	ļ	ļ								
•		C.A. = 30°-50°. 20.0-22.0 Magnetite Breci	<u>.</u>	5	4	4	ļ	 			_				
		up to 11 cm wide Magnetite Filled Fractures in			 	_	 	<u> </u>			 				
		Strong Enidote - Chlorite Altered Host Rock.		<u> </u>				<u> </u>	L	<u> </u>	<u> </u>			L.,	

I.

RILL	HOLE #.	JWDH#2 PAGE 2 of 10			Ai	_TER. 1-5 (r	AT10 nax)	N								
ROM	TO	DESCRIPTION	% Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz – Serie	Sample Number	FROM	10	WIDTH (m)	Au (ppb)	(mqq) gA	Cu (ppm)	~
		Kspar Replacement and Minor Silicification Alone				·										
		and Emanating out of Epidote Fractures.											<u> </u>	ļ		
33,6	43.5	Uniform Med Grained Diorite Slightly Mottled			3	2	2		29058	<u>33.0</u>	36.0	3	73	.9	934	
		Texture. Weak to Moderate Epidote - Onlorite		ļ					29 059	36,0	39.0	3	67	.4	37/	
		Stockwork. Epidote is in Veinlets Imm- Icm			ļ				29060	39.0	42.0	3	zæ	.6	700	
		Wide every 5-10 cm c.A. = 40° dominant and							29061	42.0	450	3	48	.3	199	11
		Subparallel Carbonate Veinlets increasing in													ļ	
		Quantity Several 5mm Wide Chloritic Fracture	۶	ļ												L
		CA=25° Pyrite is weakly disseminated in			ļ					ļ			 			ļ
		Ruck Matrix. Core is relatively solid ROD = 75°10			<u> .</u>								ļ		ļ	ļ
13,5	49.5	Dark Uniform Med. Grained Diorite Dike, Weakly	3	1	3	2			29062	450	48.0	3	11	.2	129	Ŀ
		Feldsparporphyritic Epidde generally limited							29063	480	51.0	3	63	·Z	659	<u> </u>
		to Matrix - very Few Epidote Fractures, core												ļ	. 	ļ
		Broken Up by Re-Drilling. Chlorite and		ļ	 					ļ				 		
		Hematite Fractures C.A= 30° Pyrite is	 										<u> </u>			
		Uniformly Distributed Throughout the Matrix.		[ļ	
19.5	60.0	Divite Mottled Texture, Pervossive Epidote	2	2	4	4			29064	51.c	54,0	3	70	. 9	819	
		Alteration and Stockwork/Breccia, Strong		ļ					29065	54,0	57.0	3	Z90	2.7	2058	
		Chlorite Filed Factures with pyrite and	<u> </u>					···	29066	57.0	60.0	3	97	1.0	680	
		Calcite CA = 40-30° and Subparallel. Epidote							·			L				Ĺ

DRILL	HOLE #	SW 04#2 PAGE 3 of 10			AI	.TER 1-5 (1	AT IO max)	N						·		
FROM	TO	DESCRIPTION	z Pyrite	Magnetite	Epidote	Chlorite	K-spar	Juartz - Seric	Sample Number	FROM	10	WIDTH (m)	(qdd) nv	(mqq) gA	, Cu (ppm)	
		Banding at CA 15° increasing down Section					_									
		RQD = 90%			<u> </u>											
60.0	64.5	Dark Grey-Green Diorite: all Feldsonis que	l	4	2	4			29067	60.0	63.0	3	450	1.2	680	
		Mottled chloritic and Magnetic Matrix							29068	63.0	65.8	2.8	220	1.Z	537	
		chlorite and calcite in a broken stockwork						·								
		of Fractures 1-5 mm wide querase (up to														
		7 cm) with Purite and Trace Chalcomite														
		in Stringers and clots. Weak Salfide														
		banding CA=20° RQD 70%									· .		-			
64.5	72.8	Dark Grey-Black-Altered Diorite: Chlorite	2	2	3	4	3		29069	65.8	67.3	1.5	157	1.1	435	
ļ		and Epidote Occurs as Pervassive clots							29070	67.3	68.5	1.2	280	.9	472	
		and in a Broken Stockwork Imm-10mm							29071	68.5	7 <i>1.0</i>	1.5	29	.4	302	
		wide every 1-5 cm Patchy Kspar and							29072	71.0	74,0	3	73	.7	426	
		Silicification is locally Pervassive. Magnetit	e													
		Occurs as Vainlets Imm wide to short	_													
	 	Pervassive Sections Calcite Bands, 65.8-66.4														
		Quartz Vein with 53% Pyrite and Trace														
		Chalcopyrite with chlorite clots and in Quartz					-									
 		CA = 70° 67.3 - 3cm Quartz - chlorite Vein													I	
		CA= 40° 68.4- Quartz - Calcite Vein C.A= 30°														

i

		· · ·	6	te	1	đ1		ieria				<u>E</u>	~	2	2	
			yrite	gneti	dote	lori te	spar	'tz - 8	Sample	щ		DTH (qdd)	nqq)	mqq)	
ROM	то	DESCRIPTION	₩.	Ω	Epi	Ē	× ×	Ous	Number	FR	10	ž	Au	Ag	<u> </u>	معذب فالنف
	·	Footwall Chloritic Fractures C.A.= 30° Strong							· · · · · · · · · · · · · · · · · · ·							
	-	Epidote / Chlorite in Footwall - Moderately														
		Broken up. RQD=70%														
72.8	80.0	Highly Attered Diorite: Dark Green-Black.	3	3	4	4	2		29073	74.0	77.0	3	107	1.0	576	
		Epidote and Chlorite Pervassive and in a							29074	77.0	80.0	3	123	،7	389	-
		Strong Broken Stockwork Breccia: Magnetite	•											•		
		accurs in Veinlets up to I cm wide General														
		C.A.: 40°-30°. Ksoar and Silicification increase	<u>کر</u>													
		Down Section. Core very Broken, Pyrite and														
		Chalcopyrite Disseminated through Chlorite										<u>.</u>				
		and Epidote Matrix and Crudely Banded.														
		along chlorite and service Evactures at														
		c.A= 20°-Submarallel RQD= 30%														
80.0	95.0	Diorite: Chlorite - Epidote Alteration	2	3	4	4	3		29075	80.0	83.0	3	36	.6	323	
	<u> </u>	Overprinted by Strong Kspar and Silicification							29076	830	86.0	3	72	.5	270	
		Pyrite and Trace chalcopyrite along chloritic			·				29077	860	89.0	3	65	.н	247	
		and Strong Sericitic Fractories. Magnetite							29078	84.0	92.0	3	22	٠Z	165	
		Occurs locally as crude veins and clots up							29079	920	95,0	3	94	.4	260	
		to 1cm. 85.3-86: Green Black Pervassive						-+-	-							
		Silicification and K-soar with Disceminster					-									

DRILL	HOLE •	$JWDH^{\frac{4}{2}}$ PAGE 5 of 10			AI	LTER 1-5 (1	AT I O max)	N site				-				
FROM	TO	DESCRIPTION	% Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Seri	Sample Number	FROM	10	WIDTH (m)	Au (ppb)	Ag (ppm)	Cu (ppm)	
		Coarse Grained Purite, x-cut by Barren White														Ι
		Quartz Vein Zcm wide at C.A. = 30°							·							Γ
		Core is Highly Broken up along strong														
		chlorite and Sericite Fractures at CA= 40°														
		30° and Subparallel RQD = 10%														
95.0	105.0	Diorite? all Original Textures gone. Very	3	-	2	3	4		29080	95.0	96.5	1.5	460	.9	487	
		Strong Kspar and Silicification Breccicited Mater	x						29081	96.5	980	1.5	21	.3	170	
		with quartz and Kspar Flooding, 10 cm Clay							29082	980	100.0	2	8	.1	64	
		Gauge has been silicified and Brecciated.							29093	1020	103.0	3	21	.4	394	
		95.5-960; Quartz Vein 30cm Wide with							29084	1030	106.0	3	60	15	286	
		Pyrite and Trace Chalcopyrite and Galena.														
		C.A. = 40°: Top contact has 10% sulfides														
		in Veinlets, Several other similar quartz Veins				<u> </u>										
		up to 6 cm also in section quartz and											<u> </u>			
L	<u> </u>	Calcite Veinlets 1-2 mm wide x-cut Larger					<u> </u>									
		Veins, Left Lateral. Section has little - no														
		Magnetite Fractures are highly chloritic														
		and sericitic RQD = 70%														
105.0	111.0	Grey-Black Altered Diorite Moderate - Strong			3	4	3		29085	106.0	104.0	3	30	.Z	230	
		Kspar and Silicification through Matrix, Highly							29086	109.0	1120	3	25	.2	117	
		· · · · · ·														

DRILL	HOLE *:	JWDH#2 PAGE 6 of 10			AL	.TER/ 1-5 (n	ATIO nax)	N	·			~				
FDAM	то	DESCRIPTION	6 Pyrite	1agnetite	Epidote	Chlorite	K-spar	Juartz - Ser	Sample Number	FROM	10	wIDTH (m	Au (ppb)	(mqq) gA	Cu (ppm)	Ma
		Roben Core Chloritic and Separity Fractures													_	
		at C.A. = 30°-40° and Subparallel, Quartz														
L	ļ	Veinlets 1-2mm wide every 1-2 cm. RQD= 40%								ļ	-					
111.0	176	Highly Altered Diorite - Strongly Siliceaus and	1	<u>·</u> 1	4	4	<u>H</u>		29087	112.0	115.0	3	37	.3	250	
		Kspar Altered. No Carbonate: Matrix 13	·						29088	1150	1180	3	56	.3	197	
		mottled Texture; Chlorite and Epidote							29089	1180	121.0	3	87	.5	251	
		Pervassive and in clots locally Brecciated							29090	121.0	124.0	3	66	.7	523	
		by Quartz Veinlets and KSpar Flooding.							29091	124,0	127.0	3	240	.5	450	
		Cover is Solid - few fractures of 30.							29092	1270	130.0	3	160	.3	319	
	•	NAGNETITE OCCURS AS SMALL CLOTS WITH							29093	1300	133.	3	29	.4	261	
		CHLORITIC FRACTURES EVERY 2-3METERS							29094	133.0	1360	3	32	.3	278	
		160 M- EPIDOTE BRELLIA BAND 3 CM WIDE							29095	1360	139.0	3	43	.5	384	
		$C, A = 40^{\circ}$							29096	1370	1420	3	50	.7	441	
		16312 - AUARTZ -CALCITE - CHIORITE VEIN WITH							29097	142.0	1450	3	34	.7	509	
		5% PYRITE AT CONTACT X-CUTS IEPIDOTE VEINLE	75						29098	145.0	148.0	3	28	.9	562	
		$C, A = 40^{\circ} \text{ AND } 15^{\circ}$		1					29099	1480	151.0	3	48	.8	623	
	1	Ron = 758							29100	151.0	1540	3	39	.5	449	14
1740	195.0	Valanic Acclamerate (Green Sort Rock) an	41	1	4	4	3		85001	154.	157.0	3	27	5	189	4
	1.0.0	langilli " Mottled Blotchy - Endate and							85002	157.0	160.0	3	17	.4	332	2
	1	Chlorite in block (bloutic and Kan Matrix	r.						85003	1600	163.0	3	50	.41	347	iD

DRILL I	HOLE •	JWDH+2 PAGE _7 of 10_			AL	.TER/ 1-5 (n	ATIO nax)	N ž		•						
FROM	то	DESCRIPTION	% Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Serio	Sample Number	FROM	10	WIDTH (m)	(qdd) ny	(mqq) gA	Cu (ppm)	
		Minor Calcite Veinlets, Magnetite Vein 3cm							85004	163.0	166.0	3	49	.7	498	
		wide at C.A = 40°-centered with Purite							85005	1600	169.0	3	44	1.0	776	
		Magnetite usually is small clots or with							85006	169.0	172.0	3	34	.8	596	
		Chloritic Fractures. Rock is Strongly K-span							85007	172.0	1750	3	40	.9	652	
		Altered (by staining) RQD = 90%							85008	175.0	178.0	3	18	15	301	
195.0	201.2	Highly Altered Diorite / subvolcanic (?)	/	3	4	3	3		85009	1780	18.0	3	47	.3	131	
		Modelately Siliceous, Epidote in clots							85010	181.0	184.0	3	15	·2	143	
		and Veins up to Icm CA= 40° Chlority	ļ						85011	1840	187.0	3	18	<u>.</u> 2	175	
		Fracturing increasing C.A= 30° to Subpora	lel_						85012	1820	190.0	3	23	.2	96	
·		RQD = 60%:-Less near Dike Contact							85013	1900	193.0	3	27	<u>.</u> 2	157	
201.2	205,2	Med Grained Feldspar Porphyry Dike Light	<u> </u>	3	3	1	3		85014	193.0	1960	, 3	37	.3	116	
		Grey - Brown Color (Same as Drill Hole 1 -							85015	960	199.0	3	19	.5	268	
· .		#2 Dike.): Epidote Altered and Kspar							85016	199.0	ZOZO	3	136	.7	615	
		Rick Uniformly Magnetic Weakly							85017	2020	204.4	2.4	46	•6	361	
		Broken, Contact CA = 65° Sharp							85018 :	04.4	207.0	2.6	3		31	
		RQD = 95%														
205.2	220.0	Relatively Uniform Med Grain Diorite	1	2	4	2_	3		85019	207.0	2082	. 1.2	5		29	
		Pervassive Epidate and Kapar Alteration.							85020	200,2	Z10.0	1.8	36	_2	210	
		Light - Med Dark Green, Locally Mottled with	<u> </u>						85021	2100	2130	3	51	.6	435	
L		Epidote Clots. Epidote-Quartz and Kspar							85022	2130	Z16.0	3	71	.8	560	

1

. •• .

											•	•				
DRILL H	IOLE 🐔	TWDH#2 PAGE _8 of 10			Ąļ	.TER/ 1-5 (n	AT I O nax)	N žt								
			Pyrite	gnetite	idote	lorite	spar	rtz - Seri	Sample	MO		DTH (m)	(qdd) I	(mqq)	(mqq)	
FROM	TO	DESCRIPTION	R	Σ	ED	<u>5</u>	<u> </u>		Number	FR		ž	Au	ĎŶ	<u> </u>	
		Bands I mm to 3 cm wide evely 3-5 cm					<u> </u>		85023	216	219.0	3	.050 1860	1.Z	840	
		C.A. = 70° Chlorite and Hemafite Fractures							85024	219.0	72Zq	, 3	91	.7	483	
		C.A= 40° to Sahoprallel 216.5: Fault														
		Zone zmile Moanetite Occurs as				•								<i>n</i> .		
		Veins 1-3 mm wide every 10-50 cm and														
		in Small Clots. RQD = 60%									·					2
2200	241.0	Mottled Diarite: Chlorite and Epidote	1	3	4	4	3		85025	zza	2250	3	11Z	,9	665	
		clots in a Dark chlorite Matrix. Ksocr							85026	2250	2280	3-	189	1.Ż	890	
		Hooding with moderate Silicification and	ł ·						85027	2280	231.0	3	158	1.3	867	
	ANHORITE	Bleaching Occurs Frequently 222.0- 4 cm Quart							85028	231.0	234.0	3	51	.9	677	
		Breccia with Calcite and Trace Pyrite and							85029	234.0	237.0	3	123	.7	657	
		Chakopyrite Veinlets and Clay Gouss CA= 60°							85030	237.0	2400	3	35	.5	505	
		240.0 Quartz Calcife - chlorite Van 4cm Wid	e C.1	£ = 50	Þ				85031	2400	2430	3	8	.5	334	
		Magnetite Veinlets 1-3 mm wide occur in							-							
		Short Stockwork - Breccia Zones up to														
		20 cm and in clots chlorite ± Quartz/														
		Epidote Filled Fractures every 1-3 cm														
		CA = 30-45° RQD = 80%				<u> </u>										
241.0	246.0	Uniform Med. Gravied Diarde ! Light Gree-	Tr	3	2	. 1	3		85032	243	6246	> 3	9	-4	247	
		Green Relic Feldsmas Visible Matrix														

DRILL I	HOLE =.	JWDH#2 PAGE 9 of 10		•.	AL	.TER 1-5 (1	AT I O max)	N eite N		-		~				
FROM	то	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Séri	Sample Number	FROM	10	WIDTH (m	(qdd) ny	(mqq) gA	Cu (ppm)	
		is Uniformly Magnetic, ROD = 95%														
246.0	253.0	Chlorite and Epidote in Clots Kspar	١	2	3	S	3									
		Generally Pervassive and Flooded through Mater	x:						85033	246.0	249.0	3_	15Z	.7	781	
		locally Quartz-Kspar Banding = 35° SA.	[ļ			85034	249,0	2520	3	171	:8	884	
		249.3 - Quartz - Calcite and Chlorite Vein							85035	2520	2550	3	178	1.1	1205	
		5 cm wide C.A= 40° Pyrite is in Small Clots										 				
		Magnetite in Hairline Fractures and weak					ļ									
		Stock work RaD= 85%			•											
253.0	258.0	Diorite Pervassively Silicified and Kspar		1	2	2	5		85036	2550	258.0	3	34	.6	486	
		Altered to a light Grey Wor. Chlorite and														
		Epidote Alteration Faded Out A Few Quart	2													
		Veins I cm wide c.A = 30° Chlorite and										Ĺ				
		Sericite coated Fractures at C.A=Zo?		L					I			L				
		45°, Subparallel Trace Chalcopyrite													<u> </u>	
		along Fractives (Cp > Py) RaD = 50%		L										.		
258.0	278.28	Disrite highly attered fine to medium ground		2	3	3			85037	258.0	261.0	3	43	.4	421	
		uniform + notfled zones, locally K-spar + quertz							85038	261.0	264.0	3	640	4.4	4849	
		Flooded girtz - ANA IDRITE chlorite - epidate.			_				85039	214.0	267.0	3	35	۰Z	298	
		Fracture Fillings @ 45° + 60° - up to 2 cm in				ļ			85040	167,0	270.0	3	24	.3	314	
		with RQD: 90 %							85041	70.0	273.0	3	85	1,1	1890	

DRILL H	IOLE *.	PAGE of			AL	_TER/ 1-5 (1	ATIO max)	ji N		·		_				
FROM	то	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Serik	Sample Number	FROM	TO	(m) HIDIM	Au (ppb)	Ag (ppm)	Cu (ppm)	
		163.0-> 164 0: 58 mole + 0.58 deland	<u></u>						85042	2731	276.0	3	20	.5	704	Γ
		to the filling of the	1			1			85042	74.0	138.19	128	3)	is	590	T
		active of mandide				<u>† </u>	1			[/	[/					T
		Prises								<u> </u>						Γ
		FND OF HOVE NOH # ? @ 278 18 -														Γ
										1	ř					Γ
										1						Γ
		-	1													T
			1			<u> </u>						[]				T
										1						T
										1						T
										1						T
						1	1	-	· · · · · · · · · · · · · · · · · · ·	1						T
		· · · · · · · · · · · · · · · · · · ·				1				1						T
			-			<u> </u>	1			1	<u> </u>					T
			1			<u>†</u>				1	1					T
			1 · ·			1				1						T
			1			1	1			1	1					T
			1			1			 	1						T
			1			<u>†</u>	1		1	1	1	[T

-

COAST MOUNTAIN GEOLOGICAL LTD. DIAMOND DRILL LOG

	CLIENT: BELLEX / QUATTRO PROJECT: JACK WILSON 57 ⁰ 10' N, 131 ⁰ 42' W NTS: 104G/4E MINING DIVISION LLADD		`	DRILL HOLE # COORDINATES N E	<u>405ш. DH#3</u> 0+50 0+70
Į	THREE DIVISION, LIARD			ELEVATION AZIMUTH	353
	LOGGED BY: D.BLA SAMPLED BY: <u>G.M.</u> DATE LOGGED: <u>AUG 2</u>	NN 1-24		DATE STARTED DATE FINISHED CORE SIZE	<u>AUG 21</u> <u>AUG 24 /90</u> NQ
1	ASSAYS RECEIVED: <u>406-</u>	31/90		RECOVERY	95%

	FROM	TO	WIDTH (m)	Au (oz/t)	Ag (oz/t)	ີ Cu (%ເ)	1	
/	-360	63.0	27.0	.011	1074	.349		
MAG. IBX	132.0	149.0	17.0	,012	105	.172		
</td <td>18.0</td> <td>63.0</td> <td>45.0</td> <td>.011</td> <td>.05</td> <td>,237</td> <td></td> <td></td>	18.0	63.0	45.0	.011	.05	,237		
ar								
	· · · · · · · · · · · · · · · · · · ·							
1				· · · · ·				

DEPTH	DIP	AZ]
COLLAR	-50°	090	
152m	-48°	090 A	CID
286.51	-48	090	4

3.0 6.0 3 44 .4 349 6.0 9.0 3 11 .1 242 7.0 12.0 3 13 .3 265 12.0 15.0 3 18 .6 527	
3.0 6.0 3 44 .4 349 6.0 9.0 3 11 .1 242 7.0 12.0 3 13 .3 245 12.0 15.0 3 18 .6 527	
5.0 6.0 3 11 .1 317 6.0 9.0 3 11 .1 242 7.0 12.0 3 13 .3 245 12.0 15.0 3 18 .6 527	
6.0 19.0 3 11 .1 242 7.0 12.0 3 13 .3 246 12.0 15.0 3 18 .6 527	
9.0 12.0 3 1.5 5 2.65 12.0 15.0 3 1.8 .6 52.7	
	·
	_
15.0 18.0 3 117 .5 554	
1B.0 21.0 3 1480 .5 319	<u> </u>
21.0 24.0 3 31 .4 475	
24,027,0 3 20 5 727	
270 300 3 210 .7 1030	
30,033,0 3 190 .7 721	-
33,034,0,3,54,9,858	
26 39 3 270 2.2 3266	<i>i</i> .
28 412 0 3 55 1.4 19316	1
	1
120 420 3 1930 3 0 5029	
42.0 45.0 3 1930 3.0 5029	
42.0 45.0 3 1930 3.0 5029 45.0 48.0 3 260 3.3 4664	
33.0 36.0 3 5 36.0 39.0 3 2 36.0 39.0 3 2	4 .9 858 70 2.2 3266

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(bhru)
ROHTODESCRIPTION \mathbf{k} \mathbf{r}	_
RAPID MOD IN PRAITE AND AN INCREASE BSD57 480 51.0 3 444 1.8 IN CHALCOPYRITE AS STRUMETRES AND BSD60 51.0 54.0 3 200 2.3 DISSEMINATIONS ALENCE CHEMITICT BSD61 540 3 200 2.3 SERVITIC FRACTURES NITH MINOR BSD62 57.0 60 3 112 2.7 SERVITIC FRACTURES NITH MINOR BSD62 57.0 60 3 112 2.7 CALCITE AND TRACE CALENA. BSD64 53.0 60.0 3 61 1.9 CALCITE AND TRACE CALENA. BSD64 53.0 60.0 3 61 1.9 CALCITE AND TRACE CALENA. BSD64 53.0 60.0 3 61 1.9 CALCITE AND TRACE CALENA. BSD64 53.0 60.0 3 61 1.9 CALCITE AND TRACE CALENA. BSD64 53.0 60.0 3 61 1.9 GID 700 ANDERGED AND CHEMITIC, EPIDERE BSD65 60.0 69.0 3 16 .3 HIGHLY WRAPED AND CHEMITIC, EPIDERE BSD65 60.0 69.0 3 16 .3 VERMETS I TO 30000 WITH PRACTE IEVERY BSD66 69.0 71.0 3 66 .3 ST TO 10 CM. LOCALLY BROKEN STOCKWARE BSD66 69.0 71.0 3 66 .3 C.A. SUBBARAULEL, 30°, 45°, MARMETTE BSD66 69.0 71.0 3 16 .3 MD CLOTS, TRACE CHEMICHARTE WITH BSD66 69.0 71.0 3 16 .3 MD CLOTS, TRACE CHEMICHARTE WITH BSD66 69.0 71.0 5.0 3 26 .5 MD CLOTS, TRACE CHEMICHARTE WITH BSD67 80.0 75.0 3 26 .5 MD CLOTS, TRACE CHARCENALTE CHEMICHARTE BSD66 75.0 75.0 3 26 .5 M	<u> <u> </u></u>
IN CHARLOPYRITE AS STRINGERS AND 85060 51,0 54,0 3 200 23 DISSEMINATIONS RECOVERTIES 85061 540 57,0 3 260 42 SERVITE FRACTURES WITH MINOR 85061 540 57,0 3 260 42 SERVITE FRACTURES WITH MINOR 85062 57,0 60,0 3 112 2.7 CALCITE AND TRACE CALENA 85063 60 63,0 3 61 1.9 CALCITE AND TRACE CALENA 85064 63,0 60,0 3 61 1.9 CALCITE AND TRACE CALENA 85065 60 69,0 3 16 .2 HIGHLY WARRED AND CHIMITIC, EPIDOTE 85066 69,0 72,0 3 66 .3 HIGHLY WARRED AND CHIMITIC, EPIDOTE 85066 69,0 72,0 3 66 .3 STO ID CM. LOCALLY BROKEN STOCKWORK 85066 69,0 72,0 3 66 .3 C.A. SUBPRAULE, 30°, 45° MACMENTE 85066 69,0 72,0 3 66 .3 MD CLOTS, TRACE CHALCOLART STOCKWORK 9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	638
DISSEMURATIONS ALONG CHEMITIC - 85061 540 57.0 3 260 42 SERVITIC FRACTURES WITH MINOR 85062 57.0 60.0 3 112 2.7 CALCITE AND TRACE CALENA. 85062 57.0 60.0 3 112 2.7 CALCITE AND TRACE CALENA. 85062 57.0 60.0 3 61 1.9 CALCITE AND TRACE CALENA. 85062 60.0 3.0 3 61 1.9 CALCITE AND TRACE CALENA. 1 GIO 700 ANDESITE LAPULI AND ALEXAMERATE. 2 2 2 4 HIGHLY WERRED AND CHEMITIC. FRIDETE 85065 60.0 3.0 16.3 HIGHLY WERRED AND CHEMITIC. FRIDETE 85066 67.0 72.0 3 66 3 STO 10 CM. LOCALLY BADENE STEXEMERS 1 C.A. SUBRMAUEL, 30°, 45°, MAGAMETITE 1 PROCLEDS. TRACE CHALLOGYNITE WITH 1 CLOURS INREGULABILY AS DISSEMURATIONS 1 AND CLOTS. TRACE CHALCOGYNITE WITH 1 CHEMITE. FRIDETE 2 VEINTERS. RAD 2.0 20 2 VEINTERS. RAD 2.0 3 26 .5 HIGHLY STRAINED MATAIN FRANCE 1 VEINTERS. RAD 2.0 3 26 .5 HIGHLY STRAINED MATAIN FRANCE CHARLON RITE: 2 CO.0 840 HY PABASAL ANDENTE / DISSEMINATIONS 1 VEINTERS. RAD 2.0 20 2 85067 720 75.0 3 26 .5 HIGHLY STR	608
SERVITIC FRACTURES WITH MINOR 85062 570 600 3 112 2.7 CALCITE AND TRACE CALENA. 85063 600 63.0 3 61 1.9 610 70.0 ANDESTE LAPULI AND ACLEMENATE. 2 2 2 4 85063 600 63.0 3 61 1.9 610 70.0 ANDESTE LAPULI AND ACLEMENATE. 2 2 2 4 85064 63.0 60.0 3 16 .3 610 70.0 ANDESTE LAPULI AND ACLEMENTE. 2 2 2 4 85064 63.0 60.0 3 16 .3 610 70.0 ANDESTE LAPULI AND ACLEMENTE. 2 2 2 4 85064 63.0 60.0 3 16 .3 610 70.0 ANDECALMENTE. ENDER 85065 60.0 72.0 3 66 .3 70.0 2 70.0 8004 70.0 3 66 .3 .4 .3 70.0 2 1 2 2 2 .4 .4 .3 70.0 240 1 1 1 1 1 1 1 1 1 7	;863
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5876
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	99 z 1
610 70.0 ANDESITE LAPHULIAND ALLEMARATE. 2 2 2 4 85064 63.0 60.0 3 10 .2 HIGHLY WEARED AND CHIMMITIC, EPIDOTE 85065 66.0 69.0 3 16 .3 VEINLETS I TO 3 MM WITH PHOLTE, EPIDOTE 85066 69.0 3 66 .3 STO 10 CM. LOCALLY BARKEN STOCKWORK 85066 69.0 72.0 3 66 .3 C.A SUBPRMALIEL, 30°, 45°, MACHIENTE 85066 9.0 72.0 3 66 .3 OCCURS INREGULTELY AND STOCKWORK 9.0 <td></td>	
HIGHLY WEARED AND CHLORITIC, EPIDOTE 85065 66.0 69.0 3 16.3 VEINLETS I TO 3 MOD WITH BUDITE IEVERY 85066 69.0 72.0 3 66.3 STO ID CM. LOCALLY BINGKEN STOCKWORK 1 C.A. SUBPARALIEL, 30°, 45°, MAGMETITE 1 OCCURS IRREGULARILY AS DISSEMINATIONS 1 AND CLOTS, TRACE CHARCOPHRITE WITH 1 CHLORITE-EPIDOTE + BUARTE-CARDONATIE 1 VEINLETS RD = 20 P 70.0 840 HTPA3YSSAL ANDESITE/DIORITE' 2 HIGHLY STRAINED MATRIX FABRIC TMOTILED 85066 7720 75.0 3 26 .5 HIGHLY STRAINED MATRIX FABRIC TMOTILED 85068 75.0 78.0 3 76 .4 EPIDOTE VEINLETS I-2mm EVERY 85069 78.0 81.0 3 85 .1 SHIDCM, PYNITE OCCURS AS 85070 81.0 84.0 3 45 .3	248
VEINLATS 1 TO 3 MM WITH PROLIFE IEVERY 85066 69.0 72.0 3 66 3 S TO 10 cm. LOCALLY BROKEN STOCKWORK 1 C.A. = SUBPARALLEL, 30°, 45°. MAGMENT TE 1 OLCURS IRREGULABILY AS DISSEMINATIONS 1 AND CLOTS. TRACE CHALCOLOGYRITE WITH 1 CHLORITE - FRIDOTE + BUARTE-CAMDONATE 1 VRINLETS. R D = 20 B 70.0 840 HJ PABYSSAL ANDESITE / DIORITE' 2 HIGHLY STRAINED MATRIX FABRICTMOTILES 85067 72.0 75.0 3 26 15 HIGHLY STRAINED MATRIX FABRICTMOTILES 85067 78.0 76.0 3 76 44 EPIDOTE VEINLETS 1: 2mm EVERY 85069 78.0 81.0 3 85 1 SENIORALIES ALATRIX FABRICTMOTILES 85069 78.0 81.0 3 85 1 SENIORALIES ALATRIX FABRICTMOTILES 85070 81.0 84.0 3 45 3	314
STO 10 CM. LOCALLY BROKEN STOCKWORK C.A SUBPARAUEL, 30°, 45°, MAGANETITE OCCURS IRREQUARILY AS DISSEMINATIONS AND CLOTS, TRACE CHALCOLYRITE WITH CHLORITE-EPIDOTE + BUARTE-CARDONATE VEINLETS RADE ZOB 70.0 84.0 HY PABYSSAL ANDESITE / DIORITE' ZIZZE HIGHLY STRAINED MATRIX FABRIC THOTHED EPIDOTE VEINLETS I-ZUM / EVERY SEALO CM, PYRITE OCCURS AS	531
C.A. = SUBPARALLEL, 30°, 45°. MAGNIETTE DICLURS IRREGULARILY AS DISSEMINATIONS AND LLOTS, TRACE CHALCORYRITE WITH CHLORITE-FERDOTE + BUARTE-CARDONATE VEINLETS, RDD = 20° 70.0 840 HYPABYSSAL ANDESITE/DIORITE' HIGHLY STRAINED MATRIX FABRICTMOTTLED HIGHLY STRAINED MATRIX FABRICTMOTTLED B5068 750780.0 3 76 4 EPIDOTE VEINLETS 1-2mm EVERY 5° 10 CM, PYRITE OCCURS AS B5070 B10 84,0 3 45 3	
OCCURS IRREGULATING AS DISSEMINATIONS AND CLOTS, TRACE CHALCOGYRITE WITH CHLORITE-EPIDOTE + BUARTE-CARDONATE VIEINLETS, RDD = ZDB 70.0 84.0 HY PABYSSAL ANDESITE / DIORITE' HIGHLY STRAINED MATRIX FABRICTMOTILED BSD69 78.0 81.0 3 85 · 1 EPIDOTE VEINLETS I-ZMM FEVERY Set 10 CM, RYRITE OCCURS AS	
AND CLOTS, TRACE CHALCOPYRITE WITH CHLORITE-EPIDOTE + BUARTE-CARDONATE VIEINLETS. RDD = 202 70.0 84.0 HYPABYSSAL ANDESITE/DIORITE: 21222 85067 72.0 75.0 3 26 .5 HIGHLY STRAINED MATRIX FABRICTMOTTLED 85068 75.0 78.0 3 76 .4 EPIDOTE VEINLETS 1-2MM EVERY 85069 78.0 81.0 3 85 .1 5410 CM, PYRITE OCCURS AS 8507 8507 81.0 84.0 3 45 .3	
CHLORITE-EPIDOTIE + BUARTE-CARDONATE VIEINLETS R D = 20 B VIEINLETS R D = 20 B 70.0 840 H4 PABYSSAL ANDRESITE / DIORITE! Z 1 Z Z 2 85067 720 75.0 3 Z6 .5 H16-HLY STRAINED MATRIX FABRICTMOTTLED 85068 75.0 78.0 3 76 .4 EPIDOTE VEINLETS 1-2mm FEVERY 85069 78.081.0 3 85 .1 5=10 CM, PYRITE OCCURS AS 85070 81.084.0 3 45 .3	
VEINLETS ROD = 20% 70.0 84.0 HYPABYSSAL ANDESITE / DIORITE! 2 1 2 2 85067 72.0 75.0 3 26 .5 HIGHLY STRAINED MATRIX FABRICTMOTILED 85068 75.0 76.0 3 76 .4 EPIDOTE VEINLETS 1-2mm EVERY 85069 78.0 3 85 .1 5:410 CM, PYRIFE OCCURS AS 85070 81.0 84.0 3 45 .3	
70.0 84.0 HYPABYSSAL ANDRESITE / DIORITE! Z Z 2 85067 72.0 75.0 3 Z6 .5 HIGHLY STRAINED MATRIX FABRICTMOTTLED 85068 75.0 78.0 3 76 .4 EPIDOTE VIEINLETS 1-2mm EVIERY 85069 78.0 8.0 85070 81.0 85070 81.0 84.0 3 45 .3 5000000000000000000000000000000000000	
HIGHLY STRAINED MATRIX FABRICTMOTTLED 85068 75.0 78.0 3 76 .4 EPIDOTE VEINLETS 1-2mm EVERY 85069 78.0 3 85 1 5=10 cm, Pyriste Occurs As 85070 81.0 3 45 3	38/
EPIDOTE VEINLETS 1-2mm EVERY B5069 78,081,0 3 85 1 5==10 cm, Pyrite occurs as 85070 81.084,0 3 45.3	280
5==10 cm, Pyrists occurs AS 85070 B1.0 84,0 3 45.3	191
	285
DISSELLINATED AND SMALL CLOTS ALONG	

RILL H	ole •_	PAGE of	-	•	AL' 1	TERA -5 (m	T101 ax)	*				2				
			Pyrite	agnetite	pidote	hlorite	-spar	iartz - Berk	Sample	MUN		MIDTH (m	Au (ppb)	Ag (ppm)	cu (ppm)	
ROM	то	DESCRIPTION	×	Σ	<u> </u>	<u></u>	¥	3	Number	<u></u> i	<u> </u>		<u> </u>	- T	- -	
		CHLORITE AND SERICITE FORACTURIES:	 								<u>i</u>	<u> </u>				
		C.A= SUBPARALLEL, TO 45° ROD 40%	ļ			·										
		70.0-73.5 LARGE PRIDOTE BANDS	<u> </u>													
	· .	WITH SILICIATION 3-6 CAR WIDE	<u> </u>						ļ							
		1 746- 13 CM QUARTZ-CARBONATE-	L	<u> </u>				ļ			1					
		- BPIDOTE-CHLORITE RAND WITH PURITE			 								-	·		<u>-</u>
		AND CHALCOPURITE C.A=40°	<u> </u>					<u> </u>	<u></u>						<u></u> +-	
		MATRIX IS GREY MOTTLES AND	ļ		<u> </u>			 								
		LOCALLY BRIELLIATIED.	<u> </u>	<u> </u>	ļ	<u> </u>	 		╂────				<u> </u>			
			<u> </u>	<u> </u>	<u> </u>		ļ									
940	102.7	SUBVOLLANIC ANDESITE LAPILLI TUFF.	1.	11	3	2	1	<u> </u>	85071.	84.0	85,8	1 1.8	112	15	288	
		HIGHL ALTERED PALE GREAN-GRE	4	<u> </u>	 	<u> </u>	 		85072	85.8	89.0	3.2	57	.4	444	
		MOTTLED TO BRISCUATED MATRIX.		- 	ļ	<u> </u>		<u> </u>	85073	67.0	92.0	3	35	.5	562	
	1	EPIDATE OCCURS IN STRONG BROK	i N			<u> </u>		1	85074	72.0	65.0	3	47	1.2	415	
	1	STRIKWORK AND LARGE CLOTS UP TO	2				ļ	<u> </u>	85075	75.0	98.C	3	2/	.6	443	
	1	JCAR WEAKLY CALCARIEOUS, GUARD					1	<u> </u>	85076	78,0	101.0	3	34	1.0	896	
	1	(HODITE- EDITOTE VEINLIETS 1-5 MM		ł					85077	10.0	102.7	1.7	474	.9	389	
	1	1411-14-1 STRAINED. C.A. = 30-45°								<u> </u>	<u> </u>				┼──┼	
	1	REDUTE ACCURS ALONG CHLORIFIC								1	<u> </u>				┼──┼	
	+	FORTHOLDE PLANTE MEREACES														

.

--

. 19
DRILLI	HOLE *_	3 PAGE of _12	-	•	AL	.TER/ 1-5 (#	ATIO Max)	N -				_					
			Pyrite	gnetite	idote	lorite	-spar	arts - Berla	Sample	MUX	-	1DTH (m)	u (ppb)	(wdd) ()	(wdd) n		
FROM	<u>TO</u>	DESCRIPTION	×	Ĕ	<u> </u>	5	¥	3	Number		<u> </u>	3	<u>∢</u> i	∢ ·	، <u>د</u> ا -	Mo	
·		DOWN SECTION. R. OD= 75%															
102.7	108.5	ANDESITE CRUSTAL TUIFF AGGLANERATE	(2	2		<u> </u>	85078	102.7	105,0	2.3	28	.8	<u>544</u>		
		MEDIVAL GREEN-LIGHT GREYMATRIX ERELATIVEL	<u>/</u>						85079-	105.0	108.5	3.5	12	.2	199		
	· .	UNITORAN). CROSS CUTTING QUARTE-CARDON	A-T 13														
	ļ	VISINLIETS AT 60°-30°-SUBPARALLEL TO						<u> </u>						-+			
	ļ	C.A. PYRITE UNIEVISNLY DISSEMINATED						<u> </u>					-	.			
•		AND ALONG OUMITZ-CARBONATTE-CHLO	<u>niti</u>	<u></u>	<u> </u>	·			<u> </u>						·		
		FRACTURES IMM UP TO ICM INWIDTH.						<u> </u>	ļ								<u> </u>
		PYRITE LOCALLY MASSIVE ALONG FRACTURES		<u> </u>				<u> </u>									
		$C.A = 50^{\circ}$															
108.5	123.0	ANDESITE LAPILLI TUFF	2	1	2	4	2		850 80.	108.5	10.5	2	27	.6	446		
	-	STRONGLY FRACTURED ZONE, EPIDOTE CLUTS	,			Ļ			85081	10,5	113.0	2.5	22	,B	595		
	-	AND CHLORITE CLOTS & STRINGERS UP TO		-					85082	113.0	116.0	3	20	.3	363		
		7 (AL IN HIGHLY ALOTTLED SILICEOUS GRI	£-/						85083	116.0	119.0	3	22	,5	453		
	1	BLACK GREEN MATTRIX HIGHLY STRAINED							85084	119,0	121.0	2	37	.4	342	20	
		AUD SHATTEDED FARALL PULITE + TRAC	-	1				Ι	85085	121,0	123.0	2	7	. /	208		
		ALLANCE REPORTE DIA MALANTIC FRATIUM	E.C.					1	-				1				
		CATE OF THE REPORT	[***			1	1						Ī				
	1		41	1,	4	R	5						1				
•	1	HIS - 123.0 ROMATIC AN'S GUATURE 2 - COOSING		1			<u> </u>	T				1	1				
		THISTEY STELETINGS TANG KOPASE ALTER UP	<u>'</u>	·	L		<u>.</u>				<u>.</u>	<u></u>		<u>.</u>	<u>. </u>		

DRILL	HOĽE *.	3 PAGE of		•	Al	.TER 1-5 (i	ATIO max)	N				~					
FROM	то	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Querts - Beri	Sample Number	FROM	10	WIDTH (m	Au (ppb)	Ag (ppm)	Cu (ppm)	Mo	
		DOWN SECTION RODE 75%												·	-		
102.7	108.5	ANDESITE CRUSTAL TUIFFAGGLOUGRATE.	ι		z	2			85078	102.7	105,0	2.3	28	.8	544		
		MEDIULA GREEN-LIGHT GREY MATRIX & RELATIVEL					·		85079-	105.0	108.5	3.5	12	.2	199		
· · · · · ·	· . :	UNITORAN). CROSS CUTTING QUARTZ- CANON	2-775	ļ													
ļ		VISINGETS AT 60°-30°-SUBBARAUSE TO.		1													
ļ <u></u>		C.A. PYRITE UNIEVIENLY DISSEMINATIES	<u> </u>										-				
·		AND ALONG QUANTZ-CARBONATTE-CHU	217	<u></u>					· · · ·						<u> </u>		
		FRACTURES IMM UP TO ICM INWIDTH.		<u> </u>												\vdash	
		PYRITE LOCALLY MASSIVE ALONG FRACTURES		 						 						┝──┤	
		$C.A = 50^{\circ}$	 	 					· .								
108.5	123.0	ANDSSITE LAPILLI TUFF	2,		2	4	2		850 80.	108.5	16.5	2	27	.6	446	-	
	-	STRONGLY FRACTURED ZONE, EPIDOTE CLOTS		[·		85081	10,5	113.0	2.5	22	13	595		
	-	AND CHLORITE CLOTS & STRINGERS UP TO		-		<u>.</u>			85082	113.0	116.0	3	20	.3	363	┝	
		2 CM IN HIGHLY MOTTLETS SILICEOUS GAI	×						85083	116.0	119.0	3	22	,5	453	┝──┤	
		BLACK-GREEN MATORIX. HIGHLY STRAINED	┣──						85084	119.0	121.0	2	37	.4	34Z	20	
		AND SHATTERED FABRIC: PYRITE + TRAC	E						85085	121,0	123,0	2	7	./	208	└──┨	
		CHALL OPYNITE ALONG CHLORAL PRACTUR	<u> </u>														
		C.A. = 45° ROD = 10%	 													┝━━╾-┣	
		113+ 123.0 KSPATE AND GUARTZ FLOODING	41		4	3	5										
L		HIGHLY SILICIFIED AND REPARALTERED															

-

- • • • • • • •		PAUL 01 _/2		•	A	LTER 1-5 (ATI(max)	NC NC									
ROM	TO	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	(-spar	uartz - Berie	Sample Number	RUM		VIDTH (m)	(qdd) n	(wdd) Br	(wdd) n		
	ļ	WITH STRONG SERILITIC AND CHLORITIC FRATURES			╞═╌						1			4 .		1	
		C.A=453-30°. PYRITE + TRACE CHALLOBURITE		1	+		<u> </u>			+	<u> </u>			+			
		OCCUR ALONG CHLORITE AND FRIDOTE FRACTUR				<u> </u>	 .			<u> </u>	<u> </u>			+	+-	 	
	· .	MATRIX IS DARIC GREY-LIGHT GREEK		1				<u> </u>	<u> </u>	1							
		AND LOCALLY BRISCUATED. ROD=108		1						+	<u> </u>				+	<u> </u>	
23.0	126.0	RELATIVELY FRESH DIDRITE DIKE		· -	[95001			-		 _ ,	1-0		
		MEDIUM GRAINED, AUTOLITHIC, CHILL MARL		1					83006	123,0) 126.C	3	5	<u> </u>	157		
		10 CM TOP CONTACT, 25 CM LOWER CONT		-											<u> -</u>		
		C.A= 45° CONTACT, CALCIUM RICH,	/_/											 			
		DARK GREY-BLACIC WITH FRIESH CALCIE PL	6							<u> </u>							
		WEAKLY BROKEN at C.A. = 30° MINOR								<u> </u>							
	-	GUARTZ-CARBONATE STOLINGERS X-CUT	,											 	<u> </u>		
		$CA=40^{0}.$		ŀ			:			·							
26	137	SUBUOLCANIC ANDESITE LABILLI TUFF	1	41	4	2	3		85007	12/ 11		0					
		STRONGLY SILLIGEOUS, LIGHT GREEN-GREY							00007	146,0	129.0	2	4		301		
		MATRIX. HIGHLY FRACTURED & BROKEN CORE							85080	170	132.0	2	17	<u>. </u>	225	-	
		CHLORITICF PRACTURES C.A. = 70°-45°-SUBPARAL	sL.						ester		155,0	~	<u>-70</u>	7,0 7,1	866	₩	
		EPIDOTE PERVASIVE AND IN CLOTS. LOCALLY					-+		07070	0,60	<u>137.0</u>	~	\$20	<u> </u>	5107		
		BRECHATED MATRIX WITH MAGNETITE	_														
		FRACTURE FILLINGS AND VIEINLIETS. P-IRITIE						†									

		PAGE <u>(></u> of <u>/2</u>		•	4	LTER 1-5 (RATI((max)										
ROM	TO	DESCRIPTION	X Pyrite	Møgnetite	Epidote	Chlorite	K-shar	uertz - Bert	Sample Number	MIN	2	/10111 (m)	(dqq) u	(wdd) By	(wdd) n		
	ļ	OCOURS ALONG FRACTURE FILLINGS AND IN		1	\uparrow		<u> </u>				 	-		1.		1	
		BARCUA, OUARTZ-CARISOUATIE VEINLETS		+	+	<u> </u>	 	<u>↓</u>		+	1	<u> </u> 	<u> </u>				
		130.0-130.3 HEMATITE-CHLORITE			+	1	ŀ	 		<u> </u>	<u> </u>		1	+		<u> </u>	
	· .	OUMITE-BRECCIA		T	1	<u>i – –</u>				<u> -</u>			<u> </u>				
·	ļ	134,1-135 I=AULT TRACIE CHALCOPIRI	-/=		1	<u> </u>		<u> </u>		<u> </u>							
·		STRINGERS AND CLOTS WITH IS FIDOTE AND CHLORI	77= .	-		<u> </u>			<u> </u>			 	<u> </u>				
37.0	146.5	MAGNETITE BRECCIAL BLACK SILICIEOUS	2	5	1	1	4		ocrai					. 		,	
		AND KSPAR ALTERAD MATRIX, 25%	<u> </u>		\uparrow				05011	1137.0	138.0	<u> </u>	1470	2.5	2357		-
		MAGNETITE IN CROSS CUTTING VIEINLETS			†				07042	11380	139.0		400	1.8	1605		
		AND BRECCIA UP TO I CAN IN WIDTH.			<u> </u>				05095	139,0	140,0		240	1.2	1009		
		CHALCOPIRITE + PURITE OCCURS WITHIN							85000	40.0	141.0		<u>710</u>	2.1	2004		
		OPEN SPACES DIE MAGNETITE DOIBCCIA AS	,						85091	41.0	142.0	<u> </u>	120	2.8	2478		
	· · · ·	CENTIERS TO X-CUTTING MAGNETITE VIEINS		-			:		85707	192.0	143.0		580	5.1	2982		
		SERICITIC + CHLORITIC J=RACTURES							85099	143.0	144.0	- <u> </u> -	420	1.7	1197		{
		<u>4. = 45°</u>				1			85799	<u>199.0</u>	145.0		190	2.3	1947		{
		CALCITE FILLED VULS ALSO COMMON.							0,01	175.0	196.5	1+2	230	<u>].7</u>	1594		{
		MARCASITE CRYSTALS	I				-										
		RQD=408					i	†									
46.5	163	· DIORITE LANDESITE LAPILLI TURE	Tr	5	2	4	2	-†	85100				710			$\overline{\Lambda}$	
		MEDIUM GRAINED, HIGHLY MOTTLED ISPIDOTE -						-1	85101	19.0	194,02	2	149	<u>1.2</u>	710 1172	╧┽	

DRILL I	HOLE #	PAGE of		••	A	LTER		IN .								
ROM	TO	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quartz - Bertot	Somple Number	FRUM	01	(m) IITUIW	(dqd) uA	Ag (ppm)	Cu (ppm)	
		-CHLORITE MATRIX WITH QUARTZ-KSPAR							85102	100	155.0	2	59	liz	821	
		FLOODING AND BANDING + BRISCEIA							85103	155.0	1580	3	53	.8	690	
		GUARTZ- CHLORITE - BPIDOTE & MAGNETITE					-		85104 -	158.0	161.0	3	31	.6	417	
		VEINLIETS + STOCKWORK UP TO ICM		<u> </u>					85105	161.0	163.0	2	31	.9	721	
		C.A=40° MATRIX IS UNIFORMLY		1												
		AND STRONGLY MAGNISTIC TRACE		-											<u> </u>	
		CHALCOPIRITIE									1				.	
		159-159.3 DIKE: FIELDSPAR	•													
		PORPHYRY IN FINE GRAINED CHILLED														
		BLACK GROUNDMASS, C.A. = 450													.	
		160-163 MAGNIETITE BRACCIA		l			·						·			
		MAGNIETITE-PIRITE-BUARTE FRACTURE	,			-										
· · · · ·		FILLINGS AND TRACE CHALCOPYRITE														
63	167.7	DIORITE MEDIUM GRAINED		4	4	2	2		85106	63,0	165.0	2	98	.3	737	-
		HIGHLY FRACTURED, SILICEOUS WITH							85107	165.0	167.7	2.7	86	.8	606	
		MAGNETITE - QUARTZ - BPIDOTE VIEINLETS	jj						-		·			Í		
		X-CUTTING.											Ì	. 1		
67.7	170.6	·DIKE MEDIUM-CORRE							85108	167.7	170.6	2.9	7	Z	91	1-1
		GRAINED FELSSPAR PORHYRY, LILIT											1			

RILLI	iole •_	<u></u> PAGE <u></u> of <u></u>		•	AL	.TER/ 1-5 (1	ATIOI max) -	oite N				~				
ROM	то	DESCRIPTION	X Pyrite	Maynetite	Epidote	Chlorite	K-spar	Juartz - Berl	Sample Number	FROM	. 01	WIDTH (m	(qdd) nY	Ag (ppm)	Cu (ppm)	
		GREY TO GREEN MATRIX. WEAKLY						<u> </u>	<u> </u>					•	-	
		NAGGNETIC - BXCEPT AT CONTACT. MINOR														
		QUARTZ - CARBONATE VEINLETS X-CUTTING					·		-	.						
		1 AAA WIDE ALINOR CHLORITE-EPIDOFE						·								
		FRACTURING C.A = 30°-45°														
70.6	188.Z	DIORITYE	(-	3	2	3		85109	170.6	172.6	2	Ц	,8	827	
		STRONG SILICIFICATION AND KERRE							85110	72,6	174.8	2.2	57	.7	730	
		FELOODING							85111	174.8	177.8	3	7	. L	53	
		170.6-174.8 FAULT RODIO							85112	177.8	180,4	2.6	30	.2	507	
		174.9-180.4 DIKE ; FIELDSPAR PORPHI						_	85113	180.4	183.4	3	22	الم	494	
		WISAKLY FRACTURED C.A. =45°	/						85114	183.4	185,4	2	20	·4	459	
		LOCALLY KSPAR ALTERTS, SEVERAL	'			-			BSIIS	185.4	187.3	1.9	18	5	552	
		REPARECOTE THOROUGH MATTELY dill mu	0 750	-			-		85116	187.3	188.2	.9	9	ۍ.	261	
		187.3-188.2 CHILLISS IFRIDSPAR														
		PORPHYRY DIKE 1														
<u>88.2</u>	1936	SUBVOLCANIC DIORITE	(1	δ	1	4		85117	188.2	191.7	. 3	13	4	321	
		STRONGLY SILICITED AND KSBAR ALTO	RET						85118	191,2	193.6	2.4	17	.3	275	
		MOTTLED GREEN/GREY MATRIX, OUART	2					-								
		AND RSPAR I=LOODING AND PERVASIVE														
		EPIDOTE CLOTS, SEVISIAL MAINETITE														

•

RILL H	ole •_	PAGE of12		•	AL	.TER/ 1-5 (#	ATIO Nax)					•					
ROM	то	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Quarte - Bert	Sample Number	FRUM		WIDTH (m)	Au (ppb)	Ag (ppm)	Cu (ppm)	_	
		VEINLETS Imm - 3mm CA=600												-	-		
		PURITE WITH MAGNETITE AND SUBSITE															
		STRINGERS' SERICITIC FRACTURES CA=							-								
		60°-45° ROD=80%															
93.6	2036	FELDSPAR PORPHARY DIMPITE	Tr	Ī	4	1	2		8519	193.6	196.6	3	Ц	.1	125		
		FILLE-ARD GRAMED STRAKE BRIDGT &							85120	196,6	199.6	3	7	.1	55		
		Revolute the FO 25 (the CA = 60°	·						85121	199.6	201.2	2.6	5	.6	77		
		1992 - 1996 - QUARTZER ROOTEVEL		1					85122	202.2	203.6	1.4	64	.2	334		
		$f A = 45^{\circ}$				Ì											
		2007-2009 -01407-21511		1			ŀ				1						
			7							İ	1	1					
				-		<u> </u>				1	1	Ì			\square		
		CHEDRED TE TOTAL ANDRE SUCHADES	1							1	1	1					<u></u>
		Entrais I w CATA B I W CONTACT									<u> </u>	<u> </u>					
· · · · ·		C.17=43 AIGHLY STIJINIED COUNTRY 2	\vdash	<u> </u>			1			1	1	Ī					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		WITH CHLORITIC FRALTURES - FAINOR FRIDOT		<u> </u>	<u> </u>	<u> </u>			-		1.	<u>†</u>		1			
		BRECLIA		<u> </u>			1		05117	0.21	1000	114	42	1.7	308		
203.6	2/2.0	DIORITE · ANDRESITE LAPILLI TURE	<u>11</u>	1	<u> ></u>	15			BS125	105,6	100,0	2	1 2 7	1.	220		
		FINE-MED GRAINED HIGHLY MOTTLED,	<u> </u>		┠		<u> </u>		85129	206,0	209,0	<u>z - z</u>	13/	1-1-	2.30	+	

DRILL I	iole *.	3 PAGE 10 of 12		•	AI	LTER 1-5 (1	AT IO max)	N 				~				
			Pyrite	gnetite	ldote	lorite	spor	rtz - 8er	Sample	H		0711 (m	(dqd)	(mqq)	(bpm)	
ROM	то	DESCRIPTION	×	Ĩ	Ē	C	۱ ۲	5	Number	FR	<u> </u>	ž	Αu	A 0	Ċn	
•		EPIDOTE IN LLOTS & BANDS UP TO 3CM				1							1	•	-	
		C.A. = 50° MATRIX LOCALLY BRECCIATED.											·			
		WITH QUARTE-CARBONATE X-CUTTING					·		_							
	• .	VISINCISTS Imm - 4mm; CHLORITIC FRACTUR	2.5													
		C.A. = 400. IFINIE - MEDIUM GRAINED														 L
•••		PARITE OCCURS IN CLOTS AND WITH				<u> </u>										
		OUARTZ CARRONATE VIEINLISTS-													.	
		TRACE CHARGE PIRITYE ROD = 503	•													
212.0	219.0	DIORITE/CRYSTRE TUIZE		2	4	3	4	. <u></u>	85126	212,0	215.0	3	25	14	425	
		MEDIUM GRAINED, PERUASINE FRATE							85127	215,0	218.0	3	15	.5	344	L
		AND SILLEIFICATION & KERAR ALTIERAL	101.						85128.	218.0	221,0	3	14	3،	283	
	·	OUANTZ-ILSPAR I=LOODING AND WIEAK	,							<u> </u>						 <u> </u>
	·	BRECCIATION, MAGNISTITE OCCURS		-											 	
	 	ALONG CHLORITE - EPIDOTE I=RACTURES														
		+- CUTTING at 45° 2 m - 3mm IN														
		MIDTH ISNISAY 25 GM. AND WITH														
		BONFELLATER FONES.	ļi						-							
		R60=90 3														
		# 3														

ι.

 $M_{\rm eff} = \frac{1}{2} \left[\frac{1}{2}$

•

					AL	1-5 (s	nax)					2				
	TO	DECOUDTION	: Pyrite	lagnetite	pldote	hlorite	-spar	uarts - Ber	Sample	KIM		vibtii (m	(qdd) nv	(wdd) Bv	(mqq) u	
KUII		DESCRIPTION	~	2	ш	2	<u>×</u>	3	Rumber							
19.0	254.0	ANDESITE LAPILLI TOFF		-	7)	3	I	85/24	21.0	223.0	2	9.	14	517	
		HIGHLY MOTTLED EPIDOTE - K-SPAR - QUARTZ					 ·		85130	223.0	226.0	2	. ~	<u>.</u>	288	
		MATRIX, MATRIX IS LOCALLY BRECKIATED AND							85131-	7260	729.0	2		· > >	346	
		QUARTZ + K-SPAR FLOODED, WITH BROKEN							8>132	229.0	232.0	2	15	<u>·></u>	300	
		SILICIFIED FRAGMENTS, EPIDOTE OCCURS AS						-	85133	232.0	235.0	2	16	.4	447	
		LARGE CLOTS, WHISPS & VEINLETS 1-10 mm,							85134	235.0	238.0	3	19	<u>, 5</u>	268	<u> </u>
		MINOR QUARTZ - CARBONATE - ANHYORITE						<u> </u>	85135	238.0	241.0	5	12	<u>،5</u>	343	
		VEINLETS + BROKEN STOCKWORK, CHLORITE						<u> </u>	85136	241.0	244.0	3	18	12	280	
		FRACTURES CA = 45° PYRITE IS WEAKLY							85137	244.0	247.0	3	8	2.	209	
·····		DISSEMINATED ALONG EPIDOTE + CHLORITE		 				 	85138	247.0	250.0	3	10	5	282	
		FRACTURES						ļ	85139.	250,0	253.0	3	12	.4	360	
	•	RQD = 808						ļ	85140	253.0	256,0	3	8	.4	353	
		243.2 -> 248.8 : FELDSPAR PORPHYRY INORITE,		-				<u> </u>	ļ	ļ						
		MEDIUM GRAINED, CHLORITK GROUNDMASS,								<u> </u>						
		MINOR CROSS CUTTING EPIDOTE VEIDLETS														·
		CA = 40°-50° ANHYDRITE + SERICITIC FRACTURE	5													
		·							-							
54.0	266.7	FELDSPAR PORPHYRY DIORITE / CRYSTAL TUFF	1	2	Z	1	3		85141	2561	257.0	3	23	14	413	
		FELDSARS PORPHYRITIC WITH MINOR CHURITE							85142	259.0	262,0	3	37	18	64z	
		FRAGMENTS UNIFORMILY MAGNETIC RODER	7						85143	262.0	265,0	3	21	.8	733	
		· · · · · · · · · · · · · · · · · · ·				<u> </u>		<u> </u>		· · · ·						
		•														

DRILL I	HOĽE * .	PAGE of		•	Al.	.TER. 1-5 (J	AT I () max))N - #				•					•	
FROM	TO	DESCRIPTION	x Pyrite	Maynetite	Epidote	Chlorite	K-spar	Quertz - Sert	Sample Number	FROM	TO .	WIDTH (m)	(qdd) nY	Ag (ppm)	Cu (ppm)			
•	1	257.9 -> 259.0 : QUARTZ - K-SPAR						Ī	85144	265.0	268.0	3	46		895		_] →	*
		FLOODED SHEAR ZONE WITH GOUGE								1			•					
		BRECCIATED MATRIX WITH HIGHLY STRAINED					ŀ			<u> .</u>								
		QUARTZ AND LESSER CARBONATE FRACTURE							ļ	<u> </u>								
		FILLINGS, SILKEOUS WITH GRAY TO LIGHT																
		PINK / BROWN COLOUR, CLOTS OF PYRITE		<u> </u>									-					
·	ļ	UP 70 28 THROUGHOUT BRECCIATED MATRIX,		<u> </u>	<u> </u>	ŀ			·								·	
	<u> </u>	TOP CONTACT 45°, BOTTOM CONTACT SO			 	ļ	ļ		ļ	<u> </u>								
266 - 7	286.51	DIORITE / QUARTZ DIORITE	tr to	3	4.	3	3		85145	268.0	271.0	3	34	.4	688			★-
		FINE TO MEDIUM GRAINED LARGE					ŀ		85146.	271.0	274.0	3	33	ιZ	371			
		AUTOLITHS / YENOLITHS IN A CHLORITE -	'						85147	274.0	277.0	3	75	.6	1028	-		
		EPIDOTE MOTTLED / BRECCIATED MATRIX		-			:		85148	277.0	280.2	3	20	·Z	468			•
		BOCK PERUASILELY ALTERED WITH QUARTZ		1					85149	100,0	283.0	3	48	, j	214			
		K-SPAR FLOODING ANHTDRITE - CALCITE -							85150	283.0	296.5	3.51	69	17	883			
L		QUARTZ VEINLETS CROSS-CUT IN A WEAK		1						<u> </u>								
		STOCKWORK, EPIDOTE BANDS UP TO SOM				<u> </u>			-	1								
L		CA= 45°, PYRITE OCCURS IN SMALL								<u> </u>	<u> </u>			<u> </u>				
	<u> </u>	COUTS WITH EPIDOTE + MAGNETITE VEINER	ļ	ļ 		<u> </u>			<u> </u>	<u> </u>		ļ	<u> </u>	L			ŀ	
	<u> </u>	RqU= 80 Z	Í						<u> </u>] .	

END OF HOLE 286.5)

COAST MOUNTAIN GEOLOGICAL LTD. DIAMOND DRILL LOG

ar e l'

CLIENT: BELLEX / PRDJECT: JACK W 57º1C' N, 131º42 NTS: 104G/4E MINING DIVISION	QUATTRO VILSON VILSON		• • •	DRILL HOLE # COORDINATES N E ELEVATION	<u>70-3w-204</u> *4 2+15 _1+75 _360
			· .	AZIMUTH	090
LOGGED 84:	DIBLAN	N T. FARAGHER	۰. ع	DATE STARTED	AUG 25 AUG 26
SAMPLED BY:	<u>G.M./7</u>			CORE SIZE	NQ

SIGNIFICANT INTERSECTIONS

DATE LOGGED: _AUG 2 5-27

ASSAYS RECEIVED: SEPT 6/90

FROM	TO	WIDTH (m)	Au (oz/t)	Ag (oz/t)	Cu (%)		
115.8	132.7	16.9	,001	.03	,114	·	
151.0	1310	20.0	.002	.04	.130		
			1	1			
				1			•
			1	1			
	FR0M 115:8 1510	FROM TO 115-8 132.7 1510 1310	FROM TO WIDTH (m) 11578 132.7 16.9 1510 1310 30.0 151 1310 30.0 151 1310 30.0 151 1310 30.0 151 1310 30.0	FROM TO WIDTH (m) (oz/t) 1157.8 132.7 16.9 .001 151.0 1310 30.0 .002 151.0 1310 30.0 .002 151.0 1310 30.0 .002 151.0 1310 30.0 .002 151.0 1310 30.0 .002	FROM TO WIDTH (m) Au Ag (m) (oz/t) (oz/t) (oz/t) (oz/t) 115.8 132.7 16.9 $.ool$ $.O3$ 151.0 131.0 20.0 $.oo2$ $.O4$ 151.0 131.0 10.0 $.oo2$ $.O4$ 151.0 130.0 160.0 $.oo2$ $.O4$ 150.0 130.0 160.0	FROM TO WIDTH (m) Au Ag Cu (m) (oz/t) (oz/t) (oz/t) (x) 115:8 132.7 16.9 .001 .03 .114 151:0 1310 20.0 .002 .04 .130	FROM TO WIDTH (m) Au (oz/t) (oz/t) Cu (x) 11578 132.7 16.9 .001 .03 .114 151.0 1310 20.0 .002 .04 .130 151.0 1310 20.0 .002 .04 .130 151.0 1310 20.0 .002 .04 .130 151.0 1310 14 150 150 150 151.0 1310 100 100 100 100 151.0 1310 100 100 100 100 151.0 1310 100 100 100 100 151.0 1310 100 100 100 100 151.0 1310 100 100 100 100 151.0 1310 100 100 100 100 151.0 1310 100 100 100 100 151.0 131.0 100 100 100 100 151.0 131.0 100 100 100 <td< td=""></td<>

DEPTH	DIP	AZ
COLLAR	-45	090
146.3 m	-45 cor	ALID
258.8 m	-42° con	ACID
	·	•
ŀ		
L	<u> </u>	L

95%

RECOVERY

RILL	HOLE •.	90-3w#4 PAGE of12		·.	A	LTER 1-5 (i	ATIO nax)	N	-			-					
			yrite	netite	lote	orite	par	lz - Seri		Σ		TII (m)	(qdd	(wdd	(wdd	· .	
ROM	TO	DESCRIPTION	X	Mail	Epi	chi	K - 8) Land	Number	FRO	18	AID	Au () BA	Cu (M٥	
0	15.2	CASING (LEFT IN)								1		1		•	-		
<u>5-2</u>	45.7	DIORITIE	1	$\lfloor \iota$	z	Z			85151	15.2	18.0	2.8	4Z	. 1	480		
		UNIFORM MEDIUM GRAINED, LIGHT GREY TO					·		85152-	18.0	21.0	3	23	.1	706	F 1	
		DARK GREEN, ALTERNATING ZONESOF							85153	21.0	24.0	3	28	.3	75%		
		CHLORITIC MATRIX AND PERUASIVE PPID	THE	ł					85154	24.0	17.0	3	68		1154		£7.
		ALTERATION, AND BRECCIPTION (HIGHLY		-					85155	27.0	30.0	3	43	3	249		
		MOTTLED) SEVERAL SILILEOUS AREAS							85156	80.0	33.0	3	104	.2	822		
		EXTREMELY FRACTURED, BLEACHED, WITH HEN	ATII	E.					85157	33 0	36.0	3	33	, Z	277	+	
		CHLORITIC/SERICITIC FERACTURES C.A. = 45"							85158	36.0	390	3	3Z	2	90		
<u> </u>	·	TO SUBPARALLEL DISSIEMINATED BURITES	CHA	LOP	12.5	I.E.			85159	39.0	420	3	24		444		
		ALONG LHLORITZ - ISPIDOTE FRALTURES.		İ					85110	47 0	45 1	27	16	. 7	405		
	-	STRONG BRIDOTE VIEINING CA=70-40-	,		Ì	.			<u>U-167 -</u>		12:71	<u> </u>			100		
		SUBPARALLEL - WITH PURITE UP TO 290		-			:										
		MAGNIETITE OCCURS AS IRREGULAR															
		GRAINS AND CLOTS THROUGH SECTION	 								!						
		21.7-37.2 MINOR QUARTE UBING UD TO															
		20 CM WITH PYRITIC CONTACTS C. A-40				+			-								
			i					†									
		• • •							· · · · · · · · · · · · · · · · · · ·				-+			-+	

	HULE	PAGE of		•	A	LTER 1-5 (i	ATIO max)	IN ±								
ROM	то	DESCRIPTION	K Pyrite	1agnet I t e	pidate	chlorite	-spar	uarte - Serie	Sample Number	ноя		(m) 11101 <i>N</i>	(dqd) u/	(mqq) gr	(mqq) u	
15.7	50.3	FELDSPAR PORPHURY DIKE (DIMPLEE)	† [–]						85111	45-1	107	2	1 2	$\frac{1}{1:1}$		
		MBDIUM GRAV-GREEN' FINE CRAWES DANK							851/2	407	10,7	22			31	
		GRADING INTO MEDIUM CRAINED TOWARDS				<u> </u>			07182		<u>:52.0</u> 	<u> </u>	<u> </u>			<u> </u>
		CENTER, BROKEN TEALDSOM CRUSTALS								† <u>·</u>			1	İ—	l i	
·		WEAKLY EPIDOLE ALTERIED. LULOPITIC								†	İ					
		FRACTURIES C.A. =45°-15°-SUBPARALL		-						1		1				
		SEVERAL STRINGERS OF CALCITE, PUBLIE									ĺ	<u> </u>				
		TRACES ALONG EPIDOTE FRACTURES	·								İ		<u> </u>			
		CONTACT C.A. = 70° ROD= 30%								1						
										1						
<u>50.3</u>	56.8	DIORITE		-	3	1	·		85763	52.0	550	2	15	5	247	
		MEDIUM GRAINTO, GREY-GREEN. LOCALLY	'	1		-			85164	55.0	58.0	3	z)	.4	604	
		PERVASIVE EPIDOTE ALTERATION, AND		-												
		EPIDOTE FRACTURE FILLINGS IN A BROKE														
		STOCKWORK, AND STRAINED INTO WISPS.														
		UP TO JAMM C.A = 40° -> SUBPARALLEL														
		MINDR HEMATITE ALONG FRACTURES.							-							
56.8	9 2.8	DIORITE	2	1	2	3	1		85165	58.0	61.0	3	23	.5	6Z)	
		HIGHLY SHEARED, CHLORITIE + EPIDOTE							85166	61.0	64.0	3	38	.1	256	

		$ PAGE _ > of _ / \angle$			AL	. FER. 1-5 (1	ATIO Nax)	N T T				2					
мпе	то	DECEDIDTION	t Pyrite	lagnetite	pidote	hlorite	-spar	neris - Ber	Sample	KOM		VIDTH (m	(dqq) u	(mqq) gv	(mqq) u		
		FRACTURE FILLINGS WITH BUADTZ AND	*				<u>×</u>	<u> </u>	85167	64.0	67.0	2	102	.6	778		
		PIRITE IN STOCKWORKS AND BRECCIA.							85168	67.0	70.0	3	zzó	.8	1882		
		KINOR FPIDOTE THROUGH MAATRIX.					·		85169 -	70.0	73.0	3	47	.1	535		
		61-62.9 HIGHLY SILICEOUS, PARITIC							85170	73.0	76.0	3	17	.1	74		
		AND BRIELLIATED MATRIX - MINOR CHLORITE							85171	76.0	77.0	3	98	.1	464		
		ANDRAIDOTE, PIRITE 5%		-				 	85172	79.0	82.0	3	240	.Z	835		
		62-9-64.2 FELDSPAR PORPHARY DIKE							85173	81,0	85.0	3	13Z	.7	1387		
		UNIFORM FINE-MEDIUM GRAINGD MATRIX, BR	E{()	チアミン													
		SILILIZOUS AND PURIFIC LOWER CONTACT.															
		64.2 - 65.5 MODIORATE SILICIFICATION AND															
		BRECLIATION, PURITE 240. HIGHLY SHEARED					•										
	·	65.5-68.5 HIGHLY CHLORITIC AND STRAINE	, D.														
		BRIELCIA WITH ALODERATIS GUARTE FLOODING		-													
		68.5-69.5 GREY SILICEOUS QUARTE VEN															
		DRECLIA WITH EPIDOTE-CHLORITE-CALCITE															
		FRACTURES CROSS CUTTING , MINOR (P								·							
		69.5-71.5 EXTREMELY FRACTURED							-								
		WEAKLY SILICEOUS BREECCIA WITH 10 CM															
		FTOLDSPAR PORPHYRY DILSE.															
·		71.5-76.0 RELATIVELY FRESH FELDSPA	R														

RILL	HOLE #_	PAGE of		•	AL	.TER/ 1-5 (1	ATIO max)	N				_					
			Pyrite	gnetite	ldate	lorite	spar	ırtz - Berte	Sample	ноя	-	10111 (m)	(dqq) L	(widd) [(muq) i		
ROM	TO	DESCRIPTION	×	Ĕ	Ē	5	<u>×</u>	3	Number	1 1	<u> </u>	3	<u>₹</u>	<u>₹</u>	<u></u>		
		PORPHARY DIKE WITH SHORT SECTIONS OF						ļ							-		
		HIGHLY SHEARED CHLORITE-EPIDOTE ALTERATION															
		CONTACT C.A: 60. PURITE CONTENT DECREAS	ING				•			ļ]
		DOWNSECTION FROM 20/0 -> 19/0						ļ		<u> </u>							
		76.0-82.8 FAULT ZONE CHLORITE								<u> </u>							
·	<u> </u>	AND EPIDOTE ALTERED WALLROCK WITH LOCAL		_		L		<u> </u>	· · · · ·	ļ				-			$ \longrightarrow $
		GOUGE AND MINOR QUARTZ FLOODING AND				•				<u> </u>					<u>. </u>		
		BRECLIATION.															
	ļ	ROD=20%					ļ		ļ								
82.8	38.5	DIORITE			3	3			85174	85.0	88.0	3	420	.5	1104		
		STRONG I=AULT ZONE BLEACHED					. 		85175.	88.0	91.0	3	51	.1	185		
	·	WITHE GOUGE AND WALLAGLIC IFRAGMENTS				Ļ	ļ			ļ							
	· .	LIMONITIC AND SILICIFIED WITH PYRITIE		·													
	<u> </u>	UP TO 5% BRECLIATED MATRIX, MINOR															
		EPIDOTE IN VEINLETS.														-	
	ļ			ŧ						ľ							
88.5	93.0	FELDSPAR PORPHYRY DIKE, MODERATELY							85176	91.0	94.0	3	30	.3	320		
	ļ	CHLORITIC MATRIX WITH WEAK FIELDSPAR		1													
	<u> </u>	ALTERATION TO 91.5 - THEN STORONG															
		EPIDOTE ALTERATION WITH BIFACHING															

DRILL	HOĽE +.	<u> </u>		• •	A	.TER. 1-5 (1	AT I () max)	IN 									
FROM	<u> </u>	DESCRIPTION	X Pyrite	Magnetite	Epidate	Chlorite	K-spar	Quartz = 8eri	Sample Number	FROM	TO	WIDTH (m)	(qdd) ny	(mqq) (p	Cu (ppm)		
<u> </u>	ļ	AND CHLORITE - PYRITE CLOTS, TRACE												-	-		
		CHALLOPYRITE, MODERATELY FRALTURED															
		C.A.= 300-45° BUARTZ-CARBONATE	<u> </u>				•										
	•	CHLORITE BRECCIA WITH TRACE CHALCOPHUT	æ	ļ													
				ł													
93.0	97.9	DIORITE	1_	<u> </u>	5	3			85177	94.0	97.0	3	52	-5	754		
		HIGHLY SHEARED AND STRAINED							85178	77.0	100.0	3	8	. [.119		-
· · · · ·		BPIDOTE RICHMATRIX WITH STRONG	·														
·		EPIDOTE STOCKWORK AND BRECCIA															
		AND MINOR QUARTY VEINLETS ROD=0							-								
97.9	103.5	DIBRITE	2		н	z	•		85179 .	100.0	103.5	3.5	117	1.Z	ZIZG		
	·	BLACK , FINE GRAINED MATRIX - LOCALLY															
	· ·	WEAK IFIELDSPAR PORPHYRITIC, MINOR GUART	2	-			:										
		VEINLETS C.A = 60°															
		100-103.5 HIGHLY BROKEN, LOLALLY														· ·	
		BRECHATED AND BUARTZ FLOODED.								·			· ·				
		STRAWED GUARTZ STOCKWORK, PIRITE															
		UP TO 400 IN FRACTURE FILLINGS AND															
		BRECCIA WITH EPIDOTE AND CHLORITE															
		C.A=45° OUARTZ VEINLETS C.A=45°				1											

ROD=20%

RILL H		PAGE OT			1	-5 (m	ax) -	oite				~				
			Pyrite	bgnetito	idote	nlorite	-spar	artz - Seri	Sample	КОМ		m) II TUI	(qdd) n	(wdd) B	u (ppm)	
MON	TO	DESCRIPTION	×	Ĕ		<u> </u>	<u>×</u>	3	Number		<u> -</u>	3	<u><</u>	<u>∢</u> .	<u>ن</u> ام ز	
23.5	109.8	CHLORITE- FPIDOTE BRELLIA		-	4	3			85180	103.5	106.5	3	22	<u>3</u>	479	
		HIGHLY STRAINED, BANDED AND BREWAT	ED			•			85181	106.5	109.8	3.3	13	.5	263	
		C.A=45°. SILILEOUS AND LOCALLY BLEACHEN					·		-	<u> . </u>						
		MATRIX, LALLAREOUS FRACTURES.														
		107.4 - 107.6 SILICHEIED GUARTZ BRECHA-		•												
		WITH BLEACHED WALLROCK. C.A=30°		-												
		108.2 10CAL CLAY GOUGE WITH 2MM				•			·						·	
		BUARTZ VEINLETS ROD=208	·													
09.8	117.6	PORPHARY DIKE RELATIVELY							85182	109.8	112.8	3	13	.6	<i>j65</i>	
		FRESH, GREY-BLACK MAATRIX WITH MODERATEL							85183	112.8	115,8	3	10	.2	20	
		EPIDOTE ALTERED FELDSPAR TOP LONT	27	1					85184	115.8	118.8	3	61	1.5	1775	
		BUASTZ VEIN ICALWIDE C.A. = 75°		·										L		
		115.0-116.3 COARSE GRAINED HORNBLEN	D/E										<u> </u>			
		PARPHIRY WITH CHLORITIC FRACTURES		1						1						
		CALCADIENUS								ľ					<u> </u>	
117.6	122.6	DIOBITE	1	1	1	1			85185	118.8	120.8	2	70	1.5	1884	
	<u>, ,</u>	WEAKLY SILICEOUS MATRIX WITH LOCAL			T				85186	120.8	122.6	1.8	51	1.0	1068	
		BISANTZ FLOODING AND BRECKATION	[•						
	1	GUADTZ COCKING DK THONKHOUT					<u> </u>					Ī				

· · · ·

ILL H	IOLE	<u> </u>		•	AL	TER/ 1-5 (#	AT I O Max)	N				~					
ROM	TO	DESCRIPTION	X Pyrite	Magnetite	Epidotø	Chlorite	K-spor	Quertx - Bert	Sample Number	FROM	10	WIDTH (m	Au (ppb)	(mga) ge	Cu (ppm)		
		120.5 : 30 CAL FAULT ZONE : BLEACHER												-	•		
		AND GILICEOUS CLAY GOULE CONTACT 300											·				
		TRACE PURITE CHALLOPHRITE ROD 60%		Ì			-		-	.							
122.6	126.4	FELDSPAR PORPILIRY DIKE RELATIVELY FRE	SH,						85187	122.6	124.6	2	10	.4	105		
		UNIFORTA FINA-MEDIUM GRAINED, WITH XBNOLI	45.	4					85188	124.6	126.4	1.8	15	.H	260		
		MODERATELY BROKEN C.A. = 45 ROA = 50	0	-									-				
126.4	132.7	DIDRITE	1	1	3	2	2		85189	126.4	129.4	3	35	1.1	1192		
		HIGHLY FRACTURED AND STRAINED EPIDUTE	·						85190	129,4	132,7	3.3	31	1.0	1208	1	
		MATRIX WITH SILICEOUS MATRIX AND GUART	-									ļ					
		STOCKWORK, PYRITE, EPIDOTE, MAGNETITE			<u> </u>							l					_
		ANHYDRIFE FRACTURE FILLINGS. ROD 303					· 										_
132.7	144.8	DIKE WEAKLY FELDSPAR PORPHYRITIC	15	<u> _</u>					85191	132.7	135.7	3	5	.4	174		
		DIORITE. RELATIVELY FRESH, MINOR	<u> </u>	. 			:	<u> </u>	85192	135,7	138,7	3	5	14	124		$ \dashv$
		X-CUTTING ANHIDRIFE VEINLETS. LOCALLY		<u> </u>					85193	138,7	141.7	3	5	,3	65		
		PIRITIC UP TO 0.5%. NON MAGNETIC	ļ			ļ	L	<u> </u>	85194	141.7	144.8	3.1	10	.3	41		_
144.8	182.8	DIORITE	1	1	3	2	1		85195	144.8	148.0	3-2	69	.6	535		
	<u> </u>	PERVASIVELY SILICIFIED AND CHLORITE		<u> </u>					85196	148.0	151.0	3	<u>29</u>	.7	GI		
		EPIDOTE ALTERETS. PALE GREEN - GRE.1,						<u> </u>	85197	151.0	154.0	3	51	1.1	960	7/	\neg
	<u> </u>	STRAINED AND BRELLIATED FABRIC				<u> </u>			85198	154.0	157.0	3	87	1.6	1486		
	1	WITH GUARTZ ELOODING WEAK OUARTZ					· ·		85199	157.0	160.0	3	250	3.0	3792		

ILL H	IOLE #.	4 PAGE 8 of 12			AL 1	TER/ -5 (#	AT I DI Nax)	N				•					
10M	то	DESCRIPTION	X Pyrite	Magnetite	Epidote	Chlorite	K-spar	Juarte - Serì	Sample Number	FROM	LO .	WIDTH (m	Au (ppb)	(mqq) gA	Cu (ppm)		
		AP BOMATE STOCKWORK TRACE OF PURITE							85200	160.0	163.0	3	86	iz	1505		
		AND 3 OCCURANCES OF CHAILOR CRITE							85201	163.0	14.0	2	60	.7	518		
	:	IN SMALL CLOTS WITH PURITE					·		8520Z-	166.0	169.0	3	44	.5	516		
		152.6-155.0 BROREN, HIGHLYSILICIE	~						85203	169.0	172.0	3	44	.6	411		
		BRIELLIA WITH BROKEN BUARTZ STOCKWORK.							85204	172.0	175.0	3	81	1.1	948		
	·.	ANHYORITE AND CHLORITE FRACTURES.		-					85205	175.0	178.0	3	66	1.4	1388		
		PIRITE COARSE GRAINED 2%				·			85206	178.0	181.0	3	84	1.4	1521	$\langle $	
		159.2-162. PERVASIUNE SILICINEICATION	·						85207	181.0	184.0	3	14	.5	415		
		WITH ZOCAN FAULT ZONE: CLA- GOUL-E															
		L.A. = 45°, STRONGLY BRESCIATED.															
		Some Kepon NOTED.					·		i				ľ				
	<i>.</i> •	168.9-169.5: SILICIFIED	Ľ						·	<u> </u>							
		FAULT ZONE : BLEACHED AND		<u> </u>		-									ļ		
		SILICIFIED GAREY QUARTZ BRECCIA.															
		172.1- 179.0 STRONG GUARTZ-CARBON	PTE						ļ						<u> </u>	-	
		STOCKWORK AND BRELLIA. BROKEN, PALE GRE	EA(L	ĺ			ļ		<u> </u>		
		TO PURPLE MATRIX. CONTACT 45°. LARGE	 	 						<u> </u>			ļ	ļ	┞──┤		
		SILICIFIFTS EPIDOTE CLOTS & KSPAR.	 	<u> </u>					 	<u> </u>	ļ		<u> </u>		 		
		1491 RLINE MAGNETITE VEINLETS DECUT	ļ						ļ	1			ļ		<u> </u>		
		DECASIONALLY EPIDOTE CONTENT INCREASING				-											

ole +_	PAGE of		•	AL	.TER/ 1-5 (#	ATION Max) -	oite				~						
		Pyrite	agnetite	pidate	hlorite	-spar	serte - Bert	Sample	мож		VIDTH (m	(qdd) nv	(wdd) ßv	u (ppm)			
	DESCRIPTION	×	<u>Σ</u>	<u> </u>		×	5	Number	_ <u>``</u>	-	<u> </u>		-				
	DOWNSECTION MATRIX SHOWS HIGHL-1											-					
	STRAINED FABRIC		1												+		
	174-180-2 EPIDOTE BAND HAS							85700		107	2	~	.2	57.	-		
1970	STOLENG FELOLO CHAMRACTERISTICS				~			85209	1870	187.0	<u>-</u> 2	5	.2	50	-+		
117.0	DIUTE RELATIVELY UNALFRAGI		-	<u>`</u>	-			85210	190.0	193.0	3	Ц	-2	91			
	WARK CTOX (WARIS I A = 30-45° ROUGH		İ		·			85211	193.0	196.0	3	5	,3	60			
	CONTACT	·						85212	196.0	197.0	1	7	.3	65			
214.2	GUARTZ - CHLORITE - CARBONATE STRAIN	5	-	_	4			85213	197.0	199.0	2	21	.5	270			
	ZONE GREY-BLACK BANDED -						-	85214	199.0	201.0	2	51	.4	104			·
	RIBBONED SCHISTOSE QUARTZ-SERILITE					-		85215.	201.0	203.0	2	260	.7	266			
-	CHLORITE + P-1RITIE, TRACE CHALLOPIRIT	£.'			-			85216	203.0	205.0	2	76	1.Z	635			
	RAFTED FRAGMENTS OF WALL ROLL THROUG	н_	-			:		85217	205.0	207.0	2	106	1.1	783			
	MATRIX C. A = 35° FOR BANDING; X-CUT BY		<u> </u>		ļ			85218	207.0	209.0	2	50	.6	436			
	45,60° FRACTURES (POST) ROD = 60 %		<u> </u>		ļ			85219	209.0	Z11.0	2	210	.7	522			ł
		 	<u> </u>	 	<u> </u>			85220	211.0	213.0	2	93	.9	402]	
216.4	DIORITE		<u> -</u>	2	2			85221	213,0	215.0	2	111	.7	548			
	CHLORITIC, FELDSPAR PLORPHARITIC,	 	<u> </u>		 			85222	215.0	218.0	3	103	17	745			
				1					1							1	1
	DLE	DLE • PAGE _ 9 of _12_ TO DESCRIPTION DOWNSECTION MATRIX SHOWS HIGHLY STRAINED ISATORIC. 179-180-2 EPIDOTE BAND HAS STRONG FLOW CHARACTERISTICS 1970 DIORITE: RELATIVELY UNALTERED WITH MINOR EPIDOTE VEINLETS AND WARK STOCKWORKS. C.A. = 30-45° ROUGH CONTACT. 2142 GUARTZ - CHLORITE - CARDONATE STRAIN EONE. GREY-ISLACK BANDED - RIBBONED /SCHISTOSE OUARTZ-SERICITE CHLORITE + P.IRITE, TRACE CHALCODIRIT RAFEED FRAGMENTS OF WALK ACCU BY 45,60° FRACTURES (PONT) ROD = 60° 216.4 DIORITE CHLORITE	DUE - 4 PAGE 9 of 12 TO DESCRIPTION DOWN SECTION MATRIX SHOWS HIGHLY STRAINED ISABOLS. 179-180-2 EPIDOTE BAND MAS STRONG FLOW CHARACTERISTICS 1970 DIORITE: RELATIVELY UNALTERED WITH MINOR EPIDOTE VEINLETS AND WITH MINOR EPIDOTE VEINLETS AND WITH MINOR EPIDOTE VEINLETS AND WITH MINOR EPIDOTE VEINLETS AND WITH MINOR EPIDOTE VEINLETS AND WIRK STOCKWORK. C.A 30-45°. ROUGH CONTACT. 214.2 GUARTZ-CHLORITE-CARDONATE STRAIN S EONE. GREY-BLACK BANDED - RIBBONED /SCHISTOSE OVANTZ-SERICITE RAFTED FRAGMENTS OF WALLACTERY 45,60° FRACTURES (POWT) RON- 4-CUT BY 45,60° FRACTURES (POWT) RON- 4-CUT BY	DLE · PAGE _ 9 of _12 TO DESCRIPTION * F DOWN SECTION MATRIX SHOWS HIGHLY STRAINED ISABOLS. 179-180-2 EPIDOTE BAND HAS STRONG FLOW CHARACTERISTICS 197.0 DIORITE: RELATIVELY UNALTERED 1 WITH MINOR EPIDOTE VEINLETS AND - WEAK STOCKWORKS. C.A 30-45° ROUGH CONTACT. 2142 GUART2 - CHLORITE - CARDONATE STRAIN S - RIBBONED /SCHISTOSE QUART2-SERICITE CHLORITE + PIRITE, TRACE CHALOPYRITE. RAFEED FRAGMENTS OF WALL RECOVER THROUGH MATRIX. C.A = 35° FOR BANDING X-CUT BY 45,60° FRACTURES (POST) ROD = 60°0 216.4 DIORITE - CARDON PORPHYRITIC,	DLE \sim <u>4</u> PAGE <u>4</u> of <u>12</u> AL <u>TO</u> <u>DESCRIPTION</u> <u><u>x</u> <u>E</u> <u>b</u> <u>b</u> <u>b</u> <u>b</u> <u>b</u> <u>b</u> <u>b</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u> <u>c</u></u>	DLE • PAGE OT _ 12 ALTERI TO DESCRIPTION $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \hline \\ \end{array} \\ \end{array}$	DLE * PAGE Of ALTERATION TO DESCRIPTION $\begin{array}{c c c c c c c c c c c c c c c c c c c $	DLE • PAGE _ 9 of _ 12 ALTERATION 1-3 (max) TO DESCRIPTION W I G G G G G G G G G G G G G G G G G G	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DLE • PAGE of ALTERATION 1-5 (max) TO DESCRIPTION TO DESCRIP	DLE • PAGE OT _ L ALTERATION 1-5 (max) TO DESCRIPTION $H = 2$ $H = 4$ $H $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	HOĽE 🐔	PAGE of		·.	AL	.TER/ 1-5 (1	ATIO max)	N				~				
OM	то	DESCRIPTION	X Pyrite	Hagnetito	Epidote	Chlorite	K-spar	Juar Le - Beri	Sample Number	FRUM	F0	WIDTH (m	Au (ppb)	Ag (ppm)	Cu (ppm)	
		SEVERAL FRIDOTE CLOTS.		<u> </u>										•	·	
16.4	215.8	DIORITE BREECLATED AND SULVEIED.	1	1	3	-2	1		85223	218.0	221.0	3	90	.6	654	
		WARTZ FLOGDED, QUARTZ-CARBONATE		İ			•		-	1.						
		FRACTURE FILLINGSWITH MINORMAGNETIT	.													
		$c.A. = 30^{\circ}$		1												
18.8	222 2	DIORITE			3	2	,		85224	221.0	224.0	3	46	·2	295	
		NUMBROUS ROIDOTE CLOTS UP TO ICM										_				
		THROUGHOUT MATRIX. MINOR QUARTZ-														
		CARBONATE VEINLETS WITH ANINOR PARITE		<u> </u>						<u> </u>						
	ļ	R6D=808			<u> </u>											
<u> 22.2</u>	224.1	SILICIFIED BORECLIA	z				ŀ		85725	224.0	2270	3	600	,3	306	
	•	DIORITE FRAGMENTS BLEACHED ASWELL	Ľ			-				ļ					 	
		AS RELATIVELY UNALTERED, MINOR		- 									<u> </u>		└───┨	
		X-CUTTING OVARTZ-CARBONATE VIEINIES								ļ						
		C.A. = 50° PERVASIVE SILICIFICATION,	 		<u> </u>				 	ļ						-
		GREY TO GREEN - BLACK MATRIX.	<u> </u>	<u> </u>					 	<u> </u>					 	
24.1	247.	DIORITE	61		3	2	1		85226	227.0	230,0	3	40	./	175	
		VARIABL-/ ALTERED IFELDSPAR	L	<u> </u>	 				85227	230.0	Z33.0	3	35	,2	19Z	
		PORPILIRITIC (WEAKLY) DIDRITE. EPIDO	TE						85228	2332	2360	3	14	.1	266	
		VEINLETS X-CUTTING - INCREASING DOWN	1						85229	236.0	239.0	3	51	1.1	261	

LL H	IOLE #.	PAGE of		•	AL	.TER/ 1-5 (s	ATIO nax)	N Ž								
			Pyrite	gnetite	idate	llorite	spar.	erte - Berk	Sample	MOS	_	1DTH (m)	(dqq) L	(mqq) [(wdd) r	
<u>N03</u>	TO	DESCRIPTION	×	Ĕ	<u> </u>	5	<u> </u>	3	Number		F	3	<u>₹</u>	<u>۲</u>	<u></u>	
		SECTION. TO 234m							85230	239.0	242.0	3	10	;z	243	
		234.0-247 DARK CHLORITIC MATRIX							85231	242,0	2450	3	15	•1	330	
		WITH COARSE BRECCIA LOCALLY.					•		85232 -	245,0	248.0	3	8	.1	322	
	· .	236-2-236-7-SILICIFIED GUARTZ BRECCIA							· · · ·							
·	· · · ·	MINOR PURITE C.A.=450								ļ						
		MINOR FOIDOTE VEINLETS-											-			
		STRAINETS TO WISPS! ANHIDRITE													•	
		AND CARBONATE FRANCTURES, SILICIFICA)	701													
		INCREASING DOWNSBETION FROM 246.6														
		MAGNETITE OCCURS IN BRECCIPITED										Ì		-	-	
		FRAGAFATS AND VFINLIETS.											i I			
7.0	258.8	STRONGLY SILLCIEOUS AND BRECLIATED	2			-			85233	2480	251.0	3	54	.3	163	
		SHEATZ ZONE		-			•		85234	251,0	254.0	3	44	.3	219	
		248.8 -> 251.2 GREY SIGICEOUS							85235	254.0	257.0	3	140	.4	293	
		VEIN AND BUARTZ FLOODED WALLROCK.							85236	2570	259 9	1.8	9	, ,	149	-
		X-CULTING GUARTZ VEINLETS 3000										1				
		HIGHLY STRAINED AAD CHATTERED							-							
		ANATRIX WITH REMANSATE EN COOD								\vdash						
		PAEALOCONG TO MILLOUS											<u>├</u> ──┤			
		2-1- 2-1	· · · · · ·							+			<u> </u>			_

		PAGE OT			A.	LIER 1-5 (i	AIIU max)					_					
			yrtte	nette	dote	orite	par	le : Berk		Σ	-	111 (m)	(dqa)	(mqq)	(ppm)		
MC	то	DESCRIPTION	d *	Mag	Epi	Chi	K - 8	C a a C	Sample Number	FRU	10	MID	Au	₿¥	Cu (
		CHLORITE + EPIDOTE RICH BRECCIA WITH												·	-		
		GUARTZ- CARBONATE MATRIX AND VEINLETS											·				
	 	BRECHATED AND RIBBONED, C.A.=250					-		-								
		LOCALLY BLEACHED AND SILICIFIED															
		CLAY GOUGE (AT253M) WEAK KSPAR		ł													
		2562-2588 STOLONG FRIDOTE AND	ERE	53													
		AND SILICIFIED BRELLIA ZONE MAGNETITE													•		
		FRAGMENTS WITHIN HIGHLY SILICIFIED	· ·														
		MEDIULA GRAINED BRECCIATED MATRIX.															
		CARBONATE (ANHYDRITE) FILLED															
		FRACTURES ROD = 60%											-				
	-		,														
		1=.0.H. 258.8m		•													
																-	-
									-								
		**															
																	l

COAST MOUNTHIN GEOLOGICAL LTD.

CLIENT: BELLETY (B) SECON PROJECT: JACK // k-jpl 57°10' N 15:10:22 A NTS: 104674E HINING DIVISION: 41:120-55

IDGGED BY SAMPLED BY: DATE LOGGED ASSAYS RECEIVED

SIGNIFICANT INTERSECT WIDTH AJ Ay 127.5 135.6 8.11 1006 212 155 121.5 160.0 38.5 1002 106 225 280.7 2865 5.8 - 104 255

OP

DRILL HOLE: * 9030-5 COORDINATES N 0+35 S EI 1+255 W ELEVATION 3891M AZIMUTH 270 DATE STARTED AUG 26/90 DATE FINISHED AUG 30/90 CORE SIZE NO RECOVERY 9578

> DEPTH DIP AZ <u>COLLAR -45°</u> 270 149.4 -42.5 ACID 286.5 -40.0 ACID

RILL	Hole 🐔	<u>705₩#5</u> PAGE of		•	AL	.TER/ 1-5 (s	ATIOI Ax)					~				
			yrite	gnetito	dote	orite	par	tz - Ser (Sample	E) TH (m)	(qdd)	(bpm)	(wdd)	
ROM	TO	DESCRIPTION	XF	Må	Ept	CHI	- X	7430	Number	FRI	T 0	Ā	Αu	Β¥	C.u.	
0	15.24	CASING HIGHLY FRACTURED AND HMONITIC	(1	2	z			85237	7.0	10.0	3	15	:1	150	
-		DIORITE/ANDESITE FLOW EPIDOTE VEINLETS							85238	10.0	12.0	2	7	.1	56	
		-3 MM WIDE EVERY ICAN. LOCALLY BRECCIATED					·		85239 -	12.0	15.0	3	2	,(40	
	· .	UP TO 3 CM. ROD=0	•						· .							
5.24	105.0	ANDESITE CRYSTAL FLOWS AND TUFF BRECHA	1.5	1	2	3			85240	15.0	18.0	3	1	.1	44	
	·····	STRONG PRACTURING C.A.=450-70° EPIDOTE		-					85241	18.0	21.0	3	5	1	67	
		VEINLETS 1-5mm WIDE EVERY 1-2 cm							85242	21.0	24.0	3	9	.1	.81	
		IN BROKEN STOCKWORK TO WRAK BRIELLIA	•						85243	24.0	27.0	3	8	. (82	
		PARITE IS FINE - MEDIUM GRAINED, OCCURING	-						05244	27.0	30.0	3	9	.Z	168	
		AS DISSEMINATIONS AND FRACTURE FILLINGS							85245	30.0	33.0	3	21	.1	69	
		WITH FRIDOTE ROD=102					·		85246.	33.0	36.0	3	34	.1	105	
	•	27.4-29.5 HIGHLY SILICEOUS	,			.			85247	36.0	39.0	3	36	. 1	28	
		GREY BRIECCIA, PERVASIVE QUARTZ FLOODING	6-	-		_			85248	37.0	420	3	16	.3	211	
		BRIELLIATED AND RESILILIFIED. PYRITE							85249	42.0	45.0	3	1)	.(116	
		(2%) ALONG FRACTURIES AND DISSEMINATE							85250	45.0	48.0	3	28	. (24	
		CONTACT IS SHEARED AND SERICITIC CA: 60		i					85251	48.0	51.0	3	4	.1	26	
		WEAKLY SILICIFIED TO 32.0M							85252	51.0	54.0	3	3	.z	36	
		35.5-36.8 FAULT : CLAY GOUD	E						85753	54.0	57.0	3	7	.1	30	
		AND PYRITIC WITH OLEACHED ANDESITIC]				85254	57.0	60.0	3	7	.]	14	
		FRAGMENTS	Ţ						85255	60.0	63.0	.3	4		7	

DRILL	hole •	PAGE of		• •	A	.TER	ATIO	N								
	•		1	2								2		_		
				119	2	11.0	F	3	· ·			5 =	(qq			
FROM	TO	DESCRIPTION	Ē	ullu	P14	hlor	rda-	er te	Sample	MUM	 2	101	d) n			
	1	24.0.20.0		<u> </u>		<u></u>	¥	5	number			3	<	<u>< 3</u>		
	<u> </u>	SO.8-58.0 MODERATELY		<u> </u>					85256	63.0	660	3	12	ilic	2	<u> </u>
		SILICIFIED EPIDOTE BRECKIA WITH		<u> </u>					85257	46.0	69.0	3	4	12	6	
		20 CAN OF SILICIFIED QUARTE BRECCIA		1					85258	69.0	72.0	3	7	11 Z	<u>z </u>	
		(3% PyRITE), FRACTURE C.A.=45°	<u>.</u>						85259	72.0	75.0	3	17	18	2	
		TO SUBPARALLEL	<u> </u>	1					85260	750	78.0	3	13	.16	6	
		CORE BELOMES MORE COMPLETANT NOW	¥	1					85261	78.0	81.0	3	27	.4/23	6	
•		SECTION - AT TO OM ROD = 65%	<u> </u>			·			85262	BI.0	84.0	3	20	.3 ZZ	.7	
 		MATRIX VARIES FROM DARK GREEN	Ľ						85263	84.0	87.0	3	11	115	2	T
	<u> </u>	TO BLACK, EPIDOTE OCCURS AS FRACT	ORE						85264	137.0	90.0	3	6	.1 12	_	T
	ļ	FILLINGS AND CLOTS TO HIGHLY SPOTT	ED'						85265	50.0	93.0	3	7	1 49	,	T
	<u> </u>	THAT IS CALCAREOUS (86.0-910		I			•		85266	13.0	96.0	3	4	.117	>	Ť
·	-	853 : BOLAN SILICIFIED AN	<u>'</u>			.	Ī		85267	96.0	99.0	3	2	1 99	· İ	Ť
	· .	STRAINED VOLCANICS, BLEACHED TO		-		_	:		85768	19.0	102.0	3	6	1 57	,	Ť
·		GREY-SLIGHTLY BRECCIATED				1	ĺ		85269	1020	1050	3	39	14		\dagger
 	l	87.5 : 10 CM FAULT CA=450				Ī							1	1	+	+
ļ		BLEACHED GOULT AND QUARTZ	Γ		1	1				1					1	$\frac{1}{1}$
·		MINDR QUARTZ-CARDONATE VEINIET											<u>`</u>	<u> </u>	$\frac{1}{1}$	+
ļ		3-10 mm WIDE EVERY 3-5 METER L			— i	i	<u> </u>							<u> </u>	+	+
		· C.A. = 80° 45° SUBPARALIEL SEVERA			— i	i			······································		-	i			+	+
2		EPIDATE RAMAY - 2				-				1					1	<u>+</u>

FDOM	70		PUL110	hijnel I Li	late	Norita	apar	st le - Ber	Sample	HO		10111 (m	(qdd) i	(hpm)	(undd)
FRUN	10	DESCRIPTION	×	Ĩ		5	¥	3	Number	¥		ž	<	Š	
	<u> </u>	96.0-105 SHEAR ZONE; PURITE 2%						Į		1	i	1	-	•	•
	<u> </u>	C.A = 45°, EPIDORE BRIELLIA WITH		1						1			-		
	<u> </u>	MINOR GUARTZ- CARBONATE VEINLETS		ŧ		1	ŀ	1	-	1					
	•.	C.A. = 30 ° ROD 60%	1			i	1			1	1			 	
				ł						†					-
105	119.6	ANDESITE CRYSTAL FLOW	$\overline{1}$	1 =	3	<u>ک</u> ا	1		8577	liner		2	.2		10
		STRONG EPIDOTE - GUARTE- CARAMAT	Ľ	1		 ·	1		05270	1050		2		-	<u>60</u>
		BROKEN STRUKUDORI . LALAN	i -						85777	100.0	<u>* .0</u>	2	10	<u>، 2 </u> 	215
-		BRECCIA, PYRITE IN CARLY FEPIDOIE	 	1					OSATA OCTO	<u>III.0</u>	114.0	3	19	•	149
-		WITH CARBONATE MODEDATE							05415	11/4.0	117.0	>	40	<u>.</u> 2	<u>239</u>
		CORE - SHEROWING & A SHERO SOLO	\sim		·		-		05274	<u> 7.c</u> 	119,6	2.6	23	<u> </u>	63
	-	LANGE SALES DE LETERE	7	1					·	<u> </u>					
	<u> </u>	PIRITE HAR FRAGM	NT	<u>s</u> _		-	•								
	1	NOTAN STATE		 					· · ·						
	<u> </u>	CELTING BECOMING STRAINED DOWN		 						<u> </u>					
1196	133	$\frac{1}{100} \frac{1}{100}							<u> </u>						
11.0		HIGHLY STRAINED - SCHISTOSE QUANTZ	3	f ;			-		85275	119.6	121.5	1,9	18	<u>, z </u>	25
	<u> </u>	CHLORITE + CARBONATE MATRIX; LIGHT		: 					85276	121.5	123.5	2	47	1.5	742
	<u> </u>	TO DARK GREY, BANDING C.A. = 450	ŀ						85277	123,5	125,5	2	41	<u>z.4</u>	2.55
	1	NOD BRATELY BLEALHED TOP CONTALT TO							85278	125.5	127.5	2	68	2.12	2026
L	1	121.5 WITH 3% PYRITE AND MODERAT	50				•		85279	1275	129.0	-21	210	3.Z4	1346

DRILL	nule -			•	A	LTER 1-5 (j	ATIO nax)									
	•		=	3	I	-		Ĭ	t			Ê	~	-	~	
			Ē	Ę	1	Ξ	n L	1	•	_		Ĭ	4	E	Ĩ	
FROM	TO	DESCRIPTION	N _{el} x	Magn	Eptal	Chlui	da-X	Quer le	Sample Number	FROM		MIDI	1) nv	AU C	cu (p	
		SILICIEICATION, SHEARING PARALLEL TO				İ		1	85280	129.5	12/.5	2	270	i a	777	T
-		BANDING, TRACE CHALLOPYRITE (015%)		1				i –	96281	1215		<u> </u>	11	1, J	and a	<u> </u>
		121.5-133 MINOR PURITE WITH				1	•		-	<u>, (154) 5</u> 	<u>, 137,C</u>				<u>sisa</u> 	$\frac{1}{1}$
-	<u>.</u>	SPOTTY CHALCO PURITE IN SALALI CLAT				İ		<u> </u>							<u> </u>	<u> </u>
		WITH QUARTZ - CARBONATA, AT 178 M						<u> </u>								+
		3 CAL QUARTZ UEIN WITH COARSE GRAN		1-		 		<u> </u>				: 	!			+
•		PURITE AND ALINOR CHALLOPURITE				: ·	1	İ							1	+
		C.A=45°, BOTTOM CONTACT BOLL	•					<u>.</u>	·			i			<u>. </u>	
		OF 10/0 CHALCOPYRITE IN STRONGLY		1											<u> </u>	+
·	·	BREWLATED MATRIX														<u> </u>
133.0	160.0	DIORITE:	T.			2	·		857.87	1772 (1251	26		4-1		+
-	<u> .</u>	RELATIVELY FRESH MEDHUM GRAINED	7						ASTRZ	1350	155.6	110	-4			+
·	<u> </u>	MODERATE GUARTZ-CARGONATE VEINING		-			:		05205	5,0	179 0	2	5/2	1.6	22861	+
-		IN A LOCALLY STRAINED GREY-BLACK							85785	1750	13/10	2	25	1.2		+
·		MATRIX WITH SPOTTY RIRITE AND							85786	147 8		2.1	57	1.7	1507	-
	<u> </u>	TRACE CHALCOPYRITE.		ł					85287	W/ O	100	2	27	н	911	Ť
· .		135.6-136.8 SILICEOUS AND		:	_		''	:	80,98	1490		2	94	72	2152	Ť
		BRELLIATED DIDRITE WITH MINOR GUART	L						85289	1570	154.0	3	14	2.0	1076	+
		CARDONATE VEINLETS AND STRONG CHLORITIC							85790	550	1580	3	20	1.4	570	Ť
•		BRECCIA. 139.4-139.6: QUARTZ-					·		95291	159,0	160.0	2	27		1370 14	<u> </u>

DRIL	l hole •	PAGE of _10		-	AL	.TER	ATIO	M								
FROM	1. <u>T</u> O	DESCRIPTION	X Pyrile	Hagnelite	E pidot e	Chlorite	- (XM	uer Le - Ver lette	Sample Number	MON	2	#10111 (m)	(qdd) nv	(i) (bbw)	(undd) u:	
		-CHLORIFE VEIN WITH CHALCOPULITE		<u> </u>				3		<u> </u>				- 1	-	
		CLOTS - SHARP CONTACT C.A. = 45°								<u>. </u>	1		-			
		143.3-146.5 DARK GREY-BLACK		!			•	_	_	<u> </u>					-	
	<u> </u>	HIGHLY CHLORITIC AND STRAINED DIORIT	E							1						
	_	MODERATELY SILICEOUS, MINOR OUANT	Ę	ł							İ			i -		
		CARDONATE VEINLETS AND DYRITE		-	I					<u> </u>						
·		146.5-160.0 DIORITE WITH BLEACHE	Ь	ļ				_	<u>.</u> .						Ī	
		AND STRAINED ZONES, LIGHT GREY, PERVASIN	· ·	l										Ī	<u> </u>	
·	<u> </u>	SILILIFICATION THROUGHOUT, LOCALLY SILICE	05	1							1				i	
		BRELLIA, MINOR EPIDOTE VEINLETS.				1			-	ĺ				· İ		1
<u> </u>		MODFRATE QUARTZ- LAR BONATE VEINLIET	5	i			-						Í		1	ļ
 	· · ·	WITH PYRITE + TRACE CHALCOPYRITE,	'	l		.								Ī		
	· ·	WEAK SERICITIC/CHLORITIC ERACTORES		-		_	:							1		
 	<u> </u>	L.A. = 45°							-							
 	<u> </u>	159.0-160.0 HIGHLY SHEARED.					1									-
160.	165	CHLORITIE- GUARTZ-CARBONATE STRAIN	2	1	1	3	-		85292	160,0	162,5	2.5	17	.7	418	
<u> </u>	<u> </u>	ZONE/SHEAR. BANDED-RIBBONED				I	' ľ		85293	162.5	165.0	25	40	.6	575	
<u> </u>	<u> </u>	BURRTZ-CARBONATE AND CHLORITE IN													1	
		A"SILICEOUS MATRIX, 2% PURITIE -				ĺ	1						İ			
Ĺ		ALONG CHIPRITIC ERACTURES - 11			1	1	. [I I		<u>i</u>	<u> </u>		

DRILL HOLE	PAGE of	-	•	A	.TER/ 1-5 (1	ATIOI Max) -	N								
		Purito	ajhutita	idate	alorito	- spar	er Le - Ber Je	Sample			(m) II I (II)	(444) 8	(wad) l	(hprn)	
	DESCRIPTION	×	Σ	Ξ	=	<u>×</u>	3	Number		=	3	<u><</u>	<u> </u>	<u> </u>	
	MAGNETITE: BANDING C.A. = 45°		<u> </u>		1				<u> </u>				1		
165.0167	7 SILICEOUS BRECCIA ZONE, MODERATE	<u> 2</u>	<u> </u>	1	<u> </u>		_	85294	1650	167,7	2.7	14	,4	104	
	BUARTZ-CARBONATE & BROKEN STOCKWORK		<u> </u>					-	<u> .</u>	<u> </u>	<u> </u>	<u> </u>			
	MINOR EPIDOTE, WEAK SERICITIC	<u> </u>	<u> </u>						<u> </u>		<u> </u>				<u> </u>
	IERALTURES C.A. = 30° ROD = 90		$\frac{1}{1-1}$		· ·				<u> </u>			<u> </u>			
N	-	<u> </u>	1					·	1	1	!				
- 167,7167,0	MODFRATELY SILICEOUS COASE VOLCANOLLAST		<u> (</u> 	3	2			85295	<u>167,7</u>	170,7	3	15	14	425	
	BRECLIA. BLEACHED. LIGHT GREY-	╂──	1								!	1			
· · ·	-GREEN WITH MOTTLED EPIDOTE-CHLORIN	<u>ŧ</u>	<u> </u> 						 	<u> </u>	<u> </u>	<u> </u>			
	MATRIX CALLAREOUS AND COARSE		<u> </u>	<u> </u>				· · ·	1		<u> </u>	<u> </u> -	-		
	I FRAGMENTS UP TO 4CM. PURITIE	╞╌	1						<u> </u>	<u> </u>	<u> </u>	1			
	IN LARGE CLOTS UP TO-2%		1 i						<u> </u>	<u> </u>	<u> </u>	1			<u> </u>
	SHARP UPPER CONTACT C.A. = 35 ROD-90	Z_	<u>r</u> 1		_					<u> </u>	 i	1	<u> </u>		<u> </u>
119 0 1119			1						<u> </u>		<u> </u>	<u> </u> 			\rightarrow
101.0 1211	ANDESITE CRECLIA AUGITE PORPHYRY FOUS	12	<u>! —</u> ;	2	12			85296	1170,7	. 174 <u>.0</u>	3,3	<u>! 5</u>	./	284	<u> </u>
	FINE TO COADSE GRAINED FRAGMENTS IMM		! :			 	;	85297	174.0	177.0	3	14		454	<u> </u>
	10 40 cm ID CHURITE AND EPIDOTE MATRI	4—	1					85298	177.0	180,2	33	16	1.2	140	
	MODERATE TO STRUCK PROPYLITIC ALTERED MATE	4	<u> </u> 					85299	100.0	1830	3	15		109	
•	TOMPLES FROM GREI/BLACK TO GREEN/GREY,	<u> </u>	<u></u>		;			85300	183.0	186Z	<u>33</u>	15	1.1	208	
L!	IF RAGMENTS ARE WEAK TO STROUGLY ALTO	ED_	!			· · /		8530	186.0	189.0	<u>13</u>	1390		201	

		<u>—</u> or <u>10</u>		•	ALT	ERATI	CN.						
FROM TO	DE:	SCRIPTION	x Purito	llagaol I to	L p l de l u	2 (114) 2 (114	Juar Is . Bar to I	Sample Number	1 KUN1		Au (ppb)	(wadd) lly	(mqq) u:l
	AND CONSIST OF	GREEN - WHITE QUART	2					85302	:189.0	192.0	3 8		 75
	FRAGMENTS, FINE TO	MEDIUM GRAINED					i	85303	192.0 1	950 3	3 5	· . / ·).	17
	DIORITE FRAGMENTS	AND BASALTIC - ANDER	TK :	ĺ	:		:	85304	- 1950	98.0	3 7	.21	69
	IVACANIC FRAGMENTS	PINK TO WHITE	1	Ī	1	÷	i	85305	KBO.		3:7	1.212	uuli
	QUARTZ UEINS AND	VEIPLETS Imm TO	+		į	l	1	85206	100	2010	3 : 13		109
	2 cm CA = 70° 40	PTRITE OCCURS I	,	-	l			85207	2010		λ ¹	17	705
	STRINGERS CLOTS	AND WITH QUARTZ-				1	1	85309	2010		9		<u>302</u>
	CARBONATE - EPIDOTO	E VEINIETS OFTEN			1		1	8509	2000		<u> </u>		<u></u>
	PERIPHERAL TO FRA	GMENTS PYRITE	1		- <u></u>		1	8530	bianti		215		<u>حر،</u> ارج
	CAN OCCUR UP TO	ST LOCALLY CHAICO					İ	85211	br ol	2192	3 6		20
	PYRITE NOTED WEAR	$\leq A = 30^{\circ}$			1	1	1	85317	190	222 24	2;2		
.		RQD :75-90	z '		i	1	1	85312	222	250 -	3 74	<u></u>	
		· · · · · · · · · · · · · · · · · · ·		-	1	1	1	QC214	2250	200	7 4		02. 01
249.0 254.5	ANDESITE CRYSTAL	FLOW	2	_	01	$\overline{\mathbf{n}}$	1	REZIE	bad	1211	3 10		
	DARK GRAY TO BLA	<k file<="" td="" uniform=""><td></td><td></td><td><u> </u></td><td><u> </u></td><td><u> </u></td><td>QC21</td><td>210</td><td><u>- 0,10 -</u></td><td>3 70</td><td><u>، ح</u>رد اسر ا</td><td><u>>/</u></td></k>			<u> </u>	<u> </u>	<u> </u>	QC21	210	<u>- 0,10 -</u>	3 70	<u>، ح</u> رد اسر ا	<u>>/</u>
	TO MEDIUM GRAIN	=> STRONK CUADTE				1		0000	<u>500</u>		<u></u>		<u>-></u> :
	CAPRONATE BROKON	STRONG WOHRIC		-+			- <u>-</u>	05317	294.07	57.0	5 5	. 5 1	85
	CARBONATE BROKEN	STOCKWORK, PYRITE			1		•	85317 85318	234.02	237.0	3 5	<u> </u>	
	I DISSEMI	NATED	1 1			1	1	85319	240.0	BO	3 14	1.21	19 1

DRILL HULL	PAGE of0_	•	Ai	LTER# 1-5 (#	ATION Max) =							
FROM TO	DESCRIPTION	X 1'yr 110 11agael 110	L pldat v	Chlor Ito	K npar duer te mer e	Sample Number	1 KUN1		(m) 11101M	Au (ppb) Au (ppb)	(widd) n:)	
254.5 262.1	ANDESITE CRYSTAL TUFF	140	2	1	1	85322	249.0	2520	3	3	3 229	
	MEDIUM GRAINED, UNIFORM, WITH SEURA	:	I	:	i	85323	252.0	251.5	2.5	g : ,	4:369	:
	SUB ANGULAR COARSE GRAINED FRAGAEN	5			i	85324	- 254.5	257.5	3	10 .	3 187	
	MINOR QUARTZ - CARBONATE UEINLETS			: 1		85325	257.5	2605	3	31,	1 95	į
	1-10 mm, SEVERAL CLOTS OF PYRITE	÷				85326	20,5	262.1	1.6	z!,	1 36	
	OCCUR WITH QUARTZ - CARBOHATE - CHLORITE	-					1	•		. <u>.</u>		
•	FRACTURES WEAKLY FRACTURED CA =	:							-			
	30°-45°	:					I			ļ		
	RAD= 60 Z	;						1	1	i		ł
	-						İ				ļ	
262. 276.8	VOLCANIC CONCLOMERATE AND BREWLA	20	3	3		85327	262.1	265,1	3 1	11.	1 92	
-	BLACK TO SILICEOUS GRAY / GREEN MATRIX			1		85328	265.)	268.	3	41,	7/77/	
	MOTTLED WITH EPIDOTE VEINLETS AND					85329	268.	271.1	3	11.	2/1801	
	CLOTS, STRONG QUARTZ- CARBONATE					85330	271.1	274.1	3 /	51,	3 752	
	ERACTURING AND STOCKWORK 1-3 MM.					85331	274.	276.8	2.7	5 .	1 350	- 1
	LOCALLY QUARTZ FLOODED AND BRECCIATE	ļ		! 				•		-		
	PYRITE AND 0.5% CHALCOPYRITE				1	-	÷	1				
	OCCUR ALONG FRACTURES	-						!		:	ł	
	·· RQD=758				l		1			;		i
•				;				-	·	;	!	•

			101-		., -						·		
DRILL HO	<u> </u>	PAGE of	67	A	.TERA 1-5 (mi	TICN							
FROM			1.11.0 1.11.0	l da L v	16110	apar ete verse	Sample	E		D111 (m)	(mqq)	(bpm)	
		DESCRIPTION	XE		<u> </u>	<u>× 3</u>	Number	¥		3 3	<		
246.82	17.7 FELDSPAR	PORPHYRY DYKE	110	12	2		85332	276.8	277.7	0.9 -	1 .2	- 355	-
	DARK GRAY	TO BLACK SUBHEDRAL FELDSPAR	<u> </u>	<u> </u>			ļ	!	:	-	:	į .	:
	CRYSTALS OF	TO 3mm IN FINE GRAINED		· · · ·				.:			-		
	CHLORITIC 6	ROUDMASS, PERVASINE	. :		1			İ		-	!		
	<u> </u>	TERATION OF FELDSPARS	ļ ·		1	1		<u> </u>		I			ļ
	- CHLORITIC F	RACTURES CA=50°, SHARP	<u> </u>		i			1	• •·	!.	ŧ,		ļ
•	UPPER CON	ACT CA = 65° WITH A	:		1	<u> </u>	L	-		l		_ 1	1
	CHILLED MAI	261N, LOWER CONTACT CA=				!			:	;			ļ
	TO FINE	PIDOTE VEINLETS UP TO 2 mg			1						i	1 1	1
	DISSEMINATE	D PYRITE ALON'S FRACTURES	ł		1			İ		1			
		RQD= 80 Z				l			i	i		1	1
	· · · · · · · · · · · · · · · · · · ·			<u> </u>	. !	l				Ì	1	1	1
1277.712	36.51 UOLCANIC	CONCLOMERATE AND BRECCIA	2:0	3	21	·	<i>B</i> 5333	277.7	280,7	3 8	1.2	592	1
	DARK GRAY 16	REED TO BLACK PERUASINELY		İ	1		85334	280.7	283.7	3 1	1.1	1995	-
	EPIDOTE ALT	ERED MATRIX WITH LESSER		i	:		85335	2837	286,5	28 1	1.9	13,5%	•
<u>+</u>	ALTERED FRI	KENTS, FEW SMALL OWAPTZ.	<u> </u>	!	•			1					
	CARBONATE	VEINLETS UP TO 2mm CA=				.1	-				:		
-	140°, LOCALLY	QUARTZ FLOODED AND	i		1				1	ļ			
	BRECCIATED	DISSEMILATED PYRITE OCURS		1	1	1					;		<u> </u>
•	ALONG FRACT	URES AND SOPRODUCING								• :	·	· · · ·	

				2	1	-		1				1		~			
ROM	то	DESCRIPTION	11110.1 X	Hagnett	Lpldatu	Chlorito	K-spar	Quer le - Me	Sample Number	I KOLI			(qdd) nv	All (ppm)	(witi) n:)		
		FRACHENTS TRACE CHALCOPYRITE WITH	T	:				!					:			-	 :
i		PYRITE		:				ł						. ;	<u></u>		
		R4D = 60 8	1		-			!								·	<u> </u>
			1					1			:			 	i		_
		END OF HOLE									•	•	<u>.</u>		i		-
			1	-				<u> </u>			•		<u>.</u>				
				:						!	•	•			 !	i	
			·	-							-	 1	• ;		<u>·</u>		—
											i	 	1		i	- <u> </u>	-
		-									1	•					
			1				-			 I	:	;					_
			1								!	ļ		!!!			_
				-	I							•	ŀ		 		_
					i										i		\neg
		-			1						<u>.</u>		<u>.</u>	<u> </u>	<u>-</u>		-
<u> </u>					1	1							;				<u> </u>
			1			1	 		-				;			 	
						Ī							1				
<u> </u>		•:				1	Ī										-
			1		<u> </u>	i					:		:	. 1		·····	<u> </u>

APPENDIX D

TRENCH MAPS

LOCATED ON L 2+005, & O+64E

- D Microdiante, epidote altered on fractures, minor Worite, limmitic fracture surfaces, quarte sweats and veinlets, disseminated pyriteup
- 2 Microdiorite, chlorite altered with flates and dots, epidote alteration pervesive limonitic fractures, quarte surats and veinlets, magnetite, disensated pyrite up to 5%,

3 Shear gouge, some Il angular fragments, mylonitic texture, chlorite + epidote altered, homentic fractures + stringers, quarte swent veinlets, disseminated pyrite up to 5% + magnetite .
JACK WILSON TRENKH 2

LOCATED ON L 21255 & OH65E TO A OHBOE

- Microdiorite, epidote altered on fractures, minor chlorite, limonitic fracture surfaces, quarte sweats and veinlets, disseminated pyrike up to 2% ± magnetite.
- Microdiarite, lost original texture, chlorite altered to flakes + clots, permessive epidote alteration and veinlets, limonitic fractures, quarte sweats - veins, magnetite, cliesaminoted pyrite up to 5%, ± spotty malachite
- 3 Shear gouge, small angular fragments, my low, the texture, chlorite + epiclote altered, limonitic tractures and stringers, quarte sweat verdets + magnetite, dissem. pyrite up to 5%

JACK WILSON TRENCH 3

LEGEND

Microdiorite, lost original texture, chlorite altered with flakes and clots, pervasive epidote alteration and veinlets, limonitic froctures, quarte sweats and veins, magaztite, disseminated pyrte up to 5%, t spaty malachite.

2 Shear googe, small angular fuquents, mylonitic texture, chlorite + epidote altered, limonitic fractures + stringers, quartz societs + veinlets, + magnetite, clissemmated pyrite up to 5%

3 Show gouge, quarte + service alteration, epidote, angular bouding of microdiarite very solicious with 30% disseminated and cubic pyrite, limenitic stringers, to lowing my/onitic terture.

LOCATED ON LO+005, & 0+50E to & 0+69E

JACK WILSON TRENCH 3 SCALE 1:100 METRES

LEGENP 1) Microdiorite, epiclote altered on fractures, minor chlorite, limonitic fracture surfaces, quarte sweats and veialets, disseminated pyrite up to 2%, * magnetite . 2 Microdurite, pervasue epidote alteration, chloritic, limonitic fractures , quarte sweats + veralets , magnetite, disseminated pyrite up to 2%, ± spotty malachite . 3 Shear gouge, small angular fragments, mylouithe texture, chlorite, epidote altered, limositie fractures and stringers ,quarte sweat vein lets, t magnetite , dissominated pyrite up to 2%. 2 32 31 33 34

JACK WILSON TRENCH 5 NORTH WALL LEGEND 1) Microdiorite, feldspar and amphibole crystals subhedral, 18 /82 medium grained, massive, jointed, limonitic fractures, ${f Z}$ disseminated pyrte 21%. 257/50 (\mathbf{n}) 5 194/92 89/48 2 Microdorite, epidote altered on fractures, minor chlorite, 197/3 1/9/10 154°/42° III /29 limonitic fracture surfaces, quarte sweats and vein lets, 841 disseminated pyrite up \$ 2% , + magnetite . 3 Merodorite, chlorite altered amphibales to flakes + clots, Cuppm/Auppb permasive feldspar alteration to epidete + veins, limenitic (I METRE CHIP SAMPLES) fractures, dissommated pyrite up to 5%, magnetite, quarte sweats + veins , & spotty malachite . (Shear gouge, small angular fragments, my/onitic, chlorite + epidote altered, limonitic fractures and stringers, quartz swent veinlets, disseminated pyrite up to 5% FLOOR I magnetite . 15"/88"W 110°/64° 6 7 \bigcirc 8 JACK WILSON TRENCH 5 10 SCALE 1:100 R 5 METRES LOCATED ON L 4+00N, & Z+15E TO \$ 2+31E

1) Microdiorite, epidote altered on fractures, minor chlorite, limonitic fracture surfaces, quartz sweats, disseminated 2 Microdiorite, pervasive epidote alteration, chlorite flakes and clots, limonitic fractures, quarte sweats and veinlets, disseminated pyrite up to 2%, = spotty malachite. 3 Shear gauge, small angular frogments, mylonitic texture, chloritet epidote altered, limenita fractures + stringers, quarte sweat

JACK WILSON TRENCH 6 LOCATED ON L GOOS, & 1+89E TO \$ 2+35E

9CALE 1:100 1 Ó

LEGEND

Incrodiorite, subhedral feldspor + amphibolite crystals, epidote rich fractures + veinr, minor chlorite, limonite fracture surfaces, quartz sweats, locally magnetite rich, up to 2% disseminated pyrite. Microdiorite, pervasive epidote alteration, chlorite flakes + clots, limonitic fractures, quarle sweats, magnetite, up to 2% disseminated prite = sporty malachite.

Located on L1+505, 10+75E to 10+95E

JACKWILSON TRENCH B

 \mathbf{O}

SCALE 1:100

445 SHEAR

LEGEND

Microdiorite, fine grained, pervosive epidate alteration, with epidote fractures thems, variable chlorite up to 10% in Hakes & clots, silicenes due to small quartz sweat Veinlets, himonific facture surfaces, locally magnetite rich (with strong chlorite alteration, up to 1%-disseminated pyrite sporty malachite, small shears with angular blagments and heavily limonific stained).

LOCATED ON L1+255, A0+62.5E to 0+79.5E Metres

	G	E	Ν	\square

21	Т	Е	А	L	Т	E.	R	ΑΤΙΟ	N

STRONG FRACTURE CONTROLLED CHALCOPYRITE - PYRITE MINERALIZATION

	FOLD	AXIS
+,+ +]	POST	MINE

>	

TRENCH

A E18 Rock Chip (CUppm, Auppb, Agppm)

			3472000E	1600	
net la la la la la la la la la la la la la				500	
			+		
	GEO ASS		AL BRA NFREP	N C H O R T	
					the states of the
	0			500	
	BELL	EX MIN O RESC	ING CC	DRP. CORP	
	JACK GEOI	K WILSON North LOGY /	I PROPER Sheet ALTERATI	CTY ON	
	To accompany Project No: Mining Div: Lia Date: Oc	a report by ard et. 1990	D. Blann Report No: N.T.S.: 1040 Map No: 5	1:5000 G/4E	and a second second second second second second second second second second second second second second second s

450 M	
	LEGEND LITHOLOGIES D Fine-medium Grained Diorite (microdiorite/Subvolcanics) A Medium to Coarse-Grained Andesites

. .

.

.

4

÷

,	┍╍╶╞╼┉┍╼╺╞╼╍┍╾╺╞╌╍┍╼╶╪╾╼┱═╺╞╌╌╀╌╸╀╴╶┱╍╾╞┈╍╆┈╸╆╍╾╪╼╾╊╌╼┱╼┅┝┈┍╞╴╴╞┄╶╞┈╶╞┈╴┾┈╌┢┈╌┢┈╌╞┈╶╞┈╴╪┈╶╞┈╴╪┈┈╞┈╍		
filter n = 1 n = 2 n = 3 n = 4	1+00 H 0+50 H 0+00 0+50 E 1+00 E 1+50 E 2+50 E 3+00 E 3+00 E 3+50 E 13K 12K 7069 2766 1992 1100 2020 518 565 979 3997 11K 20K 13K 27K 839 4623 7250 7489 3456 2325 3676 8639 1865 636 823 1026 821 500 817 687 3762 12K 12K 12K 12K 2062 1473 2392 6525 2627 3142 6126 2749 399 451 814 576 774 599 955 816 4259 6425 7693 3262 1944 1296 2577 2628 2609 2187 982 825 492 600 576 808 471 691 1232 2510 5141 2498 1704 2415 1355 1473 2882	filter n = 1 n = 2 n = 3 n = 4	RESISTIVITY (ohm_m)
filter $n = 1$ $n = 2$ $n = 3$ $n = 4$	1+00 H 0+50 H 0+00 0+50 E 1+00 E 1+50 E 2+00 E 2+50 E 3+00 E 3+50 E 14 16 23 30 37 33 30 42 52 50 22 17 12 7 11 16 12 11 10 9 8 23 33 41 41 32 44 42 90 28 22 17 14 20 16 16 13 12 10 35 42 43 45 49 38 38 38 26 19 24 21 15 17 16 15 40 45 52 52 52 52 43 28 38 38 46 36 27 30 28 26 15 16 19 40 45 52 52 52 52 43 28 38 38 46 36 27 30 28 15 16 19 40 45	filter n = 1 n = 2 n = 3 n = 4	CHARGEABILITY(m) (msec)
	╘╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╍╞╍╸╞╍╍╞╼╸╞╍╍╞╼╺╞╼╸╞╴╍╞╶╸╞╺╸╞╺╸╞╸╸╞╸╸		INTERPRETATION
fílter n = 1 n = 2 n = 3 n = 4	1+00 H 0+50 H 0+00 0+50 E 1+00 E 1+50 E 2+00 E 2+50 E 3+00 E 3+50 E 1.1 1.4 3.3 11 19 30 15 81 92 51 5.5 1.6 .6 .6 .4 19 2.5 1.5 1.3 2.6 3.4 6.3 3.8 72 62 54 40 39 68 51 75 8.6 1.8 1.5 1.2 9.7 11 6.2 2 4.2 3.2 5.9 15 73 100 60 64 74 59 8 4 2.4 7.4 11 12 6.6 6.1 5.8 18 46 63 106 87 75 35 81 95 37 14 5.3 12 16 11 12 12 7.1	filter n = 1 n = 2 n = 3 n = 4	METAL FACTOR ({p/res * 1000)

.

TOPOGRAPH	Y Dipole-Dipole Array
filter RESISTIVIT 5	a = 25 m n = 1, 2, 3, 4 plot point filter * * * * * * * * * *
filter CHARGEABILIT 19 $n=1$ (msec) 36 $n=2$ n=3 n=4	Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instruments: Rx : SCINTREX IPR8 : Tx : SCINTREX TSQ-3 : Mg : Mg-2.5 GEOLOGICAL BRANCH ASSESSMENT REPORT
INTERPRETAT	BELLEX MINING CORP.
filter METAL FACT 2.5 n=1 (ip/res * 10) 10 n=2 n=3 n=4	INDUCED POLARIZATION SURVEY JACK WILSON PROPERTY Colour Intensity Plot Date: 90/08/16 N.T.S.: 1046 Interpretation by: Scale: 1: 2500 Fig 20
	QUEST CANADA EXPLORATION

, Canada

		y Anna an an an an ann an Anna an Anna an Anna ann an Anna ann an Anna an Anna an Anna an Anna an Anna an Anna	
		TOPOGRAPHY	Line 300 N Dipole-Dipole Array
4+50 E 13K 6152 1578	f;1ter n = 1 n = 2 n = 3 n = 4	RESISTIVITY (ahm_m)	a = 25 m plot point filter * * * * *
4+50 E 40 19 42 52	f;1ter n = 1 n = 2 n = 3 n = 4	CHARGEABILITY(m) (msec) G	**** Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instruments: Rx : SCINTREX IPR8 : Tx : SCINTREX TSQ-3 : Mg : Mg-2.5 EOLOGICAL BRANCH SSESSMENT REPORT
4+50 E		INTERPRETATION	BELLEX MINING CORP.
3.1 3.1 9.2 17	filter n = 1 n = 2 n = 3 n = 4	METAL FACTOR (Ip/res * 1000)	INDUCED POLARIZATION SURVEY JACK WILSON PROPERTY Colour Intensity Plot Date: 90/08/16 N.T.S.: 104G Interpretation by: Scale: 1: 2500 Fia 21
a the street of the state of the state of the state of the state of the state of the state of the state of the	-		QUEST CANADA EXPLORATION

GEOSOFT (tm) Software for the Earth Sciences, Toronto, Canada

*

TOPOGRAPHY 3+00 E 1+00 E 2+00 E 0+00 1+00 W filter filter RESISTIVITY (ohm_m) 5301 -5236 /7670-2199/ 1316 4376 3632 3848 2827 3703 n = 1 4284 n = 1 2513 1885 2496 2670 n = 2 3684 4039 n=2 1361 1571 4147 2244 1885 3127 3534 1532 n=3 n=3 1257 1466 1152 --1696 2656 2289 /3283 n=4 n = 4 3+00 E 2+00 E 1+00 W 0+00 1+00 E filter filter CHARGEABILITY (m) (msec) ⁴⁰ n = 1 12 13 10 10 9 24 n = 1 14 12 23 52 11 42 13 30 11 n = 2 n=2 13 27 39 36 14 n=3 n=3 35 50 44 29 n = 4 INTERPRETATION n = 4 0+00 1+00 E 2+00 E 3+00 E 1+00 W filter filter METAL FACTOR (:p/res * 1000) 30 3.1 4.6 2.4 -1.9 n=1 5.6 ~___ 3.2 2.8 n = 1 (55 8.1~ 4.1 6.9 4.4 n=2 n = 2 23 6.2 10 、 9.1 n = 3 n = 3 - 17 40 5.8 30 -7.2 14 n=4 n=4

GEOSOFT (tm) Software for the Earth Sciences, Toronto, Canada

1.1

GEOSOFT (tm) Software for the Earth Sciences, Toronto, Canada

,

,