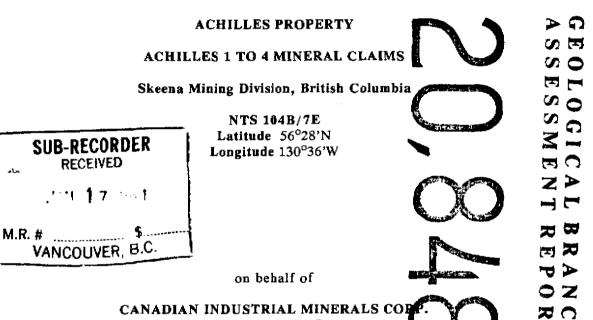
LOG NO:	21-01	RD.
ACTION:		
FILE NO:		

GEOLOGICAL AND GEOCHEMICAL REPORT

.....


.

.

ς.

. .

ON THE

Vancouver, B.C.

by

Gary L. Wesa, B.Sc., FGAC KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

December 17, 1990

Keewatin Engineering Inc.

ΗX

SUMMARY

The Achilles property consists of four contiguous modified-grid claims totalling 80 units located approximately 80 km northwest of Stewart, British Columbia. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property.

The property is situated within the Intermontane Tectono-Stratigraphic Belt, near the contact between the Stikine Terrane and the unmetamorphosed sediments of the Bowser Basin. The property covers an assemblage of northeasterly striking interbedded argillite, chert, quartzite, siltstone and limestone of the Upper Triassic Stuhini Group. Volcanics belonging to the Upper Triassic to Lower Jurassic Unuk River Formation underlie the western edge of the claims.

The area has an exploration history dating back to the turn of the century when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Exploration Ltd. which was brought into production in mid-1988. The adjacent SNIP property is slated for production in 1991.

At this time, the Eskay Creek property, located 20 km northeast of the Achilles property and currently being explored by Corona and Placer-Dome, is the most significant deposit in the area. The property comprises at least eight mineralized zones occurring over a strike length of 1,800 metres within a sequence of felsic volcanics. The mineralization is associated with massive to disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks. A total of 665 surface diamond drill holes have been completed plus an exploration decline has been driven to test underground mineralization.

A review of all available information indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962 which led to the discovery of a number of showings in the vicinity of the Achilles property. Exploration programs were conducted in this area from 1968 to 1986 by various companies. The exploration work completed did not extend onto the Achilles property.

In 1987, a limited amount of reconnaissance mapping, prospecting, and geochemical sampling was completed along King Creek, in the northeastern corner of the Achilles 4 claim. No mineralization was located.

An airborne electromagnetic and magnetic survey was conducted over the property in 1988. Five anomalous resistivity low zones occurring either on the flanks of or coincident with broad, moderate strength magnetic "highs" and a number of north-northeast trending, weak to moderate strength conductors were delineated.

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping and geochemical sampling with the objective of evaluating the property's potential for hosting economic precious metals deposits. Fractured and/or brecciated argillite and chert were located in numerous areas within the property boundaries. Lithogeochemical sampling completed in the northeastern corner of the Achilles 4 claim yielded elevated to anomalous Au, Ag, As, Zn, and/or Pb values, the best values being 0.127 oz/ton Au and 0.51 oz/ton Ag, from grab samples of strongly gossanous, sheared, siliceous and pyritic sulphide mineralized tuffaceous sedimentary rocks within a structurally complex zone measuring roughly 40 metres wide.

The 1990 exploration program consisted of helicopter supported geological mapping and geochemical soil and stream sediment sampling, with the objective of evaluating the property's economic potential through follow-up exploration on geochemically anomalous areas delineated by the 1989 program.

A total of 80 rock samples, 947 soil samples and 57 stream silt samples were collected. Areas characterized by elevated gold-in-soil values were targeted in the Achilles 1, 2 and 3 claims as a result of an extensive contour soil geochemical survey conducted over the majority of the property. Gold-in-soil values up to 842 ppb were returned from soil samples collected along contour soil lines. In the northeastern corner of the Achilles 4 claim, a 700 metre by 700 metre grid was established over the King Creek showing and surrounding area to provide grid control for detailed soil sampling and mapping.

A potential high grade gold-bearing system exists on the north bank of King Creek, characterized by strongly gossanous, intensely silica-sulphide mineralized chert and siliceous tuffs, carbonatized chert breccia and extensively faulted and sheared outcrop measured for 115 metres along the bank. Grid soil sampling yielded gold values up to 3,332 ppb Au accompanied by coincident, moderately to strongly anomalous values for the pathfinder elements and base metals of Ag, As, Cu,

Pb and Zn. Lithogeochemical sampling produced correspondingly elevated gold values with coincident weakly to moderately anomalous values for As, Pb and Zn. The intense pervasive silicacarbonate alteration, faulting and surface soil geochemical anomalies within the King Creek grid area is traced along a north-south mineralized strike length exceeding 450 metres and possibly up to 600 metres. Isolated elevated gold-in-soil and silt values located elsewhere on the property warrant further examination. A considerable amount of follow-up exploration is recommended for 1991.

TABLE OF CONTENTS

Page No.

-

SUMMARY

1.

j.

P 2

ъ.

-

•

.

-

.

•

•

.

۲

.

•

• •

•

. .

•

•

pe - etc

•

• .

INTRODUCTION	1
Location and Access Physiography and Climate Property Status and Ownership	1 2 2
HISTORY OF EXPLORATION	3
Regional History Property History	3 4 5
GEOLOGY	6
Regional Geology . Regional Economic Geology . Eskay Creek (21 Zone) . Sulphurets Area . Johnny Mountain . Snip . Summit Lake (Scottie Gold) . SIB Group . Inel . Property Geology . Lithologies . Structure . Alteration . Mineralization .	6 8 9 10 10 10 11 11 11 14 15 17 19 20 22
Geological Mapping Geochemistry Sampling Procedure Rock Geochemistry Soil Geochemistry Stream Silt Geochemistry	22 22 22 23 25 28
GEOPHYSICS	28
CONCLUSIONS	29
RECOMMENDATIONS	31
REFERENCES	33
STATEMENT OF QUALIFICATIONS	35

LIST OF APPENDICES

APPENDIX I I	temized Cos	t Statement
--------------	-------------	-------------

Summary of Personnel Analytical Procedure APPENDIX II

APPENDIX III

.....

.

- -

. .

. .

κ.

Soil and Stream Silt Geochemical Lab Reports APPENDIX IV

Rock Geochemical Lab Reports APPENDIX V

APPENDIX VI Soil, Stream Silt and Rock Data Sheets

LIST OF TABLES

Following Page No.

Table 1.	Claim Status	2
Table 2.	Table of Formations, Unuk River Area	7
Table 3.	Summary of Mineral Deposits in the Golden Triangle Area	13
Table 4.	King Creek Showing - Lithogeochemical Analysis (1989)	22
Table 5.	Achilles Property - Lithogeochemical Analysis (1989)	23
Table 6.	King Creek Showing - Lithogeochemical Analysis (1990)	24

LIST OF FIGURES

Following Page No.

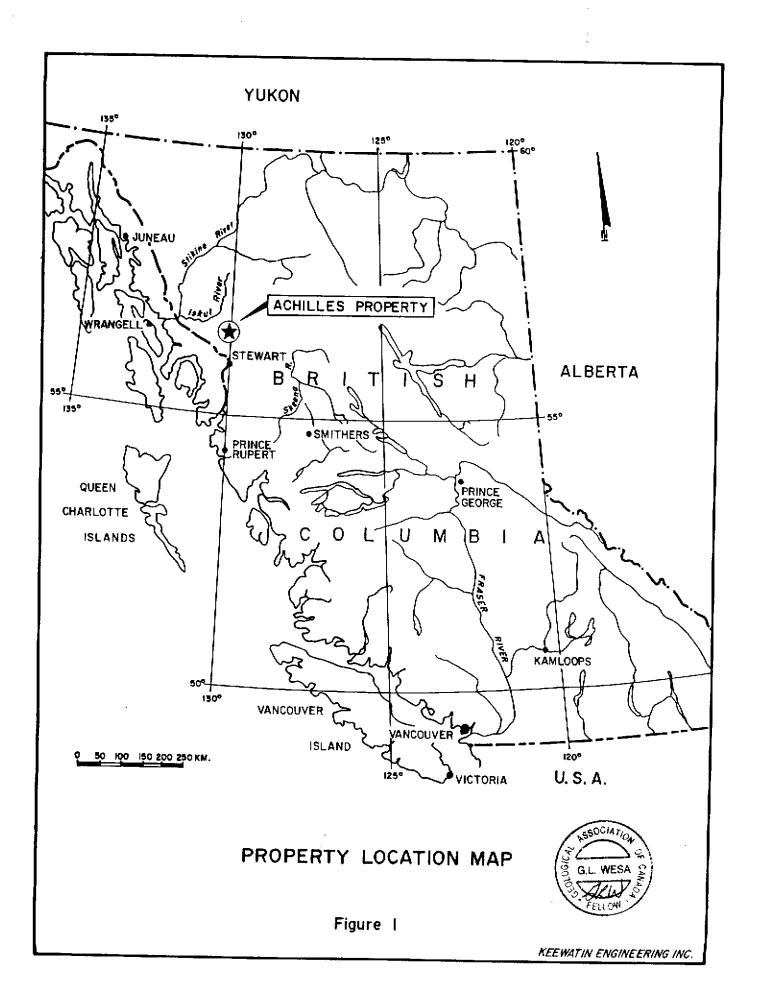
Property Location Map	1
Claim Map - 1:50,000	2
	7
Iskut River Map Area	13
Compilation Map - Achilles Geology, Geochemistry and Geophysics	
(1989 - 1990)	15
Compilation Map - Achilles Geochemistry (1990)	15
	24
King Creek Showing - Lithogeochemical Results (Au, As, Pb, Zn)	24
	Claim Map - 1:50,000 Regional Geology Mesozoic Stratigraphy and Setting for Mineral Deposits in the Iskut River Map Area Compilation Map - Achilles Geology, Geochemistry and Geophysics (1989 - 1990) Compilation Map - Achilles Geochemistry (1990) King Creek Showing - Geology and Rock Sample Locations

LIST OF MAPS

Map 1.	Geology - 1:5,000	in pocket
Map 2.	Rock Soil and Stream Silt Sample Locations - 1:5,000	in pocket
Мар 3.	Rock, Soil and Stream Silt Geochemical Values (Au, Ag, As) - 1:5,000	in pocket
Map 4.	Rock, Soil and Stream Silt Geochemical Values (Cu, Pb, Zn) - 1:5,000	in pocket
Map 5.	King Grid: Geology: 1:1,250	in pocket
Мар 6.	King Grid: Rock, Soil and Stream Silt Sample Locations - 1:1,250	in pocket
Мар 7.	King Grid: Rock, Soil and Silt Values (Au - ppb) - 1:1,250	in pocket
Map 8.	King Grid: Rock, Soil and Silt Values (Ag - ppm) - 1:1,250	in pocket
Map 9.	King Grid: Rock, Soil and Silt Values (As - ppm) - 1:1,250	in pocket
Map 10.	King Grid: Rock, Soil and Silt Values (Cu - ppm) - 1:1,250	in pocket
Map 11.	King Grid: Rock, Soil and Silt Values (Pb - ppm) - 1:1,250	in pocket
Map 12.	King Grid: Rock, Soil and Silt Values (Zn - ppm) - 1:1,250	in pocket

INTRODUCTION

Canadian Industrial Minerals Corp. of Vancouver commissioned Keewatin Engineering Inc. to conduct an extensive field exploration program on the Achilles property located north of the Unuk River valley in northern British Columbia. Exploration was directed by Keewatin Engineering Inc. and crews were based out of the "Doc Camp", situated approximately 15 kilometres southeast of the Achilles property, on the South Unuk River.


The objective of the program was to evaluate the property's economic potential through follow-up exploration on geochemical anomalies delineated by the 1989 program and to provide reconnaissance coverage throughout the property. The 1990 exploration program was conducted during the period of August 19 to September 29, 1990 and involved geological mapping, lithogeochemical, contour soil and grid soil sampling. Stream silt samples were collected from active drainages intersected on daily traverses.

A total of 70 rock grab, 4 float and 6 chip samples, 947 soil samples and 57 stream silt samples were collected from the property. This included 523 grid soil samples and 15 stream silt samples collected from 4.075 kilometres of flagged grid lines established over the King Creek showing and the surrounding area north and south of King Creek. A total of 424 contour soil samples plus 42 stream silts were collected from approximately 21.45 kilometres of contour soil lines. Contour soil geochemical and geological mapping data were compiled on 1:5,000 scale contour maps and the grid survey data was plotted at a 1:2,500 scale in the field. Final geochemical and geological data for the King Grid and the Achilles property were plotted at 1:1,250 scale and 1:5,000 scale, respectively, on computer generated maps.

All geochemical samples were forwarded to Bondar-Clegg & Company Ltd. in North Vancouver for Au plus 8 element (Ag, Cu, Pb, Zn, As, Sb, Mo, Hg) ICP geochemical analysis. Samples registering greater than 1,000 ppb Au were further analyzed by fire assay. Analytical procedures are described in Appendix III and analytical results are presented in Appendix IV and V.

Location and Access

The Achilles property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1). The claims are situated within N.T.S. map-sheet 104-B/7E and centred about 56°28' North latitude and 130°36' West longitude. Access to the property is by fixed-

wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area, and then via helicopter to the property. The claims can also be directly accessed by helicopter from Stewart.

In the fall of 1991, a 72 kilometre road over the mountains is scheduled to open, connecting the Eskay Creek area with the main Stewart-Cassiar Highway.

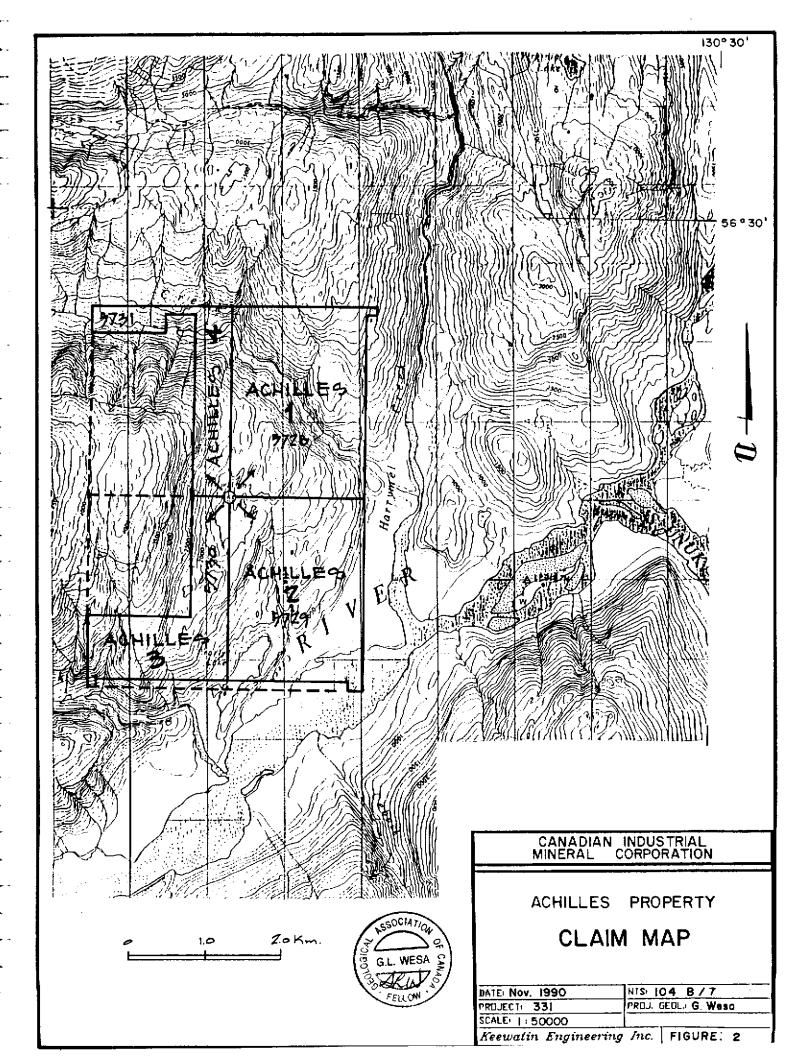
Physiography and Climate

.

¢.

.

The Achilles property is situated within the Coast Range physiographic division and is characterized by northern rain forest and sub-alpine plateaus. Elevations range from 150 m in the valley of the Unuk River to 1280 m in the western part of the property.


A transitional tree line, characterized by dense sub-alpine scrub, meanders through the property at approximately 915 m elevation. The terrain found above the tree line is typified by intermontane alpine flora. Conifers up to 30 m tall are common below the tree line, especially within the stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claim area.

Precipitation is heavy, exceeding 200 cm per annum, with mild short summers but very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

Property Status and Ownership

The Achilles property (Figure 2) consists of four modified-grid claims totalling 80 units located within the Skeena Mining Division. Relevant claims data are tabulated in Table 1.

TABLE 1: Achilles Property - Claim Status						
Claim Name	No. of Units	Record No.	Date of Record	Expiry Year		
Achilles 1 Achilles 2 Achilles 3 Achilles 4	20 20 20 20	5728 5729 5730 5731	January 9, 1987 January 9, 1987 January 9, 1987 January 9, 1987	1998 1998 1998 1998		

These claims are apparently the subject of an agreement between the claim holder (Winslow Gold Corp.) and Canadian Industrial Minerals Corp. The claim records and maps show that the property was subsequently overstaked and that most of the Achilles 3 and 4 claims encompass preexisting mineral claims.

HISTORY OF EXPLORATION

Regional History

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior.

Exploration to the north of Stewart in the late 1920's and early 1930's resulted in the discovery of mineralization in the vicinity of the Eskay Creek, Summit Lake and East Gold occurrences. Activity was relatively intermittent until the 1950's copper "boom" when the Granduc and Galore Creek deposits were discovered. Much of the area underwent preliminary prospecting during the 1950's and 1960's. Numerous showings and prospects were documented but the inaccessibility of the region and low metal prices resulted in limited exploration activity.

In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. With the dramatic increase in precious metal prices in 1979, all prospects and former producers in the region were re-evaluated. Exploration programs focusing on potential high grade gold and silver deposits were initiated. Approximately \$140 million in exploration expenditures have been spent in the region over the last ten years. Subsequent to 1986, total annual expenditures have averaged between \$25 to \$40 million. These expenditures have pushed several prospects to the advanced stage and resulted in the discovery of over 100 new mineralized occurrences. The advanced projects include the SNIP (Cominco-Prime), Eskay Creek (Corona-Placer-Dome), SB (Tenajon-Westmin) and Sulphurets (Newhawk-Granduc) deposits. Skyline Gold's Johnny Mountain deposit and Westmin/Pioneer/Canacord's Silbak-Premier and Big Missouri deposits went into production during the late 1980's. The exploration activity has been extended north of the Iskut River where numerous gold occurrences have been reported. The most prominent include the McLymont Creek (Gulf International), Iskut J.V. (American Ore-Golden Band-Prime), KRL (Kestral) and Forrest (Avondale) properties. Major exploration programs on these properties were conducted in 1990 and the SNIP property is scheduled for production in 1991.

The 1988 discovery of the Eskay Creek gold-silver-zinc-lead deposit demonstrates the area's potential to host world class deposits. Table 3 lists mineral deposits of the Stewart-Iskut River area.

The Unuk River area was covered by geological mapping in 1988 as part of the Iskut-Sulphurets project conducted by the B.C. Ministry of Energy, Mines and Petroleum Resources (Britton et al., 1989). The entire NTS 104B map sheet is currently being mapped by the Geological Survey of Canada (Anderson, 1989).

The results of a regional stream sediment sampling program conducted over this area were released in July, 1988 (National Geochemical Reconnaissance, 1988). Britton et al. (1989) reported that almost every known precious metal prospect in the Unuk River area is associated with high stream gold values. Known gold occurrences are also associated with high but variable values for such pathfinder elements as silver, arsenic, antimony and barium.

Property History

. .

A review of the material in the government's Assessment Report Archives indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962. This work did not discover any promising showings or prospects on the present-day Achilles property.

In 1968, Granduc Mines Ltd. undertook an airborne electromagnetic and magnetic survey over McQuillan Ridge. A portion of this survey encompassed the southeastern part of the Achilles 2 claim.

In 1971, Great Plains Development Company of Canada Ltd. conducted a reconnaissance geochemical program in the Mt.Dunn and neighbouring areas which resulted in the staking of a copper anomaly (Minfile #079), located 1.5 km west of the property. Work in the area in 1974 and 1975 led to additional staking north and south, covering most of the Achilles 3 and 4 claims. Exploration completed in this area did not extend onto the Achilles property.

In 1981, DuPont of Canada Exploration Limited staked the COLE claims in the area immediately north of and covering the northern part of the Achilles 4 claim along King Creek, to

Keewatin Engineering Inc.

4

follow up a heavy mineral survey conducted in 1980 (Minfile #209). Further work was undertaken on the claim group, while under option to Placer Development and Skyline Exploration in 1983, but did not extend onto the Achilles claims. The assessment records also indicate that Duval Corp. conducted a regional heavy-mineral survey in the Unuk River area in 1981 (Korenic, 1982).

In 1986, Crest Resources Ltd. staked the King claims to cover the area adjoining the west side of the Achilles property, and in 1987, staked the Consort claim to cover the area immediately north of the Achilles 4 claim.

In 1987, a reconnaissance mapping, prospecting and geochemical (lithogeochemical and stream silt) program was conducted over several claim groups in the Unuk River area by Paul A. Hawkins and Associates Ltd. on behalf of Axiom Explorations Ltd. Half of one man-day of exploration was completed in the northeastern corner of the Achilles 4 claim along King Creek, with two rock and three silt samples collected. This sampling did not yield any elevated precious metals values.

In 1988, an airborne electromagnetic and magnetic survey was flown over the Achilles property. A number of north-northeast trending, weak to moderate strength conductors were delineated on the property. Interpretation of apparent resistivity data outlined the presence of five anomalous resistivity low zones. Four coincided with the conductive zones along Pearly Lake, north of and through Hawilson Lake, east of Hawilson Lake, and the extreme northwestern corner of the Achilles 1 claim near King Creek. The fifth coincided with the Unuk River cutting across the southeastern corner of the property. These zones occur either on the flanks of or coincident with broad moderate strength magnetic areas.

1989 Exploration Program

<u>ا</u>....

The 1989 property exploration program, conducted by Keewatin Engineering Inc., was completed between September 9 and October 16 and consisted of helicopter-supported reconnaissance prospecting, geological mapping and geochemistry (lithogeochemical, stream silt and heavy mineral sampling). Areas of known mineralization and gossans noted within the area were investigated and sampled.

The best values recorded were 4,358 ppb Au (0.127 oz/t) and 17.5 ppm Ag (0.51 oz/t) in rock chip samples collected from shear zones hosting up to 25% pyritic sulphides in chert and siliceous tuffs on the King Creek showing located in the northeastern corner of the Achilles 4 claim (Aussant

Keewatin Engineering Inc.

5

and DuPre, 1989). A summary of the 1989 geochemical results from the King Creek showing is presented in the Geochemistry section of this report and plotted on Figure 5. In addition, lithogeochemical sampling in three other locations: the southeastern portion of the Achilles 3 claim; southwestern portion of the Achilles 2 claim and northeastern part of the Achilles 2 claim yielded elevated gold values between 191-596 ppb Au. An anomalous gold value of 3,847 ppb Au was obtained from a heavy mineral sample collected from a south flowing tributary of King Creek located west of the King Creek showing. A float sample collected from the southeastern corner of the Achilles 3 claim yielded 178 ppb Au and 9,432 ppm Pb in black argillite containing quartz-carbonate stringers. A summary of other elevated geochemical results is presented in the Geochemistry section and the results are plotted on Figure 5.

GEOLOGY

Regional Geology

The property lies within the Intermontane Tectono-Stratigraphic Belt -- one of five parallel, northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The Achilles property is situated near the boundary between the Stikine Terrane, which comprises the majority of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

During Late Triassic and Early Jurassic time, the Stikine Terrain was the site of very active calc-alkaline volcanism. This volcanism was also accompanied by felsic intrusions that may have been comagmatic with the volcanic events. The sequences of rocks deposited at this time are now referred to as the Hazelton Group (Table 2). This predominantly volcanic assemblage is characterized by basal pyroclastic rocks overlain by argillites and, finally, by coarse volcanic breccia and conglomerate with interbedded tuffs, greywacke and siltstone.

At the end of Early Triassic time, this volcano-plutonic complex was uplifted to form the Stikine Arch. During Middle to Late Jurassic time, parts of the Stikine Terrain were filled with detritus shed from the Stikine Arch. The resulting, mainly sedimentary, sequences are referred to by Grove (1986) as the Betty Creek Formation, the Salmon River Formation and the Nass Formation (Table 3).

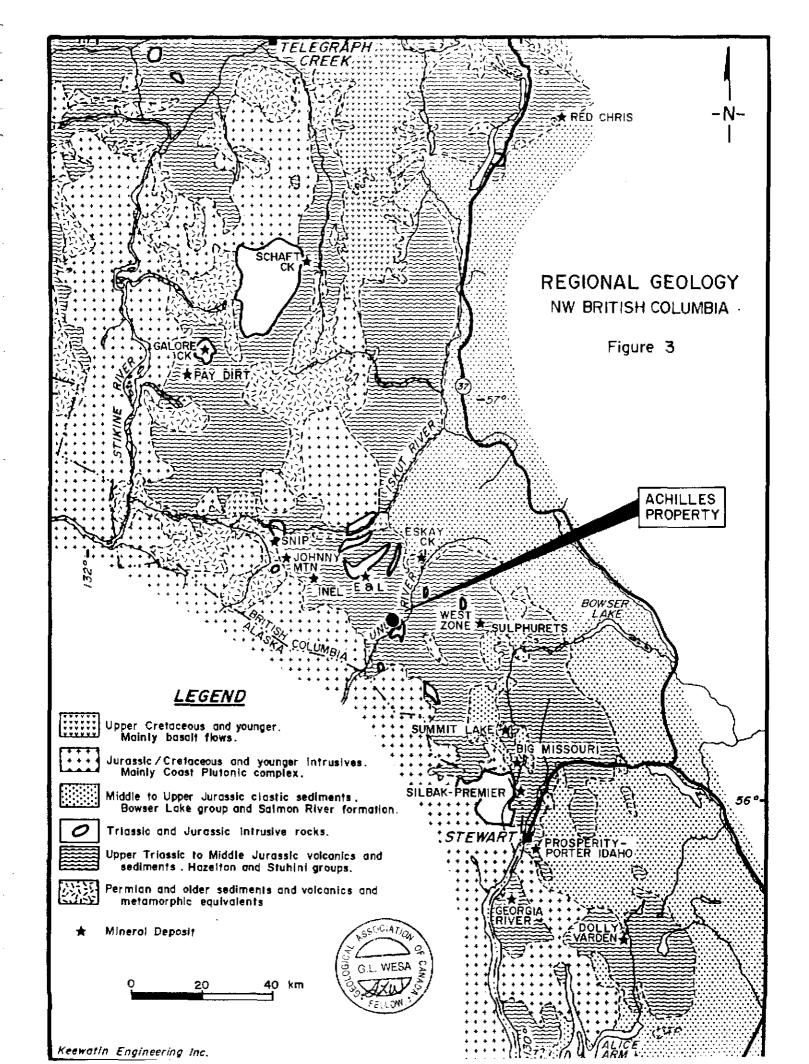
The Unuk River Valley is predominantly underlain by an Upper Triassic to Lower Jurassic section composed of miogeosynclinal volcanic and sedimentary rocks. The composition of the

volcanic rocks ranges from andesitic to rhyolite. Thick layers of siltstone and greywacke are intercalated within the predominantly volcanic assemblage. Grove (1986) assigns most of these rocks to the Unuk River Formation. This formation is the oldest of the Hazelton Group and unconformably overlies older Triassic units. The Unuk River Formation includes diagnostic Hettangian, Upper Pleinsbachian and Lower to Middle Toarcian fossil assemblages. In the type area, this formation has a measured cumulative thickness of over 14,000 metres.

The Unuk River Formation is unconformably overlain by the Middle Jurassic Betty Creek Formation which is mainly composed of clastic sediments with minor conglomerate, carbonate, chert and volcanic rocks. Fossil collections made from the various sedimentary units have defined the age of the Betty Creek Formation as Lower to Middle Bajocian, that is, lower Middle Jurassic.

The Mount Dilworth Formation, a thin but regionally extensive blanket of felsic pyroclastics, overlies the Betty Creek Formation. Pyritiferous felsic welded tuffs, tuff breccia flows and thin lenses of siltstones, mudstones and argillites are the prevalent lithologies.

A thick sequence of Middle Jurassic, thinly bedded turbiditic siltstones (Salmon River Formation) overlies the Mount Dilworth Formation. Anderson (1990) has recently postulated that the Eskay Creek deposit "appears to be stratabound within the siliceous to limey sedimentary rocks and pillowed lava sequence of the Eskay Creek facies of the Salmon River Formation".


The Hazelton Group rocks were intruded by granitic rocks of the Coast Plutonic Complex. These intrusions consist of a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, small satellitic diapirs, dyke swarms, isolated dykes and sills as well as batholiths belonging to the Coast Mountain Complex. Granodiorite is the predominant rock type, although a variety of lithotypes are recorded. The orogenic event which accompanied this intrusive phase also produced a major structural grain along the western margin of the Central Cordillera. The stratigraphic sequence has been folded, faulted and weakly metamorphosed during Cretaceous time, however, some Jurassic strata are polydeformed and may record an earlier deformation event. Regional metamorphism is classifed as lower greenschist facies and is characterized by saussuritized plagioclase, chloritized mafic minerals and the conversion of clay constituents to white mica. The age of metamorphism is Cretaceous, however, near the contact of the Coast Plutonic Complex, granitic dykes thought to be offshoots of the complex have been mylonitized, indicating that deformation has also occurred after this Eocene intrusive event (Alldrick et al., 1987).

. .

AGE	GROUPS	FORMATIONS	MEMBERS	LITHOLOGIES	
Bathonian	Bowser Lake	Ashman	Main Sequence	Turbidites, wackes, intraformational conglomerates	
			Basal Conglomerate	Chert pebble conglomerates	
Bajocian	Spatsizi(?)	Salmon River	Pyjama Beds	Thin bedded, alternating siltstones and mudstones	
to Toarcian			Basal Limestone	Gritty, fossiliferoius limestone	
Toarcian		Mount Dilworth	Upper Lapilli Tuff	Dacitic lapilli tuff with flow-banded clasts	
			Middle Welded Tuff	Dacitic welded ash flow and lapilli tuff	
			Lower Dust Tuff	Dacitic dust tuff	
Pliensbachian		Betty Creek	Sedimentary Members	Hematitic volcaniclastic sediments, and turbidites	
	Hazelton		Volcanic Members	Andesitic to dacitic tuffs and flows	
Sinemurian		Unuk River	Premier Porphyry	Two feldspar + hornblende porphyritic tuffs	
to Hettangian(?)			Upper Andesite	Massive tuffs with local volcaniclastic sediments	
			Upper Siltstone	Turbidites, minor limestones	
			Middle Andesite	Massive tuffs and minor volcaniclastic sediments	
			Lower Siltstone	Turbidites	
Norian			Lower Andesite	Massive to bedded ash tuffs	
Norian	Stuhini		Volcanic Members	Pyroxene porphyry flows and tuffs	
to Carnian			Sedimentary Members	Turbidites, limestones, conglomerates	

TABLE 2. Table of Formations - Unuk River Area

wattn Erlgineering Inc.

Regional Economic Geology

The Iskut-Unuk River area hosts many significant gold, silver and base metal deposits (Figure 3 and Table 3). These deposit types include epithermal and mesothermal precious metal shear-veins and replacements, calc-alkaline and alkaline copper \pm gold porphyries, concordant massive sulphides, stratabound hydrothermal deposits and skarns. The majority of these are hosted by Upper Triassic to Lower Jurassic volcanics and sediments and display a spatial relationship with early Jurassic potassic intrusions (Table 3, Figure 4). A brief description of some of the more important deposits in the region are as follows:

Eskay Creek (21 Zone)

The mineralization at Eskay Creek was discovered in 1932 and active prospecting has continued sporadically since then. Two adits were the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the #21 Zone (Northern Miner, November 7, 1988).

Eskay Creek appears to display characteristics of both epithermal exhalative and volcanogenic massive sulphide types of deposits. The deposit has been described as consisting of stratabound goldsilver-base metal zones, hosted by a carbonaceous mudstone unit (Salmon River Formation?) at the top of a rhyolite breccia sequence. The mudstone is overlain by andesitic pillow lavas. The rhyolite (Mount Dilworth Formation) is underlain by dacitic tuffs of the Betty Creek Formation. The southern part of the deposit (21A Zone) contains massive to disseminated stibnite-realgar mineralization with associated high grade gold and minor silver contents. This is underlain by a footwall stockwork zone in the rhyolite. The northern part of the deposit (21B Zone) is a very goldsilver rich, base metal sulphide lens, with extensive footwall stockwork mineralization. This mineralization is associated with pervasive quartz-chlorite-muscovite alteration and minor gypsum, barite, feldspar and calcite (Idziszek et al., 1990).

The 21C Zone lies 25 metres to 50 metres down section from the 21B Zone. Diamond drilling has identified the mineralized zone along a minimum strike length of roughly 600 metres. The 21C Zone is strongly mineralized with gold and silver, however, sulphide content is low compared to the 21B Zone. In addition, the Pumphouse Lake Zone has been traced by drilling over a strike length of 250 metres. There have been 665 surface diamond drill holes drilled to date plus an exploration decline has been driven to test the main contact ore lens and three mineralized horizons. Wall chip

assay results indicate a grade-width return of 1.56 oz/t Au and 40.5 oz/t Ag over 10 metres. This section includes 2.51 oz/t Au and 62.6 oz/t Ag over 5.54 metres. Underground drifting, bulk sampling and drilling will continue through the winter months of 1990-91.

Exploration activity has brought the total geological reserve base to an estimated 5,300,000 ounces gold equivalent at the 0.10 oz/ton Au threshold. This high grade reserve is contained within both the 21B and 21A Deposits. The potential to significantly increase the total reserve base is considered to be excellent. Immediately apparent potential lies within the northern 21B Deposit, in the Pumphouse Lake Zone, and the 21C Deposit. Additional new zones of discovery may be forthcoming pending results of surface drilling now underway elsewhere on the Eskay Creek property (Vancouver Stockwatch, September 18 and October 1, 1990).

Sulphurets Area

Several different deposit types are present in the Sulphurets map sheet (Open File 1988-4). A group of occurrences known as the Sulphurets Camp is located approximately 20 km southeast of Eskay Creek. Both porphyry type and mesothermal to epithermal precious metal deposits are present. Apparent overprinting of mineralization types and multiple generations of alteration and vein assemblages are noted. Most mineral occurrences in the area are hosted by the upper part of the Unuk River Formation or the lower part of the Betty Creek Formation (Britton et al., 1988). The Goldwedge Zone is hosted by the Betty Creek Formation. Other deposits in the camp include the Sulphurets and Snowfield Zones, the West Zone deposit and the Kerr deposit. Mineralization can be grouped into four main categories; veins, disseminations, intrusive contacts and stratabound. Extensive gossans are associated with mineralization in the area.

The mineralization of the West Zone is located in structurally controlled quartz vein stockworks within a silicified, sericitic alteration zone. The complex vein system, within the zone, is up to 40 metres thick and contains in excess of 60% vein material. The zone has been traced for over 600 metres along strike and for 500 metres at depth. Andesitic tuffs of the Unuk River Formation, near the volcanic-sediment contact, host the deposit. The mineralization consists of pyrite, electrum, native gold, argentite, galena, sphalerite, chalcopyrite, tetrahedrite, pyrargyrite, proustite, freibergite and stephanite.

9

Johnny Mountain

This mine has produced 100,300 tons of ore grading 0.46 oz/t gold, 1.0 oz/t silver and 0.75% copper to the end of October, 1989 (D. Yeager, personal communications, January, 1990). The deposit comprises five sub-parallel quartz veins, hosted by interbedded andesitic to dacitic volcaniclastics and volcanic sediments (Lower Jurassic) which are cut by feldspar porphyry dykes. The veins reportedly thicken and contain higher grades at quartz-carbonate cross structures and at lithologic contacts. The northeast trending veins are generally one to two metres wide and contain pyrite and chalcopyrite with minor sphalerite, galena and pyrrhotite. Electrum and native gold have been reported. A distinctive alteration halo surrounds the veins. Outward from the vein, the alteration sequence progressively changes from massive potassium feldspar and ankerite to a quartz-pyrite stringer zone to a disseminated pyrite zone.

<u>Snip</u>

This deposit is hosted by massive to bedded siltstone and feldspathic wacke (Upper Triassic). The ore zone ('Twin Zone') is described as a one to ten metre thick, discordant, banded shear vein which trends southeast. The zone consists of veins with alternating bands of massive, streaky calcite, heavily disseminated to massive pyrite, biotite-chlorite, quartz and pyritic to non-pyritic fault gouge. Mineralization consists of pyrite, lesser pyrrhotite, minor sphalerite and locally abundant arsenopyrite, galena, molybdenite and chalcopyrite. The gold grades are reported to be fairly uniform throughout, although native gold has been observed locally.

Summit Lake (Scottie Gold)

This mine produced 160,264 tonnes of ore grading 18.6 g/t gold and 10.1 g/t silver between 1981 and 1984. Epigenetic, mesothermal veins are developed along three sub-parallel shear systems which form part of a ladder vein set. Within these structures are plunging, parallel ore shoots consisting of massive pyrrhotite and/or pyrrhotite-pyrite, up to 5 metres wide. The shoots are usually symmetrically bordered by gold-bearing, quartz-carbonate-pyrrhotite-base metal sulphide vein swarms and disseminated base metals. These are hosted by brecciated and intensely silicified, hematized, carbonatized and chloritized wallrock. The overall gold/silver ratio is 2:1.

SIB Group

American Fibre and Silver Butte Resources have drilled 20 holes on their SIB claims and intersected mineralization contained in graphitic mudstone interbedded with felsic volcanic units. One hole returned 49.6 feet grading 0.42 oz/t Au and 30.91 oz/t Ag which includes 16.7 feet of 0.86 oz/t Au and 50.24 oz/t Ag. The geological setting is believed to be similar to the Eskay Creek deposit (The Northern Miner, October 22, 1990).

<u>lnel</u>

Avondale Resources conducted underground drilling and drifting of the AK Zone at the Inel property which produced significant high grade assay results in 1989. The underground program comprised 1,500 feet of adit and footwall drifting. A recent 24.3 foot intercept grading 1.19 oz/t Au, 1.39 oz/t Ag and 0.87% zinc was returned from underground drilling (The Northern Miner, October 15, 1990).

Recent exploration activity north of the Iskut River has resulted in the discovery of three different styles of mineralization. Gulf International has been drilling stratabound skarn mineralization (Mississipian age) on their McLymont Creek property. The zone has been traced for some 300 metres along strike and 200 metres at depth. The best reported drill results include 3.55 oz/t gold over 6.5 feet and 0.62 oz/t gold over 10 feet (L.O.M. Western Securities Ltd., 1990). Mineralization consists of pyrite, chalcopyrite, sphalerite and galena with a gangue of barite, calcite, gypsum, magnetite and specularite. It is believed that the formation of the deposit is due to the presence of a strong structure, chemically reactive host rocks and close proximity to intrusive bodies (Logan et al., 1990). Palaeozoic strata on Kestral's KRL property and Avondale's Forrest property are reported to host mesothermal, shear related gold mineralization. Kestral has reported that channel samples from veins graded up to 7.28 oz/t gold. Avondale has indicated that a large mineralized hydrothermal system, which has been traced for over 3 miles, hosts at least 19 precious and base metal occurrences. Rock samples grading up to 5.8 oz/t gold, 3.6 oz/t silver and 9.5% copper have been reported (L.O.M. Western Securities Ltd., 1990). The mineralization is found in quartz stockworks and veins and consists of gold and silver-bearing quartz-chalcopyrite, with or without malachite, azurite, arsenopyrite, galena, bornite and hematite. The mineralization is spatially related to granitic (Jurassic) and, locally, dioritic (Permian) intrusions. Further north, Cominco has reported polymetallic, massive sulphide float on their Fore More property. They have found more than 800

massive sulphide boulders containing fine-grained pyrite, sphalerite, galena, barite, chalcopyrite and, locally, silver minerals (Logan et al., 1989).

Britton et al. (1989) listed 55 mineral occurrences on the Unuk area map sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn and disseminations. Grove (1986) determined that the age of the mineralizing events is variable, and notably, can be post-Triassic.

Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or restricted set of strata. The best example is the Eskay Creek deposit.

Intrusive contact (skarn) deposits show a close spatial and temporal relationship with igneous intrusions. Three deposits in this category are the E & L nickel/copper deposit (Minfile #006), the Max copper/iron skarn (Minfile #013) and the Chris-Anne copper/iron skarn (Minfile #125). Britton et al. (1989) stated:

Mineralization at the E & L occurs within two medium- to coarse-grained, olivine-pyroxene gabbro bodies. These roughly triangular plugs are each approximately 1300 square metres in area and are probably connected. They intruded a sequence of argillites, tuffaceous siltstones, and grey dacitic ash tuffs that strike northwesterly with moderate to steep southwesterly dips. Mineralization consists of pyrrhotite, pentlandite, and chalcopyrite, with lesser amounts of pyrite and magnetite. In the northwestern gabbro, mineralization extends up to the contact with the sediments, whereas in the southeastern gabbro, mineralization is confined to the pluton. Diamond drilling has delineated pipe-like pods and disseminations of sulphides to a depth of 120 metres. Drill-indicated reserves are 2.8 million tonnes of 0.7% Ni and 0.6% Cu (Sharp, 1965).

The Max prospect lies on the northwest side of McQuillan Ridge, between the Unuk and South Unuk Rivers, at elevations between 455 and 1500 metres. Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite, and diopside characterize the skarn assemblage. Drilling has indicated a reserve of 11 million tonnes at 45% iron (Canadian Mines Handbook 1973-1974, page 432).

The Chris-Anne prospect lies approximately 3 kilometres east of the Max. Skarn mineralization is reported in limestone beds which are up to 10 metres thick and that are interbedded with volcaniclastics. Magnetite and pyrrhotite-rich layers, from 0.5 to 7 metres thick, with minor chalcopyrite, extend over a distance of one kilometre. There are minor intrusive bodies reported on the property. Grades range from 0.1% to 0.4% copper (Allan and MacQuarrie, 1981).

The gold potential of these skarn deposits does not appear to have been tested. Based on recent skarn studies (Ettlinger and Ray, 1988), this area has many features that are associated with gold-enriched skarns elsewhere in the province: sequences of calcareous and tuffaceous host rocks; structural deformation; intrusion by dioritic Itype granitoids; and contact metamorphism and recrystallization. Some auriferous skarns are enriched in cobalt, an element that may be a useful pathfinder.

High-grade precious metal quartz veins were the target of exploration programs at Mount Madge (Minfile #240 and #233) by Bighorn Development Corporation, and at the Doc prospect (Minfile #014) by Echo Bay Mines Limited. Britton et al.(1989) reported:

The Mount Madge prospects are located south of Sulphurets Creek near its confluence with Unuk River, on the east and west sides of Mandy Glacier. Two different targets are being evaluated (Kruchkowski and Sinden, 1988). On the west, the C-10 prospect (Minfile #240) is a stockwork of thin quartz veinlets, locally with thicker quartz lenses, in intensely altered, fine-grained tuffaceous andesite or dacite. Quartz veinlets locally form up to 30% of the rock. The alteration assemblage consists of quartz and sericite with up to 10% pyrite. Chalcopyrite and traces of sphalerite are also present. The rocks are strongly foliated to schistose and are very similar to the broad alteration zones seen at Brucejack Plateau 12 kilometres to the northeast (Britton and Alldrick, 1988). Soil samples locally return analyses in excess of 1 ppm gold.

Two kilometres to the east, Ken Konkin discovered a massive pyrite-siderite float boulder with visible gold. Prospecting uphill led to the discovery of the GFJ veins (Minfile #233), apparently flat-lying, zoned siderite-quartz-sulphide veins that returned assays up to 121 grams per tonne gold (Kruchkowski and Sinden, 1988). The veins are poorly exposed. Float blocks seen this year display symmetrical zoning from margin to core across vein widths of 10 to 15 centimetres. Vein margins are 1 to 2 centimetres of thin white quartz layers separated by hairline accumulations of very fine-grained tin-white sulphide, probably arsenopyrite. The core is a very coarsegrained intergrowth of siderite, milky quartz, and cubes and clusters of pyrite, with lesser amounts of sphalerite and chalcopyrite as crystals and irregular masses. Rare tetrahedrite and visible gold have been observed (K.Konkin, personal communication, 1988). The veins cut variably foliated andesitic ash tuffs with thin interbeds of foliated to schistose siltstones.

The Doc prospect (Minfile #014) is located at treeline on a ridge overlooking the South Unuk River, opposite the mouth of Divelbliss Creek. The prospect consists of several west-northwest trending quartz veins up to 2 metres wide that have surface strike lengths of up to 275 metres (Gewargis, 1986). The main veins (Q17, Q22) are massive white quartz with sparse sulphide mineralization (5% to 10%) consisting of galena, pyrite, chalcopyrite, and sphalerite, with associated specular hematite and magnetite. Precious metal values are mostly confined to the sheared edges of veins and immediately adjacent wallrock. Shear zones with very little quartz may also return good values. Seraphim (1948) observed that gold was associated with either specular hematite or with galena and pyrite, but not with chalcopyrite and pyrite assemblages. The veins are a true fissure type, crosscutting folded and metamorphosed andesitic tuffs and thin-bedded sediments, including marble, that have been intruded by

Deposit	Type 2	Host,	Ore Reserves (tons)	Grade	Comments
Silbak-Premier	epithermal/ porphyry	Unuk River Formation (Lower Jurassic)	6,100,000	0.064 oz/t Au & 2.39 oz/t Ag	production resumed 1989
Big Missouri	epithermal and stratabound	Unuk River Formation (Lower Jurassic)	1,860,000	0.091 oz/t Au & 0.67 oz/t Ag	production resumed 1989
SB	epithermal	Unuk River Formation (Lower Jurassic)	152,000	0.335 oz/t Au, 0.79 oz/t Ag, 1.42% Pb-Zn	1982 discovery
Summit Lake	mesothermal shear vein	Unuk River Formation (Lower Jurassic)	132,000	0.56 oz/t Au	closed 1985
West Zone	mesothermal shear vein	Unuk River Formation (Lower Jurassic)	854,072	0.354 oz/t Au & 22.94 oz/t Ag	feasibility stage
Granduc	concordant massive sulphide	Unuk River Formation (Lower Jurassic)	10,900,000	1.79% Cu, 0.004 oz/t Au & 0.24 oz/t Ag	closed 1984
Кетт	alkaline porphyry	Unuk River Formation (Lower Jurassic)	66,000,000	0.86% Cu & 0.010 oz/t Au	1987 discovery
Eskay Creek	stratabound hydrothermal system	Mount Dilworth Formation (Lower Jurassic)	6,035,220 (prelim.)	0.643 oz/t Au & 15.61 oz/t Ag	1988 discovery drilling still in progress
Goldwedge	mesothermal shear vein	Betty Creek Formation (Lower Jurassic)	295,000	0.63 oz/t Au & 2.44 oz/t Ag	1981 discovery
Johnny Mountain	mesothermal sh e ar vein	Unuk River Formation (Lower Jurassic)	740,000	0.52 oz/t Au, 1.0 oz/t Ag & 0.75% Cu	production commenced 1988
Snip	mesothermal shear vein	Stuhini Group (Upper Triassic)	1,032,000	0.875 oz/t Au	f e asibility stage
Galore	alkaline porphyry	Stubini Group (Upper Triassic)	125,000,000	1.06% Cu, 0.013 oz/t Au & 0.25 oz/t Ag	1955 discovery
Shaft Creek	calc alkalin e porphyry	Stubini Group (Upper Triassic)	1,000,000,000	0.30% Cu & 0.004 oz/t Au	dormant
Red Chris	alkaline porphyry	monzonite (Late Triassic to Early Jurassic)	43,700,000	0.56% Cu & 0.010 oz/t Au	dormant
E&L	porphyry	Nickel Mountain Gabbro (Jurassic)	2,930,000	0.80% Ni & 0.62% Cu	dormant

TABLE 3: Summary of Mineral Deposits in the Golden Triangle Area

1

۲

· ·

٠

٦

.

Λ.

· ·

• •

٦

,

• •

• •

• •

~

.

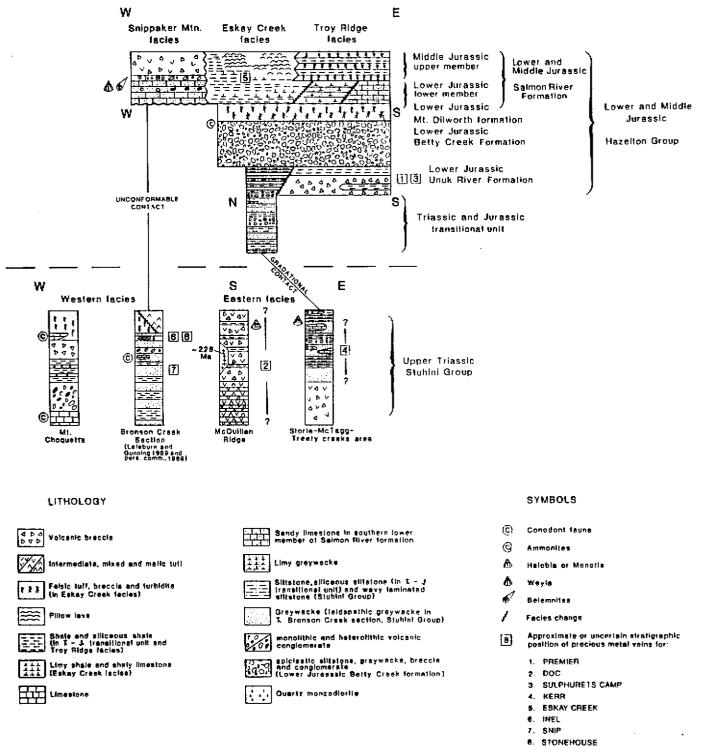
1 **[**]

1

[]

•

1


٠

1

. .

*

٦

WISE Approximate orientation for stratigraphic transect

Figure 4: Mesozoic stratigraphy and setting for some mineral deposits in Iskut River map area, northwestern British Columbia

irregular dioritic dykes or sills and small monzodioritic plugs. The veins are different from any others seen in the Sulphurets or Unuk map areas. They have very restricted wallrock alteration aureoles, no apparent zoning, and appear to be limited to a few large fluid pathways. In this, they display characteristics of mesothermal veins. Structural control of the vein sets has not been determined but may be due to fractures related to folds in the host rocks. Total mineral inventory of the Q17 and other veins is given as 426,000 tonnes with 9.26 grams per tonne gold and 44.91 grams per tonne silver (Northern Miner, November 7, 1988).

Porphyry-type disseminated pyrite, chalcopyrite, and molybdenite mineralization occurs immediately north and south of King Creek, west of Harrymel Creek. Two properties have been worked: the VV to the south and the Cole to the north.

The VV property (Minfile #079), located 1.5 km west of the Achilles property boundary is the site of a heavily weathered monzonitic intrusive body in fault contact, on the east and west, with layered andesitic lapilli tuffs and tuff breccias with minor siltstone and calcareous sandstone interbeds. The stock is 250 metres wide, at least 6 kilometres long, strikes northerly, and dips steeply to the west, parallel to the country rocks. Chalcopyrite occurs in quartz stockworks and as fine disseminations within the monzonite. Molybdenite, sphalerite, malachite, and azurite have also been reported (Winter and McInnis, 1975; Mawer et al., 1977). Representative assays give 0.34% copper, 0.003% molybdenum, 2.1 grams per tonne silver, and 0.8 gram per tonne gold. Maximum gold and silver values obtained were 8.65 grams per tonne gold and 19.54 grams per tonne silver (Mawer et al., 1977).

The Cole prospect (Minfile #209) is situated approximately 4 kilometres north of the VV claims; it appears to be on strike with the same fault system and has similar intrusive and country rocks. Mineralization consists of up to 10% pyrite as disseminations and fracture fillings. Minor chalcopyrite and malachite have been reported but the bedrock source of the gold/silver soil anomalies has not been located (Korenic, 1982; Gareau, 1983). Reported assays range up to 0.43% copper, 7.12 grams per tonne gold, and 13.03 grams per tonne silver. Gold and copper values show a positive correlation on both properties with gold values appearing to associate with quartzpyrite vein mineralization.

Property Geology

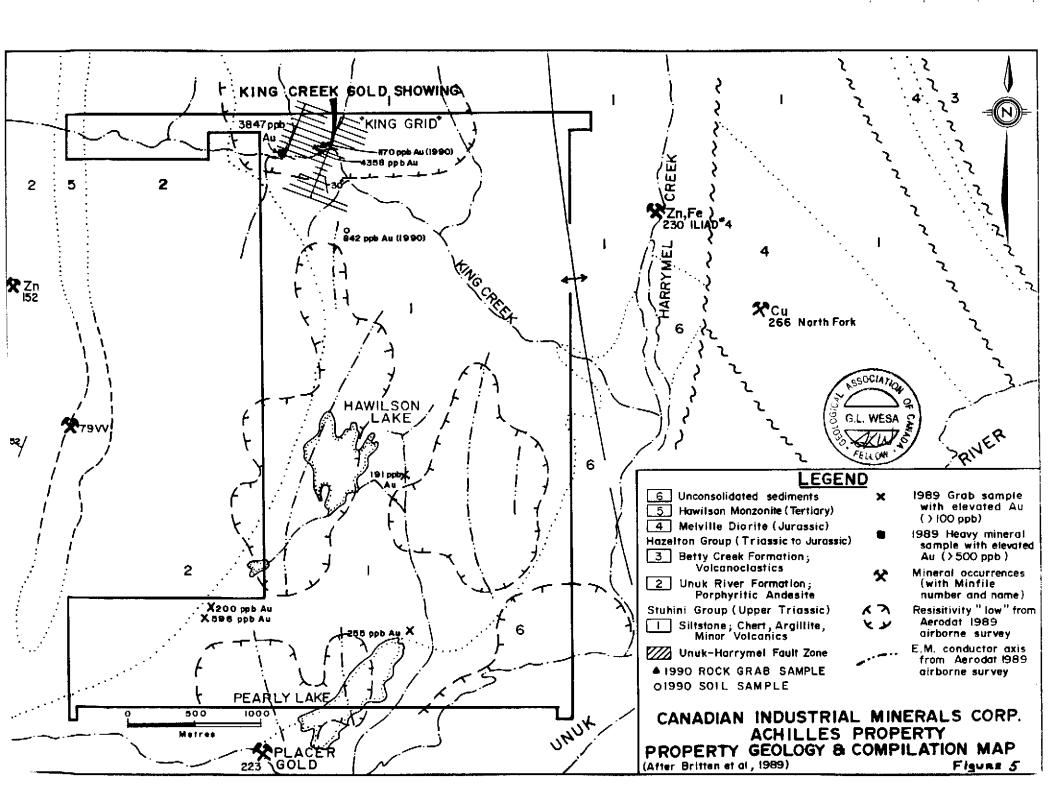
×,

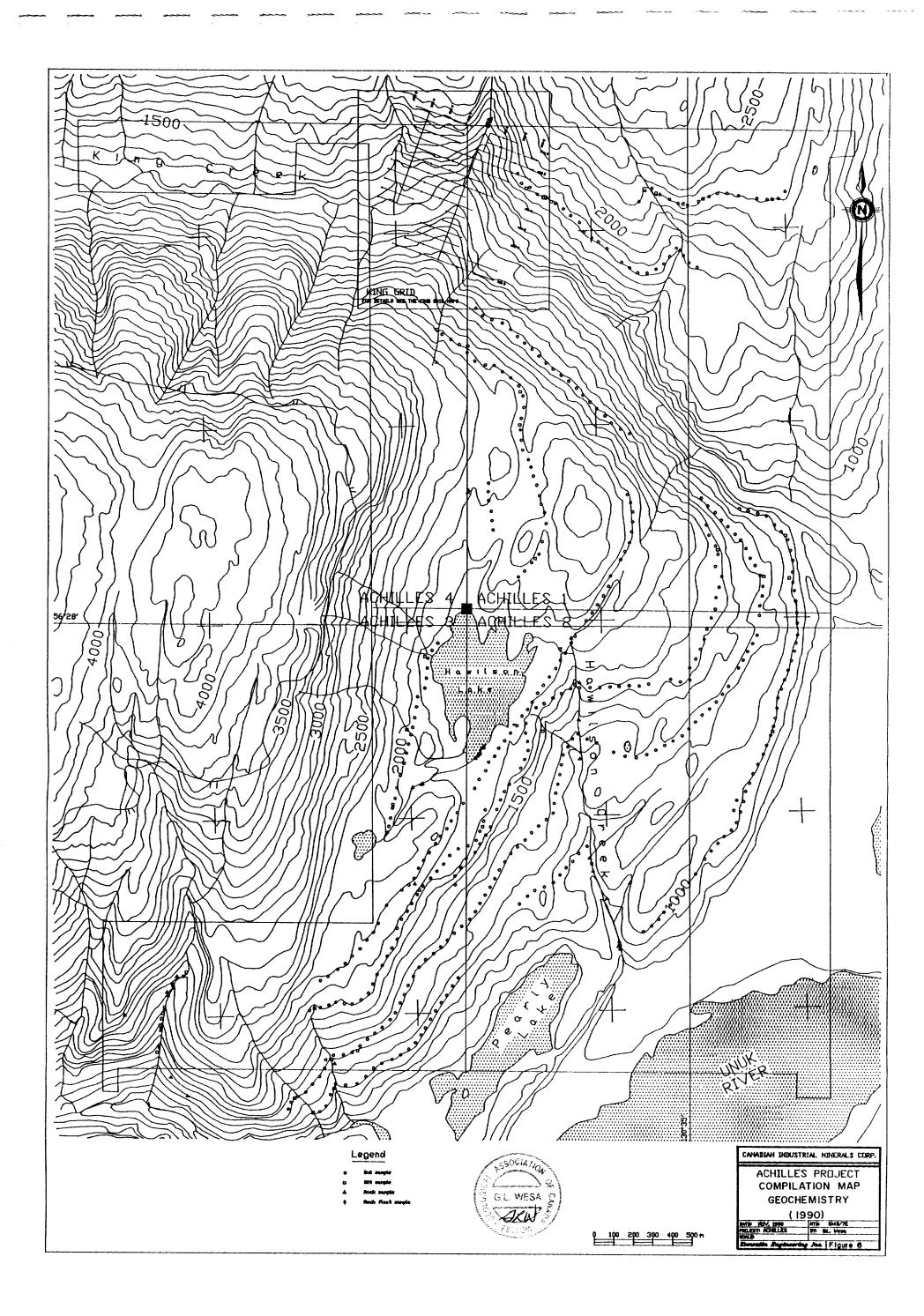
The Achilles property was geologically mapped and lithogeochemically sampled in conjunction with contour soil sampling and grid controlled soil sampling. These data were plotted on topographic base maps of 1:10,000 scale, prepared from an enlargement of a 1:50,000 NTS topographic map, and subsequently transferred to final 1:5,000 scale sepias. More detailed mapping and grid controlled soil sampling was conducted over the area covered by the King Creek grid and these data were compiled initially at 1:2,500 scale and finally at 1:1,250 scale. Approximately 90% of the property is forest covered with outcrop exposure, accounting for 5% of the claims area, restricted to drainage valleys and incised gullies on steep slopes. Isolated exposures are found along lake shorelines (Hawilson Lake), in cliffs, scarps and bluffs on steep forested slopes and on topographic highs. The remaining 5% of the property is occupied by the braided Unuk River which develops an intricate network of interlacing channels through fluvial and glaciofluvial deposits.

Regional geological mapping by Britton et al. (1989) illustrates that Upper Triassic to Lower Jurassic supracrustal rocks are found on the property. Most of the property is underlain by Upper Triassic sediments of the Stuhini Group. The western edge of the property is underlain by the Lower Jurassic Unuk River Formation which consists of andesitic volcanics with lesser sediments (Table 2, Figures 3 and 5). These units are described by Britton et al. (1989) below:

Lithologies

Upper Triassic Stuhini Group


The Stuhini Group rocks occupy the nose of a north-plunging anticline, and occur as a wedge between the Unuk-Harrymel Shear Zone and the overlying Unuk River Formation. These rocks underlie most of the property, consisting of thin bedded siltstones, immature fine-grained wackes, chert, impure limestone, and andesitic tuffs that locally attain a considerable thickness. Andesitic tuffs may be laminated to massive, aphanitic or hornblende-feldspathic. Limestones occur as thin beds or discontinuous lenses that show extensive recrystallization and highly disrupted internal structure. Fossil evidence led Britton et al.(1989) to ascribe a Carnian to Norian age to these rocks.


Upper Triassic to Lower Jurassic Unuk River Formation

Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of fine-grained immature sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (\pm hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green, thinly bedded tuffaceous siltstone and finegrained wacke. These Norian to Sinemurian rocks belong to the Unuk River Formation which is the lowermost unit of the Hazelton Group. The basal contact with Triassic strata appears to be near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks this lower contact. Regional geological government mapping and mapping completed during the 1989 property exploration program indicates this unit underlies the western edge of the property.

Tertiary Hawilson Monzonite

The Jurassic Unuk River Formation volcanics are intruded by an Eocene or older monzonite stock that varies from 150 to 350 m in width and appears to be continuous in a north-south direction for about 6 km. The intrusive is comprised of a light grey, fine- to medium-grained monzonite and

is described as a "high level" vertically tabular monzonite body that has apparently been block faulted up into the volcanic sequence. This unit cuts across the western portion of the Achilles 3 and 4 claims, which is covered by pre-existing mineral claims.

Geological mapping by Keewatin Engineering personnel has identified two assemblages or rock stratigraphic units. The basal package comprises a thick sequence of sedimentary rocks defined as the Stuhini Group of Upper Triassic age. Overlying this sequence is a second package of rocks composed of intermediate to mafic volcaniclastics and massive flows belonging to the Unuk River Formation. This unit is exposed only near the west boundary of the property in Achilles 3 and 4 claims (Map 1).

The bedrock geology comprises predominantly thinly bedded argillite, cherty argillite, chert, massive limestone, greywacke and volcanic sediments composed of andesitic ash, crystal and lapilli tuffs. Minor thinly bedded to fissile shales and lesser quartzites and siltstones were also observed. These lithologies belong to the Upper Triassic Stubini Group and are mapped along the steep, locally canyoned sides of King Creek and Hawilson Creek plus numerous isolated outcrops in gullies and on timbered slopes throughout the property (Map 1).

In the northwestern corner of the property, in the Achilles 4 claim, the predominant lithologies are interbedded pale to dark grey and black, thinly bedded to laminated argillite, cherty argillite, chert and finely laminated andesitic ash tuffs. Interbedded chert, ash tuffs and cherty argillites host sulphide mineralization at the King Creek showing in the northeastern corner of the Achilles 4 claim. Massive, medium to dark grey, fine to coarse clastic greywacke and pale to medium grey, locally, weakly to moderately recrystallized limestone forms cliffed exposures along King Creek. Massive greywacke also forms cliffs near the north end of the King Creek grid, on the west side of the baseline, and on the north side of King Creek, near the southeast corner of the grid.

In the King Creek grid area, numerous northwest-southeast striking, fine to medium crystalline dykes of quartz-eye porphyry, quartz-feldspar, diorite and diorite porphyry are observed cutting the stratigraphy. These dykes are best exposed in the two fault gullies occupied by south flowing tributary drainages to King Creek (Map 5). The dykes are commonly 0.5 to 2.0 metres wide and trend predominantly southeasterly. Their composition is generally felsic to intermediate north of King Creek, however, they are composed of dark grey to greenish-black aphanitic diorite south of King Creek.

Lithologies exposed within the western tributary gully to King Creek, in the Achilles 4 claim, are characterized by fracturing and brecciation resulting in the formation of silicified chert breccias, "crackle-frac" breccias and quartz-vein stockwork breccias. Two common lithologies mapped within this drainage are chert and black argillite which frequently weather bright orange resulting from local concentrations of contained pyritic sulphides. The lithologies covered by the King Creek grid are commonly characterized by extensive gossanous weathering, faulting, shearing and local folding resulting in intense quartz-carbonate alteration, silicification and brecciation.

Southeastward along King Creek, massive limestone and impure greywacke, containing narrow argillaceous and shale lenses and horizons, forms canyoned walls through the Achilles 1 claim. The limestones are pale grey to greenish-grey in colour and are commonly massive, however, local contorted bedding with pale green, ribbony layering was observed. Weak to moderate recrystallization was observed in cliffs on the south bank of King Creek in the northeastern corner of the Achilles 4 claim.

The bedrock lithologies covered by the Achilles 2 and 3 claims comprise a thick succession of interbedded, fissile to thinly bedded black argillite and shale, limey to siliceous greywacke, siltstone, quartzite, chert and minor andesitic ash and lapilli tuff. The tuffaceous sediments on the Achilles 3 claim appear to be siliceous and chertified. These rocks may correlate with the chert, cherty argillite and massive, strongly siliceous quartz/chert breccias exposed in isolated outcrops north of Hawilson Lake on the Achilles 4 claim. The siliceous, locally brecciated character of these rocks may be due to their proximity to local north-south fault zones which have fractured the bedrock of the area on a megascopic scale. Structural interpretation is complicated by the extensive cover of overburden and forested slopes covering the majority of the property.

Near the western boundary of the property, on the Achilles 4 claim, aphanitic, dark green andesitic volcanic flows were found in outcrop and in the massive talus blocks below cliffs composed of andesite. These rocks belong to the Upper Triassic to Lower Jurassic Unuk River Formation.

Structure

. .

. .

The general trend of the stratigraphic sequences is northwesterly with dips to the southeast. Dips vary from near vertical to shallow southeasterly or easterly in drainage gullies, representative of faults which have disrupted and contorted bedding. Deviations in strike and dip of stratigraphy are recorded throughout the property owing to local folding and fault related deformation, commonly observed in creek gullies such as Hawilson Creek and fault gullies in the northeastern corner of the Achilles 4 claim. Prominent lineaments and structural features are readily observed on air photos and interpreted from topographic maps (Map 1).

Faulting on various scales was observed. Major north-south trending faults are represented by: Hawilson Creek on the Achilles 2 claim; two south flowing tributary drainage gullies on the northeastern Achilles 4 claim and a south flowing drainage gully paralleling the eastern claim boundary of the Achilles 1 claim. A northeast-southwest trending fault is postulated for the southeastern side of Hawilson Lake. The writer believes this fault may be traced from a small pond southwest of Hawilson Lake to the east-central part of the Achilles 1 claim. This fault is marked by sheared, brecciated and silicified bedrock occurring in drainages and along the southeastern shore of Hawilson Lake and is traced through gullies and cliffs to the northeast (Map 1).

- -

- -

.....

÷.,

Numerous narrow and discontinuous shears and fault zones are identified locally. In the central part of the Achilles 2 claim, two parallel northeast-southwest striking gullies represent the surface trace of two faults trending southwest toward Pearly Lake. Pearly Lake probably lies within the southern fault zone. Numerous scarps and bluffs in the Achilles 2 and 3 claims probably represent northeast-southwest trending structures.

Geological mapping has focused attention on the King Creek showing on the north bank of King Creek, which occurs as a 115 metre wide zone of extensively faulted and sheared, strongly gossanous, altered chert and siliceous tuffs. Parallel and sub-parallel, near vertical faults, striking at 020°, 040° and 160° to 180°, are responsible for the localization and emplacement of sulphide mineralization plus a strong silica-carbonate-limonite alteration halo. Individual mineralized fault zones vary in width from 1 cm to 4 metres. Broad carbonate-limonite-hematite breccia zones (Figure 7, Map 5) attain a maximum thickness of 4 metres.

Faulting and deformation on a regional scale tends to reflect itself locally in the form of limonitic micro-fractures and joints in brittle argillites. Evidence of this was observed at the King Creek showing and in the Hawilson Creek region. Strata in Hawilson Creek are characterized by mild to intense deformation, brecciation and, locally, intense slickensiding and fault polishing of large cliffed exposures in the lower parts of the drainage.

A north-trending fault on the south-central claim boundary of the Achilles 3 claim is defined by intensely slickensided and fault polished greywacke and argillite wallrock. Limonitic quartz-

18

sulphide fault breccias containing up to 10% disseminated pyrite occur in black argillite. Argillite within the fault zone is extensively fractured and cut by abundant pyritic quartz-limonite veins and veinlets. This fault may be associated with a series of northerly trending faults in the southwestern corner of the Achilles 3 claim.

<u>Alteration</u>

-

<u>,</u> .

•

. .

•

.

e - -

p. . .

۸.

....

Rocks on the Achilles property are locally silicified and carbonatized with the most intense alteration being localized by and accompanying faulting and shearing. The sulfide-bearing rocks are commonly limonitic. Evidence of significant hydrothermal alteration of sulphide-mineralized outcroppings was observed at the King Creek showing. The showing is characterized by intense, pervasive quartz-carbonate-limonite-sulphide alteration of the host interbedded cherts, fine ash tuffs and cherty argillites. The alteration halo of the showing occurs as a bright yellow, orange and rusty coloured stain on steep outcrops along the north bank of King Creek (Figure 7).

Further downstream on King Creek, massive limestones display a mild to moderate degree of recrystallization. In Hawilson Creek gully, limestones may be moderately to strongly siliceous. Correspondingly, greywacke sequences are variably siliceous and calcareous. At lower elevations in Hawilson Creek, specifically, below 1,000 feet, intense shearing of the argillite and greywacke is accompanied by strong quartz-carbonate alteration with the formation of quartz-calcite veins, lenses, pods and stockwork veins. Boudinaged calcite-quartz veins with calcite stockwork-vein breccia, containing up to 2-5% disseminated pyrite, commonly occur along this section of the gully. Shear zones accompanied by fault breccia, clay-limonite gouge and graphite may contain up to 15% finely disseminated and nodular pyrite. Also commonly observed were vugs and dilatancy features, lined with drusy quartz, within siliceous argillite.

Similar, limonite-quartz-sulphide alteration of fractured, brecciated argillites occurs in a fault gully located on the south-central Achilles 3 claim boundary.

Intense silicification, silica-flooding and carbonatization of graphitic argillite and finely laminated ash tuffs occurs along the southeastern shore of Hawilson Lake. A narrow stream connecting Hawilson Lake to a small pond 620 metres to the southwest probably represents the surface trace of a fault zone characterized by silicified "crackle" breccia in a chert horizon. Brecciation of the chert is accompanied by silica-flooding and the formation of fine, dark quartz-sulphide (pyrite, pyrrhotite) filled fractures and veinlets. Bedrock in the stream also appears gossanous and contains numerous fine limonitic fractures.

Elsewhere on the property, rocks are altered primarily by silicification and carbonatization. Limestones, greywackes and argillaceous sediments are the lithologies most commonly affected. Andesitic lapilli tuffs appear weakly chloritized. Proximal to most fault zones, rocks are fractured and stained with fracture and surface coatings of limonite and lesser hematite.

Mineralization

- -

.

. .

.

e - 1

. .

-

- -

.....

•

Trace to minor amounts (1-2%) of disseminated pyrite (± pyrrhotite) are ubiquitous within the Stuhini sedimentary and volcanic sequence. Areas of quartz-carbonate alteration, silica-flooding and brecciation within tuffs, cherts and siliceous argillites (Hawilson Lake area), contain up to 10% finely disseminated pyrite and pyrrhotite.

The southern part of the Hawilson Creek fault zone contains up to 10-15% coarse, stringer, vein, nodular and disseminated pyrite associated with calcite-quartz veins, fault brecciation and claylimonite-graphite gouge. Sulphide mineralization in Hawilson Creek is intimately associated with shearing and alteration suggesting that faulting has directly influenced and controlled the emplacement of sulphides and carbonate-quartz vein material. Mineralized, calcareous and siliceous shear zones measure from <1.0 cm to 0.3-0.5 metres in width within the bedrock of the gully. Locally, numerous calcite-quartz veins and lenses attain an accumulated width of 3-4 metres, however, the majority of sulphide mineralization is restricted to narrow shears and breccia zones (Map 1).

Sulphide mineralization within the King Creek showing represents the most promising mineral occurrence on the property. This mineralized zone is exposed for 115 metres along the north bank of King Creek and is identified by strongly gossanous, limonitic staining of intensely silica-sulphide (pyrite ± pyrrhotite) mineralized chert and interbedded, siliceous, finely laminated intermediate ash tuffs. Pervasive carbonate alteration, calcite veining and intense brecciation accompany extensive shearing and faulting. Mineralization at this site comprises very finely disseminated, massive and semi-massive to smokey-grey pyritic sulphides in fine bands, lenses, irregular nodules and large pods hosted in brightly gossanous banded to thinly bedded chert and cherty or siliceous tuffs.

A 700 metre by 700 metre grid was established over the King Creek showing and the surrounding area to provide grid control for detailed mapping and sampling (Figure 5, Maps 5 and 6).

At station 0+48W to 0+45W, immediately north of line 4+00N, sulphide mineralization occurs as very fine grained, massive, pyritic sulphide bands and horizons up to 4 cm thick conformable to and interbedded with thin, pale grey to cream, finely laminated tuffs and chert. At 0+48W, 10-12 cm wide lenses or zones of strongly siliceous, medium to smokey grey tuffaceous material host up to 15% very fine to coarse disseminated pyrite. At 0+50W, fine grained, smokey-grey pyritic sulphide forms irregular pods, nodules, pinch and swell veins or lenses in yellow to cream/buff weathering, strongly hydrothermally altered chert. The chert is bleached, sucrosic and brittle. Massive, smokey-grey pyritic sulphide appears to have replaced the wallrock subsequent to alteration. Upslope, on steep cliffed outcrop, massive, medium to coarse crystalline pyrite in the form of limonitic elongate pods, or lenses, occurs in altered chert.

The gossanous alteration envelope extends westward to 0+75W. To this point the chert unit is massive but encloses zones of broken, milled wallrock resulting in a strongly calcareous chert breccia hosting disseminated, fracture-filling and veinlet pyritic sulphide mineralization. The areas bordering this gossanous, sulphidized chert zone are identified by intense fracturing and milling of the wallrock resulting in the formation of calcareous chert breccia, abundant coarse calcite veining, calcite-quartz alteration and, locally, disseminated to semi-massive pyrite (Figure 7).

Numerous sets of continuous to discontinuous faults and shear zones cut the showing and appear responsible for the alteration and mineralization of the wallrock. Between 0+48W and 0+54W, two sets of vertical faults cut the mineralized zone at 020° and 170°. At 0+54W a third, 0.5 metre wide fault zone strikes 040° and contains semi-massive pyritic sulphide in veins, fractures and narrow lenses hosted in rusty to cream weathering, hydrothermally altered, siliceous chert and tuff. To the west, faults cutting the calcareous breccia zones, strike at roughly 170° and 160°.

In summary, the semi-massive to massive pyritic (\pm pyrrhotite) sulphide mineralization appears to have an affinity for the pale grey to buff, siliceous ash tuff layers and bands within the chert horizons, plus the strongly limonitic, hydrothermally altered zones within the cherts. Disseminated sulphides pervade the entire altered sequence between 0+10W and 1+25W, however, the primary sulphide enrichment zones occur between 0+48W to 0+54W and 0+15W to 0+25W, immediately north of line 4+00N. The lithologies mentioned above appear to be conducive to replacement by silica-sulphide mineralization owing to extensive faulting and local hydrothermal alteration. Evidence

r -

indicates that sulphide mineralization is lithologically and structurally controlled and that structural controls appear to have localized hydrothermal fluids and volatiles which subsequently altered the host lithologies.

1990 EXPLORATION PROGRAM

Geological Mapping

Approximately 65-70% of the property was evaluated by geological mapping and concurrent soil, stream silt and lithogeochemical sampling. This exploration activity was performed on the four Achilles claims with the highest concentration of effort directed toward the King Creek showing in the northeastern corner of the Achilles 4 claim and northwestern corner of the Achilles 1 claim. All of the claims were contour soil sampled and mapped. Contour soil lines were established at approximately 500 foot contour intervals between the 1,000 foot and 2,000 foot elevations on the property. A 2,200 foot elevation soil line was run in the northeastern corner of the Achilles 1 claim (Figure 6). Soil samples were collected at 50 metre spacings thus providing good coverage of almost the entire Achilles property. All of the lithogeochemical samples were collected concurrent with the geological mapping program.

Geochemistry

Sampling Procedure

A total of 80 rock grab, float and chip samples, 947 soil samples and 57 stream silt samples were collected during the 1990 reconnaissance survey. Rock grab and chip samples were collected from outcrop exposures exhibiting favourable characteristics such as sulphide content, gossanous staining, alteration and shearing. Rock and chip specimens were placed in marked plastic sample bags accompanied with a numbered tag for sample identification purposes. All sample sites were marked with a tyvek tag and fluorescent ribbon displaying the corresponding sample number.

Soil samples were collected from an average depth of 25 cm at 50 metre intervals from slope corrected contour lines established along slopes and ridges as well as from the King Creek grid. Sample pits were dug with long handled mattocks and good representative B_1 horizon soils were obtained from well developed soil profiles. Optimum soil samples were obtained from more than 90% of the property area sampled owing to the development of good reddish-brown B_1 horizon sandy clays

22

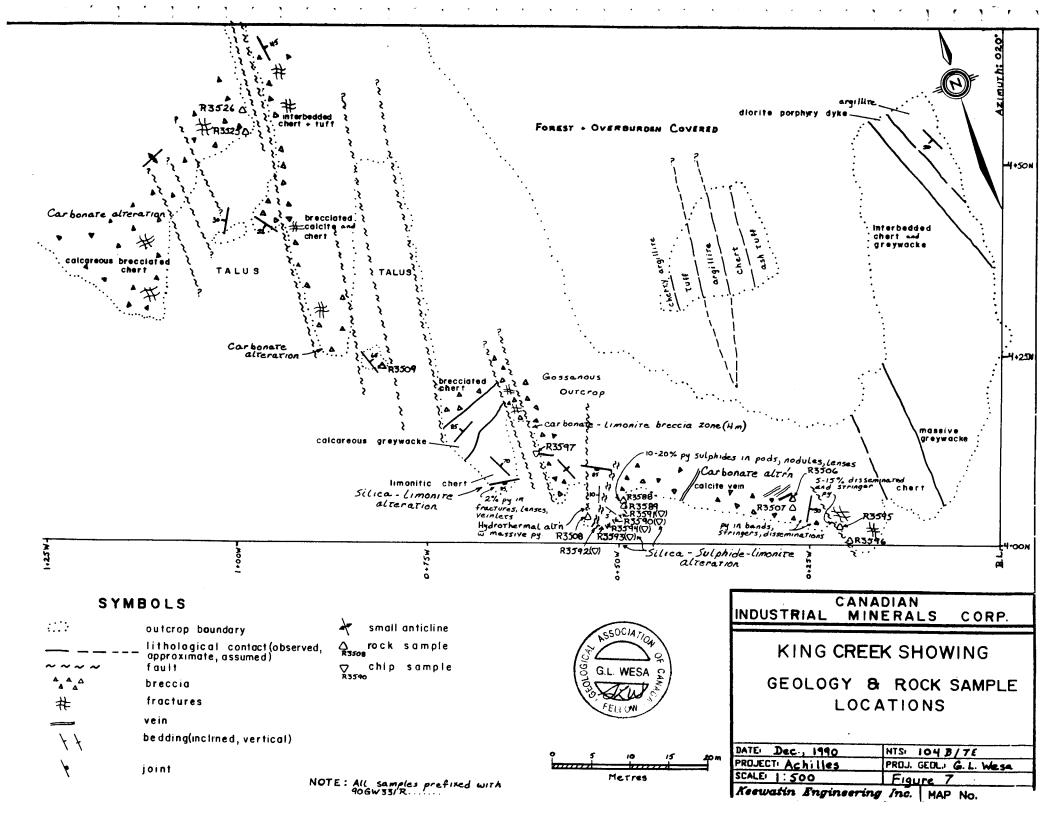
and silts. Locally, on the King Creek grid, talus fines substituted for soils on very steep slopes. Soil samples were placed in numbered, large gusseted kraft paper soil bags and the sample sites were correspondingly identified with a coded fluorescent ribbon and a tyvek tag. Stream silt samples were collected from the active portions of drainages intersected during contour soil sampling and mapping and, likewise, placed in marked kraft paper bags. Detailed notes were recorded for each sample and these are incorporated in Appendix VI. Analytical results are presented in Appendix IV and V and geochemical values are plotted on Maps 3, 4 and 7 to 12. Ground control for contour lines was provided by altimeter, clinometer, compass and topo chain and all crews were supplied with 1:10,000 and 1:50,000 scale topo maps for plotting geological and geochemical data.

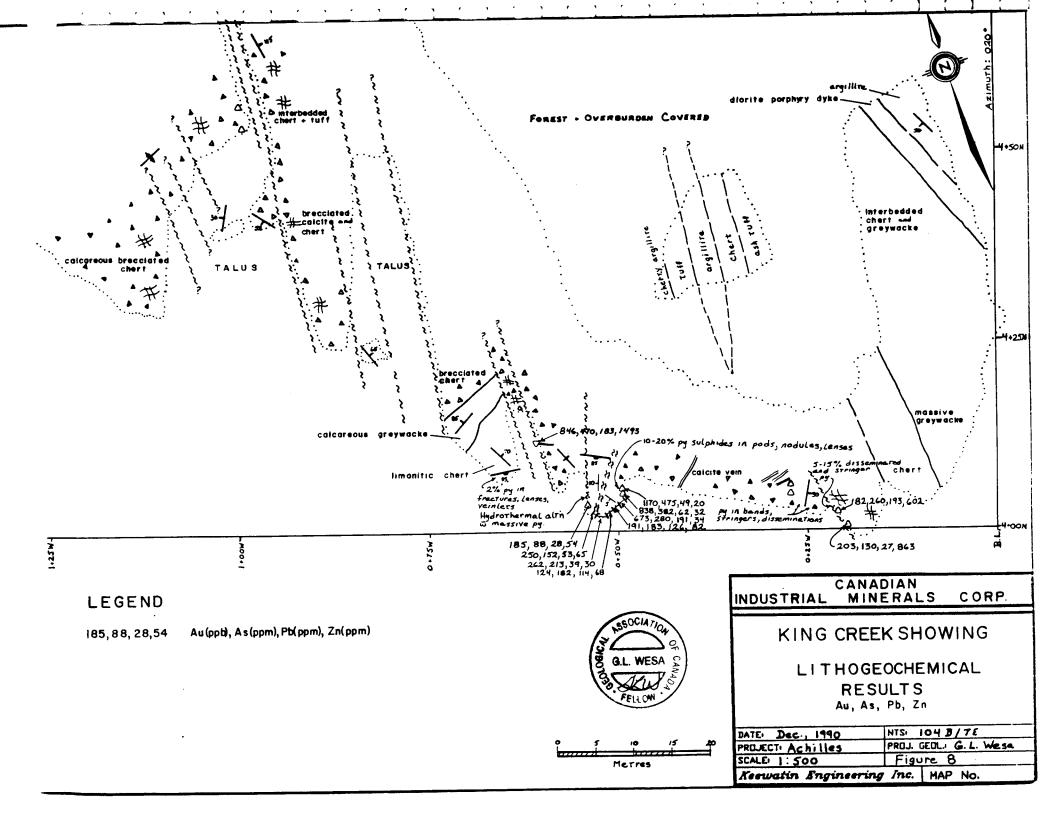
Samples were subsequently shipped to Bondar-Clegg and Company Ltd. in North Vancouver for geochemical analysis. The analytical techniques are described in Appendix III.

Rock Geochemistry

Initial lithogeochemical (grab) sampling of the King Creek showing in 1989 yielded elevated to anomalous Au, Ag, As, Zn and Pb values. These results are summarized in Table 4.

Table 4 King Creek Showing - Lithogeochemical Analysis (1989)										
Sample	Au ppb	Ag ppm	As ppm	Zn ppm	Pb ppm					
KYR-15	912	4.4	446		-					
KYR-16	665	1.5	367	529	-					
KYR-30	211	1.4	-	-	-					
KYR-31	116	-	221	-	- 1					
KYR-33	4,358	17.5	1,478	768	2,352					
	0.127 oz/t	0.51 oz/t			, ·					
KYR-34	177	-	94	721	-					
KYR-35	477	3.4	370	3,596	409					
KYR-45	-	-	119	-	-					
KYR-40		869) ppm Ba							


In addition to this area, lithogeochemical sampling of fractured, rusty weathered black argillite yielded elevated Au, Ag and As values in three other locations on the property: in the southeastern portion of the Achilles 3 claim (KPR-85, KPR-86); in the southwestern portion of the Achilles 2 claim (KYR-14); and in the northeastern part of the Achilles 2 claim (KZR-82). A summary of these elevated analytical results follows in Table 5.


Achillas I	Table Property - 1		mical
	Analysis (
Sample No.	Au ppb	Ag ppm	As ppm
KPR-85	200	3.8	165
KPR-86	596	2.0	97
KYR-14	255		-
KZR-82	191	1.5	93

During the course of the 1990 geological mapping and lithogeochemical survey, 80 rock samples were collected of which 70 were rock grab samples, 4 were float samples and 6 were chip samples. Rock and chip sample locations are plotted on Figure 7 and Maps 2 and 6 and geochemical values are plotted on Figure 8 and Maps 3, 4 and 7 to 12. Analytical results are presented in Appendix V and rock sample descriptions are recorded in Appendix VI.

The majority of the samples were sulphide (pyrite, pyrrhotite, chalcopyrite) bearing and were collected from areas of alteration, shearing, faulting and, where observed, lithological contacts. Analytical results from the lithogeochemical survey on the Achilles property were low with the exception of rock grab and continuous chip samples collected from gossanous, sulphidized outcrops at the King Creek showing where a rock grab sample returned the highest gold value of 1,170 ppb Au (0.036 oz/ton Au).

Table 6 records the values for Au, Ag, Cu, Pb, Zn, As and Hg resulting from the chip and rock grab sampling survey at the King Creek showing.

	Table 6 King Creek Showing - Lithogeochemical Analysis (1990)											
King Creek Showing - Lithogeochemical Analysis (1990) Sample No. Au Ag Cu Pb Zn As (ppb) (ppm) (ppm)	Hg (ppm)											
90GWR3588	1,170	3.7	26	49	20	475	0.046					
90GWR3589	· · ·	3.7	37	62	32		0.055					
90GWR3590	191	1.4	44	126	82	183	0.041					
90GWR3591	673	2.6	29	191	34	280	0.066					
90GWR3592	250	2.0	44	53	65	152	0.028					
90GWR3593	262	1.8	33	39	30	213	<0.010					
90GWR3594	124	1.3	37	114	68	182	0.024					
90GWR3595	182	1.9	63	193	602	260	0.021					
90GWR3596	203	0.8	21	27	863	130	0.039					
90GWR3597	846	3.2	130	183	1,493	470	0.125					
90GWR3508	185	1.2	41	28	54	88	0.023					

Rock grab sample 90GWR3588 (Table 6) returned the highest gold value of 1,170 ppb Au (0.036 oz/t Au). A 20 cm chip sample from a narrow, rusty weathering, quartz-pyritic sulphide vein (7-10% finely disseminated and fracture-filling pyrite) in a fault gouge zone returned 846 ppb Au, 3.2 ppm Ag, 130 ppm Cu, 183 ppm Pb, 1,493 ppm Zn and 470 ppm As (90GWR3597). The analytical results indicate that there exists a very close correlation between gold and arsenic values. Weak mercury values are recorded for the 11 samples in Table 4. Elevated arsenic values, moderately anomalous gold values and an hydrothermal character to the alteration suggests a potential epithermal origin for the mineralization.

Elsewhere on the property, lithogeochemical results for gold were low with the highest gold value (80 ppb) yielded from a grab sample of massive quartz breccia north of Hawilson Lake. Analytical values for base metals were low except for a few scattered elevated zinc values ranging from 166 ppm to 788 ppm Zn. The lithogeochemical survey failed to outline any significant base metal and gold targets in other areas of the property.

Soil Geochemistry

A total of 947 soil samples were collected from the Achilles property. Four-hundred and twenty-four soil samples were collected from approximately 21.45 kilometres of slope corrected contour lines established using clinometer, altimeter, compass and hip-chain to mark out 50 metre sample stations. Soil lines were planned at 500 foot contour intervals, however, steep terrain conditions and daily fluctuations in barometric pressure, which caused changes in altimeter readings, occasionally precluded efforts to maintain constant elevations. Good quality soil samples were collected from well developed, rusty orange to reddish brown B_1 horizon silts, silty clays and sands at an average depth of 25 cm. Terrain covered by this survey varied from subdued and gently sloping to extremely high relief where contour lines followed steep valley slopes, bluffs and scarps (Map 2).

Areas of elevated gold-in-soil values occur in: west-central Achilles 1 claim (842 ppb Au); northeastern Achilles 2 claim (155 ppb Au); central Achilles 2 claim (Hawilson Creek, 161 ppb Au); southern Achilles 3 claim (123 ppb Au) approximately 200 metres south of the claim boundary (Map 3).

The contour soil geochemical survey conducted over the Achilles property failed to detect any strongly significant base metal targets. Elevated copper, lead and zinc values were scattered and widespread. The highest values for copper, lead and zinc were 573 ppm Cu, 151 ppm Pb and 1,534 ppm Zn. In places there was a correlation among the three elements within a sample, however, this was not a common characteristic of metals association as indicated by the analytical results (Map 4).

A 700 metre long by 700 metre wide grid, composed of 4.075 kilometres of flagged lines, was established with compass and hip chain in the northeastern corner of the Achilles 4 claim to cover the King Creek sulphide showing and surrounding area. A 700 metre flagged baseline was established at 020° azimuth with 50 metre spaced lines. All lines were slope corrected and sample stations were located at 25 metre intervals. Five hundred and twenty-three soil samples were collected from 15-30 cm deep pits in well-developed B_1 soil horizons. Samples collected from steep valley slopes paralleling King Creek and its two tributary drainage gullies from the north were principally talus fines. Fifteen stream silt samples were collected from the two main tributaries plus occasional tiny streams encountered during grid sampling (Maps 2 and 6).

Elevated gold values resulting from the initial grid soil survey warranted follow-up work in the form of close spaced soil sampling at five to ten metre intervals, along 10 metre spaced lines on either side of anomalous gold-in-soil geochemical stations. Anomalous sections of the initial soil lines were also resampled at 5 metre intervals.

With regard to the "King Grid" (Maps 7 - 12), the gold, silver, arsenic, copper, lead and zinc analytical values from soil samples have been categorized into four intervals using circles of increasing diameter to represent these categories. The threshold of anomalous values used for soil samples was

26

established using the 90th percentile for the individual element and comparing these thresholds with data published in the National Geochemical Reconnaissance publication, G.S.C. Open File 1645, plus Keewatin Engineering Inc.'s extensive data base for similar lithologies in the Unuk River map area. Symbol sizes on the maps represent approximately the 90th, 93rd, 96th and 98th percentile. Analytical determinations are listed adjacent to the symbols.

Maps 7 to 12 show the analytical results of the grid controlled soil geochemical survey conducted on the King Creek grid. Follow-up, close spaced soil sampling in the form of "mini-grids" has further enhanced the significance of the King Creek showing. Strongly anomalous gold values up to 3,332 ppb Au (0.098 oz/t Au) are recorded on line 4+50N at station 2+00W (Zone 1). On line 4+50N, two strongly anomalous zones; one in the vicinity of 2+00W and a second between 0+50W and 1+25W, suggest that two mineralized zones trend perpendicular to line 4+50N. Anomalous gold values at similar stations on line 4+00N (277 ppb, 98 ppb, 170 ppb Au) further assure that a mineralized trend exists closely paralleling the baseline.

Elsewhere on the grid, moderately strong gold values are recorded on lines 3+00N, 2+50N, 0+50N and 0+00N on the east side of the baseline. The anomalous area outlined on lines 2+50N and 3+00N (Zone 2) appears to be offset 50-75 metres to the east from the target area defined by lines 4+00N and 4+50N (Zone 1) on the north side of King Creek. Furthermore, the anomalous area surrounding lines 0+00N and 0+50N (Zone 3) is offset approximately 75-80 metres east of Zone 2. These offsets may be due to displacements related to regional faulting as reflected in King Creek and its tributaries.

An isolated single station gold value of 668 ppb Au in the southwestern corner of the grid was accompanied by two weak to moderately anomalous gold values (93 ppb Au and 314 ppb Au) from the mini-grid established over this anomaly. A second single station, elevated gold value (110 ppb) occurs at station 1+25W on line 6+00N and a third (195 ppb) occurs at 2+50E on line 5+50N.

An examination of the analytical results of the grid soil sampling on the King Creek grid indicates that there is a close correlation between elevated Au, As, Cu and Zn values between lines 1+00N and 7+00N. In Zones 1 and 2, lead is less closely associated with the above elements and occurs as scattered, weakly elevated values (Appendix IV). There exists a profound gold-arsenic association as indicated by closely corresponding elevated Au and As values. The highest gold values (3,332 ppb) and the highest coincident arsenic values (>2,000 ppm) recorded were yielded by soil samples collected along line 4+50N and from the "mini-grids" established parallel to this line in

-

Zone 1. In Zone 2, strongly elevated copper values (up to 2,245 pm Cu) are coincident with elevated gold, arsenic and zinc results. A different pattern is detected in Zone 3 in the southeastern part of the grid. This area is characterized by strongly elevated lead values (up to 1,976 ppm Pb) and coincident strongly elevated zinc values (up to 1,877 ppm Zn). Soil samples yielded anomalous gold values (up to 1,105 ppb Au) and arsenic values (up to 212 ppm As). Although lead and zinc values for Zone 3 are dramatically increased compared to values recorded for the area of the grid to the north, gold values appear to be generally weakly to moderately anomalous. This suggests a change in the style of mineralization as indicated by the close correlation between the three base metals and weaker but continuing significant gold and arsenic responses. Analysis for antimony, molybdenum and mercury failed to return any anomalous values within the King Grid area and the remainder of the property.

Stream Silt Geochemistry

Fifteen stream silt samples were collected from active drainages and streams during the course of soil sampling on the King Creek grid and a further 38 silts were collected from drainages intersected during the contour sampling survey. One elevated gold-in-silt value (155 ppb Au) was recorded from a steep, active drainage gully in the south-central part of the Achilles 3 claim. Corresponding weakly anomalous gold-in-soil values (40 ppb and 95 ppb Au) were recorded downslope from this silt sample on the sides of the gully. Geological mapping within this gully indicates that the drainage represents a fault zone defined by fault polished, slickensided wallrock, brightly gossanous, brecciated and altered argillite and greywacke sediments.

GEOPHYSICS

An airborne VLF-EM electromagnetic and magnetic survey was conducted over the property during the period of December 22, 1988 to January 8, 1989 by Aerodat Ltd. Five anomalous resistivity low zones were delineated over the property (Figure 5). Broad, moderate strength magnetic anomalies coincide with the resistivity lows. Ground investigations provided interpretations and supported conclusions made by Aerodat Ltd.

Five resistivity low zones were identified on the Achilles property and these may be related to bedrock conductors containing sulphide mineralization. Some of these conductive zones appear to be coincident with faults. Low resistivity was delineated over Hawilson and Pearly Lakes. Geological mapping delineated a zone of sulphide bearing, siliceous, tuffaceous and chert sediments along the southeastern shore of Hawilson Lake plus siliceous sediments and chert breccias to the north, however, no source of the conductors over Pearly Lake was discovered. One possible explanation for the Pearly Lake anomaly is the existence of covered, sulphide bearing, northerly to northeasterly trending silicified fault zones similar to faults in the southwestern corner of the property.

Low resistivity accompanied by a high magnetic field over the King Creek grid area may be accounted for by the fault controlled, intensely sulphidic bedrock of the King Creek showing.

Aerodat Ltd. states that prominent linear fractures occur in areas of high magnetic field which may explain a magnetic high field in the central portion of the property east of Hawilson Lake. This zone also correlates with a prominent low resistivity anomaly. A surface geological expression in the form of cliffs and scarps occurs in this area and may represent normal faulting.

A fifth conductor, producing a well defined resistivity low zone with a coincident magnetic high field, occurs in the Unuk River valley in the southeastern corner of the property.

Three areas; the King Creek showing, the area east of Hawilson Lake and the Unuk River valley area, are characterized by prominent coincident resistivity low responses and high magnetic field. Two other areas of low resistivity, over Hawilson and Pearly Lakes, coincide with magnetically quiet or low areas and probably reflect the conductive nature of the sediments in these areas.

CONCLUSIONS

. .

. .

-

Geological mapping, contour and grid controlled soil sampling, stream silt sampling and lithogeochemical sampling was the focus of exploration activity on the Achilles property during the 1990 reconnaissance program. Geological mapping has shown that the property covers an assemblage of northeasterly striking interbedded argillite, chert, cherty argillite, limestone, greywacke and lesser quartzite and siltstone of the Upper Triassic Stuhini Group. Locally, minor andesitic ash, crystal or lapilli tuffs are interbedded with the argillites and cherts. The sedimentary sequence is overlain by aphanitic intermediate volcanic flows belonging to the Upper Triassic to Lower Jurassic Unuk River Formation near the western edge of the property.

A total of 80 rock samples, 947 soil samples and 57 stream silt samples were collected for analysis with the objective of evaluating the property's economic potential plus following up geochemically anomalous areas delineated by the 1989 program. Areas of elevated gold-in-soil values

29

occur in: west-central Achilles 1 claim (842 ppb Au); northeastern Achilles 2 claim (155 ppb Au); central Achilles 2 claim (Hawilson Creek, 161 ppb Au); and south-central Achilles 3 claim (155 ppb Au-in-stream silt). In addition, a potential high grade gold-base metal system occurs in the northeastern corner of the Achilles 4 claim adjacent to the Achilles 1 boundary. This zone of strongly gossanous, intensely silica-sulphide mineralized chert and siliceous tuffs, carbonatized tuff breccia and extensively sheared and faulted outcrop is exposed for 115 metres (378 feet) along the north bank of King Creek.

A 700 metre by 700 metre grid was established over the King Creek showing and the area to the south of King Creek to provide grid control for geological mapping and detailed soil sampling. From this grid, 523 soil samples and 15 stream silt samples were collected. Closely spaced soil sampling, at 25 metre stations and, locally, at 5 metres in areas of anomalous soil geochemical responses, has produced strongly anomalous gold values up to 3332 ppb (0.0980z/ton Au) and outlined an area of interest (Zone 1) measuring 275 metres (902 feet) wide. Continuous rock chip samples across 6 metres of intensely sulphidized, chertified and siliceous tuffs in Zone 1 produced corresponding elevated gold values up to 1,170 ppb Au. Mineralization at this site comprises very finely disseminated, massive and semi-massive to smokey-grey pyritic sulphide in fine bands, lenses and large pods hosted in interbedded cherts and cherty tuffs. Locally, sulphide horizons measure up to 4 cm wide and form thin layers conformable to the bedding. This gossanous, silica-sulphide mineralized zone is bounded to the east and west by strongly carbonatized, brecciated tuffaceous sediments. These areas are also characterized by intense shearing and fracturing and documented gold-in-soil values up to 2021 ppb Au (0.059 oz/t Au).

The gullies between the brilliantly gossanous outcrops in Zone 1 represent major fault zones and fractures which provided the conduit for hydrothermal fluids and imparted an epithermal character of alteration and silica-sulphide mineralization along this trend. An epithermal origin for the mineralization is favoured further by the presence of corresponding elevated arsenic values in soil and rock.

Anomalous gold-in-soil values suggest a mineralized strike length of 50 metres and possibly 200 metres (656 feet) north of King Creek plus a further 400 metres (1,300 feet) south of King Creek where elevated gold values in soils are recorded. South of King Creek, closely spaced soil sampling, at 5 metre stations, has outlined an area of elevated gold values (Zone 2) measuring approximately 70 metres by 100 metres located slightly to the southeast of the gossanous outcroppings on the north bank of King Creek. This offset may be due to a set of faults traced out by King Creek and its

tributaries to the north. Also, the southeastern area of the King Creek grid has returned anomalous gold-in- soil values up to 1105 ppb Au, substantially increasing the size of the area of interest.

Copper, lead and zinc values from the grid correlate closely with elevated gold values, particularly south of King Creek where Cu values up to 2245 ppm, lead values up to 1,976 ppm and zinc values up to 1,877 ppm in soils are recorded (Zones 2 and 3).

An evaluation of previous work conducted in 1989 plus the results of the 1990 examination of the King Creek showing suggests that zones of gold and base metal mineralization, accompanied by quartz-carbonate-limonite alteration, are structurally controlled and may represent the surface expression of a larger, deeper gold bearing system. The presence of numerous surface gold-in-soil anomalies south of King Creek is indicative of the potential for more substantial mineralization on strike to the south.

RECOMMENDATIONS

÷

Evaluation of the data from the 1990 exploration program on the Achilles property, which resulted in the discovery of significant shear hosted gold-sulphide mineralization, indicates that additional work is required to fully evaluate the Achilles property's mineral potential, particularly in the area of the King Creek grid. An exploration program comprised of geochemistry, geophysics, geological mapping and trenching is warranted. This program is described below:

- Expand the King Creek grid to the south to cover gold-in-soil anomalies detected at higher elevations on the ridge. Coincident with grid establishment, conduct a soil geochemical survey with 25 metre sample intervals along 50 metre spaced lines. The grid should be of sufficient size to cover present geochemical anomalies plus potential subsurface structures.
- 2) Gridded VLF-EM and magnetometer survey over the entire King Creek grid.
- 3) Careful, detailed geological mapping and lithogeochemical sampling should be performed over the expanded grid, focusing particular attention to shear zones and structural features.

32

- 4) Trenching to bedrock should be performed over all zones of elevated gold- and basemetal-in-soil values within the grid area. Explosives may be required in areas where overburden thickness is excessive.
- 5) Exposed favourable bedrock should be chip sampled across appropriate intervals of one metre.
- 6) Follow-up work, in the form of close spaced (5 metre intervals) gridded soil sampling should be performed in the vicinity of other elevated gold-in-soil values on the property. Contingent upon favourable results, trenching to bedrock and chip sampling of anomalous targets should follow.
- 7) A diamond drilling program should be considered but would be contingent upon the receipt of favourable results from the soil sampling and trenching/chip sampling program.

Respectfully submitted,

b....

ASSOCIATION **KEEWATIN ENGINEERING INC.** EOLOGICAL o, CANAO G. L. WESA B.Sc., FELLOW

REFERENCES

- Adamson, R.S. (1987): Assessment Report on a Reconnaissance Geochemical Survey on the Consoat and King Claims, Skeena Mining Division; <u>for</u> Crest Resources Ltd.; B.C. Energy Mines & Petr.Res., Assess.Rpt 16316.
- Aerodat Limited (Dec'88-Jan'89): Airborne EM and Magnetic Survey on the PRIAM, ACHILLES, HOMER, ILIAD, MAXWELL SMART Mineral Claims; for Winslow Gold Corp.
- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (1989): Iskut-Sulphurets Gold; <u>in</u> The Northern Miner Magazine, January 1989.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic and Structural Framework for the Iskut River Map Area (NTS 104B), Northwestern British Columbia; <u>in</u> Current Research, Part E; Geol.Surv.Cda., Paper 89-1E.
- Anderson, R.G. (1990): Mesozoic Stratigraphy and Setting for Some Mineral Deposits in the Iskut River Map Area, Northwestern British Columbia, G.S.C. Paper 90-1E.
- Aussant, C.H. and DuPre, D.G. (1989): Geological, Prospecting and Geochemical Report on the Hawilson Lake Property, Achilles 1 to 4 Mineral Claims for Bethlehem Resources Corp.
- Britton, J.M. and Alldrick, D.J. (1988): Sulphurets Map Area (104A/05W, 12W; 104B/08E, 09E). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1987, Paper 1988-1.
- Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E,8W,9W,10E); in B.C.Energy Mines & Petr.Res., Geological Field Work 1988, Paper 1989-1, pp.241-250

Consolidated Stikine Silver Ltd.: - 1989 Annual Report

- Gareau, M.B. (1983): Geochemical Assessment Report on the Cole Claim, Skeena Mining Division; for DuPont of Canada Exploration Limited; B.C. Energy Mines & Petr.Res., Assess.Rpt. 11673
- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C.Energy Mines & Petr.Res., Bulletin 58.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C.Energy Mines & Petr.Res., Bulletin 63.
- Hawkins, Paul A., & Associates Ltd. (Oct.1987): Report on Reconnaissance Mapping and Prospecting in the Unuk River Area, Skeena and Liard Mining Divisions; for Axiom Explorations Ltd.; B.C. Energy Mines & Petr.Res., Assess.Rpt.16858.
- Idziszek, C., Blackwell, J.D., Fenlon, R., MacArthur, G and Mallo, D.W. (1990). The Eskay Creek Discovery, Mining Magazine, March 1990.
- Idziszek, C., Blackwell, J.D., Fenlon, R., Mallo, D.W. and MacArthur, G. (1990). Exploration Updates - Eskay Creek Project, Abstract (revised) November 9, 1989, Prime Explorations Ltd.

Keewatin Engineering Inc.

- Idziszek, C., Blackwell, J.D., Fenlon, R., Mallo, D.W. and MacArthur, G. (1990). Exploration Updates - Eskay Creek Project, Abstract (revised) November 9, 1989, Prime Explorations Ltd.
- Klein, J. (1968): Report on Airborne Geophysical Surveys, Stewart Area, British Columbia; for Granduc Mines Limited; B.C. Energy Mines & Petr. Res., Assess.Rpt.1835
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C.Energy Mines & Petr.Res., Assess.Rpt.10474
- Logan, J.M., Koyanagi, V.M. and Drobe, J. (1990). Geology of Forrest-Kerr Creek Area, Northwestern British Columbia (104B/15). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1.
- Logan, James M., Koyanagi, Victor M., Drobe, John R. (1990-2). Open File (Sheet 1 of 2). Geology, Geochemistry and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia, NTS 104B/15 and part of 104B/10, Province of British Columbia.
- L.O.M. Western Securities Ltd. (1990). Stikine Arch Canada's Golden Triangle.
- Mawer, M.; et al.(1977): Year-End Report, Mount Dunn Property, British Columbia; for Great Plains Development Company of Canada Ltd.; B.C. Energy Mines & Petr.Res., Assess.Rpt. 6234
- National Geochemical Reconnaissance, 1:250,000 Map Series (1988). Iskut River, British Columbia (NTS 104B). Geological Survey of Canada, Open File 1645. B.C. Ministry of Energy, Mines and Petroleum Resources, RGS-18.

Northern Miner (Nov.7, 1988, October 15 and 22, 1990)

Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; <u>for</u> BP Resources Canada Limited, private company report.

Report on Business Magazine, November, 1990.

Shensha Consultants Limited (1989): Report on Mineral Potential Evaluation of ACHILLES Claim Block; for Ross Resources Ltd., private company report.

Vancouver Stockwatch, September 18 and October 1, 1990.

Winter, C.Q.; McInnis, M.D. (1974): Geological and Geochemical Report on the VV 1-6 claims, Mount Dunn Area, British Columbia; for Great Plains Development Company of Canada Ltd.; B.C. Energy Mines & Petr.Res., Assess.Rpt.5616 35

STATEMENT OF QUALIFICATIONS

I, GARY L. WESA, of #309 - 6669 Telford Avenue in the Municipality of Burnaby, in the Province of British Columbia do hereby certify that:

- 1. I am an independent consulting geologist under subcontract to Keewatin Engineering Inc. with offices at Suite 800 - 900 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of Saskatchewan (1974) with a B.Sc. degree in Geology and I have practised my profession continuously since graduation.
- 3. I have been employed in mineral exploration since 1970 in Canada and the U.S.A.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am the author of the report entitled "Geological and Geochemical Report on the Achilles Property, Skeena Mining Division, British Columbia", dated December 17, 1990.
- 6. I have personally performed or supervised the work referenced in this report and I am familiar with the regional geology of nearby properties.
- 7. I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Canadian Industrial Minerals Corp. in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this <u>17th</u> day of December, 1990.

ASSOCIATION CEOLOGICA, 0 Respectfully submitted, ŝ G. L. WESA NA FELLOW Wesa, B.Sc., FGAC

Keewatin Engineering Inc.

APPENDIX I

-

S

-

•

,

e 14

.

÷.

1

. -

-

.

. .

1

. .

•

.

• •

1 -

ŝ,

P -

.

Itemized Cost Statement

Keewatin Engineering Inc.

,

· •

ITEMIZED COST STATEMENT

e -

.

e- -

.

•

ь

.

•

. .

+

,

.

.

۴

--

.

.

.

-

~

.

•

.

`

۰.

ACHILLES #331 SUMMARY - Octob	er 24, 1990
Domicile	\$ 10,837.50
Wages	35,165.00
Helicopter	23,602.68
Demobilization est.	8,237.00
Shipping Est.	1,000.00
Miscellaneous	6,322.09
Field and Office Supplies	1,758.47
Assays:	
Soils and Silts - 1,004 + 10% Rocks - 80 + 10%	11,331.65 1,118.43
Post-Field est.	5,000.00
TOTAL:	\$104,372.82

APPENDIX II

1

<u>ب</u>

¥. .

e 15

•

• •

r -

•

.

.

r

. .

. -

.

÷ .

*

•

•

κ.

e---

<u>Summary of Personnel</u>

Keewatin Engineering Inc.

.

SUMMARY OF PERSONNEL

ACHILLES WAGES #331 October 24, 1990		······································	
Employee	Days	Day Rate	Total S
Anderson, C.	9.0	\$250.00	\$ 2,250.00
Birkeland, E.	6.0	\$300.00	1,800.00
Gibson, S.	1.0	\$325.00	325.00
McIntyre, B.	5.0	\$300.00	1,500.00
Thompson, S.	5.5	\$250.00	1,375.00
Whittam, H.	22.0	\$190.00	4,180.00
Wood, L.	13.0	\$240.00	3,120.00
Viens, R.	17.0	\$200.00	3,400.00
Wardwell, A.	21.0	\$190.00	3,990.00
Wesa, G.	23.0	\$325.00	7,475.00
Wilson, P.	23.0	\$250.00	5,750.00
			Total: \$35,165.00

APPENDIX III

-

-

ι.

•

.

.....

. .

. -

.

.

. .

L.

. .

.

.

. .

4

۰. جنب

.

Analytical Procedure

Keewatin Engineering Inc.

٠

ANALYTICAL PROCEDURE

The Bondar-Clegg analytical methods are described as follows:

Sample Preparation

.

-

.

~

Silt & Soil:	Dry and sieve through 80 mesh screens. Gold values are determined on 30 gram, representative sample of minus 80 fraction by fire assay with AA finish; remaining elements are determined using 0.6 gram sample of minus 80 fraction by hot aqua regia digestion followed by ICP.
Rocks:	Dry and crush to minus 150 mesh; analysis made on minus 150 fraction by methods described above.
Geochemical Analysis:	Gold is determined on a test sample of 30 g using Fire Assay Lead Collection pre-concentration. The bead is dissolved in nitric acid and hydrochloric acid and run by Atomic Absorp- tion.
	Mercury is determined on a test sample of 0.6 g. The sample is digested by aqua regia and bulked to 12 ml. The solution is then run by Cold Vapour Atomic Absorption.
	All other elements are determined on a test sample of 0.6 g. The sample is digested by aqua regia and bulked to 12 ml. The solution is then run by ICP.
Fire Assay Procedure for Au:	A prepared sample of one assay ton (29.166 grams) is mixed with a flux which is composed mainly of lead oxide. The proportions of the flux components (the litharge, soda, silica, borax glass, and flour) are adjusted depending upon the nature of the sample. Silver is added to help collect the gold. The samples are fused at 1950 F until a clear melt is obtained. The 30-40 gram lead button that is produced contains the precious metals. It is then separated from the slag. Heating in the cupellation furnace separates the lead from the noble metals. The normal-sized precious metal beads that are produced are transferred to test tubes and dissolved with aqua-regia. This solution is analyzed using Atomic Absorption by comparing the absorbance of these solutions with that of standard solutions. In the case of high grade samples, the precious metal bead is parted to separate the silver and the remaining gold is weighed.
Comments:	As part of the routine quality control we run a duplicate analysis for about 12% of the samples. Also, all samples which are over 0.20 opt on the original fusion are run again to verify

the results. If a sample gives erratic results, such as 0.10,

0.020, 0.30, we will indicate this on the report. We suggest that a new split should be taken from the reject for preparation and analysis by our metallics sieve procedure. These assay results will always be signed by the registered assayer.

Contamination Prevention:

The test tubes and cupels are used only once so that there is no possibility of cross contamination. The fusion crucibles are cleared before re-use by discarding any which had high samples in them. During the analysis a blank solution is run between each sample to ensure that there is no carry over.

Determination of Arsenic by Borohydride Generation:

Samples of 0.5 grams in weight are digested in borosilicate glass test tubes, with concentrated nitric and hydrochloric acids. These tubes are heated in a 90 degree Celsius water bath for two and one-half hours. The sample is then diluted with 14% HCl and mixed. A 0.5 ml aliquot is taken from this solution and HCl, deionized water, and potassium iodide are added. The resulting mixture is allowed to sit for one hour, after which it is run through a hydride generation system. In this system, the solution is reduced with sodium borohydride, releasing arsenic as arsine gas. The arsine gas is then swept into a quartz furnace mounted on a flame AA unit. The absorbance is recorded and compared to a standard series to determine the amount of arsenic present.

Standards, repeats, and blanks are run with each batch of samples. These are carefully checked, and reweighs of samples are ordered if necessary. High arsenic results are also checked by running the original solution by flame AA and comparing the results from the two procedures.

	Element	Lower Detection Limit
Au	Gold 30 grams	5 ppb
Ag	Silver	0.2 ppm
Cu	Copper	1 ppm
Pb	Lead	2 ppm
Zn	Zinc	1 ppm
As	Arsenic	5 ppm
Sb	Antimony	5 ppm
Mo	Molybdenum	1 ppm
Hg	Mercury	0.010 ppm

The lower detection limits for the elements analyzed are listed below:

Quality Control:

APPENDIX IV

-

-

µ----

۰. ۲۰۰

κ.

. .

۲. ۲.

2

•

~

, -.

. -

.

. .

•

Ψ.

, -

.

÷ .

.

÷ -

÷

10

.

بر م ب ب

•

Soil and Stream Silt Geochemical Lab Reports

Keewatin Engineering Inc.

* Bondar-Clegg & Company Ltd. 130 Pemberton Ave. orth Vancouver, B.C. 7P 2R5 * (604) 985-0681 Telex 04-352667

• •

م.

-

Geochemical Lab Report

A DIVISION OF INCREAPE INSPECTION & ELSTING SERVICES DATE_PRINTED: 6-SEP-91

	REPORT: V90-01813.0							r	<u>11 PRINTE</u> OJFC1: 33		PAGE 1		
	NELONI, 470-01012/0									·1			
	SAMPLE	FLENENT	-	Ag	Cu	Рb	Zn	ńs	Sb	No	Ħģ		
	NUMBER	UNITS	FP8	ከዋዋ	PPN	PPH	TPM.	F#11	F'F'M	PPM	FYFYM		
	S1 90 PN 331 (PREFJX)											
	S1 7+00N 0+311F		34	5.6	34.9	32	199	711	18	25	11.276		
	S1 7+00N 0+50E		15	0.6	41	<2	61	31	<5	2	0.124		
	S1 7+00N 0+75F		11	1.1	143	25	205	362	16	11	41, (174)		
-	S1 7+00N 1+NNE		<5	1.1	253	22	139	43	16	3	0.100		
	\$1 7+UON 1+25F		33	8.6	205	33	765	79	19	18	0,253		
	\$1 7+80N 1+508		12	4.3	153	22	313	120	16	12	0,353		
	S1 7+00N 1+75F		6	0.6	177	28	197	174	16	7	41.1178		
	S1. 90 AV 331 (
	\$1 5+00N 0+110		18	2.8	135	22	4119	<i>1</i> 9	11	27	11, 163		
	\$1 5+00N 0+75E		14	1.7	154	74	779	181	18	29	0,156		
	S1 5+DUN 1+25F		14	7.1	157	17	115	36	111	17	0.601		
	\$1 5+00N 1+50E	:	24	4.2	391	43	477	71	14	17	B, 171		
	S1 5+00N 1+75F		<5	1.0	411	12	121	19	1.11	1	8.155		
	\$1 5+00N 2+00P		<5	0.5	34	9	71	(S	8	1	D,189		
	\$1 4+50N 1+1014		42	1.0	332	21	213	133	<5	15	U , f 188		
	S1 4+50N 0+754		630	0,9	239	31	397	156	12	69	0.115		
	S1 4+50N 0+50N		4.5	1.2	87	29	2013	61	12	12	0.186		
	S1 4+50N 0+25#		23	1.2	36	17	106	24	6	4	9,160		
	\$1 4+50N 0+25F		11	1.5	8 5	21	286	54	111	23	0.128		
	S1 4+50N 0+50E		9	2,8	12	51	246	81		33	N.129		
	S1 4+50N 0+75F		17	1.8	1811	27	435	204	20	23	0,123		
	S1 90 RV 331 (-		- 1				-	-			
	S1 4+00N 0+754		58	0.6	84	30	166	44	6	t	41,1118		
	S1 4+00N 0+50¥	l	170	0.5	75	27	146	32	6	2	0.023		
	\$1 4+00N 0+25F		15	2.8	1.77	27	458	110	22	29	0.125		
	\$1 4+00N 0+50E		15	3.5	186	34	582	66	18	30	0.203		
	\$1 4+00N 0+75E		34	4.0	22(1	32	706	66	20	41)	0.290		
	S1 4+00N 1+NAE		21	5.3	217	24	629	56	15	39	0.373		
	\$1 4+DON 1+25F		211	4.0	241	29	876	81	16	35	0.163		

.

Geochemical Lab Report

		A DIVISIO	N OF INCHCAPE INSPECTION & TESTING SURVICES DATE PRINTED: 11-SEP-90							
 REPORT: ¥90-01864.0						PR	03ECT: 331	l 	·	PAGE 1
 SANPLE ELEMENT Number units	•	Ag PPN	Cu PPM	Pb PPM	Zn PPN	As PPN	SD PPM	No PPN	Hg PPH	
S1 90 RV 331 (PREF1X)	 								0.201	
\$1 7+00N 3+75W	19	2.9	44	11 11	97 59	27 29	6 8	6 4	0.248	
S1 7+00N 3+50W	<5 23	1.9 2.0	32 89	14	213	29	8	5	0.177	
S1 7+00N 3+25W S1 90 PW 331 (PREFIX)	25	210	07	14	215					
 S1 7+00N 3+00W	<5	1.5	23	8	54	21	<5	4	0.220	
S1 7+00N 2+75W	<5	1.7	25	7	51	15	5	4	0.184	
\$1 7+00N 2+50W	<5	0.8	15	11	31	<5	<5	4	0.235	
S1 7+00N 2+25W	<5	1.8	12	2	29	5	< <u>s</u>	2	0.231	
 S1 7+00N 2+00W	21	1.5	66	19	160	28	7	б 	0.143	
 S1 7+00N 1+75N	<5	1.7	34	9	60	23	B	3	0.248	
S1 7+DON 1+50W	6	1.4	47	7	70	<5	6	3	0.363	
S1 7+00N 1+25W	8	1.6	59	7 12	58 49	14 36	<5 10	4 Ę	0.264 0.228	
S1 7+00N 0+75W S1 6+50N 3+75W	<5 7	1.9 1.2	31 107	9	49 148	33	9	4	0.097	
 S1 6+50N 3+50W	43	2.1	36	31	62	119	19	5	0.238	
51 90 RV 331 (PREFIX)	10	4 5	50	12	115	10	×۲	4	0.195	
S1 6+50N 3+50W	12	1.3 2.4	53 37	13 14	115 105	29 41	<5 7	4 5	0.195	
S1 6+50N 3+25W S1 90 PW 331 (PREFIX)	6	2.9	21	14	103	41	1	J	0.004	
31 30 FW 331 (FREFIX)	. <u></u>									
S1 6+50N 3+25N	11	1.1	117	21	176	37	8	6	0.080	
S1 6+50N 3+00W	61	4.3	156	14	179	60	13	7	0.177	
S1 90 RV 331 (PREFIX)			**				•	2	0 104	
S1 6+50N 2+75W	10	0.8	50	10	93	37	9	3	0.124 0.287	
 S1 6+50N 2+50W	10	2.1	104	10	103	27	6		U.20/	
\$1 6+50N 2+25W	9	1.2	51	9	70	40	11	6	0.249	
S1 6+50N 2+00W	58	2.2	51	B	85	23	6	6	0.229	
S1 6+50N 1+75W	15	1.7	45	10	43	34	8	4	0.190 0.073	
S1 6+50N 1+50W	<5	2.0	50	13	60 55	25 9	8 <5	8	0.075	
 \$1 6+50N 1+25W	<5	1.9	44	13		3	······	•		
 \$1 6+50N 1+00W	В	2.2	49	13	87	41	<5	B	0.293	
S1 90 JJ 331 (PREFIX)	10	1.0	211	17	199	75	б	5	0.080	
S1 6+50N 0+25E	10 6	1.9 1.5	2 44 226	17 17	199	140	ں 5	9	0.082	
S1 6+50N 0+50E S1 6+50N 0+75E	۵ ۲۶	1.7	257	18	170	136	7	13	0.067	
 S1 6+50N 1+00E	11	2.5	336	22	266	271	13	21	0.068	
S1 6+50N 1+25E	9	2.4	400	26	187	126	10	15	0.062	
S1 6+50N 1+50E	12	2.3	400	24	199	113	<5	13	0,096	
S1 6+50N 1+75E	6	1.5	196	1 B	176	50	6	9	0.046	
S1 6+50N 2+00E	<5	1.5	143	14	143	56	9	8	0.112	

Bondar-Clegg & Company Ltd. -130 Pemberton Ave. 4orth Vancouver, B.C. -779 2R5 (604) 985-0681 Telex 04-352667

....

Geochemical Lab Report

5	DIVISION OF	NETICAPE	TNSFLC	TRONK	$ \leq \leq $	I RAIGES.	
· · ·	101011020101	1 35 116 111 1	1		-	DATE	DDTNITED.

		A DIVISION	OF INCHC	APE INSPECT	1088 H ST		<u>e prinien</u>		-90	
REPORT: V90-0186	54.0					PRO	IJECT: 331	l 		PAGE 2
SANPLE NUMBER	ELEMENT AU 30g UNITS PPB	Ág PPN	Cu PPM	РЪ РРМ	Zn PPN	As PPN	Sb PPM	No PP M	Hg PPH	
S1 6+50N 2+25E	<5	2.1	211	17	130	31	<5	б	0.065	
S1 6+50N 2+50E	<5	1.0	155	13	8 8	19	<5	3	0.086	
\$1 6+50N 2+75E	<5	1.0	139	9	99	1B	<5	3	0.100	
\$1 6+50N 3+00E \$1 90 PW 331 (P)	B RFFIX)	1.4	46	13	142	26	9	8	0.143	
			10	6	35	<5	<5	2	0.200	
S1 6+00N 3+00W	<5 11	0.7 1.6	18 38	9	38	15	<5	3	0.176	
S1 6+00N 2+75W S1 6+00N 2+50W	<5	0.8	20	12	50	<\$	<5	7	0.176	
S1 6+00N 2+25W	(J 6	2.0	29	11	57	9	7	б	0.164	
51 6+00N 2+00W	12	3.6	38		114	12	7	10	0.186	
\$1 6+00N 1+75W	6	1.2	26	б	48	10	<5	4	0.205	
S1 6+00N 1+50N	8	1.4	39	10	89	25	11	4	0.172	
S1 6+00N 1+25W	110	0.9	75	10	100	29	<5 12	3 7	0.103 0.205	
S1 6+00N 1+00W	5	2.1	57	13	110	46	12	1	0.203	
S1 90 AW 331 (P									0.110	······································
S1 6+00N 0+30E	9	1.9	302	16	267	143	8	7	0.118 0.103	
S1 6+00N 0+50E	13	2.4	389	24	200	114	10	10 18	0.103	
S1 6+00N 1+50E	26	2.2	193	22	293	74	9 <5	10	0.002	
S1 6+00N 1+75E	12	2.4	70 32	11 9	134 239	14 11	<5 <5	12	0.148	
\$1 6+00N 2+25E	<5	1.4								
\$1 6+00N 2+50E	<5	2.5	57	19	139	28	8	8 10	0.237 0.262	
S1 6+00N 2+75E	6	2.1	71	22	137	24 22	7 <5	12 25	0.202	
S1 6+00N 3+00E	<5	2.7	33	10	96	11	1	ζJ	U. <i>iii</i>	
S1 90 PW 331 (F S1 5+50N 3+50W	PREFIX) 9	2.4	64	20	75	37	₿	6	0.213	
	<5	1.7	32	11	59	7	<5	4	0.354	
S1 5+50N 3+25W S1 5+50N 3+00W		i .1	21	8	47	10	6	4	0,270	
S1 90 JJ 331 (-						
\$1 5+50N 2+75N		1.1	27	8	68	18	6	3	0.301	
S1 5+50N 2+50W		0.7	22	7	39	<5	<5	2	0.120	
S1 5+50N 2+25W		0.7	18	3	24	12	<5	3	0.240	
S1 5+50N 2+00W		1.5	21	10	38	21	8	67	0.323	
S1 5+50N 1+75W		<0.2	10	30	56	<5	/ <5	ł *	0.140 0.197	
S1 5+50N 1+50W		0.9	29 25	7	87 42	6 34	•з б	4 6	0.292	
S1 5+50N 1+25W		1.4	35	10						
S1 5+50N 1+00W		0.9	21	4	42	<5	< <u>5</u>	3	0.237	
S1 5+50N 0+75N		1.0	44	14	83	34 25	8 <5	Р л	0.094 0.077	
\$1 5+50N 0+50W		1.7	113	26	218	25	<2	4	ម្មាមរា	
S1 90 AW 331 (1 0	91	13	285	36	9	18	0.102	
S1 5+50N 1+00E	6	1.2		13	203	טע. יייי				

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. Jorth Vancouver, B.C. /7P 2R5 (604) 985-0681 Telex 04-352667

_

S1 4+50N 2+00W

\$1 4+50N 1+75W

S1 4+50N 1+50W

S1 4+50N 1+25W

S1 4+50N 1+00W

Geochemical Lab Report

0.112

0.162

0.234

0.320

0.233

6

2

4

5

34

REPORT: V90-01864.0							PRI	OJECT: 33	1		PAGE 3
SAMPLE NUNBER	ELENENT UNITS	Au 30g PPB	Ag PPM	Cu PPM	Pb PPM	Zn PPM	As PPM	Sb PPM	Mo PPH	Hg PPN	
\$1 5+50N 1+25E		9	3.9	222	22	804	109	15	18	0,251	
S1 5+50N 1+50E		7	1.8	122	15	180	35	<5	6	0.111	
S1 5+50N 1+75E		6	2.3	152	17	144	30	5	10	0.138	
S1 5+50N 2+00E		25	2.1	138	10	234	<5	9	8	0.142	
\$1 5+50N 2+25E		<5	1.1	40	5	77	13	<u>-</u>	3	0.338	
S1 5+50N 2+50E		195	1.4	34	13	69	<5	<5	9	0.247	
S1 5+50N 2+75E		<5	3.5	27	12	58	8	<5	6	0.231	
\$1 5+50N 3+00E		<\$	1.8	29	7	48	10	б	3	0.287	
\$1 90 JJ 331 (-									
S1 5+00N 4+00N		20	2.1	35	8	56	14	8	5	0.179	· • • • • • • • • • • • • • • • • • •
S1 5+00N 3+75		<5	1.1	19	9	50		<5	4	0.099	
\$1 5+00N 3+50N		8	0.8	72	12	115	24	<5	2	0.119	
\$1 5+00N 3+25		32	1.2	69	9	114	30	<5	3	0.156	
S1 5+DON 3+00		<5	1.5	50	9	106	21	<5	2	0.162	
\$1 5+00N 2+75		<5	1.8	29	12	60	16	<5	9	0.230	
S1 5+00N 2+50		7	0.9	46	12	115	36	9	4	0.111	
\$1 5+00N 2+25		<5	1.3	43	9	97	10	<5	3	0.209	
S1 5+00N 2+00		7	1.1	18	9	54	6	11	3	0.218	
S1 5+00N 1+75		<5	1.2	35	8	76	13	<5	4	0.183	
\$1 5+00N 1+50		17	3.4	101	13	85	85	<5	11	0.213	
\$1 5+00N 1+25		42	2.1	164	22	109	109	5	24	0.203	
\$1 5+00N 1+00		16	2.6	98	42	233	168	<5	21	0.259	
S1 5+00N 0+75		23	2.2	576	17	221	71	15	11	0.101	
S1 5+00N 0+50		б	2.0	187	22	182	84	9	10	0.156	
S1 5+00N 0+25		29	2.1	175	22	327	130	8	13	0.171	
\$1 4+50N 4+00		25	7.6	157	33	311	38	9	27	0.402	
\$1 4+50N 3+75		35	4.0	236	31	403	77	12	25	0.296	
S1 4+50N 3+50		12	4.6	90	18	163	36	7	130	0.398	
S1 4+50N 3+25		<5	1.0	15	5	51	6	<5	5	0.128	
51 90 PW 331					. <u></u>						
S1 4+50N 3+00		<5	1.4	43	9	99	24	<5	3	0.183	
\$1 90 JJ 331								-	-		
S1 4+50N 2+75		126	1.8	54	14	90	25	7	6	0.193	
S1 4+50N 2+50		11	1.9	95	25	279	49	5	9	0.145	
S1 4+50N 2+25		14	1.8	68	16	77	24	<5	6	0.159	

1.8

0.9

1.9

1.6

3.2

395

14

б

8

2005

147

18

120

81

369

26

3

17

11

53

125

43

123

86

216

151

<5

106

13

441

6

<5

<5

<5

9

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. Iorth Vancouver, B.C. '7P 2R5 [604] 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPT INSPECTION & TESTING SERVICES	

			A DIVISION	N OF INCHCAPT INSPECTION & TESTING SURVICES DATE PRINTED: 11-S									
·	REPORT: ¥90-01864.0						PRO	JECT: 331		PAGE 4			
	SAMPLE ELEMENT A Number units	Nu 30g PPB	Ag PPN	Cu PPN	Pb PPN	Zn PPM	As PPN	Sb PPM	Mo PPM	Hg PPN			
-	S1 4+50N 0+75W S1 4+50N 0+50W S1 4+50N 0+25W	61 27 15	1.7 2.6 2.2	51 114 90	20 17 18	100 210 169	123 66 78	7 8 9	12 12 14	0.147 0.276 0.154			
	SI 4+00N 0+23N SI 90 PH 331 (PREFIX) SI 4+00N 4+00W	9	1.9	31	13	75	18	<5	7	D.170			
• •	S1 4+00N 3+75W S1 4+00N 3+50W S1 4+00N 3+25W	12 13 10	1.8 2.0 1.6	88 40 46	19 9 9	273 90 113	32 22 14	8 8 <5	23 9 3	0.095 0.296 0.196			
	S1 4+00N 3+00W S1 90 JJ 331 (PREFIX)	12	1.8	31	8	56	<5 	\$ 	3	0.185			
•	S1 4+00N 2+75W S1 4+00N 2+50W S1 4+00N 2+25W S1 4+00N 2+25W S1 4+00N 2+00W	13 41 <5 277	1.0 1.4 2.4 2.3 1.7	31 67 71 125 72	13 10 15 17 10	55 91 173 134 111	<5 9 34 44 33	<5 6 6 5	2 8 8 5	0.178 0.168 0.132 0.209 0.106			
	S1 4+00N 1+75W S1 4+00N 1+50W S1 4+00N 1+25W	21 98 65 41	2.2 3.0 3.7	176 1339 248	14 36 30	111 129 186 85	72 165 295	7 9 15	10 11 29	0.314 0.090 0.095]
•	S1 4+00N 1+00W S1 90 AN 331 (PREFIX) S1 3+50N 4+00W	11	2.0	47	14	104	18	б	5	0.193			
	S1 3+50N 3+75W S1 3+50N 3+25N S1 3+50N 3+00W S1 3+50N 2+75W S1 3+50N 2+50W	13 9 23 18 23	1.8 2.3 1.7 2.4 0.8	25 52 98 54 54	10 10 14 14 10	73 125 123 114 108	14 20 24 20 20	7 7 5 6 <5	5 3 3 5 2	0.202 0.219 0.159 0.162 0.095			
	S1 3+50N 2+25N S1 3+50N 2+00W S1 3+50N 1+75W S1 3+50N 1+50W S1 3+50N 1+00W	51 21 16 22 103	0.7 1.0 1.2 1.4 0.6	81 45 81 120 56	16 11 13 15 13	109 87 127 163 122	19 18 5 89 <5	6 <5 6 8 8	3 4 3 12 2	0.073 0.084 0.079 0.143 0.021			
•	S1 90 PW 331 (PREFIX) S1 3+DON 4+DON S1 3+DON 3+75W S1 3+DON 3+25W S1 3+DON 3+20W	9 14 9 13	0.9 1.0 2.9 0.8	22 29 40 55	6 19 9 11	44 63 74 122	<5 <5 16 18	<5 <5 <5 <5	2 7 4 3	0.226 0.130 0.254 0.186			
	S1 3+00N 2+75W S1 3+00N 2+50W S1 3+00N 2+25W S1 3+00N 2+00W S1 3+00N 1+50W	10 11 29 27 21	2.2 0.9 0.8 1.4 1.1	20 49 64 65 25	11 15 12 14 12	56 110 95 126 54	<5 10 13 16 <5	<5 <5 6 11 <5	4 4 2 5 8	0.191 0.217 0.095 0.225 0.105			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. -V7P 2R5

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

	REPORT: V90-01864.0							IE PRINIE Dject: 33			PAGE 5
	SAMPLE ELEMENT NUMBER UNITS	Au 309 PP8	Ag PPM	Eu PPM	Pb PPM	Zn PPM	As PPM	Sb PPM	Ho PPN	Hg PPM	
	\$1 3+00N 1+25W	14	0.7	62	18	124	16	<5	2	0.042	
	S1 3+00N 1+00N	15	0.8	80	20	155	22	10	2	0.012	
	S1 2+50N 4+00W	21	0.9	45	11	86	16	<5	5	0.099	
	S1 2+50N 3+50W	8	1.5	64	14	117	18	7	4	0.169	
	\$1 2+50N 3+25W	13	1.8	40	14		<5	5	4	0.267	
-	\$1 2+50N 2+75W	17	0.9	50	11	89	12	i 1	2	0.117	
	S1 2+50N 2+50W	6	0.5	69	11	105	19	<5	3	0.131	
	S1 2+50N 2+25W	12	1.2	75	13	92	29	6	4	0.181	
	S1 90 AW 331 (PREFIX) S1 2+00N 4+00W	25	1.2	87	16	293	38	6	12	0.140	
				01	16	120	27	6	5	0.117	
	S1 2+00N 3+75H	46	1.8	81	16 18	322	43	7	16	0.082	
	S1 2+00N 3+50N	18 25	1.5 0.9	111 86	15	142	24	5	4	0.052	
	S1 2+00N 3+25W S1 2+00N 3+00W	25 14	1.0	73	16	265	22	< <u>,</u>	8	0.035	
	S1 2+00N 2+75W	22	0.7	75	21	150	26	6	6	0.020	
	T1 90 AW 331 (PREFIX)										
	T1 LOO1 6+00N 0+30E	15	3.0	167	16	562	52	13	28	0.133	
	11 LOO2 5+50N 0+00E	25	3.1	176	18	564	72	14	29	0.159	
	T1 LOD3 3+50N 3+50W	17	1.7	113	18	583	49	10	18	0.117	
	T1 LOO4 2+00N 3+60W	30	1.5	112	21	496	32	6	15	0.123	
	T1 90 GW 331 (PREFIX)		···· -								
	T1 L001	14	2.9	157	15	489	57	13	29	0.104	
	T1 L002	21	3.0	171	17	595	67	13	29	0.144	
	T1 L003	16	1.5	105	19	502	33	9	17	D.063	
	T1 L004	15	1.5	108	19	405	44	б	15	0.062	
	T1 90 JJ 331 (PREFIX)	<u></u>	<u> </u>				<i>c</i> ~	^		0.100	
	T1 5+00N 2+60W MOSS MAT	6	1.8	85	15	379	53	8 13	9 31	0.160 0.141	
	T1 5+00N 0+008L	18	3.0	172	16	534	67	13	21	0.141	
	T1 90 PW 331 (PREFIX)	40	1 5	102	18	429	35	10	18	0.063	
	T1 L001		1.5	102	10	427					
-	T1 L002	12	1.4	111	21	550	36	8	18	0.085	
	T1 L003	15	1.4	102	19	473	40	12	17	0.089	
	11 90 RV 331 (PREFIX)					4 55			2	ስ ስለር	
	T1 L001	15	0.8	77	12	135	24	<5	2	0.045	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. orth Vancouver, B.C. ____7P 2R5 (604) 985-0681 Telex 04-352667

.

51 1+00N 1+00W

Geochemical Lab Report

4]

11

1.9

32

42

11

<u> </u>	REPORT: V90-02	024.0		A DIVISION OF INCREMENTATION & DISTRICT PRINTED: 26-SEP-9 PROJECT: 331								PAGE 1	
	SAMPLE NUMBER	ELEMENT	Au 30g PP8	Ag PPM	Cu PPM	РЬ РРМ	Zn PPH	As PPN	Sb PPM	No P2M	Hg PPM		
	\$1 90 AW 331 (PREF1X)								<i>-</i>	0 021		
	\$1 3+50N 0+50W		81	0.7	61	20	122	7	<5 ⊲⊑	4 r	0.022 0.057		
	\$1 3+50N 0+25W	ł	11	0.8	26	14	82	13	<5 ∠5	5	0.032		
	S1 3+50N 0+00		8	0.5	31	14	96	11	<5	2	0,002	•	
	S1 90 JJ 331 ((PREF1X)				<u></u>	 · ·						
	S1 3+50N 0+20E		<5	0.7	42	17	<u>98</u>	4	<5	4	0.012		
	\$1 3+00N 0+50V	4	21	1.9	67	16	75	23	<5	8	0.209		
	51 90 PW 331 (10		12	0 239		
	S1 3+00N 0+25		26	1.8	77	13	39	18	<5	12	A1475		
	S1 90 JJ 331	(PREFIX)				<u> </u>						······	
	S1 3+00N 0+00		47	1.2	69	14	125	31	ş	14	0.106		
	\$1 3+00N 0+25	E	182	1.9	206	20	83	69	9	15	0.115		
	51 3+00N 0+500		206	3.1	1200	44	182	238	<u>a</u>	20	0.101		
	51 3+00N 0+751		82	2.3	262	23	125	88	8 F	15	0,180 0,160		
	\$1 2+50N 0+50	W	41	1.0	57	13		9	5 	3	0.169		
	\$1 2+50N 0+25		21	2.5	29	28	58	<	<5	16	0.204		
	\$1 90 AW 331		•-	-									
	S1 2+50N 0+00		384	4.5	252	22	67	63	8	11	0.316		
	\$1 2+50N 0+25		184	2.1	145	14	93	29	ò	6	0.237		
	S1 2+50N 0+50		102	2.1	268	31	170	73	7		0.135		
	51 2+00N 0+50		21	1.8	19	10	39	13	<5	5	0.159		
	S1 2+00N 0+25		12	3.2	43	15	57	15	6	6	0.148		
	S1 90 PW 331			· •									
	S1 2+00N 0+00		8	1.6	40	14	75	15	<5	5	0.202		
	\$1 2+00N 0+25		15	1.9	36	24	65	<5	7	9	0.213		
	S1 2+00N 0+50)F	16	3,8	37	19	56	<5	<5	9	0.256		
	\$1 90 AN 331		A V										
	S1 1+50N 1+50		24	1.5	35	14	24	<5	<5	6	0.150		
	S1 1+50N 1+00		15	1.7	46	18	71	<5	5	13	0.151		
	S1 1+50N 0+75		17	1.3	34	28	81	5	<5	14	0.064		
	S1 1+50N 0+50	DW	17	1.5	32	13	41	ंऽ	<5	5	0.187		
	S1 1+50N 0+25		16	1.6	39	13	47	<5	<5	4	0.211		
	SI 1+50N 0+00		14	1.1	61	15	65	10	6	4	0.163		
	\$1 1+50N 0+2		12	1.5	32	11	65	9	-5	3	0.160		
	\$1 1+50N 0+50		13	0.9	23	6	64	<5	<5	I	0.167		
	S1 1+50N 0+75	5E	22	5.0	39	23	76	24	7	8	0.231		
	S1 90 PW 331								-		0 154		
	\$1 1+00N 1+5		12	1.3	26	11	26	11	<5 (5	4	0.156		
	S1 1+00N 1+2		13	2.3	57	18	65	16 11	<5	9 5	0.104 0.079		
	C1 1.008 1.0	nu	22	10	47	11	43	11	6	5	0.079		

. .

Geochemical Lab Report

* ***			A DIVISIO	OF INCHC/	APL INSPECT	HON& HAL	ING SERVICE DAT	E PRINTED): 26-SEF	-90		
<u> </u>	REPORT: V90-02024.0							IJECT: 331			PAGE 2	
•	SANPLE ELEME Number uni		Ag PPM	Cu PPM	РЬ РРМ	Zn PPM	As PPN	Sb PP M	No PPH	H9 PPM		
	S1 1+00N 0+75W S1 1+00N 0+50N S1 1+00N 0+25W	11 12 13	1.8 2.0 1.6	38 35 36 20	19 18 15 16	68 83 52 83	<5 8 <5 <5	<5 8 <5 <5	7 5 5 7	0.153 0.217 0.247 0.090		
	S1 1+00N 0+00E S1 1+00N 0+25E	20 14	1.0	34	17	72	9	<5	7	0.099		
•	S1 1+00N 0+50E S1 1+00N 0+75E S1 0+50N 2+00W S1 0+50N 1+75W S1 0+50N 1+50W	12 11 10 43 10	2.2 2.1 1.6 1.3 1.1	56 40 45 59 42	13 15 31 15 16	54 82 71 80 64	6 11 24 14 7	<5 <5 <5 <5 €	12 7 17 11 5	0.162 0.142 0.242 0.128 0.119		
	S1 0+50N 1+25W S1 0+50N 1+00W S1 0+50N 0+75W S1 0+50N 0+50W S1 0+50N 0+25W	8 14 18 7 11	1.5 1.8 1.0 1.4 0.9	48 78 63 36 23	12 15 13 13 12	58 51 52 53 54	11 12 10 <5 <5	<5 <5 6 8 <5	3 9 7 5 5	0.158 0.095 0.070 0.115 0.103		
	S1 0+50N 0+00	12	1.5	26	20	65	- 5	<5	8	0.115		
*	S1 90 JJ 331 (PREFIX S1 0+50N 0+25E S1 0+50N 0+50E S1 0+50N 0+75E) <5 <5 14	1.6 1.9 2.0	28 38 82	11 13 14	61 71 61	<5 5 10	<5 <5 <5	4 5 11	0.170 0.242 0.154		
	S1 0+50N 1+00E S1 0+50N 1+25E S1 0+50N 1+50E S1 0+50N 1+75E S1 0+50N 2+00E	7 42 256 113 48	1.9 1.4 3.5 1.9 3.2	63 209 312 251 302	11 32 108 876 846	86 171 168 1163 796	24 95 147 67 136	<5 <5 9 8	4 6 25 10 14	0.162 0.118 0.196 0.085 0.113		
	S1 0+50N 2+25E S1 0+50N 2+50E S1 0+50N 2+75E S1 0+50N 3+00E S1 90 AW 331 (PREF1)	202 13 20 42	2.8 2.2 5.9 3.8	172 132 24 225	36 23 9 33	483 139 67 671	67 14 20 212	11 <5 <5 14	32 8 5 29	0.150 0.205 0.232 0.154		
	S1 0+00 2+50W S1 0+00 2+25W S1 0+00 2+25W S1 0+00 2+00W S1 0+00 1+75W S1 0+00 1+50W	12 668 6 6 8	2.6 2.1 1.9 0.9 1.9	41 52 49 56 79	25 20 13 12 16	72 72 63 302 108	10 10 <5 75 25	6 8 <5 <5 <5 <5	15 14 14 2 5	0.242 0.201 0.117 0.167 0.142		
	\$1 0+00 1+25W \$1 0+00 1+00W \$1 0+00 0+75W \$1 0+00 0+75W \$1 0+00 0+25W \$1 90 JJ 331 (PREFI	14 9 <5 <5 X)	5.2 0.9 1.5 2.4	98 61 69 65	32 12 14 14	46 78 45 58	8 18 17 29	<5 <5 6 6	8 4 9 6	0.123 0.092 0.071 0.230		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. (7P 2R5 (604) 985-0681 Telex 04-352667

r •

....

Geochemical Lab Report

A DIVISION OF EXCHAPT INSPECTION & HISTORISTECTICS - DEPENDENCE OF COMPANY

REPORT: 190-02024	.0			() <u> </u> 3(1) ()	IT ISSUE	(OX& 115)		E <u>PRINIED</u> DJECT: 331		<u>-90</u>	PAGE 3	
		u 30g PP8	Ag PPM	Cu PPH	P5 PPN	Zn PPN	As PPH	Sb PP M	Ho PPM	Họ PP M		
\$1 0+00 0+00E		5	1.6	43	15	51		8 <5	10 7	0.112		
\$1 0+00 0+25E		14	2.2	75 35	10 11	46 63	12 <5	רי ד	б	0.181		
S1 0+00 0+50E S1 0+00 0+75E		8 10	1.8 1.5	30 39	18	59	29	<5	6	0,135		
S1 0+00 1+00E		28	2.4	381	54	419	107	8	21	0.192		
- \$1 0+00 1+25E		22	2.8	316	494	1228	149	10	17	0.343 0.251		
S1 0+00 1+50E		19	2.1	40 247	36 145	70 139	28 106	<5 8	10 28	0.192		
\$1 0+00 1+75E		22 89	2.9 3.1	247 220	258	186	110	10	39	0.213		
S1 0+00 2+00E S1 0+00 2+25E		117	2.6	142	91	356	105	8	23	0.148		
S1 0+00 2+50E		27	2.5	293	25	287	24	11	8	0.091	<u></u>	
\$1 0+00 2+75E		11	2.3	223	16	304	26 34	6 8	7 7	0.101 0.147		
51 0+00 3+00E		16	2.7	227	19	218	J٩	U	,	0.147		
\$1 90 AN 331 (PRI - \$1 0+00 \$001	1117)	14	2.1	28	17	52	33	14	55	1.158		
		15	1.7	54	24	B3	<5	<5	4	0.216		
51 1+00E \$003		842	2.4	75	13	30	9 25	<5 1	18 8	0.088 0.117		
S1 1+50E S004		8	1.7	47 81	18 14	38 89	25 27	, 6	3	0.090		
 \$1 2+00E \$005 \$1 2+50E \$006 		32 24	1.0 3.2	96	14	30	7	Ś	10	0.180		
		19	1.2	162	7	48	<5	<5	3	0.156		
S1 3+50E S008		11	1.9	36	13	36	<5	<5	5	0.227		
51 4+00E 5009		16	2.3	74	20	47 40	20 15	5 5	13 6	0.295 0.165		
\$1 4+50E \$010 \$1 5+00E \$011		8 9	2.1 2.2	61 107	17 15	40 74	16	7	8	0.144		
		6	3.0	37	15	40	<u>5</u>		8	0.108		
S1 5+50E S012 S1 6+00E S013		ہ 5	1.9	33	14	68	14	<5	7	0.149		
\$1 6+50E \$014		<5	1.2	60	10	249	19	<5	3	0.142		
\$1 7+00E \$015		6	1.2	20	16	56	<5	<5	5	0.072		
S1 7+50E S016		12	1.6	37	14		5	6	13	0.132		
S1 8+00E 5017		6	2.1	106	18	113	19	<5 9	2 5	0.258		
\$1 8+50E S018		6 40	1.6	60 22	17 21	68 39	17 6	S	с 8	0.140		
S1 9+00E S019		<5 8	1.4 1.6	22 110	21	238	25	<5 <5	3	0.103		
\$1 9+50E \$020 \$1 10+00E \$021		13	0.6	30	11	81	15	<5	8	0.128		
51 90 JJ 331 (P)	REFIX)									0 554		
s1 0+00 S001		6	1.5	40	13	44 27	∕5 ∕s	් ර	6 2	0.294 0.174		
\$1 0+50E \$002		8 .c	1.6 0 E	10	6	32 22	دم ح	دى ح5	2	0.204		
\$1 1+00E \$003 \$1 1_50E \$004		্য ত	0.5 0.5	19 12	, 6	29	:5	>÷ ⊴5	2	0.173		
31 L_3UC 3004		·		<u></u>				· · · · · · · · · · · · · · · · · · ·				

Bondar-Clegg & Company Ltd. -30 Pemberton Ave. North Vancouver, B.C. 17P 2R5 (604) 985-0681 Telex 04-352667

.

- 1

Geochemical Lab Report

A DIVISION OF INCREAPE INSPECTION & FEMILY GREEKING STRATEGY OF ST

•	REPORT: ¥90-02024.0	_ 7	ADMISION	I OF INCHCO	(I.I. I A.J.I.C.I	RUNK 11 M		E PRINIED DECT: 331		-90	PAGE 4
		lu 30g PP8	A9 PPM	Cu PPK	Pb Ppm	Zn PP M	As PPM	Sb PPN	Ho PPH	Hg PPN	· .
	S1 90 PN 331 S001 S1 90 PW 331 S002	15 <5	6.2 1.9	91 22	19 18	172 63	19 	8	25 19	0.306 0.075	
• •	S1 90 PW 331 S003 S1 90 PW 331 S004 S1 90 PW 331 S005	12 <5 B	1.7 1.4 1.4	145 21 29	17 11 16	121 27 66	31 <5 5	<5 6 5	3 3 15	0.093 0.099 0.120	
	S1 90 PW 331 S006 S1 90 PW 331 S007	6 <5	1.0	37 24	40	77 57	<5 <5	10 <5	18 13	0.152	
	S1 90 PW 331 S008 S1 90 PW 331 S009 S1 90 PW 331 S010	<5 6 7	4.7 2.0 1.6	23 25 60	8 9 11	41 81 47	45 14 9	5 6 <5	2 3 3	0.165 0.178 0.280	
 -	\$1 90 PW 331 \$011 \$1 90 PW 331 \$012	8 <5	1.2	30 46	11 13	180 50	75 16	7 5	4 4 3	0.218 0.178 0.208	
	S1 90 PW 331 S013 S1 90 PW 331 S014 S1 90 PW 331 S015	7 8 7	3.2 2.6 1.3	70 29 30	10 13 10	65 39 52	<5 <5 <5	8 <5 <5	3	0.340	
1 1 1	S1 90 PW 331 S016 S1 90 PW 331 S017	10 7	1.3	37 31	15	60 34	<5 <5	5 <5	2	0.199 0.206 0.097	
	S1 90 RV 331 S001 S1 90 RV 331 S002 S1 90 RV 331 S003	6 11 8	1.0 3.8 1.4	17 73 35	10 21 18	38 411 41	~5 23 11	<5 <5 5	3 10 7	0.097 0.175 0.160	
 	S1 90 RV 331 S004 S1 90 RV 331 S005	<5	1.3	31 35	25 13	59 42	30 8	8 10 7	4 3 3	0.134 0.279 0.197	
•	S1 90 RV 331 S006 S1 90 RV 331 S007 S1 90 RV 331 S008	<5 <5 <5	2.1 2.2 2.0	37 24 124	11 18 16	45 68 124	18 <5 24	7 <5	3	0.147	
	S1 90 RV 331 S009 S1 90 RV 331 S010	<5 <5	1.8	57 44	8 12 10	55 54 97	10 28 10	<5 8 10	3 5 2	0.222 0.241 0.254	
•	S1 90 RV 331 S011 T1 90 JJ 331 5+05E L001 T1 90 PW 331 L004	6 9 12	2.0 1.4 1.7	58 41 82	10 16 20	126 493	15 53	<5 13	5	0.214 0.113	
	T1 90 PW 331 L005 T1 90 RV 331 L002 T1 90 RV 331 L002 T1 90 RV 331 L003	9 6 6	1.5 1.1 1.6	108 46 43	20 23 15	385 275 480	27 18 43	15 6 11	15 3 28	0.097 0.138 0.055	
-	11 AN KA 331 CAA3	U	7.0	ŢŢ	**		•				

τ. **Bondar-Clegg & Company Ltd.** --430 Pemberton Ave.

North Vancouver, B.C.

P - - -

(604) 985-0681 Telex 04-352667 .

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

<u> </u>													
	REPORT: V90-020	058.0						E E	OJECT: 33		PAGE 1		
	SAMPLE Number	ELEMENT Units	Au 30g PPB	Ag PPM	Cu PPM	P5 PPM	Zn PPM	As PP#	Sb Pph	Ho PPM	Hg PPH		
	S1 90 JJ 331 64	+501	14	2.1	22	23	46	<5	<5	2	0.320		
	S1 90 JJ 331 64	+00W	10	1.3	112	14	81	2B	8	30	0.177		
	\$1 90 JJ 331 54		10	2.8	81	16	59	<5	6	8	0.194		
	S1 90 JJ 331 54		7	2.5	61	21	79	5	12	30	0.275		
	51 90 JJ 331 4+	+DOW	6	3.0	33	7	43		<5	2	9.307		
	S1 90 JJ 331 3+		9	2.8	32	8	30	6	<5	2	0.251		
	S1 90 JJ 331 3+		6	3.1	109	87	108	35	7	5	0.426		
	S1 90 JJ 331 2+		15	3.0	27	9	50	<5	<5	3	0.247		
	S1 90 JJ 331 2+		9	1.2	35	13	66	· 5	<5	4	0.135		
	S1 90 JJ 331 1+	-50# 	10	1.8	56	13	95	17	<u>ح</u>	6	0.255	······	
	S1 90 JJ 331 1+		9	1.1	26	11	39	:5	 5	6	0.082		
	\$1 90 JJ 331 O+		<5	1.3	24	10	55	<5	8	3	0.163		
	\$1 90 JJ 331 0+		്ട	1.1	21	8	46	5	< S	3	0.150		
	\$1 90 JJ 331 2+		<5	0.8	12	7	36	<5	<5	2	0,699		
	S1 90 JJ 331 2+	502	6	1.6	22	<u> </u>	45			3	0.155	· · · · · · · · · · · · · · · · · · ·	
	S1 90 JJ 331 3+		9	1.0	17	12	49	< 5	<5	б	0.065		
	S1 90 JJ 331 3+		<5	1.2	35	19	85	6	<5	4	0.231		
	S1 90 JJ 331 4+		6	1.9	48	22	83	12	11	7	0.214		
	\$1 90 JJ 331 4+		11	1.1	19	14	53	7	-5	4	0.126		
	\$1 90 JJ 331 5+	UUE	<\$	1.6	59	42	191	<u>q</u> 	9	22	0.287	·	·····
	\$1 90 JJ 331 5+		15	1.5	82	45	122	13	<u></u> б	5	0.173		
	S1 90 JJ 331 6+		6	<0.2	38	37	<u>108</u>	5	6	2	0.153		
	S1 90 JJ 331 6+		6	1.5	38	30	62	<5	5	13	<u>0.124</u>		
	\$1 90 J3 331 7+1		155	0.4	13	10	50	<u>~5</u>	×5	2	0.135		
_	\$1 90 JJ 331 8+1	OUE	14	0.8	24	13	67	-5	5	7	0,102		
	S1 90 JJ 331 8+	50E	21	1.4	46	25	94	12	7	3	0.258		
	S1 90 JJ 331 9+1		36	1.3	26	18	68	< 5	<5	4	0.240		
	S1 90 JJ 331 9+		7	1.3	28	16	89	21	6	5	0.341		
	S1 90 JJ 331 10		<5	0.5	15	12	84	12	7	<1	0.043		
	SI 90 JJ 331 11	+00E	7	1.9	61	24	91	16	7	4	0.179		
-	\$1 90 JJ 331 11-		<5	1.7	24	19	99	 < 5		6	0.313		
	S1 90 JJ 331 12		<5	2.2	36	14	154	~5	<Š	B	0.200		
	\$1 90 JJ 331 124		25	2.1	53	21	125	35	7	5	0.286		
	\$1 90 JJ 331 134		12	2.1	24	13	61	<5	<5	3	0.222	•	
<i>.</i>	\$1 90 JJ 331 134	+SQE	<5	0.7	20	12	39	< 5 		3	0.113		
	S1 90 JJ 331 14+	•00E	<5	0.4	9	3	63		<5	2	0.073		
	S1 90 JJ 331 14+		16	0.9	28	8	73	6	6	4	0.052		
	\$1 90 JJ 331 15+		7	2.0	53	17	86	<5	7	9	0.126		
	\$1 90 JJ 331 15+		<5	1.7	39	18	221	18	7	6	0.158		
	S1 90 JJ 331 164	+00E	6	<0.2	40	29	88	< 5	5	3	0.169		

. Bondar-Clegg & Company Ltd. -130 Pemberton Ave.

North Vancouver, B.C.

► ¥7P 2R5

(604) 985-0681 Telex (14-352667 -

Geochemical Lab Report

A DIVISION OF INCREAPE INSPECTION & ITS FOUND RATES.

•			A DIVISE.	N OF INCR	API INSPI	UHONA II S						
REPORT: V90-	02058.0							NIE FRIMIE ROJECT: 33		EF-90	PAGE 2	
- SANPLE NUHBER	ELEMENT A UNITS	u 30g PPB	Ag PPM	Cu PPH	Pb Ppm	Zii Pph	A< PPH	SD PPM	Ko PPH	Hg PP M		
S1 90 3J 331 S1 90 3J 331 S1 90 JJ 331	17+00E 17+50E 18+00E	9 6 7 <5 10	1.5 0.6 1.0 1.2 2.3	48 23 37 18 44	35 12 13 12 13	165 55 64 14 88	24 <5 <5 <5 12	<5 5 <5 5 5	5 6 5 2 4	0.161 0.049 0.117 0.120 0.176		
S1 90 JJ 331 S1 90 JJ 331	20+00E 20+50E 21+00E	11 <5 70 43 <5	3.4 2.9 1.6 0.9 2.2	29 20 120 20 9	23 7 23 4 9	50 62 184 52 29	40 11 62 <5 <5	9 <5 11 <5 <5	4 5 5 1 1	0.284 0.247 0.327 0.118 0.137		
\$1 90 JJ 331 \$1 90 JJ 331	22+50E 23+00E 23+50E	12 <5 5 9 <5	1.9 2.0 2.1 0.9 2.2	28 21 19 17 29	30 8 20 15 21	49 36 71 36 90	<5 13 20 <s 19</s 	<5 <5 <5 <5 <5	4 2 5 2 3	0.142 0.167 0.210 0.132 0.233		
\$1 90 JJ 331 \$1 90 JJ 331	25+00E 25+50E 26+D0E	6 <5 9 92 12	2.0 1.9 2.4 1.9 2.0	68 27 21 40 92	58 12 12 20 37	93 51 59 96 1534	23 <5 10 8 39	10 7 5 8 <5	6 2 3 4 4	0.215 0.205 0.164 0.151 0.126		
S1 90 JJ 331 S1 90 JJ 331	27+50E 28+00E 28+50E	6 <5 <5 8 8	1.6 1.6 1.4 1.9 1.8	78 36 25 25 25 25	42 35 10 24 15	40 35 21 50 33	30 46 <5 <5 <5	<5 10 7 <5 <5	6 5 2 5 3	0.106 0.220 0.141 0.124 0.164		
\$1 90 JJ 331 \$1 90 JJ 331	30+00E 30+50E 31+00E	<5 б 8 (5 9	0.5 0.7 1.9 2.1 3.6	17 14 37 29 79	12 8 41 22 24	47 39 124 49 212	<5 < 5 21 <5 8	<5 <5 <5 <5 5	1 <1 6 4 7	0.203 0.165 0.250 0.162 0.274		
S1 90 JJ 331 S1 90 PW 331	S084 S085 S086	7 9 <5 10 6	2.0 2.6 4.8 2.7 1.4	57 44 24 18 22	28 21 16 9 16	135 51 41 35 74	14 <5 <5 <5 &5	<5 <5 9 6 <5	5 3 4 3 2	0.329 0.228 0.251 0.201 0.31?	· · · · · · · · · · · · · · · · · · ·	
S1 90 PW 331 S1 90 PW 331	5089 5090 5091	6 14 8 7 7	2.2 1.9 2.5 3.0 3.9	13 35 56 15 31	9 23 20 11 19	22 36 50 27 43	0 11 17 75 75	25 29 8 25 25 25	1 8 4 2 1	0,104 0.137 0.224 0.096 0.187		

. • Bontiar-Clegg & Company Ltd. ---- Pemberton Ave. orth Vancouver, B.C. ⊷-JP 2R5 (604) 985-0681 Telex 04-352667

F • • •

b....

Geochemical Lah Report

A DIVISION OF INCHEAPE INSPECTION & TENTING SERVICES.

• · · · · · · · · · · · · · · · · · · ·	PORT: V90-	000E0 0			IN DE ENCHE	ALL DOLLA	1033 113	1	TE PRINIE OJECT: 33		<u>P-90</u>	PAGE 3
KC	POK1: V90-	02000.0]	V-b				UJELT: 33.	1 		
	MPLE MBER	ELEMENT	Au 30g PPB	Ag PPN	Cu PPN	Pb PPH	Zn PPN	As PPH	Sb PPM	Ho PPM	Hg PP4	
	90 PW 331	\$093	26	3.8	233	43	65	44	8	14	0.120	
	. 90 PW 331		17	2.0	16	17	25	-5	<u>ح</u>	2	0,106	
	. 90 PW 331 . 90 PW 331		7 12	4.1 2.6	22 19	28 15	37 37	13	\5 ح	8 ?	0.193 0.227	
	90 PW 331		16	2.0	29	23	47	23	10		0.152	•
	. 90 PW 331	S098	10	6,3	24	14	22	6	<u>دې</u>	2	0,219	
	. 90 PW 331		6	3.0	35	10	57 -	24	، ج اح	2	0.286	
	L 90 PW 331 : 90 PW 331		27 12	1.6 2.6	12 18	8 18	24 31	25 25	~S <s< td=""><td>2 3</td><td>0,231 0,214</td><td></td></s<>	2 3	0,231 0,214	
	. 90 PW 331 1 90 PW 331		~5	3,3	33	10	28	<5	<5	3	0.264	
•	: 90 PN 331 190 PN 331		67	2.7 2.3	40 41	12 15	33 35	~5 . <5	~5 8	4 2	0.)55 0.)76	
	L 90 PM 331 L 90 PN 331		50	2.5	41 67	29	20 72	38	0 8	5	0,147	
	1 90 PW 331		15	2.7	35	12	26	11	<\$	17	0.262	
\$1	90 PN 331	\$108	111	2.1	48	32	24	<u>36</u>		6	0,168	
	90 PW 331	\$109	б	1.9	19	8	32			2	0.177	
	90 PW 331		16	1.7	62	17	51	10	. 8	8	0.117	
	. 90 PN 331		7	1.4	37	11	28	7	<5 .5	3	0.1)]	
	. 90 PN 331 . 90 PN 331		ь 19	1.3 2.2	13 73	13 27	25 79	<5 21	<5 11	2	0.090 0.085	
		······				·····						
	90 PN 331		6	1.8	28	35 10	59 36	6 <5	6 <5	4	0,189 0,119	
	. 90 PW 331 . 90 PW 331		6 ≺5	2.7 1.7	24 22	10 11	30 35	<5 <5	7	2 1	0.113	
	. 90 PN 331		<5	1.7	17	12	31	<5	<5	2	0.175	
\$1	90 PN 331	S120	<5	3.0	32	11	47		<5	1	0.231	
	. 90 PM 331	\$121	5	1.2	32	32	60	26	<5	4	0.105	·······
	90 PW 331		В	1.5	35	17	100	<5	7	4	0.149	
	i 90 PW 331 : on pu 231		10	2.4 1.9	21 28	16 12	32 82	<5 <5	<5 <5	2 5	0.137 0.247	
	L 90 RV 331 L 90 RV 331		5	2.0	20 21	25	62	<5	8	24	0.247	
				· · · · · · · · · · · · · · · · · · ·	F A			10				
	1 90 RV 331 90 RV 331		9 6	2.2 2.1	59 24	23 19	81 65	19 <5	7 <5	4 3	0.229 0.268	
•	. 90 RV 331		<5	1.8	32	18	81	<5 <5	8	3	0.186	
	90 RV 331		10	1.5	38	26	90	13	7	4	0.206	
	. 90 RV 331	S018	8	1.6	43	17	108	17	8	3	0.163	
	90 RV 331		6	2.0	33	20	62	12	<5	3	0.224	· · · · · · · · · · · · · · · · · · ·
\$1	90 RV 331		7	3.7	30	12	79 22	<5 - E	<5 / E	2	0.266	
	. 90 RV 331 . 90 RV 331		12 7	1.9 1.9	23 41	23 21	33 77	~5 <5	<5 <5	3 2	0.172 0.291	
	L 90 RV 331		, <5	2.4	36	13	64	<5	7	2	0.177	ſ
			·							· ·		J

Bondar-Clegg & Company Ltd. =→30 Pemberton Ave.

• •

North Vancouver, B.C.

b ...

. .

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

•					IN UE INCHU	747 L 105 ST 1.C	102306113	<u>0</u> 1	ATE_PRIMIE		P-90		
·	REPORT: V90-0	2058.0						P?	ROJECT: 33	1		PAGE 4	
	SAMPLE NUMBER	ELEMENT Units	Au 30g PP8	Ag PPM	Cu PPM	РЬ PPM	Zn PPM	As PPH	Sb PPM	No PPM	Hg PP M		
`	S1 90 RV 331	\$024	8	0.9	10	16	19	<5	-5	3	0.070		
	S1 90 RV 331	\$025	6	2.2	41	20	77	<5	<5	4	0.227		
	S1 90 RV 331	S026	10	2.5	79	48	201	30	<5	4	0.315		
	S1 90 RV 331	S027	7	2.5	38	25	56	<5	6	3	0.258		
	51 90 RV 331	SD28	95	2.3	38	26	67	<5	7	3	0.222		
•	S1 90 RV 331	S029	15	1.6	197	53	353	30	11	6	0.172		
	S1 90 RV 331	\$030	<5	2,1	30	16	71	< 5	<5	4	0.219		
	\$1 90 RV 331	S031	13	2.8	51	62	350	<5	<5	4	0.255		
	S1 90 RV 331		123	3.5	49	28	103	56	8	6	0.232		
	\$1 90 RV 331	\$033	11	6.1	22	13	45	· 5	6	14	0.120		
	S1 90 RV 331	\$034	<5	1.3	12	10	52	<5	<.	7	0.090		
	\$1 90 RV 331	S0 35	<5	1.5	36	13	54	6	0	4	0.109		
	S1 90 RV 331	S036	<5	3.4	175	34	67	ρq	10	1	0.263		
	S1 90 RV 331	5037	<5	3,5	28	20	39	32	-5	8	0.158		
	S1 90 RV 331	\$038	<5	5.4	26	17	45		7	7	0,162		
	\$1 90 RV 331	1039	8	1.7	130	42	101	36	13	6	0.097		
	S1 90 RV 331	L041	<5	1.3	34	17	61	9	8	3	0.123		
	S1 90 RV 331	L042	9	2.1	76	24	47	22	8	7	0.156		
	S1 90 RV 331	L043	<5	3.1	36	26	56	15	:5	4	0.177		
	\$1 90 RV 331	1044	10	1.9	32	27	51	11	<u> </u>	4	0.155	· · · · · · · · · · · · · · · · · · ·	
	S1 90 RV 331	L045	<5	0.5	35	5	3?	···· ··· ··· ··· ··· ··· ··· ··· ··· ·	<5	2	0.079		
	S1 90 RV 331		62	1.7	42	22	42	12	6	4	0.214		
	S1 90 RV 331	L047	15	1.5	37	25	86	10	8	2	0.262		
	S1 90 RV 331	1048	<5	0,9	18	8	24	- 5	ć 5	ļ	0.229		
	T1 90 PW 331	1006	9	1.2	27	13	280	8	7	17	0.077		
	T1 90 PW 331	L007	<5	1.3	58	20	431	44	12	21	0.073		
	T1 90 PW 331		<5	1.3	51	18	231	38	<5	6	0.112		
	T1 90 RV 331		<5	1.5	62	12	157	21	6	3	0.146		
	T1 90 RV 331		<5	0.3	20	10	70	<5	<5	1	0.223		
	T1 90 RV 33 1		<5	1.7	306	38	503	18	5	4	0.158		
	T1 90 RV 331	1007	18	2.2	175	34	401	59	6	10	0.108		
	T1 90 RV 331		38	1.4	30	16	408	10	7	10	0.097		
			• •										
•													

Bondar-Clegg & Company Ltd.

.

North Vancouver, B.C.

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TENTING SERVICES DOT MUCH. 42, DEC. 00

REPORT: V	90-02059.N		1				1	OJFCT: 33		PAGE 1		
			,		· · · · · · · · · · · · · · · · · · ·		l	-				
sample Number	ELEMENT UNITS	Au 311g PPR	Ag PPM	Cu PPH	Pb PPM	Zn PPM	As PPN	Sb PPM	Но РРМ	Hg PPM		
1 90 AU	331 17+ANW	<5	1.6	21	27	90	5	<5	1			
	331 16+50W	6	0.8	14	12	29	<5	<5	_	0.134		
	331 16+AAN	9	1.0	38	34	63	10	<5	2	0.224 0.176		
	331 15+50W	Ś	1.0	39	22	75	115	8	4	0.176		
	331 15+DAN	18	1.5	21	18	33	54	۰ د5	5	0.172	•	
10 NO 12	331 14+5NW	15	2.4	23	32	38		6	5	0.294		
	331 14+00W	6	0.7	19	15	- 30 456	22			0.274		
	331 13+5DW	<\$	0.6	8	22	436	<5	6 <5	6 4	0,105		
	331 12+50W	<5	0.4	7	11	34	<5	<5	1	0.117		
	331 12+00W	<s< td=""><td>2.2</td><td>19</td><td>29</td><td>31</td><td><5</td><td><5</td><td>5</td><td>0,208</td><td></td></s<>	2.2	19	29	31	<5	<5	5	0,208		
S1 971 AU	331 11+5 N M	28	1.2	197	7	118	<5	<5	<1	0.143		
S1 70 AN 3		<5	3,2	35	14	27	11	< <u>(5</u>	4	0.143		
S1 90 AN 3		<5	0.4	دد 7	14 9	25	11	<5		0.402 0.056		
S1 90 AM 3		<5	0.7	13	22	25 171	<5	<5	2 7	0,036		
S1 70 AN ((5	1.2	27	12	46	<5 <5	<5	, 3	0.190		
			A 1 É	<u> </u>		40		·	J	V,17U		
S1 90 AH 3		6	1.6	22	12	45	26	<5	8	0.136		
S1 90 AH 1		6	2.6	28	21	47	8	7	4	0.231		
S1 90 AH 3		41	7.9	573	151	1257	30	13	43	0.300		
S1 90 AW 3		9	1.4	20	15	39	<5	<5	4	0.255		
S1 90 AW 3	131 33+HIIF	<5	1.5	22	15	73	<5	<5	4	0.249		
S1 90 AW		<\$	1.1	17	13	118	<5	<5	3	0.174		
S1 90 AW 3		<5	1.2	27	29	127	<5	C 5	5	0,217		
S1 90 AW 3		30	1.2	9	10	26	<5	<5	2	0.172		
S1 90 AW 3		6	1.1	22	13	40	<5	< 5	1	0,255		
S1 90 AN 3	331 35+5NE	5	1.2	44	26	92	6	<5	2	0.271		
S1 90 AW 3	31, 36+IIIIF	15	1.7	39	26	99		6	3	U.214		
S1 90 AN 3		15	1.5	110	70	144	i 5	6	3	0.327		
S1 90 AN 3		7	1.1	27	22	70	<5	<5	3	0.226		
S1 90 AN 3		(5	1.5	24	10	42	< <u>s</u>	<5	<1	0.393		
S1 90 AN 3	131 38+11NF	<5	1.2	17	15	59	<5	<5	3	0,305		
S1 90 AN 3	331 38+50E	9	1.2	8N	52	232	13	9	8	0.108		
S1 90 AW 3	131 39+110F	28	1.7	80	411	191	38	<5	5	D.246		
S1 90 AW 3	131 39+50E	15	4.5	24	13	83	<5	(5	Э	0.306		
S1 90 AH 3	31 40+00F	<5	1.6	17	11	28	<5	<5	2	0.164		
S1 90 AW 3	31 40+50E	6	1.5	104	32	134	<5	<5	7	0.087		
S1 90 AH 3	31 41+INIF	4(1	1.3	50	34	161	21	<5	2	0.276		
SI 90 AN 3		<5	1.9	19	11	34	<5	(5	<1	0.144		
S1 90 AH 3		24	3.1	118	41	219	<5	6	6	0.254		
S1 90 AW 3		16	4.4	35	21	62	211	<5	5	0.221		
S1 90 AH 3		48	1.8	83	5	141	<5	6	8	0.171		

Bondar-Clegg & Company Ltd.

130 Pemberton Ave.

North Vancouver, B.C.

⊷-V7P 2R5

-.

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

 A DIVISION OF INCHEAPT INSPECTION & ITS UNG SERVICES. 	

DEDADT . Hon_nonco .n							ITE FRINTE		L-70	BLOF O
REPORT: V90-02059.0	· · · · · · · · · · · · · · · · · · ·					PF	OJECT: 33	1		PAGE 2
SAMPLE FLEME Number un	-	Ag Ppn	Cu PPM	Pb PPM	Zn PPN	As PPM	Sb PF/N	flo PPN	Hg PFN	· <u> </u>
S1 90 AH 331 43+50F	6	1.3	28	10	46	8	<5	5	0.150	· · · · · · · · · · · · · · · · · · ·
S1 90 AV 331 44+ DDE	10	1.5	23	13	68	(5	6	4	0.288	
\$1 90 AN 331 44+50F	<5	1.6	48	14	112	5	<5	5	0.184	
S1 90 AH 331 45+00E	10	1.5	23	17	43	ৎ	<5	4	D.197	
S1 90 AH 331 45+5DF	5	2.7	311	11	41	<5	<5	4	D.289	,
S1 90 JJ 331 (PREFIX)										•
S1 S081 D+UNW	12	1.5	12	10	37	<5	<5	3	0.155	
S1 SD82 0+50W	<5	2.5	23	8	97	<5	5	2	0.109	
S1 S083 1+UUW	<5	2.4	22	28	66	<5	<5	5	0,280	
S1 S084 1+50W	<5	5.1	29	25	35	1	6	4	0.287	
S1 S085 2+UNW	8	2.4	20	12	31	<5	6	2	0.320	
S1 S086 2+5NW	9	1.1	37	62	95	249	16	5	0.124	
S1 S087 3+UUM	8	2.6	22	16	36	<5	<5	3	0.207	
S1 S088 3+50W	<5	1.4	21	11	54	6	5	2	0.042	
S1 S089 4+UUW	<5	1.7	29	13	67	<5	6	2	0.049	
S1 S090 4+50N	6	1.5	44	21	64	241)	11	9	0.163	
S1 S091 5+UNW	<5	1.7	20	13	48	5	8	2	0.197	
S1 S092 5+50N	<5	2.5	44	85	75	62	11	10	0.204	
S1 S093 6+UNH	6	1.9	35	5	49	< 5	<5	2	0.159	
S1 S094 6+5NW	14	2.3	5N	30	64	18]	5	0.265	
\$1 \$D95 7+UIIU	5	2.6	22	16	36	7	(5	2	0.286	
S1 SD96 7+5NW	S	2.1	44	19	83	<5	5	4	0.227	
S1 S097 8+UNN	12	2.0	25	18	50	<5	< 5	2	0,106	
S1 S098 8+50X	9	1.8	30	14	43	<5	<5	2	D.189	
S1 S099 9+UUW	9	2.2	27	24	49	<5	<5	3	0.166	
S1 S100 9+50W	<5	2.2	21	10	35	14	<5	2	0.236	
S1 S101 10+000	34	2.3	29	20	38	<5	9	4	0.211	
S1 S102 10+50W	(5	2.0	26	13	45	<5	<5	3	0.151	
\$1 \$103 11+00W	<5	2.8	26 ec	13	43 0/	<5	<5	2	0.289	
Si SiO4 11+50W	6	2.0	8 5	27	94	17	9	12	D,185	
\$1 \$105 12+DUW	6	1.8	72	35	71	12	<5	4	0.401	
S1 S106 12+50W	<5	1.5	29	18	42	14	<5	3	0.264	
S1 S107 13+00W	10	1.4	57	36	73	25	5	5	0.124	
S1 S108 13+50W	8	2.0	28	16	71	<5 - 5	8	3	U.274	
S1 S109 14+UUW	<5	1.9	19	14	33	<5	<5		0.113	
S1 S110 14+504	10	1.3	17	11	34	<5	<5	2	0.166	
S1 90 ST 331 SU01 0+0		1.7	37	12	53	<5	<5	2	0.185	
S1 90 ST 331 S002 8+5		1.6	23	16	51	<5	<5	5	0.187	
S1 90 ST 331 SU03 1+0		1.8	25	31	87	<5	10	8	0.172	
S1 90 ST 331 SDN4 1+5	N 22	2.5	25	21	78	<5	<5	5	0.124	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

н.,

North Vancouver, B.C. V7P 2R5

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & LESTING SERVICES

			I				· · · · · · · · · · · · · · · · · · ·	IF PRINTE		51-70	
	REPORT: V90-02059.0						PR	OJECT: 33	1		PAGE 3
-	SAMPLE FLEMENT	Au 3Dg	Ag	Cu	РЬ	Zn	As	Sb	No	łłą	
	NUMBER UNITS	•	PPN	PPN	PPH	PPH	PPN	PPH	PPN	PPM	
				·····		<u> </u>	*·				· · · · ·
	S1 90 ST 331 S005 2+00	6	1.3	25	19	75	<5	<5	2	0.130	
	51 90 ST 331 S006 2+50	8	1.2	52	24	90	18	<5	8	0.(141	
	S1 90 ST 331 SN07 3+00	11	1,9	34	26	111	<5	8	5	0.248	
	S1 90 ST 331 SAN8 3+50	7	1.2	72	21	82	5	7	5	0.152	
	\$1 90 ST 331 SU09 4+00	<5	0.5	10	22	38	<5	<5	6	0,154	
	S1 90 ST 331 S010 4+50	5	1.4	37	23	77	41	7	5	0.153	
	\$1 90 ST 331 SN11 5+00	7	1.2	21	17	40	<5	<5	3	0.088	
	S1 90 ST 331 SA12 5+50	8	2.0	19	19	86	<5	<5	5	D.189	
	S1 90 ST 331 SN13 6+UN	6	1.6	52	22	78	22	6	5	0.227	
	S1 90 ST 331 S014 6+50	6	1.2	35	15	89	16	9	4	0.123	
	\$1 90 ST 331 S015 7+00	<5	4 /					40			
	S1 90 ST 331 S016 7+50	<5 7	1.4 1.7	28 40	21 18	51	15	10	4	0.133	
	S1 90 ST 331 S017 8+00	י ד	1.7	40 36	18 13	93 59	21 <5	7	6	0.118	
	S1 90 ST 331 SN18 8+50	, B	1.0	36 39	15 21	57 95	sa 57	6 <5	6	0.207 D 322	
	\$1 90 CC 331 SIIN1	6	4.4	- 37 28	11	75 48		5 (5	2 3	D.222 D.205	
						40			J	0.20)	
	S1 90 CC 331 SND2	<5	4.2	31	1	174	<5	<5	24	0.108	
	51 90 CC 331 SU03	<5	2.0	49	15	84	29	7	21	0.237	
	S1 90 CC 331 S004	12	3.4	29	12	50	42	13	65	0.111	
	\$1 90 CC 331 SUH5	6	1.5	19	9	42	<5	<5	10	0.122	
	S1 90 CC 331 SNN6	<5	3.1	26	8	53	<5	<5	4	0.128	
	S1 90 CC 331 SIIN7	10	2.3	22	17	119	20	5	31	0.114	
	S1 90 CC 331 SNN8	<5	1.8	27	111	40	16	Ś	2	0.141	
	51 90 CC 331 SU09	<s .<="" td=""><td>1.9</td><td>55</td><td>6</td><td>43</td><td><5</td><td>Ś</td><td>2</td><td>0.092</td><td></td></s>	1.9	55	6	43	<5	Ś	2	0.092	
	S1 90 CC 331 S010	10	2.1	75	14	239	21	9	5	0.079	
	\$1 90 CC 331 S011	10	1.6	29	19	57	<5	<5	4	0.135	
_	S1 00 CC 334 (1910										
	S1 90 CC 331 S012	1	1.4	32	22	61	16	9	3	0.190	
	S1 90 CC 331 SN13 S1 90 CC 331 SN14	8	1.9	24	12	4N 24	<5	<5	3		
	S1 90 CC 331 S015	13 8	1.3	37 16	11 9	36 44	11	6	9	0.041	
	S1 90 CC 331 S016	8	1.6 3.3	42	9 17	44 59	7 29	<5 5	6 8	0.036	
			ل ، ل ·····	ч. 	T 1		<i>L</i> /	J	Ð	0,239	
	\$1 90 CC 331 S017	30	2.7	32	32	66	18	7	10	0.168	
	S1 90 CC 331 S018	5	1.6	33	15	52	21	<5	5	0.150	
	\$1 90 CC 331 S019	6	3.9	39	8	180	<5	7	16	0,086	
	S1 90 CC 331 SN20	15	1.5	87	37	272	32	6	5	D.249	
_	\$1 90 CC 331 S021	<5	0.7	25	7	253	<5	<5	1 0-	<0.010	
	S1 90 PH 331 SN18	7	n.8	25	14	28	<5	<5	2	0.250	
	S1 90 PW 331 S019	15	1.3	38	12	50	<5	š	2	0.194	
	S1 90 PH 331 S020	<5	1.7	17	12	48	<u>دې</u>	5	3	0.221	
	S1 90 PW 331 S021	7	1.9	49	12	64	9	8	ž	0.233	
	S1 90 PW 331 SN22	<5	1.9	69	12	78	G	6	7	0.103	

North Vancouver, B.C.

•

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPPENSPECTION & TESTING SERVICES	
---	--

REPORT: V90-	02059 0							EC-9U			
nci 041. 970-	0603730						PH	ROJECT: 33	51 	. <u></u>	PAGE 4
SAMPLE	FI ENENT	Au 30g	Ag	Cu	Рb	Zn	As	Sb	No	lig	
NUMBER	UNITS	PPB	PPH	PPN	PPM	PPN	PPN	PPh	PPH	PPN	
S1 90 PW 331	5023	11	1.4		10						
S1 90 PH 331				22	19	86	<5	6	7	0.155	
S1 70 PM 331		13	1.6	47	9	37	31	ও	2	0.481	
S1 90 PW 331		8	1.7	31	17	69	8	7	5	0.105	
		7	1.6	31	14	41	S	<5	2	0.251	
\$1 90 PN 331	5027	8	2.8	26	10	34	<5	5	2	0.418	<u></u>
S1 90 PH 331		10	1.5	14	15	34	<5	6	3	0.159	
S1 90 PW 331		16	1.2	20	13	45	<5	(5	4	0.209	
S1 90 PW 331	SD3D	9	1.9	42	11	44	<5	<5	4	0.158	
S1 90 PW 331	SR31	9	1.6	20	13	27	<5	<5	3	0,101	
S1 90 PN 331	\$032	12	1.7	19	11	34	<5	<5	5	0.866	
S1 90 PN 331	\$1133	6	0.8	12	9	27	<5	<5	i	0.163	
S1 90 PW 331		6	2.2	26	15	53	14	3	5	0.192	
S1 90 PW 331		<Š	0.7	15	13	35	<5	<5	2	0.102	
S1 90 PH 331		6	1.1	13	20	43	<5	<5	7	0,078	
S1 90 PW 331		9	2.4	60	11	52	10	6	4	0.162	
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					-		
SI 90 PW 331		11	2.8	24	20	43	<5	<	4	0.076	
S1 90 PW 331	S039	24	1.9	21	9	31	16	<5	Э	0.114	
S1 90 PW 331	S040	<5	2.0	55	9	38	< 5	<5	5	0.080	
\$1 90 PW 331	S041	6	2.3	32	11	47	<5	<5	2	0.158	
\$1 90 PH 331	\$042	<5	2.2	33	11	48	7	8	1	D.173	
SI 90 PH 331	\$843	6	1.7	70	8	61	11	<5	4	0.181	-
S1 90 PH 331	S1144	11	1.8	41	8	90	15	(5	2	0.273	
S1 90 PW 331	S845	<5	2.2	33	18	34	8	5	3	0,250	
S1 90 PH 331		6	1.7	53	9	43	8	Ś	3	0.123	
S1 90 PN 331		5	1.8	2D	8	47	<5	<5	2	0.143	
S1 90 PW 331	¢0/0		• /	()		10					•
51 70 PW 331 51 90 PW 331		8	1.4	63	11	12	8	<5 (5	2	0.231	
S1 90 PW 331		<5 7	1.9	28	5	36	<5 /F	<5 - (5	2	D.212	
S1 90 PW 331			3.1	12	1N 8	32	<5	<5	2	0,173	
S1 70 PW 331 S1 70 PW 331		6	2.8	23	9	42	8	<5	3	0.113	
	ددياه	11	1.8	34	11	51	8	<5	3	0.208	
S1 90 PW 331		8	1.8	23	11	49	(5	<5	2	0.141	
S1 90 PW 331		<5	1.1	31	9	41	12	<5	2	0.089	
S1 90 PW 331		6	3.0	26	14	49	9	<5	10	0.198	
S1 90 PW 331		<5	1.5	31	17	157	13	<5	26	0.065	
\$1 90 PW 331	SU58	<5	1.8	40	12	36	9	7	7	D.137	
S1 90 PW 331	\$059	<5	1.9	27	9	40	6	<5		0.106	
\$1 90 PN 331		(5	1.8	23	11	29	<5	6	4	0.191	
S1 90 PW 331		12	2.6	31	13	44	9	10 10	6	0.265	
S1 90 PW 331		<5	1.6	34	17	44 91	19	۲0 ۲0	4	0.182	
S1 90 PH 331		10	1.8	24	8	7L 41	-17 -{5	<5	я 3	0.10/ 0.176	
		111	1.0	5.4	ų	71	1	NU	J	N.110	

Bondar-Clegg & Company Ltd.

130 Pemberton Ave.

North Vancouver, B.C.

• -V7P 2R5

۶. ⊾ *

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF	INCHCAPE INSPECT	CTON& US	INGSTRUCTS

REPORT: V90-D205	9.0						NTE PRINTE ROJECT: 33			PAGE 5
SAMPLE Number	FLEMENT AU 30g UNITS PPB	Ag PPM	Cu PPN	f'b PPN	Zn PPN	As PPN	Sb PPH	No PPM	lig PPN	
S1 90 PH 331 SII6		1.5	18	7	38	<5	<5	3	0,095	
S1 90 PN 331 S06		1,5	13	8	31	< <u>s</u>	-(5	З	0.094	
\$1 90 PW 331 SN6		1.7	13	8	124	<5	<5	11	0.049	
S1 90 PM 331 SN6	8 <5	1.7	22	10	41	3	<5	3	0.154	
S1 90 PN 331 SN6	9 <5	0.5	15	9	38	5	(5	2	0.116	
S1 90 PH 331 SN7	A <5	1.7	21		55	<5	S	2	0.171	
S1 90 PW 331 S07	1 <5	1.7	20	12	37	<5	5	3	0,175	
S1 90 PW 331 SN7	2 11	1.3	18	11	51	<5	<5	Э	0.088	
51 90 PW 331 S07	3 6	1.7	48	19	67	11	8	13	0.144	
S1 90 PW 331 SN7	4 <5	1.5	26	11	55	<5	<5	5	0.109	
S1 90 PH 331 S87	5 6	1.4	29	14	42	1	6	3	0.205	
SI 90 PW 331 SN7	6 12	1.7	37	20	45	70	٢Š	1	0.243	
S1 90 PW 331 S07		0.7	13	10	27	s	<5	2	0.123	
S1 90 PW 331 SN7		1.6	18	11	52	<5	<5	1	0.112	
\$1 90 PW 331 SOB	n < 5	3.4	28	8	59	s	<5	2	0.105	
S1 90 PN 331 SN8	1 <5	1.4	19	8	213	<5	<5	5	0.307	
\$1 90 PW 331 \$082	2 18	5.2	17	13	24	<5	<5	4	0.156	
S1 90 PW 331 S08		4.5	34	25	50	21	8	3	0.331	
51 90 X 331 SUN1	9	2.4	26	i1	75	8	6	5	0.186	
\$1 90 X 331 SDD2	161	2.8	98	41)	101	127	12	9	0.228	
S1 90 X 331 SUN3	26	2.8	34	18	102	26	8		0.313	
S1 90 X 331 SNN4	 9	1.5	100	20	220	18	<u>د</u>	4	0.235	
\$1 90 X 331 SIMS	(5	1.9	31	14	78	8	7	4	0.235 0.285	
S1 90 X 331 SDN6	6	1.8	28	18	109	21	7	5	0.278	
S1 90 X 331 SUN7	<5	1.6	42	18	110	23	<5	4	0.187	
S1 90 X 331 SAN8	6	1.7	24	11	54	30	6	3	0.167	
\$1 90 X 331 SIIN9	7	2.5	25	12	56	s	5	3	0.166	
S1 90 X 331 S010	'n	2.0	35	13	52	15	<5	3	0.166	
T1 90 AW 331 (PRE	FIX)				<i>~</i> C	1.9		,	0.100	
11 L001 40+68F	11	1.0	272	15	494	20	<5	4	0.217	
T1 L002 42+35E	155	2.8	226	41	561	84	15	13	0.111	·
T1 L0028 14+30	6	1.3	51	13	1139	26	<5	4	0.116	
T1 L003 45+45E	29	2.4	262	15	344	26	8	4 10	0.108	
T1 L005 1+90F	10	1.6	87	13	57N	34	9	44	0.100 U.194	
T1 L006 3+0NE	11	1.8	71	10	58	47	8	26	0.154	
T1 L007 3+85F	19	2.0	89	9	492	33	7	17	0.100	
T1 L008 10+75E	18	1.7	109	23	457	63	i 0	26	0.139	
11 L004 2+97W	< <u>5</u>	1.3	41	13	385	19	۲۵ ۲۵	20 4	0.137	
T1 LOOS 7+42H	25	3,8	128	58	535	138	9		D,206	
T1 LDD6 1+23W	9	1.3	53	16	1307	24	< <u>,</u>	3	0.077	

-Bondar-Clegg & Company Ltd.

130 Pemberton Ave.

V7P 2R5

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & LESTING SERVICES DATE PRINTED: 12-DEC-90 REPORT: V9D-02059.0 PROJECT: 331 PAGE 6 SAMPLE FLEHENT Au 30g Ag Cu Pb Zn As Sb No Hg NUMBER UNITS PP8 PPN PPN PPH PPH PPH PPN PPN PPN T1 L007 5+57W <5 1.1 33 23 195 24 <5 0.088 3 T1 L008 14+27W **<**5 1.1 315 9 627 14 <5 5 0.079 T1 90 CC 331 LUBI 8 1.1 33 795 16 38 9 33 0.032 **T1 90 CC 331 L002** 7 1.0 36 8 264 9 <5 5 0.036 T1 90 CC 331 LUR3 6 1.2 9 63 231 24 <5 6 0.046 T1 90 CC 331 L005 55 1.4 284 13 199 21 7 7 0.060 T1 90 CC 331 1006 44 1.4 289 17 197 35 <5 0.089 7 T1 90 CC 331 LNN7 35 1,4 0.058 321 17 207 33 10 1 T1 90 CC 331 1008 9 1.3 311 14 201 28 7 5 0.079 T1 90 CC 331 L009 6 1.5 324 16 205 36 8 7 0.070 T1 90 CC 331 | N10 51 1.7 328 17 203 29 1 9 0.074 T1 90 CC 331 L011 124 1.5 385 15 195 47 8 8 0,059 T1 90 CC 331 L012 64 1.4 382 2117 38 16 1 9 0.1155 T1 90 CC 331 L013 54 1.6 377 16 195 48 8 9 0.073 11 90 ST 331 1001 1.2 45 6 13 246 33 7 5 0.102 T1 90 X 331 LOO1 20 1.3 78 24 420 35 6 4 0.059

Bondar-Clegg & Company Ltd. > -130 Pemberton Ave.

North Vancouver, B.C. V7P 2R5

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHEAPE INSPECTION & 14-4118-51 RV/CES

<u>.</u>				[D i 23-NC	IV-90	
· <u> </u>	REPORT: V90-02	126.1					PR	OJECT: 33	1		PAGE 1
	SAMPLE NUMBER	ELEMENT Au 30g UNITS PPB	Ag PPM	Cu PPM	Pb Ppn	Zn PPM	As PPN	S6 PPM	No PPM	Hg PPM	
	S1 S111 0+00 S1 S112 0+50E	11 9	3.5 2.4	96 157	12 14	164 158	31 27	7	5 5	0.195 0.234	
	S1 S112 0+S6E S1 S113 1+00E S1 S114 1+50E	20 27	1.9	59 72	12 35	195 463	34 141	<5 29	27 105	0.440 0.437	
	S1 S115 2+D0E	17	2.9	44	14	94	26	7	10	0.248	•
	S1 S116 2+50E S1 S117 3+00E	11 15	1.7 1.7	34 54	14 14	151 196	27 49	<5	26 14	0.143 0.187	
	S1 S117 5+00C S1 S118 3+50E S1 S119 4+00E	13 18 29	2.0	24 61	11 16	190 97 146	31	9	9	0.281	
	S1 S120 4+50E	29	4.2	51	14	146	44 39	9	15 30	0.180 0.160	
	\$1 \$121 5+00E	21	3.2	91	14	693	53	11	71	0.351	
	S1 S122 5+50E S1 S123 6+00E	24 24	3.7 3.5	57 43	10 10	130 75	19 21	<5 6	8 5	0.320 0.438	
	\$1 \$125 7+00E \$1 \$126 7+50E	15 26	2.0 1.7	54 51	15 б	146 129	31 18	6 <5	4	0.190 0.158	
	\$1 \$127 8+00E	19	2.6	135	6	254	26	<5	3	0.219	
	S1 S128 8+50E S1 S129 9+00E	10 12	1.6 1.9	42 31	8 11	94 82	32 27	6 9	2 6	0.184 0.195	
	S1 S130 9+50E S1 S131 10+00E	13 48	0.2 2.5	12 47	10 17	31 99	<5 46	<5 <5	2 5	0.107 0.315	
	S1 S132 10+50E	25	2.5	50	15	75	27	8	4	0.229	
	S1 S133 11+00E S1 S134 11+50E	30 61	1.8 1.1	29 44	15 6	52 146	35 19	6 6	10 5	0.046 0.086	
	\$1 \$135 12+00E	34	1.4	28	11	66	17	5	4	0.108	

....

P

٠

Bondar-Clegg & Company Ltd. • - 130 Pemberton Ave.

North Vancouver, B.C.

► - V7P 2R5

.

٠

•

(604) 985-0681 Telex 04-352667

Geochemical Eah Report

A DIVISION OF INCREAPE INSPECTION & 11 STING STRUCTS.

REPORT:	V90-02130.0							18-491W78 03EC1: 33	+-50···-·	PAGE 1		
SAMPLE NUMBER	ELEMENT UNITS	Au 3Dg PP8	Ag PPM	Cu PPH	Pb PPH	Zo Oph	As PTM	So PPM	No PPH	Ko PPM		
S1 90 RV	331 \$049	<5	2.1	 6D	26	· 70			7	0.22		
	331 \$050	<5	2.3	26	23	48	29	Ŗ	Ş	0.213		
	331 SO51	7	1.6	28	21	43	12	7	6	0.074		
	331 \$057	<5 	2.4	41	23	80	25	13	5	0,163		
51 90 KV	331 \$053	<5	2.1	45	71			17	<u>5</u>	0,209		
	331 SO54	6	5.0	40	13	47	28	ò	13	0,226		
	331 S055	6	1.4	20	17	46	q	<u>۲</u>	1	0.088		
	331 \$056	7	0.B	12	16	22	· ŗ	<5	3	0.10:		
	331 S057 331 S058	9	2,4	33 oc	77	113	38	7	7	0,280		
01 90 KV	301 3030	8	2.1	85	33	1 20	: <u>?</u>		10	0.198		
	331 SD59	1	2.5	110	31	108	34	ġ	7	0.425		
	331 S060	7	1.9	51	35	76	23	8	6	0.266		
	331 S052	11	1.2	16	10	26	15	<5	3	0,302		
	331 SO63 331 SO64	20 5	1.8 1.5	42 32	21 10	40 35	ןן 5	۲ ج2	5	0.212		
01 00 64		J	1		10			······	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
T1 90 RV	331 SO65 331 (PRE)	<5	2.3	29	15	47	11	·5	3	0.131		
T1 L008		<5	1.2	64	23	214	35	ġ	14	0.038		
T1 L009		6	1.6	50	17	209	7ฏ	13	10	0.078		
	MOSS HATT	6	0.9	39	10	119	13	6	3	0.146		
T1 L011		<\$	1.5	118	33	225	42	11	B	0.014		
	·											_
	· · · · ·											
				-								
									• • •=			
							·					·

Bondar-Clegg & Company Ltd. 77130 Pemberton Ave.

North Vancouver, B.C.

<u>بر م</u>

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPT INSPECTION & ITS HING SERVICES.

 REPORT: V90-02 SAMPLE NUMBER	269.0 ELEMENT							IE PRINTE OJECT: 33			DACE 1	
	FLEMENT									PAGE 1		
	UNITS	Au 30g PP8	Ag PPM	Cu PPN	Pb PPN	Zn PPM	As PPM	Sb PPM	Ho PPM	Hg PPM		
S1 90 JJ 331(P		4.02	4.5		~~~							
S1 4+60N 2+25W S1 4+60N 2+20W		108 7	1.5 1.8	165 82	60 24	441	132 32	<5 /5	34	0.140		
S1 4+60N 2+15W		17	1.6	82 94	31	103 97	52 53	رج ح	7 9	0.168 0.157		
 S1 4+60N 2+10W		11	1.5	11	15	119	33	<5	4	0.193		
S1 4+60N 2+05W		19	1.4	109	24	131	44	<5	4	0.083		
S1 4+60N 2+00W		404	1.5	229	45	120	254	<5	11	0.113		
S1 4+60N 1+95N		3332	0.9	592	110	294	1198	14	15	0.276		
S1 4+60N 1+90W S1 4+60N 1+85W		2216 19	0.7 1.0	328 53	73 18	161 88	882 23	9 <5	16 4	0.209		
 	····	17			10			····	4 	0.144		
S1 4+60N 1+80W		1	1.7	34	14	58	35	<5	4	0.249		
S1 4+60N 1+75W		9 7	2.4	47 45	23	97 97	32	<5 (5	8	0.252		
S1 4+50N 2+25W S1 4+50N 2+20W		/ 8	1.4 1.3	45 91	18 28	85 95	36 51	<5 <5	6 7	0.143 0.125		
 S1 4+50N 2+15W		218	1.5	181	47	186	199	<5	, 15	0.204		
 S1 4+50N 2+10W		306	1.0	154	44	167	425	<5	б	0.117		
S1 4+50N 2+05W		83	1.3	178	28	127	108	<5	7	0.160		
S1 4+50N 2+00W		360	1.4	175	31	149	137	<5	б	0.117		
S1 4+50N 1+95W		299	0.8	43	16	64	43	<5	4	0.125		
 S1 4+50N 1+90W	····-	131	1.4	102	25	103	59	<5	4	0.138	· · ·	
S1 4+50N 1+85W		16	1.0	42	25	56	33	<5	8	0.147		
S1 4+50N 1+80W		<5	2.0	55	14	127	25	<5	4	0.143		
S1 4+50N 1+75W S1 4+40N 2+25W		14 14	1.5 2.7	47 55	32 18	65 49	51 29	<u>رج</u>	12	0.151		
S1 4+40N 2+20W		161	3.2		57	45	29	<5 <5	4 14	0.245 0.227		
 S1 4+40N 2+15W		113	2.3	100		151	105	/F		0 100		
S1 4+40N 2+10W		115	1.3	152	35 32	151 131	195 149	<5 <5	9 7	0.199 0.221		
S1 4+40N 2+05N		427	1.5	190	29	140	143	<5	, 13	0.161		
S1 4+40N 2+00W		867	1.3	63	20	73	41	<5	9	0.170		
 S1 4+40N 1+95W		463	1.2	62	19	82	45	<5	6	0.121		
 S1 4+40N 1+90W		221	1.7	176	30	177	144	<5	8	0.151		
51 4+40N 1+85W		194	0.6	987	60	303	130	6	13	0.138		
S1 4+40N 1+80W		20	0.9	156	14	168	57	<5	6	0.135	· •	
S1 4+40N 1+75W	DDEN	19	1.7	34	28	56	27	<5	15	0.161	-	
 S1 90 PW 3315 (· ·			<u> </u>	·			•		
 51 2+60N 0+25W		7	3.5	27	11	25	10	<5	4	0.315		
S1 2+60N 0+20W		< <u>s</u>	1.3	20	16	41	11	<5	5	0.139		
S1 2+60N 0+15W S1 2+60N 0+10W		14 <5	1.3 1.3	42 27	18 12	33 32	8 10	<5 /5	10 5	0.267		
S1 2+60N 0+05W		<5 <5	1.3	21	12 17	32 34	10 11	<5 <5	5 4	0.191 0.214		

Bondar-Clegg & Company Ltd.

130 Pemberton Ave.

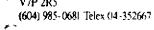
. -

.

North Vancouver, B.C.

* 1V7P 2R5

(604) 985-0681 Telex 04-352667


Geochemical Lab Report

A DIVISION OF INCHEAPE INSPECTION & TESTING SERVICES

DC	PORT: V90-02	260 0							<u>UE PRINIE</u>		. <u>1-90</u>	
		209.0							ROJECT: 3	<u>. </u>		PAGE 2
	MPLE Mber	ELEMENT UNITS	Au 30g PP8	Ag PPM	Cu PPH	Pb Ppn	Zn PPM	As PPM	Sb PPM	Ho PPM	Hg PPH	
SI	2+60N 0+00B		<5	1.4	24	15	37	13	<5	3	0.185	
\$1	2+60N 0+10E		17	2.6	38	19	23	14	<5	7	0.267	
S1	. 2+60N 0+15E		14	1.8	41	18	56	22	<5	10	0.264	
	2+60N 0+20E		7	2.1	54	14	60	37	<5	5	0.264	
\$1	2+60N 0+25E		42	1.3	201	26	94	46	<5	14	0.160	
	2+60N 0+30E		48	1.3	142	32	59	37	<5	18	0.134	
	2+60N 0+35E		149	2.1	190	34	61	63	<5	32	0.149	
	2+60N 0+40E		220	3.1	903	78	290	310	<5	22	0.147	
	2+60N 0+45E		173	3.0	693	63	251	163	<5	25	0.161	
\$1	. 2+60N 0+50E		196	3.3	881	113	282	267	<5	16	0.165	
	2+50N 0+25W		<5	0.8	27	б	45	12	<5	2	0.130	
	2+50N 0+20W		38	1.8	74	18	61	37	<5	4	0.305	
	2+50N 0+15W		30	1.3	20	21	23	<5 - E	<5	5	0.216	
	2+50N 0+10W		27	1.3	20	20	27	<5	<5 (5	4	0.295	
	2+50N 0+05W		293	1.2	138	15	113	38	<5	10	0.127	
	2+50N 0+00B	-	14	1.3	27	15	59	17	<5	10	0.197	
	2+50N 0+10E		17	2.5	19	15	45	9	<5	4	0.214	
	2+50N 0+15E		46	0.7	22	22	40	7	<5	14	0.187	
	2+50N 0+20E		87 22	2.0	134	17	52	129	<5 .5	29	0.244	
	2+50N 0+25E		33	1.3	36	24	41	15	<5	17	0.215	
	2+50N 0+30E		15	1.5	42	25	68	14	<5	14	0.247	
	2+50N 0+35E		1	2.2	38	15	51	24	< <u>s</u>	6	0.286	
	2+50N 0+40E		<5 22	2.8	64	6	42	20	<5 - F	4	0.214	
	2+50N 0+45E		22	3.6	111	24	80 1 41	26	<5 ⁄5	17	0.194	
J1	2+50N 0+50E		82	2.0	198	31	141	84	<5	17	0.134	
	2+40N 0+25W		13	0.4	75	18	99	33	<5	3	0.076	
	2+40N 0+20N		7	1.7	73	14	104	20	<5	5	0.176	
	2+40N 0+15N		19	5.4	58 96	22	51	24	<5 25	9	0.446	
	2+40N 0+10N 2+40N 0+05N		21 30	2.6 1.0	96 28	20 16	45 37	12 15	<5 <5	18 191	0.289 0.130	
	2+40N 0+008L	•	8	1.3	30 25	12	40	20	<5 ~5	6	0.194	
	2+40N 0+05E 2+40N 0+10E		11	3.5 2.2	35 25	13 19	40 37	8 6	<5 <5	6	0.336 0.167	
	2+40N 0+10E		170	3.4	211	30	57 48	159	<5 <5	6 17	0.308	
	2+40N 0+20E		26	3.0	56	26	28	35	<5	б	0.300 0.300	
e1	2+40N 0+25E		35	1.5	100	12	122	20	 		0.040	• • • • • • • • • • • • • • • • • • •
	2+40N 0+25E		52	0.9	450 2 12	17	132 88	20 47	<5 <5	6 12	0.049 0.114	
	2+40N 0+35E		62	1.6	556	20	48	47 94	< <u>s</u>	28	0.114 0.170	
	2+40N 0+40E		20	1.5	114	18	54	45	<5	11	0.182	
	2+40N 0+45E		46	1.9	117	20	118	43	<5	22	0.271	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C.

V7P 2R5

Geochemical Lab Report

A DIVISION OF INCHEAPE INSPECTION & TENTLAS SERVICES.

		260.0			1				IE PRINIE		1-90	
	REPORT: V90-02	269.0]			L_HK	OJECT: 33	<u></u>		PAGE 3
	SANPLE NUNBER	ELEMENT Units	Au 30g PP8	Ag PPM	Cu PPM	Pb PPM	Zn PPM	As PPM	Sb Ppn	No PPN	Kg PPM	
	S1 2+40N 0+50E S1 90 RV 331 (86	1.7	472	25	179	52	<5	23	0.216	
	S1 3+10N 0+00E		13	2.1	68	9	53	32	<5	8	0.289	
	S1 3+10N 0+05E S1 3+10N 0+10E		28 104	2.2 1.8	83 233	20 39	77 117	34 104	<5 <5	8 14	0.248 0.271	-
					<u>ک</u> ار کار ا			104 	······································	14 	0,2/1	
	S1 3+10N 0+15E S1 3+10N 0+20E		675	2.3	680 319	75	194	256	<5 (5	18	0.179	
	S1 3+10N 0+20E		316 78	2.2 2.6	318 231	2 4 22	57 73	125 190	<5 <5	26 18	0.217 0.233	
	S1 3+10N 0+30E		205	2.9	1013	39	135	328	<5	33	0.175	
	\$1 3+10N 0+35E		151	1.0	1558	50	129	191	11	34	0.135	
· • • • •	\$1 3+10N 0+40E		36	0.8	346		169	36	<5		0.062	·
	S1 3+10N 0+45E		122	2.2	1466	32	243	136	<5	16	880.0	
	S1 3+10N 0+50E S1 3+10N 0+55E		36	1.3	591	22	179	58	<5 (5	11	0.095	
	S1 3+10N 0+60E		44 38	1.9 1.0	400 234	27 15	123 184	92 68	<5 <5	22 12	0.201 0.128	
		·····						· - · · · - · · · · · · · · · · · · · ·				
	S1 3+10N 0+65E		96 10	2.4	122	20	121	86	<\$ 	18	0.247	
	S1 3+10N 0+70E S1 3+10N 0+75E		18 79	1.6 3.4	226 243	19 24	143 180	100 · 77	<5 <5	5 10	0.063 0.209	
	S1 3+00N 0+00E		17	3.6	82	26	130	49	<5 <5	18	0.198	
	S1 3+00N 0+10E		26	1.2	118	21	143	45	<5	6	0.120	
	S1 3+00N 0+20E		481	3.1	567	33	115	191	<5	32	0.198	
	\$1 3+00N 0+25E		61	2.3	310	27	177	124	<5	20	0.200	
	S1 3+00N 0+30E		45	1.3	639	19	182	169	<5	12	0.101	
	S1 3+00N 0+35E S1 3+00N 0+40E		165 86	0.6 2.2	1699 1312	54 49	281 251	405 264	<5 <5	26 22	0.090 0.103	
							£.21					
	S1 3+00N 0+45E		288	2.0	678	58	247	294	< <u>5</u>	11	0.105	
	\$1 3+00N 0+50E \$1 3+00N 0+55E		208 75	2.5 2.5	613 279	36 21	238 136	130 122	<5 <5	11 20	0.107 0.235	
	S1 3+00N 0+60E		360	3.3	2245	126	296	493	10	31	0.084	
	\$1 2+90N 0+05E		26	2.6	185	24	252	73	<5	19	0.124	
	S1 2+90N 0+10E		9	2.9	115	15	222	37	<5	7	0.154	
	S1 2+90N 0+15E		9 0	3.5	259	34	106	91	<5	11	0.297	
	S1 2+90N 0+20E		239	2.8	468	21	105	116	<5	19	0.161	
	S1 2+90N 0+25E S1 2+90N 0+30E		48 30	2.4 0.8	197 209	22 16	121 183	116 70	<5 <5	17 9	0.241 0.085	
	\$1 2+90N 0+35E		201	2.5	1248	51	164	355	<5 (5	25	0.145	
	S1 2+90N 0+40E		113	1.9	836	37	132	277	<5	24	0.165	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

ي بو

.

, -

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

									TE PRINTE		1-90	
	REPORT: V90-02	270.0						PR	OJECT: 33	1		PAGE 1
	SAMPLE NUMBER	ELEMENT Units	Au 30g PPB	Åg PPN	Cu PPM	P5 PPM	Zn PPN	As PPN	Sb PPM	No PPM	K9 PPM	
	S1 90 AW 331 (PRE)									<u> </u>	
	S1 4+70N 2+95V		6	1.5	51	15	89	29	<5	5	0.175	
	S1 4+70N 2+90		<5	3.4	43	26	77	64	12	8	0.219	
	S1 4+70N 2+85N		15	2.4	69	18	78	30	<5	6	0.246	
	\$1 4+70N 2+80		29	7.2	187	44	637	154	8	91	0.357	
	\$1 4+70N 2+75		24	3.7	95	43	225	100	22	33	0.245	
	S1 4+70N 2+70V		9	1.2	63	39	130	34	<5	10	0.103	
	S1 4+70N 2+65M		27	2.1	134	53	129	89	8	8	0.226	
	S1 4+70N 2+60W		21	9.2	505	152	453	89	<5	43	0.245	
	\$1 4+60N 2+95N		11	0.9	43	10	102	19	<5	2	0.113	
	S1 4+60N 2+90N		9	1.3	68	17	122	52	<5	5	0.188	·····
	S1 4+60N 2+85W		52	1.3	46	11	B3	31	<5	4	0.214	
	\$1 4+60N 2+80W		13	1.4	52	15	60	35	<5	4	0.198	
	51 4+60N 2+75W		11	1.2	75	15	146	51	<5	4	0.160	
	S1 4+60N 2+70W		<5	1.9	98	8	131	50	<5		0.162	·····
-	\$1 4+60N 2+65N		<5	1.8	66	8	125	42	<5	8	0.138	
	S1 4+60N 2+60W		20	3.4	112	40	355	92	11	52	0.197	
	S1 4+60N 2+55N		42	7.4	200	43	706	90	15	28	0.294	
	S1 4+50N 2+95W		14	1.1	57	16	123	41	<5	4	0.153	
	S1 4+50N 2+90W		8	1.5	48	19	92	53	<5	5	0.188	
	\$1 4+50N 2+85W		51	1.0	91	18	133	45	<5	6	0.166	
	S1 4+50N 2+80W		37	1.1	106	16	141	48	<5	5	0.119	
	S1 4+50N 2+75W		12	2.0	64	22	94	50	<5	12	0.193	
	S1 4+50N 2+70W		11	2.6	93	18	108	73	16	9	0.097	
	S1 4+50N 2+65W		1	2.5	89	19	168	68	6	22	0.120	
	S1 4+50N 2+60W		22	3.3	102	41	232	91	9	55	0.196	
	S1 4+50N 2+55W		41	2.7	248	69	233	140	<5	19	0.129	
	S1 4+40N 2+95W		5	1.2	53	11	88	21	<5 	3	0.139	
	S1 4+40N 2+90W S1 4+40N 2+85W		10 11	1.1 1.3	88 63	19 15	182 144	46 52	<5 <5	4 5	0.160 0.191	
	S1 4+40N 2+80W		15	1.4	56	11	102	28	<5 /5	4	0.177	
	S1 4+40N 2+75W S1 4+40N 2+70W		6 15	1.1 1.7	86 83	11 17	130 136	31 58	<5 <5	7	0.137	
	S1 4+40N 2+65W		10	1.5	58	20	109	58 59	ND 7	12 12	0.208 0.174	
_	S1 4+40N 2+60W		10	1.6	59	10	96	37	<5	33	0.128	
	S1 4+40N 2+55N		14	4.9	84	20	163	48	7	25	0.304	
	S1 90 CC 331 (PRE)	• '			LV	243	τu	,	LJ	UIJUT	
	S1 4+60N 1+10W		232	3.9	358	71	277	327	<5	62	0.257	
	\$1 4+60N 1+05W		83	3.5	212	52	125	264	16	41	0.224	
	S1 4+60N 1+00N		539	4.6	187	100	504	345	<5	15	0.494	

 Bondar-Clegg & Company Ltd.

 ~ 130 Pemberton Ave.

 North Vancouver, B.C.

 ∨ 7P 2R5

 (604) 985-0681 Telex 14-352667

.....

Geochemical Lab Report

A DIVISION OF INCHEAPERINSPECTION & TESTPRESURVICES

RE	PORT: V90-02	270.0							DATE_PRINTE PROJECT: 33			PAGE 2
	NPLE M8er	ELEMENT	Au 30g PP8	Ag PPN	Cu PPM	РЬ РРМ	Zn PPM	As PPM	Sb PPM	No PPN	H9 PPM	
	4+60N 0+95N		68	3.0	153	35	165	113	<5	18	0.244	
	4+60N 0+90N		114	2.7	52	81	93	120	<5	13	0.213	
	4+60N 0+85W		30	2.7	45	31	69	70	9	13	0.187	
	4+60N 0+80M		24	1.2	57	16	111	95	<5	12	0.199	
	4+60N 0+75W	· · ···	79	1.5	87	24	151	185	<5	13	0.250	
	4+60N 0+70W		90	1.6	109	19	272	136	<5	9	0.279	• · · · · • • • • • • • • • • • • • • •
	4+60N 0+65W		331	2.2	333	44	368	501	<5	7	0.161	
	4+60N 0+60N		68 20	2.2	118	16	179	112	<5 -	8	0.217	
	4+50N 1+25W 4+50N 1+20W		30 133	2.2 7.2	282 500	40	167 175	136	<5 /5	21	0.207	
			1 33	1.4	599	1218	175	373	<5	98	0.152	
	4+50N 1+15W		2021	5.2	559	467	424	1200	5	38	0.193	
	4+50N 1+10W		294	1.9	789	62	124	>2000	5	21	0.096	
	4+50N 1+05W		370	2.6	406	52	170	357	<5 (5	3B	0.201	
	4+50N 1+00W		359	3.8	801	88 102	451	470	<5 √5	69 26	0.275	
	4+50N 0+95W		253	4.7	228	102	304	337	<5	26	0.285	
	4+50N 0+90W		81	<0.2	193	40	156	167	9	13	0.323	
	4+50N 0+85N		104	<0.2	65	30	177	163	12	18	0.247	
	4+50N 0+80M		19	3.3	71	27	243	104	7	15	0.239	
	4+50N 0+75W 4+50N 0+70W		49 16	1.9	100 70	35 13	205	156	18	17	0.231	
			10	2.4	/V	13	187	63	<5	13	0.238	
	4+50N 0+65N		25	2.2	87	18	215	86	<5	13	0.176	
	4+50N 0+60W		24	3.1	167	38	230	13B	17	16	0.176	
	4+50N 0+55W		32	2.5	93 204	21	184	82	<5 <5	13	0.167	
	4+50N 0+50N 4+50N 0+45W		29 21	1.6 2.2	206 102	25 21	335 233	98 85	<5 <5	12 18	0.271 0.248	
	אנריט מטעיר אין		£1	£+£	102	<u>, </u>	233		<u>\</u> j	10	0,240	
	4+50N 0+40W		16	2.7	78	14	169	44	<5	13	0.327	···· ·· ·
	4+50N 0+35W		17	2.6	80	21	219	68 75	<5 	26	0.188	
	4+50N 0+30W		15	1.7	128	18	213	75	<5 45	11	0.111	
	4+50N 0+25W 4+50N 0+20W		34 16	2.8 2.2	194 115	22 22	253 202	121 71	<5 <5	22 18	0.151	
			10	6+6	113		202		<u>ر</u> ،	10	0.209	
	4+50N 0+15W		21	2.7	229	28	465	196	<5	47	0.241	••
	4+50N 0+10N		23	2.8	224	56	744	189	8	31	0.189	
	4+50N 0+05W	00F	18	3.3	225	25	472	126	<5 	24	0.203	
51	90 CC 331 L-	005	85	0.9	89	29	164	108	<5	23	0.085	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C.

• V7P 2R5

<u>r -</u>

(604) 985-0681 Telex 04-352667 -

Geochemical **Eab** Report

A DIVISION OF INCHCAPT INSPECTION & ITS DOCUMENTS OF

SAMPLE NUMBER ELEMENT Au 309 PPR Ag Cu Pb Zn Ac Sb Mo Ho S1 90 AW 331 (PRE) S1 2.2 240 99 134 152 -5 21 0.137 S1 0+500 1+50E 131 2.2 240 99 134 152 -5 21 0.137 S1 0+500 1+50E 72 1.6 281 794 1002 154 -5 21 0.137 S1 0+500 1+50E 71 2.4 312 726 729 69 51 0.020 S1 0+500 1+50E 71 2.4 327 726 729 69 51 0.109 S1 0+500 1+50E 72 2.6 251 1052 976 124 51 0.109 S1 0+500 1+60E 71 2.6 251 1065 32 5 10 0.92 S1 0+500 1+60E 71 2.6 251 1065 32 5 12		PAGE 1	I. - ₫Ŋ		IE-PR107E0)JECT: 331							0-02391.0	REPORT: V
S1 0+50N 1+50E 131 2.2 240 99 134 152 <5 21 0.137 S1 0+50N 1+55E 72 1.6 281 794 1002 154 <5 21 0.091 S1 0+50N 1+65E 71 2.4 337 726 749 89 <5 12 0.072 S1 0+50N 1+70E 84 2.5 309 920 731 101 .5 13 0.099 S1 0+50N 1+70E 84 2.5 309 920 731 101 .5 13 0.099 S1 0+50N 1+70E 42 2.6 251 1057 976 124 .5 10 0.109 S1 0+50N 1+95E 45 3.0 118 606 273 106 .5 12 0.111 S1 0+50N 1+95E .5 1.9 74 407 130 .5 2.4 0.184 S1 0+50N 2+05E 147 2.3 141 46 411 70 .5 2.0 0.184 S1 0+50N 2+05E 147 2.3										-	•		
S1 0+50N 1+55E 72 1.6 281 794 1002 154 -5 21 C.001 S1 0+50N 1+66E 91 2.4 332 813 812 102 -5 13 0.072 S1 0+50N 1+50E 84 2.5 300 920 731 191 -5 13 0.009 S1 0+50N 1+50E 84 2.6 251 1962 914 119 -5 11 0.113 S1 0+50N 1+50E 42 2.6 251 1962 976 124 -5 11 0.1092 S1 0+50N 1+50E 45 3.0 138 605 126 32 0.0092 S1 0+50N 1+50E 45 3.0 46 185 126 32 10 0.002 S1 0+50N 1+50E 45 3.9 46 185 126 32 31 0.103 S1 0+50N 1+50E 45 3.9 46 185 176 32 401 45 24 0.133 S1 0+50N 2+10E 57 1.6 138 23			0 1 3 7	· 1		10.3	126	٥٩	240		101		
S1 0+500 +160E 91 2.4 342 813 812 102 +5 13 0072 S1 0+500 +160E 71 2.4 337 736 739 69 +5 13 0072 S1 0+500 +1470E 84 2.5 309 920 731 191 +5 13 0099 S1 0+500 +1470E 42 2.6 251 1962 914 199 -5 14 0.113 S1 0+500 +1480E 45 3.0 138 606 273 106 +5 22 0095 S1 0+500 +1490E 125 3.1 97 407 190 79 +5 12 0.111 S1 0+500 +109E 125 3.9 46 185 126 32 401 130 75 12 0.111 S1 0+500 +109E 147 2.3 141 46 411 70 45 12 0.184 S1 0+500 +205E 147 2.3 143 23 255 400 73 45 26 0.133													
S1 0+500 1+65E 71 2.4 337 736 749 6.9 <5 12 0.040 S1 0+500 1+70E 84 2.5 309 920 731 191 .5 13 0.099 S1 0+500 1+70E 42 2.6 251 1067 976 124 .5 11 0.032 S1 0+500 1+80E 71 2.6 251 1067 976 124 .5 11 0.032 S1 0+500 1+80E 71 2.6 251 1067 976 124 .5 11 0.032 S1 0+500 1+99E 125 3.1 97 407 190 79 .5 12 0.111 S1 0+500 1+99E .5 3.9 46 185 126 32 .5 10 0.092 S1 0+500 2+00E 94 5.1 189 670 441 70 .5 24 0.133 S1 0+500 2+10E 57 1.6 138 23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
S1 0+50N 1+75E 42 2.6 251 962 914 119 -55 11 0.113 S1 0+50N 1+85E 71 2.6 251 1067 976 124 -5 11 0.022 S1 0+50N 1+85E 45 3.0 138 606 273 106 -5 22 0.095 S1 0+50N 1+95E -5 3.1 97 407 190 79 -5 12 0.111 S1 0+50N 1+95E -5 3.9 46 185 126 32 -5 10 0.092 S1 0+50N 2+05E 147 2.3 141 46 411 70 <5 24 0.183 S1 0+50N 2+05E 147 2.3 141 46 411 70 <5 20 0.133 S1 0+50N 2+05E 177 2.4 185 39 460 73 <5 26 0.140 S1 0+50N 2+205E 77 2.4 185 39 460 73 <5 26 0.140 S1 0+50N 2+205E 177													
S1 0+50N 1+80E 71 2.6 251 1057 976 124 -5 11 0.092 S1 0+50N 1+80E 45 3.0 138 606 273 106 -5 27 0.092 S1 0+50N 1+90E 125 3.1 97 407 190 79 -5 12 0.111 S1 0+50N 1+95E -5 3.9 46 185 126 32 -5 10 0.092 S1 0+50N 2+05E 147 2.3 189 670 447 101 -5 24 0.184 S1 0+50N 2+05E 147 2.3 148 46 411 70 <5 32 0.133 S1 0+50N 2+10E 57 1.6 138 23 225 240 51 <5 9 0.152 S1 0+50N 2+12E 30 1.8 198 25 240 51 3 0.161 3 S1 0+50N 2+12E 42 1.8 100 27 423 47 55 3 0.161 S1 0+50N 2+25E 42			0.000	13	:5	 191	731	920	306	2.5	84	+70E	S1 0+50N 1
S1 0+50N 1+85E 45 3.0 138 606 293 106 +5 22 0.095 S1 0+50N 1+90E 125 3.1 97 407 190 79 +5 12 0.111 S1 0+50N 1+90E 125 3.9 46 185 126 32 +5 10 0.092 S1 0+50N 2+00E 94 5.1 189 670 447 101 <5 24 0.184 S1 0+50N 2+00E 147 2.3 141 46 411 70 <5 12 0.133 S1 0+50N 2+10E 57 1.6 138 23 25 40 <5 11 0.060 S1 0+50N 2+15E 30 1.8 198 25 240 51 <5 26 0.140 S1 0+50N 2+20E 77 2.4 185 39 450 73 <5 26 0.140 S1 0+40N 1+50E 104 3.0 253 1976 1877 101 <5 8 0.161 S1 0+40N 1+60E 104 3.0				11									
S1 0+50N 1+90E 125 3.1 97 407 190 79 +5 12 0.111 S1 0+50N 1+95E +5 3.9 46 185 126 32 +5 10 0.092 S1 0+50N 2+00E 94 5.1 189 670 447 101 +5 24 0.184 S1 0+50N 2+0E 57 1.6 138 23 255 40 +5 11 0.089 S1 0+50N 2+10E 57 1.6 138 23 255 40 +5 11 0.089 S1 0+50N 2+20E 77 2.4 185 39 460 73 +5 26 0.140 S1 0+50N 2+20E 77 2.4 185 1040 73 +5 28 0.161 S1 0+50N 2+20E 77 2.4 185 39 460 73 +5 13 0.108 S1 0+40N 1+50E 272 2.0 369 249 290 98													
S1 0+50N 1+95E -5 3.9 46 185 126 32 -5 10 0.092 S1 0+50N 2+00E 94 5.1 189 670 447 101 -5 24 0.184 S1 0+50N 2+05E 147 2.3 141 46 441 170 <5 32 0.184 S1 0+50N 2+10E 57 1.6 138 23 255 40 <5 11 0.080 S1 0+50N 2+10E 77 2.4 185 39 460 73 <5 26 0.140 S1 0+50N 2+20E 77 2.4 185 39 450 73 <5 26 0.140 S1 0+40N 1+50E 272 2.0 369 249 290 98 <5 13 0.108 S1 0+40N 1+50E 104 3.0 151 1255 575 127 <5 17 0.221 S1 0+40N													
S1 0+50H 2+00E 94 5.1 189 670 447 101 <5 24 0.184 S1 0+50H 2+00E 147 2.3 141 46 411 70 <5			U.111	12			190	407	<u> </u>	3.1	125	+90E	51 U+5UN 1
S1 0+50H 2+05E 147 2.3 141 46 411 70 <5 32 0.133 S1 0+50H 2+10E 57 1.6 138 23 255 40 <5 11 0.080 S1 0+50H 2+10E 30 1.8 198 25 240 51 <5 9 0.152 S1 0+50H 2+20E 77 2.4 185 39 460 73 <5 26 0.140 S1 0+50H 2+20E 77 2.4 185 39 460 73 <5 26 0.140 S1 0+40H 1+50E 272 2.0 369 249 290 98 <5 13 0.108 S1 0+40H 1+50E 147 3.0 151 1255 575 127 <5 17 0.221 S1 0+40H 1+60E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40H 1+60E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40H 2+10E 25 2.0<													
S1 0+50N 2+10E 57 1.6 138 23 255 40 <5 11 0.080 S1 0+50N 2+15E 30 1.8 198 25 240 51 <5 9 0.152 S1 0+50N 2+15E 30 1.8 198 25 240 51 <5 9 0.152 S1 0+50N 2+20E 77 2.4 185 39 460 73 <5 26 0.140 S1 0+50N 2+22E 42 1.8 100 27 423 47 <5 23 0.188 S1 0+40N 1+50E 272 2.0 369 249 290 98 <5 13 0.108 S1 0+40N 1+60E 104 3.0 253 1976 1877 101 <5 8 0.511 S1 0+40N 1+80E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40N 1+90E 122 3.3 131 656 257 72 <5 19 0.193 S1 0+40N 2+30E 131 2.3 </td <td></td>													
\$1 0+50H 2+15E 30 1.8 198 25 240 51 -5 9 0.152 \$1 0+50H 2+20E 77 2.4 185 39 460 73 -5 26 0.140 \$1 0+50H 2+20E 77 2.4 185 39 460 73 -5 26 0.140 \$1 0+50H 2+20E 272 2.0 369 249 290 99 -5 13 0.108 \$1 0+40H 1+50E 272 2.0 369 249 290 99 -5 13 0.108 \$1 0+40H 1+60E 104 3.0 253 1976 1877 101 -5 8 0.161 \$1 0+40H 1+80E 149 4.0 182 852 299 77 <5													
S1 0+50N 2+20E 77 2.4 185 39 460 73 <5 26 0.140 S1 0+50N 2+25E 42 1.8 100 27 423 47 <5 23 0.140 S1 0+40N 1+50E 272 2.0 369 249 290 98 <5 13 0.108 S1 0+40N 1+50E 104 3.0 253 1976 1877 101 <5 8 0.161 S1 0+40N 1+80E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40N 1+80E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40N 1+80E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40N 2+00E 16 2.4 153 345 463 81 <5 28 0.221 S1 0+40N <td></td>													
\$1 0+50H 2+25E 42 1.8 100 27 423 47 <5 23 0.138 \$1 0+40H 1+50E 272 2.0 369 249 290 98 <5 13 0.108 \$1 0+40H 1+50E 104 3.0 253 1976 1877 101 <5 8 0.161 \$1 0+40H 1+70E 167 3.0 151 1255 575 127 <5 15 0.221 \$1 0+40H 1+70E 167 3.0 151 1255 575 127 <5 15 0.212 \$1 0+40H 1+70E 162 8.2 2.99 77 <5 15 0.212 \$1 0+40H 1+80E 149 4.0 182 852 2.99 77 <5 15 0.212 \$1 0+40H 2+00E 122 3.3 131 656 257 72 <5 19 0.193 \$1 0+40H 2+10E 25 2.0 206 20 221 45 <5 7 0.171 \$1 0+40H 2+30E 131 2.3 187				· · · · · · · · · · · · · · · · · · ·								. 205	C1 D.COM (
S1 0+40H 1+50E 272 2.0 369 249 290 98 <5 13 0.108 S1 0+40H 1+60E 104 3.0 253 1976 1877 101 <5 8 0.161 S1 0+40H 1+70E 167 3.0 151 1255 575 127 <5 17 0.221 S1 0+40H 1+70E 167 3.0 182 852 299 77 <5 15 0.212 S1 0+40H 1+80E 149 4.0 182 852 299 77 <5 15 0.212 S1 0+40H 1+80E 16 2.4 153 345 463 81 <5 28 0.221 S1 0+40H 2+10E 25 2.0 206 20 221 45 <5 39 0.221 S1 0+40H 2+30E 131 2.3 187 59 440 149 10 58 0.186 S1 0+40H 2+30E 131 2.3 187 59 440 149 10 58 0.186 S1 0+10H 2+30W 45													
\$1 0+40N 1+60E 104 3.0 253 1976 1877 101 ~5 8 0.161 \$1 0+40N 1+70E 167 3.0 151 1255 575 127 <5 17 0.221 \$1 0+40N 1+80E 149 4.0 182 852 299 77 <5 15 0.212 \$1 0+40N 1+90E 122 3.3 131 656 257 72 <5 19 0.193 \$1 0+40N 2+00E 16 2.4 153 345 463 81 <5 28 0.221 \$1 0+40N 2+10E 25 2.0 206 20 221 45 <5 7 0.171 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.186 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.186 \$1 0+10N 2+40W 66 1.8 38 17 56 25 5 10 0.178 \$1 0+10N 2+40W 66 1													
S1 0+40H 1+70E 167 3.0 151 1255 575 127 <5 17 0.221 S1 0+40N 1+80E 149 4.0 182 852 299 77 <5													
\$1 0+40N 1+90E 122 3.3 131 656 257 72 <5 19 0.193 \$1 0+40N 2+00E 16 2.4 153 345 463 81 <5 28 0.221 \$1 0+40N 2+10E 25 2.0 206 20 221 45 <5 7 0.171 \$1 0+40N 2+20E 1105 3.2 162 40 428 145 <5 39 0.234 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.166 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.166 \$1 0+40N 2+30W 42 2.2 21 13 38 7 <5 5 0.148 \$1 0+10N 2+40W 66 1.8 38 17 56 25 <5 10 0.178 \$1 0+10N 2+30W <5 1.3 42 25 66 28 <5 13 0.38 \$1 0+10N 2+20W <5 1.3		<u>_</u>											
\$1 0+40N 1+90E 122 3.3 131 656 257 72 <5 19 0.193 \$1 0+40N 2+00E 16 2.4 153 345 463 81 <5 28 0.221 \$1 0+40N 2+10E 25 2.0 206 20 221 45 <5 7 0.171 \$1 0+40N 2+20E 1105 3.2 162 40 428 145 <5 39 0.234 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.166 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.166 \$1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.166 \$1 0+10N 2+30W 42 2.2 21 13 38 7 55 10 0.178 \$1 0+10N 2+40W 66 1.8 38 17 56 25 5 10 0.178 \$1 0+10N 2+30W <5 1.3			0,212	15	<5	77	299	852	182	4.0	149	+80E	S1 0+40N 1
S1 0+40N 2+10E 25 2.0 206 20 221 45 <5 7 0.171 S1 0+40N 2+20E 1105 3.2 162 40 428 145 <5 39 0.234 S1 0+40N 2+20E 131 2.3 187 59 440 149 10 58 0.186 S1 0+10N 2+50W 42 2.2 21 13 38 7 <5 5 0.148 S1 0+10N 2+50W 42 2.2 21 13 38 7 <5 5 0.148 S1 0+10N 2+50W 42 2.2 21 13 38 7 <5 5 0.148 S1 0+10N 2+30W <5 1.3 42 25 66 28 <5 13 0.153 S1 0+10N 2+0W <5 1.3 29 9 53 13 <5 10 0.108 S1 0+10N 2+00W 21 1.8 46 13 50 30 <5 25 0.185 S1 0+00N 2+50W <5 1.9 26			0.193	19	<5	72	257	656	131	3.3		+ 90E	S1 0+40N 1
S1 0+40N 2+20E 1105 3.2 162 40 428 145 <5 39 0.234 S1 0+40N 2+30E 131 2.3 187 59 440 149 10 58 0.186 S1 0+10N 2+50W 42 2.2 21 13 38 7 <5													
S1 D+40N 2+30E 131 2.3 187 59 440 149 10 58 0.166 S1 0+10N 2+50W 42 2.2 21 13 38 7 <5													
\$1 0+10N 2+50W 42 2.2 21 13 36 7 <5 5 0.148 \$1 0+10N 2+40W 66 1.8 38 17 56 25 <5 10 0.178 \$1 0+10N 2+30W <5 1.3 42 25 66 28 <5 13 0.153 \$1 0+10N 2+30W <5 1.3 42 25 66 28 <5 13 0.153 \$1 0+10N 2+20W <5 1.3 36 7 55 18 <5 13 0.153 \$1 0+10N 2+20W <5 1.3 29 9 53 13 <5 10 0.108 \$1 0+10N 2+10W <5 1.3 29 9 53 13 <5 10 0.108 \$1 0+10N 2+00W 21 1.8 46 13 50 30 <5 25 0.185 \$1 0+00N 2+50W <5 1.9 26 18 46 24 <5 4 0.243 \$1 0+00N 2+30W <5 1.3 47 1			0.234	39	<u>ر</u> ې 	145	428	40	162	3.2	1105	+201	51 U+40N 2
\$1 0+10N 2+40W 66 1.8 38 17 56 25 <5													
\$1 0+10N 2+30W <5 1.3 42 25 66 28 <5 13 0.153 \$1 0+10N 2+20W <5 1.3 36 7 55 18 <5 13 0.153 \$1 0+10N 2+20W <5 1.3 36 7 55 18 <5 13 0.153 \$1 0+10N 2+20W <5 1.3 29 9 53 13 <5 10 0.108 \$1 0+10N 2+00W 21 1.8 46 13 50 30 <5 25 0.185 \$1 0+00N 2+50W 21 1.8 46 13 50 30 <5 25 0.185 \$1 0+00N 2+50W <5 1.9 26 18 46 24 <5 44 0.321 \$1 0+00N 2+40W 12 2.1 40 10 37 20 <5 4 0.243 \$1 0+00N 2+30W <5 1.3 47 11 41 12 <5 5 0.233 \$1 0+00N 2+20W <5 1.1 17													
S1 0+10N 2+20W <5 1.3 36 7 55 18 <5 13 0.088 S1 0+10N 2+10W <5													
\$1 0+10N 2+00W 21 1.8 46 13 50 30 <5 25 0.185 \$1 0+00N 2+50W <5 1.9 26 18 46 24 <5 44 0.321 \$1 0+00N 2+50W <5 1.9 26 18 46 24 <5 44 0.321 \$1 0+00N 2+40W 12 2.1 40 10 37 20 <5 4 0.243 \$1 0+00N 2+30W <5 1.3 47 11 41 12 <5 5 0.233 S1 0+00N 2+20W <5 1.1 17 4 81 <5 <5 3 0.247													
S1 0+10N 2+00W 21 1.8 46 13 50 30 <5 25 0.185 S1 0+00N 2+50W <5 1.9 26 18 46 24 <5 44 0.321 S1 0+00N 2+50W 12 2.1 40 10 37 20 <5 4 0.243 S1 0+00N 2+30W <5 1.3 47 11 41 12 <5 5 0.233 S1 0+00N 2+20W <5 1.1 17 4 81 <5 <3 0.247			<u>ត 108</u>	10		12	52	0	20	13		+1NW	S1 0+10N 2
\$1 0+00N 2+50W <5 1.9 26 18 46 24 <5 44 0.321 \$1 0+00N 2+40W 12 2.1 40 10 37 20 <5 4 0.243 \$1 0+00N 2+30W <5 1.3 47 11 41 12 <5 5 0.233 S1 0+00N 2+20W <5 1.1 17 4 81 <5 <5 3 0.247													
S1 0+00N 2+40N 12 2.1 40 10 37 20 <5 4 0.243 S1 0+00N 2+30W <5 1.3 47 11 41 12 <5 5 0.233													
S1 0+00N 2+20W <5 1.1 17 4 81 <5 <5 3 0.247					<5			10					
			0.233	5		12	41	11	47	1.3	<5	+30W	\$1 O+OON 2
								4			≺5		
			0.079	24	্র	136	61		72	1.9			
S1 0+00N 2+00W 24 1.8 76 13 58 40 <5 16 0.189 S1 0+10S 2+50W 20 (0, 2) 52 26 42 55 10 7 0.111													
S1 0+10S 2+50W 30 <0.2 52 26 43 <5 7 7 0.217 S1 0+10S 2+40W <5 2.1 73 10 35 24 <5 7 0.164						-							

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPPEINSPECTION & TESTING SERVICES.

 REPORT: V90-02391.0							IE PRINIE DJECT: 33		<u></u>	PAGE 2
SAMPLE ELEME NUMBER UNI	-	Ag PPH	Cu PPM	РЬ РРМ	Zn PPH	As PPM	Sb PPN	Ho PPH	Họ PP M	
\$1 0+10\$ 2+30W		1.1	28	12	29	12	<5	6	0.156	
\$1 0+105 2+20W	314	3.7	76	12	90	111	્ર	13	0.181	
\$1 0+10\$ 2+10W	93	3.1	99	13	140	159	<5	26	0.154	
\$1 0+105 2+00W	23	1.7	67	11	81	23	<5	12	0.181	
 \$1 90 CC 331 (PRE)					<u> </u>		······································			· · · · · · · · · · · · · · · · ·
S1 0+10N 2+00E	527	2.6	262	227	303	207	-5	32	0,185	
S1 0+10N 2+10E	88	2.2	146	62	398	101	≺S	19	0.185	
S1 0+10N 2+20E	9	2.5	200	11	277	34 40	دى ج	7 9	0.128 0.163	
S1 0+10N 2+30E S1 0+10N 2+40E	18 23	2.3 2.1	285 288	23 25	318 309	40 40	Ś	8	0.103	
51 UTION 2TAUE	£3	2.1	260				·· <u>···</u> ·······	· _ · · · · · · · · · · · · · · · · · ·		
\$1 0+1GN 2+50E	8	1.8	289	24	259	35	<5	7	0.083	
S1 0+00N 2+00E	15	1.6	72	136	136	58	:5	17	0,097	
S1 0+00N 2+05E	22	1.5	41	86 100	91 25 c	39 170	~5 ~5	10	0,136	
S1 0+00N 2+10E	148	4.1 4,9	177 200	190 92	356 448	142 120	<5 <5	4 1 29	0.307 0.293	
S1 0+00N 2+15E	168	4,9	200		440 	120	· · · · · · · · · · ·		Q,255	
S1 0+00N 2+20E	416	4.8	278	187	637	332	<5	43	0.295	
S1 0+00N 2+25E	132	2.6	145	<u>91</u>	291	99 20	:5	22	0.208	
S1 0+00N 2+30E	<5 (5	2,8	169	28	755 518	89 78	/ /5	50 34	0.295 0.214	
S1 0+00N 2+35E	<5 13	2.9 2.2	197 172	25 22	428	47	<5	22	0.214 0.156	
 S1 D+00N 2+40E		2.12	172		420	·····	· · · · · · · · ·			· · · · · · · · · · · · · · · · ·
S1 0+DON 2+45E	6	1.9	159	12	308	20	-5	19	0.151	
S1 0+00N 2+50E	9	3.0	235	23	670	59	<5 C	37	0.276	
S1 0+105 2+30E	<5	2.8	158	28 20	74 <u>)</u> 421	0; 101	6	52 33	0,261 0,123	
S1 0+10S 2+40E S1 0+10S 2+50E	<5 <5	2.1 2.5	188 172	39 9	637 369	101 31	ج ح	33 16	0.125	
 91 0+103 Z+30C	\J	£1J	<u>+''</u>	, 	JU		·	10		
S1 90 JJ 331 (PRE)			***	F 4	1 4 7	* *		- 34	0.035	
S1 0+60N 1+50E	9	1.8	273	59 250	145	59 64	<5 25	28	0.235 0.120	
S1 0+60N 1+60E	<5 55	1.0 2.1	147 370	250 750	714 1181	64 108	<5 <5	9 11	0.120	
S1 0+60N 1+70E S1 0+60N 1+80E	55 91	2.5	259	690	719	100	<5	15	0.163	
 91 0-00H 1.00L										· · ·
S1 0+60N 1+90E	35	2.1	115	242	283	54	<5 .5	13	0.148	
\$1 0+60N 2+00E	97	3.4	244	715	645 200	128	<5 /5	22	0.213	
S1 0+60N 2+10E	71	3.8 1.7	168 150	423 27	388 332	101 49	<5 <5	19 18	0.206 0.150	· .
S1 0+60N 2+20E SI 0+60N 2+30E	97 76	1.0	102	29	225	56	<5	10	· 0.094	
 91 A.OON 1.30C	rv	1.0	102							

APPENDIX V

. . .

[---

۰. ۲

1

۰.

.....

ς.,

[-

---ر :

ст. С.,

. . .

С С

- -

Rock Geochemical Lab Reports

Keewatin Engineering Inc.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

r

5

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & HISTING SERVICES.

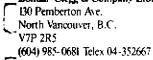
SAMPLE NUMBER ELEMENT UNITS Au 30g PP8 Ag PPH Cu Pb Zn As Sb Mo Hg PPH R2 90 6W 331 R3501 <5 0.6 42 14 47 B7 6 15 0.047 R2 90 6W 331 R3501 <5 0.6 42 14 47 B7 6 15 0.047 R2 90 6W 331 R3503 <5 0.6 15 5 5 5 5 0.012 R2 90 6W 331 R3503 <5 0.3 15 3 6 12 <5 6 <0.010 R2 90 6W 331 R3505 <5 0.3 15 3 6 12 <5 6 <0.010 R2 90 6W 331 R3506 19 0.7 6 3 20 6 <5 2 <0.010 R2 90 6W 331 R3506 185 1.2 41 28 54 88 6 18 0.023 R2 90 6W 331 R3510 27 1.7 44 7	PAGE 1		12-907		te print i Oject: 3							1863.0	i: <u>v</u> 90-l	REPOR	
R2 90 6W 331 R3502 <5 2.0 60 5 178 19 <5 10 0.089 R2 90 6W 331 R3503 <5 0.6 15 5 5 <5 5 0.012 R2 90 6W 331 R3503 <5 0.3 15 3 13 5 <5 2 0.030 R2 90 6W 331 R3505 <5 0.3 15 3 6 12 <5 6 <0.010 R2 90 6W 331 R3506 19 0.7 6 3 20 6 <5 2 <0.010 R2 90 6W 331 R3507 <5 0.4 22 5 62 7 <5 2 <0.010 R2 90 6W 331 R3508 185 1.2 41 28 54 88 6 18 0.023 R2 90 6W 331 R3510 27 1.7 44 7 118 9 <5 4 0.016 R2 90 6W 331 R3513 16 0.8 65 8 93 11 <5 7 0.031 R2 90 6W 331 R3513 16 0.8 65															
R2 90 6W 331 R3503 <5 0.6 15 5 5 5 <5 5 0.012 R2 90 6W 331 R3504 <5 (0.2) 19 3 13 5 <5 2 0.030 R2 90 6W 331 R3505 <5 0.1 2 0 6 12 <5 5 2 0.030 R2 90 6W 331 R3505 <5 0.1 15 3 6 12 <5 2 0.010 R2 90 6W 331 R3507 <5 0.4 22 5 62 7 <5 2 <0.010 R2 90 6W 153 5 30 35 5 3 0.015 R2 90 6W 153 5 30 35 5 3 0.016 R2 90 6W 331 R3510 27 1.7 44 7 118 9 4 <t< td=""><td></td><td>0.047</td><td>15</td><td></td><td>6</td><td>87</td><td>47</td><td>14</td><td>42</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.047	15		6	87	47	14	42						
R2 90 6W 331 R3 5 <5 2 0.030 R2 90 GW 331 R3505 <5 0.3 15 3 6 12 <5 6 <0.010 R2 90 GW 331 R3505 <5 0.3 15 3 6 12 <5 6 <0.010 R2 90 GW 331 R3505 <5 0.4 22 5 62 7 <5 2 <0.010 R2 90 GW 331 R3507 <5 0.4 22 5 62 7 <5 2 <0.010 R2 90 GW 331 R3507 <5 0.4 22 5 53 30 35 5 3 0.015 R2 90 GW 331 R3510 27 1.7 44 7 118 9 <5 4 0.027 R2 90 GW 331 R3513 16 0.8 65 8 <td></td> <td>0.089</td> <td>10</td> <td></td> <td><5</td> <td>19</td> <td>178</td> <td>5</td> <td>60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0.089	10		<5	19	178	5	60						
R2 90 GW 331 R3505 <5 0.3 15 3 6 12 <5 6 <0.010 R2 90 GW 331 R3506 19 0.7 6 3 20 6 <5			5			5		5							
R2 90 6W 331 R3506 19 0.7 6 3 20 6 <5 2 <0.010 R2 90 6W 331 R3507 <5 0.4 22 5 62 7 <5 2 <0.010 R2 90 6W 331 R3508 185 1.2 41 28 54 88 6 18 0.023 R2 90 6W 331 R3509 9 0.6 153 5 30 35 5 3 0.015 R2 90 6W 331 R3510 27 1.7 44 7 118 9 <5 4 0.027 R2 90 6W 331 R3511 <5 <0.2 20 6 37 <5 <5 4 0.016 R2 90 6W 331 R3511 <5 <0.3 33 <1 <5 7 0.031 R2 90 6W 331 R3514 <5 <			-				13	3							
R2 90 GW 331 R3507 <5 0.4 22 5 62 7 <5 2 <0.010 R2 90 GW 331 R3508 185 1.2 41 28 54 88 6 18 0.023 R2 90 GW 331 R3509 9 0.6 153 5 30 35 5 3 0.015 R2 90 GW 331 R3510 27 1.7 44 7 118 9 <5		0.010	6		<5	12	6	3	15	0.3	<5	<u>R3505</u>	<u>6W 331</u>	R2 90	
R2 90 GW 331 R3507 <5		0.010	2		<5	6	20	3	6	0.7	19	R3506	GW 331	R2 90	
R2 90 GH 331 R3509 9 0.6 153 5 30 35 5 3 0.015 R2 90 GH 331 R3510 27 1.7 44 7 118 9 <5 4 0.027 R2 90 GH 331 R3511 <5 <0.2 20 6 37 <5 <5 4 0.027 R2 90 GH 331 R3512 <5 0.3 5 3 <1 6 <5 <1 0.016 R2 90 GH 331 R3513 16 0.8 65 8 93 11 <5 7 0.031 R2 90 GH 331 R3514 <5 1.1 77 <2 55 <5 5 <1 <0.010 R2 90 GH 331 R3515 <5 1.1 77 <2 55 <5 <1 0.010 R2 90 GH 331 R3516 <5 1.0 36 <2 67 8 <5 2 <0.010 R2 90 GH 331 R3517 <5 0.3 33 37 <5 <5 <0.010 R2 90 GH 331 R3518 24 0.9 66 7 67<		0.010	2			7	62	5	22	0.4	<5	R3507	GW 331	R2 90	
R2 90 GW 331 R3510 27 1.7 44 7 118 9 <5 4 0.027 R2 90 GW 331 R3511 <5		0.023	18		6	88	54	28	41	1.2	185	R3508	GW 331	R2 90	
R2 90 6N 331 R3511 <5 <0.2 20 6 37 <5 <5 4 0.016 R2 90 6N 331 R3512 <5 0.3 5 3 <1 6 <5 <1 <0.010 R2 90 6N 331 R3513 16 0.8 65 8 93 11 <5 7 0.031 R2 90 6N 331 R3513 16 0.8 65 8 93 11 <5 7 0.031 R2 90 6N 331 R3514 <5 1.1 77 <2 55 <5 <1 <0.010 R2 90 6W 331 R3516 <5 1.0 36 <2 67 8 <5 2 <0.010 R2 90 6W 331 R3517 <5 0.3 33 3 27 <5 <5 <0.010 R2 90 6W 331 R3518 24		0.015	3		5	35	30	5	153	0.6	9	R3509	GW 331	R2 90	
R2 90 GW 331 R3512 <5		0.027	4		<5	9	118	7	44	1.7	27	R3510	GW 331	R2 90	
R2 90 GW 331 R3512 <5		n n16	4	•	 <5	<5	37	6	20	<0.2	<5	R3511	GN 331	R2 90	-
R2 90 GN 331 R3513 16 0.8 65 8 93 11 <5 7 0.031 R2 90 GN 331 R3514 <5 1.1 77 <2 55 <5 5 <1 <0.010 R2 90 GN 331 R3515 <5 1.1 77 <2 55 <5 5 <1 <0.010 R2 90 GN 331 R3515 <5 1.1 62 3 129 <5 <5 1 0.010 R2 90 GN 331 R3516 <5 1.0 36 <2 67 8 <5 2 <0.010 R2 90 GN 331 R3516 <5 1.0 36 <2 67 8 <5 2 <0.010 R2 90 GN 331 R3518 24 0.9 66 7 67 23 <5 6 <0.010 R2 90 GN 331								š							
R2 90 6H 331 R3514 <5 1.1 77 <2 55 <5 5 <1 <0.010 R2 90 GW 331 R3515 <5 1.1 62 3 129 <5 <5 1 0.010 R2 90 GW 331 R3515 <5 1.0 36 <2 67 8 <5 2 <0.010 R2 90 GW 331 R3516 <5 1.0 36 <2 67 8 <5 2 <0.010 R2 90 GW 331 R3517 <5 0.3 33 3 27 <5 <5 5 <0.010 R2 90 GW 331 R3518 24 0.9 66 7 67 23 <5 6 <0.010 R2 90 GW 331 R3519 25 1.6 29 12 272 25 5 41 0.071 R2 90 GW 331								8							
R2 90 GW 331 R3515 <5 1.1 62 3 129 <5 <5 1 0.016 R2 90 GW 331 R3516 <5															
R2 90 GN 331 R3517 <5															
R2 90 GN 331 R3517 <5		0 010	2		<5	8	67	0	36	1.0	<5	R3516	GW 331	R2 90	
R2 90 6W 331 R3518 24 0.9 66 7 67 23 <5 6 <0.010 R2 90 6W 331 R3519 25 1.6 29 12 272 25 5 41 0.071 R2 90 6W 331 R3519 25 1.6 29 12 272 25 5 41 0.071 R2 90 6W 331 R3520 6 1.2 42 7 351 20 <5 11 0.071 R2 90 6W 331 R3521 9 1.1 63 5 166 18 <5 12 0.067 R2 90 6W 331 R3522 <5 0.6 21 8 54 22 <5 3 0.036 R2 90 6W 331 R3523 <5 0.4 43 5 82 <5 <5 3 <0.010 R2 90 6W 331															
R2 90 6H 331 R3519 25 1.6 29 12 272 25 5 41 0.071 R2 90 6H 331 R3520 6 1.2 42 7 351 20 <5 11 0.071 R2 90 6H 331 R3520 6 1.2 42 7 351 20 <5 11 0.058 R2 90 6H 331 R3521 9 1.1 63 5 166 18 <5 12 0.067 R2 90 6H 331 R3522 <5 0.6 21 8 54 22 <5 3 0.036 R2 90 6H 331 R3523 <5 0.4 43 5 82 <5 <3 <0.010 R2 90 6H 331 R3524 <5 0.2 11 4 79 <5 <5 19 0.014								7							
R2 90 6W 331 R3520 6 1.2 42 7 351 20 <5 11 0.058 R2 90 6W 331 R3521 9 1.1 63 5 166 18 <5								12							
R2 90 6W 331 R3522 <5 0.6 21 8 54 22 <5 3 0.036 R2 90 GW 331 R3523 <5 0.4 43 5 82 <5 <5 3 <0.010 R2 90 GW 331 R3523 <5 0.4 43 5 82 <5 <5 3 <0.010 R2 90 GW 331 R3524 <5 0.2 11 4 79 <5 <5 19 0.014															
R2 90 6W 331 R3522 <5 0.6 21 8 54 22 <5 3 0.036 R2 90 GW 331 R3523 <5 0.4 43 5 82 <5 <5 3 <0.010 R2 90 GW 331 R3523 <5 0.4 43 5 82 <5 <5 3 <0.010 R2 90 GW 331 R3524 <5 0.2 11 4 79 <5 <5 19 0.014		0.067	12		<5	18	166	5	63	1.1	9	R3521	GN 331	R2 90	
R2 90 GW 331 R3523 <5 0.4 43 5 82 <5 <5 3 <0.010 R2 90 GW 331 R3524 <5 0.2 11 4 79 <5 <5 19 0.014								_							
R2 90 GW 331 R3524 <5 0.2 11 4 79 <5 <5 19 0.014			-					=							
								4							
						-		8							
R2 90 GW 331 R3526 15 0.5 67 <2 20 44 <5 2 <0.010		0.010	2		<5	44	20	<2	67	0.5	15	R3526	GW 331	R2 90	

.

Bondar-Clegg & Company Ltd. 130 Pemberion Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

٠

 $\overline{}$



Geochemical Lab Report

A DIVISION OF INCHEAPE INSPECTION & ITS ENGINEER VIEWS

PORT: V9 MPLE MBER 90GW331 90GW331 90GW331 90GW331	E R3527 R3528 R3529 R3530 R3531	Z.O ELENENT UNITS	Au 30g PPB 41 10 80 <5 <5 <5 <5	Ag PPN 2.2 2.0 0.3 <0.2 1.1 0.7	Cu PPH 32 91 27 6 54 44	РЬ РРН 21 19 8 <2 7 15	2n PPM 35 50 16 15 83 87		Sb PPM <5 11 <5 <5 6 10		Hg PPM 0.068 0.013 0.081 <0.010 <0.010	PAGE 1	
HBER 90GW331 90GW331 90GW331 90GW331 90GW331	R3527 R3528 R3529 R3530 R3531		41 10 80 <5 <5	PPN 2.2 2.0 0.3 <0.2 1.1	92 91 27 6 54	РРН 21 19 8 <2 7	9PM 35 50 16 15 83	89 115 11 <5 <5	РРМ <5 11 <5 <5 6	99 6 4 2 2	PPM 0.058 0.013 0.081 <0.010 <0.010		
90GW331 90GW331 90GW331 90GW331	R3528 R3529 R3530 R3531		10 80 <5 <5	2.0 0.3 <0.2 1.1	91 27 6 54	19 8 <2 7	50 16 15 83	115 11 <5 <5	11 <5 <5 6	6 4 2 2	0.013 0.081 <0.010 <0.010		
90GW331 90GW331 90GW331 90GW331	R3528 R3529 R3530 R3531		10 80 <5 <5	2.0 0.3 <0.2 1.1	91 27 6 54	19 8 <2 7	50 16 15 83	115 11 <5 <5	11 <5 <5 6	6 4 2 2	0.013 0.081 <0.010 <0.010		
90GW331 90GW331	R3530 R3531		<5 <5	<0.2 1.1	6 54	<2 7	15 B3	<5 <5	<5 6	2	<0.010 <0.010		
90GW331	R3531		<5	1.1	54	7	B3	<5	6	2	<0.010		
								···· · · · · · · · · · · · · · · · · ·	·······		- ·		
90GW331	. R3532		<5	0.7	44	15	87	29	10	3	<0.010	· · · · · · · · · · · · · · · · · · ·	
												· · · · · · · · · · · · · · · · · · ·	
			<u></u>										
			<u>= 11 + 1 </u>										
			- II 										
	<u></u>				· · · ·			·····					
								·· · · · ·					
		• •						· · · · · · · · · · · · · · · · · · ·				······································	
									·				

Bondar-Clegg & Company Ltd.

-1. .

ŗ

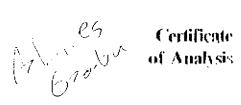
Geochemical Lab Report

•					ON DE INCHO				IE POINTE	D: 27-S	E2-90		
	REPORT: V90-	02060.0						PR	OJECT: 33	1		PAGE 1	
_	SAMPLE	ELEMENT	Au 30g	Ag	Cu	РЬ	Zn	As	Sb	Ho	Ho	····	
	NUMBER	UNITS	PPB	PPM	PPN	PPM	PPĦ	PPN	PPH	PPH	PPN		
	R2 90 X 331	P_1069	<5	1.0	83	6	110	<5	<5	1	0.033		
	R2 90 X 331		<5	1.1	72	9	98	<5	9	1	0.035		
	R2 90 X 331		<5	1.3	98	8	86	9	्र	ĩ	<0.010		
	R2 90 X 331		11	1.9	135	22	104	8	6	1	0.023		•
	R2 90 X 331	R-1972	6	1.5	127	18	<u>90</u>	ġ	<u>~5</u>	<1	0.025		
	R2 90 X 331	R-1973	7	1.2	88	9	113	6	<5	2	0.054		
	R2 90 GW 331		<5	0.6	20	, 9	84	12	<5	i	<0.010		
	R2 90 GW 331		<\$	1.0	93	8	81	12	7	2	<0.010		
	R2 90 GW 331		12	0.7	49	24	88	13	6	13	0.032		
	R2 90 GW 331	R-3536	9	0.7	56	14	84	7	5	1	0.011		
	R2 90 GW 331	8-3537	<5	0.6	32	8	87	<u>.</u>	<5	<1	<0.010		
	R2 90 6W 331		54	0.5	22	10	38	<5	<5	3	0.011		
	R2 90 GW 331		< <u>5</u>	1.1	139	6	73	7	<5	1	0.010		
	R2 90 GW 331		<5	0,2	21	17	69	6	<5	<1	0.020		
	R2 90 GW 331	R-3541	6	0.8	22	5	46	18	~ <u>5</u>	1	<0.010		
	R2 90 GW 331	P_35/3	10	0.6	17	8	31	29	5		<0.010		• • • • • •
	R2 90 GW 331		10	1.1	75	15	51 68	47	-5		0.010		
	R2 90 GW 331		15	0.9	11	31	38	45	5	2	0.022		
	R2 90 GW 331		< <u>5</u>	0.4	22	3	44	ر. 6	۰ <u>۶</u>	4	<0.010		
	R2 90 GW 331		9	1,1	65	12	183	23	<5	î	0.017		
	A2 60 611 224	0.0513			26								
	R2 90 GW 331		17	0.9	39	17	119	35	5	2	0.015		
	R2 90 GW 331		17	0.4	8	10	122	25	<5 -5	3	0.035		
	R2 90 GW 331 R2 90 GW 331		<5 <5	<0.2 1.4	2 55	16 9	44 80	16 39	<5 5	2	0.030		
	R2 90 GW 331		30	2.0	38	9 17	788	39 <5	5 ⁄5	2	0.013 0.054		
		<u>. </u>											
	R2 90 GW 331		<5	0.6	28	9	37	<5	<5	4	0.038		
	R2 90 GW 331		<5	0.7	8	8	59	24	5	<1	<0.010		
	R2 90 GW 331		11	1.9	94 60	36	25	19	<5 .5	4	0.027		
	R2 90 GW 331 R2 90 GW 331		<5 <5	0.0 1.0	60 14	7 10	64 113	<5 <5	<5 5	া ব	<0.010 n 207		
	NZ 70 0W J31	0666-14	£,			10	C11	<u>ر ،</u>	Ĵ	.1	0.387		
	R2 90 GN 331		<5	0.5	10	3	27	<5	<5	1	0.017		
	R2 90 GW 331		7	1.7	100	12	122	<5	<5	2	0.026		
	R2 90 ST 331		< <u>5</u>	1.3	81	4	80 20	<5 - F	7	<1	0.012		
	R2 90 ST 331		<5 /5	0.9	38		73	<5	8	<1	0.027		
	R2 90 ST 331	K-3/81	<5	0.8	53	6	69	9	<5	<1	0.043		
	R2 90 ST 331		<5	1.3	56	3	65	<5	5	<1	<0,010		
	R2 90 ST 331		<5	1.4	94	7	72	14	د2	<1	<0.010		
	R2 90 ST 331	R-3784	12	1.8	147	14	116	<5	<5	4	0.039		
										,			

Bundar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

-

_



Geochemical Lab Report

 RFF	OR	Ī!	v9n-	02262.0]			[]		TE PRINTE		<u>10-70</u>	PAGE
 										1 • ·		• 		
SAN Nui				FLEMENT	Au 30g PPB	Ag PPit	Cu PPN	Pb PPN	Zn PPN	As PPM	Sb PPN	No PPN	Hg PPN	
 R2	90	G¥	331	8-3588	1170	3,7	26	49	2()	475	<5	3	0.046	
				R-3589	838	3.7	37	62	32	382	<s< td=""><td>3</td><td>0.055</td><td></td></s<>	3	0.055	
				R-359D	191	1.4	44	126	82	183	7	53	0.041	
				R-3591	673	2.6	29	191	34	280	6	4 1F	0.066	
R 2	90	GW	331	R-3592	250	2.0		53	65	152	<5	34	0.028	
				R-3593	262	1.8	33	39	30	213	<5	100	<0.010	
				R-3594	124	1.3	37	114	68	162	<5	46	0.024	
				R-3595	182	1.9	63	193	602	260	<5	2	0.021	
				R-3596	203	0.8	21	27	863	130	<5	2	0.039	
 R2	90	G₩	331	R-3597	846	3.2	130	183	1493	470	<5	24	0.125	
					<u></u>									
 ···· ·														
·									•					
 			•											
 		<u></u>												
 						<u></u>								
 			<u> </u>											
 			·		······									
 					······									
 					· · · · · · · · · · · · · · · · · · ·									
 					······································									
			· · · · · · · · · · · · · · · · · · ·											· · ·

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. 1 North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

r		A DIVISION OF INCHCAL	- PEINSPECTION & TENTING SERVICES DATE: DRIVEN: 02,001,0	
• •	REPORT: V90-02262.6		DAIL FRINLED: 23-001-5 FRO.FCI: 331	PAGE 1
	SANPLE ELEN NUMBER UN	ENT Au ETS OPT		······································
<u> </u>	R2 90 GW 331 R-3588	0.036		
P				
,				· · · · · · · · · · · · · · · · ·
•				
<u> </u>				· ·
_		• • • • • • • • • • • • • • • • • • •		
•				
.				
			······································	
۴.				
~				
				· .
			1/1/	
			10-10-	V7

APPENDIX VI

[

1

....

~

2.1

1 . .

----- ---

ГТ С

r C

<u>۔۔۔</u> ب

-

•

_

-

Soil, Stream Silt and Rock Data Sheets

and a second	۰. ۲	1 1	1 211	<u>``ı</u>	, .	1	1	۲	٦	1	1 1	1.1.1	, - ·	3 7	· · · · •	۲	3	•	1	10.000	۶ F	· · · •	r ^ ^	٦)	r	٦.
1	i i	- k	1	1 .	1	1	,	1)		ŧ.,	1		1 K	1	•	3		1		, ,	1	•	1	1	1

KEEWATIN	ENGINEERING	INC.
----------	-------------	------

roject: vrea (Grid):_		eek tri	<u>b</u>				F	ROCK		Results Plotted By:	
ollectors: _	<u> </u>	styre				-				Date: <u>Sept 4, 1990</u> Surface <u>Undergrou</u>	
SAMPLE NUMBER	LOCATION NO	TES	REP. SAMPLE NUMBER	AB	E I HB	CHANNEL 34	CORE	FLOAT (H	ROCK TYPE		МАР НЕЕТ
90×331R			NUMBER	ତ	ð	GHA	8	FL			
1968_	900 Fewright Cr. E.	f trib				101	0/	\checkmark	Argillite	Very fine groin black orgillite, bedded,	
		-				-				carries 15% disseminated enhedral Py,	
										nuggets of Poto lem, trace smears Chalco.	
1964	1210' Trib- F	side		~					interned.	dack to med grey volc. at it's	
									Vole	contact with shared argill, carries	
										> 10% dissen sulphide (PY)	
1970	1550' Trib - b	edrock					[1	Aqill.	Sharp angular local' float 60 cm	
······································										carries 2270 Po as frontur fillings	
1971	1620' Trib - W	1 6. 4		~					Argill.	black aquillite at it's hadded contact	
	1029 11/6 - 1	Ua A R							, , , , , , , , , , , , , , , , , , , 	with med. grain wacke corries 127.	
			1							disson Py + Po	
1972	1870' Trib - 6	-less t		~					interm to		
	TPIC TUB CA					:		_	felsie difte		
	· · · · · · · · · · · · · · · · · · ·					_			1	contact with politic sheared bodding.	
1973	2000' Trib - 4	st 4 - 1		~			1		Argill.	Badded black argill carries > 2%	
	-008 ///0_0	V DAAR					†			Pr dissemineted and on bodding	
	· · · · · · · · · · · · · · · · · · ·					ł	1			planes.	
				1							-
			1	+		<u> </u>		<u> </u>	1		
							<u> </u>				
			+ ·	+	1	 	1		1		
	<u> </u>			+	-	<u> </u>					
·····			-	1		<u> </u>	1	<u>† </u>			
				+	╂		+	+			
<u> </u>				+	+						
					+		+	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	
				+	+	+	+	1	1		
				+			1				
			+	+	+	+	+	+	1		
			•								

	Actives 331	i		'KE	. <u>r.</u> vV			SAMPLES	Possile Distant Rus	
roject: rea (Grid):_ ollectors:	STEEP MATHER CREEK (Ho, S. THEMPSON	ner # 2	5)		- -				Map: <u>ACHILLES</u> NTS: <u>1048/7</u> Date: <u>4.9.90</u> Undergrou	ind_
· • • • • •		REP.		PLE		(LENG	тн)	ROCK		мар
SAMPLE NUMBER	LOCATION NOTES	SAMPLE NUMBER	GRAB	CHIP	CHANNEL	CORE	LOAT	TYPE		SHEET
<u>1057331</u>					-0			· · · · · · · · · · · · · · · · · · ·	Least with the second state of	
K3779	1380, 100 in E of waterfall	ST	\checkmark					angillite	dissemented theory hout	<u></u>
137.80	libbo abi jalarge materiall, in critk	5	\checkmark	 				volcanic	intermedicate; pyrific (5-10 2 dissemenated \$	
					<u> </u>				blebs; mostly gilicified; sune corbunates	
R3181	1680, in circle 208 m above	ST	~					Violennies	darte Vulennies; pyritic (5-10%) gunite bedder(
	R3780								between anyillites & volcanics strike 350° dip 75w	
R5782	1500' in creek west side	57	1		<u> </u>			volcomes	intermediate : pyr. tic - 10 < 20 dissomerated &	<u></u>
		ļ				ļ			blets of chalks & arsons ; portite ; silicitied	
K3183	1920, in creek wastride	ST	\sim					unternies		
									siticified ; strike 140" dap 60" SW	
K3184	1970 increts west side	31	1		ļ			volcanics	intermediate ; pyritic (5-10 20 arsenve pyrite)	<u></u>
<u></u>			 	ļ	ļ	<u> </u>			quartz corporate veining strike 110° dep 72" SVV	
								· · ·		
<u> </u>							<u> </u>			
										<u> </u>
-										
				 						
=						+		<u> </u>	-	
					1					
		1								
<u> </u>	· · · · · · · · · · · · · · · · · · ·				1					. <u> </u>
···· -••- ·						<u>}</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·				1					
		1			<u> </u>	<u> </u>	<u> </u>	+		
· · · · · · · · · · · · · · · · · · ·		<u> </u>								
	· · · · · · · · · · · · · · · · · · ·									
								<u> </u>		

1 N N 1

ROCK

TYPE

CHERT

CHERT

CHERT

ARGILLITE

ARGILLITE

CALCITE

CHERT

CHERS

CHERT

CHERT

ASH TUFF

FELSIC DIKE

ASH TUFF

ARGILLITE

ARGILLITE

BRECCIA

BRECCIA

ARGILLITÉ

ASH TUFF

ARGILLITE

CALC-SILICATE

ARGILLITE

FRASIC DIKE

11

11

11

ATTIE

CHERT

KEEWATIN ENGINEERING INC.

ROCK SAMPLES

FLOAT

CORE

SAMPLE TYPE (LENGTH)

HANNEL

CHIP

1

 \checkmark

 \checkmark

REP

SAMPLE

NUMBER

3501

3504

3505

3506

3501

3508

3509

3210

3511

3512

3513

3514

3515

3516

3517

3518

3514

3520

3521

3522

3523

3225

3526

3527

3528

3529

3520

3503 1

350.2

6

GRAI

1

1

1

 \checkmark

1

1

1

 \checkmark

 \checkmark

 \checkmark

1

Project: ACHILLES PROJ # 331

Area (Grid): KING CREEK GRID Collectors: G. L. WESA

LOCATION

R3502 1240' IN GULLY, NE ACHILLES #4

R3305 1700' ON EAST SLOPE OF GUILY

R3510 NELT TRUB, TO WEST (1020')

R3515 % ON NORTH BANK KING CREEK

" @ 1120'

" @ 1200'

" @ 1350'

" @ 1400'

" @ 1400'

N @ 1400'

» @ 1400'

" @ 1400'

" (1500'

" @ 1480'

R3524 CLIFF BASE; S. BANK KING CREEK 3524

11

RESTIL IN WEST TRUB C 1085'

13576 IN WEST TRID @ 1360'

R3:25 GRID, HIOON, ILOOW

11

R3527 KING CREEK : 980' ELEV.

R3528 KING CREEK; 980' ETEV.

PROSENT OF HAMPY SALL IK

13529 ACHILLES * 4. GULLY, 2300' EL

906W331R3501 B.L. 4+60 N

R35071290' W GOLLY, "

1300 1300 IN GOLLY 1 4

RIDUE 4100N, O+ 25W

K3507 4,00N, 0+25W

ROTER HTOON, OFFOW

R3509 4,001,0175W

63572 " "

63513 " "

<u>K3514</u> "

R3578 11 11

63514 " "

R3520 H H

R3521 4 4

63522 " "

R3523 # #

K3526 H

NOTES

н

SAMPLE.

NUMBER

906W351+---

Results Plotted By: _____ Map: <u>ACHILLES</u> NTS: <u>104 B/7</u> Date: AUG 19-26, 1990 ____ Surface /_ Underground_

SAMPLE DESCRIPTION

LIMENITIC, FRACE'D IN 1-2% DISSEM, FRAC FILLING PY.

GRAFHLAIC, LAMIN TO THN BEDDED TO WTE CALCITE LENSES

LINONITIC, 15-20% SULFIDES IN TRACS, STRINGERS, DISSEM

LIMONITIC, 5-10% SULFIDES; CONTACT IN INTERM, DIKE

LIMONIFIC, MINOR CARB STOCKWORK, 5-10% CALCITE

20% SULFIDES IN NODULES, STRINGERS + FRACES; 30-40% CARD.

LIMONITIE W QT2 VEIN STOCKWORK + 10-15% SULFIDES

"CRACKLE-FRAC" BRA'S ROCK OUT BY HAIRLINE QTZ FRACS + VENILETS

5-10% DISSEM SULFIDES IN WATER-LAIN TUFF; LIMENITIC with

GEZ-EYE SULFINE PORPH. TEXFURE; 5-7% PY IN GEZ EYES.

5-10% SULFIDES IN LIMONATIC SEQ. OF ABIT TUFF + BUL ARGILLITE

"CRACKLE FRAC" BEY IN 5-10% SULFIDES IN FRACS REHEALED IN OTZ+PU

5% YULFIDES IN FRACTO, QT2+CC VENUED BLK, CHERTY ARGUL.

"CRACKLE-FRAC CHERT; REHEALED BY 10 152 JULF, 1012 + CALCITE

"CRACHE-FRAC": 5-10% SULF, OT2+CC. REHEALING FRACS: LIMON, IC

1-29 PY IN QT2-VEINED, GRAPHITIC, STOCKWORKED BLK ARGININ

2-37 FN - CRSE SULF IN CRSE CRYST CALCITE + CHART BED

2-5% SULF IN LIMONITIL, QTZ VEINED, FOLDED SHALE /ARGILL

10% FN DISSEM, SMOKU SULF IN LIMENITIC SHURR ZONE

I IMPAUTIC. TRACE SIVEIDES IN CONTACT W BARREN INT DIRE

5% FN DISSEM, SIRINGER PY IN FOLMIED BLK ARGHL, GRAPHITIC

5-10% F. DISS, STRINGER + FRAC FILL PY IN BONDED TUFF

7-10% SULFIDE IN 1-2cm Py-QT2-CC-LIM. VEIN

CONTAIN'S IRREG PODS + LENSES OF CALCITE

COARSE CRYST FODS + LENSES IN CHERT

CHERTY ARGILL LIMONITIC, 2-5% V.F. DISSEM PY + FN HAIRLINE FRACS

ANDESITE DIKE CHLORITIC, FRACIS & 2-5% DISSEM. SULFIDES.

DACITE DIRE? 5% PUTCLACE DISSEM + BLETS IN LIMENITIC DIRE

IDTZ. BRECCIA MASSIVE, SILICEOUS BRX IN QTZ VEIN STOCKWORK

MAP

SHEET

1045 / 7

18

11

11

11

11

11

11

11

10

11

11

11

13

11

11

"

4

4

4

4

4

11

11

4

11

11

4

"

1 • · · · · · · 1 1 1 r 1

KEEWATIN ENGINEERING INC.

ROCK SAMPLES

Project: ACHILLES PROT. # 331

Area (Grid): ACHILLES 1-4 CLAIMS

Results	Plotted	By:	
---------	---------	-----	--

Map: <u>ACHILLES</u> NTS: <u>104 B / 7</u> Date: <u>AUG 26 - SEPT. 2, 1990</u> Surface V Underground_

Collectors: _	G.L. WESA	

		REP.	SAM	PLE 1	YPE (LENG	TH)			мар
SAMPLE NUMBER	LOCATION NOTES	SAMPLE NUMBER	GRAB	снір	HANNEL.	CORE	LOAT	ROCK TYPE	SAMPLE DESCRIPTION	SHEET
906W331			-	<u> </u>	5		<u> </u>			+
	N. OF HAWILSON LAKE	3531	<u> </u>					ANDES DIKE	<19 Dissempy in Fig. Dike	<u> </u>
R3532	HANIA SOUL CREEK TRIB (980")	3532	V,					r	LIMONITIC & 5-10% SULFIDES, FRACT'S, GRAPHITIC.	╋╼───
R3533	HAWHESON CREEK (1800)	3533	\checkmark	ļ				ARGINAITE	HEM STAINED TO Y2CM QTZ VEINS, VEINLETS	+
K3534	HAMILSON CR (1600')	3534	V					KIINESTERIE	WENKLY RECRYSTALLIZED	
<u>R3535</u>	HAWASON (R. (1380')	3535	V				ļ	BAK SHALE	LIMENITIC FRACS W 2-3 FN. DISS P.Y.	
<u> </u>	HAWASCA CR (1220')	3536	ν				<u> </u>		LIMONTIC & 1-3% FN. DISS. PY	+
£353 7	HAWASON CR (1000')	3537	~		İ		<u> </u>	GREGENACKE	LIMEY IN CALEME VEW STOCKWORK	
K30'38	HAWINSON (R (980')	3538	~				<u> </u>		SILICEOUS J. 2-3% SUNF. IN FRACS - QTZ-SUNF STRINGED	
R3539	HAWASON CR (700')	3539	1					GREYWACKE	2-5% 19 IN FR FRACS, DISSEMT SIRINGERS; RK SHEDRED.	<u>× </u>
	HAWALSON CR (7001)	3540	\checkmark				ļ	AFGILLIER	ALTERED; 1% FY IN OF2-CO VENUS + FRACS.	
	HAWASCH CR (7201)	3541		1	1			ARGILLITE	ALIERED, SHEARED & 276 FY DISSEM, IN FRACE; FYSR(?)	<u> </u>
	HAWADON CR (720')	3542						LIMENITIC SULER ZINE	1.5m QIL-CO-UMEN-SOUL ZONIE; FEMARD & RAPINITIC 10-15 2.5	FIDES
	HAWINSON CR (720)	3543	1	·				ARGINAITE	0.250m CRSE FY VEIN'S ASSOC TO SHIEAR LONE	
	HAWINSON CR. (720')	3544	V			T		ARGILLITE	NMONITIC GRAPHITIC SHEAR ZOUS ; UP TO IS TO SULF; FAULT BO	*
	HAWASON CR (720')	3545						ARGILLITE	GIZ-CARB VAL, STOCKLORK BEX & GFZ-CC PY LIMEN; 2.5%	$\cdot a_j$
	SENTH TIP HOWINSON LAKE	3546	/					ARGILLITE	GTZ-CC VOG, SHEARED, FOLDED & 2-5%, DISSEM FY.	
R3547		35.47	1		Γ			AREILLITE	1012 CC STOCKWORK BRY IN 10-12% FO TOLRSE P.Y	
<u>R3548</u>		3548	1					TUFF(?)	SILICIFIED, QT2-SUNF VEINS + FRACS ; 10% DISSUM, STRING	ze 19.
K3549		3549		1				TUFF(?)	SILICIFIED + ALTED CUT BY OTZ-SULF FRICE, LIMONITIC, INC	
<u></u>		3550	1			1			CLO OFZALTES, MILDLY CHLERIFIC & 10% FN DISS. FRAC P.	- /
<u> </u>		3551	<u> </u>	1				TUTE	STRENERY STATUTTED, WEAKLY LIMON, THE; 10% DISS PY.	
63552		3552		1		1	1	CHERT	FN INMINITED; FALE - DK GREY; 5-10% FN-CRY DISS A	۷
	SOUTH OF HOWILSON LK	3553			1				GTZ-CARB ALTR'D, VA' W 5-7% FY	Έ.
	SOUTH CLIN BOONDARY'S GULLY				1		1		STR. LIMENITIC, OTZ VN'H, FRACTO DUPTO 10/6 SULFIDE	(ry)
	STREAM DU. OF HOWINGON AK	3055						CHERT	LIMENITIC, HEMATIC, FRACT'D W 1.2% DISSEM PY.	1
R 3557	P	3156		-	1				SILVEF'D FAULT BRY, "CRINCKLE FRAC" DRY & 10% SULFIDE	3
6325		3557				1			SILICA-SUF STOCKWORK + HAIRLING TRACS, 5% SULF.	
	EAST SIDE HAWINSON IK	3956					1		QT2-CORD ALTR'D, VA'S, BRA'D ROCK IT 5-7% SULFILL	-2-
			1		1	1	-		n prime na Tanàn Mananana ao Tanàna amin'ny fisiana	
·	1	1	1	+	1	1	1			ł

		,	KEEWATIN B			r(II)	101	NU.	•				/	14	,)		/			
	~ ~	11 .	100	. SAMP			Daeu	lte F	Plott	ed B	v:	4	ai	Z	<u>l Ma</u>	đ	241	•		.
oiect:	<u>Och</u>	illes 3	5/				Map		Z/	ĬŰ	5	N	Г. S.	:						
rea (Grid		four E	1800'				Mab:	<u> </u>	Z	F	C/C	25								
		. the 1.1	titlam.				Date		Xf	1	<u>/</u>				_					า
ollectors		LUNC LIVE			opogr	ασλγ			V	egeta	lli on					Soi	1	Dato		
	Sample L	ocation	·· •								T					-	11			1
		1	· · · · · · · · · · · · · · · · · · ·			i	1		-					P.	Depth 1a Horizon Somple	Horlzan	Develop	2	Moleria	
				Ε	slope		2	ē	Wooded				- 1	Sompled	5	ort		Parenl		
÷				Boltom		l	puno	Wooded	Noo			- 10		5 G		т	0	<u>د</u>	2	
Sample			Notes	Bol	5	4	ö	3				č.	λ.		I₽Ĕ				5 .	
lumber				~	5	T op	-	Ϊγ	Sporsely	ŧ	Logged	Grossland	γqmo	Harlzon	l € ∞	8.	2	=	Bedrock Colour	
	}			Valle	Okrection	Hill	2	H eavily	bor	Burnt	60-	ŝ	л. М	ЪЧ	1	Good	Poor	Oct	a 3	
	Line	Station		5	ð	<u> </u>		Ŧ	Ś.	<u> </u>				1	25	\mathbb{R}	╀─┤		-22	2
	1350	7700	Tol Free, Into org. Selt.			<u> </u>								1	30	Ň	<u> </u>		D	₹ 2
5075	1850	7450	201 take min ort, Silt			<u> </u>								A	145	1			B	
076	1800	8100	58 trad min sta, Clay/Sil	I_					<u> </u>	<u> </u>				6.0	35	1	M		De	Z
ab	1000	8750	clan Wilt			<u> </u>			_ _					GAP	1 35		\mathbb{N}		m	
-04-	177	9100	mill and, clay/selt			+								Kr.	30				mi	4
100	- 11	150	min 2va, Cloy/Silt			<u> </u>			1					B	30				m	
10]	12	10400	clay Sult	<u>e – – – – – – – – – – – – – – – – – – –</u>		+		1	1		· ·		L	B	30	\mathbb{N}			X	2
10Z-	12	150	207 trag, pour ory clay Sitt				1						<u> </u>	K	30	λ_{-}			ma	
103	11	11+20	clay/site		_		1				<u> </u>			B.	35	<u>k</u>	-		111	$\frac{e}{2}$
5104	"	450	min TVA Clay Sett	E T	+	1					·	<u> </u>	Ļ	13	20					
125	11	12+00	55 6 TUS, 37619, 17 011					1	<u> </u>	<u> </u>	· ·	ļ	╞───	<u>p~</u>	30	$\frac{1}{1}$			ni Maria	
sid .	1) 1)	1.50	102 tras min org, Sitt								<u> </u>	- -	<u> </u>	By,	25	hY-	+		m	2
5107 5107 5108		13700	inin org, Clay/Silt	-		1	ļ	<u> </u>				<u>├</u> ~──	┼╌──	1 2 19-12		1			D	7
5/08	$\frac{1}{p}$	14+00	a lan silt, thin me.							_		—	+	IA			Ť		B	\overline{Z}
\$109 \$110.	n	450	a an Isili					<u> </u>		+	┼──╸	┼──		1	12-	†	1			
5/10.		7 3	(-	 . 		┼──╍	\vdash	1	+						-
								+	+	+	+		<u> </u>		1					
·									+	+			1							
									+	+	1	[
								+	<u>† </u>	1	Ī							L		
	-			<u> </u>		+	+	<u> </u>	1		ŀ						<u> </u>			_,
			·			+	1	1				Ē		1		. 			├ ──-	
			· · · · · · · · · · · · · · · · · · ·			1	1				<u> </u>	<u> </u>			_	1	+		┝─┤─	
					1	1	1			<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>				 	<u> </u>	_ ^.
						1				_	·							<u> </u>	├ ──┼──	
									_		+		+							<u> </u>
							1	1				∔	+	+	- <u> </u>			<u> </u>		

		~		ATIN EN			RIN	GI	NC.	•				/	. /)/	4			
	Del	de -	331 100' + 1800' Vinta	SOIL SA	AMPI	LES		Resu	lts F	Plott	ed B	y:	6	la	ĊĹ.	L	J.	lan	<u> </u>		<u> </u>
roject:	Luch	ulle :	Ed i Ban	_				Mon	0	U.	ill	5	N	.T. S.	÷—			10			, .
rea (Grid)): <u>(m</u>	tow 15	00 \$ 1000	_						Særd	A	2/	90	•	1 G	ot	5	60	2.		
ollectors		att le	hittam					Date		Ŧ		1		7					Dat		
011661010					Τo	pogr	aphy	·.		V1	egeta	stion		, i						• •	
	Sample L	0001108														e .	Ę	1		-	
-						Ð			_ ·	Ð					ed.	Horizon e	Horlion	Develop	Porent	Materia	
					E	s lop		D C	Wooded	Wooded				•	amp	Tor.	Чóс	J E	òd	- F	
Sample			Notes		Boltom			n o	- S	ŝ			P.		Sa	1 71				<u> </u>	
					ů	0	Ь	Ö	[≥		Ψ.	55100	тру	e	19 1	_			Bedrock	
lumber					2	llor	🛏	-	eavily	arsely	ural	Logged	0 2 2	10 J	Horizon	Depth	6 000	Poor	Drift	pdr	Colour
		· ·		•	liov	Direction	Hill		leo	s po	B	٤	20	Swo	£	õ	Ū.	۵.	õ	Ē	<u> </u>
	Line	Station	1				<u> </u>		<u></u>						4-6	40					me
3066.	1500	0400	Bring Storg a Clay	silt md/silt							•				1.15	40				-	mB
30.7	И	0450	1057109, mm 0.9, 50	majsur_							1				<u>C</u>	42		Į\∕			m /S
618	A	1100	Ot mak form Dro, Cla	Jicitt		1									12-5	72		P	Ļ		280
1067		1450	O THE LOG OVER CLE	Likit		1					·				N	175	<u>Y</u>				LR. MB
3070	<u> </u>	2+00	ara an Zolon	Montall						<u> </u>					2	30	<u>\.</u>				LR
<u>~71</u>		2+50 3+00	107 Factor 10 Lovan 1	Im leitt.			<u> </u>		ļ	<u> </u>					TA A	4/1					imp
5012		3450	Citido, um oto, el	all sitt										<u>-</u>	4	40	i	t			mr
2-11	1650	4100	Store min or el	u/silt.	ļ	ļ	ļ		ļ	· ·		l			<u> </u>	+	<u> </u>	╪╧╴		 -	
<u>~ 1</u>	1100	4150	NO SAMPLE G		<u> </u>		+								B	20	V	1	[ļ	ĽΧ
676	1700	5+00	Otral min org, Sand/	Sill		+		·							13	6	V				ma
577	17.00	5+50	to trab, win orb, Same	Alsul_		<u> </u>	+		ŀ		<u> </u>		•		6	20	V	<u> </u>	ļ	<u> </u>	KR
5018	1750	6+00	of the min de, same	TRIF	 	<u> -</u>	+		<u> </u>					<u> </u>	B.	20	A		ļ	<u> </u>	LR
079	1775	1.+50	Otre mm my, sem	and all		1	1	1							6.	20	V.	<u> </u>	<u> </u>	<u> </u>	<u>K</u>
808C	1775	7+00	otring mm orlige	Talt		1									A	42	<u> </u>	<u>- </u>	ļ	+	\mathcal{L}
<u>281</u>	1800	0100	Charles min ova, clay	Icit	1				<u> </u>	<u> </u>	ļ	<u> </u>			<u></u>	170	<u> </u>	1	+		mx
5082	1750	0+50	other, min dry, cle	in silt					ļ	·	<u> </u>				H B	190	\mathbb{T}	1 <u> </u>		+	m
5083	1750	1+50	Plant A l'alou	filt			<u> </u>	ļ	ļ	<u> </u> _		<u> </u>			2	25	Ň	+	<u>†</u>	1	111
<u>5031/</u>	1800	2400	6 frog, min orly; Chang 506 frog, 52 org; Chang	ay Silt.	<u> </u>		- 	<u> </u>	╂		┼	┼			13-1	30			1	Ť.	mr
3.085 3.086	1800	2+00	506 110A, 52 arts - SM	et/sill_	ļ	<u> </u>		<u> </u>		╞┈━	+			-			1t-				mr
<u>5087</u>	1850	3+00	min ting t 2rd clay pring ting t 2rd clay p trag. d org. clay fe p trag. d org. clay	/silt			+			<u> </u>		†			15	25 30 30 30	V				mr
5.039	1950	3450	6 Tras. & org. Eley 15	itte	 		+			+					B	30	V				mr
5 <i>038</i> 2087	1925	4700	6 Hor ptorg, clay	1Sutter The		┢╌	+		+	1	1				_						Ank Mik
3010	1825	4750	132 fice min ora, f	1 supsit		+	+	1	1-	1					13	30	\mathbb{N}		ľ		mx
5091	1850	5100	Pitos Porg Com	1 Sult		+	+					·		ļ	B.	20	<u>1</u> 2	-		- 	MK
Soge	1800	5+50	102 files find ora, Clar DI file & ora, Clar 102 files, & bra, Clar 0 files, & bra, Clar 2 files, & bra, Clar 0 files, & bra, &	Than	 						ļ	<u> </u>	┝┯		14	75	<u></u> ₩.	V			24
8098 8094	1850. 1850	6+00	O TYPE O OVE THE	it a	1	Γ			1			<u> </u>	<u> </u>		6.	25	+		1		mi

oject: ea (Grid):	King	Creek	KEEV <u>331</u> <u>@1250'</u>	VATIN EN SOIL SA	GIN Ampi	EE		G l Resu Map:	its F	plotte	d B	1;	H Ta	.T.S.	<u>/t_ (</u> :	<u>l d</u>	itr	lam	<u>.</u>		
ollectors:	11	the Whi	Ham					Date		<u> </u>	2		-10	-			Soi	 i 1	Det		Ĩ
	Somple La	scation			Ţo	pogr	a phy	·			geta		<u> </u>					1			
				-	Boltom	slope		puno	Wooded	Wooded					S ampled	Horizon He	Horlian	Develop meni	Parenl	Material	
Sample			Notes		Bot	0	do	5	-		-	Ð,	puol	γdι		2 & e				ock.	<u>ـ</u>
umber		-			lley	Direction	I) To	evel	eavily	parsely	Burnt	rogged	Grass)and	Swompy	Harizon	Depth ta Sampt	. 00 Đ	Poor	0ri (1	Bedrock	Colour
0733I	Line	Station	A.C	- test	Voll	ă	HIH		Ŧ	S		╧┥			ß	10	t				-70
5042	1250'	20450	25 Fray min ove, S	end/silt_											\square	35				<u> </u>	<u> </u>
043	м	21400	of Fype, ann sh, Sand	leilt			1					_			A	40					<u>52</u>
044	h	21450	Brile 13107, Charg	Auteilt		1									AC	30	$\left \right\rangle$				5
045	и	22100	To Cray, um or ic	771	-	1									13	30	IK-			<u> </u>	<u> </u>
046_	и	+50	DIMA NIM 345, Sulle	Ne						·					18	30		\			n K D K
047	n	23+00	ptile, pgg clay 15	leilt.		<u> </u>									19	35					
343	И	+50	di Cal 15 4 Thy Che	The H		1									13	30	<u> v</u>				nK
249	11	24400	1) Tran man 210 24	The H		1				.					4	40	ļ		L	<u> </u>	16
250		+50	Droch Juin org, they	1914 1-11-	<u> </u>	+									<u>H-5</u>	35	<u>h</u> _			1	<u>14 j</u>
081	И	25+00	56 stuck from EVG,	ung frist	<u> </u>	+			1						6	20					Ľ
252	И	+50	Pluse Dove ting	appill		+	<u> </u>								A	35					08
1-3 Cm 1	n	126400	to tobe un ove, cla	4 Well		<u> -</u>	+		<u> </u>				•		N	36		\mathbb{V}_{-}			mA
554	N.	+50	402 that imm dra, Sit	Gand Tal	×	<u>.</u>	+	l	1						A	40		\mathbb{N}		1	58
and	и	27100	min tide + ore; cla.	1sill			+	! i	<u> </u>	t					A	40]	\mathbb{N}			nB
and a second	1202	+50	Imin that dig, San	disitt				<u>!</u>	<u> </u>	┝───┤					ΪÀ-	40		V.		1	nB
1030 Tatil	1300	28+00	107 Fred , MAN OVG,	Sand Silt					<u> </u>						B	125	12				RI
103	1275	750	um tiket org Same	1/silt		<u> </u>			<u> </u>						A	40	+	Ň	1		nB
278	1610		2. C. G. al mid out So	nd sitt.	L			 _	<u> </u>	┼──┤					A	42	1	1.	1	1 1	5 A 1
659	1250	29400	50% 100 53 819	and sitt				<u> </u>		┟──┤					0	in		Ň			K Z
<u>edo</u>	м	+50	6 Evolar 15h 212	silt.			<u> </u>	ļ	<u> </u>	┞──┤					A	30	╠╲╌	·	1	1 44	71
2061	V	30+00	W I Water I was a first of the second	Toukilt	1			<u> </u>	1						17	122	++	- Ker	 		<u> </u>
diz	4	+50	1 - 1 - 6 - 2 - 11 - 0	Jult	1	T				ا ن ا				 	3	40	14		 	<u>}</u> ₽	₩₽
263	n	31+00	20% 100, 30% 20%	Class.										ļ	A	70	<u>\</u>	<u>-</u> Y	<u> </u>		22
064	11	150	Otroe Dove Site	C. H.C.	1	1	1							┣.──	B.	20				┟──┦	ns
ed5	N	32100	10 1 TVC4 10 5 019	Villy Inthe	1	-	T		1						ļ				ł		<u> </u>
					1-	+	+		1										Į		
			L	······································		+		<u> </u>	1	1								_		$ \downarrow \downarrow \downarrow $	
			1			+		1	<u>† </u>	†								_	<u> </u>		! بر
	1.	1			<u> </u>	+		<u> </u>	1		r				1		1				1

.

		· · ·	KEEWATIN				NG	INC	<i>.</i>					/						
	King	CRUK	- <i>331</i> so	DIL SAMI	PLES	5	Pac		Diate	ted E	2	Æ	Ge	d	t. L	X	He	ten		
		- Lech	· E1250'							ieu L		£								
Area (Grid):	mou							<u>~~</u>	and the	<u> </u>	ľ	V. I. S			90				
Collectors	:	att la	hillam		_		Date	<u>e</u>		ug	<u>~</u> /	a	a	50	-/-	12				
	Somple L	_ocation		Т	opogi	raphy	•		v	egeti	olion	ł				So	Ħ	Dat	đ	
					T										e .	Ę	1			
	· ·				D B	1		2	e d					led.	101	Horizon	200	ent	Ē	
Sample	1			E O T	slop		pung	Wooded	Wooded				·	lqma	n ta Harizon Sample	Ĕ	Develop	Parent	Material	
	1		Notes	Bot	5		0 - 0 0	ŝ	≯			₽.	_	Š		 			<u> </u>	
Number				1		Top	ſ	<u>~</u>	e <u>Y</u>	- i	ц ц	510	l d e	с	μ Ψ Ψ				방	5
		· ·		Valley	Direction		l s e l	Heavily	Sporsely	Burnt	Logged	Grossland	γqmpy	Horizon	Depth	Good	Poor	Drift	Bedrock	Colour
9055336	Line	Station		>	ă	Hill	Ľ	Нe	υ Ο	- 60	Ľ	Ū	S					•		0 100
5001	1250'	0100	minor tragt and Sand/sili	<i>t</i> ,		<u> </u>			Į	·				K_	28			ļ!		<u> </u>
5002	л	0150	d ting, I to org, Send/sel	7			<u> </u>		-					7	30	<u> </u>	\mathbb{R}	<u>├</u> '		
5003	#	1100	fine m ora sell/Cla	y ·										2	30			l	[*]	BL m
5004	11	1150	OTAL, Loi ma, Sand/Si	$\frac{c\tau}{2k}$	<u> </u>			}		<u>.</u>				A	25	<u> </u>	K	┟╼╼╍┥		Dr
5225-	<u>n</u>	2+00	Title, many surger star	T										A	Zr	1	K.			ŻØ
007	<i>n</i>	3+00 4+00	337104, Cosory, Sand St	117		1		<u> </u>					· · · •	B	25				Ī	R
S DO 9 DO 11	- u	5700	35 2 tilos min Wh. Small	sitt				[15	20				k	71
5013	и	6100	727 tide min over Sand/	ult										B	20					mr
5015	и	7+00	15 Thog him Na, clau Sill											A-C	30					11
5017	jA	8100	202 trag, 53 ort, Sand/Sil	<u> </u>										4	40	<u> </u>		ļļ		<u>D15</u>
5019	61	9122	103 tige, 57 pre, clay sil	/	· 		ļ				· ·			ß.	20	<u>v</u>		بــــــ	├ ∤	<u>LK.</u> 1
5021	1	VOTOO	201 fine, mm ore, sitt/Som	d	<u>.</u>		ļ				·			Ś		~	┡┻┥		—	<u>Gre</u>
8023	n 11	1100	153 tale 5 2 orts Sand on	14	+	1.								X.	20	Ĩ.	<u> </u>	┟───┥	├── ᢪ	<u></u> / #
<u> 5025</u>	47	12+00 13+00	5 + Frod, min OV3 clay / Se	17-		+			 					3	25	ΨŤ	┼──┤		!	ma
502-7 502-9	A. M	14+00	Bries 222 and Silt Clay	~		1	1							9-5	25		ل			m
5031		15200	STRA STATE siltled	4	1	1			·					15	25	V				L.K
5,033	U .	16+00	15 Hour min tore sand 15	ilt										ß.	20 30	V				MX
5033 5035	p1	17+00	15 Titel, min tor, Sond/S 20 Titel 10 3 aver, Clay / Sil 10 Titel, 5 Este - Lay / Sil 10 Titel, 5 Este - Lay / Sil 10 Titel, 10 Tord, clay / Sil	14.]			R	30		<u> </u>			177 X <u>1777</u> 171 K
5037		19+00	107 trac, unin 013, Clay/Sila	<u>+</u>								.		Sta	20	44	<u>↓ </u>	ļ	└── ┟	MA
5037 5039. 5041	И.	19100	107408,570te, 11kg/Su			<u> </u>			<u> </u>					13.	20	1	┢──┤		┝───╇	nk
5041	N	20100	& Frag, 10 10vg , clay Bilt	<u>· </u>	<u> </u>				┞───┤					15	20	<u>v</u> .	├ 		⊢#	- /
		N/FOR	0.0		+		'				{						<u></u> <u></u> +−−−	 	├──┼	
	 	22 <u>+12</u> / 21+09 21+09 22+09 22-09 22-09 22-09				 											├}		<u> </u>	
		7, 22			+	 										<u>-</u>	††			
		221 50	<u> </u>																	
	<u> </u>	28/																		
	<u> </u>	R3450				1														

and a second
a access on the second s

Proiect:	ach	illes 3	KEEWAT	SOIL S							fed E	3 <u>v:</u> _	4	ial	Ł	<u>t</u>	it	tan	~_ •		
Area (Grid	1							Man	: (24	hill	Lr_		N.T.S							_
	· //	the luk	ittam.							a		24	-	-		-19	2.				
Collectors		an Lin			1			Date	<u> </u>		-			\neq				****			
	Sample L	ocation			To	pogr	aphy			v	eget	alia	1				So	11	Dat	a	
-							ļ									e .		1	<u> </u>		
					_	slope				ęd					S ampl ed	20	Horlzon	Develop ment	Ĩ	eríal	
Sample	ł				Boltom	0		Ground	Wooded	Wooded		•		•	Ē	lor	þ	e e E	Parent	Мон	
Jumpre			Notes		- To	of		0	Ň	Ň			P		So	1-		0			
Number				•			Top	r i		-		σ	5	P,	ġ					5	
		· .			Valley	Direction		evel	Heavily	Sporsely	Burnt	Logged	Grassland	Swompy	Horlzon	Depth to Harizon Sample	G ood	Poor	Ori 11	Bedrock	Colour
	Line	Station			ν. Vo	t t	Ē	ڐ	lec	ັດ. ທ	9	د	ŝ	5 S	Ŷ	2	υ	å j	ŏ	å	ပီ
	OFSON	0725 15	pticas min 200. Silt les	lass.		<u> </u>									ß	25	1	+			DRO
	47	2+500		Ler	<u> </u>				-		·				ß	20	V			· ·	DE
<u></u>	11	2+755	oline to 2 212 silt/c	Tel.											ß	15	V	<u> </u>	[br
	1	10000	5 + trac un ova silt	Tolay.											K	20					mK
	+1	112505	20 Sting min eva Sono	1/sitt					_						ß	25	6	1.			LK
		14500	20 ht long min Sva Some	USIL.	[A-1	30					m
	** [*]	1+75 65	Strace 52 org. Sand	Sill,											<u>13.</u>	15	1				LK
	17	2+00 15	Tains, 503 Fine doing.	<u>silt/S</u>	به العب	. روسم									A.	30	<u> </u>				mx
	l'	21250	Streamplack Contrag m	un sve	Sill	15	A								<u>a</u>	25	I				mr
	n	2+500	103 King min ma, Sang	<u>/silt</u>											16.	25	V	-			DK
	,,	2+75-5	5 1 1 104 5 225 g Sund 15	ilt	2.4	<u></u>									A A	25		1Č			тß
<u> </u>		31000	Talus 105 Thing, min org	, Sund/	su				·				.		40	20		<u>الم</u>		ļ	41.0
	24001	DEON	The second to be	77				·				·			A	25		$ \nabla $			BZ A
	2+00N		5 Ling, min org, Clay/s													25	<u>.</u>				
	M	9+25 W	56 Frag, min out, clay 15	ut.								·				C-3V	<u>v</u> .	<u> </u>		İ	mK
	24 201	OtSON	51 tras, min ovy, Send 15	5/ 1							-				8-1	20		12			DB
· · · · · ·		· · · · · · · · · · · · · · · · · · ·	54 trad unin ove, cand 15	ilt			·									80				 	5.0
		UT Z J W	3 1 Trea, town 213, Saral S											ľ	<u> </u>	00		<u> </u>		\rightarrow	PIS
	ZYDON	Dtop AI	10% fipe, min org, Sund /	silt				{							P	30		し			DA
		0125	202 fill, min org, Sond 52 1 1 min alg, Selt / 25 1 1 roy, min alg, Selt /	Kitt										ł	7-15	30		5			ZR
		0150	50 itras min ala silt 1	and.										k	1-15	30		6			LK
		2+755	25 1 Hog min Bia, Sun	1/Sill											\$	30	2				ne
															- 7-					1	
	3100N	0+900	1202 ting minorg, som	Spill											ĸ	3(レ	┟╍╍┥			ZR
				<u></u>	1										<u>.</u>			<u> </u>			
	5450N	ntzous	57 Front, min ava, Sa	~1/51	7						ł			<u></u> ł	9	20				ł	mk
	•		0 0															┢╍╍╸┧			

and the second sec

Area (Grid	$: (\neg R)$	illes 3 10 7. Whi		SOIL S				NG Resu Map Date	ults	Plott 2016 In	ed E ////	3y:	6 70	N.T.S . +	12 I	1)h 4]4	:#1 10.	<u>m</u>			
	Somple L				То	pogr	aphy				egeti			-			So	11	Dat	0	
Sample			Notes	•	ottom	of slope		Ground	Wooded	Wooded			đ		S ampled	o Horizon Iple	Horizan	Develop ment	Parent	Malerial	
Number	Line	Station			Valley B	Direction o	Hill Top	Level G	Heavily	Sparsely	Burnt -	Logged	Grassland	Swampy	Horizon	Depth to Samp	Good	Poor	Drift	Bedrock	Colour
	515ON	OtSON	102 trace min org, Semo	1/sill							•				A	25		V			be
		0475 W	157 King, min Sie, Som	1/silt							· _				R	zś,					100
	<u> </u>	1400 W	54 tiles org. and/s	alt											B.	25	F		<u> </u>		\mathcal{D}_{l}
	u	1+25W	5 froy min ave, sand	Silt			-				·				8.	25		ļ			K.
	^	450W	5tride min de, Sand	fsitt.												26	<u>الا</u>			<u> </u>	<u> </u>
· · · · · · · · · · · · · · · · · · ·	<u> </u>	1475 W	minor tragtora Sana	Silt											D	23	<u> </u>			<u> </u>	mh
	<i>u u</i>	2+00 W	min fraiting Sma/Si	12										· · · · · · · · ·	15	25	10	├ 		<u> </u>	17
	1	2+25 W	5 fraz, min org, Sand													30	<u>v</u>	<u>k</u>		 	m
	M	2+500	5 Those ova , clay/Su							•					A.			\mathbf{v}		├ ───	18
		2+75W	57 Hoy, min org, Sand	ISILI											ß	20				<u> </u> '	m
	0.400	2600 5	Solfrag, unin ora Sund	tout					····						ß	38	κ			┢━╍─────	la
	0+00	3+000	20 it sa min do silt	Cod					·						A	35	μ <u>γ</u>				Ge
	1	2+50	207 hag down sell 15	and :	· ·										A	30		ŇН			40
	11		15 That, 57 or send	and ·					· ·	f					D	30	·	Ň.			B2
<u> </u>		2/20		10.11											<u>7</u> .	20		Ϋ́ Ι			22
	17	1+90		Ti.It								†			7.	مرينا	\mathbf{b}			├─── [┤]	m K
	1		102 Frag, Inin over, Sund/	ste it			<u></u>			·					A	35	–				m
		1+25	12 6 18 9, 10 6 209, Sand	1740											0-11	25	9	Č	<u> </u>		
		1100	The strong of a and	leist.												20	t	Ť		├ ────┤	ZK
	1	2481	> + TIMA Mun Cro, scher	pm.								<u>→</u> †		ł	В А	30 30					m) LK K
		OT JU	minor 100 + 300, Schill	17 -					[n A	30		\overline{v}			7
		OF LO	30 3 freed, 5 2 54, Same 5 7 freed min and Same minor trag + 3rd, Siltill minor trag + 3rd, Siltill minor trag + 3rd, Siltill - offices, Amn erg, Siltill	yory									. 1		A	25		τ,		<u> </u>	R
	-4	Drug C.	- arvas, min arg, sulf	say .										†		- - ,		`		1	13
		C77 66-16-1						\neg													
	[{		<u> </u>		{											
	•										+					-					
												T									

e de la construcción de

°roject: Area (Grid	Achilles 33/ SOIL SAMPLES SOIL SAMPLES S: <u>Lkath Wittam</u>								Results Plotted By: <u>Heath Whitton</u> . Map: <u>Achilles</u> N.T.S.: <u>Date Ang 22/90. J 23/90.</u>														
Collectors: death Wittam.									Date ang 22/90. 1 23/90.														
	Sample L					Topography										Soil Data							
				E	slope		P	jed .	Wooded					Sampled	Depth to Horizon Sample	Horlzon	Develop – ment	Parent	Material				
Sample			Notes	Bottom	of s		Ground	Wooded	Wor			P		Sam	H N	Ť	å	4	Mg				
Number				4	1	Top	1	ίlγ	Sparsely	÷)ed	Grassland	Swampy	Harizon	So to			-	Bedrock	Ļ			
	Line	Station		Volley	Direction	H	Level	Heavily	Spar	Burnt	Logged	Gra	3 50	Hori	Oept	G ood	Poor	Drift	Bedi	Colour			
	475UN	2+75W	52 Freq, min ona, clay/sil	t						·				K	20	5				MK			
	м	2+50W	1074 da mm Ad clay Bill	ř	<u> </u>		<u> </u>			· · ·				ĥ	25	Ī.	\mathbf{r}						
	11	2+25 W	Siting, min my, Sand/sil	1	<u> </u>									B	25	ľ.				mr			
		2+00 N	153 Killy, min org, Sund/Sill 57 Killy, min org, Sand/Sill	<u> </u>										0	20	<u>-</u> -	1						
	M	1+50 N	min trong + an - clay Silt			1								B	30		HC-			02			
	11	1+25W	office, min ova good site	7										A	25	1				mE			
	И	1+00W	101 Frae, min dry Sart Bilt	7										15	20	V				LR			
	м	01750	52 Fray, min ora, Clay/Silt											15	25					mR			
	11		ST Killy, inin ora, Sand/Silt		<u> </u>										20					mR			
	<u> </u>	OtZSW	5 stilly, min any send/sili	Z							·			<u>6-4</u>	25		<u> </u>			mR			
	4+00N	1+00W	207 60 00 00 00 11/0	1				·	{	·				0	-26.	<u> </u>				A			
	Trosn	1+25 W	203 files, min ore, self Sant 30 2 files, min or self Sand				·							A. A	15		\mathbb{C}^{+}						
	1	1+501	15 2 toba, min ora, search Set	-				 -	{					5.	25	h,	I≚			C DRC			
	H	1+75 W	202 trad min ma 'silt Idlan	<u> </u>										20	25	<u> </u>	\mathbb{N}			n K			
	1	2+00 W	102 trag, min org, Send/sitt											1	10				ſ	5e			
	4	2+25W	2071 very min dra Sewet/Silt						·		Í			A	20					mp			
	N	2150 W	252 time Slove Sand 1911	'					•						25	1	\sim			أموده			
	И	Z+751J	10 trog, min otz, Sand/Silt	_					-+		-+			18	25		┝──-Ĭ						
	4HS2N	34250	5 Love + trag. Cundleilt									•		ß	35					5ZA			
	1	3750 N	358 Your min over cund/Silt											A	25					n/3			
	V	3+75 W	307 tras min ob, silt / Sand.											A	20		6			(B			
	<i>"</i>	4+00 1]	5 2013 + frag. Sand/Eilt 353 frag. min ove, Sund/Silt 307 frag. min org, Silt/Sand. 307 frag. min org, Sand/Silt	·		[[8 A	25		V			5LR nB LB LR			
														·· ·			-		<u> </u>				
				-					- -†	†						<u> </u>							
			······································		-1				†														

.....

.

	ject: <u>Achilles</u> 331 Soil samples									A													
Area (Grid): <u>C7KID.</u>								Results Plotted By: _ Keath Whittam .															
Area (Grid	1): <u> </u>	<u>, D.</u>						Map	s:	201	<u>~ </u>	<u>U5</u>		N.T. S). : _								
Collector	ectors: fleath Whitlam.									Map: <u>Achillis</u> N.T.S.: Date <u>Aug 21/90. + 22/90</u>													
	Sample L		Topography												Soil Deta								
			-			1	1	•		· ······				<u> </u>	<u> </u>	•				_			
							Ì	1		-	1				1	5	5	ц с	-				
ela					E	#lop].	Ground	Wooded	Wooded				.	Sampled	1	Horlzan	Derelop ment	Parent				
Sample			Notes		Ballom	1	1	0	ŏ	No.	į				- E	ਸ਼ੁ	Ť	åe	Ъ	:			
Number					1	0 2	Top			1	.		Č.	۶ų		2 E	[\square	÷.,			
		· .			Vailey	Oirection		Level	eavily	Sparsely	Burnt	Logged	Grassland	Swampy	Harlzon	Depth ta Harizan Sample	Р0.	3	Deill				
	Line	Station			Val	Dr.	HH		Heo	š	B	L.	5	ŝ	P	Dep	6 ood	Poor	3	4			
	GASON	3400	56 Kies 5 1 242 Sema	1/Silt		<u> </u>					· ·				5	20	V	İ	T İ				
	11	2+75	53 free, 5 lok, Sam	d/silt							·				6	20	$\overline{\nabla}$						
	<i>u</i> <i>n</i>	21.50	152 files, min org, Se	It Send								·			6 A	20							
		2+25 2+00	403 trog, un st see	to Sand.								<u> </u>			<u>K.</u>		$\overline{\mathbf{v}}$						
	-1	1+75	23 5 Grad how Bra. St		•					·]	· .				<u>F</u> K-D	25 20	*	\mathcal{C}					
	4	1650		It Sama	1										Ż.	20	5						
	4	1+25	357 files min ove	Silt Som		720	v-5)					•	1		ß,	15	চ			_			
	-1	1+00	302 Tray unin ora, 5.	17/Sund		14							!		K	25	<u>b :</u>	Ī		_			
	17	0+75	257 Hog, in Bry, 5	<u>itt/Sono</u>	(1	24	الخ								<u>B</u> _		ł	を †					
<u> </u>		0+50	157 Fred Dova Sil	FTA J	1				<u> </u>			<u> </u> -			ei K	30 		<u>~</u>		_			
		.)	<u> </u>	- / Same							\rightarrow				12	<u> </u>							
	STOON	0+25 44	5% frag, min ove, So	metkilt										i. i	4	20	$\overline{\mathbf{J}}$			_			
		OF50W	202 trag, min ate, SI						•						K	25	<u>.</u>						
	<i>"</i>	or75 W	30% type, min and sil			<u> </u>	-+			<u> </u>				<u> </u> -	<u>K</u> .	25	⊻⊥	<u> </u>		_			
	11	1400 W	253 tion, min we, San	alsit		<i>.</i>				-+				<u> </u>		20				-			
	U U	1450W	153 from inin org Same	JICIT									-+		<u>5.</u> ./	$\frac{23}{20}$	″_ +		<u> </u>				
	11	1125W	153 tidy, thin ma Sum 107 tide, 57 2003, Som	Teilt											δţ	20	(+						
		2+00 W	1071104,530g Sund	silt										[].	8	20							
		2+25w	1021 Dr. 53 dra. Sandl	silt				$-\top$							6 .	ZS	2			_			
		2+50 W	52 tribe in big senge	Selt-				_	_ <u> </u> -		<u> </u>			_/	6	20	<u> </u>						
		2+75W 3+00W	5 Stree, unin dra. clay	Selt Alcilt									•			22	́-∤-			_			
		3+251	Clay Elt	H min										-		23	+						
	1	2450 W	clayfeilt	Alsilt		-†-									51	25	;+						
	/	3+750	3 tog, clay failt									.			5	221	<u> </u>			—			
	· · ·	HODWY	27 ting, min Dra, Cla	y/silt											6	25	~ Y	y		1			

ALCUIVIIU		i Gr	<u>331</u> 10.			LES		Resu Map	11ts 1 : <u>2</u>	Plotte	ed B	<u> </u>	N	<u>.</u> .J.S.	.:_	10	24	-1cu B	17			
Collectors	11	the W!	itlam.					Date		Ľ	đ	<u> </u>	25	19	2.							
	Sample L	ocation		Topograph				1y .			Vegetation				Soil Data							
Sample			Notes		Botlom	of slope		Ground	Wooded	Wooded			- -		Sampled	Depth ta Harizan Sampte	Horizon	Derelop – ment	Parent	Material		
Number	Line	Station			Valley B	Direction d	Hill Top	Level G	Heavily	Sparsely	Burnt	Logged	Grossland	Swampy	Horizon		6 ood	Poor	Orifi	Bedrock	Colour	
	416CN	2+254	53 trag 5 3 0.19 Silt	-Sund.							,				A-2			$\overline{\mathbf{\nabla}}$			m	
	#1	2+20	53 trike, 5 torg SU	<u>ft</u>											<u>B</u>	20					m	
	11	2+13	104 Tips, 5 5 m. Sel	<u>1.</u> 14						···					ĿŞ.	20					L	
	11	2+05	106 Trag municity, sel	1 1+											3	25	v				h12	
	e)	2+00	201 1.14 5 10 4 Sit	.						·····	·				K	25	V				MR	
	el	Trak	557 ture State sila	Sand											ß,	30	V				LE	
	п	1+90	20% tite 5 Edy Sam	Matt											B	Ž0	V				<u> </u>	
	r	1+85	Sitrafiora Sand	Silt.											<u>b</u>	65	V				MR.	
	1	1+20	52 thay 10 cory, Si	<u>H</u>											B.	32	<u>v</u>				<u>MŘ</u> LKT	
	+1	1+75 W	o true, 15 sorg, Sil	ζ											0	30	V.				LK	
	4450N	7125	153 4000 5 200 Silt .			<u> </u>		[-							B	30					mR	
	V	2+20	10% 1104. 202019, Silt		·										3	25	\mathbf{v}				me	
	£1	2+15	15% tipet are, silt						•						15	25	$\overline{\mathcal{V}}$				mR	
	И	2+10	52theg 15 2 or sill						[15	25	\sim]		mr	
	1/	2+05	53 Freday, 153 ave Sult						<u> </u>						15	25	신		·		4	
	*/	2+00	157 tace min ora sift												2	20	÷	$\leftarrow +$		<u> </u>	<u>28</u> 3	
	<i>p</i>	1495	107 File, 5 pro. Xma 107 File, 5 pro. Xma 107 File, 5 pro. Xma	Tta:H						· ·					7	20	₹.	~			14 I. 14 V.	
	<u>17</u>	1+90 1+85	ACTING Stora. King	Magade											Å	ŹÓ	$\overline{1}$	Yet.			A A	
	·	1+80	the trans and city						<u> † </u>						3	20	$\overrightarrow{}$	+		¥ ما	2	
	1	1215	Strag, him or cit												B	20 30	V				nr nr	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-															

1

• • • • •

•

Project:	331	Achilles		SOIL	SAMF	PLES	S	Pac	ulte	P!ot	tad I	D									
A-an (Caid)	. 1250	' Contour						1/62		Ach	ieu i SI∕e	⊃y• _ 5		мтα	• .	104	4 1	317	1		
Area (Gria)	ANOT	n Wordwe	1					мар	سب ۱۹ م		<u>i ()</u> .	100/	i	N. I. S), ·		<u> </u>				
Collectors		1 Warabe	11					Date	<u>e</u>	sep-	<u> </u>	1.1.1	<u>,</u>								
	Sample I	Location			Тс	opogr	raphy	-		v	'eget	olior	h				30	i !	0a t	a	
(·			1		}											e .	6	1			
	•				_	, e			- .	ed					9	Depth to Horizon Sample	Horizan	Develop - ment	Ŧ	Maleriq	
Sample					Boltom	stop	ľ	punos	Wooded	Wooded				·	ampled	10	1 or	846 1 6 1	Parent	a la	1
•			Notes		-	5		2	Ň	ž	ŀ	[Þ.		So	T -	<u> </u>	Δ-	a.	. 2	
Number					6	1	Top	9		2		P	Grosslond	ia mpy	ie i	₽ Ē	[ck	
					<u> </u>	ection		Level	eavity	parsely	Burnt	Logged	10	20	Horizon	50	. 00 g	Poor	0×i 1	Bedrock	Colour
9075331	Line, 1250	Station			Vali	l a	Ē	L.	Hec	ι. Δ	6	2	ວັ	3 S	Ч	Del	မီ	6	ð	ຄື	ပီ
5066		32+5DE	2% Fran , 5% on, silt /	c 44 .							·				B	30	17				MCB
5067		33100E	2º% Frag, 5% org, silt/ 2% Frag, 5% org, silt/ 5% org, silt 20% org, silt.	0						Ĩ	•				B	25					MEB
5068		33+SOE	5% carsilt												B		1				MBB
5068 5069		34+00E	20% org silt.													30					MRB
5070 5071 5072		34+50E	20 % cry, silt. 30 % crg, silt. 2% frag 5% crg, silt. 5% frag, 5% crg, silt.								•				A-B			<			mrb Mrb
5071		35+00F	30%. ug, silt												<u>A-B</u>			\square			mrb
5 072		35+50E	2% Frag 5% cry Silt.												B	40		┝──┥			LPB
<u> </u>		36+00E	5% Frag, 5% ang, 51/1/Ch	~~											B	40				<u> </u>	LRB
5 074			15)"/A MAA 16)"/A A/A SILA												B	40				<u> </u>	MEB
<u> </u>		37+005	10% Frag, 5% org, silt / 10% org, silt.	Clas											B	45	\rightarrow	·			LLB
5 077		381000	10% or 23/ m Sill												B	25		+	<u> </u>	<u> </u>	
5 078		38tSDE	10°10 Frag, 2% org, sill 40% Frag, 2% org, sill 15% Frag, 2% org, sill										.		B	30	7				LRB LRB LRB
5079	····	39+008	15% Fro, 2% un, Sill											-	B	30	1			<u> </u>	IPR
5 080		39+50E	10% Fac 5% va silt.				·									25					LR
5081		40tove	5% Fran, 5% an, silt.											_	B	30	1	·			LRB LRB LRB
5082		401500	5% frag 10% in 1311	<u> </u>											B	25			·		LLB
5083		41+000	2% Frag. 5% va. Sill							·					B	30				K	LRB
<u></u>	•	41+50€	10 % asg, silt.					ļ		· ·					B	30	$ \leq $			[L-RB MRB
5085		42+00F	20% Frag , 5% org , sil	<u>+</u>			-+								B	20	4			!	nrb
<u> </u>		42+50E	5% frag, 5% arg, silt 5% frag, 5% org, silt	·											B	30	4	<u> </u>		{	LEB
5087		43100E	Ste Frag, Sto org, Silt	·			<u> </u>			•							2				<u>2</u> B
5088		43150E	5% org, silt.											B B	36 30	꼸	$ \rightarrow $			<u> </u> Į	MEB
5090		44LCA-	5% crg, silt. 5% crg, silt. 5% crg, silt. 5% frag, 10% crg, silt. 20% org, silt. 30% crg, silt.				<u> </u>					-+	4	B	32	20	$\overline{}$	-+		[;	12B
5010		ustone	20 1/2 m/2 Sill			-+					{·			4-B	400	40		7		—-¦(NRB
5042		45+50-	30 % 55 11			†							-ť	A-B	4	40		Эł		—- }	NØB AB
			······································								†		ſ		-1-						22
																				<u> </u>	1
						T		T	1	T	1			1	1	- in		~			

SOIL S	БАМР	LES
--------	------	-----

Topography

Oirection of stope

HIN Top

Boltom

Volley

Project: <u>331 AUNITIES</u>	Project:	<u> </u>	Achilles	
------------------------------	----------	----------	----------	--

Line

9055331 1700'

Somple

Number

5 120

5121

5122

5123

5124

5 125

5 126

5127

5 128

5129

5 130

S 131

5132

\$ 133

5134

\$ 135

Area (Grid): <u>1500' (ontour</u>

Sample Location

Collectors	_ Anna I	De daeli	HEATH	WILLAM
	and the second se			

4+50

5+00

5+50

6+00

6+50

Z+00

7+50

8+00

8+50

9+00

9+50

10:00

10+50

11+00

11+50

12+00

Station Sept. 8, 1990

511+

511+.

5°6 ora, silt

5% agisilt

5% orh, silt.

10°le asa, silt

15% orn, silt.

10% Frag. silt

5% Fray, 5% cog, silt 5% Fray, 10% cra, silt

5 °6 Fray, 15 % 03, 51/+ 10% 09, 51/+

5% Frag, 10% org, silt

5% Frag, 15% org, silt. 5% Frag, 25% org, silt. 10% org, silt.

•

٦

4 **1** 1

Notes

Resul	its Plotted By: .	_
Man:	Achilles	

Date Sept. 8/90

Grassland

Swampy

Soil

Horizon

G ood

7

1

Ζ

1

Derelop -ment

Poor 0-i N

Oepth to Harizon Sample

30

25

25

30

20

25

30

20

S ampi ed

Harlzon

ষ্ট

3

B

B

B

B

ß

B

A-B

B

8

۹.

A-B 30

A-B 30

25

25

30

20

B 20

A-8 40

A-8 35

Data

Parent

Materia (

Bedrock

Colour

IMRB

IMRB

MRB

MRB

MEB

MRB

Meb

ner

1 CB

LRB

lla

Imab

LRB

The

MRB

11

N.T.S. : 104 B/7

Logged

Burnt

Map

Sparsely Wooded

Heavily Wooded

Level Ground

Vegetation

		-	KE	EWATIN EN	IGIN	IEE	RII	NG (INC						,		,	٦,			
	rich		331 Jak GRID (soil s	AMP	LES		Res Map	uits := <u> </u>	Plot	ted [3y: _	 I	<u>(</u> N. T, S	<u>a</u>	7 	4	<u>1</u> 14	7 <u>an</u> 7	<u>~</u>	
Area (Grid Collectors	/	este la	hettam / FJ					Date		يمكر	et		29	79	10				<u>. </u>		
	Sample L	.ocction			Τc	oogr	aphy			v	eget	ot.i ør	n				30	i I	Dete	t.	
Sampie					Bollom	slope		Ground	ooded	Wooded					Sampled	Depth la Harlzon Somple	Horlzon	Derelop - meni	Parent	Materia I	
lumber			Notes		Voiley Bol	Direction of	I Top	Level Gr	Heavily Wooded	Sparsely V	Burnt -	rogged ~	Grosslond	Swompy	Harlzon' S	epth la Somp	Good	Poor	Del H	Bødrock	Calour
	Line	Station		<u>, y</u>	>	ă	Ē	Ľ	Ŧ	<u>v</u>	6 0		0	<u>s</u>	- <u>K</u>	25	L			1	341
	0+601		+ 43? Free, 102 org	sift											Ż	30					20
,	11	1+60	303 1104 5 600	Sind Seitt											A	25					4
	4	1+70	302 trong 18700	Sallsitt						[<u> </u>	A	30					U
<u></u>	11	1+90	403 Free. 20% or	3. Sudfeitt				ļ <u> </u>		 	-				12	25		N N		X	<u>m</u>
	11	200	55-27 ay 5300	Sand			<u> </u>	[Í	6	30	~			r	141 L 1
	11	2+10	555 tpg, 51 mg	Send											A	35	[\sum	[×	Ģ., G.,
	<i>n</i> 11	2+20	258 trac 5200	Cond / sitte											1	20		\geq			Ğри
	1	2750	25, 112, 2,0.9,												<u> </u>						
		·						 							1				!	<u> </u>	
			<u></u>					i i	<u> </u>				•		1	Ì		i i		\neg	
															<u> </u>	1					
<u> </u>	· ·		1						-											\square	
		<u></u>													 						
	· ·																			<u> </u>	—
																<u> </u>			1		
										{											
						-1										<u> </u>					
		-										<u> </u>				<u> </u>					
	<u> </u>									-+								┝╌╍╋		-+	
					ł	-+													<u> </u>		_
											·										
									Ĺ]				Ţ	
		1			-			Ī													_

Project: Area (Grid) Collectors	: <u> </u>		2) == 331 10 Vilson	SOIL SAM			Res Map Date	ults ;; e	Ploti	ted E	Зу: _ - <i>20</i>	1 • 199	N.T.S		10	4	B	7		
	Somple L	ocation		· · · · ·	opog	raphy			v	eget	at.i ar	1 1				50	11	Dat	a	
Sample			Notes	Boto	of stope		Ground	Wooded	Wooded			q		Sompled	Depth to Horizon Sample	Horizan	Develop - menl	Porent	Materiat	
Number	Line	Slation	· · ·	Valley B	1 6		Level G	Heavily V	Sporsely	Burnt	Logged	Grassland	Swampy	Horizon	Depth to Samp	Good	Poor	Drift	Bedrock	Colour
70 PW 55/2	THOON	1+75 E	······································			4								B	20"	_				Braur
		1+50 E 1+25 E			-	V.	[B	25			L		<u>Bn. 1</u> 15,
		1+00E				V								15	24					121
		0+75E				1Y								<u>ľ</u> B	221 29		 			$\sum_{i=1}^{n}$
		OTSOE												$\frac{D}{D}$	20"					1)] [34
																				<u></u>
is AUSSI	LHOON	4toow	20% ong 10% FRAg.	<u> </u>							-			B	20					Erc
	3456	3+75N	20% ong 10% FRag. 20% ong 50%											B	254					6:1
		3+50W	20% out 5 %					<u>. </u>						B	25					ÊK ÇI
		3+2500	10% du 40%											B	151					Ľn RR
		3+0000	/											<u>, </u>				_		$\frac{\Delta X}{1}$
10 PW331	L THOON	0+75N	20 10 019 40% in	ę		ļ								E	714		· .			ËĽ,
						. 									0.0			· · ·		
		1+2510 1+500	20 % 04 50% par	* -	+	<u> </u>								<u>6</u>	256			- :.		Br.
		1+7500	10 10 mg 52 to had	<u></u>	T	1								B.	204					CI.
		21000	20°10 010 10 10 600	2							-+			12	iv!					R. <u>C.</u> EL. R.D.
		2+1.50	20% 00 40 40	1100	1				·					\mathcal{B}	25"	·			<u> </u>	EI.
	·-	2+5001	20%10 and 20%10 pp									[6	204					kal Cal
		2+750)	10% 00 20% April	·		 									750					<u>C</u> d
		3+0000	20 m Doney 10 20 grad			┞								L	2154					(ET

		Went U	ארביבאר ארביבאיל ארביבאיל					Map Date		Lug	. c. 21	<u>برد</u> د	<u> </u>	I.T.S.	.:	104					
	Somple Lo				То	pogra				v	egeta	otion					Soi		Dat	đ	
Sample			Notes		Bottom	of slops		Ground	Wooded	Wooded			J		Sampled	Depth to Harizon Sample	Horizon	Develop - ment	Parent	Material	
Number	Line	Station	Org/FR. Sei	L Type.	Volley B	Direction o	Hill Top	Level G	Heavily \	Sparsely	Burnt	Logged	Grassland	Swampy	Horizon	Depth to Samp	G ood	Poor	Drift	Bedrock	Colour
8 PW 331	3+masw	7700 N	20% org 40% f	nac,											B	24 24					R & R &
		6+50 N 6+00 N	10 0/0 00 40 0/0 fr	and the							-				$\frac{B}{B}$	20+					<u>K 4</u> 67.
		5+50 N		da											ß	25#					<u>En.</u> En.
		Stad N	10 10 00 50 10 Likes	,0											6	250					<u>En</u>
		4+50 N	20 910 00 is 50 100 file	g											E	257					62. Во В
		YTOON	20% my 50% (free	<i>(</i> /											B.	2.00					<u>218</u>
8 PW 331	6+50 N	3+25W	10 % org 90% fren	(SILT 50 1)											A	350					20
		3+50W	10010 Bay 60010 him												B	254					(A
		3+150	20% oly 40 02/00	back											B	30#					ĒΕ
		y and the second	<u> </u>	0	<u> </u>			_			<u></u>		.							.	
10 PW 331	(atour N	2+75a)		· · · ·				·				-									
<u> </u>	<u> </u>	2+5000	10%00:9 10%10 x	1.00.											\mathcal{S}	35	P				K.E.
		2+25W	10 910 00 20 9100	Can.											4	30					E.E.
		7+004	9 700 ma 10010 11	Call .											B	<u>9</u> 0			·	ł	F.G.
		1+750	70°10 000 10 10 4	n ky											<u>C</u>	307					<u>f </u>
		1+300	20% 00 10% 10%	unter .	†										B	3 5 € 25 ≆			-		K nor K tor
		1+000	20% and 20%	5.										ľ	B	25#					L'En
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		U											<u>C</u>	25"					16
4 0 . 31		· · · · · · · · · · · · · · · · · · ·	- <u> </u>												B	25*					$\mathcal{C}_{i}($
10 PW 331	CASON	2+25-60) 2+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	20% 00 20% 0%	2								-+			$\frac{D}{\mathcal{B}}$	230				{	1.1 [21]

Project: Area (Grid) Collectors:	lehit Fiz	King King Lick U	GRID Joon Po AM 331	SOIL SAM		5	Resi Map Date	ults I : e	Plott	ed B //	y: _ 25-	N	1.T.S.	:1)	E	7			
	Somple Lo	ocation			Topog	raphy			V	egeto	tion					Sol	1	Data	1	
Sample			Notes		of slope		Ground	Wooded	Wooded			þ		Horizon Sampled	Oepth ta Horizon Sample	Harizon	Develop menl	Parent	Malerial	
Number	Line	Station			i c	HIII Top	Level G	Heavily Wooded	Sporsely	Burnt	Logged	Grassland	Swampy			G ood	Poor	Drift	Bedrock	Colour
70 PW 33]	3+20N	3+75W	20% 014 30%	frig										B	35 4 30 4					R. K
		3+50W 3+25W 3+00W	N/5 50% 00 10%	log										B	30 20*	<u> </u>				A.R. R.
		2+75W 2+5au 2+25W	20 % 00 10 % 10 % 10 %	<u>bic</u>		·								R R C	35 35 30					Æ,
		2+00W	40 40 mg 20 30 pc											l E B	ন্দ্র জ্যু জু					4. - R
		1+50W 1+25W 1+00W	20% or 20 25 0 10 from 1 25 0 10 from 1 2 Store 100 10 for	fring -										B L	35					2 7 7
70 PW 331	A+SON	2+75W	30% on 20% 6	nung			 							K B	24					° ₽ L
		2+5000 2+2500 3+2500	20% my 50% fre 20% my 0 frin 10% 00 20 1	1.02.										B B.	30 50				 	L.
		3+ BOW	20 Pu pul 23 lund	0										EB						1
		gtoow	N/S 120% aig 20%	109										<i>13</i>						
															,					
		-														····				\vdash

Project:	ach	lla		INGIN SAMP			_			ed B	ly:		7	<u>/</u>	W Du) R	-7			
- Area (Grid):		Kinti G	RID				Map	:	<u>[][_</u>	CII	iy:	N	I.T.S.	.:	- <u></u>	<u>v</u>				
Collectors:	Fat	tick b	Than 90 Res 331				Date		Ú	<u>_</u>		24,	Ģ	7) 2	<u>ن</u>					
				ίτα	pogr	aphy				C.	ation					Soi	I	Dot	ø	ļ
	Sample Lo					· ·	· · · · ·													<u> </u>
Sample			Notes	Bottom	f slope		Ground	Wood ed	Wooded			q		S ampled	Depth ta Harizon Sample	Horizon	Develop	Parent	Malerial	
Number		· .	· ·	Valley Ba	Direction of	HIII Top	Level G	Heavily 1	Sporsely	Burnt	Logged	Grassland	Swampy	Horizon	epth to Som	G ood	Poor	0ri (1	Bedrock	Colour
	Line	Station		>	ă	Ī	<u>نـ</u>	Ť	<u> </u>	60			S		0 50	Ľ	-	-		IB.
90 PW 331	OFSON	Ztasw	20 % mg 10 % May.		 		<u> </u>		├					B	30					In.
		1+750	20°10 ou ionis puty											B	35		<u> </u>			de
		1250	20% 014 20% Crake											Ē	37					6 Pa
		1+25	150/10 05 10 % hay.											B	35					2.67
		1+00	20% 00 20% 10 400			—								B	35				Į!	KB
		0+75 0+50	10 % 05 10 10 00	•										\mathcal{B}	2			 		Rail
		0+25	30% 04 20% 0004								· ·			B	35		 	ļ		16
		0+00	30 % Ony Co Monaly.											Ľ.	20	 	<u> </u>		↓ ℓ	C.E.
		07.0-				Į	ļ	L	ļ					10	10.0				<u> </u>	6
to PW 331	ItonN	0 LOOK	20% 010 2010 100		ļ		ļ		·	 				10	25		+		+	62
		0+25			·	1		<u> </u>			· · ·			n n	20		+		<u> </u>	Ba
		0+50	20% ng 30% frag		<u>.</u>		<u> </u>		 _	}				R	20		1		1	Į.h
		6.+75	30 % 02 22 % free		+			<u> </u>						100					1	1
			050/200 23 12 Bug -					+						E	35		· ·			(al
10 PW 331	2703N		159009 1375 Bug:		+				1					B	30		1			Kal
		0+23E	20 You Rey Sto Chay		1	Ť.	†							B	35		1		<u> </u>	R.a
		12 - 30 E	Carlo May Che of the						· ·				 	R	ļ		<u> </u>	ļ	_	
90 PW331	TrOON	otion	100% On 1º 10 has							 				B	a section of the sect		!	1		G.
W FU JI		0+50	10 g/o cory -1			<u> </u>	 	<u> </u>		 		.		13	37		1	1		R.B.
		0+75	15010 not 5 110 Page		<u> </u>		<u> </u>	_	<u> </u>				<u> </u>	R				<u> </u>	+	B- 13 B-2
		1+00	10°10 or 10°10 baly				<u> </u>				<u> </u>			B	30		<u> </u>	<u> </u>	+	1a
		1+25	England Indie page					+						B	30			1	+	Cr. En
		1+50	200/2 Jung 5 To frang.				+			<u> </u>										
0-0-22-	(the chart of	A 121	200% 54 10 % huy	. –		<u> </u>								E_{\perp}	11]			BI.
95 12 331	<u>00-211</u>	3+25	Toto they 10 % pay		1	1	1						1	1		l	1	ł	I	

		lles 3		N EN SOIL SA				Resu	ults I ;	Plott			N		P/)					
Collectors	fatur	k Wile	son		To	ntod		Date			egete			<u></u>	70		So	 i 1	Dat	0	
	Sample L	ocotion						· .		· · · ·										<u> </u>	
Sample			Notes		Botlom	f slope		Ground	Vooded	Wooded			Ū.	-	Sampled	Oepth to Horizon Somple	Horlzon	Develop - ment	Parent	Material	
Number	Line	Station			Valley Ba	Direction of	Hill Top	Level G	Heavily Wooded	Sporsely Wooded	Burnt	Logged	Grassland	Swampy	Harizon	Depth to Somp	Good	Poor	Orifi	Bedrock	Colour
90 PWSSI	Contour	-	_	1											В	30					K.
907 <u>00</u> 0	2000"	5001	10% 1	9/10%	enag			 							B	35			<u> </u> '		d In
	2000	5002	10%, 09	10%00	redy										B	35		+	 		la b La b
	2000	5003		ng.	Ø.						·	<u></u> ' ·			B	30					1%) []
	2080	8004	20% 015 10%				<u> </u>								B	30	<u> </u>	†			Bruk
	2140	5005	10 10 10 13 10					+ • • •							B	30		1	 	t	Bro
	2000	5006	10 °/0 " 10 °/0 " 5 °/0 " 10 °/0	*		· ·		<u> </u>							6	30		1			BRB
	2000	5007													B	30					BRB
	2000	5008	5 % 14 5%	1000.											в	35					
Jug 27.																		-	 		
10 0PW	3/			<u>·</u>		ŀ		<u> </u>	-			·			<u> </u>			 	┼──		├ ──┤
	Contour		1000	<u> </u>		<u> </u>		<u> </u>	· ·						R	30	<u> </u>	1	<u> </u>		RR
	1000	5009	10% org 15% +	100											R	25		+	†	1	Ro.
	//	5010	10 % 02 20% 1	100									<u>`</u>		B	25	<u> </u>			1	RB.
	4	5011	10 % ong 20% F	700			·								B	30		1	1	1	Rad
		5012	10 % ord. 10 % nd 10 % FA	-											B						Rad R
	1000	5013		ag inter				<u> </u>	<u>† </u>						3	30 25					nech
		5014	15 % ong 10 % 1	52		<u> </u>									B	30 30				<u> </u>	BJ. Br. Br
	11	5015	5 % [=10	e l		·									B	30	ļ	<u> </u>	_		Bn.
· · · · · · · · · · · · · · · · · · ·	1000	5017		Yen.											B	30		<u> </u>	 		ßn.
	•																		<u> </u>		
······································								-													

		hille	≠1331	KEEWATIN EN SOIL S					INC ults l		ed E	3v: _			U	<u>/</u>					
Project:	A											., _		I.T.S.	. :						
Area (Grid)	:	-77	1 1.71					Мар		A.	1.4.	30		•	• —						
Collectors	:	fatue	K Wilson					Date	····		-0-	30									
	Sample L	ocotion			Τc	opogr	aphy			V	egeti	ation					501	i I	Dat	a .	
Sample			Notes		Battom	slope		puno	Wooded	Wooded	1		_	-	S ampl e d	Depth to Horizon Somple	Horlzon	Develop – ment	Parent	Material	
Number						tion of	Top	rel Gr	eovily W	arsely 1	Burnt	Logged	Grassland	Swampy	Harizon	Somp	6 0 0 0	0 L	Drift	Bedrock	
	Line	Station			Voiley	Direction	нін	Lev	Heo	Зра У	ñ 8	دة.	Ğ	R S	Цo	Der	0	Pool	à	8	<u>ا</u>
Cont		000			<u> </u>						·										
<u>(-0//0</u>															R	30	-40				
5018	1000		10 % ng	15% Fraz	<u>k</u>	ļ									R	35	3-	-	┟────┦		L B
5019	1000		20 0/0 "0	5 % "0	 										8	35		<u>├</u>		<u> </u>	1
8020	1000	<u> </u>	10 %	5 %											Ř	30	<u> </u>				2
5021	1000		5%	5 %											B	35					R
5022 5023	1000	<u> </u>	5 % org.	10 % FAQQ 10 % "		<u> </u>									R	30	<u> </u>	;I			Ū
5023	1000		J 10	10 10		<u> </u>]			├───┤					- 1	B	35					à
5024	1000	<u> </u>	5 10 .	5 % *											B	30					H H H H H
5025	1000		5 %	5 % "_	'				. 1							30					M
8026	1000		5%"	5 0/0 "	 	[·	•			30 35					14
8027 Sa 28	1000		3 70	50/0 *		[• • • • •							B	32					K
2040	1000		10 °/0 " 5 °/0 "	15%0 .			•								B	35					22
5029	1000	<u> </u>	5% 019	159 Frag.	1										Ø	36		·			d
5030 So31	1000		10 %	10 %											ß	35				L	Ż1
5032	1000		20 % *	5 % "]			B,	40				ļ	11
5033	1000		4							-					1/2	¥0 32 32 35				'	
5033	1000	1	150% 019	5% FR49.											8	30			!		ß
5035	1000		15 % org	5% FRA9. 10% FRA9.											8_	3					24
5036	1000		10 % "	10%											B	35					K
5036 5037	1000		10 %	10 %		 									8	30					RARR
									-+				-+								
i		4											+					<u>⊢ 1</u>		'	<u> </u>

	A.	hilles	× #33/	EEWATIN EN						Plot	led F	łv: _			V	/					
		Tura								F IQI				J T S		10	4.	<u> </u>	*		
Area (Grid	i):	7	1.11					Μαρ		7.	6	31	9)	4. I. U 3							
Collector	s:{	Juck	Wilson					Date				<u> </u>	_/_		1						
	Somple L	ocation			Τα	pogr	aphy	•		v	egen	ation	•				So	11	Dat	a	
			- ·		}		1									e .	E	1			
Sample			Notes		Battom	slope		Ground	Wooded	Wooded			م	-	Sampled	Depth to Horizon Sample	Horizon	Develop meni	Parent	Material	
Number					ŭ	of	do1	r s				Ð	lon	à	E	La È.				ž	_
					ley	ction		Level	×11	Sporsely	Burnl	Logged	Grossland	Swampy	Horlzon	He o	6 ood	Poor	Drift	Bedrock	Colour
	Line	Station			Valley	Direction	Н	E.	Heavily	Sp	8	Ľ.	Gr	ŝ	⊨ <u>₽</u>	ð	ق	ă	ō	ā	
Sector C										<u> </u>	•										1
	1000		15% 014	2% FRK											B	35				 '	44
<u>5038</u>	1000		15 10 017	5 % 11											B	35 30				Į'	40
<u>sa37</u>	1000		10 %	5 %											B	30				ļ	d
6040	1000	<u> </u>	10 %	5 1/2						<u> </u>					l,	35				 '	RB
5041 5042	1000		10 %	5 .10											В	30			·	<u> </u>	HQ
3043	1000		10 % 013	10% F960											B	25				↓ '	14
5044	1000		5 %	10% FREY 10%											9	25		ļ		 '	RH
8045	1000		5 %	10%											B	25				 	C.C.
5046	1000		5 %	10 %											B	30					RB
5047	7000	No 5	am ples	-			<u> </u>								B	30				┢	40
5048	1000	100-0	5% 019	5 % FRAS						ļ			•		10	25					152
5049	1000	1	5 % +0	10 % .	•	<u> </u>									10			$\left - \right $		<u> </u>	
5050	1000		15 % "	5 % "		l	·								8	30		<u> </u>		 '	<u>K</u>
5'051	1000		10 %	5 9/0						ļ					3	35		$\left \right $		+ <u> </u>	1B
3052	1000	1	5 %	5 % 10 %		ļ				<u> </u>					B	35		\vdash		╉╼───	dB
5053	1000		5 %	5 %			L								B	10				┝╾╌╴	II S
5054	1000	<u>+</u>	50/2	5 %											1º	25 30				↓	RO
5055	1000	1	5 %	1090						<u> </u>					10	2		<u> </u>			140
										L						 				 '	
	· · · · · · · · · · · · · · · · · · ·					·				<u> </u>										┟────	–
	1	1				 				<u> </u>		۱ <u>ــــــــــــــــــــــــــــــــــــ</u>			<u> </u>	+	_	┝──┨		<u> </u>	\vdash
	1									├								+		<u> </u>	
	1											<u> </u>				<u> </u>				<u> </u>	
																<u> </u>		╂──┤		<u> </u> '	i—
]									<u> </u>		+		'	<u> </u>
	1.									ļ						+		<u> </u>			+

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 ect:	27	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SOIL S	AME	<u></u>		Resu Map	lts F	Plott	ed B	y:	N	.T.S.	.:	10	4.	B	7			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	s (Grid):	-A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Date	. A	?	<u>Za</u>	Ø£.	1	P ,	2	<u>`</u>						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			treat 11	Vilsen		·	. <u> </u>					-/			-			Soi	1	Dete	a	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			To	509 7	ophy			¥1	egera					··		<u> </u>		<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\begin{array}{c c c c c c c c c c c c c c c c c c c $						$-\top$		_		ł		J.	5	5	å	-	ē	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\begin{array}{c c c c c c c c c c c c c c c c c c c $		E	ope		p	2.	ded					nple	or la	oriz	nen	oren	aler		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			e Location Notes Notes Mote, other Sa a =		101			5	P oo	ş			-		San	±=	Ĩ	۵Ĩ	Ğ.	2	ļ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nple		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 a da	Bol	Jo	a	ů S	ž	I I			č.	Ā		2 6				- S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nber			here samper	-	5	01	-	11	sel	Ŧ	þş		E	io zi	ξŇ	δ,	5	=	Ê P	Colour	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					i e	E.	Ξ		e o v	bar.	3 ur	60	°.5	3	Hor	Dep	9	6	ā	Ê	ပိ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		31Line		no holes.		ā	Ξ_		Ξ	ι Υ	-				B						<u>Î</u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	1100		10 % 1-149	+						·							<u> </u>		<u> </u>	RE	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18														15			Į	<u> </u>		10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19			5-10	+					1	•				B				\vdash			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			3 70		<u> </u>					ŀ				B	30			 		RH RH	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	150	1100				1					<u> </u>									 '	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	1100		Do Fra			1	1	1			<u> </u>		ļ					<u> </u>	┼	KP LB	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	123	1100		3 70 CA								<u> </u>	 	ļ	B	35					10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	124	1100		5º10 Ag	10 10 man	+								ļ		B	55			<u> </u>	<u> </u>	<u> 2</u> 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>							1					<u> </u>		┝	<u> </u>			-	┢━━━	<u>}</u>	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		Notes Notes Note, other 5 Note, other 5 Note, other 5 <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td><u> </u></td><td></td><td><u> </u></td><td></td><td>[</td><td></td><td> </td><td>├───</td><td><u> </u></td><td>+</td></td<>		1				<u> </u>			<u> </u>		<u> </u>		[├ ───	<u> </u>	+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	et 2,	90	$\begin{array}{c c} \hline & & & & & & & & & & & & & & & & & & $						<u> .</u>	ļ	· ·	<u> </u>			R	25			1		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{c ccc} \hline & & & & & & & & & & & & & & & & & & $	5 0/A FRAS						<u> </u>	<u> </u>	<u> </u>						† –	+	<u> </u>	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	556		$\begin{array}{c ccc} \hline & & & & & & & & & & & & & & & & & & $				<u> </u>	<u> </u>		┿───				┼──			·		<u>+</u>		R	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	the second second second second second second second second second second second second second second second se	$\begin{array}{c ccc} \hline & & & & & & & & & & & & & & & & & & $	5 0/0			·			·						20		·	┼───	+	P	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	2000	e Location Notes Mote, oth a= Station a= in Rohen $10 \ 70 \ 72$ $5 \ 76$ $5 \ 76$ $7 \ 76$	10 %												14.			†	· +	T	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	59		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 * 1.	T_		1	<u> </u>	<u> </u>						10	20			+	+	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	2000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0/0				1		<u> </u>	ļ		+		D	20			+	+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	61			3-10	50%						÷		┼				132		+	+	+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	5%. Mag.			<u></u>	_	<u>_</u>				┼──		R	20			1	<u>†</u>	En la	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	563		$ \begin{array}{c ccc} $	1000								╂───	┼──		╉╍╼━	1	20	-		+	+	π
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				<u> </u>		_		<u> </u>		+	+	+		25		+	+	+	B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	065	And the second sec			590				_	+	+	<u> </u>		+	+	10			+	+	1	1
							1	1	4		- <u> </u>	+	+	+	+	R	25	┼───		1	+	TA
									1		+	╉┅━━━		+		X	125	i	+	-	<u>†</u>	V/
				10 10 010							+	+		+		R	20		+	+	+	$\overline{\mathcal{M}}$
				10 10 012	10 % Ren				4					+		1×	35	+		1	+	1
6071 2000 10 h ora 10 in in in in in in in in in in in in in				10 % -11									┉	┥──	-			1	+	+	+	Ĭ

rea (Grid		lles Tuck	#331			FIN EN soi∟ s					ults :	Plott	ed B			N.T.S	.;	10	4	<i>B</i> -	7		
ollectors	Sample L						То	pogr	aphy	•		/	egeta						Soi	1	Dat	a .	
Sample			C Not	e s			Botiom	of slope		Ground	Wooded				puc	Å	Sampled	Depth to Horizon Somple	Horizan	Develop - ment	Parent	k Material	
lumber	Line	Station	, , ,			•	Valley	Direction	HIII TOP	Level	Heovily	Sparsely	Burnt	Logged	Grassland	Swampy	Horkon	& Depth So	900 g	Poor	Drifi	Bedrock	S Colour
073	2000		5% 0	janie		is FRAZ.							•				X	30				· · ·	Bi
074	2000		50/0 0	111	59	<u> </u>											B						Bel
8075	2000	ļ	In to one	7	59	Frag											B	35 35					CR.
076	2000		10-10-11		- 5 1/2	6 4											B	35		<u> </u>		ļ	EL I
677	2000	10 5	150/0 "													[[<u> </u>				20
3078	2000	NO SO	10 % 010		50%	FRAS											$ \mathcal{R} $	35				¹	ER J
8020	1900		5% 0.4	,	5%	FRAG. FREG.								· · ·			B	30		<u> </u>			14
3081	1900		10%00	2	5%	~ 0											B	35				<i>`</i>	
082	1900		5%		50/0												B	25				· <i>i</i>	CC RC P v
083	1900		10.%		5 %				<u> </u>								R	20					R
0.84	1900		16, % DE	_	10%	FRAg		<u>.</u>			-		<u> </u>				8	35					Ba RB
50R5 -	1900		10%														\aleph	30					RE
086	1905		5 %		57	n											B	35					Bi
5087	1900		5%		5°10 5°10				<u> </u>				<u> </u>				B	35		·			Bi Cz
<u>5088</u>	1900	<u></u>	15 %		50	10	<u> </u>		1								B	35					Rei
5087	1900		15%		5 0/1	FREG			<u> </u>			·					B.	35					Red
5090	1900	<u> </u>	5%00	7	5 "	- 11-4						·					B	35]			Red.
<u>e11</u>	1900		6 × 1		10%												B	30330					<u>phád</u>
5092 1093	1900		5%		15010												B	35					Kee
	1900		10%		15º10 5º10												KS-	30		 		ļ	60
8074 6095	1900	<u></u>	5 % 5 % 10 % 10 % 0		5010	PR4C,								·			KŽ_	اكثا					KG
	1 100			1													B	25					
		ļ							i							L		<u> </u>					<u> </u>

	ach	1.11.	331	KEEWATIN so	ENGII DIL SAMF		.1 1 1 1 ;	-		•				10	4	≠3					
		<u>rez</u>						Resu	ults I :	Plott	ed E	3y:			;.:	#3 104	ß	-7	,		
A <mark>rea</mark> (Gric	Pal.		the					Map Date	X	ep	5	90									
Collector	1	-ch //	<u> </u>		ί τ	00091	αολγ			•		otian			Γ		Soi	1	Dat	0	
	Sample L	ocation				1		· .			-							1			[
Sample			Notes		Baltom	of slope		Ground	Wood ed	Wooded			pi	-	S ampled	Oepth ta Harizan Sample	Horlzan	Develop ment	Parent	Material	
Number	Line	Station			Volley B	Direction o	Hill Top	Level G	Heavily	Sporsely	Burnt	Logged	Grassland	Swampy	' Harizon'			Poor	Drift	Bedrock	Colour
			5 % 000	5% FRB			<u> </u>				·				13,	33.3					24
5096	# 1900 1900		10 % ofty	2. 10 FRA							•				15		<u>30</u>			·	Ell
	1900		10 % nd	5 % FR40			<u> </u>								B B		Ê		┟───┥		
509 <u>8</u> 5099	1 77	1 Som				<u> </u>	ļ					<u> </u>			12	74	2				RB,
5100	1900		5%	5 9/0 11		<u> </u>	<u> </u>	[·	· 				B	30	,		 		B
5101	1900		10 %	5 %											R	25					LA
5102	1900		10 %	5 %											B	25				1	LG
5103	1900		10 %	5 % 10 1.		╉╼╾									B	20					Rb
5102 5103 5104	1900		10 %	5 0/0 11		+									B	25					Br.
5105 5106	2000		50/0"	TOL FO	24	1									B	20		- 1		ļ!	ĸb
5100	2000	[50/0 014' 50/0 MT	5% FK		1									B	25				<u> </u>	10
5107	2000		5%	15 010											$ \mathcal{B} $	25				┟───┛	K Ø
5109	2000		103/0	15 910	-		ļ								B	25	<u>. </u>			 	BL BL
5/10	2000		5%	5 %		ļ	Ļ.								B	30 35		- <u>-</u> -	┢────┤		P.
	2000		10 %	2. 10			ļ								B	30			·	[!]	Ĕ.
5111 5112.	2000	170	Sample		===		<u> .</u>									30					7
5113	2000		100/2	, 5%			 									<u>~~</u>		<u> </u>	<u>_</u> _		+ <u>++++</u>
5114	2000	no	Jo 10 Jam	Xe in Ci in	FA-		+								\mathbb{R}	33				[ŔĻ
5/15	2000		10 00		9	+									B	30					B
5116	2000			10°10 5°10		<u> </u>		<u> </u>							B	35					Br.
5117	2000		5 %	5 0/2		+									B	20					CR P
SHS SUB	2000		10 0/0 5 0/0	5 90		1	1								B 73	35933				<u> </u>	RE RE
8119	2000		590			1									13	130			<u> </u>	'	K,
5120	2000		5%	5010							_				K B	55					P
5122	2000		5%	5010			<u> </u>								12	30			┢╾───┫	 /	12
5123	2000		5%	10 %	>			ļ							ß	30			!	'	R

	1	1 1	2 331	KEEWATIN EN	IGIN Samp	IEE								Ł	4	-/	•				
Project:	Ül	chille	ne <u>331</u>					Resu	ults I	Plott	ed E	3y: _		<u>1</u> a		10	J-)	87		<u></u>	
Area (Grid		Ω .						Map	:				<u> </u>	N.T.S	· : —	/0	/				
		In love l	Wilson	90 PW				Date		SE.	хT	25		20	,						-
Collectors	·····	aroun	<u> </u>		1 -	1000			~		_	ati an					Soi	1	Dat	a	
	Sample L	ocation				- Poği									ļ.,		T				
•					ω	slope		Ground	Wooded	Wooded				-	ompled	a Harizon ipie	Horlzon	Develop - menl	Parent	Malerial	
Sample			Notes	i	Batiom	of		e i	Ň	t i			pu.	~	S	2 a					
Number					1		Top	「 I		۲.	_	7	510	e E	5		-	_	- 1	roci	ž
•••					Valley	ection		Level .	Heavity	Sparsely	Burnl	ogged	Grassland	Yampy	Horlzon	Depth ta Samp	Good	Poor	oriti	Badrock	Colour
	Line	Station				b	нш	Ľ	нe	s.	Ð	تا	0	ര	1.0-		<u> </u>				!
	2+50N	0+50 E	5% 04	5 0/0 Frag	1										B	30	<u>v</u>				K B K B
	11	OFJOE OF45C	50/0 00	5 do France								<u>~</u>			B	30					r d
	11	OTYDE	50/0 mby	5 910 Fraly	<u> </u>	<u> </u>					<u> </u>				13	30					RB
	11	0+35E	59000	50/0 Enar	ļ					<u> </u>		<u> </u>			R	30	1/				41
	11	0+30F	10% 05	50% FARA		[B	30	V				R
	11	0+25E	5 c/a oly	5º10 KAUR-											B	30	V				WK
	11	OFZOE		11 11				-							B	30	1				ΜД
	11	0+15E				j					-				B	30	V				\mathcal{N}
	11	0+106	Masa	mple -											100	105					17
	ZrSON	ot ost	15% 09	5º10 Fran								·			<u>p</u> _	3) 30					
	Zrop	OFOSW	5% 00	5 do Findas.		<u> </u>						· · ·			B	30	1.0				
		G+INW	50/004	5º/a Friday		<u>. </u>								1	2	30	1/			ż	10
		0+15W	5º/son	5º10 Fride											B	30					R
		0+20W	50/0 8000	100/orthere										<u> </u>	Ā	30	1	·			16
		D+25W	50/0 00	5º10 Frank	+							·			Ľ						Ľ
		other	0		+		·			•						<u> </u>					
			COL DI-	5% FALIN	 									*			V				dŖ
	2+60N	6+250	5% 04	5% Enang						•								ł			¥£
	<u> </u>	0+20W 0+15W	10%004	201. Frdes											1 g	80		_			M
		OF ISW OF OW	50/004	50% FAULY						_					Þ	88					1/4
	·	ALOSW	3 % 04	Sol Enlis	ļ					-					B	30					
· · · ·	<u> </u>	BL I	100100Va	109/0 + norig	<u></u>											30					VI
		0+05E	10 0.50	mple	<u> </u>											30	\sim		·		VI.
		SHIDE	50% 000	1596 HAUG			+								B	25	1				4
		0+15 C	Solund	15 9/0 Fridg 15 -10 Fridg: 5 9/0 Fridg 5 9/0 Fridg											B	2	\mathbf{i}				4Ė
	[0+26E 0+25E	100/000	- of Linus											B	30					ÚĽ

Project: Area (Grid		turk a	# 331					Map Date	its F :	50	<u>ri</u>	دَ.	25		: ?	16					
Conectors	Sample L			. <u> </u>	Τc		aphy	• •		Ve	geta	tian					5 o i	i1 	Dati	<u> </u>	.
					Baltom	slope		punq	Wooded	Wooded		-		-	Sampled	Depth to Harizan Sample	Horlzon	Derelop - ment	Parent	Malecial	
Sample Number			Notes			Direction of	HII Top	evel Gr	eovily W	Sparsely V	Burnt -	Logged	Grossland	Σνοπργ	Harlzon' S	lepth to Samp	Good	Poor	oriti	Bedrock	
	Line	Station			Vall	ð	Ŧ	تر ا	Ĩ	S.		╧┤			B	30				-	Ż
	LZ60N	0+20E	154000	18% May							·				B.	Ba					ķ
	<u> </u>	01352	50/000	30-10 Mus.							-		-		3.	<u>k</u>	<u> </u>				Ł
		OTYSE.	5000	3090 Frach						·					3	30	<u> </u>	$\left \right $			f
		OFSOE	24000	40 To forder.					1/	┉╼┝	. <u>. </u>				1		<u> </u>				F
										+			+		B	30	1				Z
	1240NI	OFSOE	50/0 019	350/0 1904		$\left - \right $							i			30					
		0+458	54004	350/0 Fridy						 †					3	20					Ł
		OF YOE	5 % 004	35 1/2 Filley			_				-				B	B0					¥
	<u> </u>	0+35E	570014	20 10 Knan			3								B	30					μ
		At 30E	50/000	202. 101	- ·											30				 ,	Ħ
	<u> </u>	BIZSE	10010 000	15-6 Frak					<u> </u>			<u> </u>	·			21 30				/	ŕ.
		0+156	10%0 04	15 0/0 Fray	<u> </u>	ļ										25	·				t
		OFIOR	10 % 04	10% Fraz			· .					·	ł			20	<u>`</u>	┝┯╍╏			Ē
		OFOSE	15-100/3	5 % Klak						╤╧┽		·				50	ĺ		.		\overrightarrow{V}
		0 +00	100/0 0107	10 "10 Frity									†			25					Z
		0+05W	100/09	10º10 Frag		┢╌╶┥			-+				•••••		カ						L
		OFION	15 013 614	500 1100	+					†					B	30					
	L	GEISG	1501000	Sela Frage	+]		B	999 25 30					¥
	ļ	0+200	5% 05	15% FACE	-	ŀ					`				ß			┟╌╍┥	{		Þ
	· · · · · · · · · · · · · · · · · · ·	042500	5-10-015	13 10 19 19						-		·						┠╍╍┥	<u> </u>		┢
	 	<u> </u>										+	<u> </u>								┢
							· .			<u> </u>		 						┝──┾			┢
	ł	+			1	1 1	- 1		- 1	1-						<u>├[</u>		┢───┼			í-

Project: _		hilles i Gri	KEEWA	SOIL S				Res: Map	ults ;; (Blot Ch	ted E	3y: _ 15	}	<u>//</u> 1. T. S	<u>.:_</u>	1 <u> 1</u> 24	V/mi	' <u>H</u> 3]	2m_ 7		
Area (Grid Cellector): Ara	the July	Ham.					Date	e	Ser.	ot	2	<u>5/</u> 2	10							
50 (let 101:	Sample L			<u> </u>	To	pogr		-		v	eget	ation	1				So	i 1	Date	a	
Sample					Bettom	stope		Ground	Wooded	Wooded				•	Sampled	Horizon le	Horizon	Derelop – menl	Porent	Molecial	
Number			Nates	•	Valley Bal	Direction of	HIII Top	Level Gr	Heovily W	Sporsely 1	Burnt	Logged	Grassland	Swampy	Harkon .	Depth la Harizan Sample	6 00 d	Poor	Drift	Badrock	
	Line	Station	Tothe Istand	. 17		-0			<u> </u>		· ·				A	35		V			2
- 10	4+401	2+20	103 Free 103 over 3	iH								<u> </u>			A.	25 20	₩-	┝─┤	┝╾╼┥	`	<u>k</u> i p
	41	2+15	20% There 5 3000 50	H					<u> </u>	[-		12 8-A		<u> </u>	∇	i†		Ĺ
	11	2+10	103 Free 5 3,004, 8	it.							· · ·				15	20	$\mathbf{\nabla}$				6
	07	12+05	202 tras 5 20th, S.	1.1.											R	2.5	1	$\mathbf{\nabla}$			Ł
- <u></u>	1/	2+00	10 1940 5 2011 Sil	it.								 			1/2	25	V	┼──┤	ł		Ķ
	17	1192	15 Chave Stave Som												B	25	V_	\mathbf{k}			
	11	1+85	552 tres 12 2 00 Sil	Sand						· · ·					B	20					Ź
		1180	5% track ore, Simpler	17			-				•				R	25	<u>\</u>	\square			12
	11	1+75W	56 tragicily, Jay 13	1.4.			2 A.		-			<u> </u>			ļ			↓			Ļ
·····											·		-					\vdash			╀
								. ,									·				T
																					ſ
																		 	·		╞
	<u> </u>	<u> </u>								•								┢──┼			┢
										· · ·		┝╼╌┤						\vdash			t
															•						Ĺ
	<u></u>																	┨		<u>.</u>	┡
	· · · · · · · · · · · · · · · · · · ·											·						╞──┤	<u> </u>		┝
																		├ ─-†	†		F
			···																		[
																		\square			Ļ
												$ \rightarrow $						┟──┼	ł		┢
			······································									<u></u>						╞──┼	 +		⊢

and (Grid):	Harris	1San CCE	KEEWATIN EN soil s ek - Pearly Lake	SAMPI	LES	1	Resu Man:		iotte	1 k		N	.T.S.	:	04	<u> </u>	7			
ollectors	63	metre	4/C	1 -		-					tion					Sol		Deta		
	Sample Lo			10	909r0	ірлу 	·					r							-	
				Botlom	slope		punc	oded	looded			_		S ampled	Horizo le	Horizon	Develop	Parent	Naterial	
Sample Number			Notes Otoc Start on W back Hawilson Cske. 210° to saddle.	Valley Bat	Xirection of	Hill Top	Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged	Grassland	Swampy	larkzon' S	Depth to Horizon Somple	G ood	Poor	0411	Bedrock	Colour
90×3315	ELEV.	Station			ğ	нін		- -	ភ្	6 0		0	5	B	Ocn 45cm			-		Mr2B
001	1020	0+50	break in slope 5% trags 5 horganic clay 15:14					1						-	30					
002	1040'	1+00	break in stope 20% how 5 to organic Jandy 11					-						13	25					100
003	1080'	1+50	25% frogs Gronanic Sandy silt	1	Heep			~						13	25	4			~	
004	1040'	1440	40% frazz 5% organic smidy silt		"									123	35				<u> </u>	DAD
005	10001	2+50	10% frags 5% organic sandy silt											10	25			-t		
006	1010'	3+00	107 trays 5% arganic Sanay 5%											$\frac{72}{13}$	50					MARI
007	1060'	3+50	5% forgs. 5% organic sandy silt 5% forgs. 5% organic sandy silt		500	11- 11	190							13	35		╞━━┼		_	LRT
008	1110	4+00	5% trog < 5% organit 294 July million -	tral 1		te fr	in S				ļ		 	12	1 22	<u> </u>	╞──┼	+	f	-/~/.
009	1090'	4+50	5% frees 5% organic sandy silt -												 	┼───				
		ļ						╎──┤				<u> </u>		┼	<u> </u>	1	<u>†</u> †	<u> </u>		
	ļ	ļ			<u> </u>			ŀ		<u>.</u>	· · ·			+	<u> </u>		1	<u> </u>		-
		1				<u> </u>		<u> </u>		ļ				+	<u> </u>	†	<u> </u>		i	-
		<u></u>		-	1	L									1	i			İ	
	Ļ					<u> </u>	ļ	<u> </u>	ļ							<u> </u>	 . 			
	ļ	<u> </u>				ļ		<u> </u>	┠		┼───		+	1	<u> </u>	1			1	
		+				<u> </u>	<u> </u>		<u> </u>	<u> </u>		+	+	1	+	1				
	↓	<u> </u>				1					┼───	┼───	+	+	+	1	1-1			
		<u> </u>								╞┈──	+	┼╌╌─	+	1	1	<u> </u>				
					+	ļ		+			<u>├</u> ──	+	1	1.	1	1				
	+				_ <u>_</u>			+		<u> </u>	+		1	1	1	1				
	+								╞╼┷		1	1			1			1		
	·	+	•	_		<u> </u>	+	+	+		+	1	1		· ·					
	<u>_</u>	+					<u> </u>	+			+		1							
					Ļ	+	<u> </u>		+	1	+	1			1					
	+					<u> </u>		. <u> </u>	+	+		†—		1						[
———	<u> </u>					<u> </u>	+		+	+		+								
	<u> </u> .					+	-			+	1	1.								
I					1	1			+	+		-			1.	1	1	1 1		1

		-		KEEWA	TIN EN	GIN	ΕE	RIN	GI	NC	•			1	\supset)	/					
	ママ	1			SOIL S	AMP	LES		Resu		Diałł	ad 9		1	\leq	\mathcal{V}						_ ,
Project:	33	1		200					nesu	nis i	-1011	eub	y			•	1	04	13/	1.7		
Ar <mark>ea</mark> (Grid)	:	≤ 1111110	S (KING)	<u>2((10)</u>					Map	·	0			N	1.1.3. /ク	$\dot{\neg}$						
Collectors	ý.	ODERT	VIEN	<u></u>					Date		<u> </u>			_/	<u> </u>	<u>~</u>						
	Sample L	ocation				Τo	pogr	aphy	·		V	egeta	nt i o n					Soi	1	Dal	0	
		T				j								1				- c	1		=	
· •							e.			-	7					e d	0 2	Horizon	å-	en f	Material	
			ļ			Ε	slop		Ground	Wooded	Wooded		[·	S am pi ed	<u>•</u>	Hor	e e	- 10 c	f o t	
Somple			No	tes		ot t	-		ē	Woo	l ≯			P		Sa			<u> </u>		:	
Number					•	69		Top			<u>ج</u>	<u>_</u>	2	10	à	60	₩ Ę.				Š	5
				,		Volley	ctio		Level	livo	Sporsely ,	Burnt	Logged	Grassland	Swampy	Horizon	Depth ta Horizan Sample	G ood	Poor	Ori L	Bedrock	Colour
	Line	Station	0	5 70 conose 7	5	Vol	Oirection	Hill	ڭ	H eovily	5	8	د	ð	Ś	-		U	٩.	Ó	1	
1100N			Talus To			<u> </u>						·				ß	40					PΒ
0+90E	1010		1 um 10	0/60												ß	45					20
0+90E	10:0			0170												B						<u>00</u>
1+00E	1050			0/65			<u> </u>									B	60 60					<u>03</u>
1+25C				0/70			<u> </u>									ß	75					Dß
1+50E	10 90			0/80	·		┨───									<u>е ц</u> Ч						
0+25-0			N/S 0	RIVER	PE0620		· · · · · · · · · · · · · · · · · · ·										45					MRE
0 + 50 00	1010		geavel	- NIVER	<u>BEQGRY)</u>									-		٠.	45					4
0+750	1010		(L	82/9			 															
			June_		<u> </u>		1									e *						
7100N 312500	1510		5/10	SOOD BS	ample											-1	30					4
3+50 W	1500		10/10											•			25					"1
34754	1560	· · · · · · · · · · · · · · · · · · ·	15/10	63		L.		.		<u> </u>		-					55					-1
4000						<u> </u>		<u> </u>		· ·		·								 		
							╂	┨───									1					
64SON			L	· 1			┨				.	<u> </u>				•	30					4
2+75W			\$/15					 								~ <u>-</u>	4					•1
2150 W	15:00		10/15			1		<u>†</u>	·								· .					• `
94354	1510		10/10	~ ~		1	1	1								-1	£1					
at ocu	1500		0/10			1	1									• •	•1			 		~
1+50W			20/10	4								L				÷.,			 	 		_ 1
1+350	1500		15/10	- 1							 						25					• 1
1400 W	1510		15/10	•			<u> </u>				<u> </u>	 -				~	<u> </u>					
	· · · · ·					 		<u> </u>	<u> </u>		╉───					· ~~	30.				-	
3+250			10/10	F.1						-							30					
3+50 W	·		10/10			• 		+									1					
3775W	<u>.</u>						·			1	<u>+</u>					~			[1		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Sample Notes Image: station Notes Image: station I	ata		
Sample Notes III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Malecial		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bedrock	_	Cotour
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	<u></u> ^	мŔ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	┙	÷	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-+-	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_ <u>_</u>	+	╋
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-+-	┿
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-17	MĘ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ť	.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		丁	c.s
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	$r_{\rm fi}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_ _	_ <u> </u> ^	MGI
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-+-	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+	-+-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	┿	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	++++	-+-	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
1 10 15 5070 - <th< td=""><td></td><td>1</td><td>т Кс -</td></th<>		1	т Кс -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
1051 36 36 1 1101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	<u>-</u>	<u>(K</u>
			+
	╺┼╌─┽		╇
	_ -}-		┿
		╉	┿

.

Collectors	: <u>мин</u> - : <u>Кс</u> Б	ERT L	TENS			<u>.</u>			; }	Se	pt		25			10	Soi	1	Dat		
	Sample La					Γ	aphy				eget				led	101		Derelop – menl		Molecial	
Somple			Notes		Baltom	l slope	•	Ground	Wooded	Wooded			q	•	Samp	p le	Hor	De De	<u>م</u>	·	
Number	Line	Statian		% Cours	Vailey Bc	Direction of	Hill Top	Level G	Heavily 1	Sporsely	Burnt	Logged	Grassland	Swompy	Harlzon	Depth to Harlzan Sample	Good	Poor	Drift	Bedrock	Colour
3 HON () 130 E () 135 E	TOPCIO		16 Concence	30						[13	25					~1.? /// //
04551	105011		15	.35	_					· · · ·	<u> </u>				┢┈┢─	30					mh
() 140E			5	20		 					l'÷					30				i	m_{i}
CISCL			10	16		<u> </u>										30					-15
C +654			10	<u> </u>							╞╾╌╼					30					11/
C 1654 C 1601		-	10	10												25					476
<u>C 1056</u> C 176 %			7 <u>6</u> 75	10		<u> </u>						·			B	30					π^{l}
<u>C+7C = </u>	<u> </u>		13	/5	-										R	25					\boldsymbol{n}_{i}
C+75E				1.2			_				<u> </u>										┝─
						<u> </u>					<u> </u>									'	┢
					·	<u> </u>							<u> </u>				<u>.</u>				┢╴
					<u> - </u>	<u> </u>															
																					Γ
																		,		í	
																					L
						<u> </u>				-											L
			·											·							-
																			<u> </u>		
																$\left \right $					┢─
															 						┢
—	·	·				_						·						-			\vdash
						 										┼──┤					
										<u> </u>											
						ļ										 		[
	-																		- T		1

			KEEWA	TIN EN	GIN	EEI	RIN	GI	NC.	•				\bigcirc	, , ,						
	ACHI	• • • • • • •		SOIL S	AMP	LES			uts F		ed B	y:	/	K_	V						<u> </u>
roject:	ACHI	LLLS											N	.T.S.	:					. / .	
vec (Grid)	. <u> </u>	31						Map:		an	8 4	ist	م 	\sim	0/3	27	90	<u>مک</u>	ρ	121	
	: Reb	at 6	liens					Date			Ē				_/		Soi	1	Dot	<u> </u>	
Collectors					ί το	pagra	phy	·		V:	geta	lion					301			• <u> </u>	
	Sample Lo	cation		-	 							T				c .	ç			-	ļ
				•						Ţ.					Sampled	Depth to Horizon Sample	Horlzon	Develop	Porent	Malurial	
					E	slope		P.	Wooded	Wooded		· · ·		•	Ĕ	è	Hor	BE	Por	2	
			Notes		Boltom			Ground	Noo.	Ň			P					<u> </u>			
Sample			NOIES	-	å	6	Top	ō	1	2		τ.	2	. d е	Ές.	1 ÷ E	_		-	oc K	'n
Number	1					tlon		e l	1 T	Sporsely	Burnt	Logged	Grass)and	Swompy	Harlzon	150	G ood	Poor	Drift	Bedrock	Calour
	1	•	at la se		Valley	Direction	HIH	Level	H eovily	ŠPČ	B u	ا د ا	ö	Ś	Ť		9		0	<u> </u>	
INRY331	Line	Station	de com				<u> </u>								B	45	[<u>00</u>
5001	200 OKT	O + SO	7.30												*	25					MB.
002	2000	1+00	25/10												ļ.,	125	 	+	ļ		<u>MR8</u> MRB
003	3120	4+00 4+50	2-710			1						<u> </u>		<u> </u>		35			!		nRB
004	2100				+	1	1				ŀ	ļ					<u> </u>				<u>nno</u>
00 S	3080	5100	25%0 ungust	-07		Ţ			<u>.</u>		{	<u>+</u> -				125					,nRB
	-		19/10			I	 -	ļ	<u> </u>	<u> </u>						35	1				e
006	1020	2+50	10/10		_		Ļ		<u> </u>				<u> </u>		•.	35		1 -	l		د بر
<u></u>	1010	3+00	19/10	-		<u> </u>	ļ	<u> </u>			1				41.4	30					••
008	1000	3+50	20/10			+						· _			· -	30		J	ļ	. <u> </u>	٦.
010	1010	4400	150				+	<u> </u>	<u>∔</u>		1.			<u> </u>		25	<u> </u>	-		<u> </u>	
011	1000	4150	20/0			- <u> </u>							<u> </u>	+		_					MA
			Sept 1		<u></u>		-				Ţ	<u> </u>	<u> </u>	<u> </u>			<u>+</u>		↓	+	<u>/"/\</u>
012	1100	6400	19/0 Light Soud	· · · ·		-					<u> </u>	ļ	<u> </u>		- <u> `</u>	30					
013	1100	0750	01/0						1	<u> </u>	<u> </u>		+	·		1/5				-	L.Ro
014	1100	\$ 100	15/10					1		<u> </u>		+	+	+		<u> </u>		1	+	1	MR
015	1100	1+50	40/10							+	+	+-	┼──	┽──	┥╍┿	30	-	1			
016	1100	2+50	¥/10 -								+		+	+		کر ا	2				
0(7	1100	3700					+		+		1									<u> </u>	ļ
018	1100	3450					+	+		<u> </u>							<u> </u>	<u> </u>			
0.20	1100	4+00				+			-			ŀ			╺┼╍┿						
0.01	100	4+50			+-	-†	\top				\downarrow	 -		+	┿╋	-	+				
0.22	1:00	5100			-								+						-	+	
0.23	1100	5750									∔—				╾┼╌╌┼╸	30	,	+	-	+	MR
024	1100	6100	19,0 light soil			_							+	+		30				-	-
225	1100	6+50	40/10 11300									+	+	+	4.						mB'
026	1/00	7 ASO						_							<u> </u>	1		1	I		1

				KEEWA	ATIN EN	IGIN		τIN	6 1	INC.					K	~1						
	A	1-5			SOIL S	SAMPI	_E\$	1	Resu	lts F	Plott	ed B	y:					10	541	s / -/	,	
roject:	ACHILL 33	<u>,52</u>							Мар			-7		7- N	.T.S. /4/	15		<u> </u>				
rea (Grid):	: <u> </u>	$\frac{1}{1}$			-				Date	<u>S</u>	<u>e P</u>	<u>T</u>	4	<u>a</u>	14	1-3						
ollectors:	Rober	TUie	ns.								 v :	egeta	tion					Soi	i 1	Deti	0	
	Sample Lo					To	pogro	1 pny	·						-		1		<u> </u>			
								-			. ·		4	ļ		Ţ	5	Horlron	<u>e</u> _	Ě	kloterial	
•						-	slope		Ð	5	Wooded			1		Sompled		5	Develop ment	Parent	9	i
						Boltom	-		Ground	Wooded	200					201	Ť.	r	ā-	d l	. ~	ł
Sample				Notes		Bot	5	<u>م</u>	ະ ອ	ž	-			ŭ.	λ	L					÷	
umber							5	401		Ê.	sel)	Ξ	960	Grassland	Swompy	Horlzon	Depth ta Harizon Sompte	G 00đ	Poor	0rl 11	Bedrock	Colour
		-	ļ.			Valley	Direction	нш	Leve	eavily	Sporsely	Burnt	Logged	c c	,¥ v	<u>₹</u>	Dep	່ຍ	6	ŏ	å	ບັ
	Line	Station				ž	ā	Ξ		<u> </u>	φ.]	<u> </u>	_		<u> </u>	B	35		1			ARC
ORV331	1100	8+00	15/20	GOOD B SAI	nPLING		<u> </u>			1						T.	35		<u> </u>			pro
028	1100	8750	45/10				+			┝───┥						<u> </u>	35			 		MRB
030	1140	9+00	157.5	• •			<u> </u>				L	·					35	ļ	+	<u> </u>	_	MRB
031	1140	9+50	1-/15									1			<u> </u>	┼╌╴	30		+	<u> </u>		<u>mRC</u> MRC
032	1140	9+75	14/10								ļ	ļ.,			┼───	+						1
033	1140	10+50	10/10	Sept 2	100				<u> </u>	<u> </u>	<u> </u>	<u> </u>				B	30			<u> </u>	1	DD
			1410	GOUD B.SA				ļ					<u> </u>			Ĩ	30	<u> </u>	+	1		08
034	2000	1+00	19/10	<u> </u>			<u> </u>	<u> </u>	+				+	<u> </u>	1		30					PRO
035	1985	2+00	29/10				+		╉╌──				<u>†</u> ──				20		1	_	<u> </u>	DRE
036	1920	2450	15/10	• 1					<u>† </u>			Ţ					2.0			<u> </u>	}	<u>D</u> TD
<u> </u>	1950	3,00	10/10		T					1		ļ	<u> </u>	-	<u> </u>	+	-		<u></u>	1		+
			- 	Sept 4				1				<u> </u>			+	-	130	<u>. </u>	+			DR
034	1980	075	10/10	Rocky TOP 5		1		1		·		4	-			19	<u>30</u> 柄	1				+
040	9620	1+00	M.	ROCKY A HOR.	Green B			Ţ	<u> </u>	<u> </u>				+	+		40		+	1		M.R.
0	2100	2400	10/20	MOLAY /1 MOR			\vdash		<u> </u>		┨.──	4	┼╼	+	+		130		1	1		DRB
043	2100	2+50	10/20				+	<u> </u>			+	+	+	+			50		T			230
6-13	2080	3150	19/15					+			+				L.		30			<u> </u>		071
045	2060	5+50	10/15	* •				+									30	<u> </u>			<u> </u>	mRL
 046	0050	4+00	15/15					+								┿┿	35		+			₽ (B
047	2100	4+50	73/15			-					↓		- <u> </u>	4—		+	+>>		<u> </u>			Ē
04 <u>8</u>	3100	5+00	17:5	S.pt S				1	+	<u></u>	+	+	+	+	+	+		T			-	+
								-		1	+			+				-	+			
	+	+									+	+		+-	-				1		-	1
<u> </u>	+							<u> </u>											\square			<u> </u>
	- .						+	+		+								-	4-	<u> </u> 		<u> </u>

Project:	ACHIL): 33 : Robe	LIS	KEEWA	SOIL S				Rest	ults I		ted E	∃y: _) 1⁄						
Area (Grid)	<u>د کې از</u>	<u>/</u> /						Мар			<u>S.e</u>	Ø	F	1. 1. 0	ε	37					
Collectors			iene		<u>т</u> .	pogr		Date	<u></u>		egeli					<u> </u>	Soi	1	Oct	a	
	Somple L	noiton				,	,									1		1			<u> </u>
Sample			Notes		Boltom	of slope		round	Wooded	Wooded			P	-	Sompled	Deplh to Horizon Sample	Horlzon	Develop meni	Parent	Maleria!	
Number		.		•	Vailey B	Direction o	Hill Top	evel G	eavily	Sporsely	Burnl	Logged	Grassland	Swampy	Horlzon	Jepih ta Sam	6 000	Poor	Drift	Bedrock	Colour
10AV331	Line	Station		A ()	>	Ö			<u> </u>				_		75	20					m
049	3300	0+00	19/10 Midum Rocky 1	I WOR.							•				Ī	30		i			
050	2200	0450	10/ns													30					Ì.
051	3000	1+00	10/10													30					1.
052	2200	1+50	10/10								•					30			Ì		ŀ
053	2300	02+60	10/10							•						130		<u> </u>			<u> </u> .
054	<u> </u>	3+00	N/10													30					<u> </u>
<u> </u>	.2200	3+50	10/10			1									Li.	30					
	2000	4+00	10/10 TALUS ROLK AN	66											Li	30	•				<u> </u>
057	2200	4150	19/5	1												10					•
059	2230	5400	19.55 B 11				Ī					·			i	10					<u> </u>
 	2030	6+50	190 19/0													30					Ŀ
		6+00	NIS										·			MS					<u> </u>
065	2200	6150	10/10		•											50	<u></u>				•
063	2200	7+00	10/10													30					
<u> </u>	2,200	7+50	10/10													30		· ·			.
065	22.00	8400	N/10									[30					ŀ
															· · · ·						<u> -</u>
										· ·						┟╌╍╌┤			 		
												<u> </u>									┢
																					⊢
							<u> </u>					. 1				┼╍╍┦	 				<u> </u>
		•							<u> </u>												-
						<u> </u>				<u> </u>		— — †	•						[1
							<u> </u>		<u> </u>										· . İ		1
						<u></u>			-+							<u>├</u> ──┤					i
					-+										•					·	-
	-										<u> </u>							İ	<u> </u>		<u> </u>

× .

í

.

, ,

e.

Project:	331	Achilles		SOIL	SAM	PLES	S	_				_									
			Soil Contours					Res	ults	Plot	ted נווי	By: _					1	<u>n I.</u>			
Collectors	- Anic	milad	Well + HEATH WITHAM					Map):	4 <u>Ch</u>	<u></u>	>		N.T. 3	S. : _	104	1	<u>577</u>	<u> </u>		<u> </u>
Conectors			Dell T HEATH WITHAM					Dat	e	lugu	51	26	ar	<u>d</u>	<u> 30</u>	, 19	90				
	Sample L	ocation .			ί τ	opogi	raphy	,		v	eget	atio	7		Ţ		30		Dat		
4 ·		<u> </u>			\vdash	1	1				1			<u> </u>	<u> </u>				•		-
Sample Number			Notes		ey Baltom	Direction of slope	Top	el Ground	lly Wooded	Sporsely Wooded	te	Logged	Grassland	Swampy	Harizon Sampled	Depth to Horizon Somple	d Herizon	Develop- ment		Bedrock Molerial	
90AW331	Line	Station	son's it is to be a 20		10,	l E	Ē	à	eovily	ō.	Burnt	500	iras	N N	lori	E L	6 00d	Poor	Di I	adr	Calour
5013	1500'	GTODE	1500' Soil Conton 1 Aug. 26 5° lo Frag, 10° lo org, clay 15 10° lo Frag, silt 10° lo cra, silt 5° lo cra, silt 10° lo frag, silt 10° lo frag, soilt 5° lo cra, silt 20° lo org, silt 30° lo cra, silt 30° lo cra, silt 30° lo cra, silt	11 100	~		<u> </u>		Ξ.	Ņ	<u>ш</u>		9	<u>م</u>			<u>ں</u>		<u> </u>		<u>†</u>
5014		6+SOE	10 % Fing 10 10 00 00 4 Clay 15	1500			-								B	30	44	<u> </u>	⊦		MBB
5015		7+00E	10% was sitt	15001											B	30	<u> </u>		<u> </u>		MRB
5016		7+50E	5 % wa silt.	15001									·		B	35	4				MPB
507		BTOOE	10%- Frag 20 % da silt	15001							·	┈╧╾┥			B	30		┟───┥			LRB
5018		BTSOE	5% Frag ,5% erg , silt.	1500											B	30	<u> </u>	┝──╉			LRB
<u></u>		9+00E	20 % ora silt	1450'		(A-B			-			MRB
5020		9+50E	30% Fag, silt.	1450'				+				- 1			<u>8</u>	25			— - +		THREE IN THE
5021		IOHODE	30°/0 arg, silt.	1400'					-+			-			B	35	-7		 +	{	MPB
90JJ 331		the second second second second second second second second second second second second second second second se		1990			- 1								_0	23		-+			mrb
5 006	1250'	12+00E	10% Frag, 30% og, Silt.										+		A-B			7			
- 5008		13+00E	5% Fran 30% at silt.												A-B			<u>~</u> +			DRB
_5010		1440DE	5% Frag 25% va silt.		_										Aβ			<u> </u>			LRB
5012		15+00E	20% Frag 5% ora silt.	~		Ì									8		7	-+-			mrr Mrr
5014		16tODE	5% Frag, 30% org, silt.			T	·								4-B			7			"KK
<u>_ 5018</u>		18tODE	10 % Frag, 10% xq, silt.														7	╤╌┾╸		<u> </u>	n <u>eb</u> eb
5 020		19+00E	10% Frag, 5% kg, silt.								\neg				B B		7				<u>KB</u>
_ <u>Soz</u> *		21+605	10% Frag, 5% ang, silt.				Í		ŀ						<u>- B</u>	+		\neg		<u>!</u>	<u>e</u> ß
5026		22100	10%. Frag. clim 15:11							•					8		\mathbf{z}^{\dagger}				LB LB
<u>\$ 028</u>		23100E	20% day 311											_	1-B			オ			lB
<u>S030</u>		29 HOE	20% crg, silf! 5% frag, 20% crg, silf. 2% Frag, 10% org, silf. 5% Frag, 5% org, silf. 2% Frag, 5% org, silf. 2% Frag, 5% org, silf.												B		7				nee
5.032		<u>25+00E</u>	2% Frug, 10 to org sill Kl	<u>4</u>	!·					.					B						
<u> </u>		26+02E	5 10 Frag, 5% arg , silt!	•							ŀ				B		オ			-17	
5.040		2/+00E	2% Frag, 5% org, silt												B		1				CB CB CB
		24HODE	5% Eng, 10% rg; silt.												ß		1		-	M	IEB .
				····		!_															-
· ·																				-j-	- 1
													_								
				<u> </u>																	_1
				•	•	• •	•		,	'	1		1	1	1	1		1			-1

۰,

Ţ

:

1

Project: _	331 Ac	hilles		SOIL	SAM			NG	ant	<i>.</i>										
Area (Grid	1500	Contras	, 600 100				9	Res	ults	Plot	ted F	Rv:								
Cellect	Λ. σ	<u></u>		tenter.				Мас	. A	chil	les.			N.T.S.		11	D I			
Conectors		Lordwe	1 + 110/11/1	WILLAM					<u>يت</u> ،ر ه	Sand		100	~	N.T.S.	:l0 _6199 1		B/			
1	Sample (ocation				·			e	Sept		177	<u>v</u> ,	100	6,14) 5	<u>eot</u>	8,19	190	
1 ·		T	4		Ţ	0003	rabyλ			V	t ge to	tian	1	T		30		001		
					<u> </u>	T	Ţ		<u>ا</u>										GI .	
S		1			· _	2			[-	1				- 5	5	4		=	
Sample		1	Notes		Botlom	lop		р. 	Wooded	Wooded	- 1	.			tan Sampled I ta Harizan Sample	Horizan	Develop	Paren	Materia	
Number		· ·	Hules		1 =	5		0	ş	Mo	- 1				Ē Ē.	Hor		20	ē	
					8	1 - 1	Top	. 0			.		Grass)and					,-	-	
90AW 331	Line.	Station) e y	Direction	1	.	Heavily	Sparsely	=	Logged	Ĭ	Yqmow	Sam	_			풍	
S 081	1500		Sept 4, 1990		2	la la	Ξļ		60	ē.	Burat	8	ē	2	Depth	Good	Poor	DEID	Bedrock	Calour
5 082	~	7+5012	35% Frag, 10"	le urg. silt.	<u>+</u>			+			~	<u>-</u> †	<u> </u>	<u></u>		9	ď	ŏ	B	3
5083		8100U	10% Frug 5%	Courg, silt org, silt/clay /clay /clay ag, silt/clay ag, silt/clay ag, silt/clay ag, silt/clay			+			— <u> </u> -	<u></u> -		-+	1				T.	1.	18B
5084		BTJOW	2º10 Frag, 5%	ence, silt /clas.	1-1	-+					-			1		4				23
5085		- 9+00W	5% x9, silt	/ clay 10												≤ 1		1		28
5 086		9+50W	20 % Frag, 5%	ing silt/clay								<u></u>	<u> </u>	<u> </u>		4			_ IM	128
5088		11+000	25 /e trag 5 /e	esig, sitt / chan											30	4			m	<u>es</u>
5089		11+500	50% E-	g, silt/cimo	-									A		-+-	+	·	im	26 28
5040		12+00W	20% trag, san 20% org, silt 40% org, ch	i Di	┼──┼		-					·	Ť		30	\rightarrow	4-		m	ß
5 091			40% org, cla	/ <u>_ #11 ·</u>	<u> </u>									A-I			7 ┼-		— tu	<u>BB</u>
2093		13+504	25% ora, silt	<u> </u>											45		<u>-</u> +		_//	202
5094		14+00W	40% vg cla					<u> </u>			-			A-T	140				me	
5095		14+502	20% on sill	ð				— <u> </u>		<u>_</u>		<u> </u>	\bot	A-B	50	Ť	7-			
<u> </u>		15+00W	5º/0 600 100/0						-		_ <u> `</u> _	_ <u> `</u> _	-	B		7	- -		- IME	뵑
5098		15+500	5% Frag, 10% 50% Frag, 5%	was silt					<u> </u>	_ <u> </u>	_	<u> </u>	_	<u>B</u>	30		+-	-j	IME	붠
5099		16t00w :	50% Frag, 5%	ara, sandy		·						₊	- <u> </u>	A-G	30		7		Ime	
SIDO	~			$\alpha q \cdot s \mu r$				<u></u>	+	+		┿		B	20				nP	<u>P</u> Ri
	-	17+00/1	0% Fry, 10% og Sapt 6, 1990	silt			<u> </u>	<u> </u>	· ·	+	+	╀┈──		A-B	30	\perp		·	MR	
1055331 17	100' Cont	2	Sept 6,1990			1	+	+	+	+	┽──╼	+	+	A-B	20		1		ime	ลี
			Sept 8, 1990 Silt						1	1	+	 	╉──	A=B]
<u>S112</u>		-	silt	····						1		t	1	B	2012		╄		1,1]
-513					·				.				 		25 / 30 /	-	┣	<u> </u>	IMRE	
-2114			LO"/e Fran , Silt								ŀ		—		30 7	+	<u> </u>	┝	MEB	ji ji
_5115			0% Frag , silt	· · · · · · · · · · · · · · · · · · ·		+	<u> </u>		ļ				[30 1	_	┼──	┼	MR	
-5116		2+50 :	20% and silt			+		 							25 7	+	 	┼──	mrß	Į
5117		3+00 5	6 Fras, 5% 6 mg	silt.	-+	 	<u> </u>							-	57	+	ļ	<u> </u>	MRB	
5 118		<u>. 3720 5</u>	Lo Frais 5 %		-	<u> </u>	<u> </u>			<u>`</u>				B	15 /	1-			MRB	i
		4+00 10	"lo Frag , 5 % asg	Sill	<u> </u>				{		<u> </u>			Blé	5 7		— —		nee nee	
		,	J /							┯╼╾┼	╾┾	-+		8	20 7			i i	MER	
												,	,	1		· · · · ·			إلاك	

, , , , , , ,

•

· ·

SOIL SAMPLES

Colour

LER

MEB

MRP

MEG

MKB

Meb

NCB

MRB

MAB

MRB

IMBB.

PIRB

MRB

laigh

MER

MRB

PIKB

出出

ALB

ANCE'

洲的

LER

PLUB

MEB

A) (B)

MER

MAS

Project: 331 Achilles Results Plotted By: _____ Area (Grid): King Creek Mini - Gcid ___N.T.S. : __ Map: Scot 28/90, Spot 29/90 Collectors: Acon Hard Heath Whittam, Anon Wordwell Date ___ Soil Data Vegetation Sample Location Topography Depth la Harizan Sample Horlzon Derelop – ment Material Sampled Parent Wooded slops Heavily Wooded Level Ground Ballom Sample Notes Grassland Jo Ťop Swampy Sporsely Harlzon Number Bedrock Orection Logged Burnt Valley G 00 d Dritt 1033331 Poor Hill COALETS! Line Station Sept. 28/90 10-10-2-41 ß 20 2+00W 10% Fig, 15% org., silt/clas / C+10.8 8 2+10 W 10 % Frag . silt 20 \checkmark ß 25 \checkmark 2+20W 15% Frag, silt. R .35 15% orginit \mathbf{v} 2+30W 130 5º10 Frag D' erg silt R ۱. \checkmark 2+400 R 30 10 % 169, 51 H 2+50 W 2+00 67 5% Frag, 10% (19, silt 2+10 6 20% Frag, 5% (10, silt/clay 35 ſ٦. \checkmark O+DON P 125 \checkmark 35 2+200 15% day, silt. ß R 20 1 2+300 5% Fran, 10% ary, silk 2+4012 5% Frag, 15% crg, silt. 2+504 20% Frag, 25% crg, silt. 2+004 5% Frag, 25% crg, silt. 2+004 5% Frag, 5% crg, sill. 2+104 clay/silt. R 135 1 ß 30 1 28 R C+10 N1 B 30 \checkmark 2+20 W clay / silt 2+30 W 20% frog, 15% org, 511t R 20 1 30 В . . 135 ß 2+40W | silt. 1 2+50W 5% Frog, 20% org, silt Ρ. 30 1 E+4CA' Sept. 29/90 9070331 ß 30 S'le Fina Silt 1 C+40N 1+50E1 R 20 % Fina silt Isand 30 \checkmark 1+60E 1 ß 25 20 % Fing, silt / sand 1 1+70F B 35 1+ECE 20 1/0 1,00, Silt /Sand . A 35 R 1+90E 5% Frag. 10% (con silt ß 30 2+0CE 25% Frag . Silt / Sand \checkmark 35 B \checkmark 2+10E 40 % Fing, Silt/Sand 30 2120E 35% Free silt Isand R \checkmark 2 25 7 2+30E 40% For , sund

٩

.

3 r

,

,

• ٦

Project:	331 /	Achilles		SOL	SAMF	PLE	S	Baa		Diat	المما	By: _									
	d): King								ans 1	4 ch	llac	oy. 2			_	101		D1-			
								Mar):	<u>icra</u>	nes.			N.T.S	5.:	101	7	67	<u> </u>		
Collector	s: <u>Aaron</u>	1 Warac	<u>sell</u>					Dat	e	<u>Aug</u>	<u>ust</u>	19	19	70							
	Sample (Location			т	0009	rāphy	, <u>, , , , , , , , , , , , , , , , , , </u>		v	/egel	iat.ia	1				So	i1	Det	¢	
															2	uo .	LO7	 a	_	iai	
Sample			Notes	•	Eot	slope	·	pung	Wooded	Wooded				·	Sampted	Depth to Harizon Sample	Harlzan	Derelop ment	Parent	Maleria I	
Number					Bolt	5		0'9	3			1	P							<u>~</u>	
						5	12	i i	1			2	ē	l d	Γ <u>e</u>	≈ §		1		÷	
	Line	Station			Volley	Direction	HII Top	Level	eavity	Sparsely	Burnt	Logged	Grassland	Swompy	Harlzon	4 d S	G opd	Poor	0ri (1	Bedrock	Calaur
	4+50 N		Class 2601 - 50 - 110 of C		<u>></u>	3	Ī	-	Ŧ	<u>v</u> .	8			S			9			,	,
	<u> </u>	0+25E	900' 30% org ., 40% Frag	,silt											A-8	35	ļ	\sim	<u> </u>		LRB
····		0+50E 0+75E	20% ora, 25% Frag, sitt :	<u>' 850'</u>				· · ·						ļ	B	30	[$ \cdot $			MB.
	4+50N		35% org, 20% fixe, silt.	<u> </u>											A-B		·				MRB
	11.3014	Or25W	10% ora, silt.	8751							·	<u>.</u>			K	35	<u> </u>				DRB NRB DRB MRB
		0+50W 0+75W	10% org, 10% Frag, silt 30% org, 25% Frag, silt	925' 950'	· ·											35	~		 ¦		<u>LRB</u>
		1+00W	25% ora 30% fory, silt	900'											A-B				<u> </u>	<u> </u>	NRB
	5+00N	0+00	10 % ora, 40 % Frus, silt	875'									·			35					DRB
		0+75 E		1050						-+			۱ ۱			35			<u> </u>	<u> </u>	MEB
	1	1+25E	40% da, 10% Frag, 5,17	1150'						i					<u>(5</u>	35	V.			<u> </u> ŧ	LEB
		1+50E	20% ora, 20% Frag silt	1225						-+	 		-+		A-B B	35	$\overline{}$	\mathbf{V}	╾╌┾	^µ	MRB
		1+75 E	10 % oca , 0 % Freq. sitt	1275'			-i						┯╾Ӻ				7			<u> </u>	MRB
		2+00E	10 % ory, 10 % Frag sitt	1300'												30			<u>+</u>		MEB
	5+50N	ItODE	20% org, 40% Fran, silt	1275	·		╺╌╍┟	·{-		<u> </u>	\rightarrow				B	30	3				DEB
		1+25E	20% on All English	1375'					· ·						B		Ť			<u> </u>	RB
		1+50E	30% org, 0% Frag, silt 10% Frag, clay	14251							-				B	30		╾╌╴┠	<u> </u>	<u> </u>	<u>RB</u>
_		1+50F 1+75E	10% Frag, clas 20% Frag, silt	1475'					<u> </u>							30	<i>*</i>		+-	<u> </u>	MEB
		2+00E	20% Frag, silt	1550'	-					+			— <u> </u> -	 		30	<u> </u>			<u></u>	NRB
		2+25E	30 % Frag silt	1600'			 †									35	* †			<u></u>	22B 22B 20B 20B
		2+50E	20% freq , Si H	1650'		-				-					B	25	7		-+ -		<u>NPB</u>
		2+75E	5% no 25% Kas sitt														7		<u>-</u>		
		3+00E	20 % Prag silt	1675'											B	35					IRB
	6400 N	0+30E	5% 000, 25% Kithy, sitt 20% Prag, silt 65% Frag, silt	1825'											B	25	-				IPB
		OHSDE	70º/o Fran, silt	10.75									-		B			≯⊢	-+		EB
]		1+BBE	10°6 non 10°10 Fran silt	1675'		İ							•			-		-		<u>#</u>	1 <u>RB</u>
		1+75E	2 % or 10% Fran Silt	1700'								· ·			B		Ť		<u> </u>	<u>[2</u>	<u>RB</u> Pol
		2+25F	2 % ora, 10% Frag, silt 30% Frag, silt 25% Frag, silt / Clay	1760		— ;							1.		B	35	7		— -	- <u>16</u>	<u>LB</u>
		2+50F	25°/a Erda silt Iclay	1760'											<u>B</u>		*				<u>48</u> 168
		2+75E	20 % Frank, Silt	18251											B.	35	フ				<u>8</u>
I	· [*	3+00E	20 % Frag, silt 5% ora, 35% Frag, silt	1820,	T	í	1-		1	1	ł	1	Ī	1	B	3.5	V	,	•		RB

٢

SOIL SAMPLES

٦

Project:	Achilles	331
	<u>.</u>	

and the second second second second second second second second second second second second second second second

Area (Grid): King Creek

Collectors: Aaron Wordwell

Somple Location

				ults >=	Ichil		-	 N.T.S		10		в/	7	
Тс	pogr	ophy	Dat	e		<u>905</u> / # 9 # 1		 990	<u> </u> 2 	<i>24</i> ,1	990 50	i I	Det	0
Ē	lope		P.		ded				pled	u I I O U	rizon	elop	ent	erio!

		T	-1																		
Sample Number			Notes		Ballom	of slope		Ground	Wooded	Wooded		-	pu		Sampled	Depth to Harizon Sample	Horizon	Develop ment	Parent	Alateriat	
				•	Volley I	Direction	To	vel (eavily	Sparsely	Burnt	Logged	Grossland	Yqmox	Horizon	Som Io	Good		=	Bedrock	L L
	Line	Station	AUA . 23/90		Vo!	Dìre	нин	L.	Heo	Spi	8	د	õ	S.	μ	Dep	ဗိ	Poor	Ori LI	B	Colour
	3+50N	1+000	10% ora, 5% Fran , 5,1+	1225											ß	30	11	1			M
		1+25 W	10%/0 Fray, 10%/0 050, silt	1200							·				В	35	1	1			IME
		1+50W	10°/0 Frig , 5° lo ora , silt	1160'											B	30	~			[]	LR
		1+75 W	35 % Frag, 20% org, silt 35 % Frag, 20% org, silt 5 % Frag, 10 % org, silt 5 % org, silt 80 % Frag, sand 10 % org, silt	1125'								.			B	45	1	1			LR
		2+00W	35°6 Frag, 10% org, silt	1075'							.				<u>A-B</u>		L				de
		2+25W	5º1- May silt	1000					[·					<u> </u>		~				GRE
·		2+752	BO To Frag, Sand	1000											<u> </u>	35	~				SPE
		3+001	10°/0 org silt	1225'											B	25					MR
		3+250	5°10 xa, clay/silt 5°10 Fran, 2016 var, claykitt 2°10 Fran, 10°10 var, silt. 75°10 Fran, 10°10 var, silt.	1175'											B	35	1			1	MR
—		3+75W	5 % Fran, 20 % way claskitt,	11751							ļ	-			B	30					DRI
	2+00N	4+000	2 1/2 Frag, 10 % - 09, 517+.	1200'									<u> </u>			25	~				LRE
	2TOUN	2+754	75% Frag, Talus	1075'							÷ ļ				B		~		1		
		3+00U	70% Frag, Talus 70% Frag, Talus	1075'								· [·		₽- ₿		~			/	<u>GRE</u> MRI
!		3+25W	10% Frag, Jalvs	1075									<u> </u>		- 8		~			1	Me
		3+500		1075'			·								+ 8		<			_ 4	GLÈ
		<u>3+75</u>	5ºlo Frag, 5ºlo ora, silt	1100'									-+		لملغ					17	ier
·	—	4+000	5 % Frag, 5% ag, chay / 5/4.	1125				<u> </u>						<u> </u>	B		/		•	K	(lE
	0.00	0.00.01	Aug. 24/90						<u> </u>												·
	0+00	0+25W		13501						<u> </u>	\rightarrow	<u> </u>			B		4				LRB
<u>+</u>			5% Fray, 20 % org, claykilt	1350'											B		4		$-\downarrow$		i rb
		1+00W 1+25W	20% ma, clay /silt 25% ora, clay /silt	13:50 1	<u> </u>										B		<u>~</u>			[r	Mee
		1+50W	25 10 Ora, Clay / Sill	1350'				_	_	<u> </u>					<u>B</u>		\checkmark				71 <u>09</u> 7108,
	·	1+75W	5°10 Frag, 10°10 org, clay/sitt 10°10 pra, clay/sitt	13:50'					\rightarrow						B	~~~	<u>v -</u>			<u> </u>	<u> 188</u>
		2+000	10°10 org; clay/silf " 20°10 org, clay	1350			-+	<u> </u>							B+	_	\mathbf{v}	<u> </u>	-+	16	<u>_RB</u>
		2+25W	20°/1 100, silt	1350									-		B					<u> </u>	LRB
		2+50W	40 1/2 cra site	1350					+						1-B			-+-			1rb
-			40 % cry, silt	1.1.1.1			-							-+*	-R		-++-	✓	<u> </u>	M	168
	i _	····					+	1			-+-		-+-					<u> </u>		<u> </u>	

SOIL SAMPLES

Project:	Achilles	331	
Area (Grid)			Grid

1 7 1

r

Collectors: _ Aaron Wordwell

Results Plotted By: _____

Date August 25, 1990, Aug. 24, 1990, Aug. 26, 1990

Mop: _ Achilles _____ N.T.S. : _ 104 B/7

ب	Somple L	ocotion			т	00001	ophy	· .		v	eget	ation	1				5.	oil	De	1 0	
Sample			Notes		Волот	f slope		Ground	Wooded	Wooded					Sompled	Horizon Le	Horlzon	Derelop ment	Parent	Material	
Number					Volley Bo	Direction of	Top	Level G	Keovily V	Sparsely	Burnt -	Logged	Grassland	Yqmpy	Harlton' S	th to Sample	poo	2	=	Bedrock .	our
	Line	Station	Aug. 24, 1990		102	ž	ШН	נ	Нес	s S	8	و	ŭ	S w	Ē	Depth	6	Poor	Drill	Be	Colour
	2+50N	000	20 % Frog, 10% org, silt 5 % Frog, 5% org, silt 25 % Frog, 15% org, silt Aug 25,1990	1200'											В	35	12	1	<u> </u>		Deb
		0125E	5% Fam, 5% 40, 5ilt	1175'							·				8	30	17				(DR)
	_	0+50E	25% Frag 15% NO Silt	1100'											B	35	17	1	<u> </u>		L RB
			Avg 25,1990										T					1			67
	1+50N	0+00	5% ara silt.	1275'											ß	30	1	1			MRF
		0+25E	20% ach silt.	1275'												35	1				MRB
		O+50E	30 % day silt	1250'												55	~		· 1		LRA
	<u>+</u>	0+75E	20 % org , silt	12251											B	35			·		48
			Aug. 25, 1990													-					
	1+50N	0+250	AUG. 25, 1940 5% org, 31H/clay	1225'												35	7			1	MRB
		01500		1100'												35					MRB
		0+75w	10% dq, silt/clay	1075'				!·	·		<u> </u>				B	30	\checkmark				nrb
	2.50	1+50 U	20% arg, silt	1050'	1.							<u> </u>		!	B	35			1	1	MRB
	3+50N	0+00	10% Fron, 5% org, silt.	<u></u>									-		B	30	~				yes
		0+250	5 / + tran 5 % or a clashed	800					•						B	30	/				72B
0AW331	lice of cit	Orsow	10% Frag, 5% org, clay. Aug. 26, 1990	825											В	25	_				nRB
5 001	Isoa' Sci	(ontour	Ava . 26, 1990											-+					÷		
5002	1500'	0+00	10% Frag, 10% ara, silt.	15001									-+		B		_			jn	neb
5002		O+SOE	10% Frag, 20% org silt/clas	1500/											B		1			m	1eb
<u>5 003</u>		1400E		1500'									-	_	<u>8</u>			\square			iRe
5009		1+50E	A TO FRAG CLAN	1475'	<u> </u>		1								₿↓						ILB
5 006		2+00E	5% Frag, 10% Org, clay	1500'						<u> </u>		_	+		<u>B</u>					Im	168
5 00 7		2+506	5%. Frag, 5% org clay 18:14.	1500'			+				~ 		-+		<u>डू</u>		~	 _	-	M	168
5 008			5 % Frag; 25 % erg silt.	1500'							-+				<u>-B</u>	<u> </u>		4			86
5 009	·		10°lo crg, clay/silt.	1530	1			·					•		B		\checkmark		_!_		RB
5 010	<u> </u>		5% org silf. 5% org clas Isilt.	1500	<u> </u>								·		<u>G</u>		\checkmark				<u>188</u>
5011		StODE	5 % ccy clay/silt. 5% Fran 5% oce silt.	15001					<u> </u>	<u> </u>			╼╍┨╧╍		<u>B</u>		<u> </u>	<u> </u>	$ \rightarrow $		180
5012		5+50E	5% Faz, 5% oca, silt.	1500				-+					<u>-</u>		3		\prec				Ø
			5% Frag, 5% arg, r las /silt	(300	<u> </u>							+	1 i	<u></u>	5		∠⊥			(M	<u>e8</u>

Project: _ Area (Grid	act	ullys uk	331 Grid	. SAMF	۰LES		Resi Map	ults :	Plot	ied B	y; - <u>15</u> 29	$\frac{1}{3}$	ал 1.T.S	<u>on</u> .: _	<u>(1)</u> 104	B	217 17	<u>xll</u>	<u> </u>	
Collector		ron h	Jard Well	 τ	apogr			e		egeta						Soi	i 1	Dati	a .	
•				тол	slope		Ground	Wooded	Wabded					S ampl ed	Depth to Harlzan Sample	Harlzon	Devetop - menl	Parent	Malerial	
Sample Number			Notes	Valley Batt	Direction of	Hill Top	Level Gr	Heavily W	Sparsely V	Burnt -	Logged	Grassland	Swampy	Harlzon	Jepth to Samp	G 00d	Poor	Drift	Bedrock	
	Line	Station		<u> </u>	13	±			<i>(</i>)					A						V
	OFSON	21250	53 Strag, Sand	<u> </u>	+					·				1						Ļ
	<u> </u>	2+20-	50% tree, and					1	[·		-		6				╞╌╼┥		
·····	4	o h 12	5-1 Frome Sand		\square		<u> </u>		 		<u> </u>			A		1		┟╼━━━┫		
	,1	2105	303 Fine Shorn Sund		<u></u>	·	<u> </u>			╞┯┥	<u></u> +			7		<u> </u>		†		V
	11	2+00	302 tros South											A	1					1
	11	1+95	53 true, 102 grz, sitt		+									B						1
	11	1490-	302 mg. sitt		1	i								B	· .	ļ	<u> </u>			1
	- 1/	1+95	5 Stortes 105 The South Kitt		+									T				├		ł
·····	11	1+80	TALUS 102 FUR Sell Cond			\$		<u> </u>			<u></u>	ł		1				i}		1
		1+70	452 Frene sitt Sand		· <u> </u> +	19 ¹⁰					_			B	1	·		ił		
	U U	1+ 65	307 tral sitt Band		<u> </u>	<u> </u>								B				i†		1
	H	1560	302 Fine, South.	<u> </u>	+		· · · ·	· · · ·			+			B	1					T,
	4	1+55	308 frees, Sund.											R						1
	"	1450	202 frag, 182mg, Sitter		+			Î										· ·		∔
<u></u>	<u> </u>								•	·			<u> </u>							╀
		·										[╀
					—				·		<u> </u>			•				†		t
																	<u> </u>			t
					+			<u> </u>			+									Î
					+															Į
··		ł 			†			-												4-
<u>-</u>					1															ļ
		ļ			1	1	i			·	[-					+

.

SOIL SAMPLES

Τοροσταρλγ

slope

5

Direction

Ē

11

Έ

N

6

;=

Ē

Ξ

E

Ē

tη

Ē

3

41

11

41

 \mathcal{O}

17

Top

IIIH

Bottom

Volley

Project:	Achi	llent	331	

Sample Location

CONTOUR Line

2000'

Station

0400

0+50

Hoe

1450

2+00

RESO

3,00

3+50

4100

41.50

5+00

5450

Gtor

6+50

THE

7+50

3100

9150

THOC

9450

2020

2000

2000

1990

1480

1980

3000

19:0

1940

1946

1920

1960

1950

1920

1210

1840

1920

1790

1760

1750

Sample

Number

5001

003

Cc3

604

ec 5

CCE

CC1

ccs.

664

010

 $O_1($

012

013

014

015

0'6

1.17

11:2

nº6

030

Area (Grid): WEST side of Hawison Lake - 2000' CONTOUR Collectors: Colin Anterson (Staff T.) Gocc'son

Notes

28

Silty

5.11

r t

11

11

silty de

silty 1

Rounded from

Rounded Fran

Rearded from

12/ Sals anoralus + ray "

binde

11

- to Ke

.,

2

Silty soils

10% Surgaular tas

land subanular Four

50% day 50% 511

Results Plotted By: _____ Map: ACHILLES ____ N.T.S. : 104 R/7

.

Soil

Harizon

G aod

1

1 - n -

<u>u</u>

F

J

σ

1

1

Develop -menl

Poor

Oepth to Harizon Sample

Harizon' Sampled

R

 \mathcal{C}

3

Ζ,

2

 \mathcal{C}_{i}

0

R

3

3

įζ

B

 \mathcal{R}

2

ß

3

ß

3

3

ß

Data

Parent

Dritt

Malerial

Bedrock

Colour

MƘİ

MAG

.£Б

MAS

мŕВ

мв

.RR

MAR

мAB

PRE

h re

nRB

PRE

ur B

MAR

MIS

465

-6E

LRB

Date Scot 2/90

Martin Pars

1

1

/

Logged

Grassland

Swompy

Vegetalian

Sporsely Wooded

Heavily Wooded

Level Ground

roject: _,	Achille;	+ 331	rid on 9000 331	TIN ENGI SOIL SAM						ed B	y:	N	.T. S.	.:_4	04 R	77		. <u>.</u>		
Area (Grid): ting (jeek O	Carrier 271				Date	5	e et	291	90									
Collectors	: <u>Colis</u>	Anders	on Yell sol				- 1		7	egeto	lian					Soi	i 1	Date	0	
	Sample La				lopogr	аруу									1 1				. 1	
		····		ļ		1				-5				Ð	C.	U O	4		ē	
-					slope	ļ	_	Þ.	Sparsely Wooded	Stude Alcler	ł		-	Sompied	Depth to Hortzon Sample	r l z	Develop- ment	Porent	Alaterial	
				Bollom	2		Ground	Heavily Wooded	00			. 1		Ę	Ho Ho	Ť	å티	6	₹	
Sample			Notes		-		5.0	Š	3			Grossland	~	S			┎──┤		-	
Number					Ę	10		<u> </u>	Ę,	ot 1	Ð .	i i	Ē	UOZ	20.	Ţ		=	5 2	our
NUMPEI		_		Voltev	Ť	Hill Top	Level	12	ars .	2	560	2	3	Harlzon	e b l	. 9 o d	Poor	0111	Bedrock	Colour
	Line	Station	more Talus Fines Than se		Direction	-	ٹ	- *	5			<u>ہ</u>				<u> </u>				Îlar.
		I	50% Angelar ratifing 19	Kenet Rellal	E									<u>A</u> _						<u>Dec</u> Nec
	C tac V	2 HOOF	35% Andar rock fring 1	`		<u> </u>	<u> </u>	<u> </u>	<u> </u>					13			+			МÌ
		2 FUSE 2 TIOE	606 Anathe rock true 11					<u> </u>	<u> </u>					13	+		\mathbf{T}			160
	CHOCN	ATIOE	4 1/		_ <u>_</u>	<u> </u>			<u> </u>					13	+ 	1				'nВ
		2+20 E	e (<u> </u>				1	1/				10					4	RB
		12			E			┼╌──		17				14						2.00
	CHOUN	2+30 E	Boto Kondar Rectition		- L- F	+		1	<u> </u>	1-					<u> </u>	<u> </u>	ļ!			£Β
	GHA: N	2135 E	Solo Anular Reaktran		Ê		<u> </u>	1	·	1/			L	<u> </u>	0		<u> </u>			<u>KB</u>
	0400 N	2140 E 2445 E	1			1	-			Ľ			 	<u> </u>	$+\widetilde{e}$		╉──┙			<u>R 13</u>
	OIOUN	2745 1-	11		Ê				<u> </u>	4					+-5		+'		<u> </u>	
	CHOC	2150 E	(/ · · · · · · · · · · · · · · · · · ·					<u> </u>	<u> </u>	<u> ·</u>	┝╼╼┤				15		+'	1	1 (R13
	<u>August</u>	12150E	30% Supported tock F.	69	F		<u> </u>			\vdash			<u> </u>		+ 3 -	+	+			<u>k</u> 3
	0+105	140 C	Scelo De bangalar port fr	· u·2.	E			- <u> </u>		-					5			1	1	ire.
	0+105	24.30 E	30% Subangular rock for 30% Dubangular rock for base of Cliff 60% May	alar inch	Ē				1	<u> </u>										,
· · · · ·								1/		1					1.13				_	nri
	OHO N	2100 E	50% Subanyular ruch			+	+	<u>†</u>		17					区		<u> </u>	L	<u> </u>	<u>n 60</u>
	DEW N	12+10 E	175% Angular rectilis			+	1		·	1/			<u> </u>	_		<u> </u>		<u> </u>		<u>r ĉ e</u>
	OFIO N	2120 5	111		Ē					1/-				- <u> -</u>			 	<u> </u>		hai
	CtIU N	12+3/2 6	И		F				1	1							+		1?	18 B 11 - C
	CHIU N	3140 E	1 not 1		Ē			↓		+			<u> </u>	+		+		1	+'	<u>er 1. (</u> .
	OtIU-N	2TSD E	000							+				+			1	<u> </u>	1	1
								+			+			+			1		1	
		··································				+	<u>. </u>		-	+		<u> </u>								
								+		+		1					1			
						+	+	+			T					ļ		<u> </u>	<u> </u>	<u> </u>
	·						1	1				<u> </u>					—	<u> </u>		<u> </u>

• •

. . . .

SOIL SAMPLES

Project:	achil	<u>(es "</u>	331

.

Area (Grid): King Creek

	\mathcal{D}	AI	
Collectors:	Calin.	HALLIGA	L

Мар;	1	
Date	Sect 25/90	

Results Plotted By: ____

£ .				-
_	N.T.S.	: 104	<u>B/7</u>	
	-			

	Sample L	ocation		To	pogr	aphy	•		V	eget	ati an					50i 	۱ 	Dat	ں 	
Sample			Notes	Batlom	slope		Graund	Wooded	Wooded				-	Sampled	Oeplh to Horizon Sample	Horlzon	Develop – meni	Parent	Material	
Number	Line	Station	peore >	Valley Ba	Direction of	Hill Top	Level Gr	Heavily W	Sparsely	Burnt	Logged	Grassland	Swampy	Horlzon	Depth to Samp	Good	Poor	Drifi	Bedrock	Colour
			1. 6- 1.57		5			-	4					ß_		<u>_</u>			4	икв
	14+50N	1+25 W_	Angula- cark Fran 10%		5	1		1						Ġ_	ļ	/			4	al B.
	<u> </u>				5			1	ſ	-		-		8		/			4	113
	<u> </u>				5			6			•			В		<u> </u>			A	AB AB AB AB AB AB AB
	<u> </u>	1+10 m			15	1		1		- '				β		<u> </u>			4	168
		1+05 m			15			1		<u> </u>				в		<u></u>			-4	afils
			Sab Angular hach Frag Angular (1)		5			1						ß		/				NKO
<u> </u>		0415 W			5									B					4	M B
		0 +90 V_	Sybansalar" "2010		5_			1			· -			8	<u> </u>		<u> </u>		-4	AB.
		OF75W	0 1 20%		S	ι		1						В	5	4			-4	63 168
		0+90 4	Very silly suil		6						·			B	- ``	<u></u>			<u></u>	KR KR
		0+75 m	Sale rounded 20%		15			1								1				KG KG
		0+70 W	very silty		.5			1			· ·			<u>В</u> В	3					
·		0+604	Sub Angular rock Frey 201	•	E.		· · ·	<u> </u>								<u> </u>	-			nh G Nh B
		21556	11 2.360		Ē			<u>/</u> ·			-			B B	5	/.				ил D Ин Б
		0150 ~	4 1 2010		Ē	[L	4						<u>р</u> В	সি				-4	<u> </u>
		0730 W	6 6 32%		Ē			<u> </u>	<i></i>					<u>р</u> В		-				NRG RB
		0+40 W	4 3010		Ē			\angle				ł	2	<u>р.</u> В	5	/				
		0+35 W	A 4 1.2.2		E			/						B	$\overline{\mathbf{v}}$					166 166
, . <u>.</u>			N 1 30%		Ĕ				•				<u> </u>	р В	13					160 160
		01.25 K	manalty		E		·							<u>Б</u> В					- 4	163
			5. h Ander coch fra 20%		Ē									<u>в</u>		·				100
		OFIS W	Very silty Sab Angiber rock franzella Ob		e			$\langle \cdot \rangle$	-					<u>n</u> В	<u></u>	<u></u>		†		<u>кк</u> 1 <i>R</i> С
	¥	0+10	Angular Yole		Ē			<u>_</u>						$\frac{\nu}{B}$				{		RG
		0105 -	Keside creek		Ē			<u> </u>	•					0	┝──┤					<u>~~</u>
					Ł										╞╴╴╏				i	
<u></u>													——		<u>├</u> ───ि					-1
,											-+				┟╌╍┡		 	-1	+	
											+		+		 			+		

. ,

.

-

 $\sigma_{\rm c}$

Project:	achilles_	331						Resu	ults	Plot	ed E	Зу: <u>—</u>				ni R	17				
Area (Grid): King (<u>331</u> <u>Creel Crit</u> Anderson G	6					Μαρ	• <u>_</u>	L		<u> </u>	N	I.T.S.	: _14	24 B,	(<u></u>				
Collectors	: Colin	Anderson 9	$DCC^{\pi}35($					Date	<u>)</u>	<u>۲</u> ۲	LΥ	0									
	Sample (Та	pogr	αρλγ			v	egeti	otion	•				S a i	i 1	Dat	a 	+
Sample			Notes		Baltom	slope		Ground	Wooded	Wooded				-	Sampied	Depth to Horizon Sample	Horizon	Develop – meni	Parent	Material	
			Notes		80	5	. a	5					d.	. ~	·_	20					1.1
Nymber	Line	Station			Valley	Oirection of	Hill Top	Level	Heavily	Sporsely	Burnt -	Logged	Grassland	Swamp	Harizon	Deplh So	Good	Poor	Drift	Bedrock	L Colour
	4+600	11:10 W	Outcool Solo Ans	alar rak Four		3			-						В	1					neß neß
	1	11-05 W	autorop Solo Ang 3 5% 5.	beingdar	<u> </u>	5			/		· ·	<u></u>			<u>в</u> В	 	1				$\mathcal{L}\mathcal{L}$
		1100 50				5			7						B	3	1				<u>к</u> Б СС
		0+95 W	<u>ц</u>			5			1		• •				B	3	~			r	R.C
	<u> </u>	040 m	high proganic 222 >	'		5			1						0	5	\leq				nRB nRB
	<u> </u>	0185 W	high organic all a	<u>1.10/200-1201/2011</u>	1	5			/						3		4			ļ	heB
	· · · · · · · ·	OHON OFTISM	leave 5 1 tre		<u> </u>	5						· ·			12	60	4				4613
		Ottow_	Very 5.114 30% 5	utanoalar" "	1	5									B B	Sates	\leq				AB A.G
		2465 4	30% -	hangda!" "	 	5_		ļ	<u>/</u>						<u>12</u> -	22					TT.U
				<u></u>															1		
						<u> </u>							•								
		. <u> </u>	[1.	<u>[</u>												ļ		 	
	<u> </u>				1																<u> </u>
										·										├──	<u> i</u>
					ļ	<u> </u>														├──	
					┣──									.							<u> </u>
															-						
	ļ					†					, , ,									 	ļ
	· · · · ·											·									┟──┤
						ļ														<u> </u>	┝──┤
	<u> </u>							L												-	<u> </u>
						 										$\left - \right $	1				j
······																					
					<u> </u>																
	1	l			1		_					i 1	1 1			i 1		r I		1	1

		5 # 331 Creek Anderson	-(8/190 ST "331) Scott THOM	1 1 50 k]		Map Date		Hug :	3 <i>0/</i> "	10	_2 r		·····	04	7				
	Somple L				pogr	a phy	•		٧	eget		l				Soi	۱ 	Dal	a :	
Sample Number			Notes	Botlom	n of slape	Top	Ground	Heovily Wooded	Sparsely Wooded	Pines, D.C. Bue Berries	P	land	νpγ	on' Sampled	Depth to Horizon Sample	Horlzon	Develop - ment	Parent	ock Maturial	1
	Line	Station	· · ·	Volley	Direction	1 111H	Level	Heavil	Sparse	C d	Loge	Grass	Swampy		Depth	6 ood	Poor	Drift	1	Colour
5001	1500	0+00	0% Rack Fras		Ŵ					1	 			B						<u>) (</u> . R
5002		0450		_	~		-			1			-	R					· · · · ·	1 K
3003		1+00	<i>u u</i>				1-						-	B					<u>f</u>	R
7004		1+50	3% Rounded Rock Frag		1.7					1	<u>.</u>		~	1 B					<u> </u>	Ŕ
3005		2100	4% Rocht Frag	+	S									K		[1
5006		2+50	10% Angular Rock Fras	+	5 V			<u> </u>					1	B			-			R
5007		3100	20% Angalar Rock Frag		Ē				<u> </u>	1	<u>-</u> -			B					41	
3008	ļ	3+50	40% Sub angular		-					1			/	B					4	RE
3009	ļ	4100	5% Sab angular			+	-		<u> </u>	1				В					ļ,	R
5010		4+50	0% Rock Frag. 0% " high Organic	-	1		1	 		1				B ?	5		/			R
<u>3011</u>		5400	0% Rock Frag. 0% Rock Frag. 0% " high Organic 3% Sub orgalar " silty	1	S					1				B	ù	 				R
5017 5013			3/0 Jub cristing silty		.S					-				B	<u> </u>					<u>r</u>
3014	+	6+00 6+50	I ISTA JUAN FRIMANTO KOUNTYNA.	·	5	[-				B	<u> 10</u> _				M	R
5015		7+00	0% Rock Frag		5	· · · ·	<u> </u>		<u> </u>	/				8	1				41	
5016		7+50			3_	Į	ļ	<u> </u>	<u> </u>	1				B	<u>s</u>				4	<u>KĽ</u>
5017		8400	5% Subranded Rock Frag		5	<u> .</u>				1				B B	R					
5018	1	8+50	2% Rounded Rack Frag		54	ļ .	 		<u> </u>					<u> 17.</u>	112				¥	1
				<u> </u>	<u> </u>									<u> </u>	5					
					+									† .						-
••••••••••••••••••••••••••••••••••••••	ļ	L						<u> </u>							3					
	· · ·				+									1	6					
·····															80					
		·{		-	1	İ		<u> </u>												
		<u> </u>		+	†													•		
		+																		_
	1.	1						L	<u> </u>	 				<u> </u>						

miect: 3	551 Achilles	STREAM	SED	IMEN		Result	s Pl	ottec	l By: .									
	King Lieck; 1250' Contar, 1500' Contar, FIL	171 antes (5				Map:_	<u>À</u> L	hille	5		N.	T.S.:	_10'	<u>4 B</u>	17			
rea (Gria)	de miller die die die					Date:	Ace	1.21	1990	<u>;</u>	cet_	1,19	<u>90, S</u>	izot:	2/90	<u>1500</u>	1.8/9	10
ollectors :	Haim Ladvell			SEDI		DATA			STRE/				L'					
Co ala							- E					ò	SPRING	GULLY				
Sample	NOTES		Gravel	Sand	Silt	Clay	Organid	Bank	Acti	PiW	Depth	Vel, city	SPB	H D	 			
Number	Aug. 21, 1990; King Creek Grid																	
***C+30E	Flow at 236°, silt	1675'		40%							<u>20cm</u>							
C EFOCN C+CC	Flow at 234 , silt		30%	40%	30%		<u> </u>		10	3-9n	20cm	Ý.				\vdash		.
90.4W 331	Aug. 23, 1990; King Creek Grid									0.71		C I					. 	
на 3450н Зт50ні На 2169н Знасні	Flow at 220°, silf	1175'	25%	25%	45%		<u>5%</u>		785 Jac	3-7m	15cm 20cm	Fast			 	┝━━━┫	+	
31600	Flow at 228°, silt	1075'	30%	36 %	40%				705	3.4m	20 <u>(</u> m	-ast		· _		┢━━━━╋		
90.4W 331_	Scot. 1, 1990; 1250' Contour		 				[]								<u> </u>	 -		
1001	150° Flow, Moss Mat, 40+75E			20%			20%		705	1.5 m.	4 cm	12151				├── ╂	\rightarrow	
2002		1250'		20%			1-4/		Yes						 	}	-+	
ACC3		1250	30.6	10%	307.		<u>к7</u>		785	1-2-m	200	<u>rasi</u>			<u> </u>	; †	+	
	Sept. 2, 1990; 1500' Contour								1.0	<u> </u>		G. I			[]			
1004		1500		25%			<u> </u>		Ves	1 <u>m</u>	15cm 35cm	<u>RIST</u> Fried			┟───┤	·†		
LCC5	230° Flow, Silt, 7+42W	1500'	50%	30%	£%				1/55	<u>2:3m</u>	<u>3500</u>	THE JF			╞╧══┥	/ +	<u></u>	
	Sapt. 4, 1990; 1800' Contour		 							<u> </u>						┍━━━━╇		
	283 Flow, silt, 1+23W			20%			0%		yes	1m	10cm	<u>tast</u> si						
L007	200° Flow, silt 5+57W	1800'					30%		123	<u> m</u>	8 cm					 		<u> </u>
	236 Flow, silt 14+274	1800	204	IC /0	40%		30%		<u>785</u>	11-2m	15cm	11001				├	+	
9655331	Sept 2/90 1700 Contaur				1			·								<u>├</u> ─── <u></u>		
LCOS	220° Flow, silt, 1+90E	1700'	<u> </u>	÷	65%		5%				10 cm					╞━━━━╋		
	260° Flow, Moss Mat, 3+00 E	1700'	ļ		80%		20%				100					┝━━━╋		
LCC1	220° Flow, Silt. 3165E	1725′		<u>к%</u>	70%				17es	<u>m</u>	15cm	11/100			$\left \right $			
LCC8	silt. 10+75E	1725'	30%	30%	90%				185	<u>1-2 p</u>	15cm	1457				╞━━━╋		<u> </u>
	· · · · · · · · · · · · · · · · · · ·					· · · · ·					<u> </u>					┢──┼		
									+						 	\vdash		
			<u> </u>						+		+					╞╼╼╾╪	+	
			┨							<u> </u>						┝───╉		
			╂			├──┼			+	+	<u> </u>	<u> </u>						
	•			<u> </u>		<u> </u> +-				 				-	╞╾╼╼┥	 	+	
		·····	₽	_		┝━━─┤╸			+						┟────┦			
			 	<u> </u>	1				+		<u> </u>	1			├			

iect:	ACHILLES KEEWATIN	N ENGI	NEE	140			lotted	l By: .	(1	Sal	6-0	£	'V	1	<u></u>		
	221				Man					N.	T.S.:		10 "	<u>[</u>	317		
ea (Grid):					Dete	au	9.00	t	26	107	1						
llectors:	Robert Viens										/			I			
	· ·		SEDI	MENT		<u>A</u>	5	THE/	AM D			SPRING	>	1			
Sample	NOTES	Gravel	Sand		Claγ	Organic	Bank	Active	idth	- 12	÷≿	Ë	DRY GULLY	l			
lumber		ອັ	۳.	Silt .	Ū	ō	ā	Ä	a Width	om	>.2	N	00				
<u></u>										- 1		1					
001			}				I		- Q -	20	VSF			1			-
603 003	2000 JT angular Bod Part		├ ┦						50	20	145 F						'
00 >	Jaco fr		╞───┥							10		¢		1		· •	
004	1000 1 11 11 BRG 240° 1000 12									10				 			
005									150	20	mF			1			
006											MF			<u> </u>		╞━━━┿	
∞ 7	1100 IT 1' '' BAG Has									15		<u> </u>		 			
008	200 fit Rounded Balrock BRC-160								75	I	ME			<u> </u>	┟╼╍╍┙┥		
009	2200 ft Rounded Balanck BRG-160 2300 ft "BRG-160" 2300 ft "BRG-160" 2300 ft "BRG-160"		<u> </u>									1		<u> </u>	<u> </u>		
OIO I	23 DORT " " MOSS MATT BRE	,160						-		15				<u> </u>	<u> </u>		• •
041	2200 /t " BRG 160"								40	10	<u>sr</u>			 	ļ		
	U U						 										
													ļ				
			{									<u> </u>			ļ!		
												<u> </u>			ļ		
				1					1								
				1							<u> </u>						
			<u> </u>				 				· .				<u> </u>		
				1						<u> </u>				(
			<u> </u>	+			1							[<u> </u>		· · · · · ·
			 	+											<u> </u>	 	
			 		†			†	1	<u> </u>			1	 			
			+		╞━┯╧				 			 		 	 	 	
							╫		+	<u> </u>				#	<u> </u>	╏───┤	
			+				╢	+	┢		<u> </u>	 		∦			
			+				╫───		+					#	┼───		
	•		_──	 		ļ			<u> </u>	 	<u> </u>	{		(<u> </u>	<u>├</u>	
			∔	<u> </u>		 	╟		┨────				ļ	#	┟───┤	 	
			<u> </u>			l		1	<u></u>	[1		1	í	L		

•	KEEWATIN E	SED	IMEN	ITS	_											
oject:	ACHILLES # 331 STREAM	920	,,,		Resu	lts P	lotted	í By:					A	17		
	KING CR. GRUD				Map	: <u>A</u> (CHIL	LES		N	.T.S.:	<u> </u>				
liectors:	G.L. WESA						<u>6 19</u>				/10G		11	40		
			SEDI	MEN	DAT			r	AM D		r	່ອີ	بر	39		
Sample	NOTES	Gravel	p		Clay	Organid	Bank	Active	Width	cpth	Velo- city	AIN	ORY GULLY	12		
Number		ອັ	Sa	Silt	Ű	õ	Be	¥	. 3	٥.	>.2	N.	00	35		<u> </u>
	LOOI PEDDLY, BLK, CRSE, GREYWACKE BEDROCK	20%	L O 72	20%	,	1-27		$\overline{}$	2-3m	acm	moo			205		
068331-	LOOZ (1360') WORDEDDED CHERT + ARGULLITE	20%	10%	20%		·		1	2-30	12 cm	MCD			200"		<u> </u>
	LOOZ (1360') INDEREDIDED CHERT + ARGILLITE LOOZ (1080') RUSTY CHERT FLOAT IN TRIB	202 22	457	10%				1			mco			180°		
и –		20%	1.0%	20%					5m	(2 c.m	East			2000		
+1							ļ		 					 -	. 	
							<u> </u>									<u> </u>
								 								<u> </u>
							· ·	<u> </u>								
								<u> </u>			<u> </u>					
							<u> </u>				<u> </u>			<u> </u>		<u> </u>
						1	·	<u> </u>	· 			<u> </u>				
							<u> </u>								_	+
							<u> </u>									
											<u> </u>	<u> </u>				
-						<u></u>										1
																<u> </u>
							·		<u> </u>							<u> </u>
							 									
	· · ·			<u> </u>					<u> </u>							
									+	 	+			<u>├</u>		
						<u> </u> .			 							
					_			†	1		+			-		
						1	 	1	1						1	<u> </u>
							∦		1							
		 i				 	1	1	<u> </u>							
							1									
					[
						1	1									1

ainst. 4	chilles # 331		STREAM	IGII SEDI	MEN	ts I	Resul	ts Pl	otted	By: .						7 -			
	TAIR to Fame	-i-lite					Map:	<u> </u>	_			N	T.S.:	104	<u>B/</u>	7_			
ea (Grid)	Colu A-Jun	ighte (Scott T. 19000 "331	-			1	Date:	5.0	of 4	190				•					
llectors	Calin Haderson	Cocort in procession			SEDIN			- 1				ATA		,		50			
C1-			<u> </u>			T		i i i		ě	£	£		SPRING	۲ ۲	1.5			
Sample	1	NOTES		Gravel	Sand	Sit	Clay	Orga	Bani	Acti	Mid	Dep	- 2.5 2.5	SPI	65	8	Ì		
Number	Steep canyo	my water financias over bedr ar rack fragments	us s								۰ 						━╪		
006 047 065	1720 Sub aneuk	rock fragments		0	<u>50</u> 4	7 <i>0]</i> ;;				_	<u>Sn</u>	Im	ma/			190	<u> </u>	<u> </u>	
047	1720 11			0	50%	50%					50	50cm	ncd	<u> </u>		200			_;
065	1760 1	······································			50%					/		201-				<u>196</u>	- +	. 	
004	11510	recent Ignia	slide	10%	:c/c	20h		-			<u>4n</u>	50cm 25cm	mail	·		and t			
010 010	188 (1	large account of w	and in canyon	5%	- 57	<u>, Ch</u>				-	6 <u>0</u>	<u>h5ca</u>	med			$\mathcal{A}^{\mathcal{C}}$	-+		
611	1930 1	1 -		35%	·70%_	3-73				<u> </u>		57.4 %		<u> </u>		a30'		===+	
.012	196C	24	· · · · · · · · · · · · · · · · · · ·	:0%	31/2	$X' \in$				<u> </u>		50cm				230		-+	
013.	2050	right below wat	er fall (<u>36 /c</u>	~0%	3.4			· · ·	∕	31	42cm	FRIT			110	ł		
<u>, 4</u>									-		<u> </u>		 			<u> </u>	<u> </u>		
							<u> </u>		ļ	ļ	ļ	ļ	<u> -</u>	<u> </u>			 		
					L					<u> </u>		_	┨				i		
						<u> </u>					<u> </u>					ļ	╞═══┫		
											<u> </u>	l	4	<u> </u>		 	il	_	
					[·		1			<u> </u>				ļ				
······						ŀ		1		<u> </u>			<u> </u>	. 					
					· ·							1	<u>l</u>			<u> </u>			
							1												
									·	-	<u> </u>			-					
					1														
		······································			ļ	1													
													<u> </u>						
					1	1										·			
<u> </u>					1	1													
<u> </u>				į – – –	1		1					·					Ì		
				 -															
				1	1		1	1									<u> </u>		
						1	1	-				1							
					+		-[-	-#		-		-			l.			
_		· · ·			+	+	-1	1 -	-11					1					

Project: King Creek 331 STREAM SEDIMENTS Results Plotted By: Heatt Whitton. Area (Grid): Contour 1250' B Map: Achillis N.T.S.:													۴				
	ntour 1250' Q.	_			Μαρ	: 4	the	de	٤,	N	.T.S.:						
	the Lithan				Date	. (June	· 2	7 <i>[</i> ¢	72 .		•					
Collectors:	a conce	Date: Date: Z7/93 SEDIMENT DATA STREAM DATA										· · ·					
Sample	·	. 5											ORY GULLY	[
Number	NOTES	Gravel	Sand	. siit	Ciay	Organic	Benk	Active	Width	Depth	Velo- city	SPRING	E D				
			1		[1		4	·	12.	5						
1-001 12531	-	P	42	60	9	Ľ			E.m.	10 Cm	<u> </u>						
		·							 			·					
			1		[-	
					<u> </u>												
						<u> </u>							<u>├</u>				
······················		<u> </u>	<u> </u>		<u> </u>								 				
		·	 			<u> </u>							<u> </u>				
						· · · ·											
					<u> </u>												
				<u> </u>	<u> </u>												
			<u> </u>														
	**																
			<u> </u>	· ·													
					 -						· ·						
					<u> </u>		· · .				·	1					
																•	
								1				·					
· · · · ·														·			
				-							1						
									ļ								
							<u> </u>	ŧ									

				KE	EWATIN	ENG	INE	ווסי		INC						,			-	ŗ	
roiect:	Jehilles_	332			STREAM			ITS	Resu	ilts P	lotteg	1 By:		L/	at	<u>t. e</u>	In.	tla			
vrea (Grid):.	Grip.								Mon	: 1.6	6/1	1.2.5		N	. T.S .:						
ollectors :_	bleatt. L	Kiltan	~						Date		ng	22	<u>-[4</u>	12.		n.					
						SEDIMENT DATA STREAM DATA															
Sample Number		N	NOTES	Sults ~ 4. Corver 4	xinatis	Gravel		Silt		Organic			÷		Celo- city	SPRING	GULLY DRY GULLY				
5+000	0+03 B.L 2+63W	. [/ na	,)			53	50	45	Ð	Þ	-	N	3m Lim	D	Ø		¥	[
57CON	2+60W	Laz) mx	SMATT	<u> </u>	ϕ	ø	70	ø	30		y	ちろう	5	5			 			
<u> </u>						_	<u> </u>														<u> </u>
																		 			
		· · · ·																			
																 			ļ	 	
						-												<u> </u>			
															·			<u> </u>			
					. <u></u> ,,	-															
																				[]	
	· · · · · · · · · · · · · · · · · · ·																				
										[]		 			<u> </u>						
																	·		<u> </u>	\mid	
					<u></u>	-									<u> </u>						
															·						
							ļ			· 											
		<u>.</u>																ļ.			
																					<u> </u>
											·										
			"																		
														•]]]	
		<u>.</u>										ļ		L				L			