| GEOI | OGIC | ALB | R A N | CH |
|------|------|-----|-------|----|
| ASSE | SSME | NTP | 7 7 0 | RT |
| 2    | 0,   |     |       |    |

| LOG NO: 21-01 | RD. |
|---------------|-----|
| ACTION:       |     |
|               |     |
|               |     |
| FILE NO:      |     |

#### **GEOLOGICAL AND GEOCHEMICAL REPORT**

# ON THE

# HOMER PROPERTY

# **HOMER 1 TO 4 MINERAL CLAIMS**

Skeena Mining Division, British Columbia NTS 104B/7E Latitude: 56°26' North Longitude: 130°36' West



. · . .

. .

ς.

۰.

.

Prepared for

FERRET EXPLORATION COMPANY INC. Denver, Colorado

and

**BODEGA VENTURES INC.** Oak Harbour, Washington

Prepared by

Gary L. Wesa, B.Sc., FGAC KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

November 30, 1990

Keewatin Engineering Inc.

#### **SUMMARY**

The Homer property consists of 4 contiguous modified-grid claims totalling 63 units located approximately 80 km northwest of Stewart, British Columbia. Access to the property is by fixedwing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property.

The property is situated within the Intermontane Tectono-Stratigraphic Belt, near the contact between the Stikine Terrane and the unmetamorphosed sediments of the Bowser Basin. The property covers an assemblage of Upper Triassic sediments of the Stuhini Group. An irregularly shaped Triassic or younger diorite stock referred to as the Max Diorite intrudes these sediments in the northeastern portion of the property. The southeastern corner of the property is underlain by the Lower Jurassic Unuk River Formation which consists of andesitic volcanics with lesser sediments.

- .

. .

ί.

. .

**.** .

÷ ...

e 15

ς,

٩.

The area has an exploration history dating back to the turn of the century when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Exploration Ltd. which was brought into production in mid-1988. The adjacent SNIP property is slated for production in 1991.

At this time, the Eskay Creek property, located 27 km northeast of the Homer property and currently being explored by Corona and Placer-Dome, is the most significant deposit in the area. The property comprises at least eight mineralized zones occurring over a strike length of 1800 metres within a sequence of felsic volcanics. The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks. A total of 665 surface diamond drill holes have been completed plus an exploration decline has been driven to test underground mineralization.

A review of all available information indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962 which led to the discovery of a number of showings within or adjacent to the property boundaries.

The Homer #3 copper showing occurs at the north end of a small lake near the southwestern corner of the property. A gossanous zone within the Flory Creek Fault zone hosts disseminations and fracture fillings of pyrite and chalcopyrite. Located on the same structure, directly west of the

**Keewatin Engineering Inc.** 

property boundary, is the Six Mile #2 copper showing. Minor chalcopyrite and up to 5% disseminated pyrite occur within and adjacent to the Flory Creek Fault zone. The Unuk River (Nine Mile) copper showing is reported to occur on the Homer 1 claim. Altered magnetite skarns reportedly occur along the diorite contact with the Stuhini sediments. In 1929, two claims were located to cover a showing with a high percentage of copper. The Cebuck Creek gold/silver showing occurs adjacent to the northeastern boundary of the property, and in 1929, two placer claims were located near the mouth of Fewright Creek.

ς.

.....

\_ \_

- -

<u>, -</u> -

**.** .

r -

. .

---

In the 1960's, Granduc Mines Ltd. conducted exploration programs in the vicinity of the Homer property, which encompassed portions of the current property area. Small occurrences of magnetite, pyrite, pyrrhotite, with trace chalcopyrite were located near the diorite contact. In 1987, a limited amount of reconnaissance mapping, prospecting and geochemical sampling was completed over the southeastern corner of the property and along Cebuck Creek, adjacent to the northeastern property boundary. A 70 cm wide quartz vein occurring along the west bank of Cebuck Creek yielded values up to 0.08 oz/ton Au. An airborne electromagnetic and magnetic survey was conducted over the property in 1988. Interpretation of the data outlined the possible presence of iron formation in the south-central part of the Homer 2 claim and delineated a number of weak to moderate strength EM conductors.

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping and geochemical sampling with the objective of evaluating the property's potential for hosting economic precious metals deposits. Reconnaissance prospecting and geochemical sampling were completed in areas of reported mineralization and gossans noted within the property. Lithogeo-chemical sampling completed in this area did not yield any anomalous precious or base metals values. A number of stream silt samples collected from creeks draining the southeastern portion of the property yielded elevated to anomalous gold values, and one heavy mineral sample, from a creek in the north-central part of the Homer 4 claim, yielded clevated precious and base metals values. This creek, however, originates beyond the property boundary; consequently, these values may be due to mineralization located on the adjacent property area.

The 1990 exploration program consisted of helicopter-supported geological mapping, contour soil sampling and stream sediment sampling with the objective of evaluating the property's economic potential through follow-up exploration on geochemically anomalous areas delineated by the 1989 program. A total of 27 rock samples, 347 contour soil samples and 23 stream silt samples were collected from the Homer 1 to 4 claims. Areas characterized by moderate to high gold-in-soil values were targeted near the common claim boundary between the Homer 1 and 2 claims, in proximity to a magnetite-bearing diorite - intermediate volcanic contact. This area was contour soil sampled and yielded gold-in-soil values up to 648 ppb Au. The southeastern corner of the Homer 1 claim yielded a strongly anomalous gold-in-stream silt value of 2,230 ppb Au.

.

ς.

**-** - 4

- -

- -

` ...

Ň

•

μ.

. .

-

÷ -

.

. .

ь.

ς.,

A broad timbered area measuring approximately 1,400 metres long by 600 metres wide yielded elevated gold-in-soil values near the northern Homer 2 claim boundary, suggesting that the bedrock may be mineralized in precious metals. A follow-up program is recommended for 1991.

.

.

.

# TABLE OF CONTENTS

.

---

٤.

---

**ب** م

x

. .

.

•••

. .

.

• ~

ς.

. .

~

- -

L

- -

~

. -

.

× •

•

,

•

- -

•

- -

ς.,

# Page No.

| SUMMARY                                                                                                                                                                                                                                    |                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| INTRODUCTION                                                                                                                                                                                                                               | 1                                                                                    |
| Location and Access<br>Physiography and Climate<br>Property Status and Ownership                                                                                                                                                           | 1<br>2<br>2                                                                          |
| HISTORY OF EXPLORATION                                                                                                                                                                                                                     | 3                                                                                    |
| Regional History<br>Property History                                                                                                                                                                                                       | 3<br>4<br>6                                                                          |
| GEOLOGY                                                                                                                                                                                                                                    | 8                                                                                    |
| Regional Geology   Regional Economic Geology   Eskay Creek (21 Zone)   Sulphurets Area   Johnny Mountain   Snip   Summit Lake (Scottie Gold)   Sib Group   Inel   Property Geology   Lithologies   Structure   Alteration   Mineralization | 8<br>9<br>10<br>11<br>12<br>12<br>12<br>12<br>13<br>16<br>17<br>19<br>20<br>21<br>21 |
| Geological Mapping<br>Geochemistry<br>Sampling Procedure<br>Rock Geochemistry<br>Soil Geochemistry<br>Stream Silt Geochemistry                                                                                                             | 21<br>22<br>22<br>23<br>23<br>23<br>24                                               |
| CONCLUSIONS                                                                                                                                                                                                                                | 24                                                                                   |
| RECOMMENDATIONS                                                                                                                                                                                                                            | 25                                                                                   |
| REFERENCES                                                                                                                                                                                                                                 | 27                                                                                   |
| STATEMENT OF QUALIFICATIONS                                                                                                                                                                                                                | 29                                                                                   |

# LIST OF APPENDICES

| APPENDIX I   | Itemized Cost Statement                      |
|--------------|----------------------------------------------|
| APPENDIX II  | Summary of Personnel                         |
| APPENDIX III | Analytical Procedure                         |
| APPENDIX IV  | Soil and Stream Silt Geochemical Lab Reports |
| APPENDIX V   | Rock Geochemical Lab Reports                 |
| APPENDIX VI  | Soil, Stream Silt and Rock Data Sheets       |

---

**4**...

-

ъ.

**~**~

•••

٤

- •

.

• •

.

L

-

. .

•

r •

•

. .

- .

۰.

• •

.

**F** 10

•

ς.

**~** 

# LIST OF TABLES

# Following Page No.

.

| Table 1. | Claim Status                                            | 2  |
|----------|---------------------------------------------------------|----|
| Table 2. | Table of Formations, Unuk River Area                    | 9  |
| Table 3. | Summary of Mineral Deposits in the Golden Triangle Area | 14 |

# LIST OF FIGURES

# Following Page No.

| Figure 1.<br>Figure 2.<br>Figure 3.<br>Figure 4. | Property Location Map<br>Claim Map - 1:50,000<br>Regional Geology<br>Mesozoic Stratigraphy and Setting for Mineral Deposits in | 1<br>2<br>9    |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure 5.<br>Figure 6.                           | the Iskut River Map Area<br>Compilation Map - Homer Geology 1:50,000<br>Compilation Map - Geochemistry (1990)                  | 14<br>17<br>17 |

# LIST OF MAPS

| Map 1. | Geology - 1:10,000                                                      | in pocket |
|--------|-------------------------------------------------------------------------|-----------|
| Map 2. | Rock, Soil and Stream Silt Sample Locations - 1:10,000                  | in pocket |
| Map 3. | Rock, Soil and Stream Silt Geochemical Values (Au, Ag, As) - 1:10,000 . | in pocket |
| Map 4. | Rock, Soil and Stream Silt Geochemical Values (Cu, Pb, Zn) - 1:10,000 . | in pocket |

#### INTRODUCTION

Ferret Exploration Company Inc. and Bodega Ventures Inc. commissioned Keewatin Engineering Inc. to conduct an extensive field exploration program on the Homer property located in the Unuk River valley of northern British Columbia. Exploration was carried out under the direction of Keewatin Engineering Inc. and crews were based out of the "Doc Camp", situated approximately 13 kilometres south of the Homer property, on the South Unuk River.

The objective of this program was to evaluate the property's economic potential through follow-up exploration on geochemical anomalies delineated by the 1989 program and to provide reconnaissance coverage throughout the property. The 1990 exploration program was conducted during the period of September 6 to 15, 1990 and included geological mapping, lithogeochemical and contour soil sampling. Stream silt samples were collected from active drainages intersected on daily traverses.

A total of 27 rock grab, float and chip samples, 347 contour soil samples and 23 stream silt samples were collected from the property during the 1990 program. Approximately 17.5 kilometres of slope corrected contour soil lines were established. All of the rock grab samples were collected in conjunction with the geological mapping. Geological and geochemical data were compiled on 1:10,000 scale contour maps enlarged from 1:50,000 scale NTS topo maps and all final data were produced on computer generated maps at 1:10,000 scale.

All of the geochemical samples were shipped to Bondar-Clegg and Company Ltd. in North Vancouver for geochemical analysis of Au, Ag, Cu, Pb, Zn, As, Sb, Mo and Hg. Samples registering greater than 1,000 ppb Au, were further analyzed by fire assay. Analytical procedures are described in Appendix III and analytical results are presented in Appendix IV and V.

## **Location and Access**

The Homer property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1). The claims are situated within N.T.S. map-sheet 104-B/7E and centred about 56°26' North latitude and 130°36' West longitude. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area, and then via helicopter to the property. The claims may also be directly accessed by helicopter from Stewart.



In the fall of 1991, a 72 kilometre road over the mountains is scheduled to open connecting the Eskay Creek area with the main Stewart-Cassiar Highway.

# **Physiography and Climate**

₹ 1

\* -

1 -

τ

**T** 1

**T** 2

**T** 

**r** ~

The Homer property is situated within the Coast Range physiographic division and is characterized by northern rain forest and sub-alpine plateaus. The northeast trending U-shaped South Unuk River valley bisects the property. Elevations range from 150 m in the valley of the Unuk River to 1370 m in the southeastern part of the property. The toe of a glacier almost reaches the southeastern corner of the property.

A transitional tree line, characterized by dense sub-alpine scrub, meanders through the property at approximately 915 m elevation. The terrain found above the tree line is typified by intermontane alpine flora. Conifers up to 30 m tall are common below the tree line, especially within the stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claim area.

Precipitation is heavy, exceeding 200 cm per annum, with mild short summers but very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

#### **Property Status and Ownership**

The Homer property (Figure 2) consists of four modified-grid claims totalling 63 units located within the Skeena Mining Division. Relevant claims data are tabulated in Table 1.

| Table 1   Homer Property - Claim Status  |                      |                              |                                                                          |                              |  |
|------------------------------------------|----------------------|------------------------------|--------------------------------------------------------------------------|------------------------------|--|
| Claim Name                               | No. of<br>Units      | Record<br>Number             | Date of Record                                                           | Expiry<br>Year               |  |
| Homer 1<br>Homer 2<br>Homer 3<br>Homer 4 | 12<br>15<br>20<br>16 | 5710<br>5711<br>5712<br>5713 | January 5, 1987<br>January 5, 1987<br>January 5, 1987<br>January 5, 1987 | 1994<br>1994<br>1994<br>1994 |  |

Keewatin Engineering Inc.



These claims are apparently the subject of an agreement between the claim holder (Mr. A. Erlank) and Winslow Gold Corp. Winslow subsequently optioned the property to Ferret Exploration Ltd./Bodega Ventures Inc. The claim records and maps show that the property was subsequently overstaked. The eastern edge of the Homer 1 and 2 claims encompass a sliver of pre-existing mineral claims. The common legal claim post for the Homer claims was not found during the 1989 and 1990 field programs.

#### **HISTORY OF EXPLORATION**

#### **Regional History**

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior.

Exploration to the north of Stewart in the late 1920's and early 1930's resulted in the discovery of mineralization in the vicinity of the Eskay Creek, Summit Lake and East Gold occurrences. Activity was relatively intermittent until the 1950's copper "boom" when the Granduc and Galore Creek deposits were discovered. Much of the area underwent preliminary prospecting during the 1950's and 1960's. Numerous showings and prospects were documented but the inaccessibility of the region and low metal prices resulted in limited exploration activity.

In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. With the dramatic increase in precious metal prices in 1979, all prospects and former producers in the region were re-evaluated. Exploration programs focusing on potential high grade gold and silver deposits were initiated. Approximately \$140 million in exploration expenditures have been spent in the region over the last ten years. Subsequent to 1986, total annual expenditures have averaged between \$25 to \$40 million. These expenditures have pushed several prospects to the advanced stage and resulted in the discovery of over 100 new mineralized occurrences. The advanced projects include the SNIP (Cominco-Prime), Eskay Creek (Corona-Placer-Dome), SB (Tenajon-Westmin) and Sulphurets (Newhawk-Granduc) deposits. Skyline Gold's Johnny Mountain deposit and Westmin/Pioneer/Canacord's Silbak-Premier and Big Missouri deposits went into production during the late 1980's. The exploration activity has been extended north of the Iskut River where numerous gold occurrences have been reported. The most prominent include the McLymont Creek (Gulf International), Iskut J.V. (American Ore-Golden Band-Prime), KRL (Kestral) and Forrest (Avondale)

properties. Major exploration programs on these properties were conducted in 1990 and the SNIP property is scheduled for production in 1991.

The 1988 discovery of the Eskay Creek gold-silver-zinc-lead deposit demonstrates the area's potential to host world class deposits. Table 3 lists mineral deposits of the Stewart-Iskut River area.

The recent high level of exploration activity in the area led to federal-provincial government geological mapping programs which began in 1986. These programs will continue in the 1990's.

The Unuk River area was covered by geological mapping in 1988 as part of the Iskut-Sulphurets project conducted by the B.C. Ministry of Energy, Mines and Petroleum Resources (Britton et al., 1989). The entire NTS 104B map sheet is currently being mapped by the Geological Survey of Canada (Anderson, 1989).

The results of a regional stream sediment sampling program conducted over this area were released in July, 1988 (National Geochemical Reconnaissance, 1988). Britton et al. (1989) reported that almost every known precious metal prospect in the Unuk River area is associated with high stream gold values. Known gold occurrences are also associated with high but variable values for such pathfinder elements as silver, arsenic, antimony and barium.

# **Property History**

- -

- -

۰.

-

ς.

÷ .

. .

.

**-** ~

.

.

•

The Unuk River (Nine Mile) copper showing (Minfile #96) occurs on the Homer 1 claim. In 1929, two claims were located to cover a showing with a high percentage of copper.

In 1929, two placer claims were located near the mouth of Fewright Creek (Minfile #223). Gravels were reported to carry free gold on the surface, to an equivalent amount of approximately 14 grams/tonne Au.

A review of the material in the government's Assessment Report Archives indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962. This work led to the discovery of a number of showings within or adjacent to the property boundaries.

4

In 1960, Granduc Mines Ltd. completed an exploration program consisting of geological mapping, selective grid placement, magnetometer surveys and soil geochemistry on their MAX claims (assess.file #346). A portion of this program covered areas encompassed by the current property boundaries. Small occurrences of magnetite, pyrite, pyrrhotite, with trace chalcopyrite were located near a diorite contact. The magnetometer surveys delineated a number of magnetic anomalies which were attributed to disseminated magnetite in weakly silicified tuffs.

-----

- -

-

r -

•

.

. .

۰.

.

r .

•

•

н .

•

.

÷ -

•

- -

ι.

The Max deposit (Minfile #013) is located 1 km east of the property. The deposit consists of massive magnetite mineralization and associated chalcopyrite, pyrrhotite, and pyrite. Drilling has indicated a body of medium-grade magnetite estimated to contain 11,176,550 tonnes averaging 45% iron (Granduc Mines Ltd., 1962 Annual Report).

In 1968, Granduc Mines Ltd. conducted an airborne electromagnetic and magnetic survey over McQuillan Ridge. A portion of this survey encompassed the Homer property.

In 1971, Great Plains Development Company of Canada Ltd. undertook a reconnaissance geochemical program in the Mt.Dunn and neighbouring areas which resulted in the staking of a copper anomaly (Minfile #79) located 2 km north of the property. Work in this area in 1974 and 1975 led to additional staking north and south, covering the northwestern portion of the current property. Exploration work completed in this area did not extend onto the Homer property.

The Cebuck Creek gold/silver showing (Minfile #222) occurs adjacent to the northeastern boundary of the property. In 1978, a small pit was excavated close to the edge of Cebuck Creek in a pyritized volcanic sandstone.

The assessment records also indicate that Duval Corp. conducted a regional heavy-mineral survey in the Unuk River area in 1981 (Korenic, 1982).

In 1987, a reconnaissance mapping, prospecting, and geochemical (lithogeochemical and stream silt) program was conducted over several claim groups in the Unuk River area by Paul A. Hawkins and Associates Ltd. on behalf of Axiom Explorations Ltd. A northeast trending topographic aerial photo lineament cuts across the southeastern corner of the property. An aerial reconnaissance of this area located several gossanous zones along this lineament. Lithogeochemical sampling in this area yielded background gold and silver values. No direct evidence for the interpreted shear was found; however, the more prominent lineament zone was snow covered.

Keewatin Engineering Inc.

Exploration completed adjacent to the northeastern claim boundary located a 70 cm wide quartz vein occurring along the west bank of Cebuck Creek. The northerly striking quartz vein intrudes an andesitic sandstone altered to greenschist, and yielded anomalous gold values (0.01 to 0.08 oz/ton).

An airborne electromagnetic and magnetic survey was flown over the Homer claims in 1988. A number of north-northeast trending, weak to moderate strength conductors were delineated on the property. A strong apparent resistivity anomaly was defined, coinciding with the Unuk River, possibly outlining an underlying silicified shear zone. A second apparent resistivity low zone was defined in the northeastern corner of the Homer 4 mineral claim on the flank of a broad moderate magnetic anomaly. The interpretation of the data also outlined the possible presence of iron formation in the south-central part of the Homer 2 claim.

## 1989 Exploration Program

à....

S. ..

κ.

, -

- -

. .

•

÷ ...

, .

.

÷ ...

. .

÷ •

.

. .

**.** .

. .

γ.

•

The 1989 exploration program, conducted by Keewatin Engineering Inc, was completed between September 5 and 15, and consisted of helicopter-supported reconnaissance prospecting, geological mapping and geochemistry (lithogeochemical, stream silt and heavy mineral sampling). Areas of known mineralization and gossans noted within the area were investigated and sampled. Reconnaissance prospecting and geochemical sampling were completed over selected parts of the property. This work was concentrated in the areas of reported mineralization and gossans noted within the property.

The Flory Creek Fault zone cuts diagonally across the Homer 3 claim. Two copper occurrences (Minfile #224 and #225) are plotted as occurring within and adjacent to this fault zone. A limited amount of reconnaissance prospecting was conducted along the west side of the fault zone, however, no mineralization was located. The Unuk River (Nine Mile) copper showing (Minfile #096) is reported as occurring on the Homer 1 claim. Altered magnetite skarns reportedly occur along the diorite contact with the Stuhini sediments. The Minfile occurrence description states that "in 1929, two claims were located to cover a showing with a high percentage of copper." Reconnaissance prospecting was conducted along the lower diorite/sediment contact, however, no mineralization was located.

6

A limited amount of reconnaissance prospecting was completed over the northeastern and southwestern corners of the Homer 4 claim and along the drainage cutting across the north-central part of the Homer 2 claim. Lithogeochemical sampling did not yield any anomalous precious or base metals values. Several gossanous zones were noted in the southeastern corner of the property during aerial reconnaissance of the claims. A pronounced airphoto lineament, interpreted as a shear zone, cuts across the property in this area. A geological and mineral occurrence compilation completed by Equity Preservation Corp. in 1988 plots the Glacier Creek occurrence (B45) on this lineament. The occurrence description states that a government report of 1911 reports gold values up to 17 g/ton but no further details have been provided.

Stream silt geochemical sampling was conducted on the property as part of the 1989 exploration program. Stream silt samples were collected whenever streams were crossed during reconnaissance prospecting traverses. Silt samples were collected at regular intervals along two streams located in the north-central part of the Homer 2 claim. The designation of anomalous values is based on regional G.S.C. survey results in Open File 1645 combined with a visual observation of data obtained during the 1989 exploration on a number of claim groups in the Unuk River area.

Three consecutive silt samples from the same creek in the north-central part of the Homer 2 claim yielded elevated to highly anomalous gold values, and two silt samples collected from adjacent creeks draining the southeastern part of the property also yielded elevated to anomalous gold values:

| <u>Sample</u> | <u>Au ppb</u> |
|---------------|---------------|
| HVL-01        | 96            |
| HVL-02        | 256           |
| HEL-34        | 182           |
| HPL-16        | 78            |
| HEL-33        | 1069          |

A heavy mineral stream sediment sampling survey was conducted on the property as part of the 1989 exploration program. Heavy mineral samples were collected in parts of a creek where there was a sudden transition from high to low energy. Heavy mineral sampling is a good first-pass tool and should be considered as a micro-prospecting approach to evaluating an area.

A total of four heavy mineral samples were collected from creeks draining the property area. Sample KWH-18B, from a creek located near the north-central portion of the Homer 4 claim and flowing along a possible fault trace, yielded elevated Au (180 ppb), Ag (2.8 ppm), As (221 ppm), Cu

Keewatin Engineering Inc.

-

Σ.

۰.

. -

•

р т

٠

- --

.

•

.

r ·

**.** ~

.

-

(848 ppm), Ni (248 ppm) and Zn (772 ppm) values. This creek originates beyond the property boundary; consequently, these elevated values may be due to mineralization located on the adjacent property.

## **GEOLOGY**

**.**....

κ.

e ....

. .

\*

•

. ..

.

· .

ĸ.

e -

.

. ...

•

- --

κ.

#### **<u>Regional Geology</u>**

The property lies within the Intermontane Tectono-Stratigraphic Belt -- one of five parallel, northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The Homer property is situated near the boundary between the Stikine Terrane, which comprises the majority of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

During Late Triassic and Early Jurassic time, the Stikine Terrain was the site of very active calc-alkaline volcanism. This volcanism was also accompanied by felsic intrusions that may have been comagmatic with the volcanic events. The sequences of rocks deposited at this time are now referred to as the Hazelton Group (Table 2). This predominantly volcanic assemblage is characterized by basal pyroclastic rocks overlain by argillites and, finally, by coarse volcanic breccia and conglomerate with interbedded tuffs, greywacke and siltstone.

At the end of Early Triassic time, this volcano-plutonic complex was uplifted to form the Stikine Arch. During Middle to Late Jurassic time, parts of the Stikine Terrain were filled with detritus shed from the Stikine Arch. The resulting, mainly sedimentary, sequences are referred to by Grove (1986) as the Betty Creek Formation, the Salmon River Formation and the Nass Formation (Table 2).

The Unuk River Valley is predominantly underlain by an Upper Triassic to Lower Jurassic section composed of miogeosynclinal volcanic and sedimentary rocks. The composition of the volcanic rocks ranges from andesitic to rhyolite. Thick layers of siltstone and greywacke are intercalated within the predominantly volcanic assemblage. Grove (1986) assigns most of these rocks to the Unuk River Formation. This formation is the oldest of the Hazelton Group and unconformably overlies older Triassic units. The Unuk River Formation includes diagnostic Hettangian, Upper Pleinsbachian and Lower to Middle Toarcian fossil assemblages. In the type area, this formation has a measured cumulative thickness of over 14,000 metres. The Unuk River Formation is unconformably overlain by the Middle Jurassic Betty Creek Formation which is mainly composed of clastic sediments with minor conglomerate, carbonate, chert and volcanic rocks. Fossil collections made from the various sedimentary units have defined the age of the Betty Creek Formation as Lower to Middle Bajocian, that is, lower Middle Jurassic.

The Mount Dilworth Formation, a thin but regionally extensive blanket of felsic pyroclastics, overlies the Betty Creek Formation. Pyritiferous felsic welded tuffs, tuff breccia flows and thin lenses of siltstones, mudstones and argillites are the prevalent lithologies.

A thick sequence of Middle Jurassic, thinly bedded turbiditic siltstones (Salmon River Formation) overlies the Mount Dilworth Formation. Anderson (1990) has recently postulated that the Eskay Creek deposit "appears to be stratabound within the siliceous to limy sedimentary rocks and pillowed lava sequence of the Eskay Creek facies of the Salmon River Formation".

The Hazelton Group rocks were intruded by granitic rocks of the Coast Plutonic Complex. These intrusions consist of a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, small satellitic diapirs, dyke swarms, isolated dykes and sills as well as batholiths belonging to the Coast Mountain Complex. Granodiorite is the predominant rock type, although a variety of lithotypes are recorded. The orogenic event which accompanied this intrusive phase also produced a major structural grain along the western margin of the Central Cordillera. The stratigraphic sequence has been folded, faulted and weakly metamorphosed during Cretaceous time, however, some Jurassic strata are polydeformed and may record an earlier deformational event. Regional metamorphism is classified as lower greenschist facies and is characterized by saussuritized plagioclase, chloritized mafic minerals and the conversion of clay constituents to white mica. The age of metamorphism is Cretaceous, however, near the contact of the Coast Plutonic Complex, granitic dykes thought to be offshoots of the complex have been mylonitized, indicating that deformation has also occurred after this Eocene intrusive event (Alldrick et al., 1987).

## **Regional Economic Geology**

...

-----

s. ..

÷ -

.

•

•

.

.

. .

.

**-** -

•

- -

٠

e -

٠

- -

ς.

ъ. ..

£.,

The Iskut-Unuk River area hosts many significant gold, silver and base metal deposits (Figure 3 and Table 3). These deposit types include epithermal and mesothermal precious metal shear-veins and replacements, calc-alkaline and alkaline copper  $\pm$  gold porphyries, concordant massive sulphides, stratabound hydrothermal deposits and skarns. The majority of these are hosted Keewatin Engineering Inc.

9

| AGE           | GROUPS      | FORMATIONS     | MEMBERS             | LITHOLOGIES                                        |
|---------------|-------------|----------------|---------------------|----------------------------------------------------|
| Bathonian     | Bowser Lake | Ashman         | Main Sequence       | Turbidites, wackes, intraformational conglomerates |
|               |             |                | Basal Conglomerate  | Chert pebble conglomerates                         |
| Bajocian      | Spatsizi(?) | Salmon River   | Pyjama Beds         | Thin bedded, alternating siltstones and mudstones  |
| Toarcian      |             |                | Basal Limestone     | Gritty, fossiliferoius limestone                   |
| Toarcian      |             | Mount Dilworth | Upper Lapilli Tuff  | Dacitic lapilli tuff with flow-banded clasts       |
|               |             |                | Middle Welded Tuff  | Dacitic welded ash flow and lapilli tuff           |
|               |             |                | Lower Dust Tuff     | Dacitic dust tuff                                  |
| Pliensbachian |             | Betty Creek    | Sedimentary Members | Hematitic volcaniclastic sediments, and turbidites |
|               | Hazelton    |                | Volcanic Members    | Andesitic to dacitic tuffs and flows               |
| Sinemurian    |             | Unuk River     | Premier Porphyry    | Two feldspar + hornblende porphyritic tuffs        |
| Hettangian(?) |             |                | Upper Andesite      | Massive tuffs with local volcaniclastic sediments  |
|               |             |                | Upper Siltstone     | Turbidites, minor limestones                       |
|               |             |                | Middle Andesite     | Massive tuffs and minor volcaniclastic sediments   |
| 5             |             |                | Lower Siltstone     | Turbidites                                         |
|               |             |                | Lower Andesite      | Massive to bedded ash tuffs                        |
| Norian        | Stuhini     |                | Volcanic Members    | Pyroxene porphyry flows and tuffs                  |
| 40<br>Carnian |             |                | Sedimentary Members | Turbidites, limestones, conglomerates              |

#### TABLE 2. Table of Formations - Unuk River Area

heering Inc.



by Upper Triassic to Lower Jurassic volcanics and sediments and display a spatial relationship with early Jurassic potassic intrusions (Table 3, Figure 4). A brief description of some of the more important deposits in the region are as follows:

## Eskay Creek (21 Zone)

e - -

The mineralization at Eskay Creek was discovered in 1932 and active prospecting has continued sporadically since then. Two adits were the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the #21 Zone (Northern Miner, November 7, 1988).

Eskay Creek appears to display characteristics of both epithermal exhalative and volcanogenic massive sulphide types of deposits. The deposit has been described as consisting of stratabound goldsilver-base metal zones, hosted by a carbonaceous mudstone unit (Salmon River Formation?) at the top of a rhyolite breccia sequence. The mudstone is overlain by andesitic pillow lavas. The rhyolite (Mount Dilworth Formation) is underlain by dacitic tuffs of the Betty Creek Formation. The southern part of the deposit (21A Zone) contains massive to disseminated stibuite-realgar mineralization with associated high grade gold and minor silver contents. This is underlain by a footwall stockwork zone in the rhyolite. The northern part of the deposit (21B Zone) is a very goldsilver rich, base metal sulphide lens, with extensive footwall stockwork mineralization. This mineralization is associated with pervasive quartz-chlorite-muscovite alteration and minor gypsum, barite, feldspar and calcite (Idziszek et al., 1990).

The 21C Zone lies 25 metres to 50 metres down section from the 21B Zone. Diamond drilling has identified the mineralized zone along a minimum strike length of roughly 600 metres. The 21C Zone is strongly mineralized with gold and silver, however, sulphide content is low compared to the 21B Zone. In addition, the Pumphouse Lake Zone has been traced by drilling over a strike length of 250 metres. There have been 665 surface diamond drill holes drilled to date plus an exploration decline has been driven to test the main contact ore lens and three mineralized horizons. Wall chip assay results indicate a grade-width return of 1.56 oz/t Au and 40.5 oz/t Ag over 10 metres. This section includes 2.51 oz/t Au and 62.6 oz/t Ag over 5.54 metres. Underground drifting, bulk sampling and drilling will continue through the winter months of 1990-91. Exploration activity has brought the total geological reserve base to an estimated 5,300,000 ounces gold equivalent at the 0.10 oz/ton Au threshold. This high grade reserve is contained within both the 21B and 21A Deposits. The potential to significantly increase the total reserve base is considered to be excellent. Immediately apparent potential lies within the northern 21B Deposit, in . the Pumphouse Lake Zone, and the 21C Deposit. Additional new zones of discovery may be forthcoming pending results of surface drilling now underway elsewhere on the Eskay Creek property (Vancouver Stockwatch, September 18 and October 1, 1990).

## Sulphurets Area

Several different deposit types are present in the Sulphurets map sheet (Open File 1988-4). A group of occurrences known as the Sulphurets Camp is located approximately 20 km southeast of Eskay Creek. Both porphyry type and mesothermal to epithermal precious metal deposits are present. Apparent overprinting of mineralization types and multiple generations of alteration and vein assemblages are noted. Most mineral occurrences in the area are hosted by the upper part of the Unuk River Formation or the lower part of the Betty Creek Formation (Britton et al., 1988). The Goldwedge Zone is hosted by the Betty Creek Formation. Other deposits in the camp include the Sulphurets and Snowfield Zones, the West Zone deposit and the Kerr deposit. Mineralization can be grouped into four main categories; veins, disseminations, intrusive contacts and stratabound. Extensive gossans are associated with mineralization in the area.

The mineralization of the West Zone is located in structurally controlled quartz vein stockworks within a silicified, sericitic alteration zone. The complex vein system, within the zone, is up to 40 metres thick and contains in excess of 60% vein material. The zone has been traced for over 600 metres along strike and for 500 metres at depth. Andesitic tuffs of the Unuk River Formation, near the volcanic-sediment contact, host the deposit. The mineralization consists of pyrite, electrum, native gold, argentite, galena, sphalerite, chalcopyrite, tetrahedrite, pyrargyrite, proustite, freibergite and stephanite.

#### Johnny Mountain

This mine has produced 100,300 tons of ore grading 0.46 oz/t gold, 1.0 oz/t silver and 0.75% copper to the end of October, 1989 (D. Yeager, personal communications, January, 1990). The deposit comprises five sub-parallel quartz veins, hosted by interbedded andesitic to dacitic volcaniclastics and volcanic sediments (Lower Jurassic) which are cut by feldspar porphyry dykes.

The veins reportedly thicken and contain higher grades at quartz-carbonate cross structures and at lithologic contacts. The northeast trending veins are generally one to two metres wide and contain pyrite and chalcopyrite with minor sphalerite, galena and pyrrhotite. Electrum and native gold have been reported. A distinctive alteration halo surrounds the veins. Outward from the vein, the alteration sequence progressively changes from massive potassium feldspar and ankerite to a quartzpyrite stringer zone to a disseminated pyrite zone.

## <u>Snip</u>

**.** .

۶.

**.** .

. .

,**-**

This deposit is hosted by massive to bedded siltstone and feldspathic wacke (Upper Triassic). The ore zone ('Twin Zone') is described as a one to ten metre thick, discordant, banded shear vein which trends southeast. The zone consists of veins with alternating bands of massive, streaky calcite, heavily disseminated to massive pyrite, biotite-chlorite, quartz and pyritic to non-pyritic fault gouge. Mineralization consists of pyrite, lesser pyrrhotite, minor sphalerite and locally abundant arsenopyrite, galena, molybdenite and chalcopyrite. The gold grades are reported to be fairly uniform throughout, although native gold has been observed locally.

### Summit Lake (Scottie Gold)

This mine produced 160,264 tonnes of ore grading 18.6 g/t gold and 10.1 g/t silver between 1981 and 1984. Epigenetic, mesothermal veins are developed along three sub-parallel shear systems which form part of a ladder vein set. Within these structures are plunging, parallel ore shoots consisting of massive pyrrhotite and/or pyrrhotite-pyrite, up to 5 metres wide. The shoots are usually symmetrically bordered by gold-bearing, quartz-carbonate-pyrrhotite-base metal sulphide vein swarms and disseminated base metals. These are hosted by brecciated and intensely silicified, hematized, carbonatized and chloritized wallrock. The overall gold/silver ratio is 2:1.

#### SIB Group

American Fibre and Silver Butte Resources have drilled 20 holes on their SIB claims and intersected mineralization contained in graphitic mudstone interbedded with felsic volcanic units. One hole returned 49.6 feet grading 0.42 oz/t Au and 30.91 oz/t Ag which includes 16.7 feet of 0.86 oz/t Au and 50.24 oz/t Ag. The geological setting is believed to be similar to the Eskay Creek deposit (The Northern Miner, October 22, 1990).

Inel

ŧ

. .

.....

.

۰.

.

**.** .

e -

۰.

e .

p ---

. .

۰.

÷ -

•

κ.

Avondale Resources conducted underground drilling and drifting of the AK Zone at the Inel property which produced significant high grade assay results in 1989. The underground program comprised 1,500 feet of adit and footwall drifting. A recent 24.3 foot intercept grading 1.19 oz/t Au, 1.39 oz/t Ag and 0.87% zinc was returned from underground drilling (The Northern Miner, October 15, 1990).

Recent exploration activity north of the Iskut River has resulted in the discovery of three different styles of mineralization. Gulf International has been drilling stratabound skarn mineralization (Mississipian age) on their McLymont Creek property. The zone has been traced for some 300 metres along strike and 200 metres at depth. The best reported drill results include 3.55 oz/t gold over 6.5 feet and 0.62 oz/t gold over 10 feet (L.O.M. Western Securities Ltd., 1990). Mineralization consists of pyrite, chalcopyrite, sphalerite and galena with a gangue of barite, calcite, gypsum, magnetite and specularite. It is believed that the formation of the deposit is due to the presence of a strong structure, chemically reactive host rocks and close proximity to intrusive bodies (Logan et al., 1990). Palaeozoic strata on Kestral's KRL property and Avondale's Forrest property are reported to host mesothermal, shear related gold mineralization. Kestral has reported that channel samples from veins graded up to 7.28 oz/t gold. Avondale has indicated that a large mineralized hydrothermal system, which has been traced for over 3 miles, hosts at least 19 precious and base metal occurrences. Rock samples grading up to 5.8 oz/t gold, 3.6 oz/t silver and 9.5% copper have been reported (L.O.M. Western Securities Ltd., 1990). The mineralization is found in quartz stockworks and veins and consists of gold and silver-bearing quartz-chalcopyrite, with or without malachite, azurite, arsenopyrite, galena, bornite and hematite. The mineralization is spatially related to granitic (Jurassic) and, locally, dioritic (Permian) intrusions. Further north, Cominco has reported polymetallic, massive sulphide float on their Fore More property. They have found more than 800 massive sulphide boulders containing fine-grained pyrite, sphalerite, galena, barite, chalcopyrite and, locally, silver minerals (Logan et al., 1989).

Britton et al. (1989) listed 55 mineral occurrences on the Unuk area map sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn and disseminations. Grove (1986) determined that the age of the mineralizing events is variable, and notably, can be post-Triassic. Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or restricted set of strata. The best example is the Eskay Creek deposit.

Intrusive contact (skarn) deposits show a close spatial and temporal relationship with igneous intrusions. Three deposits in this category are the E & L nickel/copper deposit (Minfile #006), the Max copper/iron skarn (Minfile #013) and the Chris-Anne copper/iron skarn (Minfile #125). Britton et al. (1989) stated:

-

**-**----

÷ -

١.

Mineralization at the E & L occurs within two medium- to coarse-grained, olivine-pyroxene gabbro bodies. These roughly triangular plugs are each approximately 1300 square metres in area and are probably connected. They intruded a sequence of argillites, tuffaceous siltstones, and grey dacitic ash tuffs that strike northwesterly with moderate to steep southwesterly dips. Mineralization consists of pyrrhotite, pentlandite, and chalcopyrite, with lesser amounts of pyrite and magnetite. In the northwestern gabbro, mineralization extends up to the contact with the sediments, whereas in the southeastern gabbro, mineralization is confined to the pluton. Diamond drilling has delineated pipe-like pods and disseminations of sulphides to a depth of 120 metres. Drill-indicated reserves are 2.8 million tonnes of 0.7% Ni and 0.6% Cu (Sharp, 1965).

The Max prospect lies on the northwest side of McQuillan Ridge, between the Unuk and South Unuk Rivers, at elevations between 455 and 1500 metres. Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite, and diopside characterize the skarn assemblage. Drilling has indicated a reserve of 11 million tonnes at 45% iron (Canadian Mines Handbook 1973-1974, page 432).

The Chris-Anne prospect lies approximately 3 kilometres east of the Max. Skarn mineralization is reported in limestone beds which are up to 10 metres thick and that are interbedded with volcaniclastics. Magnetite and pyrrhotite-rich layers, from 0.5 to 7 metres thick, with minor chalcopyrite, extend over a distance of 1 kilometre. There are minor intrusive bodies reported on the property. Grades range from 0.1% to 0.4% copper (Allan and MacQuarrie, 1981).

The gold potential of these skarn deposits does not appear to have been tested. Based on recent skarn studies (Ettlinger and Ray, 1988), this area has many features that are associated with gold-enriched skarns elsewhere in the province: sequences of calcareous and tuffaceous host rocks; structural deformation; intrusion by dioritic I-type granitoids; and contact metamorphism and recrystallization. Some auriferous skarns are enriched in cobalt, an element that may be a useful pathfinder.

Porphyry-type disseminated pyrite, chalcopyrite, and molybdenite mineralization occurs immediately north and south of King Creek, west of Harrymel Creek. Two properties have been worked: the VV to the south and the Cole to the north.

| Deposit         | Type                                  | Host                                           | Or <del>e</del><br>Reserves (tons) | Grade                                          | Comments                                        |
|-----------------|---------------------------------------|------------------------------------------------|------------------------------------|------------------------------------------------|-------------------------------------------------|
| Silbak-Premier  | epithermal/<br>porphyry               | Unuk River Formation<br>(Lower Jurassic)       | 6,100,000                          | 0.064 oz/t Au &<br>2.39 oz/t Ag                | production<br>resumed 1989                      |
| Big Missouri    | epithermal and<br>stratabound         | Unuk River Formation<br>(Lower Jurassic)       | 1,860,000                          | 0.091 oz/t Au &<br>0.67 oz/t Ag                | production<br>resumed 1989                      |
| SB              | epithermal                            | Unuk River Formation<br>(Lower Jurassic)       | 152,000                            | 0.335 oz/t Au,<br>0.79 oz/t Ag,<br>1.42% Pb-Zn | 1982 discovery                                  |
| Summit Lake     | mesothermal shear<br>vein             | Unuk River Formation<br>(Lower Jurassic)       | 132,000                            | 0.56 oz/t Au                                   | closed 1985                                     |
| West Zone       | mesothermal shear<br>vein             | Unuk River Formation<br>(Lower Jurassic)       | 854,072                            | 0.354 oz/t Au &<br>22.94 oz/t Ag               | feasibility<br>stage                            |
| Granduc         | concordant massive<br>sulphide        | Unuk River Formation<br>(Lower Jurassic)       | 10,900,000                         | 1.79% Cu,<br>0.004 oz/t Au &<br>0.24 oz/t Ag   | closed 1984                                     |
| Kerr            | aikaline porphyry                     | Unuk River Formation<br>(Lower Jurassic)       | 66,000,000                         | 0.86% Cu &<br>0.010 oz/t Au                    | 1987 discovery                                  |
| Eskay Creek     | stratabound<br>hydrothermal<br>system | Mount Dilworth Formation<br>(Lower Jurassic)   | 6,035,220<br>(prelim.)             | 0.643 oz/t Au &<br>15.61 oz/t Ag               | 1988 discovery<br>drilling still in<br>progress |
| Goldwedge       | mesothermal shear<br>vein             | Betty Creek Formation<br>(Lower Jurassic)      | 295,000                            | 0.63 oz/t Au &<br>2.44 oz/t Ag                 | 1981 discovery                                  |
| Johnny Mountain | mesothermal shear<br>vein             | Unuk River Formation<br>(Lower Jurassic)       | 740,000                            | 0.52 oz/t Au,<br>1.0 oz/t Ag &<br>0.75% Cu     | production<br>commenced 1988                    |
| Snip            | mesothermal shear<br>vein             | Stuhini Group<br>(Upper Triassic)              | 1,032,000                          | 0.875 oz/t Au                                  | feasibility stage                               |
| Galore          | alkaline porphyry                     | Stubini Group<br>(Upper Triassic)              | 125,000,000                        | 1.06% Cu, 0.013<br>oz/t Au & 0.25<br>oz/t Ag   | 1955 discovery                                  |
| Shaft Creek     | calc alkaline<br>porphyry             | Stuhini Group<br>(Upper Triassic)              | 1,000,000,000                      | 0.30% Cu &<br>0.004 oz/t Au                    | dormant                                         |
| Red Chris       | alkaline porphyry                     | monzonite (Late Triassic<br>to Early Jurassic) | 43,700,000                         | 0.56% Cu &<br>0.010 oz/t Au                    | dormant                                         |
| E&L             | porphyry                              | Nickel Mountain Gabbro<br>(Jurassic)           | 2,930,000                          | 0.80% Ni &<br>0.62% Cu                         | dormant                                         |

## TABLE 3: Summary of Mineral Deposits in the Golden Triangle Area

]

**,** ·

Ň

٠

'

:

٠

-

]

1

•

1

٩



Figure 4: Mesozoic stratigraphy and setting for some mineral deposits in Iskut River map area, northwestern British Columbia

WISE Approximate orientation for stratigraphic transect

The VV property (Minfile #079), located 1.5 km west of the Achilles property boundary is the site of a heavily weathered monzonitic intrusive body in fault contact, on the east and west, with layered andesitic lapilli tuffs and tuff breccias with minor siltstone and calcareous sandstone interbeds. The stock is 250 metres wide, at least 6 kilometres long, strikes northerly, and dips steeply to the west, parallel to the country rocks. Chalcopyrite occurs in quartz stockworks and as fine disseminations within the monzonite. Molybdenite, sphalerite, malachite, and azurite have also been reported (Winter and McInnis, 1975; Mawer et al., 1977). Representative assays give 0.34% copper, 0.003% molybdenum, 2.1 grams per tonne silver, and 0.8 gram per tonne gold. Maximum gold and silver values obtained were 8.65 grams per tonne gold and 19.54 grams per tonne silver (Mawer et al., 1977).

The Cole prospect (Minfile #209) is situated approximately 4 kilometres north of the VV claims; it appears to be on strike with the same fault system and has similar intrusive and country rocks. Mineralization consists of up to 10% pyrite as disseminations and fracture fillings. Minor chalcopyrite and malachite have been reported but the bedrock source of the gold/silver soil anomalies has not been located (Korenic, 1982; Gareau, 1983). Reported assays range up to 0.43% copper, 7.12 grams per tonne gold, and 13.03 grams per tonne silver. Gold and copper values show a positive correlation on both properties with gold values appearing to associate with quartz-pyrite vein mineralization.

A review of all the available information (Minfile, assessment reports, geological maps, reports, etc.) indicates that a number of mineralized occurrences or prospects are known within the current area of the Homer property.

The Unuk River (Nine Mile) copper showing (Minfile #96) occurs on the Homer 1 claim. In this area, Triassic diorite intrudes the Upper Triassic Stuhini Group sediments. Along the diorite contact with the Stuhini sediments are altered magnetite skarns. In 1929, two claims were located to cover a showing with a high percentage of copper.

The Cebuck Creek gold/silver showing (Minfile #222) occurs adjacent to the northeastern boundary of the property. The area is underlain by Upper Triassic Stuhini Group sediments intruded by quartz diorite. In 1978, a small pit was excavated close to the edge of Cebuck Creek in a pyritized volcanic sandstone located within the contact zone of a dioritic intrusive. The trench is located within altered and sheared sandstone riddled with quartz veins and veinlets. In 1978, a sample of this pyritized rock assayed 1.37 g/tonne Au and 10.29 g/tonne Ag.

In 1929, two placer claims were located near the mouth of Fewright Creek (Minfile #223). Gravels were reported to carry free gold on the surface, to an equivalent amount of approximately 14 grams/tonne Au. The Homer #3 copper showing (Minfile #224) occurs at the north end of a small lake at the southwestern corner of the Homer 3 mineral claim. A gossanous zone within the Flory Creek Fault zone hosts disseminations and fracture fillings of pyrite and chalcopyrite. Located west of the property and on the same structure is the Six Mile #2 copper showing (Minfile #225). Minor chalcopyrite and up to 5% disseminated pyrite occur within and adjacent to the Flory Creek Fault zone.

The Max Deposit (Minfile #013) is located 1 km east of the property. Skarn-type mineralization (including magnetite, chalcopyrite, pyrrhotite, and pyrite) is localized within folded lenticular Triassic limestone near the margin of an irregular quartz diorite stock. The deposit consists of massive magnetite mineralization and associated chalcopyrite, pyrrhotite and pyrite. Drilling indicated a body of medium-grade magnetite estimated to contain 11,176,550 tonnes averaging 45% iron. The magnetite-rich areas range from 3 to 15 metres in thickness (Granduc Mines Ltd., 1962 Annual Report).

Immediately east of the Max Deposit, medium-grained diorite is in fault contact with the sedimentary rocks. Minor disseminations of chalcopyrite occur within the diorite. Also, a gossanous zone within the dioritic intrusive is mineralized with chalcopyrite and molybdenite.

# Property Geology

The Homer property was geologically mapped, lithogeochemically sampled and contour soil sampled by Keewatin Engineering Inc. personnel, and these data were plotted on 1:10,000 scale contour maps redrafted from enlargements 1:50,000 scale NTS topographic maps (Maps 1 to 4). Approximately 75% of the property is forest covered with outcrop exposure restricted to the southeastern corner of the Homer 2 claim plus narrow gullies and structurally related, locally canyoned drainages on the Homer 3 claim. Elsewhere on the property, isolated small outcrop exposures are found in steep cliffs and bluffs on timbered slopes facing the Unuk River (Figure 5). Outcrop accounts for roughly 5% of the claims area with the Unuk River and its extensive fluvial deposits occupying approximately 20% of the property.

Regional geological mapping by Britton et al. (1989) illustrates that the bedrock geology comprises Upper Triassic to Lower Jurassic supracrustal rocks. Most of the property is underlain by Upper Triassic sediments and intermediate volcanic tuffs of the Stuhini Group. The southeastern corner of the property is underlain by the Lower Jurassic Unuk River Formation which consists of

Keewatin Engineering Inc.

andesitic volcanics with lesser sediments. The northeastern corner of the property is underlain by the Max Diorite Stock (Table 2, Figures 3 and 5). These units are described by Britton et al. (1989) below:

#### Lithologies

### Upper Triassic Stuhini Group

The Stuhini Group rocks occupy the nose of a north-plunging anticline, and occur as a wedge between the Unuk-Harrymel Shear Zone and the overlying Unuk River Formation. These rocks underlie most of the property, consisting of thin bedded siltstones, immature fine-grained wackes, chert, impure limestone, and andesitic tuffs that locally attain a considerable thickness. Andesitic tuffs may be laminated to massive, aphanitic or hornblende-feldspathic. Limestones occur as thin beds or discontinuous lenses that show extensive recrystallization and highly disrupted internal structure. Fossil evidence led Britton et al.(1989) to ascribe a Carnian to Norian age to these rocks.

#### Upper Triassic to Lower Jurassic Unuk River Formation

Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of fine-grained immature sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (± hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green, thinly bedded tuffaceous siltstone and finegrained wacke. These Norian to Sinemurian rocks belong to the Unuk River Formation which is the lowermost unit of the Hazelton Group.

The basal contact with Triassic strata appears to be near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks this lower contact. Regional geological government mapping indicates this unit may underlie the southeastern corner of the property.

#### Jurassic Max Diorite Stock

T.

This irregularly shaped Triassic or younger diorite stock intrudes the Upper Triassic Stuhini Group sediments in the northeastern corner of the property. It is medium- to coarse-grained, equigranular, and ranges in composition from biotite hornblende diorite to quartz diorite.

Geological mapping on the Homer property by Keewatin Engineering Inc. personnel has identified the primary lithology as a package of Stuhini Group volcanic and sedimentary rocks composed of thinly bedded to massive andesitic ash to lapilli tuffs and interbedded argillite, greywacke and shale with minor limestone and quartzite (Map 1). The bedrock geology of the northwestern corner of the Homer 4 claim consists of flat lying to gently west dipping thin beds of argillite, shale, greywacke and volcanic tuff. This assemblage is cut by felsic dykes and shear zones. The volcanic assemblages observed in the southeastern corner of the Homer 1 claim and the northern Keewatin Engineering lnc.







| FERRET EXPLORATION COMPANY INC./<br>BODEGA VENTURES INC. |              |  |  |  |
|----------------------------------------------------------|--------------|--|--|--|
| HOMER P                                                  | ROPERTY      |  |  |  |
| COMPILATION MAP<br>GEOCHEMISTRY<br>(1990)                |              |  |  |  |
| Figure 6                                                 |              |  |  |  |
| DATE: DEC, 1990 NTS: 104B/7E                             |              |  |  |  |
| PROJECTI BYI G. Vesa                                     |              |  |  |  |
| SCALE                                                    |              |  |  |  |
| Keewatin Ingineering                                     | Ino. MAP No. |  |  |  |

-----

part of the Homer 2 claim comprise chloritized, locally foliated, thinly bedded to massive ash to lapilli tuffs cut by north to northwest striking faults and intruded by small plugs of hornblende diorite porphyry. The bedrock lithologies on Homer 3 are identified as intensely sheared and faulted, carbonate-quartz-chlorite-limonite altered intermediate ash to lapilli tuffs and locally, andesitic flows which may, in part, be massive, siliceous tuff sequences. The southeastern corner of the Homer 3 claim is underlain by an assemblage of sedimentary and volcaniclastic rocks and intermediate flows. The lithologies examined on the north side of a long narrow lake in the steep walled Flory Creek Fault valley are altered andesitic flows, heterolithic fragmental flows, lapilli tuffs and coarse pebble quartzite. Several exposures of andesitic lapilli tuff and fragmental flows are found along the lake shore. This sequence is conformably overlain by a pale buff to cream coloured, siliceous pebble quartzite and this unit is, in turn, overlain by massive altered andesites. On the southeastern side of the lake, a volcanic-sedimentary sequence of argillite, shale and minor limestone appears to overlie finely banded, aphanitic, siliceous andesitic volcanics. A hornblende diorite intrusion occurs in fault contact with the volcanics at the south end of the lake. This intrusion may be related to the Max Diorite stock.

The southeastern corner of the Homer 2 claim is mainly above treeline which occurs roughly at 3,500 feet. This large rocky area of ridge and gully terrain exposes an assemblage of andesitic ash to lapilli tuffs, heterolithic fragmental (breccia and conglomerate) flows and a rare hornblende andesite porphyry flow with large euhedral, black hornblende phenocrysts up to one inch across within a dark green andesitic groundmass. These rocks belong to the Upper Triassic to Lower Jurassic Unuk River Formation as described by Britton et al. (1989).

A major 045° azimuth fault, marked by a deep steep sided gully, separates locally strongly gossanous quartz-calcite-ankerite-limonite altered volcanic flows and tuffs northwest of the fault from massive bedded to finely laminated ash fall tuffs, pyroclastic flows and hornblende andesite porphyry flows southeast of the fault. The pyroclastic (lapilli tuff) rocks northwest of the fault are massive, siliceous and variably magnetic. The fragmental rocks are pale grey and siliceous, enclosing 1 to 3 cm angular to subrounded clasts in a finer tuffaceous to aphanitic grey groundmass. Fragments appear to be composed of felsic to intermediate lithic tuff and chert. Outcrops northwest of the fault are rounded and intensely glacially striated and grooved at a trend of 050°.

Medium to coarse crystalline hornblende diorite to biotite-hornblende diorite, belonging to the Jurassic Max Diorite stock, intrudes Stuhini Group volcanic and sedimentary rocks in the southeastern Homer 1 claim, northwestern Homer 2 claim and northeastern Homer 3 claim. The

٣

.

Ň

----

**.** .

٩,

٩.

contact, observed in stream gullies and isolated outcrops along the steep slopes, roughly follows the 1,000 foot contour and trends northeast-southwest (Figure 5, Map 1).

19

## Structure

£ ...

5

**C** :

F

۲

C

£.

5

c

C

£

C

c

C

The general attitude of the stratigraphic sequences is north to northeasterly with dips variable from vertical to gently easterly dipping. The exception is the southwestern corner of the Homer 3 claim in the vicinity of "Long Lake" where local interbedded volcanic and sedimentary strata appears to be extensively faulted and disrupted by the Flory Creek fault zone and dioritic intrusions. Strata at this location strikes north to east to southwest with widely variable north, south and westerly dips.

Prominent structural lineaments are readily recognized on air photos and interpreted from topographic maps (Map 1). Faulting on various scales was observed within major gullies and valleys.

Major structural linears are represented by relatively straight, steep sided drainage gullies and valleys in the Homer 2 and 3 claims. The Flory Creek fault is traced northeasterly, through the western part of the Homer 3 claim, to the Unuk River. "Long Lake" occupies the narrow, steep sided fault valley at the southwestern claim boundary. A second, locally offset but pronounced lineal valley, bisects the Homer 3 claim in a north-south direction and may be represented, on the north side of the Unuk River, by northerly trending incised fault gullies observed in the northwestern corner of the Homer 4 claim. These latter structures appear to begin at Fewright Creek and may be traced north into the Achilles property (Map 1).

The structures are recognized by intensely fractured, sheared, chlorite-carbonate-limonite altered volcanic sediments and pyroclastics in Flory Creek fault and the north-south trending fault. Local slickensiding and chlorite-clay gouge zones are also observed within these faults, representing smaller scale offsets or displacements (Map 1).

Several north and northwest trending, incised gullies on steep slopes in the northern half of the Homer 2 claim represent fault zones and these are correspondingly characterized by foliated, chlorite-carbonate altered and sheared wallrock within the canyoned gullies. The interpreted presence of "iron formation" in the south-central Homer 2 claim (Aerodat Ltd.) may be caused by this set of sub-parallel north-south trending faults which may be traced south to the southern portion of the claim. These faults cut perpendicular to the stratigraphy and the intermediate tuff-diorite contact. The contact is observed in creek gullies in the northwestern corner of the Homer 2 claim, at approximately 980 feet elevation, and is marked by carbonatized, coarse crystalline diorite enclosing large xenoliths of sub-rounded to sub-angular andesitic. The altered andesitic clasts and blocks are typically 10-30 cm across with angular boundaries and dull green weathering, within a dark buff to brown weathering diorite. Small exposures of altered diorite occur in the vicinity of the fault gullies, south of the Unuk River, in north-central Homer 3 claim. Evidence suggests these diorites may occur in fault contact with the strongly altered volcanic assemblages (Map 1).

The andesitic pyroclastic and massive porphyry flows exposed above 3,500 feet in the southeastern corner of the Homer 2 claim are cut by several sets of faults at 045° and 150° azimuths. The faults are marked by linear gullies separated by glacially smoothed, rounded and striated ridges and knolls. The direction of ice movement was generally in a northeasterly direction. These faults control and influence alteration of the volcanic assemblage and may account for the single anomalous gold value of 17 g/t Au (B45) from a 1911 government report (Equity Preservation Corp., 1988).

# <u>Alteration</u>

---

Rocks on the Homer property are altered primarily by silicification and carbonatization with minor limonite and chloritization. Alteration is localized and controlled by faulting and shearing. Quartz-carbonate-ankerite-limonite alteration of volcanic tuffaceous and fragmental assemblages accompanies faulting in the southeastern corner of the Homer 2 claim. The sub-parallel fault gullies in the north-central Homer 2 claim are characterized by slickensided and sheared wallrock within chloritized and locally foliated tuffaceous volcanics. Pinch and swell calcite-quartz-chlorite veins and quartz-flooded shear zones up to 0.30 metres wide occur within these gullies. The diorite intrusions within the gullies are variably chloritized and carbonaceous owing to remobilization of calcite caused by shearing and micro-fracturing. Volcanics in contact with the diorite appear hornfelsed, aphanitic and mildly to strongly chloritized (Map 1).

Volcanics exposed in the southern half of the Homer 3 claim, in the Flory Creek fault and the north flowing creek gully are generally weakly chloritized, however, intense silica flooding and quartz-carbonate-limonite and quartz-carbonate-chlorite alteration occurs within these fault zones in the northern half of Homer 2 claim. Silica-sulphide replacement of finely laminated, pale grey water lain ash tuffs occurs in the north-central Homer 3 claim. At this locality, alteration of the wallrock is accompanied by quartz-calcite-chlorite veins and veinlets plus quartz-calcite flooded, boudinaged shear zones. Sulphide (pyrite, pyrrhotite) mineralization is ubiquitous and locally concentrated along quartz-chlorite-carbonate shear zones (Map 1). **Mineralization** 

Weak sulphide mineralization in the order of 1% finely disseminated pyrite ± pyrrhotite was observed in the lithologies mapped on the Homer property. Higher concentrations of pyritic sulphide mineralization are controlled and localized along all major fault zones and chloritized shear zones.

In the southeastern corner of the Homer 2 claim, gossanous fault zones characterized by limonite-quartz-ankerite-calcite alteration are mineralized with up to 5-7% disseminated pyrite. Quartz-carbonate altered fragmental andesite breccias contain finely disseminated and smokey-grey pyritic sulphide within an aphanitic siliceous matrix.

At the northern limit of the Flory Creek fault, near its junction with the Unuk River, fractured and sheared limonitic andesite tuffs contain 2-3% disseminated pyrite and pyrrhotite. A secondary, northerly trending tributary fault gully to the Flory Creek fault hosts very finely banded and laminated, silicified ash tuffs containing 5-7% pervasive pyrite and pyrrhotite with local concentrations of 10-15% pyritic sulphides in very narrow ( $<\frac{1}{2}$  cm) bands and layers. This area of intense shearing and chlorite-clay gouge zones, in roughly perpendicular fault systems, is pervasively sulphidized in association with quartz-carbonate-chlorite alteration.

Mineralized showings occurring in the southwestern corner of the Homer 3 claim (Minfile reports) are reported to contain up to 5% pyritic sulphides in andesitic volcanic flows and tuffs. An examination of this area confirmed the present of altered andesitic flows, fragmental andesites (agglomerates) and pyroclastics hosting 1-3% disseminated pyritic sulphides.

Pervasive (1-2%) disseminated magnetite occurs within the diorites of the Max Diorite Stock thus contributing, locally, to a weak to moderate magnetic influence.

#### **1990 EXPLORATION PROGRAM**

## **Geological Mapping**

ς.

Approximately 65-70% of the property was evaluated by reconnaissance geological mapping and contour soil sampling (Figures 5 and 6). Simultaneous mapping and the establishment of contour soil lines was carried out on all four of the Homer claims with the highest concentration of effort directed toward the Homer 2 and 3 claims. Contour soil lines were established at 500 foot contour

Keewatin Engineering Inc.

intervals between the 1,000 foot and 4,000 foot elevations (Figure 6). Soil samples were collected at 50 metre spacings thus providing good coverage of the area. All of the lithogeochemical samples were collected concurrent with the geological mapping program.

## **Geochemistry**

- -

- -

- -

- -

. .

. -

......

Υ.

κ.

## Sampling Procedure

A total of 27 rock grab, float and chip samples, 347 contour soil samples and 23 stream silt samples were collected during the 1990 reconnaissance survey. Rock grab and chip samples were collected from outcrop exposures exhibiting favourable characteristics such as sulphide content, gossanous staining, alteration and shearing. Rock specimens were placed in marked plastic sample bags accompanied with a numbered tag for sample identification purposes. All sample sites were marked with a tyvek tag and fluorescent ribbon displaying the corresponding sample number.

Soil samples were collected from an average depth of 25 cm at 50 metre intervals from slope corrected contour lines established along slopes and ridges. Sample pits were dug with long handled mattocks and good representative  $B_1$  horizon soils were obtained from well developed soil profiles. Optimum soil samples were obtained from more than 90% of the property area sampled owing to the development of good reddish-brown  $B_1$  horizon sandy clays and silts. In the southeastern corner of the Homer 2 claim, talus fines substituted for soils on rocky, glacially scoured slopes. Soil samples were placed in numbered, large gusseted kraft paper soil bags and the sample sites were correspondingly identified with a coded fluorescent ribbon and a tyvek tag. Stream silt samples were collected from the active portions of drainages intersected during contour soil sampling and mapping and, likewise, placed in marked kraft paper bags. Detailed notes were recorded for all samples and these are incorporated in Appendix VI. Analytical results are presented in Appendix IV and V and geochemical values are plotted on Maps 3 and 4. Ground control for contour soil lines was provided by altimeter, clinometer, compass and topo chain. Crew members were supplied with 1:10,000 and 1:50,000 scale topo maps for plotting geological and geochemical data.

Samples were subsequently shipped to Bondar-Clegg and Company Ltd. in North Vancouver for geochemical analysis/assay. The analytical techniques are described in Appendix III.

22
Rock Geochemistry

Concurrent with geological mapping, 27 rock grab, float and chip samples were collected from outcrops located primarily in shear zones, fault gullies and small cliffs and bluffs on steep slopes. Rock sample locations are plotted on Map 2 and analytical values are plotted on Maps 3 and 4. Rock sample descriptions are recorded in Appendix VI. The rock samples were generally sulphide (pyrite ± pyrrhotite) bearing and were collected from areas of alteration, shearing, lithological contacts and fault zones. The analytical results from these samples are disappointing. The highest value for gold was 57 ppb from a rock grab sample collected within a chloritized shear zone in the north-central Homer 2 claim. An elevated arsenic value registering 331 ppm was returned from a sample of chloritized, green andesitic lithic tuff enclosing subrounded heterolithic fragments and clasts. This sample was taken from outcrop located approximately mid-way along the west side of "Long Lake" in the southwestern corner of the Homer 3 claim. The highest values for base metals were: copper (216 ppm); lead (27 ppm); zinc (152 ppm). These values were documented from rock grab samples collected in the vicinity of Minfile mineral occurrences in the southwestern corner of the Homer 3 claim, and from an area of strongly gossanous, quartz-carbonate-ankerite altered and pyritized tuffaceous and fragmental andesites located in the southeastern corner of the Homer 2 claim.

### Soil Geochemistry

- -

-

A total of 347 contour soil samples were collected from 17.5 kilometres of slope corrected contour lines established at 500 foot contour intervals using clinometer, altimeter, compass and hipchain to mark out 50 metre stations. Locally steep terrain conditions and daily fluctuations in barometric pressure, which caused variations in altimeter readings, occasionally precluded efforts to maintain constant elevations. Good quality soil samples were collected from well developed, rusty orange to reddish-brown  $B_1$  horizons composed of fine silt, silty clay and fine to gravelly sand. The average sample depth was recorded at 25 cm. Terrain covered by this survey varies from subdued and gently sloping to extremely high relief characterized by steep slopes, cliffs and bluffs (Map 2).

This work outlined a large area of interest characterized by moderate to highly elevated goldin-soil values south of the common boundary between the Homer 1 and 2 claims (Maps 3 and 4, Figure 5). This area and the timbered area to the southwest was contour soil sampled and the results outlined a broad area of elevated gold-in-soil values, up to 648 ppb Au, measuring 600 metres by 1,400 metres (1968 feet x 4600 feet). This anomalous area roughly coincides with a major geological contact between andesitic volcanic flows/tuffs of the Stuhini Group and a diorite intrusion of the Jurassic Max Diorite Stock.

Three widely spaced soil samples with moderately to strongly elevated gold values (94 ppb, 136 ppb, 648 ppb) closely follow the volcanics-diorite contact along the 1,000 foot contour. A second series of elevated gold-in-soil values (58 ppb - 200 ppb) follows the 1,500 foot contour and appears coincident with three incised, northwesterly trending fault related gullies. These gullies are characterized by sheared, foliated and quartz-carbonate altered wallrock in andesitic tuffs and flows. A single soil sample returned 572 ppb Au from the 2,000 foot contour in one of the gullies. Two weakly elevated gold-in-soil values of 58 ppb and 62 ppb were returned from soils collected at the 3,500 foot contour near the headwaters of the western drainage. The soil survey failed to detect any anomalous base metal, silver and arsenic values. Weakly elevated copper (259 ppm), zinc (298 ppm), arsenic (221 ppm) and silver (4.9 ppm) values are also scattered throughout the property.

#### Stream Silt Geochemistry

Twenty-six stream silt samples were collected from active drainages intersected during contour soil sampling and mapping. A strongly anomalous gold-in-silt value of 2,230 ppb was returned from a small stream on steep slopes at approximately 1,500 feet elevation in the southeastern corner of the Homer 1 claim. The bedrock in this area comprises chloritic andesitic tuffs locally cut by chloritic, quartz-carbonate altered fault zones. This sample location coincides with a series of elevated gold-in-soil values following the 1,500 foot contour for approximately 1,200 metres to the southwest. One other single weakly anomalous gold value of 72 ppm Au was recorded in a silt from a canyoned drainage crossed by a soil line in the centre of the Homer 3 claim. Geological mapping indicates that this canyon represents a major north-south trending fault zone.

#### **CONCLUSIONS**

.

e -

.....

Geological mapping, contour soil sampling, stream silt sampling and lithogeochemical sampling was the focus of the exploration activity on the Homer property during the 1990 reconnaissance exploration program. Mapping shows that the property covers, primarily, an assemblage of Upper Triassic Stuhini Group volcanic and sedimentary rocks composed of thinly bedded to massive andesitic ash to lapilli tuff, fragmental flows and interbedded argillite, greywacke, minor shales, limestone and greywacke. This assemblage is cut by fault zones, represented by incised gullies and canyoned drainages, and intruded by small stocks and plugs of hornblende diorite and

Keewatin Engineering Inc.

diorite porphyry. Upper Triassic to Lower Jurassic Unuk River Formation rocks are documented in the southeastern corner of the property on the sole large exposure of outcrop above treeline. These lithologies overlie the Stuhini Group rocks and comprise andesitic ash to lapilli tuffs, heterolithic fragmental flows and a hornblende andesite porphyry flow.

A total of 27 rock grab, float and chip samples, 347 contour soil samples and 23 stream silt samples were collected for analysis with the objective of evaluating the property's economic potential plus following up geochemically anomalous areas delineated by the 1989 program.

A large area of elevated gold values occurs in the southeastern corner of the Homer 1 claim and the northern portion of the Homer 2 claim. Gold-in-soil values up to 648 ppb and a strongly elevated gold-in-silt value of 2,230 ppb are documented for this area which, although covered primarily by overburden and forest, is cut by fault zones and intruded by the Jurassic Max Diorite stock. Contour soil sampling has outlined an area of elevated gold-in-soil values measuring approximately 1,400 metres by 600 metres. Results of the lithogeochemical sampling were not encouraging and failed to confirm the presence of economic mineralization.

An evaluation of the previous work conducted in the 1989 program plus the results of the 1990 reconnaissance follow-up program suggest that areas of elevated gold-in-soil and silt values are structurally controlled. The existence of multiple fault zones accompanied by coincident elevated gold values may be indicative of the potential for a larger, deeper gold bearing system. The large area of anomalous gold-in-soil and silt values has proven to be a favourable exploration target worthy of continued exploration.

#### **RECOMMENDATIONS**

. .

**F** 1

~ ~

÷ .

An evaluation of the results of the 1990 reconnaissance program suggests that additional work is required to fully evaluate the Homer property's mineral potential. An exploration program is warranted consisting of:

- Establishment of a grid followed by grid controlled soil geochemistry covering the 1) area of elevated gold-in-soil and silt values in the southeastern corner of the Homer 1 claim and the northern part of the Homer 2 claim. The grid should consist of 25 metre spaced sample stations on 50 metre spaced lines.
- 2) Particular attention, in the form of detailed geological mapping, prospecting and lithogeochemical sampling, should be given to incised drainage gullies from which elevated gold-in-silt values were obtained to determine their significance regarding control on mineralization.
- 3) Stream silt sampling at 50 metre intervals down all stream gullies draining the anomalous area.
- 4) Anomalous target areas within the grid, outlined by grid soil sampling, should be further evaluated by exposing the bedrock through blasting or hand trenching. Favourably mineralized bedrock should be chip sampled across appropriate intervals of one metre.

ASSOCIATION

G. L. WESA

FELLOW

Respectfully submitted,

۳.

r -

**KEEWATIN ENGINEERING INC.** 

ecorodicas

L. Wesa, B.Sc., FGAC

Keewatin Engineering Inc.

#### REFERENCES

- Aerodat Limited (Dec'88-Jan'89): Airborne EM and Magnetic Survey on the PRIAM, ACHILLES, HOMER, ILIAD, MAXWELL SMART Mineral Claims; <u>for</u> Winslow Gold Corp.
- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (1989): Iskut-Sulphurets Gold; <u>in</u> The Northern Miner Magazine, January 1989.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic and Structural Framework for the Iskut River Map Area (NTS 104B), Northwestern British Columbia; <u>in</u> Current Research, Part E; Geol.Surv.Cda., Paper 89-1E.
- Anderson, R.G. (1990): Mesozoic Stratigraphy and Setting for Some Mineral Deposits in the Iskut River Map Area, Northwestern British Columbia, G.S.C. Paper 90-1E.
- Aussant, C.H. and DuPre, D.G. (1989): Geological, Prospecting and Geochemical Report on the Homer Property for Ferret Exploration Ltd. and Bodega Ventures Inc.
- Britton, J.M. and Alldrick, D.J. (1988): Sulphurets Map Area (104A/05W, 12W; 104B/08E, 09E). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1987, Paper 1988-1, pages 199-209.
- Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E,8W,9W,10E); in B.C. Energy Mines & Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 241-250.

Consolidated Stikine Silver Ltd.: - 1989 Annual Report.

<u>مە</u> .

. .

- -

Equity Preservation Corp. (1988): Stewart-Sulphurets-Iskut Map Handbook.

- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C.Energy Mines & Petr.Res., Bulletin 58.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C.Energy Mines & Petr.Res., Bulletin 63.
- Hawkins, Paul A., & Associates Ltd. (Oct.1987): Report on Reconnaissance Mapping and Prospecting in the Unuk River Area, Skeena and Liard Mining Divisions; <u>for</u> Axiom Explorations Ltd.; B.C. Energy Mines & Petr.Res., Assess.Rpt.16858.
- Idziszek, C., Blackwell, J.D., Fenlon, R., MacArthur, G and Mallo, D.W. (1990). The Eskay Creek Discovery, Mining Magazine, March 1990.
- Idziszek, C., Blackwell, J.D., Fenlon, R., Mallo, D.W. and MacArthur, G. (1990). Exploration Updates - Eskay Creek Project, Abstract (revised) November 9, 1989, Prime Explorations Ltd.

Keewatin Engineering Inc.

- Klein, J. (1968): Report on Airborne Geophysical Surveys, Stewart Area, British Columbia; for Granduc Mines Limited; B.C. Energy Mines & Petr. Res., Assess.Rpt.1835
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C.Energy Mines & Petr.Res., Assess.Rpt.10474
- Logan, J.M., Koyanagi, V.M. and Drobe, J. (1990). Geology of Forrest-Kerr Creek Area, Northwestern British Columbia (104B/15). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1.
- Logan, James M., Koyanagi, Victor M., Drobe, John R. (1990-2). Open File (Sheet 1 of 2). Geology, Geochemistry and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia, NTS 104B/15 and part of 104B/10, Province of British Columbia.
- L.O.M. Western Securities Ltd. (1990). Stikine Arch Canada's Golden Triangle.
- Mawer, M. et al. (1977): Year-End Report, Mount Dunn Property, British Columbia; for Great Plains Development Company of Canada Ltd., B.C. Energy, Mines and Petroleum Resources, Assessment Report #6234.
- National Geochemical Reconnaissance, 1:250,000 Map Series (1988). Iskut River, British Columbia (NTS 104B). Geological Survey of Canada, Open File 1645. B.C. Ministry of Energy, Mines and Petroleum Resources, RGS-18.

Northern Miner (Nov.7, 1988, October 15 and 22, 1990).

2.

- -

× ;

- Norman, G.W.H. (1960): Report of Geological and Geophysical Surveys, HAR #1, 7, 24, 25 Groups, Skeena Mining Division; for Granduc Mines Ltd.; B.C. Energy Mines and Petroleum Resources, Assessment Report 345.
- Norman, G.W.H. (June-November 1960): Report of Geological, Geophysical, and Geochemical Surveys on the Max 1, 89, 93, 121, 125 Groups, Skeena Mining Division; <u>for</u> Granduc Mines Ltd.; B.C. Energy Mines & Petroleum Resources, Assessment Report 346.
- Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; <u>for</u> BP Resources Canada Limited, private company report.

Report on Business Magazine, November, 1990.

Shensha Consultants Limited (1989): Report on Mineral Potential Evaluation of Homer Claim Block; for Ross Resources Ltd., private company report.

Vancouver Stockwatch, September 18 and October 1, 1990.

Winter, C.Q., McInnis, M.D. (1974): Geological and Geochemical Report on the VV 1-6 claims, Mount Dunn Area, British Columbia; for Great Plains Development Company of Canada Ltd., B.C. Energy, Mines and Petroleum Resources, Assessment Report #5616.

#### STATEMENT OF QUALIFICATIONS

I, GARY L. WESA, of #309 - 6669 Telford Avenue in the Municipality of Burnaby, in the Province of British Columbia do hereby certify that:

- 1. I am an independent consulting geologist under subcontract to Keewatin Engineering Inc. with offices at Suite 800 - 900 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of Saskatchewan (1974) with a B.Sc. degree in Geology and I have practised my profession continuously since graduation.
- 3. I have been employed in mineral exploration since 1970 in Canada and the U.S.A.
- 4. I am a Fellow of the Geological Association of Canada.

.

.

.

- 5. I am the author of the report entitled "Geological and Geochemical Report on the Homer Property, Skeena Mining Division, British Columbia", dated November 30, 1990.
- 6. I have personally performed or supervised the work referenced in this report and I am familiar with the regional geology of nearby properties.
- 7. I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Ferret Exploration Company Ltd. and Bodega Ventures Inc. in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this <u>30th</u> day of November, 1990.

ASSOCIATION CEOLOGICA, ç ŝ G. L. WESA Respectfully submitted, FELLON

FGAC

Keewatin Engineering Inc.

## APPENDIX I

-

Γ.

**E**~~

c :

۳.,

---

۲.

τ.

۲ '

٢

----

۳ ت

t

.\_\_

.

₹ 1

τ.:

•

r:-

**T** 

۳.

-

e .

### Itemized Cost Statement

Keewatin Engineering Inc.

.

## **ITEMIZED COST STATEMENT**

p ....

-

.

,

ŝ,

.

•

F

· ·

| HOMER #321 SUMMARY - October 24, 1990                                                |                              |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|--|
| Domicile                                                                             | \$ 4,612.50                  |  |  |  |  |  |  |  |  |
| Wages                                                                                | 13,950.00                    |  |  |  |  |  |  |  |  |
| Helicopter                                                                           | 8,251.50                     |  |  |  |  |  |  |  |  |
| Demobilization est.                                                                  | 5,737.17                     |  |  |  |  |  |  |  |  |
| Shipping                                                                             | 200.00                       |  |  |  |  |  |  |  |  |
| Miscellaneous                                                                        | 1,386.12                     |  |  |  |  |  |  |  |  |
| Field and Office Supplies                                                            | 1,703.75                     |  |  |  |  |  |  |  |  |
| Assays:                                                                              |                              |  |  |  |  |  |  |  |  |
| Soils - 347 @ \$11.00 each<br>Silts - 23 @ \$11.00 each<br>Rocks - 27 @ \$13.48 each | 3,817.00<br>253.00<br>363.96 |  |  |  |  |  |  |  |  |
| Post-Field/Expediting                                                                | 4,000.00                     |  |  |  |  |  |  |  |  |
| TOTAL:                                                                               | \$44,275.00                  |  |  |  |  |  |  |  |  |

### **APPENDIX 11**

-

.

-

Υ.

Ţ,

æ -

.

.

•

•

.

**.** .

•

•

.

.

.

.

.

•

-

-

۰.

.

## Summary of Personnel

Keewatin Engineering Inc.

.

· ,

•

### SUMMARY OF PERSONNEL

.

۰.

-

-

.

.

. .

.

.

,

.

•

.

.

. ..

•

•

•

.

ς.

•

| HOMER WAGES #321<br>October 24, 1990 |      |          |                    |
|--------------------------------------|------|----------|--------------------|
| Employee                             | Days | Day Rate | Total \$           |
| Anderson, Colin                      | 6.0  | \$250.00 | \$ 1,500.00        |
| Birkeland, Eric                      | 7.0  | \$300.00 | 2,100.00           |
| Wesa, Gary                           | 11.0 | \$325.00 | 3,575.00           |
| McIntyre, Brian                      | 1.0  | \$300.00 | 300.00             |
| Wilson, Pat                          | 7.0  | \$250.00 | 1,750.00           |
| Thompson, Scott                      | 3.5  | \$250.00 | 875.00             |
| Wood, Lesley                         | 7.0  | \$240.00 | 1,680.00           |
| Whittam, Heath                       | 6.0  | \$190.00 | 1,140.00           |
| Viens, Robert                        | 6.0  | \$200.00 | 1,200.00           |
| Wardwell, Aaron                      | 7.0  | \$190.00 | <u>1,330.00</u>    |
|                                      |      |          | Total: \$13,950.00 |

.

### **APPENDIX III**

.

•

۰.

e ...

.

e -

.

- -

.

- -

•

, ·

`

•

•

•

**F** -

•

•

× ·

•

~

e -

-

i.

### Analytical Procedure

Keewatin Engineering Inc.

•

#### ANALYTICAL PROCEDURE

The Bondar-Clegg analytical methods are described as follows:

#### Sample Preparation

Silt & Soil: Dry and sieve through 80 mesh screens. Gold values are determined on 30 gram, representative sample of minus 80 fraction by fire assay with AA finish; remaining elements are determined using 0.6 gram sample of minus 80 fraction by hot aqua regia digestion followed by ICP. Dry and crush to minus 150 mesh; analysis made on minus 150 Rocks: fraction by methods described above. Gold is determined on a test sample of 30 g using Fire Assay **Geochemical Analysis:** Lead Collection pre-concentration. The bead is dissolved in nitric acid and hydrochloric acid and run by Atomic Absorption. Mercury is determined on a test sample of 0.6 g. The sample is digested by aqua regia and bulked to 12 ml. The solution is then run by Cold Vapour Atomic Absorption. All other elements are determined on a test sample of 0.6 g. The sample is digested by aqua regia and bulked to 12 ml. The solution is then run by ICP. Fire Assay Procedure for Au: A prepared sample of one assay ton (29.166 grams) is mixed with a flux which is composed mainly of lead oxide. The proportions of the flux components (the litharge, soda, silica, borax glass, and flour) are adjusted depending upon the nature of the sample. Silver is added to help collect the gold. The samples are fused at 1950 F until a clear melt is obtained. The 30-40 gram lead button that is produced contains the precious metals. It is then separated from the slag. Heating in the cupellation furnace separates the lead from the noble metals. The normal-sized precious metal beads that are produced are transferred to test tubes and dissolved with aqua-regia. This solution is analyzed using Atomic Absorption by comparing the absorbance of these solutions with that of standard solutions. In the case of high grade samples, the precious metal bead is parted to separate the silver and the remaining gold is weighed. Comments: As part of the routine quality control we run a duplicate analysis for about 12% of the samples. Also, all samples which are over 0.20 opt on the original fusion are run again to verify

the results. If a sample gives erratic results, such as 0.10,

0.020, 0.30, we will indicate this on the report. We suggest that a new split should be taken from the reject for preparation and analysis by our metallics sieve procedure. These assay results will always be signed by the registered assayer.

#### **Contamination Prevention:**

The test tubes and cupels are used only once so that there is no possibility of cross contamination. The fusion crucibles are cleared before re-use by discarding any which had high samples in them. During the analysis a blank solution is run between each sample to ensure that there is no carry over.

#### Determination of Arsenic by Borohydride Generation:

Samples of 0.5 grams in weight are digested in borosilicate glass test tubes, with concentrated nitric and hydrochloric acids. These tubes are heated in a 90 degree Celsius water bath for two and one-half hours. The sample is then diluted with 14% HCl and mixed. A 0.5 ml aliquot is taken from this solution and HCl, deionized water, and potassium iodide are added. The resulting mixture is allowed to sit for one hour, after which it is run through a hydride generation system. In this system, the solution is reduced with sodium borohydride, releasing arsenic as arsine gas. The arsine gas is then swept into a quartz furnace mounted on a flame AA unit. The absorbance is recorded and compared to a standard series to determine the amount of arsenic present.

Quality Control: Standards, repeats, and blanks are run with each batch of samples. These are carefully checked, and reweighs of samples are ordered if necessary. High arsenic results are also checked by running the original solution by flame AA and comparing the results from the two procedures.

|    | Element       | Lower<br>Detection Limit |
|----|---------------|--------------------------|
| Au | Gold 30 grams | 5 ppb                    |
| Ag | Silver        | 0.2 ppm                  |
| Cu | Copper        | 1 ppm                    |
| Pb | Lead          | 2 ppm                    |
| Zn | Zinc          | 1 ppm                    |
| As | Arsenic       | 5 ppm                    |
| Sb | Antimony      | 5 ppm                    |
| Mo | Molybdenum    | 1 ppm                    |
| Hg | Mercury       | 0.010 ppm                |

The lower detection limits for the elements analyzed are listed below:

### APPENDIX IV

-

.

.....

٠

.

.

•

.

,

•

•

•

.

-

•

•

**.** .

•

r -

•

÷

e- - --

.

-

**.**....

## Soil and Stream Silt Geochemical Lab Reports

Keewatin Engineering Inc.

····

• Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 ۲ (604) 985-0681 Teles 04-352667



## Geochemical Lab Report

### A DIVISION OF INCHEAPE INSPECTION & FESTING SURVICES.

| SAMPLE         FLEMENT         Au         31g         Ag         Cu         Pb         Zn         As         Sb         No         Hg           SI         90         AV         21         As         Sb         No         PPB         PPh         Ph                       | REPORT: USD           | -02126_0                    |             |           |           | Γ          | D         | ATE PRINTE | D: 28-N   | OV-90         |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------|-----------|-----------|------------|-----------|------------|-----------|---------------|------|
| SAMPLE         FIFRENT Au 3Hg         Ag         Cu         Pb         Zn         As         Sb         Ho         Hg           S1 90 AW 321 (PRE)         S1 90 AW 321 (PRE)         S1 5001 0 10         7         0.4         8         29         18         7         <5         2         0.212           S1 5002 0+50         13         0.9         15         14         47         7         <5         2         0.242           S1 5003 1+00         7         0.4         8         29         18         7         <5         2         0.242           S1 5004 1+50         <5         0.6         7         <2         23         5         <5         <1         0.167           S1 5005 2+00         <5         0.6         7         <2         23         5         <5         <1         0.167           S1 5005 3+50         19         1.4         17         11         11         12         <5         3         0.168           S1 5010 4+50         12         1.3         43         13         53         25         <5         3         0.151           S1 5010 4+50         16         1.7         37         12                                                     |                       |                             |             |           |           |            | P.        | NUVJECI: 3 | 21<br>    |               | PAGE |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE<br>Number      | FLEMENT AU 3Ng<br>UNITS PPB | Ág<br>PPN   | Cu<br>PPM | РЬ<br>РРИ | Zn<br>PPN  | As<br>PPN | Sb<br>PPN  | No<br>PPH | Hg<br>PPN     |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$1 90 AW 32          | (PRE)                       |             |           |           |            |           |            |           |               | ···. |
| S1       S002       0.50       13       0.9       15       14       47       7       C5       2       0.204         S1       S003       1+00       B       0.4       7       3       21       9       C5       C1       0.140         S1       S004       1+50       C5       0.6       7       c2       23       5       c5       c1       0.140         S1       S005       2+00       C5       0.5       6       3       20       6       c5       c1       0.113         S1       S005       2+00       C5       0.4       8       5       35       c5       c5       c1       0.113         S1       S007       3+00       7       0.2       5       7       12       c5       3       0.229         S1       S009       4+00       16       1.7       18       9       39       15       c5       3       0.151         S1       S010       4+50       12       1.3       43       13       53       25       c5       3       0.151         S1       S010       4+50       12       1.4       91                                                                                                                                                                                               | S1 S001 0+A           | , 7                         | <b>[</b> .4 | 8         | 29        | 18         | 7         | <b>(</b> 5 | 2         | N 212         |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1 S002 0+5           | 1 13                        | 0.9         | 15        | 14        | 47         | 7         | <5         | 2         | 0.204         |      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1 SOO3 1+N          | 8                           | 0.4         | 7         | 3         | 21         | 9         | <5         | a         | 0.140         |      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1 \$004 1+5         | <5                          | n.6         | 7         | <2        | 23         | 5         | <5         | <1        | 0.167         |      |
| S1 S006 2+S0       <5       0.4       8       5       35       <5       <5       <1       0.110         S1 S007 3+00       7       0.2       5       7       12       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$1 SOO5 2+00         | <5                          | 0.5         | 6         | 3         | 2[]        | 6         |            |           | 0 113         |      |
| S1 \$007 3+00       7       0.2       5       7       12       <5       <5       1       0.165         S1 \$008 3+50       19       1.4       17       11       41       12       <5       3       0.229         S1 \$009 4+00       16       1.7       18       9       39       15       <5       3       0.229         S1 \$010 4+50       12       1.3       43       13       53       25       <5       3       0.168         S1 \$010 4+50       12       1.3       43       13       53       25       <5       3       0.151         S1 \$011 5+00       9       1.6       91       8       32       24       5       4       0.314         S1 \$101 5+00       9       1.6       91       8       32       24       5       4       0.314         S1 \$101 5+00       19       1.0       26       6       34       13       <5       2       0.315         S1 \$101 5+00       10       1.8       50       6       74       11       <5       2       0.314         S1 \$101 7 8+00       10       1.8       50       6       74 <t< td=""><td>\$1 \$006 2+5</td><td><u>۲</u></td><td>0.4</td><td>8</td><td>5</td><td>35</td><td>&lt;5</td><td>S</td><td>d</td><td>0.110</td><td></td></t<> | \$1 \$006 2+5         | <u>۲</u>                    | 0.4         | 8         | 5         | 35         | <5        | S          | d         | 0.110         |      |
| S1 S008 $3+50$ 191.417114112<530.229S1 S009 $4+00$ 161.71893915<5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>\$1</b> \$007 3+00 | 7                           | 0.2         | 5         | 7         | 12         | <5        | <5         | 1         | 0.165         |      |
| S1 S009 4+00161.71893915<530.168S1 S010 4+50121.343135325<5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S008 3+5           | 19                          | 1.4         | 17        | 11        | 41         | 12        | <5         | 3         | 0.229         |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S1 S009 4+00          | 16                          | 1.7         | 18        | 9         | 39         | 15        | <5         | 3         | 0,168         |      |
| S1       S011       5 + 00       9       1.6       91       8       32       24       5       4       0.314         S1       S012       5 + 50       19       1.0       26       6       34       13       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S1 S010 4+5           | 12                          | 1.3         | 43        | 13        | 53         | 25        | (5         |           | 0.151         |      |
| S1S012 $5+50$ 191.0 $26$ 6 $34$ $13$ $<5$ $2$ $0.315$ S1S013 $6+00$ 15 $1.7$ $37$ $12$ $41$ $25$ $<5$ $3$ $0.349$ S1S015 $7+00$ 9 $1.4$ $46$ $5$ $66$ $20$ $6$ $2$ $0.211$ S1S016 $7+50$ 10 $1.8$ $50$ $8$ $74$ $11$ $<5$ $2$ $0.212$ S1S017 $8+00$ $46$ $2.2$ $105$ $41$ $69$ $30$ $<5$ $3$ $0.337$ S1S019 $9+00$ $51$ $2.0$ $127$ $105$ $207$ $35$ $<5$ $5$ $0.304$ S1S020 $9+50$ $13$ $1.1$ $61$ $10$ $59$ $19$ $7$ $3$ $0.180$ S1S021 $10+00$ $33$ $1.3$ $44$ $27$ $151$ $21$ $<5$ $4$ $0.208$ S1S022 $10+50$ $21$ $2.1$ $41$ $107$ $53$ $21$ $6$ $6$ $0.145$ S1S023 $11+00$ $14$ $0.7$ $24$ $72$ $15$ $<5$ $7$ $0.123$ S1S024 $11+50$ $51$ $0.8$ $150$ $23$ $247$ $36$ $<5$ $4$ $0.204$ S1S025 $12+50$ $33$ $1.3$ $28$ $6$ $59$ $11$ $<5$ $3$ $0.204$ S1S026 $12+50$ </td <td>S1 S011 5+00</td> <td>9</td> <td>1.6</td> <td>91</td> <td>8</td> <td>32</td> <td>24</td> <td>5</td> <td>4</td> <td>0.314</td> <td></td>                                                                                                                                                                                                                                                                            | S1 S011 5+00          | 9                           | 1.6         | 91        | 8         | 32         | 24        | 5          | 4         | 0.314         |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S1 S012 5+50          | 19                          | 1,0         | 26        | 6         | 34         | 13        | <5         | 2         | 0.315         |      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S1 S013 6+00          | 15                          | 1.7         | 37        | 12        | 41         | 25        | <5         | 3         | 0.349         |      |
| S1 S016 7+50       10       1.8       50       8       74       11       <5       2       0.212         S1 S017 8+00       46       2.2       105       41       69       30       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S1 S015 7+AF          | 9                           | 1.4         | 46        | 5         | 66         | 20        | 6          | 2         | 0.211         |      |
| S1       S017       8+00       46       2.2       105       41       69       30       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S1 S016 7+50          | 10                          | 1.8         | 50        | 8         | 74         | 11        | (5         | 2         | 0.212         |      |
| \$1 \$019 9+00       51       2.0       127       105       207       35       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$1 \$017 8+DC        | 46                          | 2.2         | 105       | 41        | 69         | 30        | <5         | 3         | 0.337         |      |
| S1       S020       9+50       13       1.1       61       10       59       19       7       3       0.180         S1       S021       10+00       33       1.3       44       27       151       21       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$1 \$019 9+NA        | 51                          | 2.D         | 127       | 105       | 207        | 35        | <5         | 5         | <b>D.</b> 304 |      |
| S1 S021 10+00       33       1.3       44       27       151       21       <5       4       0.208         S1 S022 10+50       21       2.1       41       107       53       21       6       6       0.145         S1 S023 11+00       14       0.7       24       24       72       15       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S1 S020 9+50          | 13                          | 1.1         | 61        | 10        | 59         | 19        | 1          | 3         | 0.180         |      |
| S1       S022       10+50       21       2.1       41       107       53       21       6       6       0.145         S1       S023       11+00       14       0.7       24       24       72       15       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$1 \$021 10+0        | 33                          | 1.3         | 44        | 27        | 151        | 21        | <5         | 4         | 0.208         |      |
| S1 S023 11+00       14       0.7       24       24       72       15       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S1 S022 10+5          | n 21                        | 2.1         | 41        | 107       | 53         | 21        | 6          | 6         | 0.145         |      |
| S1       S024       11+50       51       0.8       150       23       247       36       <5       4       0.170         S1       S025       12+00       18       1.2       37       4       29       21       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Si SO23 11+0          | 1 14                        | 0.7         | 24        | 24        | 72         | 15        | <5         | 7         | 0.123         |      |
| S1 S025 12+00       18       1.2       37       4       29       21       <5       <1       0.146         S1 S026 12+50       33       1.3       28       6       59       11       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S1 SD24 11+5          | n 51                        | 0.8         | 150       | 23        | 247        | 36        | <5         | 4         | 0.170         |      |
| S1 S026 12+50       33       1.3       26       6       59       11       <5       3       0.204         S1 S027 13+00       22       2.4       74       134       93       20       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S1 SU25 12+0          | 18                          | 1.2         | 37        | 4         | 29         | 21        | <5         | <1        | 0.146         |      |
| \$1 \$027 13+00       22       2.4       74       134       93       20       <5       4       0.299         \$1 \$027 13+00       25       1.8       60       28       140       28       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$1 \$026 12+5        | 33                          | 1.3         | 28        | 6         | .59<br>    |           | <5         | 3         | 0.204         |      |
| S1 SD28 13+50 25 1.8 60 28 140 28 <5 5 0.137<br>S1 SD29 14+00W 74 1.9 32 3 25 22 6 7 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$1 \$027 13+A        | 22                          | 2.4         | 74        | 134       | 93         | 20        | <5         | 4         | 0.299         |      |
| S1 S029 14+D0W 74 1.9 32 3 25 22 6 7 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S1 SD28 13+5          | 1 25                        | 1.8         | 611       | 28        | 140        | 28        | <5         | 5         | 0.137         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S1 S029 14+N          | IN 74                       | 1.9         | 32        | 3         | 25         | 22        | 6          | 7         | 0.223         |      |
| S1 \$030 14+50W 51 0.8 73 9 89 28 <5 7 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1 S030 14+5          | JW 51                       | 0.8         | 73        | 9         | 89         | 28        | <5         | 7         | 0.103         |      |
| S1 S032 15+5NW 36 1.1 36 6 28 8 <5 5 0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$1 \$032 15+5        | IN 36                       | 1.1         | 36        | 6         | 28         | 8         | <5         | 5         | 0.166         |      |
| S1 SD33 16+NNH 34 N.7 46 9 93 29 <5 7 D.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S033 16+N          | IU 34                       | 0.7         | 46        | 9         | 93         | 29        | <5         | 7         | 0.153         |      |
| S1 S034 16+50N 15 0.8 26 6 36 12 <5 9 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S034 16+5          | N 15                        | 0,8         | 26        | 6         | 36         | 12        | <5         | 9         | 0.069         |      |
| S1 S035 17+00N 25 0.7 99 3 57 24 <5 6 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S035 17+A          | W 25                        | 0.7         | 99        | 3         | <b>S</b> 7 | 24        | <5         | 6         | 0.174         |      |
| \$1 \$036 17+50H 17 1.D 102 3 24 12 <5 7 0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Si S036 17+50         | H 17                        | 1.D         | 102       | 3         | 24         | 12        | <5         | 7         | 0.210         |      |
| S1 SU37 18+00W 30 0.8 56 3 42 37 <5 4 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S037 18+0          | IN 30                       | 0.8         | 56        | 3         | 42         | 37        | <5         | 4         | 0.135         |      |
| S1 S030 18+50N 14 1.2 81 8 50 43 <5 3 0.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S038 18+50         | H 14                        | 1.2         | 81        | 8         | 50         | 43        | , <5       | 3         | D.268         |      |
| S1 S039 19+00W 12 0.7 37 9 51 20 <5 4 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 SD39 19+0          | N 12                        | 0.7         | 37        | . 9       | 51         | 20        | <5         | 4         | 0.140         |      |
| S1 S040 19+504 14 0.6 18 7 38 12 <5 3 0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 S040 19+50         | <b>H</b> 14                 | 0.6         | 18        | 7         | 38         | 12        | <5         | 3         | 0.221         |      |
| S1 SU41 20+11000 35 0.5 16 8 27 9 <5 4 0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1 S041 20+N          | H 35                        | 0.5         | 16        | 8         | 27         | 9         | <5         | 4         | 0.092         |      |
| 51 5442 24 511W 24 11.7 22 5 34 20 <5 3 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51 SU42 ZU+5I         | N 24                        |             | 22        | 5         | 34         | 20        | <5         | 3         | 0.187         |      |

 Bondar-Clegg & Company Ltd. 130 Pemberton Ave.
 North Vancouver, B.C.



ь.

(604) 985-0681 Telex 04-352667



## Geochemical Lab Report

### A DIVISION OF INCHCAPPENSPECTION & JESTIGG SERVICES.

| <b>F</b> 1 | REPORT: V9N-112126.D |                  |               |              |           |           |            | <u>D</u> f<br>PF | TE PRINT              | D: 28-N<br>21 | <u>0V-9D</u> | PAGE 2 |
|------------|----------------------|------------------|---------------|--------------|-----------|-----------|------------|------------------|-----------------------|---------------|--------------|--------|
|            | SAMPLE<br>NUMBER     | FIEMENT<br>UNITS | Au 30g<br>PPB | Ag<br>PPH    | Cu<br>PPN | Pb<br>PpN | Zn<br>PPN  | Ås<br>PPN        | S <del>b</del><br>PPN | No<br>PPN     | Hg<br>PPN    |        |
| •          | S1 S043 21+00W       |                  | 29            | 1.0          | 35        | 8         | 65         | 26               | <5                    | 3             | A. 151       |        |
| -          | S1 S044 21+50W       |                  | 18            | 0,2          | 8         | 2         | 23         | 6                | <5                    | तं            | 0.154        |        |
|            | S1 S045 22+00W       |                  | 9             | 0.5          | 67        | 5         | 91         | 10               | 5                     | 2             | 0.135        |        |
| •          | S1 S046 22+5NW       |                  | 27            | 0.7          | 32        | 8         | 47         | 25               | 6                     | 2             | 0.089        |        |
| J          | S1 SD47 23+00W       |                  | 36            | 1.1          | 139       | 13        | 69         | 54               | <5                    | 6             | 0.312        |        |
| ·- ····    | S1 S048 23+5NH       |                  | 17            | 0.8          | 16        | 4         | 37         | 19               | <5                    | 5             | 0.132        |        |
|            | S1 S049 24+00W       | ÷                | 19            | 1.1          | 18        | 3         | 31         | 22               | <5                    | 5             | 0.143        |        |
| -          | S1 S050 24+5NW       |                  | 26            | N.6          | 10        | 7         | 25         | 8                | <5                    | 4             | 0.111        |        |
|            | S1 90 CC 321 SI      | 101              | 21            | 1.3          | 46        | 5         | 62         | 21               | <5                    | 9             | 0.137        |        |
|            | S1 90 CC 321 S       | ND2              | 12            | 1.5          | 37        | 9         | 54         | 24               | 7                     | 7             | 0.157        |        |
|            | \$1 90 CC 321 SI     | 103              | 14            | 1.2          | 63        | 4         | 47         | <5               | <5                    | 4             | 0.190        |        |
|            | S1 90 CC 321 SI      | 004              | 16            | 0.9          | 27        | 11        | 49         | 26               | <5                    | 6             | 0.265        |        |
|            | S1 90 CC 321 SI      | 105              | 16            | 0.8          | 32        | 7         | 23         | 10               | <5                    | 4             | 0,265        |        |
|            | S1 90 CC 321 SI      | AD6              | 20            | 1.0          | 40        | 7         | 83         | 18               | <5                    | 3             | 0.166        |        |
|            | S1 90 CC 321 SI      | 107              | 30            | 0.4          | 32        | 4         | 76         | 13               | <5                    | 4             | 0.137        |        |
|            | S1 98 CC 321 SI      | 108              | 30            | 0.7          | 64        | 10        | 101        | 25               | <5                    | 1             | 0.118        |        |
|            | S1 90 CC 321 Sf      | 189              | 20            | 1.6          | 49        | 5         | 29         | 12               | <5                    | 5             | 0.285        |        |
|            | S1 90 CC 321 SI      | 110              | 26            | 1.1          | 25        | 14        | 47         | 26               | <5                    | 7             | 0.153        |        |
| •          | S1 90 CC 321 S(      | 111              | 36            | <b>(</b> ].7 | 611       | 7         | 144        | 21               | <5                    | 4             | 0.143        |        |
|            | S1 90 CC 321 SI      | 112              | 28            | 0.7          | 36        | 4         | 59         | 2.7              | <5                    | 3             | 0.227        |        |
| •          | S1 90 CC 321 SN      | 113              | 39            | 1.2          | 36        | 7         | <b>B</b> 6 | 31               | <5                    | 5             | 8.188        |        |
|            | S1 90 CC 321 SI      | 114              | 23            | 1.3          | 21        | 12        | 44         | 14               | <5                    | 5             | 0.176        |        |
| •          | S1 90 CC 321 S0      | 115              | 119           | 1.2          | 34        | 7         | 46         | 14               | 5                     | 4             | 0.163        |        |
|            | S1 90 CC 321 Sf      | 116              | 15            | 1.9          | 155       | 35        | 41         | 152              | 7                     | 12            | 0.173        |        |
|            | \$1 90 CC 321 SI     | 17<br>           | 9             | 1.1          | 38        | <2        | 34         | 18               | <5                    | 8             | 0.139        |        |
|            | S1 90 CC 321 ST      | 118              | 6             | 1.3          | 51        | 3         | 36         | 22               | <5                    | 10            | 0.140        |        |
| <b>F</b> : | S1 90 CC 321 SA      | 19               | 22            | 1.8          | 54        | <b>i1</b> | 84         | 17               | <5                    | 10            | 0.075        |        |
|            | S1 90 CC 321 SA      | 120              | 25            | 1.2          | 173       | 6         | 44         | 26               | <5                    | 6             | 0.228        |        |
| -          | S1 90 CC 321 S0      | 21               | 18            | N.6          | 32        | 4         | 38         | 21               | <5                    | 5             | 0.095        |        |
| <u> </u>   | \$1 90 CC 321 SU     |                  |               | II.9         | 85        | 12        | 55         | 39               | <5                    | 1             | 0.150        |        |
|            | S1 90 CC 321 SA      | 23               | 24            | 0.8          | 53        | 8         | 111        | 40               | <5                    | 4             | 0,197        |        |
|            | S1 90 CC 321 S0      | 124              | 16            | 1.0          | 81        | 24        | 104        | 28               | <5                    | 3             | 0.214        |        |
| <b>F</b>   | S1 90 CC 321 SN      | 25               | 15            | 0.7          | 47        | 11        | 73         | 27               | <5                    | 9             | 0.242        |        |
|            | S1 90 CC 321 S0      | 26               | 9             | 1.4          | 27        | 10        | 45         | 31               | <5                    | 3             | 0.140        |        |
|            | \$1 90 CC 321 SU     | 27               | 1/            | 1.U          | 35        | 14        | 34         |                  | <5                    | <1            | 0.180        |        |
|            | S1 90 CC 321 SD      | 28               | 16            | 1.5          | 30        | 4         | 58         | 33               | 6                     | <1            | 0.216        |        |
| -          | S1 90 CC 321 SN      | 29               | 13            | 1.4          | 46        | 2         | 47         | 6                | <5                    | <1            | 0.330        |        |
| <b>F</b> . | 51 90 CC 321 SO      | 30               | 17            | 1.5          | 25        | 2         | 46         | 24               | 6                     | 4             | 0.213        |        |
|            | 51 90 JJ 321 (P      | KE)              | 4.0           |              |           | -         |            | -                | _                     |               |              |        |
| L          | 91 9001 0+00         |                  | 19            | <0.2         | 10        | 5         | 20         | <5               | <5                    | <1            | 0.055        |        |

Bundar-Flegg & Company Fid.
 B0 Pemberton Ave.
 North Vancouver, B.C.
 V7P 2R5
 t604) 985-0681 Telex 04-352667

.



## Geochemical Lab Report

### A DIVISION OF INCHCAPP (INSPECTION & FERING SERVICES

|            | KEPORT: V9D-02126.D      |                             |                 |           |           |           | Di<br>Pl  | AT <u>e print</u> i<br>Roject: 3 | ED: 20-N<br>21   | <u>0V-90</u>   | PAGE 3   |
|------------|--------------------------|-----------------------------|-----------------|-----------|-----------|-----------|-----------|----------------------------------|------------------|----------------|----------|
| •          | SAMPLE<br>Number         | FLEMENT AU 30g<br>UNITS PPB | Âg<br>PPM       | Cu<br>PPN | РЬ<br>Рри | Zn<br>PPM | As<br>PPN | Sb<br>Ppn                        | No<br>PPN        | Hg<br>PPN      |          |
|            | \$1 S002 0+50            | 39                          | 1.5             | 50        | 7         | 27        | 25        | <5                               | 1                | 0.287          |          |
| •          | S1 S003 1+00             | 25                          | 2.4             | 33        | 6         | 50        | 40        | 8                                | <1               | 0.300          |          |
|            | S1 S004 1+50             | 24                          | 2.4             | 42        | 10        | 51        | 30        | <5                               | 2                | 0.224          |          |
| •          | S1 S005 2+00             | 23                          | 1.4             | 28        | 8         | 44        | 35        | 6                                | 1                | 0.195          |          |
|            | S1 S006 2+50             | 69                          | N.8             | 19        | 8         | 31        | 11        | <5                               | . <b>(1</b>      | 0.249          |          |
|            | S1 S007 3+00             | 133                         | 1.3             | 81        | 7         | 107       | 99        | 9                                | ci i             | 0.169          | •••••••• |
|            | S1 S008 3+50             | 190                         | 2.8             | 24        | 8         | 30        | 35        | 6                                | 2                | 0.316          |          |
| •          | S1 S009 4+00             | 200                         | 1.2             | 14        | 5         | 22        | 17        | <5                               | d d              | 0.103          |          |
| ۰.         | <b>S1</b> S010 4+50      | 58                          | 2.1             | 29        | 7         | 33        | 47        | 11                               | 4                | 0.168          |          |
|            | S1 S011 5+NN             | 31                          | 2.2             | 33        | 8         | 50        | 43        | 10                               | <1               | 0.351          |          |
|            | \$1 S012 5+50            | 26                          | 1.6             | 52        | 9         | 81        | 27        | 8                                | 3                | 0 266          |          |
| •          | S1 S013 6+DN             | 68                          | 1.2             | 52        | 9         | 64        | 22        | 5                                | 2                | 0.131          |          |
|            | S1 S014 6+50             | 31                          | 1.5             | 28        | 7         | 41        | 27        | 9                                | 2                | D.224          |          |
|            | S1 S016 7+50             | 34                          | 1.5             | 45        | 9.        | 55        | 27        | 8                                | 1                | 0.188          |          |
| •          | S1 S017 8+00             | 15                          | 1.2             | 83        | 8         | 45        | 24        | 5                                | 1                | 0.308          |          |
| •          | S1 S018 8+5N             |                             | 1.2             | 85        | 6         | 50        | 13        | (5                               | 1                | 0 293          | <u> </u> |
|            | S1 S019 9+00             | 18                          | 1.6             | 26        | 9         | 34        | 40        | 9                                | ۲                | 0.172          |          |
| -          | Si SO20 9+50             | 25                          | 0.9             | 42        | 7         | 46        | 24        | ,<br>(5                          | 1                | 0.132          |          |
| -          | \$1 \$021 <b>10+</b> NN  | 36                          | 11,9            | 15        | <2        | 21        | <5        | <5                               | 4                | 0.194          |          |
|            | \$1 \$022 10+50          | 90                          | 1.0             | 32        | 3         | 30        | 6         | <5                               | 1                | 0.163          |          |
|            | \$1 \$023 11+00          | 13                          | 1.6             | 82        | 9         | 64        | 32        | (5                               | 2                | 0 212          |          |
| •          | \$1 \$024 11+5N          | 6                           | 0.7             | 92        | 2         | 50        | 24        | (5                               | < <u>-</u><br><1 | 0.212<br>D 154 |          |
| •          | \$1 \$025 12+00          | 11                          | 0.7             | 37        | <2        | 38        | 15        | 8                                | <1               | 0.100          |          |
|            | S1 S026 12+50            | \$5                         | 1.1             | 44        | 4         | 51        | 27        | 6                                | đ                | 0.143          |          |
| •••        | \$1 \$029 23+AAW         | 16                          | 1.4             | 40        | 2         | 30        | 16        | 7                                | <1               | 0.170          |          |
| •          | S1 S030 23+5NU           | 36                          | 0.2             | 11        | 14        | 20        |           |                                  |                  | 0.095          |          |
|            | S1 S031 24+NAW           | 34                          | 4.1             | 71        | 5         | 44        | 31        | 5                                | <1               | 0.075          |          |
|            | S1 S032 24+50W           | 31                          | 3.0             | 33        | 9         | 26        | 21        | 6                                | 4                | 0.242          |          |
| •          | S1 S033 25+00W           | 17                          | 1.8             | 19        | 6         | 17        | 15        | <5                               | <1               | 0.274          |          |
|            | S1 S034 25+5NN           | 12                          | 1.3             | 58        | 3         | 22        | 34        | <5                               | < <b>i</b>       | 0.150          |          |
| . —        | S1 S035 26+00W           | 15                          | <0.2            | 20        |           | 34        | 29        |                                  |                  | 0 222          |          |
|            | S1 S036 26+5NW           | 22                          | <0.2            | 27        | 8         | 58        | 27        | 8                                | 4                | 0.222<br>0.222 |          |
| <b>-</b> / | S1 S037 27+00W           | 16                          | <(L.2           | 21        | 4         | 42        | .5        | 4                                | 3                | 0.224          |          |
|            | S1 S038 27+50W           | 26                          | <0.2            | 27        | 11        | 52        | (5        | 4                                | 12               | U.292<br>D 199 |          |
| •          | \$1 \$039 <b>28+</b> DAW | 27                          | <0.2            | 54        | 7         | 73        | 47        | 6                                | 3                | 0.204          |          |
| <b>-</b>   | S1 S040 28+500           |                             | ረቢ ን            | 53        |           |           | /F        |                                  |                  | 0 4 3 4        |          |
| <b>.</b> . | S1 S841 29+00U           | 33                          | <pre>\u.2</pre> |           | 7         | 0 L<br>// | C2<br>406 | У<br>10                          | Z                | U.136          |          |
|            | S1 S042 29+50U           | ,,,<br>,,,                  | (8.2            | 10        | á         | 40<br>29  | 187       | 11)                              | 4                | U.216<br>0 (3) |          |
| ٠          | S1 S043 30+004           | 40                          | <pre></pre>     | 16        | 7         | 44        | 13        | /<br>9                           | 3                | U.134<br>D 499 |          |
| • .        | S1 S044 30+50W           | 21                          | 1.0             | 36        | 8         | 49        | 5.0<br>50 | 9<br>10                          | 2                | U.102<br>N 229 |          |
|            |                          | •••                         |                 |           |           |           |           | T0                               |                  | u.220          |          |

Bondar-Clegg & Company Ltd. > B0 Pemberton Ave. North Vancouver, B.C. ---- V7P 2R5

-

(604) 985-0681 Telex 04-352667 ٨.



## Geochemical Lab Report

| DIVISION OF INCH | APE INSPECTION & | TESTING SERVICES |
|------------------|------------------|------------------|
|------------------|------------------|------------------|

|            | REPORT: V90-02126.0       |                       | <b>-</b>  |           |           | DATE PRINTED: 28-NOV-90<br>PROJECT: 321 |           |               |           |           | DACE (     |
|------------|---------------------------|-----------------------|-----------|-----------|-----------|-----------------------------------------|-----------|---------------|-----------|-----------|------------|
| ħ          |                           |                       | J         |           |           |                                         |           |               | ·         |           |            |
| +          | SAMPLE ELEMI<br>Number un | ENT Au 30g<br>ITS PPB | Ag<br>PPM | Cu<br>PPM | РЬ<br>Ррн | Zn<br>PPN                               | aa<br>Mqq | S6<br>PPN     | No<br>PPN | Hg<br>PPN |            |
| ·          | S1 S045 31+NNW            | 27                    | 1.3       | 22        | 10        | 45                                      | 18        |               | 3         | 0.280     |            |
| <b>-</b> 1 | S1 S046 31+50W            | 20                    | 1.0       | 23        | 6         | 42                                      | 32        | <5            | 4         | 0.148     |            |
|            | S1 S047 32+00W            | 19                    | 1.6       | 22        | 6         | 22                                      | 21        | (5            | 2         | 0.162     |            |
|            | S1 S048 32+5NW            | 10                    | 1.6       | 19        | 4         | 19                                      | 19        | <5            | 2         | 0.166     |            |
| - ·        | S1 S049 33+00W            | 7                     | 1.4       | 71        | <2        | 20                                      | 73        | <5            | 4         | 0.296     |            |
|            | S1 S050 33+5NW            | 10                    | 1.3       | 24        | 2         | 68                                      | 22        | <5            | 2         | 0.193     |            |
| • •        | S1 S051 34+NAN            | 25                    | 0.4       | 6         | 8         | 18                                      | 5         | <5            | 2         | 0.074     |            |
|            | S1 S052 34+50W            | <5                    | 1.3       | 23        | 3         | 39                                      | 20        | <5            | 1         | 0.203     |            |
| •          | \$1 \$053 35+NNW          | 17                    | 1.3       | 22        | 5         | 42                                      | 32        | <5            | 4         | 0.417     |            |
|            | S1 SD54 35+5NW            | 9                     | N.9       | 25        | 3         | 32                                      | 29        | 6             | 2         | 0.186     |            |
| - <u> </u> | \$1 \$055 36+AAN          | 11                    | 1.1       | 21        | 2         | 40                                      | 22        | <5            | 2         | 0.214     |            |
|            | S1 S056 36+50W            | 18                    | 0.7       | 134       | 3         | 56                                      | 21        | 5             | 2         | 0.177     |            |
| •          | \$1 \$057 37+ANV          | 8                     | 1.2       | 18        | 5         | 33                                      | 29        | <5            | 3         | 0.193     |            |
|            | S1 S058 37+50W            | 10                    | 1.3       | 16        | 2         | 20                                      | 11        | <5            | 4         | 0.334     |            |
|            | \$1 90 PN 321 SNN1        | 22                    | 1.5       | 23        | 3         | 31                                      | 16        | 10            | 2         | 0.265     |            |
| r          | S1 90 PM 321 SNN2         | 29                    | 1.3       | 34        | 4         | 55                                      | 27        | 5             | 2         | 0.181     |            |
| •          | S1 90 PH 321 SAN3         | 23                    | 1.8       | 22        | 10        | 41                                      | 22        | 8             | 3         | 0.216     |            |
|            | S1 90 PN 321 SON4         | 24                    | 0,7       | 18        | 11        | 36                                      | 12        | <5            | 4         | 0.051     |            |
| r          | S1 90 PH 321 SNN6         | 47                    | 1.4       | 38        | 11        | 43                                      | 26        | <5            | 6         | 0.215     |            |
| •          | \$1 90 PW 321 \$007       | 21                    | 2.7       | 57        | 7         |                                         | 27        | <5            | 4         | 0.197     |            |
| • •        | S1 90 PW 321 SNN8         | 24                    | 2.4       | 42        | 9         | 72                                      | 21        | 13            | 3         | 0.421     |            |
|            | S1 90 PW 321 SON9         | 35                    | 1.5       | 19        | 6         | 31                                      | 8         | <5            | 4         | 0.272     |            |
| -          | S1 90 PH 321 S010         | 39                    | 4.9       | 57        | 26        | 298                                     | 40        | 7             | 9         | 0.160     |            |
|            | S1 90 PW 321 SU11         | 17                    | 1.1       | 31        | 8         | 51                                      | 24        | <5            | Э         | 0.244     |            |
|            | S1 90 PW 321 SW12         |                       | 1.9       | 61        | 14        | 98                                      | 29        | 9             | 9         | 0.162     | . <u> </u> |
|            | S1 90 PN 321 SN13         | 20                    | 1.5       | 53        | 29        | 197                                     | 46        | <5            | 9         | 0,182     |            |
|            | S1 90 PW 321 S014         | 23                    | 2.0       | 49        | 24        | 92                                      | 48        | 11            | 6         | 0.204     |            |
|            | S1 90 PW 321 SN15         | 24                    | 2.1       | 46        | 52        | 38                                      | 96        | 6             | 6         | 0.121     |            |
|            | S1 90 PW 321 S016         | 25                    | 1.4       | 27        | 7         | 29                                      | 30        | 7             | 2         | 0.168     |            |
|            | 51 90 PH 321 S018         |                       | 1.4       | 18        | 10        | 37                                      | 26        | 7             | 3         | 0.177     |            |
|            | S1 90 PW 321 SN19         | 39                    | 11.6      | 19        | 12        | 47                                      | 13        | <5            | 3         | 0.098     |            |
|            | S1 90 PW 321 S020         | 18                    | 1.6       | 22        | 7         | 31                                      | 20        | <5            | 5         | 0.365     |            |
|            | S1 90 PW 321 SN21         | 25                    | 1.0       | 14        | 14        | 66                                      | 27        | <5            | 9         | 0.135     |            |
|            | S1 90 PW 321 5022         | 21                    | 1.8       | 30        | 10        | 51                                      | 39        | 11            | S         | 0.209     |            |
| · •        | 51 70 PM 321 SHZ3         | 25                    | 11.7      | <b></b>   | 11        | 36                                      | 23        | 5             | 3         | 0.204     |            |
|            | S1 90 PH 321 SD24         | 37                    | 0.7       | 16        | 9         | 39                                      | 16        | <5            | 3         | 0.055     |            |
|            | S1 90 PW 321 S025         | 22                    | íi.9      | 19        | 12        | 43                                      | 19        | <b>&lt;</b> 5 | 5         | 0.169     |            |
| •          | S1 90 PW 321 S026         | 24                    | Π.6       | 14        | 10        | 32                                      | 12        | <5            | 4         | 0.199     |            |
|            | S1 90 PW 321 S027         | 22                    | 1.0       | 43        | 9         | 84                                      | 37        | 7             | 2         | 0.251     |            |
|            | 51 YU PW 321 SH28         | 20                    | 2.4       | 33        | 12        | 59                                      | 31        | <5            | 3         | 0.334     |            |

-Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 P<sup>\*</sup>

(604) 985-0681 Telex 04: 352667

Ł



## Geochemical Lab Report

### A OD ISLOVOF IN HEAPE INSPECTION & FESTING SERVICES.

|          | REPORT: V9N-02126.D |                  |               |           |           |           |           | UBIE PRINIED; 28-NOV-98<br>PROJECT: 321 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                  | DACE |
|----------|---------------------|------------------|---------------|-----------|-----------|-----------|-----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------|
| <u>.</u> |                     |                  |               | ]         |           |           |           | TRUJECT, 321                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                  |      |
| <br>     | SAMPLE<br>Number    | FLEWENT<br>UNITS | Au 3Ng<br>PPB | Ag<br>PPN | Cu<br>PPN | РЬ<br>Рри | Zn<br>PPN | Ás<br>PPN                               | Sb<br>PPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tto<br>PPN    | Hg<br>PPN        |      |
|          | \$1 90 PH 32        | 1 5029           | 72            | 1.3       | 30        | 11        | 61        | 36                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | 0.141            | •••  |
|          | S1 90 PW 32         | 1 \$030          | 52            | 2.1       | 41        | 8         | 96        | 73                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7             | 0.176            |      |
|          | \$1 90 PM 32        | 1 SN31           | 22            | 1.4       | 56        | 4         | 73        | 28                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 0.173            |      |
|          | S1 90 P¥ 32         | 1 \$832          | 23            | 1.3       | 22        | 9         | 51        | 18                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4             | 0.099            |      |
|          | \$1 90 PH 32        | 1 \$033          | 48            | 1.4       | 20        | 5         | 36        | 18                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Э             | 0.166            |      |
|          | S1 90 PW 32         | 1 \$034          | 23            | 1.0       | 33        | 7         | 73        | 26                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3             | D 238            |      |
|          | S1 90 PN 32:        | 1 \$835          | 136           | 1.5       | 26        | 6         | 48        | 37                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3             | 0,200            |      |
|          | S1 90 PW 32         | 1 \$036          | 16            | 1.8       | 23        | 6         | 52        | 19                                      | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | 0.279            |      |
|          | S1 90 PW 32:        | 1 SN37           | 18            | 1.8       | 25        | 10        | 43        | 26                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 0 285            |      |
|          | \$1 90 PH 32        | L SN38           | 12            | 1.1       | 52        | 6         | 68        | 20                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4             | 0.227            |      |
|          | S1 90 PH 321        | 1 \$039          | 19            | <u></u>   | 15        | 13        | 28        | 19                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ę             | n 149            |      |
|          | S1 90 PH 32         | 1 \$040          | 19            | 8.7       | 23        | 12        | 55        | 17                                      | \J<br>/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>9        | U.147<br>N 18/   |      |
|          | \$1 90 PH 321       | 1 \$041          | 27            | 0.9       | 19        | 12        | 25        | 17                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 0.104            |      |
|          | S1 90 PH 32:        | 1 5042           | 31            | 1.4       | 35        | 8         | 66        | 20                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | 0.152            |      |
|          | S1 90 PH 321        | 1 \$044          | ne            | 0.9       | 65        | 12        | 86        | 32                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3             | 0.099            |      |
|          | S1 90 PN 32         | 1 \$045          | 37            | 1.4       | 23        | 12        | 76        | 34                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 0 174            |      |
|          | S1 90 PH 321        | 5046             | 27            | 1 4       | 16        | 12        | 51        | 25                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | 0.170<br>D 220   |      |
|          | S1 90 PH 32         | 1 \$047          | 648           | 1.2       | 26        | 5         | 46        | 17                                      | <ul> <li></li> <li><td>ر<br/>۲</td><td>U. ( 27<br/>D 1/9</td><td></td></li></ul> | ر<br>۲        | U. ( 27<br>D 1/9 |      |
|          | S1 90 PN 321        | 5048             | 18            | 1 4       | 20        | 5         | 37        | 29                                      | ני                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | د<br>د        | 0.167            |      |
|          | S1 90 PH 32         | 1 \$050          | 13            | 1.2       | 19        | 3         | 33        | 21                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3             | 0.156            |      |
|          | S1 90 PN 321        | SN51             | 22            | 1.7       | 48        | 11        | 53        | 30                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0 192            |      |
|          | S1 90 PH 321        | 5053             | 7             | 0.5       | 11        | 7         | 24        | 9                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>2        | 0.102            |      |
|          | S1 90 PH 321        | S054             | 37            | 0.8       | 38        | 8         | 65        | 23                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 0.077            |      |
|          | S1 90 PH 321        | \$055            | 30            | 0.9       | 18        | 8         | 73        | 17                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | 0.134            |      |
|          | \$1 90 PW 321       | S0.56            | 23            | 1.6       | 61        | 8         | 40        | 32                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | 0.412            |      |
|          | S1 90 PH 321        | S057             | 13            | <br>Π.7   | 15        | K         | <u> </u>  | 22                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·····         | 0 170            |      |
|          | S1 90 PV 321        | \$058            | 16            | 1 2       | 29        | 8         | 50        | 9                                       | /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4             | 9.170<br>0 477   |      |
|          | S1 90 PH 321        | \$059            | 16            | 1.3       | 22        | 7         | 21        | 44                                      | х.)<br>с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * *           | 0.147            |      |
|          | S1 90 PH 321        | S060             | <5            | 0.3       | 10        | 0         | 24        | (5                                      | ل<br>۲۶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0.212            |      |
|          | S1 90 PH 321        | S061             | 23            | 0.7       | 21        | 7         | 22        | <5                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | 0.314            |      |
| •••      | S1 90 PU 321        | 5062             | 27            | <u></u>   | 71        | 9         | 117       | 51                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      | 0.002            |      |
|          | S1 90 PH 321        | S063             | <5            | 1.3       | 18        | 12        | 41<br>61  | 29                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>د</u><br>۲ | 0.073<br>N 2%4   |      |
|          | S1 90 PH 321        | S064             | 26            | 0.9       | 36        | 7         | 79        | 21                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ר.<br>פ       | 0.190<br>N 1D9   |      |
|          | S1 90 PH 321        | S065             | 17            | 2.1       | 27        | 14        | 57        | 22                                      | ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £<br>1        | 0.107            |      |
|          | S1 90 PH 321        | S066             | <5            | 0.8       | 22        | <2        | 56        | 13                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | 0.142            |      |
|          | S1 90 P4 321        | \$067            |               | ······    | 13        |           | 202       |                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                  |      |
|          | SI 98 PU 321        | \$068            | 12            | 1 3       | 21        | 5<br>70   | 202       | 5)<br>94                                | 1U<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10            | U,144<br>n 305   |      |
|          | S1 90 PU 321        | 5869             | 25            | t R       | 61<br>55  | U<br>Q    | 31<br>71  | 21<br>20                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | U,3US            |      |
|          | S1 90 PU 321        | \$070            | 25            | 1.0       | 30        | 0<br>10   | 79<br>20  | 0/I<br>1 5                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | с<br>1        | U.2/3<br>0 194   |      |
|          |                     | \$871            | 22            | 1 5       | ጋ።<br>እን  | * 11      | 20<br>50  | 13                                      | 0<br>¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L<br>C        | 0.003            |      |

Bondar-Clegg & Company Ltd. B0 Pemberton Ave. . North Vancouver, B.C. ¥7P 2R5 **P** -(604) 985-0681 Telex 04-352667

**b**.



## Geochemical Lab Report

#### A DAVISION OF ASCHEADY INSPECTION & HISTING SERVICES.

|                                         | REPORT: V90-02126.0    |         |         |     | <u>D: 28-N</u><br>1 | 28-NOV-90<br>PAGE |            |           |        |       |  |
|-----------------------------------------|------------------------|---------|---------|-----|---------------------|-------------------|------------|-----------|--------|-------|--|
| · • • · · · · · · · · · · · · · · · · · | SANPLE FLENFNI         | Au 311g | ]<br>Ag | Cu  | Pb                  | <br>Zn            | Â6         | Sb        | Mo     | Hg    |  |
| ·                                       | NUMBER UNITS           | S PPB   | PPN     | PPN | PPN                 | PPN               | РРИ        | PP#       | PPN    | PPN   |  |
|                                         | \$1 90 PH 321 SN72     | 24      | 2.2     | 33  | 42                  | 150               | 22         | 8         |        | 0.206 |  |
|                                         | S1 90 PH 321 SN73      | 20      | 1.4     | 51  | 23                  | 170               | 34         | <5        | 5      | 0.167 |  |
| •                                       | S1 90 PW 321 SN74      | 10      | 1.5     | 47  | 9                   | 83                | 21         | 11        | 2      | 0,238 |  |
|                                         | S1 90 PH 321 S075      | 24      | 2.0     | 20  | 9                   | 61                | 29         | 8         | 3      | 0.296 |  |
|                                         | S1 90 PW 321 SN76      | 38      | 1.3     | 38  | 6                   | 62                | 29         | <5        | 2      | 0,193 |  |
|                                         | S1 90 PW 321 S077      | 29      | 1.3     | 46  | 8                   | 71                | 22         | <5        | 2      | 0.169 |  |
| -                                       | S1 90 PH 321 S078      | 10      | 2.3     | 58  | 10                  | 63                | 31         | <5        | 3      | 0.234 |  |
|                                         | S1 90 PH 321 SN79      | 16      | i.9     | 38  | 5                   | 58                | 30         | 5         | 3      | 0.195 |  |
| •                                       | S1 90 PW 321 SN8N      | 16      | 0.9     | 37  | 7                   | 65                | 32         | 6         | 2      | 0.219 |  |
|                                         | S1 90 PW 321 SN81      | 24      | 1.1     | 50  | 6                   | 42                | 27         | <5        | 2      | 0.121 |  |
|                                         | S1 90 PW 321 SNB2      |         | 1.9     | 259 | 22                  | 60                | 221        | 6         |        | 0 079 |  |
|                                         | S1 90 PH 321 SN83      | 16      | 1.1     | 20  | 10                  | 31                | 7          | ۰.<br>د   | ž      | 0.113 |  |
| •                                       | S1 90 PH 321 S084      | <5      | 1.4     | 84  | 32                  | 105               | 44         | 7         | 5      | 0.216 |  |
|                                         | \$1 90 PW 321 \$N85    | <5      | 1.4     | 93  | 4                   | 46                | 29         | <5        | <ī     | 0.247 |  |
| `                                       | S1 90 PW 321 SN86      | 11      | 1.6     | 40  | 3                   | 64                | 22         | <5        | 2      | 0.053 |  |
|                                         | S1 90 PW 321 S087      |         | 1.0     | 56  |                     | 67                | 20         |           |        | 0.051 |  |
| <b>.</b>                                | S1 90 PN 321 S088      | 31      | 1.4     | 26  | 15                  | 32                | 41         | 6         | 3      | 0.051 |  |
|                                         | S1 90 PH 321 SN89      | 44      | 1.6     | 38  | 29                  | 53                | 149        | 9         | 3      | 0.205 |  |
| <b>F</b> (                              | \$1 90 PW 321 SN90     | 47      | 1.1     | 81  | 16                  | 59                | <u>в</u> П | <5        | 4      | 0.135 |  |
|                                         | \$1 90 ST 321 (PRE)    |         |         |     |                     |                   |            | _         |        |       |  |
| -                                       | S1 S001 2000'X 0+00NF  | 6       | 1.2     | 39  | 2                   | 37                | 30         |           | 7      | 0 056 |  |
|                                         | \$1 \$002 2000'X 0+50E | 39      | 1.3     | 43  | 3                   | 43                | 25         | Ğ         | ,<br>9 | 0.086 |  |
| •                                       | S1 S003                | 34      | 1.1     | 34  | 7                   | 33                | 16         | <5        | 9      | 0.077 |  |
|                                         | S1 S004                | 12      | 2.0     | 37  | 8                   | 36                | 25         | 6         | 7      | 0.207 |  |
|                                         | S1 S005                | 11      | 0.7     | 25  | 7                   | 31                | 18         | <5        | 8      | 0.144 |  |
|                                         | S1 S006                | 30      | 0.5     | 35  | 17                  | 64                | 31         | 6         | 12     | R 112 |  |
| • •                                     | <b>51</b> S007         | 21      | 1.1     | 31  | 8                   | 114               | 16         | <5        | 13     | 0.156 |  |
|                                         | S1 S000                | <5      | 1.0     | 45  | 7                   | 40                | 16         | <5        |        | 0.147 |  |
|                                         | S1 SD09                | 12      | N.3     | 34  | 3                   | 13                | 5          | <5        | 7      | 0.066 |  |
| <b>-</b>                                | S1 SD10                | <5      | D.7     | 31  | 3                   | 21                | 26         | <5        | 6      | 0.119 |  |
|                                         | S1 S011                | 16      | Π.4     | 15  | 11                  | 22                | 19         | A         | 3      | 0 153 |  |
| _                                       | S1 S012                | 10      | 0.3     | 16  | 12                  | 22                | 13         | <u>رج</u> | ્ર     | 0.111 |  |
|                                         | S1 S013                | <5      | 1.5     | 16  | 10                  | 68                | 26         | <u>ר</u>  | 16     | 0.097 |  |
| •                                       | S1 SD14                | 25      | 1.9     | 14  | 12                  | 33                | 8          | <5        | 4      | D.098 |  |
| <u></u>                                 | S1 SD15                | 10      | 1.4     | 31  | 12                  | 49                | 19         | 5         | 4      | 0.159 |  |
|                                         | S1 S016                | 572     | 1.1     | 57  | 3                   | 32                | 71         | 6         | 3      | 0.198 |  |
| •                                       | S1 S017                | 15      | 2.8     | 77  | 5                   | 21                | 17         | 6         | 3      | 0.145 |  |
| <b>"</b>                                | S1 S018                | 29      | 1.3     | 128 | <2                  | 35                | 15         | ۰<br>د5   | 2      | 0.161 |  |
|                                         | T1 90 AW 321 (PRE)     |         |         |     | -                   |                   |            |           | -      |       |  |
| с. н                                    | 11 LOO1 2+85W          | 2230    | 0.8     | 79  | 8                   | 94                | 56         | 6         | 2      | 0.098 |  |

Bondar-Clegg & Company Eul. 130 Pemberton Ave. North Vancouver, B.C.

V7P 2R5

(604) 985-0681 Telex 04-352667



## Geochemical Lab Report

### A DIVISION OF INCITCAPE INSPECTION & TESTING SERVICES.

|                                        |                           | • • • • • • • • • • • • • • • • • • • • |               |           |           |           | ·····     | DA        | DATE PRINTED: 28-NOV-90 |           |           |      |  |
|----------------------------------------|---------------------------|-----------------------------------------|---------------|-----------|-----------|-----------|-----------|-----------|-------------------------|-----------|-----------|------|--|
|                                        | REPORT: V90-D21           | 26.0                                    |               | ]         |           |           | [         | PF        | ROJECT: 32              | 21        |           | PAGE |  |
|                                        | SAMPLE<br>NUMBER          | FLEMENT<br>UNITS                        | Au 30g<br>PPB | Ag<br>PPN | Cu<br>PPN | РЬ<br>РРИ | Zn<br>PPN | Ás<br>PPN | S6<br>PPN               | No<br>PPN | Hg<br>PPN |      |  |
|                                        | T1 L002 9+44H             |                                         | 18            | 0.8       | 99        | 3         | 76        | 30        | 7                       | 1         | 0.125     |      |  |
|                                        | T1 LOO3 9+97W             |                                         | 11            | 0.7       | 87        | 7         | 92        | 45        | <5                      | 2         | 8.110     |      |  |
|                                        | 71 LOO4 11+72W            |                                         | 15            | 6.8       | 109       | 5         | 67        | 38        | <5                      | 2         | 0.100     |      |  |
|                                        | T1 L005 27+45#            |                                         | 7             | 0.7       | <b>S2</b> | <2        | 83        | 23        | <5                      | 2         | 0.130     |      |  |
|                                        | T1 L006 27+90N            |                                         | 8             | 1.0       | 54        | 2         | 73        | 22        | 9                       | 1         | 0.070     |      |  |
|                                        | T1 L007 30+37W            |                                         | 10            | 0.8       | 69        | 4         | 84        | 17        | <5                      | 1         | 0.128     |      |  |
|                                        | T1 LOO8 31+43W            |                                         | 72            | 0.8       | 111       | 4         | 70        | 17        | 6                       | 1         | 0.029     |      |  |
|                                        | T1 90 CC 321 LN           | ) <b>i</b>                              | 53            | 0.7       | 66        | 8         | 101       | 26        | 6                       | 2         | 0.142     |      |  |
|                                        | 71 90 CC 321 LOG          | 12                                      | <5            | 0.6       | 66        | 8         | 106       | 20        | <5                      | 1         | 0.088     |      |  |
|                                        | T1 90 JJ 321 (PF          | RE)                                     |               |           |           |           |           |           |                         | -         |           |      |  |
|                                        | T1 L001 17+65 MG          | SS MATT                                 | 8             | 0.6       | 64        | 2         | 130       | 15        |                         | 2         | 0.101     |      |  |
|                                        | T1 L002 23+25 NG          | OSS MATT                                | 11            | 0.4       | 198       | 2         | 29        | <5        | <5                      | d         | 0.246     |      |  |
|                                        | T1 LOO3 23+80             |                                         | 16            | 1.5       | 204       | 4         | 79        | 32        | <5                      | 3         | 0.255     |      |  |
| (-                                     | <del>11 LOOS 1+90E</del>  |                                         | 10            | 1.6       | 87        | 13        | 570       | 34        | 9                       | 44        | 0.194     |      |  |
| 1331                                   | 11- <del>L006-3+00E</del> |                                         | 11            | 1.8       | 71        | 10        | 588       | 47        | B                       | 26        | 0.154     |      |  |
| ·                                      | 11 <u>LOO7_3+85</u> E_    |                                         | 19            | 2.0       | 89        | 9         | 492       | 33        | 7                       | 17        | 0.100     |      |  |
| (-;                                    | 11-LOO8 TO+75F            |                                         | 18            | 1.7       | 109       | 23        | 457       | 63        | 10                      | 26        | 0.139     |      |  |
|                                        | T1 90 PW 321 LDM          | 11                                      | 40            | 1.2       | 157       | 6         | 106       | 61        | <5                      | 3         | 0.053     |      |  |
|                                        | 11 90 PM 321 LOO          | 2                                       | 43            | 1.0       | 65        | 6         | 91        | 38        | 6                       | 2         | 0.130     |      |  |
|                                        | T1 90 PN 321 LAT          | 13                                      | 33            | 0,8       | 45        | 7         | 129       | 48        | 7                       | 3         | 0.102     |      |  |
|                                        | T1 90 PW 321 I NN         | 4                                       | 71            | 1.6       | 48        | 6         | 88        | 41        | 7                       | 7         | 0.232     |      |  |
|                                        | T1 90 PW 321 LOO          | 15                                      | 13            | N.9       | 116       | 4         | 101       | 38        | <5                      | 2         | 0.081     |      |  |
| -                                      | T1 90 PH 321   00         | 6                                       | <5            | 0.7       | 80        | Э         | 77        | 14        | <5                      | 2         | 0.103     |      |  |
|                                        | T1 90 PN 321 LDN          | 7                                       | 20            | 0.9       | 69        | 3         | 95        | 28        | <5                      | 4         | 0.113     |      |  |
|                                        | 11 90 PH 321 100          | 8                                       | 9             | 0.8       | 90        | 3         | 89        | 26        | <5                      | 2         | 0.062     |      |  |
| ······································ | T1 90 PN 321 LOD          | 9                                       | 61            | Π.9       | 91        | 5         | 108       | 34        | 6                       | 3         | D.111     |      |  |

.....

-----

\_\_\_\_\_

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

**P**\*\*\*\*

North Vancouver, B.C.

4 V7P 2R5

**1** 

(604) 985-0681 Telex 04-352667



## Geochemical Lab Report

### A DIVISION OF INCHEAPE INSPECTION & DISTING SERVICES.

|                                         | REPORT: V90-0                | 2228.0           |               |           |           |           |           | Pi        | ROJECT: 32 | 21<br>21  | LI-3U        | PAGE 1                                 |
|-----------------------------------------|------------------------------|------------------|---------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|--------------|----------------------------------------|
| •                                       | SANPLE<br>NUNBER             | ELEMENT<br>Units | Au 30g<br>PPB | Ag<br>PPN | Cu<br>PPM | Pb<br>Ppm | Zn<br>PPH | As<br>PPN | Sb<br>PPM  | No<br>PPN | Hg<br>PPM    |                                        |
|                                         | S1 90 AW 321                 | s-050            | 16            | 0.7       | 66        | 18        | 89        | 23        | <5         | 3         | 0.075        |                                        |
|                                         | S1 90 AW 321                 | S-051            | 30            | 0.5       | 82        | 31        | 69        | 47        | <5         | 4         | 0.123        |                                        |
| -                                       | S1 90 AN 321                 | S-052            | 19            | 0.7       | 52        | 19        | 67        | 33        | <5         | 3         | 0.074        |                                        |
| ••                                      | 51 90 AW 321                 | 5-053            | 19            | 0.8       | 70        | 21        | 80        | 26        | <5         | 3         | 0.051        |                                        |
|                                         | 51 90 AW 321                 | 3-034            | 58            | U.0       |           | 23        | 98        | 43        | <5         | 2         | 0.059        |                                        |
|                                         | S1 90 AW 321                 | \$-055           | 26            | 0.8       | 68        | 21        | 74        | 31        | <5         | 3         | 0.061        |                                        |
| x                                       | 51 90 AN 321                 | 5-055            | 6             | 1.0       | 56        | 30        | 29        | 19        | <5         | 2         | 0.089        |                                        |
| <b>.</b> .                              | SI 30 AN 321<br>SI 30 AN 321 | 3-03/<br>050     | 2b<br>(2)     | 0.5       | 61        | 16        | 75        | 27        | <5         | 2         | 0.068        |                                        |
|                                         | 31 90 HW 321<br>S1 00 AW 321 | \$-050<br>\$-050 | 0Z<br>12      | U.D       | 55<br>157 | 29        | /4        | 57        | <5<br>. r  | 2         | 0.102        |                                        |
| <u> </u>                                | JI 30 N# J/1                 |                  | 15            | U, /      | 157       | 48        | /U        |           | <5<br>     | <u>s</u>  | 0.058        |                                        |
| -                                       | S1 90 AN 321                 | S-060            | 41            | 0.7       | 39        | 16        | 33        | 42        | <5         | 3         | 0.125        |                                        |
|                                         | \$1 90 AW 321                | S-061            | <5            | 0.8       | 36        | 7         | 56        | 8         | <5         | 1         | 0.084        |                                        |
|                                         | S1 90 AW 321                 | S-062            | 30            | 0.9       | 190       | 14        | 137       | 41        | <5         | 2         | 0.070        |                                        |
|                                         | 51 90 AW 321                 | S-063            | 35            | 1.2       | 55        | 16        | 55        | 47        | <5         | 3         | 0.102        |                                        |
|                                         | SI 90 AN 321                 | S-064            | 6             | 0.6       | 58        | 13        | 71        | 12        | <5         | 2         | 0.088        |                                        |
|                                         | S1 90 AW 321                 | S-065            | 7             | 0.5       | 89        | 13        | 74        | 25        | <5         | 3         | <u>9.062</u> |                                        |
| •                                       | S1 90 AN 321                 | S-066            | <5            | 0.7       | 67        | 14        | 60        | 8         | <\$        | 2         | 0.081        |                                        |
|                                         | S1 90 AW 321                 | 5-067            | <5            | 0.5       | 41        | 10        | 62        | 13        | <5         | 2         | 0.104        |                                        |
|                                         | S1 90 AW 321 9               | 5-068            | <5            | 0.7       | 121       | 13        | 103       | 70        | <5         | 8         | 0.051        |                                        |
| - · · · · · · · · · · · · · · · · · · · | S1 90 AW 321 3               | S-069            | 6             | 0.8       | 77        | 16        | 108       | 173       | <5         | 4         | 0.081        |                                        |
| • .                                     | S1 90 AW 321 9               | 5-070            | <5            | 0.5       | 69        | 19        | 163       | 43        | <5         | 4         | 0.085        |                                        |
| <b>.</b> .                              | S1 90 AW 321 9               | 5-071            | 17            | 0.9       | 160       | 25        | 76        | 26        | <5         | 3         | 0.066        |                                        |
|                                         | S1 90 AW 321 \$              | 5-072            | <5            | 0.5       | 44        | 9         | 57        | 6         | <5         | 3         | 0.048        |                                        |
| •                                       | \$1 90 AW 321 \$             | 5-073            | 23            | 1.2       | 53        | 17        | 68        | 44        | <5         | 3         | 0.100        |                                        |
|                                         | 51 90 AW 321 S               | 5-074            | 11            | 1.0       | 99        | 20        | 72        | 20        | <5         | 3         | 0.094        |                                        |
|                                         | S1 90 AW 321 S               | 6-075            | 6             | 1.4       | 40        | 13        | 40        | 18        | <5         | 4         | 0,200        | ······································ |
| •                                       | S1 90 AW 321 S               | -076             | <5            | 1.2       | 35        | 20        | 47        | 10        | <5         | 4         | 0.125        |                                        |
| ,                                       | S1 90 AW 321 S               | 5-077            | <5            | 1.0       | 36        | 6         | 32        | 15        | <5         | 2         | 0.097        |                                        |
|                                         | S1 90 AW 321 S               | -078             | <5            | 0.7       | 48        | 6         | 102       | 26        | <5         | 2         | 0.080        |                                        |
| •                                       | S1 90 AW 321 S               | -079             | 10            | 0.9       | 109       | 21        | 113       | 46        | <5         | 5         | 0.110        |                                        |
| F                                       | S1 90 AW 321 S               | -080             | 8             | 0.8       | 74        | 18        | 164       | 53        | <5         | 5         | 0.083        |                                        |
| <b>k</b>                                | 51 90 AW 321 S               | -081             | 57            | 1.1       | 132       | 22        | 94        | 58        | <5         | 2         | 0.104        |                                        |
|                                         | S1 90 AN 321 S               | -082             | 12            | 0.9       | 69        | 15        | 55        | 32        | <5         | 3         | 0.129        |                                        |
| •                                       | S1 90 AW 321 S               | -083             | <5            | 0.9       | 28        | 16        | 42        | 27        | <5         | 7         | 0.033        | •                                      |
| <u> </u>                                | S1 90 AW 321 S               | -084             | 12            | 1.5       | 28        | 14        | 47        | 24        | <5         | 5         | 0.111        |                                        |
| •·                                      | S1 90 CC 321 S               | -031             | 21            | 0,8       | 53        | 13        | 108       | 30        | <5         | ٦         | በ 355        |                                        |
|                                         | S1 90 CC 321 S               | -032             | <5            | 1.3       | 30        | 14        | 50        | 17        | <5         | 6         | 0.289        |                                        |
| <b>*</b> -                              | \$1 90 CC 321 S              | -033             | <5            | 0.4       | 25        | 14        | 40        | 17        | <5         | 6         | 0.164        |                                        |
|                                         | S1 90 CC 321 S               | -034             | <5            | 0.6       | 31        | 14        | 53        | 22        | <5         | 9         | 0.208        |                                        |
|                                         |                              |                  |               |           |           |           |           |           |            | -         |              |                                        |

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

p= ~

North Vancouver, B.C. V7P 2R5 ¥ .

**P** .....

(604) 985-0681 Telex 04-352667 .



## Geochemical Lab Report

.

### A DIVISION OF INCHCAPPENSPECTION & TESTING SERVICES

| ·           | REPORT: V90-02228.0    |                         |           | ]         |           |           | Di<br>Pl         | ATE PRINT   | ED: 12-0<br>21 | 061-90         | PAGE 2 |   |
|-------------|------------------------|-------------------------|-----------|-----------|-----------|-----------|------------------|-------------|----------------|----------------|--------|---|
|             | SAMPLE ELE<br>Number u | NENT AU 30g<br>NITS PP8 | Ag<br>PPM | Cu<br>PPN | Pb<br>Ppn | Zn<br>PPM | As<br>PPN        | Sb<br>PPN   | Mo<br>PPM      | H9<br>PPN      |        |   |
| Ē. —        | S1 90 CC 321 S-036     | 40                      | 0.9       | 121       | 22        | 154       | 51               | <5          | 5              | 0.075          |        |   |
|             | \$1 90 CC 321 S-037    | 7                       | 1.2       | 216       | 17        | 281       | 102              | <5          | 29             | 0.012          |        |   |
| •           | S1 90 CC 321 S-038     | <5                      | 0.8       | 33        | 11        | 27        | 6                | <\$         | 2              | 0.090          |        |   |
| 1           | S1 90 CC 321 S-039     | 14                      | 0.6       | 63        | 14        | 55        | 13               | <5          | 3              | 0.090          |        |   |
| Ĺ           | S1 90 CC 321 S-040     | 26                      | 0.4       | 90        | 18        | 86        | 23               | <5          | 2              | 0.048          |        |   |
|             | S1 90 CC 321 S-041     | 34                      | 0.6       | 52        | 15        |           | 25               | ·           |                | 0 103          |        | _ |
| •           | S1 90 CC 321 S-042     | 36                      | 0.5       | 72        | 23        | 87        | 32               | <Š          | 3              | 0.044          |        |   |
|             | S1 90 CC 321 S-043     | 87                      | 0.6       | 127       | 21        | 93        | 46               | <5          | 3              | 0.170          |        |   |
| -           | S1 90 CC 321 S-044     | <5                      | 0.7       | 27        | 8         | 35        | <5               | <\$         | 2              | 0.107          |        |   |
|             | S1 90 CC 321 S-045     | 16                      | 0.5       | 59        | 17        | 66        | 30               | <5          | 3              | 0.101          |        |   |
| <b>,</b> .  | S1 90 CC 321 S-046     |                         | 0.5       | 56        |           | б3        | 11               | <5          |                | <u>Λ</u> ΛΣΟ   |        |   |
|             | \$1 90 CC 321 S-047    | 7                       | 0.9       | 38        | 16        | 71        | 22               | <5          | 4              | 0.062          |        |   |
| •           | 51 90 CC 321 S-048     | 8                       | 1.1       | 34        | 16        | 49        | 29               | <5          | ġ              | 0.093          |        |   |
|             | S1 90 CC 321 S-049     | 60                      | 1.2       | 327       | 17        | 47        | 41               | <5          | 4              | 0.064          |        |   |
|             | S1 90 CC 321 S-050     | <5                      | 3.2       | 57        | 15        | 36        | 14               | <5          | 6              | 0.121          |        |   |
| <u> </u>    | S1 90 CC 321 S-051     | <5                      | 2.0       |           | 10        | 23        | 22               |             |                | n 277          | ·····  | - |
| •           | \$1 90 CC 321 S-052    | <5                      | 0.9       | 49        | 16        | 222       | 36               | <5<br><5    | 7              | 0.277          |        |   |
|             | S1 90 CC 321 S-053     | <5                      | 0.6       | 27        | 18        | 201       | 75               | ँउ          | 57             | 0.189          |        |   |
| •           | S1 90 CC 321 S-054     | <5                      | 1.4       | 18        | 18        | 64        | 15               | < <u>5</u>  | ģ              | 0,103          |        |   |
|             | S1 90 CC 321 S-055     | 16                      | 0.8       | 57        | 21        | 76        | 25               | <5          | 5              | 0.074          |        |   |
| - <u></u>   | S1 90 CC 321 S-056     | 7                       | 0.4       | 36        |           | 39        | 7                |             | <br>2          | 0 112          |        |   |
|             | S1 90 CC 321 S-057     | 23                      | 0.6       | 60        | 16        | 64        | an               | ج           | 1              | 0.112          |        |   |
|             | 51 90 CC 321 S-05B     | <5                      | 1.2       | 27        | 10        | 46        | 14               | <5          | 1              | 0.102          |        |   |
|             | SI 90 CC 321 S-059     | 22                      | 0.7       | 97        | 19        | 70        | 15               | < <u>\$</u> | Ĩ              | 0.088          |        |   |
|             | \$1 90 CC 321 S-060    | 9                       | 0.9       | 304       | 4         | 30        | 21               | <5          | 2              | 0.036          |        |   |
|             | S1 90 CC 321 S-061     |                         | <0.2      | 106       | 6         | 50        | 0                |             |                | 0 0 22         |        |   |
| •           | S1 90 CC 321 S-062     | 8                       | 0.5       | 170       | 8         | 77        | 15               | <5<br><5    | 1              | 0.022<br>0.080 |        |   |
| ,           | SI 90 CC 321 S-063     | <5                      | 0.7       | 41        | ž         | 23        | <5               | <5<br><5    | 4              | 01009          |        |   |
|             | S1 90 CC 321 S-064     | 56                      | 0.6       | 139       | 11        | 94        | 12               | <5          | 1              | 0.041          |        |   |
| *           | \$1 90 CC 321 \$-065   | 11                      | 0.4       | 48        | 11        | 50        | 25               | <5          | 2              | 0.087          |        |   |
| ¥".         | S1 90 CC 321 S-066     | Q                       | 7 9       | 40        | 10        | 70        | 20<br>20         |             |                | n (no          |        |   |
|             | S1 90 CC 321 S-067     | <5                      | 1.6       | 22        | 12        | 70        | 20<br>1 <i>1</i> | <0<br>25    | 5<br>8         | U.490<br>D 229 |        |   |
| •           | S1 90 CC 321 S-068     | Ś                       | 1.3       | 29        | q         | 33        | 7                | <5<br><5    | U<br>A         | 0.220          |        |   |
| • •         | S1 90 CC 321 S-069     | 6                       | 1.0       | 33        | 18        | 83        | 19               | Ś           | 4              | 0.235          |        |   |
| <b>b</b> ad | S1 90 CC 321 \$-070    | <5                      | 0.7       | 23        | 3         | 34        | <5               | <5          | 1              | 0.130          |        |   |
|             | S1 90 CC 321 S-071     |                         | ηq        | 21        | ß         | 27        | 11               | <br>/t      |                | 0 104          |        |   |
|             | \$1 90 CC 321 S-077    | <5                      | 2.0       | 34        | 1 R       | 76        | 23               | ין<br>∠5    | £<br>7         | 0 214<br>A 214 |        |   |
| •           | S1 90 CC 321 S-073     | 15                      | 1.0       | 49        | 7         | 47        | 22               | रंड         | 2              | 0.240          |        |   |
|             | S1 90 CC 321 S-074     | <5                      | 1.4       | 36        | 17        | 49        | 27               | <5          | 4              | 0.569          |        |   |
|             | \$1 90 CC 321 S-075    | <5                      | 1.0       | 27        | 12        | 45        | 22               | <5          | 7              | 0.233          |        |   |
|             | **                     |                         |           |           |           |           |                  |             |                |                |        |   |

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

.

.

North Vancouver, B.C. V7P 2R5

(604) 985-0681 Telex 04-352667



## Geochemical Lab Report

#### A DIVISION OF INCREASE INSPECTION & TESTING SERVICES.

| <b></b>      |                      |                  |               | }          |           |           |          | ,DA       | VIE_PRINTE                                                                                                                   | D: 12-D  | ct-90     |        |                          |
|--------------|----------------------|------------------|---------------|------------|-----------|-----------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------|--------------------------|
| . · ·        | REPORT: V90-0222     | 8.0              |               |            |           |           |          | PR        | ROJECT: 32                                                                                                                   | ?1       |           | PAGE 3 |                          |
| •            | SAMPLE<br>NUMBER     | ELEMENT          | Au 30g<br>PPR | Á9<br>PPN  | Cu<br>PPM | Pb<br>Ppm | Zn       | Ás<br>Odn | Sb<br>DDM                                                                                                                    | Mo       | Hg<br>DDM |        | ···· • ··· · • • • ····· |
|              |                      |                  |               | ••••••     |           |           | FFB      |           | F F #1                                                                                                                       |          | F/Fi      |        |                          |
|              | S1 90 CC 321 S-0     | 76               | <5            | 1.1        | 36        | 12        | 54       | 31        | <5                                                                                                                           | 7        | 0.148     |        | ···                      |
|              | S1 90 CC 321 S-0     | 77               | 6             | 1.0        | 32        | 19        | 55       | 15        | <5                                                                                                                           | 7        | 0.320     |        |                          |
| <b>e</b> - 1 | \$1 90 CC 321 5-0    | 78               | 5             | 1.9        | 35        | 16        | 54       | 20        | <5                                                                                                                           | 4        | 0.196     |        |                          |
|              | S1 90 CC 321 S-0     | 79               | <5            | 0.5        | 29        | 5         | 41       | 8         | <5                                                                                                                           | 6        | 0.084     |        |                          |
| •            | 51 90 CC 321 S-0     | 80               | 6             | <0.2       | 27        | 34        | 47       | <5        | <5                                                                                                                           | 6        | 0.187     |        |                          |
| <b>F</b> 1   | SI 90 CC 321 S-0     | 81               | <5            | 1.6        | 31        | 7         |          | 17        | <5                                                                                                                           | 3        | 0.295     |        |                          |
| •            | \$1 90 CC 321 S-08   | 92               | 8             | 0.9        | 41        | 16        | 68       | 25        | <5                                                                                                                           | 8        | 0.189     |        |                          |
|              | S1 90 CC 321 S-00    | 83               | 6             | 0.9        | 34        | 12        | 70       | 32        | <5                                                                                                                           | 4        | 0,280     |        |                          |
| •            | 51 90 CC 321 S-00    | 84               | 7             | 0.5        | 40        | 9         | 91       | 25        | <5                                                                                                                           | 3        | 0.204     |        |                          |
| <u> </u>     | S1 90 CC 321 S-04    | 35               | б             | 1.3        | 35        | 11        | 67       | 24        | <5                                                                                                                           | 5        | 0.351     |        |                          |
| •            | 51 90 CC 321 5-08    | 36               | 8             | 1.2        | 38        | 10        |          | 24        | <5                                                                                                                           |          | 0 359     |        |                          |
|              | S1 90 CC 321 S-08    | 37               | <5            | 1.3        | 42        | 5         | 56       | 23        | Ś                                                                                                                            | 3        | 0.242     |        |                          |
| •            | S1 90 CC 321 S-08    | 88               | 7             | 1.2        | 31        | 19        | 52       | 32        | <5                                                                                                                           | 8        | 0.467     |        |                          |
| _            | S1 90 CC 321 S-08    | 39               | <5            | 0.9        | 27        | 8         | 60       | 5         | <Š                                                                                                                           | 3        | 0.135     |        |                          |
| ·            | S1 90 CC 321 S-09    | )()              | <5            | 0.9        | 37        | 16        | 118      | 35        | <5                                                                                                                           | 9        | 0.302     |        |                          |
| *            | S1 90 11 321 S-05    | 0 0+50           |               | <u>η</u> ε | 20        | A         |          | 12        |                                                                                                                              |          | 0.000     |        |                          |
|              | S1 90 11 321 S-06    | 0.1+00           | <5<br><5      | 1.1        | 66        | 4         | 20<br>42 | 26        | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 0<br>14  | 0.089     |        |                          |
|              | S1 90 11 321 S-06    | 1 1+50           | ري<br>رج      | 1 2        | 02        | 7         | 42<br>AC | 20<br>10  | ()                                                                                                                           | 14<br>17 | 0.128     |        |                          |
| •            | 51 90 31 321 5-06    | 2 2+00           | 16            | 27         | 111       | r<br>A    | 40<br>30 | 21        | ()<br>/5                                                                                                                     | 13       | 0,104     |        |                          |
| <b>.</b> .   | S1 90 JJ 321 S-06    | 3 2+50           | <u>0</u>      | 2.3        | 50        | ς τ       | 50<br>18 | 14        |                                                                                                                              | 2        | 0.140     |        |                          |
|              |                      |                  |               |            |           |           | 10       | 17        | ······································                                                                                       | <b>Q</b> | 0.140     |        |                          |
|              | S1 90 JJ 321 5-06    | 4 3+00           | 6             | 1.4        | 40        | 11        | 45       | 32        | <5                                                                                                                           | 10       | 0.114     |        |                          |
| -            | S1 90 JJ 321 S-06    | 5 3+50           | <5            | 1.4        | 44        | 12        | 26       | 10        | <5                                                                                                                           | 7        | 0.211     |        |                          |
|              | S1 90 JJ 321 S-06    | 6 4+00           | 10            | 2.3        | 55        | 98        | 53       | 46        | <5                                                                                                                           | 5        | 0.351     |        |                          |
| •            | S1 90 JJ 321 S-06    | 7 4+50           | 24            | 0.8        | 29        | 7         | 26       | 18        | <5                                                                                                                           | 7        | 0.134     |        |                          |
|              | S1 90 JJ 321 S-06    | 8 5+00           | 21            | 1.2        | 36        | 6         | 43       | 26        | <5                                                                                                                           | 9        | 0.132     |        |                          |
|              | A1 A0 33 301 A AC    |                  |               |            |           |           |          |           |                                                                                                                              |          |           |        |                          |
| •            | 51 YU JJ 321 5-06    | 9 5+50<br>D C.CC | 5             | 0.7        | 4/        | 14        | 90       | 28        | <5                                                                                                                           | 3        | 0.185     |        |                          |
|              | 51 90 JJ 321 S-07    | U D+UU           | 10            | 0.9        | 29<br>20  | 11        | 24       | 14        |                                                                                                                              | 4        | 0.161     |        |                          |
| •            | 51 90 JJ 321 5-07    | 1 0+50           | D<br>10       | 1.5        | 39        | 8         | 51       | 17        | <5                                                                                                                           | 8        | 0.304     |        |                          |
|              |                      | 2 7400           | 17            | 1.0        | 28        | 9         | 33       | 11        | <5<br>.5                                                                                                                     | 10       | 0.184     |        |                          |
|              | 10-5 130 JJ 321 5-01 | J (†3U           | ···· · ·      | V./        | 11        | +         | 29       | <u>b</u>  | <5<br>                                                                                                                       | 3        | 0.219     |        |                          |
|              | \$1 90 JJ 321 S-07   | 4 8+00           | 26            | 0.8        | 25        | 13        | 18       | 12        | <5                                                                                                                           | 3        | 0.122     |        |                          |

### APPENDIX V

**b** -

.

**F** 2

٠

• •

ς.

. -

¢.

.....

• • •

• •

•

r -

χ.,

, -.

**.** .

·

۰ -

<del>. .</del>

- -

۰ ---

•---5.

### **Rock Geochemical Lab Reports**

Keewatin Engineering Inc.

.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

1

1

.



ر سر بروا

• • • •

## Geochemical Lab Report

...

| <br>REPORT: V90-02 | 2129.0           | ·····         |           |            |            |           | PR                    | OJFCT: 32 | <u>:v: 3-0</u><br>?1 | LI-91[          | PAGE | 1         |
|--------------------|------------------|---------------|-----------|------------|------------|-----------|-----------------------|-----------|----------------------|-----------------|------|-----------|
| <br>SAMPLE         | ELEMENT<br>UNITS | Au 30g<br>PPB | Ag<br>PPM | Cu<br>PPti | Pb<br>PPti | Zn<br>PPN | As<br>PPM             | SH<br>PPM | No<br>PPN            | Hg<br>PPM       |      |           |
| <br>R2 90 GH 321-I | 3559             | 57            | 0.8       | 31         | 8          | 46        | <5                    | 7         | 1                    | 0.016           |      |           |
| KZ 90 GW 321-R     | 13560            | 6             | 0.5       | 8          | 7          | 9         | <5                    | <5        | <1                   | <0.010          |      |           |
| R2 90 GH 321-F     | 13361            | 18            | 1.2       | 145        | 12         | 72        | 17                    | 7         | Э                    | <0.010          |      |           |
| R2 90 GH 321-8     | 3563             | <5            | 1.2       | 218<br>99  | 9          | 75<br>76  | - <del>7</del><br>331 | 6         | 2                    | 0.014<br><0.010 |      | ٠         |
| <br>R2 90 GN 321-R | 3564             | <5            | 1.1       | 33         |            | 104       | 20                    |           | 2                    | <u>/n nin</u>   |      | ·         |
| R2 90 GN 321-F     | 3565             | 16            | 1.1       | 81         | 22         | 54        | 211                   | 8         | 2                    |                 |      |           |
| R2 90 GW 321-R     | 3566             | 26            | 1.0       | 119        | 8          | 12        | 411                   | <5        | 7                    | <0.010          |      |           |
| R2 90 GW 321-F     | 3567             | <5            | N 9       | 153        | 6          | 55        | 17                    | 5         | <1                   | 0.020           |      |           |
| <br>R2 90 GW 321-R | 3568             | 14            | D.8       | 78         | 9          | 4.5       | 11                    | <5        | 2                    | <0.010          |      |           |
| R2 90 GW 321-F     | 3569             | 12            | 0.8       | 14         | 3          | 17        | 23                    | <5        | 4                    | <0.010          |      |           |
| RZ 90 GW 321-R     | 3570             | 8             | 0.9       | 18         | 9          | 9         | 7                     | <5        | 5                    | 0.012           |      |           |
| KZ 90 GN 321-N     | 3571             | 8             | 0.7       | 159        | 5          | 13        | 53                    | ও         | 3                    | <11.010         |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
| <br>               |                  |               | ·         |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
| <br>               |                  |               |           |            |            |           |                       |           | <u> </u>             |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
| <br>               |                  |               | <u> </u>  |            |            |           |                       | ·         |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 | •    | <u></u> _ |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           | •                     |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
| <br>               |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |
|                    |                  |               |           |            |            |           |                       |           |                      |                 |      |           |

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. -North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

.

.

**.**....

.

**.** .



Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & USTING SERVICES.

|              |           |               |           |           |            |           | D(         | TE PRINT  | D: 16 N    | <u>0V-91)</u> |        |  |
|--------------|-----------|---------------|-----------|-----------|------------|-----------|------------|-----------|------------|---------------|--------|--|
| REPORT: V90  | -117223.2 | <u> </u>      |           |           |            |           | PF         | OUFCT: 32 | 5          |               | PAGE 1 |  |
| SAMPLE       | ELEMENT   | Au 30g<br>PPR | Âg<br>PPN | Cu<br>PPH | Pb<br>PPK  | Zn<br>PPM | As<br>PPti | S6<br>PPN | ño<br>PPN  | Hg<br>PPN     |        |  |
|              | D 2004    |               |           |           |            |           |            |           |            |               |        |  |
| RZ 90 X 321  | R-3201    | S             | 8,5       | 15        | 3          | 31        | 18         | <5        | <1         | 0.016         |        |  |
| RZ 90 X 321  | K-3202    | 9             | 1.0       | 11        | 3          | 25        | 21         | <5        | 2          | <0.010        |        |  |
| R2 90 X 321  | R-32113   | <5            | 1.5       | 37        | 4          | 95        | 19         | 12        | <1         | <0.010        |        |  |
| R2 90 X 321  | R-3204    | <5            | 1.2       | 90        | 27         | 111       | 30         | 14        | 12         | 0.023         |        |  |
| R2 90 X 321  | R-3205    | 12            | 1.5       | 206       | 3          | 55        | 27         | 7         | 1          | <0.010        |        |  |
| R2 90 X 321  | R-3206    | 8             | 0.6       | 61        | 3          | 4         | 38         | <5        | 1          | <0.010        |        |  |
| R2 90 GH 32  | 1 R-3572  | 10            | 1.1       | 137       | 3          | 116       | 27         | 10        | 1          | <0.010        |        |  |
| R2 90 GW 32  | L R-3573  | <5            | 1.2       | 97        | 3          | 17        | ЭŇ         | 6         | 2          | <0.010        |        |  |
| R2 90 GH 32  | R-3574    | <5            | 1.4       | 123       | 3          | 91        | 30         | <u>د</u>  | 2          | 20.010        |        |  |
| R2 90 GH 321 | I R-3575  | <5            | 1.3       | 167       | 4          | 103       | 40         | 5         | 2          | <0.010        |        |  |
| R2 90 GH 32  | 1 R-3576  | <5            | 1.3       | 132       |            | 87        | 311        | <u> </u>  | 1          | <0.010        |        |  |
| R2 90 GW 32  | R-3577    | 5             | 1.3       | 135       | 3          | 86        | 33         | 4         | 4          | 8 815         |        |  |
| R2 90 GH 32  | R-3578    |               | 1.0       | 26        | 10         | 152       | 14         |           |            | 20.015        |        |  |
| 03 QE CT 22  | 0.0170    |               | 4 0       | 10        | (2)        | 1.72      | 14         | \J<br>\7  | 14         | 10.010        |        |  |
| 67 70 01 JZ. | L N~2//0  | 10            | 7.11      | 43        | <i>\</i> 2 | 55        | JU         | <5        | <b>(</b> 1 | H.103         |        |  |
|              |           |               |           |           |            |           |            |           | ······     |               |        |  |

### APPENDIX VI

e -

۰.

**r** 1

•

**p**....

۰.

.

•

.

-

`

---

÷ -

•

.

. .

٠

`

.

٣

•

•

--

.

P ~

•

----

•

### Soil, Stream Silt and Rock Data Sheets

· ,

.

| KEEWATIN | ENGINEERING | INC. |
|----------|-------------|------|
|----------|-------------|------|

SOIL SAMPLES

Results Plotted By: \_\_\_\_\_

\_\_\_\_\_N.T.S. : 104 B7

| Area (Grid): <u>AUCU</u> | CONOUR   |      |    |
|--------------------------|----------|------|----|
| Collectors: Colin        | Anderson | 90CC | 32 |

Sample Location

1 ۲

e

٠

. . . .

١

- 1

Project: Home

Sample

• 

| Марн     | Ho | nec |    |     |
|----------|----|-----|----|-----|
| <u> </u> | <_ | st- | 17 | 101 |

Date Scot 12/90

かいか おう おう おがい ひがい かわれ かりか おかれ い

|              |          |             |          |         | ÷         |          |            | -      |          |        | · · · · · · |                  |         |                |        | _        |        |
|--------------|----------|-------------|----------|---------|-----------|----------|------------|--------|----------|--------|-------------|------------------|---------|----------------|--------|----------|--------|
|              | Ţ        | 0000        | raphy    | · .     |           | ١        | reget      | oti a  | 'n       |        |             |                  | 50      | i 1            | Dat    | a        |        |
|              | ottom    | if slope    |          | round   | Wooded    | Wooded   | lide Alder |        | q        |        | Sampled     | Horizon          | Horlzon | Develop<br>men | Parent | Materiat |        |
|              | Valley B | Direction o | Hill Top | Level G | Heavily 1 | Sporsely | 30         | Logged | Grosslan | Swampy | Harizon'    | Depth to<br>Samp | 6 ood   | Poor           | Orifi  | Bedrock  | Colour |
|              |          | N           |          |         |           |          | 1          |        |          |        | 63          | 40               | 5       | 1              |        |          | BRB    |
|              |          | N           |          |         |           |          | 1          |        |          |        | R           | 40               | 1       |                |        |          | MAB    |
|              |          |             |          | -       |           |          |            |        |          |        | В           | 35               | /       |                |        |          | MRB    |
| outcrop      |          | N           |          |         |           |          |            |        |          | -      | ß           | 30               |         |                |        |          | MRB    |
| outeron      |          | W           |          |         |           |          | ŀ          |        |          |        | A           | 50               |         | 1              |        |          | DKE    |
| (1 M         |          | N           |          |         | 1         | ·        |            |        |          |        | Б           | 30               |         |                |        |          | 4RB    |
| hich accurit |          | 11          |          |         | 1         |          |            |        |          |        | 6           | 40               |         |                |        | 6        | RO     |

| Colour               | BRE            | 11 6 9    | NRR  | 1 1 8      | - 58         | <u>/                                    </u> | 10P              |                            | <u> </u>                      | KE                        | t vol         | <u><u>K</u>0</u>   | LKP              | <u>K D</u>   | <u>R is</u>     | BB                  | KB                |     |          |          |    |                |        |
|----------------------|----------------|-----------|------|------------|--------------|----------------------------------------------|------------------|----------------------------|-------------------------------|---------------------------|---------------|--------------------|------------------|--------------|-----------------|---------------------|-------------------|-----|----------|----------|----|----------------|--------|
| Bedrock M            |                |           |      |            | 1            | <u> </u>                                     | <u> </u>         | <u> </u>                   | <br>                          |                           |               | - 4                | -4               | <u></u>      | <u>ų</u> ,      | / <b>/</b>          | F                 |     |          |          |    |                |        |
| Orif1 P              |                |           |      |            |              |                                              |                  |                            |                               |                           | +             |                    | $\rightarrow$    |              |                 |                     |                   |     |          |          | -+ | $\overline{+}$ | _      |
| Poor                 |                |           |      |            |              |                                              | オ                | <u></u>                    | オ                             | -+                        |               | +                  | -+               | +            |                 | <b></b>             |                   |     | _        | $\pm$    | +  |                |        |
| 6 ood                | 5              | 7         | 7    | 1          |              |                                              | +                |                            |                               |                           | <del>/</del>  | <u></u>            | <del>-  </del> - |              |                 |                     |                   |     | <u> </u> | <u> </u> | +  | -              | _      |
| Depth to H<br>Sample | 40             | un        | 35   | 30         | Co           | 30                                           | 40               | 40                         | 40                            | 30                        | 45            | 100                | 20               | <u>20</u>    | 20              | 25                  | 20                |     |          |          |    |                |        |
| Harizon' Sar         | 183            | B         | В    | ß          | X            | e                                            | K                | 87                         | R                             | R                         | 2             | 2                  | 8                | <u>_</u>     | -7-             | - 21                | _ <b>b</b>        | · · |          |          |    |                |        |
| Swampy               |                |           |      |            |              |                                              |                  | <u> </u>                   | ケ                             |                           |               |                    |                  |              |                 |                     |                   |     |          |          |    | -              | $\neg$ |
| Grossland            |                |           |      |            |              |                                              |                  | $\rightarrow$              |                               | -+                        | $\rightarrow$ |                    | <del>.  </del>   | -+           |                 |                     |                   |     | _        | <u> </u> |    |                |        |
| Logged               |                |           |      |            |              |                                              |                  |                            |                               | -+                        |               |                    | <u> </u>         |              | <b>─</b> ┤      | <b></b> +           |                   |     |          |          |    | -+             |        |
| Dic Slid             | 17             | 7         |      |            | <b>├</b> ──┤ |                                              |                  |                            |                               |                           | <b>├──</b> ┤  | · · · • •          | <u> </u>         | -            | $ \rightarrow $ | $ \rightarrow $     |                   |     |          | ¦        |    |                |        |
| Sporsely Wo          |                |           |      |            |              |                                              | <b></b>          | <u> </u>                   | <u> </u>                      | i                         |               |                    |                  |              |                 |                     |                   |     | <u> </u> |          |    |                | _      |
| Heavily Woo          | <u> </u>       |           |      | 1          |              | <b>/</b>                                     | 7                |                            | ·                             | /                         | <u>-</u>      |                    | /                | -            |                 |                     |                   |     |          |          |    |                |        |
| Level Grou           |                |           | _    | <b>e</b> . |              |                                              |                  |                            |                               |                           |               |                    |                  | •            |                 |                     |                   |     |          |          |    |                |        |
| Hill Top             |                |           |      |            |              |                                              |                  |                            |                               |                           |               |                    |                  | <u> </u>     |                 |                     |                   |     |          |          |    |                |        |
| Direction of         | Ī              | N         |      | 11         | 11           | 17                                           | 1/               | 11                         | 1/                            | N                         |               |                    | ~                |              | T/              | <u>//</u>           |                   |     | ·        |          |    |                |        |
| Valley Batt          |                |           |      |            | <u> </u>     |                                              |                  |                            |                               |                           |               |                    |                  |              |                 |                     |                   |     |          |          |    |                |        |
| Notes                | 5% Sub rounded | VOL II II |      | outawa     |              | De Stationard adlera                         | 10/0 349 angalar | 30/p Angular hish originii | 40/2 San Angular high or guar | 2010 Angular high organic | ~~~~          | 12 10 20 2 angular | 15 b Sub Mounded | 1010 Angilar |                 | 5% Angular out crop | 4% II lalus Fines |     |          |          |    |                |        |
| Station              | 0+57           | LLAC      | 1150 |            | ATO          | 2100                                         | 2+50             | 3150                       | (110)                         | 4150                      | 510           | 5 + 90             | <u>6 f00</u>     | 6150         | 7 100           | 7450                | 3100              |     |          | -        |    |                |        |
| Line                 | 3000           |           |      |            |              | +                                            |                  | +                          |                               | · <u> </u> <b> </b>       | ╶┠╼╍╌┨╾┈      | <u> </u>           | ┦──┤────         |              | ·               | ļ                   | N                 |     |          |          |    |                |        |
| ,<br>Number          | 5001           | 5007      | 5003 | 5 02 (1    | 5004         | C 00 5                                       | 5 00 1           | 5 009                      | 5 000                         | 5 010                     | <u>c all</u>  | 19 010             | 2012             | 5 012        | 5017            | 5015                | 2016              |     |          |          |    |                |        |

| Project: _    | -+6      | mer            | 321                                   | KEEWATIN EN<br>SOIL S | IGIN<br>Amp | IEE<br>PLES   |          | NG<br>Resi | INC<br>ults | ).<br>Plot | ted f    | Зу: "  | V        | W.       | ,             |                 |         |                   |                 |          |               |            |
|---------------|----------|----------------|---------------------------------------|-----------------------|-------------|---------------|----------|------------|-------------|------------|----------|--------|----------|----------|---------------|-----------------|---------|-------------------|-----------------|----------|---------------|------------|
| Area (Grid    | d):      | ,              | · · · · · · · · · · · · · · · · · · · |                       |             |               |          | Мар        | :           |            |          |        |          | N.T.S    | 3.:           | 10              | 4-      | ß                 |                 |          |               | _          |
| Collector     | s: Va    | track 6        | O Joan                                | <u> </u>              |             |               |          | Date       | <u> </u>    | X          | z pl     | 6      | . 9      | <u>ð</u> |               |                 |         |                   |                 |          |               | _          |
|               | Somple L | ocation        |                                       |                       | To          | 1 <b>0</b> 0q | aphy     | •          |             | v          | eget     | atior  | 1        | -        |               |                 | So      | i 1               | Dat             | 3        |               | ]          |
| Sample        |          |                | Nótes                                 |                       | otlom       | of slope      |          | round      | Wooded      | Wooded     |          |        | p        | •        | Sampled       | Horizon<br>Die  | Horizon | Develop -<br>ment | Parent          | Material |               |            |
| Number        | Line     | Station        |                                       |                       | Valley B    | Direction     | Hill Top | Level G    | Heavily     | Sporsely   | Burnt    | Logged | Grasslar | Swampy   | Marizon       | Depth ta<br>Sam | Good    | Poor              | Dri ( )         | Bedrock  | Colour        |            |
| 5001          | 1000     |                | 10% 00                                | 10 10 FR              |             |               |          |            |             |            | -        |        |          | <b>-</b> | B             | 30              |         | ļ                 |                 | ļ!       | <u>KB</u>     | <u>]</u> . |
| 5002          | 1000     |                | 10 %                                  | 10 10                 |             |               |          |            |             |            |          |        |          |          | B             | 25              |         | ┝──╎              |                 |          | 16            | ľ          |
| 5003          | 1050     | - <del> </del> | 10%                                   | $\frac{1090}{1020}$   |             |               |          |            |             |            |          |        |          |          | R             | 30              |         | ╞──╞              |                 |          |               | ľ          |
| 5004          | 1050     | 20             | 10 10                                 | 10 10                 |             |               |          |            |             |            |          |        |          |          | Č.            | 1               |         |                   |                 | <u> </u> | pe,           | ł          |
| 5005<br>C-016 | 1100     |                | 10 ela                                | 10 %0                 |             |               |          |            |             | ·          |          |        |          |          | 6             | 35              |         |                   |                 |          | PL            | 5          |
| 5007          | 1150     | 1              | 10 7/0                                | 10%                   |             |               |          |            |             |            |          |        |          |          | $\mathcal{B}$ | 30              |         |                   |                 |          | ĨĽ            | B          |
| 3008          | 1180     |                | 10 010                                | 10 %                  |             |               |          |            |             |            |          |        |          |          | 8_            | 20              |         |                   |                 |          | K.            | m.         |
| 5009          | 120      |                | 20 9/0 014                            | 10%FRF9               |             |               |          |            |             |            |          |        |          | ;        | B             | 35              |         |                   |                 |          | <u> </u>      | þ.         |
| 5010          | 1300     |                | 10 0/0 0                              | 10 %                  |             |               |          |            |             |            |          |        |          |          | B             | 30              |         |                   | $ \rightarrow $ |          | RA.           | k -        |
| 3011          | 1460     |                | 10 %                                  | 10%                   |             |               |          |            |             |            |          | ·      |          |          |               | 30              |         |                   |                 |          | ĔØ            | 12.        |
| 5012          | 1500     |                | 10 %                                  | 10%                   | <u> </u>    |               |          |            | ·           |            | ·        |        |          |          | 12            | 25              |         |                   |                 |          | <u>KC</u>     | 2.         |
| 5013          | 1540     |                | 15 %                                  | 10 %                  | · · · ·     | ·             |          |            |             |            |          | ·      |          |          |               | 2               |         |                   | -+              |          | ¢ B           | 3          |
| 5014          | 1600     |                | 10-10                                 | 10-10                 |             |               |          |            |             | -+         |          | †      |          |          | C<br>C        | 20              | ·       |                   |                 |          | 4             | 2          |
| 5075          | 1600     |                | 10 10                                 | 10 18                 |             |               |          |            |             |            |          |        |          |          | $\sim$        | $\frac{2}{2}$   |         |                   |                 |          | 44            | י די       |
|               |          |                | · · · · · · · · · · · · · · · · · · · |                       |             |               |          |            |             |            |          |        |          |          |               |                 |         |                   |                 |          |               |            |
|               |          |                |                                       |                       |             |               |          |            | †:          |            |          |        |          |          |               |                 |         |                   |                 |          |               |            |
|               |          | 1              |                                       |                       |             |               |          |            |             |            |          |        |          |          |               |                 |         |                   | <u> </u>        |          | -1            |            |
|               |          |                |                                       |                       |             |               |          |            |             |            |          |        |          |          | _             |                 |         |                   |                 |          |               |            |
|               | 1        |                | ······                                |                       |             |               |          |            |             |            |          |        |          |          |               |                 | ·       |                   |                 |          |               |            |
|               |          |                |                                       |                       |             |               |          |            |             |            |          |        |          |          |               |                 |         |                   |                 |          |               |            |
| ····          |          |                |                                       |                       |             |               |          |            |             |            |          |        |          |          |               |                 |         |                   |                 |          |               |            |
|               |          |                |                                       |                       |             | <del></del>   |          |            | <u> </u>    |            |          |        | <u> </u> |          |               | · .             |         |                   | <u> </u>        |          |               |            |
|               | ļ        | <u> </u>       |                                       |                       |             |               |          |            | <del></del> |            | <u> </u> |        |          |          |               |                 |         |                   | <del> </del>    |          |               |            |
|               | <u> </u> | <b> </b>       |                                       |                       |             |               |          |            |             |            |          |        |          |          |               |                 |         |                   |                 |          |               |            |
|               |          | ├ <b>├</b>     |                                       |                       |             | +             |          | -+         | -+          | ┈╶┼╸       |          |        | -+       | -+       |               |                 |         |                   | -+              |          |               |            |
|               |          |                | ······                                |                       |             |               |          |            |             |            |          |        |          | $\neg$   |               |                 |         |                   |                 |          | $\rightarrow$ |            |
|               |          |                |                                       |                       |             |               |          |            |             |            |          |        |          |          |               |                 |         | [                 |                 |          |               |            |

こう だたた とうこう たいてき たいとう たき たき たき たき たき たき

.

| rea (Grio<br>ollector | d):      | Tuck      | Wilson        |                                |               |             |          | Map<br>Date |             | Je/        | ot       | 7,     | 90       | N.T.S    | .:                | 10               | <u> </u> | ß                 | 7      |            |             |
|-----------------------|----------|-----------|---------------|--------------------------------|---------------|-------------|----------|-------------|-------------|------------|----------|--------|----------|----------|-------------------|------------------|----------|-------------------|--------|------------|-------------|
|                       | Sample L | ocation . |               | -                              | Т             | opogr       | aphy     | •           |             | ν.         | eget     | atia   | 'n       |          |                   |                  | 50       | ŧ                 | Dat    | a          | ,           |
| Sample                |          |           | Notes         |                                | altom         | f slope     |          | round       | Wooded      | Wooded     |          |        | q        |          | S ampl ed         | Horizon          | Horlzan  | Develop -<br>meni | Parent | Material   |             |
| lumber                | Line     | Station   |               | •                              | Volley B      | Direction o | Hill Top | Level G     | Heovily     | Sparsely   | Burnt    | Logged | Grasslan | Swampy   | Harlzon           | Depth to<br>Samp | 0 o o d  | Poor              | Dri 11 | Bedrock    | Colour      |
| 50/6                  | 1000     | 1000      | 5% 00         | 5 10 FRAS                      |               |             |          |             |             |            | ·        |        |          |          | B                 | 30               |          |                   |        |            | $Z^{7}$     |
| 017                   | 1000     |           | 220 Sant      | ple_ 0                         |               |             |          |             |             |            |          |        |          |          | 4                 |                  | <br>     | ļ                 | li     | ; <b>f</b> | <b>1</b>    |
| 018                   | 1000     | ļ         | 5 %           | 1100/0                         | ļ             |             |          |             |             |            |          |        |          |          |                   | 30               |          |                   |        |            | <u>74</u>   |
| 019                   | 1000     |           | 10 10         | 10 10                          |               |             |          | -           |             |            | <u> </u> | :      |          |          | N<br>K            | 12               |          | <b>  </b>         |        | فا         | Ļģ          |
| <u>040</u>            | 1000     |           | 10 %          | 10-10                          |               |             |          |             |             |            |          |        |          |          | K                 | $\frac{2}{3}$    |          |                   |        |            | (Fr         |
| 227                   | 105-3    |           | 10010         | 10-13                          |               |             |          |             |             |            |          |        | †        |          | 5                 | 30               |          |                   |        |            |             |
| 23                    | 1000     |           | 10010 11      | 10 01 Found                    |               |             |          |             |             |            | {        |        |          |          | B                 | 30               |          |                   |        |            | ŔŹ          |
| 024                   | 1000     |           | 10 % 10       | 10 % FARA                      |               |             |          |             |             |            |          |        |          |          | B                 | 30               |          |                   |        |            | đ.          |
| 025                   | 1000     |           | 10010 " 0     | 100/0 "                        |               |             |          |             |             |            |          |        |          |          | B                 | 10               |          |                   |        |            | ŔВ          |
| 36                    | 1000     |           | 10 %          | 10 %                           |               |             |          |             |             |            |          |        |          |          | $\mathcal{B}_{-}$ | 30               |          |                   |        |            | đΒ          |
| 027                   | 1000     |           | 10 %0 11      | 10 %                           |               |             |          |             |             |            | •        |        |          |          | B                 | 25               |          |                   |        |            | RB          |
| 028                   | 1000     |           | 16 % "        | 10 %                           |               |             |          |             |             |            |          |        | ·        |          | É                 | 30               |          |                   |        |            | RĽ          |
| 12.2                  | 1000     |           | 10 % 10       | 10 % "                         |               |             |          |             |             |            |          |        |          |          | B                 | 20               |          |                   | [      |            | ĽB          |
| <u>c 30</u>           | 1000     |           | 10% 015 1     | ObFAIR                         |               |             |          |             |             |            |          |        |          |          | B                 | 30               | I        |                   |        | ]          | RE          |
| 031                   | 1000     |           | 10 400        | 1030%                          | <u> </u>      |             |          |             |             |            |          |        |          |          | <b>g</b>          | 32               |          | · · ·             |        | <u>,</u>   | 4B          |
| 3034                  | 1000     |           | 10 %          | 10 9/0 1                       |               |             | ·        |             | <del></del> |            |          |        |          | K        |                   |                  |          |                   | ·      | 1          | RA          |
| 035                   | 1000     |           | 10 40 " Press | g an 10 to the                 | $\mathcal{P}$ |             |          |             |             | <u> </u>   |          |        |          | <u> </u> | 2                 | 2                |          |                   |        |            | f A         |
| 104                   | 1000     |           | 10 % "        | " 10°/6 "                      | -             |             |          |             |             | ·          |          |        |          |          | 2                 | 2                |          |                   |        |            | ۶Ą          |
| 136                   | 1000     |           | 10 10         | $\frac{10^{-10^{1}}}{100^{1}}$ |               |             |          |             |             |            |          |        |          |          | 욹                 | 21               |          |                   |        |            | 56          |
| 737                   | 1000     |           | Sel. Rhc      | NO TR                          | +             |             |          |             | {-          | <b> </b> - |          |        |          | (;       | 31                | 33               | +        | -+                |        | /          | FA          |
| 030                   | 1000     |           | 0 01 4        | 5 9/2 10                       |               |             |          |             |             |            |          |        | +        | -ť       | δŧ                | 371              |          |                   |        |            | R           |
| 037                   | 1000     |           | 1001. 7       | 10 20 11                       | $\neg$        |             |          |             |             |            |          |        |          | Ť        | হা                | 3                |          | $\neg$            |        |            | S           |
|                       | ,,,,,,   |           |               |                                | +             |             |          |             |             |            |          |        |          |          | 1                 | 2                |          |                   |        |            | 4 <b>.Q</b> |

| Project: _<br>Area (Grid<br>Collector: | ):<br>s:<br>Somple Lu | atuck   | Wilson          | _<br>_<br> | Tc            | pogr         | aphy     | Resi<br>Map<br>Date | ults<br>:<br>: | Ploti<br><u>Se</u><br>v | eget     | 3y: _<br><br>ot.ior |          | N.T.S  | .:      | 10 4                 | 50       | <u>9 / / / / / / / / / / / / / / / / / / /</u> | 2<br>Dat          |               |              |
|----------------------------------------|-----------------------|---------|-----------------|------------|---------------|--------------|----------|---------------------|----------------|-------------------------|----------|---------------------|----------|--------|---------|----------------------|----------|------------------------------------------------|-------------------|---------------|--------------|
| Sample                                 |                       |         | Notes           |            | ottom         | i stope      |          | roud                | Wooded         | Wooded .                |          |                     | p        | •      | Sampled | Horizon<br>Ple       | Horlzon  | Develop<br>menl                                | Parent            | Material      |              |
| lumber                                 | Line                  | Station |                 | •          | Valley B      | Orection o   | Hill Top | Level G             | Heavily        | Sparsely                | Burnt    | Logged              | Grassian | Swompy | Horizon | Depth to<br>Sam      | Good     | Poor                                           | Dri H             | Bedrock       | Colour       |
| 5001                                   | 4100                  |         | Fine cravel     |            |               |              |          |                     |                |                         |          |                     |          |        |         | 3"                   |          | <u> </u>                                       |                   |               | 17           |
| 500 2                                  | 4200                  |         | Fine Japan      | 2t-        |               |              |          |                     |                |                         |          |                     |          |        |         | 2                    |          | ┝━─┤                                           |                   | <u> </u>      | 81           |
| 5003                                   | 4000                  |         | Fine charel     |            |               |              |          |                     |                |                         |          |                     |          |        |         | 5                    |          | ┝──┼                                           |                   | ├4            |              |
| 3004                                   | 4000                  |         | Fines gran      | rel_       |               |              |          |                     |                |                         | <u>.</u> |                     |          |        |         | $\frac{\Delta''}{d}$ |          | ├                                              |                   | ├4            | N.<br>R.K    |
| 005                                    | 4000                  |         | Fine Solume     |            | 201           |              | 0        |                     |                |                         |          |                     |          |        |         | <u>)"</u>            |          |                                                |                   | <b>/</b>      | kr           |
| 3006                                   | 4090                  |         | Very Find siel  | like -     | <u>7 / U.</u> | <u>ve</u>    | <u></u>  |                     |                |                         |          | _                   |          |        |         | 5/1                  |          |                                                |                   | <b>├4</b>     | N.F          |
| 007                                    | 4400                  |         | _ Fine goin     | cer o      |               |              |          |                     |                |                         |          |                     |          |        |         | 211                  |          |                                                |                   | []            | k7           |
| 008                                    | 4360                  |         | - F the Maye    |            |               |              |          |                     |                |                         |          |                     |          |        |         | 13.11                |          |                                                |                   | <u> </u>      | R            |
| 007                                    | 46.00                 |         | fine spende     |            |               |              |          |                     |                |                         |          |                     |          |        |         | 211                  |          |                                                | -+                |               | RI           |
| 5010                                   | 4640                  |         | - Fuie Pravel   | 2          |               |              |          |                     |                |                         |          |                     |          |        |         | 11                   |          |                                                |                   |               | 11           |
| 5077                                   | 4.60                  |         | - to mole conve | Rectange   |               |              |          |                     | .              |                         |          |                     |          |        |         | 14                   |          | $\square$                                      |                   |               | R            |
| 5012                                   | 44770                 |         | Fine O Gint     | wel .      | i             |              |          |                     |                |                         |          |                     | •        |        |         | 44                   |          |                                                |                   |               | Z            |
| 50/5<br>50/6                           | 4600                  | {       | Elara Social    | 1          |               |              |          | <u> </u>            |                |                         |          |                     |          |        |         | 31                   |          |                                                |                   |               | Ø            |
| 21/5                                   | 4860                  |         | Fine Degine     | 7.         |               |              |          |                     |                |                         |          |                     |          |        |         |                      | . 1      |                                                |                   |               | <i>( (</i> ) |
|                                        |                       |         |                 |            |               |              |          | ·                   |                |                         |          |                     |          |        |         |                      |          | · ]                                            |                   |               |              |
| · <u> </u>                             |                       |         |                 |            |               |              |          |                     |                |                         |          |                     |          |        |         |                      |          | $ \longrightarrow $                            |                   |               |              |
|                                        | 1                     |         |                 |            |               |              |          |                     |                | ·                       |          |                     |          |        |         |                      |          |                                                |                   |               |              |
|                                        | · · ·                 |         |                 |            |               |              |          |                     |                | · · •                   |          |                     |          |        |         |                      |          |                                                | $\longrightarrow$ |               |              |
|                                        |                       |         |                 |            |               |              |          |                     | -+             |                         |          |                     |          |        |         |                      |          |                                                |                   | {             |              |
|                                        | Į                     |         |                 |            |               |              |          |                     |                |                         |          |                     |          |        |         |                      | <u> </u> |                                                |                   |               |              |
|                                        | <b>↓</b>              |         | ·····           |            | <b> </b>      |              |          |                     |                |                         |          |                     |          |        |         |                      |          | +                                              |                   |               |              |
|                                        | ļ                     | •       |                 |            | ┝──┦          |              |          |                     |                | -+                      |          |                     |          |        |         |                      |          |                                                | $\rightarrow$     | <u> </u>      |              |
|                                        | <b> </b>              |         |                 |            |               | <del> </del> |          | -+                  |                |                         |          |                     |          |        |         |                      |          | -+                                             | +                 | $\rightarrow$ |              |
|                                        | <u> </u>              |         |                 |            |               | <u> </u>     |          |                     |                |                         |          |                     |          |        |         |                      |          |                                                |                   |               |              |
|                                        | <u>├`</u>             |         |                 |            |               |              |          |                     |                |                         | †        |                     | -+       | {      |         | <u> </u>             |          |                                                |                   |               |              |
|                                        | <u> </u>              | <u></u> |                 |            |               |              |          |                     |                | †                       |          | †                   |          |        |         |                      |          | -                                              | -+                |               |              |
|                                        | <b>├</b>              | ·       | ······          |            |               |              | 1        |                     |                |                         |          |                     |          |        |         |                      |          |                                                |                   |               |              |

| 11       |     | KEEWA |
|----------|-----|-------|
| Project: | 321 |       |

•

# ATIN ENGINEERING INC.

٦

•

٠.

SOIL SAMPLES

| Project: _                  | _ / ~                                 |              | 04-1                  | SUIL C               | 2744 1WI F |              | ,        | Res       | ults       | Plot       | teð l    | ∃y:_   |           | <u> </u> |              | 10                | 11       |                   | 2       | ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|---------------------------------------|--------------|-----------------------|----------------------|------------|--------------|----------|-----------|------------|------------|----------|--------|-----------|----------|--------------|-------------------|----------|-------------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area (Grid                  | ):                                    |              |                       |                      |            |              |          | Мар       |            |            | 1-       |        | !         | N.T.S    | . : <u> </u> | $\overline{D}$    | <u>7</u> |                   |         | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | 10                                    | TRICK (      | WILSON                |                      |            |              |          | Date      | e          |            | 12/      | b[     | 10        |          | <u>20</u>    |                   |          |                   | <b></b> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | Somple L                              | _ocction     |                       |                      | T          | opogr        | aphy     |           |            | v          | eget     | ation  | )         |          |              |                   | So       | 11                | Dat     | a           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample                      |                                       |              |                       |                      | Eol        | slope        |          | pund      | oded       | looded .   |          |        |           |          | ampled       | Horizon<br>e      | Horizon  | Develop –<br>meni | Parent  | Molecial    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number                      | Line                                  | Station      |                       |                      | Valley Bat | Direction of | Hill Top | Level Gro | Heavily Wo | Sparsely W | Burnt -  | Logged | Grassland | Swampy   | Harizon' S   | Depth ta<br>Sampi | Good     | Poar              | 0ri f I | Badrock .   | Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5040                        |                                       | 1000'        | 10% 000               | 10 % Fring.          |            |              |          |           |            |            | ,        |        |           |          | B            | 20                |          |                   |         |             | <u>IR</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5041<br>5042                |                                       | 1000'        | 10 0/0 "U<br>10 0/0 " | 10 % 11              |            |              |          |           |            |            | -        |        |           |          | B            | 20<br>30          |          | <br>              |         |             | 1<br>R B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>Soy3</u><br>Soyy<br>Soyy |                                       | 1000         | 30 0/0"<br>10 0/0 "   | 20 % "<br>10 % "     | (2         |              |          |           |            |            | ·<br>    |        |           |          | B<br>G       | ζο<br>15<br>15    |          |                   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5046                        |                                       | 1000         | 10 0/011<br>5 0/011   | 10 %                 |            |              |          |           |            |            |          |        |           |          | B<br>B<br>B  | 20<br>30<br>20    |          |                   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5048<br>5049<br>5050        | 22                                    | 1000<br>0 50 | In ple -              | 10 90                |            |              |          |           |            |            |          |        |           |          | B<br>B       | 25<br>25<br>20    |          |                   |         |             | K B<br>R I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5051                        | 7                                     | 1100'        | mple_ =               |                      |            |              |          |           |            |            |          |        | · _       |          | B<br>B       | 30<br>25          |          |                   |         |             | <u>e                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>5053</u><br>8054         | · · · · · · · · · · · · · · · · · · · | 1000         | 10%                   | 30 % Frit.           |            |              |          |           |            |            |          |        |           |          | B<br>B       | 20<br>25<br>25    |          |                   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5055<br>5055<br>5057        | <br>                                  | 1000         | 10%                   | 10 %                 |            |              |          |           |            |            | -        |        |           |          | B            | 2 <i>0</i><br>25  |          |                   |         |             | E Contraction of the second se |
| 5058<br>3039                |                                       | 1000         | 10 0/0 11             | 10 0/0 0<br>10 0/0 " |            |              |          |           |            | . +        |          |        |           |          | ß            | 25                |          |                   |         |             | TZ<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>Sobo</u><br>Sobi         |                                       | 1050         | 10 % *                | 10 % "<br>10 °0 "    |            |              |          |           |            |            |          |        |           |          | B            | 10<br>10<br>30    |          |                   |         |             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5062                        | 1, 90                                 | 1000         | 5% 05                 | 10 % FAR.            |            |              |          |           |            |            |          |        |           |          | E            | 20                |          |                   |         |             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5063<br>5064                |                                       | 1000         | 10°/0 1<br>10°/0 "    | 10 % " "<br>10 % "   |            |              |          |           |            |            | <u> </u> |        |           |          | G<br>B       | 30                |          |                   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5065                        | •                                     | 1000<br>980  | 10 0/0 "              | 10 %                 |            |              |          |           |            |            |          |        |           |          | 8            | 30                |          |                   |         | $\dashv$    | <i>∓4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Sample Lacation         Notes         Topography         Vegetation         Samt         Date           Number         Line         Station         Notes         Image: Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Lacation         Notes         Topography         Vegetition         Sall         Units           nole         Notes         Image: Sall         Imag                                                                                                                             | Project: _<br>Area (Gric<br>Collector | 1):        | amet    | Wilson   |          |            |          | - <u>L</u> LLL |          | Res<br>Map<br>Dat | uits<br>p:<br>e | Plot     | ted l | Зу: _<br>//  |         | N.T.S   | , : _                 | 10               | 4       | B                   | 7      |               |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|---------|----------|----------|------------|----------|----------------|----------|-------------------|-----------------|----------|-------|--------------|---------|---------|-----------------------|------------------|---------|---------------------|--------|---------------|---------------|
| Sample         Notes         Image: Station         Notes         Image: Station         Image: Station <thimage: station<="" th="">         Image: Station         <thimage: station<="" th="">         Image: Station         <thima< th=""><th>Inple         Notes         Imple         Notes         Imple         <th< th=""><th></th><th>Somple L</th><th>ocation</th><th></th><th></th><th></th><th>Te</th><th>pogr</th><th>abhy</th><th>·</th><th></th><th></th><th>eget</th><th>at.i ar</th><th>1</th><th></th><th></th><th></th><th>50</th><th></th><th></th><th><del>م</del></th><th></th></th<></th></thima<></thimage:></thimage:> | Inple         Notes         Imple         Notes         Imple         Imple <th< th=""><th></th><th>Somple L</th><th>ocation</th><th></th><th></th><th></th><th>Te</th><th>pogr</th><th>abhy</th><th>·</th><th></th><th></th><th>eget</th><th>at.i ar</th><th>1</th><th></th><th></th><th></th><th>50</th><th></th><th></th><th><del>م</del></th><th></th></th<> |                                       | Somple L   | ocation |          |          |            | Te       | pogr           | abhy     | ·                 |                 |          | eget  | at.i ar      | 1       |         |                       |                  | 50      |                     |        | <del>م</del>  |               |
| Aumber       Line       Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Line       Station $3 + 6 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample                                |            |         | Notes    |          | •          | lottom   | of slope       |          | round             | Wooded          | Wooded   |       |              | pu      |         | Sompled               | b Harizan<br>Ple | Horlian | Develop<br>ment     | Parent | Material      |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | umber                                 | Line       | Station |          |          |            | Valley B | Direction      | HIII Top | Level G           | Heavily         | Sparsely | Burnt | Logged       | Grassla | Swamp)  | Harlzon               | Depth to<br>Sam  | Good    | Poor                | Drift  | Bedrock       |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 067                                   | 980        | 1       | 5% 00    | 5% F     | nan        |          |                |          |                   |                 | L        |       |              |         | •       | B<br>D                | 00               |         | ┞──┨                |        | <u>'</u>      | Ľ             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 068                                   | 9801       |         | 10 % 01  | 15%      | " 1        |          |                |          |                   | •               |          |       | <u> </u>     |         | k .     | 2                     | 20               |         | ┝──┼                |        |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 069                                   | 960'       |         | 10 % "   | 10 %     | <u>- 4</u> |          |                |          |                   |                 |          | -     |              |         |         |                       | 20               |         | ┝──╄                |        | 4             | F             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 070                                   | 1980'      | ļ       | 10 %     | 1000     |            |          |                |          |                   | L .             |          |       | ·            |         |         |                       | 22               |         | ┢━╍╍╁               |        |               | P             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 071                                   | 960'       |         | 10 10 "  | 10 10    |            | +        |                |          |                   |                 |          |       | <sup>-</sup> |         | -1      | K                     | 20               |         | $ \longrightarrow $ | -+     |               | f             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 072                                   | 940'       |         | 10 %     | 10-10    | <u> </u>   |          |                |          |                   |                 |          |       | (            |         |         | R                     | 3                |         | <u> </u>            |        |               | 5             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>675</u>                            | 14.40      |         | 5%       | <u></u>  |            |          | ··· ·          |          |                   |                 |          |       | <u> </u>     |         | <u></u> | B                     | 201              |         | <del> </del>        |        | 9             | 7             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 074                                   | 940        |         | 10 10    |          |            | ┟╌╍╌┨    |                |          |                   |                 |          |       |              |         |         | Z                     | 10               |         |                     |        | -1            | Ħ             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $16$ $5 \sigma_{10}^{\prime \prime}$ $10$ $9_0^{\prime \prime \prime}$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 075                                   | 800        |         | 10 %     | <u> </u> |            |          |                |          |                   |                 |          |       |              |         |         | $\mathbf{Z}$          |                  |         |                     |        | $\rightarrow$ | G             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 076                                   | <u>860</u> |         | 50/0 "   | <u> </u> |            | <u>├</u> |                |          |                   |                 |          |       |              |         | /       | X                     | 0                |         |                     |        |               | t             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 017                                   | 880        | ·       | 10 0/0 " | -10      | ,<br>//    |          |                |          |                   |                 |          |       |              | İ       |         | R                     | 5                | _       |                     |        |               | 7             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>1578</u>                           | 860.       |         | 100/01   | 10 10    |            |          |                |          |                   |                 |          |       | .            | •       | +       | $\overleftarrow{A}$   | 40               | -       | -                   |        |               | $\succ$       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 075                                   | RGO        |         | 10-10 "  | 10 %     | ,          |          |                | {        |                   |                 |          | †     |              |         |         | R                     | 3                | İ       |                     |        |               | 7             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> 2000</u>                          | 860        |         | 10-10    | 1501. 6  | 000        |          |                |          |                   |                 |          |       |              |         |         | R                     | 30               |         |                     |        |               | 7             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 081                                   | 540        | ·       | 15 % 054 | 15-10 71 | 100        |          |                |          |                   |                 |          |       |              |         |         | K                     | 20               |         | ·                   |        | <del></del>   | 7             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000                                  | Sto.       |         | 15.01.11 | 10 % 11  |            |          |                | †        |                   |                 | - 1      |       |              |         | ĺ.      | 2                     | 201              | - i     |                     |        | 7             | Ē             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>203</u>                            | 200        |         | 10 10    | 10 06    | 11         |          | †              |          |                   |                 |          | •     |              |         |         | B                     | 22               |         |                     |        | *             | 2             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <u>04</u>                           | 100        |         | 10 10    | 10 10    | 77         |          |                | 1        | †                 |                 | . 1      |       |              | ŀ       |         | <u> </u>              | 30               |         |                     |        | 2             | $\mathcal{F}$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <u>05</u>                           | 760        |         | 10 0/0 4 | 100/0    | 11         | -        |                |          |                   |                 |          |       |              |         |         | $\mathcal{K}$         | 30               |         |                     |        | 7             | Z             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                              | 700        |         | 150/0 "  | 15 0/0   | .9         |          |                | ŀ        |                   |                 |          |       |              |         | [       | $\mathcal{Z}$         | 30               |         |                     |        | 1             | T             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 194                                   | 0001       | {       | 10 %     | 10 011   | , " 1      |          |                |          |                   |                 |          | 1     |              |         |         | $\boldsymbol{\Sigma}$ | 20               |         | T                   |        |               | Ĺ             |
| 070 740' 10 % 10 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 740' 10°% 10°% B 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 089                                   | Our I      | •       | 10 %     | 11) %    | 6.11       |          |                |          |                   |                 | Ĵ.       | ŀ     |              |         |         | 5                     | 30               |         |                     |        | X             | 2             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 090                                   | 740        |         | 10010 11 | 10 %     | 11         |          |                | ļ        |                   |                 |          |       |              |         |         | 3_                    | 35               |         |                     |        |               | £             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | <u> </u>   |         |          |          |            |          |                |          |                   | •               |          |       |              |         | [       |                       |                  |         |                     |        |               | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | -          |         |          |          |            |          | ļ              |          |                   | <del> </del>    | <u></u>  |       |              | -+      |         |                       |                  |         | $\rightarrow$       | -+     | $\rightarrow$ |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |            |         |          |          |            | 1        |                | 1        | 1                 |                 |          | 1     |              |         | - 1     | 1                     | ļ                | 1       |                     |        |               |               |

· •

 $X = \{x_1, \dots, x_n\} + \{y_n\} + \{y_n\}$ 

SOIL SAMPLES

Project: 1 lemere # 321

•

٦

.

e

•

Area (Grid): \_\_\_\_

T 5 3 ¶

Collectors: <u>S.i., C.c.</u>

Results Plotted By: \_\_\_\_\_

Map: \_\_\_\_\_\_ N.T.S. : \_\_\_\_\_

the second second second second second second second second second second second second second second second se

• •

Date 13/4/46

|        | Somple L                | ocation     |                      | Ţ        | opogr        | aphy     |                                               |          | v        | eget     | at.ion | 1       |           |                   |                      | 30      | i I               | Det   | o<br>    | <b></b>        |
|--------|-------------------------|-------------|----------------------|----------|--------------|----------|-----------------------------------------------|----------|----------|----------|--------|---------|-----------|-------------------|----------------------|---------|-------------------|-------|----------|----------------|
| Sample |                         |             | Notes                | otiom    | of stope     |          | round                                         | Wooded   | Wooded   |          |        | pu.     |           | Sampled           | a Harizon<br>pie     | Horizon | Develop -<br>menl | Paren | Matorial |                |
| Number | 2500<br>CONTOUR<br>Line | Station     |                      | Valley B | Direction o  | HIII Top | Level G                                       | Heavily  | Sparsely | Burnl    | Logged | Grassla | Swamp)    | Horlzon           | Depth to<br>Som      | Good    | Poor              | 04111 | Bedrock  | Calour         |
| 5017   | 2500                    | 0+0000      |                      |          | ļ            |          |                                               |          |          |          |        |         |           | $ \underline{B} $ | 10                   |         |                   |       |          | MRB            |
| 5010   |                         | otio        |                      |          |              | <u> </u> | <u> </u>                                      |          |          | <u> </u> |        |         |           | 10                |                      |         |                   |       |          | <u>  4</u>     |
| 1019   |                         | 1140        |                      |          | <u> </u>     |          |                                               |          |          |          |        |         |           | 6                 | 25                   | 1       | <u> </u>          |       |          | <u> </u>       |
| 5020   |                         | 1150        |                      |          |              |          |                                               |          |          |          |        |         |           |                   | 125                  |         |                   |       |          | <u>  "</u>     |
| 2021   |                         | 2+00        |                      |          | 1            |          |                                               |          |          | • • •    |        |         |           | <u> </u>          | 1.,                  |         | 5                 |       |          | 1              |
| 5012   |                         | 2750        |                      |          | +            |          |                                               |          |          |          |        |         |           | B                 | 45                   | ~       | ,                 |       |          | 060            |
| 3023   |                         | 3100        |                      |          |              |          |                                               |          |          |          |        |         |           | B                 | 40                   | V       |                   |       |          | 0.0            |
| 5024   |                         | 3+50-       |                      |          |              |          | <u>                                      </u> |          |          |          |        |         |           | B                 | 35                   | V       |                   |       |          | MKB            |
| 5025   |                         | 4100        |                      |          |              |          |                                               |          |          |          |        |         | <b></b> - | N                 | 130                  | 11      | 1                 |       |          | 1.4            |
| 3026   |                         | 4+50        |                      |          | +            |          | <u> </u>                                      |          |          |          |        |         |           | D.                | 30                   | 1       |                   |       | }        | 4              |
| 3621   |                         | 5:00        |                      | +        |              |          | İ                                             |          |          |          |        |         |           | 13                | 130                  | V       |                   |       |          | 11             |
| 5418   |                         | Sisu        |                      |          | <del>;</del> |          |                                               | <u> </u> |          |          |        | •       |           | Ď                 | 25                   | V       |                   |       |          | 11             |
| SCLI   |                         | bter        |                      |          | <u> </u>     |          | İ                                             |          |          |          |        |         |           | В                 | 35                   | j/      |                   |       |          | 11             |
| 5030   |                         | <u>6150</u> |                      |          | 1            | 1        |                                               | · ·      |          |          |        |         |           | D                 | 30                   | ~       | Į                 |       |          | 10             |
| 5631   |                         | 1100        |                      |          | <del> </del> |          |                                               |          |          |          |        |         |           | B                 | . 45                 | :1      | -                 |       | 1        | u              |
| 30 52  |                         | 7150        |                      | -        | 1            | 1        |                                               | 1        |          |          |        |         |           | B                 | 25                   | V       |                   |       |          | 1.1.0          |
| 3633   |                         | 3+00        |                      | +        |              |          |                                               |          |          |          |        |         |           | ĥ.                | 30                   | V       |                   |       |          | 010            |
| 56:34  | · · · · ·               | 3150        |                      |          |              |          |                                               |          |          |          |        |         |           |                   | ļ                    |         |                   |       |          |                |
| 4063   | -                       | 2+5300      | (SILT) 9000 321 2003 |          |              |          |                                               |          |          |          | ·      |         |           |                   |                      |         |                   |       |          | <br>           |
|        |                         |             |                      |          |              |          | ļ                                             |          |          |          |        |         |           |                   |                      |         |                   |       |          | <u> </u>       |
|        |                         | ·           |                      |          | +            |          |                                               |          |          |          |        |         |           |                   |                      |         |                   |       |          | <u> </u>       |
|        |                         |             |                      |          |              | 1        |                                               |          |          |          |        |         |           |                   | <u>  </u>            |         |                   |       |          |                |
|        |                         |             |                      |          |              |          | [                                             |          |          |          |        |         |           |                   |                      |         | <u> </u>          |       |          | <u> </u>       |
|        |                         |             |                      |          |              | ļ        |                                               |          |          |          |        |         |           |                   |                      |         | <u> </u>          |       |          | <b>i</b>       |
|        |                         |             |                      |          |              | [        |                                               | ┝───┤    |          |          |        |         |           |                   |                      |         |                   |       |          | ¦              |
|        | ·                       |             |                      |          | <del> </del> |          |                                               |          |          |          |        |         |           | <u> </u>          | $\vdash$             |         |                   |       |          | <u> </u>       |
|        |                         |             |                      | <u> </u> |              |          | ļ                                             |          |          |          |        |         |           |                   | <del> .       </del> |         |                   |       |          | <del> </del> . |
| KEEWATIN | ENGINEERING | INC. |
|----------|-------------|------|
|----------|-------------|------|

.

1

- <u>-</u>

1

1

i.

ł

.

| Project:<br>Area (Gri<br>Collector | d): 2000<br>s: Scott | 321<br>Contour<br>Thompson | 90ST- (ColinA)                        | •••••• |               |        | Res<br>Maj<br>Dat | sults<br>p:<br>e | Plon<br><u>Han</u><br>Cot | Hed<br><u>aER</u><br>10 | By: .  |             | N.T. (   | s. : _    | 104              | R               | 7               |               |            |                              |
|------------------------------------|----------------------|----------------------------|---------------------------------------|--------|---------------|--------|-------------------|------------------|---------------------------|-------------------------|--------|-------------|----------|-----------|------------------|-----------------|-----------------|---------------|------------|------------------------------|
|                                    | Sample L             | .ocation                   |                                       | Т      | 0909          | raphy  | <u> </u>          |                  | )                         | /eget                   | ati o  | n           | <u>.</u> |           |                  | 30              | ,i              | Dai           | la         |                              |
| Sample<br>Number                   |                      |                            | Notes                                 | ßaltom | of slope      |        | Ground            | Wooded           | Wooded                    | Slide                   |        | p.          |          | Sampled   | o Horizon<br>Ple | Horizon         | Develop<br>menl | Porent        | Alatoriat  |                              |
|                                    | CUNTELR<br>Line      | Station                    | · · ·                                 | Volley | Direction     | HIH To | Level             | H eovily         | Sparsely                  | ц<br>С                  | Logged | Grassta     | Swamp    | Horkzon   | Sam Sam          | Good            | Poor            | Drift         | Bedrock    | Calour                       |
| 5001                               | 2000                 | 0400                       | 10% Syb Rounded Rock Frag             |        | Nu            |        |                   |                  |                           |                         |        |             |          | R         | <u> </u>         | -               | <u> </u>        |               | <u> </u>   | 10                           |
| 2                                  | 11                   | 0+50                       | 30% 1                                 | _      | 1/m           |        |                   |                  |                           | /                       |        |             |          | Z.        |                  | 7               | 1               | i             |            | <u>a 191</u><br>1 <i>R G</i> |
| <u></u>                            |                      | 1100                       | 30% Sub Angular Kock Frag             |        | 1/1           |        |                   |                  |                           | <u> </u>                |        |             |          | 17        |                  |                 | $\square$       |               | T d        | )                            |
| <u>. 004</u>                       | 10                   | 114572                     | 10%                                   |        | 12 m          |        |                   |                  |                           |                         |        |             |          | B         |                  | /               |                 |               |            | 180                          |
| <u></u>                            |                      | 2100                       | DOC I TO FIT                          |        | 1 w           |        |                   | _                |                           |                         |        |             |          | B         |                  | 1               |                 |               | _ A        | ĽВ                           |
| 607                                | 1.1                  | 2400                       | acity hounded here trass              | +      | <u> </u>      |        |                   |                  |                           |                         |        |             |          | B         |                  |                 |                 | ]             |            | RB                           |
| 008                                |                      | 3+50                       | Sol S G A . G K- K- T                 |        | $\mathcal{N}$ |        | · ·               |                  |                           |                         |        |             |          | B         |                  | $\leq$          | ,-              |               |            | LRB                          |
| DAY                                |                      | 4+00                       | -VIA DIAD HAGUIAR AVECIC (-PAS)       | +      | 1/            |        |                   | <u></u>          |                           |                         |        |             |          | <u>5:</u> |                  |                 |                 |               | ¢          | <u>RB</u>                    |
| 010                                | 10                   | 11452                      |                                       |        | 1             |        |                   | $\overline{}$    |                           | <b></b>                 |        |             |          | <u> </u>  | - ~              | $\leq$          | ⊢               | <b></b>       | \$         | <u>' RB</u>                  |
| 011                                | 1.                   | 5400                       | 2% Seb Baules Bart Forms              |        | <u> </u>      |        |                   | -                |                           |                         |        | <u> </u>    |          | X         | - Lint           | $\leq$          |                 |               |            | <u> </u>                     |
| 012                                | 13                   | 5150                       | 2% Council Recht Frances              |        | N             |        |                   | 7                |                           |                         |        |             |          | 5         | $-\tilde{t}$     |                 |                 | <u></u>       |            | <u>R B</u>                   |
| 013                                | 1.0                  | 6+00                       |                                       |        | m             | -      |                   |                  |                           |                         |        | <del></del> |          |           | -                | $ \rightarrow $ |                 | +             | _ 4        | <u>f B</u>                   |
| 014                                | 17                   | 6+50                       | · · · ·                               |        | <u>//</u>     |        |                   | Ź                |                           |                         |        |             |          | 12        | <del>M</del>     | <del>/</del>    |                 |               | _4         | <u> IB</u>                   |
| 015                                | 10                   | 7100                       |                                       | †      | 11            |        |                   | 7.               |                           |                         |        |             |          | <u>p</u>  | <u>-</u>         | $ \rightarrow $ | +               |               | <u>_41</u> | <u>КВ</u>                    |
| 016                                | U.                   | 7150                       | 35% Sub Anieles Rock Fran             | -+     |               |        |                   | 7                |                           | -+                      |        |             |          | 0         | - <del>8</del>   | <del>/  </del>  |                 | +             | - 14       | <u> B</u> Ř                  |
| 017                                | 1.1                  | 8+00                       | 30% "                                 |        | NI            |        |                   | 7                |                           |                         |        |             |          |           | +                | 5               |                 |               | -11        | राष्ट्र                      |
| 014                                | 10                   | 8+50                       | 50%                                   |        | NE            |        |                   | 7                |                           |                         |        |             |          | 2         | 2                | 71              |                 |               | <u></u>    | <u>V R</u>                   |
|                                    |                      |                            |                                       | ľ      |               |        |                   |                  |                           |                         |        |             |          | <u> </u>  | <u></u>          | <del>~ {</del>  |                 |               | 4          | КĽ                           |
|                                    |                      |                            |                                       |        |               |        |                   |                  |                           |                         |        |             |          |           | +                | +               |                 | <u> </u>      |            |                              |
|                                    |                      |                            |                                       |        |               |        |                   |                  |                           |                         |        |             | †        |           |                  | <del></del> [-  |                 |               |            |                              |
|                                    |                      |                            |                                       |        |               |        |                   |                  |                           |                         | Ť      |             |          | +         |                  |                 |                 |               |            |                              |
|                                    |                      |                            |                                       |        |               |        |                   |                  |                           |                         |        |             |          |           |                  | -+              |                 |               |            |                              |
|                                    |                      |                            |                                       |        |               |        |                   |                  |                           |                         |        |             |          |           |                  |                 | -               | <del> -</del> |            |                              |
|                                    |                      |                            |                                       |        |               |        |                   |                  |                           |                         |        |             |          |           |                  |                 |                 |               |            |                              |
|                                    |                      |                            | · · · · · · · · · · · · · · · · · · · |        |               |        |                   |                  |                           |                         |        |             |          |           |                  |                 | -               | <del> -</del> |            | -i                           |
|                                    |                      |                            |                                       |        | T             |        |                   |                  |                           |                         |        |             | -        |           |                  |                 | -+-             |               |            | - ]                          |
|                                    |                      |                            |                                       |        |               |        | T                 |                  |                           | T                       |        |             |          |           |                  |                 | <del> </del>    |               |            | [                            |

| Sample<br>Iumber  | Line        |         | 90 20<br>Notes | : 321     |          | E           | e d        |     |            |           |             | 1            |          |          |                        |           | 1                 |          |                   |               |
|-------------------|-------------|---------|----------------|-----------|----------|-------------|------------|-----|------------|-----------|-------------|--------------|----------|----------|------------------------|-----------|-------------------|----------|-------------------|---------------|
|                   | Line        | •       |                |           |          | y Batto     | ion af slo | Top | l Ground   | ly Wooded | iely Wooded | ed           | sland    |          | i la Harizor<br>Sompte | d Horizor | r Develop<br>meni | l Parent | rock Material     | ur –          |
| 6666              | ł           | Station |                |           | •        | Valle       | Direci)    | HIH | Leve       | Heav      | Burn        | L099         | Gras     | SWO      | Depty                  | 6 0 0     | Pool              | Drif     | Bedr              |               |
| 0000              | 2000        |         | 10% 09         | F .       |          |             |            |     |            |           |             | <u> </u>     |          | <u> </u> | 50                     | ļ         |                   |          |                   | Ŗ             |
| 067               | 2000        |         | 10% ord.       |           |          |             |            |     |            |           |             | <u> </u>     |          |          | 30                     |           |                   |          |                   | 4             |
| 5068              | 2000        |         | 5% 04.         |           |          |             |            |     |            |           |             |              |          |          | 25                     |           |                   |          | <u> </u>          | $\mathcal{A}$ |
| ×69               | 2000        |         | 5% 06          | 10 %      | 107.     |             |            |     |            |           |             | <u>•</u>     |          | -C       | 125                    |           |                   |          |                   | 4             |
| 1070              | 2000        |         | 100/0111       | 150%      | 11       |             | 1          |     |            | 11        |             |              |          | -4       | <u>र दि</u>            |           |                   |          | <u> </u>          | 44            |
| 071               | 2000        |         | 5 0/2 "        |           |          |             |            |     |            |           |             | -            | <u> </u> | - Z      | 130                    | ļ         |                   |          | 4                 | ¥             |
| 072               | 2000        |         | 5%             |           |          |             |            |     |            |           |             |              |          | _/2      | 30                     |           |                   |          |                   | Å.            |
| 073               | 7 194       | 0       | 10 %           | 1.0 %     | <i>°</i> |             | !          |     |            |           |             |              |          | _6       | 12                     |           |                   |          |                   | Ĥ,            |
| 674               | 1970        |         | 10 %           | 10%       | 10       |             |            |     |            |           |             | <u>  ·  </u> |          | _4       | 30                     |           |                   |          | Ă                 | Ŏ             |
| 075               | Zoon        |         | 10 % "         | 10 %      | 14       |             |            |     |            |           |             |              |          | _B       | 30                     |           |                   |          | l                 | 4             |
| 076               | 2000        |         | 20%            | 20        | 0/6      |             |            |     |            |           | <u> </u> ł  |              |          |          | 130                    |           |                   |          |                   | 4             |
| 077               | 2000        |         | High O.        | re, anics |          |             | .          | 2.2 |            |           |             | <u> </u>     |          | 2        | 30                     | ,         |                   |          | 1                 | 4             |
| 078               | 2000        | ł       | 10% 05.        | 0         |          |             |            |     |            |           | ·           |              | •        |          | 25                     |           |                   |          | _ik               | 14            |
| 079 1             | 2000        |         | 1010-7         |           | -        | · L         | . 1        |     | <u>·  </u> |           |             |              |          | B        | 30                     | .         |                   |          | $\underline{\nu}$ | 14            |
| 5000              | 2000        |         | . 10%          | FROG.     | -        |             |            |     |            | •         |             | r            |          |          | 340                    | <u> </u>  |                   |          | VI                | "R            |
| 081               | 2000        |         | 5.06           | Encal.    | ĺ        |             |            |     |            |           |             |              |          | -Z       | 130                    |           | • [               |          | L                 | $\mathcal{D}$ |
| 292               | 2000        |         | 10 %           | Ent.c.    |          | 1           |            |     |            | 1         |             | ŀ            |          | B        | 135                    |           |                   |          | <u> </u>          | E             |
| $\mathcal{A}_{3}$ | 2000        |         | 10 %           | aler.     |          |             |            |     |            | •         |             |              |          | B        | 30                     |           |                   |          | X                 | Ċ             |
| 080               | 2100        |         | 10 01000       | 10091     | F206     |             |            |     |            |           | •           |              | <u> </u> | B        | 30                     |           |                   |          | M                 | e             |
| 0 4 5             | 2100        |         | 10 %           | boe       | 0        |             |            |     |            |           |             |              |          | E        | 5                      |           |                   |          | CA K              | $\mathbb{Z}$  |
| 086 1             | 2100        |         | Inota ID.      |           |          |             |            | -   |            |           |             |              |          | B        | BO                     |           |                   |          | MR                | $\mathcal{I}$ |
| 207 1             | 7/00        |         | QUT M.         | The Soll  | <u> </u> | · ·         |            |     |            |           |             |              |          | B        | 30                     |           |                   |          | IN                | $\mathcal{B}$ |
| 282 2             | 100         | ·····   | THU UKLA       | 1/1 0/2 / | 7150.    |             |            |     |            |           |             |              |          | B        | 30                     |           |                   |          | TRP               | Л             |
|                   | 71.12       |         | O O OL         | Four F    |          |             |            |     |            |           | 1           |              |          | B        | 30                     |           |                   |          | 191               | 5             |
|                   | 70.0        |         |                | ping.     |          |             | Ť          |     |            |           |             |              |          | B        | 20                     |           |                   | -17      | TIT               | 31            |
| 20 0              | <u>riyu</u> |         |                | -6        |          |             |            |     |            | -+        |             |              |          |          |                        |           | -                 |          | <del>~~~~~</del>  | 4             |
| <b>—</b> ————     |             |         |                |           |          | <del></del> |            |     |            |           | -           |              |          |          | ++                     |           |                   |          |                   | 4             |

.

.

| Project:<br>Area (Grid)<br>Collectors | 40m      | atto la  | soil<br>Nour.<br>hittam.               | SAMI        | PLES      | 6        | Res<br>Map<br>Date | ults     | Plot        | ted I      | By: _<br>3/ |                                              | <u>с</u><br>N.T.S | .:_           | th              | <i>V</i> ii              | <i>tta</i>              | ,<br>:/m               |          |             |
|---------------------------------------|----------|----------|----------------------------------------|-------------|-----------|----------|--------------------|----------|-------------|------------|-------------|----------------------------------------------|-------------------|---------------|-----------------|--------------------------|-------------------------|------------------------|----------|-------------|
|                                       | Somple L | ocotion  |                                        | Т           | opogi     | raphy    |                    |          | v           | 'eget      | ati a       | ۱                                            |                   |               |                 | So                       | 11                      | Dat                    | a        |             |
| Sample                                |          |          | Notes                                  | Bottom      | of slope  |          | round              | Wooded   | Wooded      |            |             | þ                                            | -                 | S ampled      | Harizon<br>Ple  | Horizon                  | Develop –<br>men)       | Parenf                 | Material |             |
|                                       | Line     | Station  |                                        | Volley 8    | Direction | HIII Top | Level G            | H eavily | Sparsely    | 8 ur.n.t - | Logged      | Grasslar                                     | Swompy            | Har izan      | Depth to<br>Sam | G ood                    | Poor                    | Orifi                  | Bedrock  | Colour      |
| 1059                                  |          | 0450     | 6051419,52019, Clay/Selt               |             |           |          |                    |          |             | · · · ·    |             | · · · ·                                      |                   | A             | 30              |                          | $\nabla$                | <b>├</b> ──┤           |          | 57          |
| 3060                                  |          | 1100     | 55 street, min Evg, Selt,              |             | [         |          |                    |          |             |            |             |                                              |                   | B             | ES              | V.                       |                         |                        |          | nK          |
| 2010                                  |          | 1450     | 50% trace 5 60rg sult                  |             | <u> </u>  |          |                    |          |             |            |             |                                              |                   | ß             | 25              | $\underline{\mathbb{V}}$ |                         |                        |          | NRE         |
| 50/3                                  |          | 2+60     | Hol Fine Frank Star                    |             |           |          |                    |          |             | ·          |             |                                              |                   | 5             | 25              | と                        | $\left  - \right $      | <b>├</b> ───- <b> </b> | Ł        | nr          |
| 5064                                  |          | 3+20     | 102 Track min and silt                 |             |           |          |                    |          | <del></del> |            |             | -                                            |                   | $\frac{r}{2}$ | 20              | <u> </u>                 |                         | ┟───┥                  |          | <u>77 5</u> |
| de                                    |          | 3750     | 57 trag. Clay/self                     |             |           |          |                    |          |             | -          |             |                                              |                   | B             | 35              | $\overline{\nabla}$      | ┢──┦                    |                        |          | 200         |
| 066                                   |          | 4700     | 202 flog, min org, Silt                |             |           |          |                    |          |             |            |             |                                              |                   | 6             | 30              | Ū,                       | +                       |                        | -ť       | NXX         |
| 5267                                  |          | 9750     | 52 trap, 202 org, clay/selt            | ļ           |           |          |                    |          |             |            |             |                                              |                   | 4-B           | 35              | •                        | $\overline{\nabla}$     |                        | (        | mß          |
| 5060                                  |          | 5100     | 25 stion 102 drg, Sult                 | ļ           |           |          |                    |          |             |            |             |                                              |                   | A             | 35              |                          | $\overline{\mathbf{v}}$ |                        |          | MA          |
| "010                                  |          | 5450     | 53 1705,20104, 5101                    |             |           |          |                    |          |             |            |             |                                              |                   | læ.           | 25              | $\underline{\vee}$       |                         |                        | _ ¥      | <u></u>     |
| 071                                   |          | BAY 3    | Clay I suc                             | · · · · · · |           |          |                    | ·        |             | ·          |             |                                              | ł                 | B             | 23              | $\sum$                   |                         |                        | 4        | RU          |
| on.                                   |          | 7100     | Ciller Claus                           | 1           | ·         |          |                    |          |             |            | <u> </u>    |                                              | ł                 | 9-8           | 30              |                          | <del>K  </del>          |                        | <u> </u> | B           |
| 073                                   |          | 7150     | 403 Fran Elma cilt                     |             |           |          |                    | · · ·    |             |            |             |                                              |                   | A             | 20              | ·                        | Ϋ́                      |                        |          |             |
| 3074                                  |          | 3400     | 52 frag, min tra, silt                 |             |           |          |                    |          |             |            |             |                                              |                   | È             | 30              | t +                      |                         |                        |          | 100         |
|                                       |          |          |                                        |             |           |          |                    |          |             |            |             |                                              |                   |               |                 |                          |                         |                        | <u>ŕ</u> | <u></u>     |
|                                       |          |          |                                        |             |           |          |                    |          |             |            |             |                                              |                   |               |                 |                          |                         |                        |          |             |
|                                       |          |          |                                        | ╎──┤        |           |          |                    |          |             |            | [           |                                              |                   |               |                 |                          |                         |                        |          |             |
| <u> </u>                              | ····     |          |                                        | <b>  </b>   |           |          |                    |          |             |            |             |                                              | <u> </u> .        |               |                 |                          |                         |                        |          |             |
|                                       |          |          |                                        | ┼───┤       |           |          | <u> </u>           |          |             |            |             |                                              |                   |               |                 |                          |                         | <u> </u>               |          |             |
|                                       |          |          |                                        | <u>├</u>    |           |          |                    |          | ·           |            |             |                                              |                   |               |                 |                          |                         |                        |          |             |
|                                       |          |          |                                        | ╏{          |           |          |                    |          |             |            |             |                                              |                   |               |                 |                          |                         |                        |          |             |
|                                       |          |          |                                        |             | İ         |          |                    |          |             |            |             |                                              |                   |               |                 |                          | +                       | -+                     |          | {           |
|                                       |          |          |                                        |             |           |          |                    |          |             |            |             |                                              |                   |               |                 |                          |                         |                        |          |             |
|                                       |          |          | · · · · · · · · · · · · · · · · · · ·  |             |           |          |                    |          |             |            |             |                                              |                   |               |                 |                          |                         |                        | <u> </u> | -1          |
| <u> </u>                              |          | <u> </u> | ······································ | $\vdash$    |           |          |                    |          |             |            |             | <u>.                                    </u> |                   |               |                 |                          |                         |                        |          |             |
|                                       |          |          |                                        |             |           |          |                    |          |             |            |             |                                              | 1                 |               |                 |                          | 1                       | -                      |          |             |

|             |               |                | KEEWAT                  | IN EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GIN              | EE           | RIN      | 91       | INC      | •         |           |            |          | /         |          | -        | × .      |                  |          |             |                   |
|-------------|---------------|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|----------|----------|----------|-----------|-----------|------------|----------|-----------|----------|----------|----------|------------------|----------|-------------|-------------------|
|             | 11            | 221            |                         | SOIL S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | АМР              | LËS          |          | Beer     | ite i    | Platt     | ed B      | lv:        | 4        | <u>ca</u> | đ.       | W        | it       | tap              | 1.       |             |                   |
| oject:      | phm:          | V JK           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          | Nesu<br> | 1112     |           |           |            | N        |           |          |          |          |                  | <u>.</u> |             |                   |
| rea (Grid)  | : <u>/</u> 20 | <u>20' Cor</u> | iteur.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          | Мар      |          | 0         | -+        |            | 7/2      | 20        |          |          |          |                  |          |             | -                 |
| . 11        | . L           | latte li       | hittam                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          | Date     |          | <u>``</u> | <u></u>   | <u>-</u>   | <u></u>  | <u> </u>  |          | <u> </u> |          |                  |          |             | -                 |
| offectors   | ·             |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i τ <sub>α</sub> |              | anhy     | •        | •        | , v       | egeta     | otion      | i        |           | 1        |          | Soi      | 1                | Date     | o           |                   |
|             | Somple L      | ocotion        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | pogi         |          |          |          |           | -         |            |          |           | <u> </u> |          |          |                  |          |             |                   |
|             |               |                | · · ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          | •        |          |           |           |            |          |           |          | ы.<br>С  | 5        | à                |          | ie          |                   |
|             | · ·           |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ado          |          | Ψ        | e        | ded       |           |            |          |           | - a      | 17       | 17       | 22               | Le n     | Ě           |                   |
|             |               |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 or 1           |              |          | 5        | poc      | 00        |           |            |          |           | Ë        | °. ∎     | Ĭ        | å E              | Ъ        | ¥           |                   |
| Sample      |               |                | Notes                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100              | ÷            |          | 5        | N.       | 2         |           |            | Pu.      | ~         | S        | وم       |          |                  | T        | استشعبه     |                   |
| lumber      |               |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ş            | 101      |          | <u>ک</u> | ely       | <u> </u>  | 10.<br>10. | 5        | Ê         | Lon      | Sar L    | 70       |                  | _        | 20          | ž                 |
|             | l             |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ic It        |          | 2        | 140      | ors       |           | 66 c       | 5        | 3         | ort      | da       |          |                  | -        | pel -       | Ĕ.                |
|             | Line          | Station        |                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                | ž            | H        | ات       | H        | s.        | 60        | Ľ          | Ū        | s         | Ľ,       | ō,       | U        | <u> </u>         | <u> </u> | <u> </u>    | ू<br>त्र          |
| · ~ 2/2     | 1000          | 72500          | 25 Char Stara Senal     | sitt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |              |          |          |          |           |           |            |          |           | A        | 40       |          | ₩V               |          |             | 10.               |
| 2007        | 1000          | 150            | Est file 152 bra class  | Isilt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |          |          |          |           |           |            |          |           | 14       | 25       | <b>\</b> |                  |          | <u> ///</u> | 5                 |
| 030         |               | 24100          | alter Show, sell        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          |          |          | <u> </u>  | <u> </u>  |            |          |           | 12.      | 20       | V        |                  |          |             |                   |
| 221         |               | 1 + 50         | 54104 51215, 1 last     | SIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |          |          |          | <u> </u>  |           |            | <br>     |           | PM       | 20       | +        | <u> ~</u> -      |          |             | $\mathcal{D}$     |
| 2033        |               | 25+00          | min Tars, 56 Evay Sall  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>         | <u> </u>     | !        |          |          |           | · · ·     | <u> </u>   |          |           | 21       | 2        |          |                  |          |             | <u>5</u><br>12    |
| 2534        | 17            | +50            | 205 tills, 10% OVA Sond | Silt_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ                | <u> </u>     |          |          | i        | <u> </u>  |           |            |          |           | R        | 20       | 1.       |                  |          | h           | Ź                 |
| 235         | 11            | 26100          | min Sta, Silt           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                |              |          |          |          | <u> </u>  |           |            |          |           | 12       | 20       | t        |                  |          |             | $\frac{1}{2\ell}$ |
| 3076        | 11            | +50            | min na, selfy           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | <br>     |          |          | <u>!</u>  |           |            |          |           | B        | 30       | $\nabla$ | i i              |          | n           | 1                 |
| 5037        | 11            | 27+00          | 55 ON, Silt             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>         |              |          |          |          |           |           |            |          |           | R        | 20       | V        |                  | Í        | 10          | 7                 |
| ; 038       | 11            | +50            | 5 Epig selt             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>          |              |          |          |          |           |           |            |          |           | 6.       | 35       | 5        |                  |          | 0           | ĪK                |
| 2034        | 11            | 28+00          | 105 trend, min cha, Sr  | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | +                |              |          |          |          | <u> </u>  |           |            |          |           | B        | 130      | V        |                  |          | K           | $\mathcal{L}$     |
| 3040        | 11            | 450            | 53 5 Tify, 5 h ptg. set | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | <u>.</u>     |          |          |          |           |           |            | ·        |           | B.       | 30       | 6        | 1                |          | M           | Ż                 |
| 241         | 11            | 29100          | 15 gridg, 56009, 20     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1            |          |          |          |           |           |            |          |           | B        | 30       | <u>\</u> |                  |          | <u>m</u>    | iK                |
| <u> 242</u> |               | 750            | 5 6 cm such             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          |          |          |           |           |            |          |           | 6.       | 30       | V_       |                  |          | m           | <u>1K</u>         |
| <u>7043</u> | <u> </u>      | 80100          | 1) Stang, mil           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                | <u> </u>     |          | 1        | 1        |           |           |            |          |           | 15       | 36       | 6        |                  |          | h.          | ?K                |
| 2044        | +             | 750            | 15 group off            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                |              |          |          |          |           |           | <u> </u>   |          |           | 1S       | Z        | <u>v</u> | -                | -        | m           | אי                |
| -075<br>    | <u> </u>      | 157            | 152 nra cili            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          |          |          | <u> </u>  |           | ļ          | l        | _         | 13       | 120      | Υ_       | <u>├  </u>       |          | m           | Ķ                 |
| 2-4-        |               | 37.1.2         | min org, sitt.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |          |          |          | <u> </u>  |           |            | <b> </b> |           | 12:      | 22       |          | $\left  \right $ |          | 107         | 10                |
| JUT /       | 11            | 150            | min Sig. sitt           | <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |          |          |          |           |           |            |          |           | <u>R</u> | K-U      | č-       | <u> </u> {       |          |             | 7                 |
| 541         | 1.            | 23+00          | 53 tas 107 att site     | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                |              | ļ        |          |          |           | <u> </u>  |            |          |           | 12:      | 25       | Ť-       | ╞╼╌┨             |          | 11          | 14                |
| 5000        | 11            | +50            | 57 Edd, silt            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>         |              | <u> </u> |          | ļ        | <u> </u>  |           |            |          |           | 12       | 20       | <b>.</b> | $\mathbf{k}$     |          | - 17        | 5                 |
| 251         | 11            | 34/100         | 58 Roy 202009, Sill     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | <u> </u> |          |          |           |           |            |          |           | 0.6      | 120      |          | t                |          | . W         | $\exists$         |
| 052         | 11            | +50            | 52 tras, 54 ord, clay   | Self_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | l        |          |          |           | <u> </u>  | <u> </u>   |          |           | 18       | 20       | t        | <b>*</b>         |          | Z           | Ż                 |
| 2053        | 11            | 35100          | 52 tota, silly          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | <u> </u> |          |          | <u> </u>  | <u> </u>  |            |          |           | 3        | 25       | t        |                  |          | 1           | $\bar{n_{\ell}}$  |
| 054         | 11            | +50            | 52 toda. Silt           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <u> </u>     | <u> </u> |          |          |           | <u>-</u>  |            |          |           | A+B      | 33       | -        | λ                |          |             | 50                |
| 2055        | 11            | 36100          | 56 Tray, 57 org, Sult   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                | <u> </u>     | <b></b>  |          |          | ┼────     | <u> </u>  |            |          |           | A        | 35       |          |                  |          | K           | $\mathbb{Z}$      |
| 3056        | 1. 1/         | 150            | Clay fort               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                |              |          |          |          | 1         | $\square$ |            |          |           | B        | 30       | V        |                  |          | 1 17        | 28                |
| <u>S057</u> | 1 11          | 37+00          | 517103,5107             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <del> </del> | <u> </u> |          |          | 1         |           | I          |          |           | 13.      | 1.35     |          | 1                |          | m           | , 1.              |

|                       | Lon      | w 32     | KEEWA                 | SOIL SA                               | MPL           | ES<br>ES        | (IN<br>I | G II<br>Resul | NC<br>Its i | •<br>Plott | ed B        | y: _   | H              | a      | 1.          | <u>l</u> sh      | iti             | tai               | 7.     |          | ·             |
|-----------------------|----------|----------|-----------------------|---------------------------------------|---------------|-----------------|----------|---------------|-------------|------------|-------------|--------|----------------|--------|-------------|------------------|-----------------|-------------------|--------|----------|---------------|
| rojeci-<br>           | : 150    | o' Co    | tour                  |                                       |               |                 | 1        | Mab:          |             | 1          | 7           |        | 石 <sup>N</sup> | .T.S   | ·           |                  |                 |                   |        | ,        | _             |
| ollectors             | :        | hath l   | Shittam.              | · · · · · · · · · · · · · · · · · · · |               |                 | 1        | Date          |             | Xf         | <u>~( ·</u> | 4      | 70             | •      |             | •                |                 |                   |        |          | =             |
|                       | Sample L | ocatian  |                       | -                                     | Тор           | iogr 0 j        | ohy      |               |             | ı ∨<br>    | ege ta      | t.i an |                |        |             |                  | 301             | <br>              |        | a<br>:   |               |
| Somple                |          |          | Notes                 |                                       | l t om        | slope .         |          | puno          | looded      | Wooded     |             |        | Ð              | -      | Sampled     | Horizon<br>ile   | Horlzon         | Develop -<br>meni | Porent | Material |               |
| Number                |          | C        |                       |                                       | /alley Bo     | Arection of     | HII Top  | Level Gr      | leovity W   | Sporsely   | Burnt       | Logged | Grasslan       | Swampy | Harizon     | Depth to<br>Somp | poo 9           | Poor              | Dritt  | Bedrock  | Calour        |
|                       | Line     | 3101100  | of a way ave clay to  | ilt                                   | -             |                 | -        |               |             |            |             |        |                |        | A-C         | 90               |                 | V I               |        | Ľ        | <u>84 j</u>   |
| 5001                  | 1500     | 0100     | 20 That min On Cla    | y/Silt                                |               |                 |          |               |             |            | -           |        |                |        | <u>A-6</u>  | 30               | <del>\.</del> - |                   |        | //<br>   | <u>713</u>    |
| 2 - 3 - 3             | 1        | 1700     | mm ord, clay Isilt    |                                       |               |                 |          |               |             | <b> </b>   |             |        |                |        | 211         | 10               |                 |                   |        | //       | n de la       |
| 5001<br>5004          |          | 450      | 15 Strae, Elay/si     | lt.                                   |               |                 |          |               |             |            | <u>.</u>    |        |                |        | B.          | 25               | 5               | Ť                 |        | P        | 1             |
| 8005                  |          | 2+00     | Clay Silt             |                                       |               |                 |          | +             |             |            |             |        |                |        | A.B         | 35               | - <b>P</b>      | U                 |        | V        | 18            |
| Soil                  |          | +50      | 53100, 202019, Cla    | 1/sur                                 |               |                 |          |               |             |            |             |        |                |        | BC          | 25               |                 |                   |        | K        | C             |
| 5007                  |          | 3+00     | 403 (10g, mm 313, 2   | Sener/Sili                            |               |                 |          |               |             |            |             |        |                |        | B.          | Z0               | L.              |                   |        | 4        | RE            |
| 500                   |          | 750      | The and the           | y/silt                                |               | _               |          |               |             |            |             |        |                |        | A+ <u>3</u> | 135              | [               |                   |        | Y        | <u>7 א רי</u> |
| <u>8009</u>           | <br>     | 7700     | S & Trag 1m 019       | 4.00                                  |               |                 |          |               |             |            |             |        |                |        | 13          | 40               |                 |                   |        | <i>p</i> | 200           |
| 5010                  |          | 00       | min one, sitt         |                                       |               |                 |          |               |             |            |             |        |                |        | 12-         | 20               | H.              |                   |        |          | nK (          |
| 2011                  | <u></u>  | 150      | clay/silt             |                                       |               |                 |          |               | ·           |            | •           |        |                |        | 12.<br>A    | 2.5              | Ň               | 1                 |        | P        |               |
| 5013                  |          | 6+00     | min ora, clay/gilt    |                                       |               | <u>+</u> _      |          |               |             |            |             |        |                |        | A.          | 20               | ť               | <u>  </u>         |        | 'n       | 7             |
| 5014                  |          | +50      | min org, Silt         |                                       |               |                 | -        |               |             |            |             |        |                |        |             |                  |                 |                   |        |          |               |
| 50/5-                 |          | 7+00     | NO SAMPLE             |                                       | <u></u>       |                 |          |               |             | ╎──┤       |             |        |                |        | STA         | 30               |                 | 6                 |        | 2        | RE            |
| 5016                  | ļ        | 150      | min or cill/clay      |                                       |               |                 | †        | <u> </u>      |             |            |             |        |                |        | A           | 30               |                 | V.                | -      | 1.       | BL            |
| 8011                  |          | 0400     | Silt Cury.            |                                       |               | $\neg \uparrow$ |          |               |             | •          |             |        |                |        | A.          | 30               | 1               | く                 |        |          | 64            |
| <u>50/0</u><br>2 - 10 | <u> </u> | 450      | willing alan Kilt     |                                       |               |                 |          |               |             |            |             |        |                |        | 13-         | 20               | V               |                   |        |          | ma            |
| <u>2014</u><br>CALA   | <u> </u> | 100      | 103 424. 53 34. CL    | my silt                               |               |                 |          |               |             | <b> </b>   |             |        |                |        | A           | 45               |                 | K-                |        |          |               |
| 5021                  |          | 10100    | clay/silt             | 01                                    |               |                 |          |               |             | ┝          | <u> </u>    |        |                |        |             | 38               | <b>F</b>        | Ň.                |        |          | 21            |
| Sall                  |          | 150      | 5600. Clay/silt       |                                       |               | ·+              |          |               |             | ┟──┤       |             |        |                |        | ß           | 31               |                 |                   |        |          | nr            |
| 8013                  |          | 11100    | 107 ting sait         | to to the                             | <b></b>       |                 |          |               |             | ╞───┤      |             |        |                |        | A           | 25               |                 |                   |        |          | 20            |
| 5024                  |          | +50      | 50 Strag, min org, Cd | 7/sui                                 |               | -+              |          |               |             | <u>├</u>   |             |        |                |        | A           | 20               |                 | 1                 |        |          | D.S.          |
| 5025                  |          | 12+00    | 5 From my Su          | titt !                                | <del></del> † |                 |          |               |             |            |             |        |                |        | R-13-       | 30               |                 | し                 |        |          | 20            |
| 2016.                 |          | <u> </u> | (> 1709,55 500 C.C    | g/mu.                                 |               |                 |          |               |             |            |             |        |                |        |             |                  |                 | <b> </b>          |        |          |               |
|                       |          |          |                       |                                       |               |                 |          |               |             | ┝┈┥        |             |        | •              |        | <b> </b>    | }                |                 |                   |        |          |               |
|                       | 1        |          |                       |                                       |               |                 |          |               |             | ┞──┤       |             |        |                |        | <u>├</u> ── |                  |                 | <b>†</b>          |        | ┟╾╍╌┼╸   |               |

| KEEWATIN | ENGINEERING INC. |  |
|----------|------------------|--|
|----------|------------------|--|

3 - 1 - 1 - 1 - 3

.

 $\mathbf{r}$ 

SOIL SAMPLES

Project: 321 Homer

Area (Grid): 3500' Contour

s e e e e e

Collectors: Aaron Wardwell

| Result | 5 Plottec | · ʊy·        |      | ما م     |
|--------|-----------|--------------|------|----------|
| N      | Homes     | NTS:         | 104. | <u> </u> |
| Mab: - |           | N, N, N, *** | -    |          |
| 0-4-   | Sept      | 14,1990      |      |          |
| Date - |           |              |      |          |

1 6 1 6 1

and the second of the second second second second second second second second second second second second second

Results Plotted By: \_\_\_\_

|          | Sample La | cation  |                               | Τ¤       | opogr        | ophy     |         |              | V      | egeti | ot.i an    |                                        |        |              |                 | 301          | i                                               | Del      | a         |            |
|----------|-----------|---------|-------------------------------|----------|--------------|----------|---------|--------------|--------|-------|------------|----------------------------------------|--------|--------------|-----------------|--------------|-------------------------------------------------|----------|-----------|------------|
| Sample   |           |         | Notes                         | ttom     | slope        |          | puno    | looded       | Wooded |       |            | 10                                     | -<br>- | Sampled      | Harizon<br>Ie   | Horlzan      | Develop –<br>menl                               | Parent   | hlaterial |            |
| Number   |           |         | NOTE 3                        | lley Bo  | tction of    | H Top    | evel Gr | ovily W      | orsely | urnt  | 09940      | rossland                               | YQMOW  | orizon       | epth 1a<br>Samp | bood         | boor                                            | 111      | Bedrock   | olour      |
| 90 AW321 | 3 500'    | Station | Sapt. 14, 1990                | >        | <u> </u>     | Ŧ        |         | Ξ            | ທີ     |       |            | 0                                      | 00     | R            | 25              | -7           | · • ·                                           | <u> </u> |           | MEB        |
| 5058     |           | 4+00    | 10% Frag, 5% org, Silt /Sand  |          |              |          |         |              |        | •     |            |                                        |        | B            | 25              | 1            |                                                 |          |           | MRB        |
| 5059     |           | 4+50    | 10% Fray, 5% org, SIIT.       |          |              |          |         |              |        |       |            |                                        |        | B            | 30              | 1            |                                                 |          | _         | MAB        |
| 3060     |           | 5+00    | 5% Frag, Silt 10% ory.        |          |              |          |         |              |        |       |            |                                        |        | A-R          | 30              |              |                                                 |          |           | MRB        |
| 5061     |           | 5+50    | 20% Frag, silt                | +        | +            |          |         |              |        | ,     |            | _                                      |        | 1610<        | 30              | /            | 1                                               |          |           | MPB        |
| 5062     |           | 6+00    | 20% drag sitt.                |          | +            |          |         |              |        |       |            |                                        |        | B            | 35              | 1            |                                                 |          |           | MPB        |
| 5063     |           | 6+50    | 5% Frag 5% org, silt.         |          | +            |          |         |              |        |       |            |                                        |        | A-B          | 30              |              |                                                 |          |           | Meb        |
| 5064     |           | 7+00    | 10% org, sana.                |          |              | <u> </u> |         | <u> </u>     |        |       |            |                                        |        | B            | 30              | $\checkmark$ |                                                 |          |           | MPB        |
| 5065     |           | 7+50    | 5% trag, sand                 |          |              |          |         |              |        |       |            |                                        |        | A-B          | 25              |              | 1                                               |          |           | MEB        |
| <u> </u> |           | 8+00    | 15% Frag, 10% arg, 3117.      | +        | +            |          |         | <u> </u>     |        |       | · · ·      |                                        |        | A-B          | 30              |              |                                                 |          |           | MPB        |
| 5067     |           | 8+50    | 5% Fray, 10% kg, sana.        |          |              |          |         | <del> </del> |        |       |            |                                        |        | A-B          | 30              |              | $\boldsymbol{\boldsymbol{\boldsymbol{\wedge}}}$ |          | _         | Meb        |
| 5068     |           | 9+00    | 15% Frag, Sand.               | <u> </u> |              |          |         | 1.           |        |       |            |                                        |        | B            | 20              | /            |                                                 |          |           | MBB        |
|          |           | 9+50    | 15% Frag, 5% org, SIH / Clay. |          | 1.           |          |         | 1            |        |       |            | ·                                      |        | B            | 20              | /            |                                                 |          |           | MEB        |
| 5070     |           | 10+00   | 5% Frag SIT.                  |          | <u></u><br>1 |          |         | 1            |        |       |            |                                        |        | ß            | 30              | . /          |                                                 |          |           | MPB        |
| 5071     |           | 10450   | 10% Frag, sana '              |          | <u>-</u>     |          |         | <u> </u>     |        |       |            |                                        |        | ß            | 3               | 1            |                                                 |          |           | (LB        |
| 5072     |           | 11+00   | s;   <del>t</del> ,           | ļ        | <u></u>      |          | [       |              |        |       |            |                                        |        | 1 B          | 20              | 1            | ·                                               |          |           | MEB        |
| 5073     |           | II+SD.  | 5% Frag, Silt                 |          | +            | 1        |         | 1            |        |       |            |                                        |        | R            | 25              | 1            |                                                 |          |           | MEB        |
| 5074     |           | 12+00   | 5º/a Fran, Silt               | <u> </u> | +            |          |         |              |        |       |            |                                        |        | ß            | 30              | 1            |                                                 |          |           | 1020       |
| 5075     |           | 12+50   | <u><u>Silt</u></u>            |          | <u> </u>     |          |         |              |        |       |            |                                        |        | B            | 20              | 1            |                                                 |          |           | MER        |
| 5076     |           | 13100   | 5% Frag, 5% or 511+           |          |              |          |         | <u> </u>     |        |       |            |                                        |        | B            | 35              |              |                                                 |          |           | MEB        |
| 5077     |           | 13+50   | 5% org, silt                  |          |              | <u> </u> |         |              |        |       |            |                                        |        | 8            | 30              | /            |                                                 |          |           | MOR        |
| 5078     |           | 14+00   | 5% org, silt/sand.            |          | <u> </u>     |          |         |              |        |       |            |                                        |        | R            | 30              | 1            |                                                 |          |           | MPR        |
| 5079     |           | 14+50   | 5% From, 5% ory, silt/sand.   |          |              |          |         | <u> </u>     |        |       |            |                                        |        | R            | 25              |              |                                                 |          |           | mee        |
| 5080     |           | 15+00   | 5% Frag, silt.                |          | <u> </u>     |          |         |              |        |       |            |                                        |        | R            | 30              | 1            |                                                 |          |           | MAR        |
| 5081     |           | 15+50   | 5.1+. 1                       |          |              | <u> </u> |         | i            |        |       |            |                                        |        | R            | 30              | 1            |                                                 |          | _         | MPD        |
| <u> </u> |           | 16+00   | 5% Fran Silt.                 |          |              |          |         | 1            |        |       |            |                                        |        | R            | 30              | ./           |                                                 |          |           | MPR        |
| 5083     |           | 16+50   | silt.                         |          | <u> </u>     |          |         |              |        | · · · | ┝───┾      |                                        |        | 13           | 20              | <u> </u>     |                                                 |          |           | MAR        |
| 5084     |           | 17+00   | clar/silt.                    |          |              | <u> </u> |         |              |        |       | <u> </u> ] |                                        |        | -13-         | <b>  ≝</b> ~    | ¥            |                                                 |          |           |            |
|          |           |         |                               |          |              |          |         |              |        |       |            | ************************************** |        |              |                 |              |                                                 |          |           |            |
|          |           |         |                               |          |              |          |         |              |        |       |            |                                        |        | <del> </del> | 1. 1            |              |                                                 | <u> </u> |           | ; <b>{</b> |
|          | · ·       | 1       | i                             | 1        | •            |          | •       |              | -      |       |            |                                        |        |              |                 |              |                                                 |          |           |            |

## KEEWATIN ENGINEERING INC.

.

State of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

٩

۲.

1 "

٠

•

٦

· · · · · · · · ·

1

.

.\*

.

SOIL SAMPLES

| Project:       | SAL HO   | mer      |                                       |     |                |               | Res  | ults          | Plot         | ted l        | 8y: _      |            |          |                 |              |                 |                 |              |                   |                |
|----------------|----------|----------|---------------------------------------|-----|----------------|---------------|------|---------------|--------------|--------------|------------|------------|----------|-----------------|--------------|-----------------|-----------------|--------------|-------------------|----------------|
| Area (Grid)    | 1: 1500  | Contour  | <u>, 3500 ( Contour.</u>              |     |                |               | Мар  | ): <u> </u>   | tom          | ec           |            | 1          | N.T.S    | 5. :            | 104          | <u> </u>        | 17.             | <del>.</del> |                   | <b></b> -      |
| Collectors     | : Anc    | m Wardy  | sell                                  |     |                |               | Date | e             | <u> 3-0-</u> | <u>t. 10</u> | <u>, 1</u> | <u>190</u> | <u>,</u> | <u>5ep</u>      | +.)          | لرك             | 990             | )            |                   |                |
|                | Somple L | .ocation | · · · · · · · · · · · · · · · · · · · | Т   | 300 <b>9</b> 1 | abpà          | •    |               | v            | eget         | otio       | ł          |          |                 |              | 50              | 11              | Dat          | a                 |                |
| 1 ·            |          |          |                                       |     |                | l<br>I        |      |               |              |              |            |            |          |                 | e .          | e               | 1               | 1            | -                 | 1              |
|                |          |          |                                       |     | đ              |               |      |               | â            |              |            |            |          | 2               | 0 7          | 12.0            |                 | T T          | -i-i              |                |
| Sample         |          |          |                                       | Pol | 1              | ŀ             | u n  | P.            | 000          |              |            |            |          | d E             | for          | ě               | Т.<br>С         | j.           | ē                 |                |
|                |          |          | Notes                                 | Ĩ   | 5              |               | 2    | Ň             | Ň            |              |            | P          |          | s               |              | Ľ               | <u> </u>        | <u> </u>     |                   | Į              |
| Number         |          |          |                                       |     | E              | 6             | 1    | · 🛪           | ۱y           |              |            | 0          | γų       | ġ               | 1 <u>-</u> 5 |                 | 1               |              | - <del>X</del>    |                |
|                |          | -        | · · ·                                 | 1   | ਚੁੱ            | 12            | 2    | 1 Ivo         | orse         | L D          | 65         | a s s      | 20       | LI T            | 50           | po.             | l è             | Ξ            | 2 E               | <u><u></u></u> |
| 90AW321        | Line     | Station  | Sept. 10,1990                         | ₽   | ž              | Ξ             | 1    | Ϋ́            | S            | 8            | 2          | ö          | ŝ        | £               | a            | 9               | _ ه             | à            | å                 | ပီ             |
| 5029           |          | 14+00    | 20% 20 5.14                           | 1   |                |               |      |               |              |              |            | <u> </u>   |          | A-R             | 30           |                 | i7              |              |                   | MPF            |
| \$ 030         |          | 14+50    | 10% Fran, 5° (o cra, silt / clar,     |     |                |               |      |               |              | ·            |            |            |          | B               | 25           | $\overline{}$   | 1               |              |                   | 1 PP           |
| 5.032          |          | 15+50    | 15% oru sitt                          | 1   |                |               |      |               |              |              |            |            |          | A-B             | 35           |                 | 7               |              | 1                 | MRE            |
| 5033           |          | 16100    | 2506 Fran. 10% ora silt.              |     |                |               |      |               |              |              |            |            |          | B               | 25           |                 |                 |              | !                 | MLE            |
| 5 034          |          | 16+50    | 5% Fran, 20% or Silt.                 |     |                |               |      |               |              | ·            |            |            |          | A-B             | 35           |                 |                 |              | 1                 | mel            |
| 5 035          |          | 17+00    | 10°/e Frag, 10%0 org, silt/clay       |     |                |               |      |               |              |              |            |            |          | 8               | 25           | $\checkmark$    |                 |              | !                 | MRE            |
| 5 036          |          | 17+50    | 5% Fray, 5% and sitt.                 | ļ   |                |               |      |               |              |              |            |            |          | B               | 25           |                 | L,              |              |                   | <u>mke</u>     |
|                |          | 18+00    | 5% Frag, 20 % ora, clar failt.        |     |                |               |      |               | [            |              |            |            |          | <u>A-R</u>      | 40           | <u> </u>        |                 |              | !                 | Meb            |
| 5038           |          | 18+50    | 5% orgisitt                           |     |                |               |      |               | •            |              |            | !          |          | 8               | 30           |                 |                 |              | !                 | Mee            |
| 5039           |          | 19+00    | 5 % Frag, 10 % org, silt.             |     |                | ·             |      |               |              |              |            |            |          | A-B             | 30           |                 |                 |              | !                 | MEB            |
| 5040           |          | 19+50    | 20% arg, silt                         |     |                |               |      | $\rightarrow$ |              |              |            |            | {        | <u>A B</u>      | 40           |                 |                 |              | <u> </u>          | mer            |
| 5041           |          | 20100    | 10% org, silt.                        |     | ·              |               |      | ·             | <u> </u>     | ·            | <u> </u>   | ╾╾┼        |          | <u>Ř</u>        | 35           | $ \rightarrow $ | I               |              | Į⁄                | MR             |
| <u>S 042</u>   |          | 20+50    | 5 % ory, Silt                         |     | ·              |               |      |               |              |              | ·          | ·          | <u> </u> | <u>R</u>        | 30           | 싀               |                 |              | !                 | Mer            |
| <u> </u>       |          | 21+00    | 5.1+                                  |     |                |               |      |               | ł            |              |            |            |          | 51              | -25-         | -4              | _               |              | <u> </u>          | mpg            |
|                |          | 21+30    | 20% usq sill                          |     |                |               |      |               |              |              |            |            | ļ        | <u>4-8</u>      | 40           |                 | $ \rightarrow $ |              | <u> </u>          | <u>1</u> KŖ    |
|                |          | 22+00    | 25% trag, 5% org, sunau               |     |                |               |      |               |              |              |            | -+         |          | <del>6</del> -R | 20           |                 | <u> </u>        |              | $-\frac{\eta}{1}$ | <u>MB</u>      |
| <u>&gt;096</u> |          | 2250     | 5% 03,511                             |     |                | ┈╾┟           |      |               |              |              |            |            |          | 4-0             | 30           | -4              |                 |              | <u> </u>          | 760            |
| <u></u>        |          | 25100    | 10% Frag, 10% ory, 5117.              |     | · {-           |               |      |               |              |              |            | -+         |          | <u>4-0</u>      | 20           |                 | $ \rightarrow $ |              | <u></u> ₽         | <u>nep</u>     |
| 5048           |          | 23750    | 10-10 org , Sift.                     |     |                |               |      |               |              |              |            |            |          | 1-B             | <u>30</u>    | $\dashv$        |                 |              |                   | <u>IKR</u>     |
| 90AW321        | 2500/    |          | 10 % 0 g 15.11                        |     |                |               |      |               |              | <del></del>  |            |            |          |                 | 70           |                 | $\rightarrow$   | <u> </u>     |                   | <u>RD</u>      |
| 5050           |          | 0+00     | 1001 E 5º/ ac cill leady              |     |                |               |      |               |              |              | -+         |            |          | 12              | 25           | -7              | — <u></u> +     |              |                   | noQ            |
| 5051           |          | 0+50     | 10% Cm 5% - 5 6 6 6 6                 |     |                | $\rightarrow$ |      |               |              |              |            |            |          | <del>F</del>    | 25           | ⇒               |                 |              |                   | 100            |
| 5 052          |          | 1100     | 5% Crock Silt                         |     |                | $\dashv$      | -    |               |              |              |            | $\neg$     | -+       | B               | 30           | ー               |                 |              |                   |                |
| 5 053          |          | 150      | 5 % Edg Silt                          |     | <del></del>    |               |      |               |              | $\neg$       |            | •          | -+       | R               | 30           | ∽⁺              | -+              |              | <u>//</u>         | nde<br>Nøgi    |
| 5 054          |          | 2+00     | 5 % Fac Sand                          |     |                |               |      |               |              |              | •          |            |          | 18              | 30           | オ               | ·               |              | in                | NOR I          |
| 5055           |          | 2150     | Sandy Sandy                           |     |                |               |      |               |              |              |            |            |          | R               | 35           | 71              | -+              |              |                   | 嵩              |
| 5 056          |          | 3100     | 5% Fragi 5% ora, Sandy.               |     |                |               |      |               |              |              |            |            |          | B               | 30           | オ               |                 |              | M                 |                |
| 5057           |          | 3+50     | Sandia                                |     |                |               |      | Ì             |              |              |            |            |          | BI              | 30           | 7               |                 |              | <br> r            | 20             |

## KEEWATIN ENGINEERING INC.

٦

۲

٩

• ۲ ٦

r

٦

e.

SOIL SAMPLES

| Project:         | 321 H                                 | omer        |                             | SOIL                | SAMF     | PLES         | 5     | Ree      | ults        | Plat        | ted I | Bv:      |          |                |              |                         |           |                  |          |              |             |
|------------------|---------------------------------------|-------------|-----------------------------|---------------------|----------|--------------|-------|----------|-------------|-------------|-------|----------|----------|----------------|--------------|-------------------------|-----------|------------------|----------|--------------|-------------|
| Area/Gold        | ) <b>S</b>                            |             | and 1000' Contracts         |                     |          |              |       |          |             | tom         | er.   | -1       | ,        | N T G          |              | 10                      | 4 1       | 3/7              | ,        |              |             |
| Area (Gria       | /                                     |             |                             |                     |          |              |       | MOD      | 1÷ <u> </u> | <u></u>     |       | 7        |          | ч. н. с<br>2 љ | ). •         |                         |           |                  |          |              |             |
| Collectors       | : <u></u>                             | 1 Lard 12   | <u>rell</u>                 |                     |          |              |       | Date     | e           | 2           | ρŢ.   | <u> </u> | <u> </u> | 10             |              |                         |           |                  | _        |              |             |
|                  | Sample L                              | ocation     |                             |                     | Į Ţ      | opogi        | raphy | •        |             | v           | eget  | at.i or  | 1        |                |              |                         | 20        | 11               | Del      | ٩            |             |
| Sample<br>Number |                                       |             | Notes                       |                     | y Boltom | lon of stope | Top   | l Ground | ly Wooded   | iely Wooded | . 1   | ed       | sland    | μpγ            | ton' Sampled | ) la hlarizan<br>Sampie | d Horizon | Develop<br>ment  | l Parent | ock Matarial |             |
| 90AW321          | Line,                                 | Station     | 5ept. 6, 1990               |                     | Volle    | Direct       | Hill  | L e v    | Heav        | Sport       | Burn  | Logg     | Gras     | S ¥0           | Horlz        | Dept                    | . 00 J    | Paol             | orit     | Bedr         | Colo        |
| 5 001            |                                       | 0+00        | 10% ora, silt.              | ·                   |          |              |       |          |             |             |       |          |          |                | B            | 30                      | 7         |                  |          |              | MRE         |
| 5002             |                                       | 0+50        | 5% Free, 10% ore. Silt      | CAY.                |          |              |       |          |             |             | •     |          |          |                | B            | 30                      | 1         |                  |          |              | ULB         |
| 5 003            |                                       | 1:00        | 5% ora silt.                | 0                   |          |              |       |          |             |             |       | ·        |          |                | B            | 30                      | Ĵ         |                  |          |              | CCB         |
| 5 004            |                                       | 1+50        | 5% och silt.                |                     |          |              |       |          |             |             |       | .        |          |                | Ð            | 20                      |           |                  |          |              | LBB         |
| 5005             |                                       | 2+00        | 5% or , Sitt.               |                     |          |              |       |          |             |             | •     |          |          |                | B            | 25                      | 1         |                  | ]        | 1            | LRB.        |
| 5006             |                                       | 2+50        | 5°6 are silt.               |                     |          |              |       |          |             |             |       |          |          |                | 8            | 25                      | _         |                  |          |              | LLB         |
| 5007             |                                       | 3+00        | siff/sand.                  |                     |          |              |       |          |             |             |       | !        |          |                | B            | 30                      |           |                  | ·        |              | MAB         |
| <u> </u>         | 1000                                  | 3+50        | 10°6' agisilt.              |                     |          |              |       |          |             |             |       |          |          |                | R            | 30                      |           |                  |          |              | <u>meb</u>  |
| <u>S009</u>      |                                       | 4+00        | 5% Frag 5% org silt.        |                     |          |              |       |          |             |             |       |          |          |                | A-B          | 30                      |           |                  |          |              | <u>meb</u>  |
| <u>S010</u>      |                                       | <u>4+50</u> | 10% Fraz, 5% 100, 911       | <u></u>             |          |              |       |          |             |             |       |          |          |                | <u> </u>     | 30                      |           |                  |          |              | <u>LB</u>   |
|                  | · · · · · · · · · · · · · · · · · · · | 5+00        | 10% ora silt.               |                     |          |              |       |          |             |             |       |          |          |                | <u>A-B</u>   | 30                      |           | _                |          |              | <u>UB</u>   |
| <u>Sorz</u>      |                                       | 5+50        | 20 % day silt.              |                     |          |              |       | !        | <u> </u>    |             | ·     |          |          |                | <u>A-B</u>   | 301                     | [         |                  |          | (            | MAB         |
| 5.013            |                                       | 6+00        | 15% Frag 20% org, silt      | - <u>,</u>          |          | -            |       |          |             |             |       | <u>·</u> | <u> </u> |                | <u> </u>     | 25                      |           |                  |          |              | <u>Meri</u> |
| 5015             |                                       | 10+00       | 56 Frag 10 1/1 459, Sill    | 7                   | ·        |              |       |          |             |             |       |          |          |                | B            | 25                      |           |                  |          | <u> </u>     | <u>L</u> PB |
| _ 3016           |                                       | 7+50        | 10-1- Fran, 20% orn, 51     | 14.                 |          |              |       |          | •           |             |       |          |          |                | B            | 25                      | _         |                  |          | /            | neb         |
|                  |                                       | 8100        | 5 1/2 Fraz, 10 -10 ard, sil | 4-                  |          |              |       |          |             |             |       |          |          |                | B            | <u>35  </u>             |           | ·                |          |              | MEBI        |
| 5019             |                                       | 9+00        | 25% Fras, 10% cra, sil      | <u>+</u>            |          |              |       |          |             |             |       |          |          |                | <u> </u>     | 30                      |           | $\underline{\ }$ | ·        | !            | mra         |
| 5020             |                                       | 9+50        | 10% Fran , 5% are , 511     | <i>i</i> <b>+</b> . |          |              |       |          | ·           |             |       |          |          |                | <u>B</u>     | 30                      | 1         |                  |          | j/           | RB          |
| <u> </u>         |                                       | 10+00       | 5% Frag, 10% on si          | H.                  |          |              |       |          |             | ·           |       |          |          |                | B            | 30                      |           |                  |          | 1            | 28          |
| <u>5022</u>      |                                       | 10+50       | 5% tray 10% ora 311         | 17.                 |          |              |       |          |             |             |       |          |          |                | <u>A-B</u>   | 30                      |           |                  |          | r            | 128         |
| S023             |                                       | 11+00       | 15% 03. silt.               |                     |          |              |       |          |             |             |       |          |          |                | B            | 30                      | 1         |                  |          | ŕ            | IRR         |
| 5024             |                                       | 11+50       | 5% Fras, 10% ora Sil        | F.                  |          |              |       |          |             |             |       |          |          |                | B            | _ کد                    |           |                  |          | W            | EB          |
| 5025             |                                       | 12+00       | 5%. Frag. 20% and sil       | $f_{i}$             |          |              |       | T        |             |             |       |          |          |                | 8            | 30                      |           |                  |          | N            | 128         |
| 5026             |                                       | 12+50       | 500 cm; sitt.               |                     |          |              |       |          |             |             |       |          |          |                | B            | 20                      |           |                  |          | m            | RB          |
| 5027             |                                       | 13+00       | 10% 452 5117.               |                     |          |              |       |          |             |             |       |          | •        |                | B-AL         | 20                      |           |                  |          | 1            | NEB         |
| 5028             |                                       | 13+50       | 5% Fai 20% ora sil          | <del>/</del> .      |          |              |       |          |             |             |       | <u> </u> | T        |                | B.           | 25                      | 7         | T                |          | ,<br>N       | IRA         |
|                  |                                       |             |                             |                     |          |              |       |          |             |             |       |          |          |                |              |                         |           |                  |          |              | ſ,          |
| F                |                                       |             |                             |                     |          |              |       |          |             |             |       |          |          |                |              |                         |           | I                |          |              |             |
|                  |                                       |             |                             | {                   |          |              |       |          |             |             |       |          |          |                | !            |                         |           |                  |          |              |             |

| Project:    | Homer 321                             | STREAM SE |          |          | INĠ<br>Res | INC<br>ults F | Plotte   | d By: |       | 4          | 17           | La       | hi       | Ha       | ·            | ·                                            | · · · ·  |
|-------------|---------------------------------------|-----------|----------|----------|------------|---------------|----------|-------|-------|------------|--------------|----------|----------|----------|--------------|----------------------------------------------|----------|
| Area (Grid) | : 1590 Contour                        |           |          |          | Μαε        | ):            |          |       |       | N          | I.T.S.       | :        |          |          |              |                                              |          |
| Collectors  | Heath Whittam.                        |           |          |          | Date       | e: _          | Sef      | 5t    | 10    | 190        | 7.           |          |          |          |              |                                              |          |
|             |                                       |           | SEI      |          |            | .ΤΔ           | T        | STRE  |       |            |              | 1        | 1        | 1        | 1            | <b>—</b>                                     |          |
| Sample      | NOTES                                 |           |          |          |            | <u> </u>      |          |       | E     | <u>ج</u> : |              | 9N       |          |          |              |                                              |          |
| Number      | NUTES                                 |           | Sand     | - ĨĪS    | Clay       | Orga          | Bank     | Acth  | Widt  | Oep        | city<br>city | SPA      | 6 BH     |          |              |                                              |          |
| 1001        | 17+65 MOSS MATT                       | Ø         | 10       | 7/1      | Þ          | 50            |          | 1     | Pm    | 10         | m.           | Ĭ        |          | 1        | +            | +                                            |          |
| 1002        | 21+75 MOSS MATT                       | 10        | Ø        | 50       | ¢.         | 59            |          | 7.    | Im    | 10         | m            |          | 1        |          | 1            | 1                                            | 1        |
| 2003.       | 23+80.                                | 25        | 7 30     | 275      | Ø          | Ø             |          | 7     | / 697 | 15         | m            |          |          |          |              | -                                            |          |
|             |                                       |           |          |          |            |               |          |       |       |            |              | <u> </u> |          |          | <u> </u>     | <u>†                                    </u> |          |
|             |                                       |           | <u> </u> |          |            | <u> </u>      |          |       |       |            |              | <b> </b> | <u> </u> | <u> </u> | <del> </del> | <u> </u>                                     | <u> </u> |
| ·····       |                                       |           |          |          |            |               | <u> </u> |       |       |            |              |          |          |          |              | <u> </u>                                     | +        |
|             |                                       |           |          | -        |            |               | 1        |       |       |            |              |          |          |          | +            |                                              |          |
|             | <b>T</b>                              | ·         |          |          |            | 1             |          |       |       |            |              |          |          |          | <del> </del> | <del> </del>                                 | <u> </u> |
|             |                                       |           |          |          |            |               |          |       |       |            |              |          |          |          |              |                                              |          |
|             |                                       |           | _        | _        |            |               | <u> </u> |       |       |            |              |          |          |          | <u> </u>     |                                              |          |
|             |                                       |           |          |          |            | ·             | <u> </u> |       |       |            |              |          |          |          | <u> </u>     | <u> </u>                                     |          |
|             |                                       |           |          |          | <u> </u>   | <u> </u>      |          |       |       |            |              |          |          |          |              | <b>}</b>                                     |          |
|             |                                       |           | <u> </u> |          |            | <u> </u>      | <u></u>  |       |       |            |              |          |          |          | <b> </b>     | +                                            |          |
|             |                                       |           |          |          |            |               |          |       |       |            |              |          |          |          | <u> </u>     | <u> </u> '                                   |          |
|             |                                       | •         |          |          |            |               |          |       |       |            | ,            |          |          |          |              |                                              | [        |
|             |                                       |           |          |          |            |               |          |       |       |            | ·            |          |          |          |              |                                              |          |
| <b>_</b>    |                                       |           |          |          |            |               |          |       |       |            |              |          |          |          |              |                                              |          |
|             |                                       |           |          |          |            |               |          |       |       |            |              |          | <u></u>  |          |              | <u> </u>                                     |          |
|             | · · · · · · · · · · · · · · · · · · · |           | +        |          |            | -             |          |       |       | <u> </u>   |              |          |          |          | '            | <b> </b>                                     | <b>-</b> |
|             |                                       |           | +        |          |            |               |          |       |       |            |              |          |          |          |              |                                              |          |
|             |                                       |           | 1        | +        |            |               |          |       |       |            |              |          |          |          | <br>         |                                              |          |
|             |                                       |           |          |          |            |               |          |       |       |            |              |          |          |          |              |                                              |          |
|             |                                       |           |          |          |            |               |          |       |       |            |              |          |          |          |              |                                              |          |
|             |                                       |           | ĺ        |          |            |               |          | ]     |       |            |              |          |          |          |              |                                              |          |
|             |                                       |           | <u> </u> | <u> </u> |            |               |          |       |       |            |              |          |          | ]        |              |                                              |          |
|             |                                       | 1         |          |          |            |               |          |       |       |            |              |          |          |          |              |                                              | 1        |

| H #=                                  | KEE                                    | WALIN ENG                |            |       | NG       | INC          | •        |        |       |       |              |        |              |    |            |          |          |
|---------------------------------------|----------------------------------------|--------------------------|------------|-------|----------|--------------|----------|--------|-------|-------|--------------|--------|--------------|----|------------|----------|----------|
| oject: Homer 371                      |                                        |                          |            |       | Resu     | ilts P       | lotte    | d By:  |       |       |              |        |              |    |            | <u> </u> |          |
| rea (Grid): <u>2000 Ce</u> i          | ntour                                  |                          |            |       | Map      | : <u>H</u> e | mll_     |        |       | N     | I.T.S.:      | 100    | łΒ           | 17 | )          |          |          |
| ollectors: Colim And                  | lerson 90CC321                         | Date: <u>Sept 12/96'</u> |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       | ······································ |                          | SEDI       | IMEN. | T DAT    | ТА           |          | STRE   | AM D  | ATA   |              |        |              |    |            | Τ        |          |
| Sample<br>Number                      | NOTES                                  | Gravel                   | Sand       | Silt  | СІау     | Organid      | Bank     | Aciive | Width | Depth | city<br>City | SPRINC | BRY<br>GULLY |    |            |          |          |
| .001 Over Bedro                       | ch 160° Bearing                        | 30%                      | 40%        | 30%   |          |              |          |        | .8    | .2    | mal          |        | 1            |    | 1          |          | <u> </u> |
| OCZ Rounded Ro                        | ik Fragiso"                            | mas                      | <u>s m</u> | .tt   |          |              |          |        | ,9    | , ک   | mal          | -      |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            | -        |          |
|                                       |                                        |                          |            |       |          |              | (        |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          | ļ!         |       |          |              |          |        |       |       |              |        |              |    |            | <u> </u> |          |
|                                       |                                        |                          |            |       |          |              | · ·      |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              | <u> </u> |        | ·     |       |              |        |              |    | <u> </u> = |          |          |
|                                       |                                        |                          |            |       | _        |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       | ·                                      |                          |            |       |          |              |          |        |       |       |              |        |              |    | -          |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              | i      |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            | •     |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
| · · · · · · · · · · · · · · · · · · · |                                        | ·                        |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        | i            |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          | ]            |          |        |       |       |              |        |              |    |            |          |          |
|                                       | ·                                      |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       | <u> </u> |              |          |        |       |       |              |        |              |    |            |          |          |
|                                       |                                        |                          |            |       |          |              |          |        |       |       |              |        |              |    |            |          |          |

|          | 6- Minissi 31 |
|----------|---------------|
| Ho       | mer 321       |
| Project: |               |

## KEEWATIN ENGINEERING INC. STREAM SEDIMENTS

Results Plotted By: \_\_\_\_\_

Area (Grid):\_

Patrick Wilson Collectors:

Map:\_\_\_\_\_\_N.T.S.: \_\_\_\_\_

a construction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

| Collectors :   | - Patrick allon                  |            |              |                         | Date          | ; :         |      |                    |          |     |        |    |             |             |           |          |        |
|----------------|----------------------------------|------------|--------------|-------------------------|---------------|-------------|------|--------------------|----------|-----|--------|----|-------------|-------------|-----------|----------|--------|
|                |                                  |            | SEDI         | MEN                     | T DA          | TA          | 5    | STRE.              | AM D     | ATA |        |    |             |             |           |          | ~      |
| Sample         | NOTES                            | - Te       | g            |                         | ≥             | - že B      | - Ke | ۲.                 | d h      | ÷ g | ė.     | ž  | ۲<br>۲      |             |           |          |        |
| Number<br>90Au | 133 apg 21, 90                   | ້          | Sa<br>Sa     | 3                       | õ             | ŏ           | eB.  | ₹⁄                 | Ŵ        | å.  | cit ve | SP | 60          |             |           |          |        |
| L001           | takun on achilles LYGON          | T.         |              | V/                      |               |             |      | V,                 |          |     |        |    |             |             |           |          |        |
| L002-          | taken on achillas 2 300N         | V          |              | V,                      |               | ŀ           |      | V                  |          |     |        |    |             |             |           |          |        |
| <u>Loo 3</u>   | taken on achilles 1 250 N        |            |              | $\overline{\mathbf{V}}$ |               |             |      | V                  |          |     |        | ·  |             |             |           |          |        |
| 600.4          | Takan on achilles 2000' contain  |            |              | 2                       |               |             |      | $\checkmark$       |          |     |        |    |             |             |           |          |        |
| 1005           | taken on achillers 1000' Contour |            |              | i                       |               |             |      |                    |          |     |        |    |             |             |           |          |        |
| 1006           | Tylem on achilles 1000' Contoin  |            |              | V                       |               |             |      | V                  | <u></u>  |     |        |    |             |             |           |          |        |
| 6007 -         | Taken on achiller 1000' Contoin  |            |              | 14                      |               |             |      | <u> </u>           | 1        |     |        |    |             |             |           |          |        |
| 1008           | taken on achiller 2000' Contoin  | <b></b>    |              | 4                       |               |             |      | _14                |          |     |        |    |             |             |           |          |        |
|                |                                  |            |              |                         |               |             |      |                    |          |     |        |    |             |             |           |          |        |
| 90 PW 32       |                                  |            |              |                         |               |             |      |                    |          |     | ·      |    |             |             |           |          |        |
| 2001           | Taken on themer (Geel BRG 324)   |            |              | <u>~</u>                |               |             |      | V                  | <u> </u> |     |        |    | #           |             |           |          |        |
| 6006           | Taken on flormon ( heat the 10°) | <b></b>    | <u> </u>     | 4                       |               |             |      | 14                 |          |     |        |    |             |             |           |          |        |
| 2003           | Taken on + loman (heek ORG 346°) | <b> </b>   | i            | 4                       |               |             |      |                    |          |     |        |    |             |             |           |          |        |
| 2004           | Taken on + loma (acek BRG 15°)   | <b>[</b> ] |              |                         |               |             |      | ł                  |          |     |        |    |             |             |           |          |        |
| 2005           | Tokenon +lamon (arek DAG 30)     |            |              |                         |               |             |      | $\leq$             | <u> </u> |     |        |    |             |             |           |          |        |
| 1006           | Taken in flomer (Great BRG 248°) |            |              | 4                       |               | ·           |      | V                  |          |     |        |    |             |             |           |          |        |
| 100/           | Taken in Alomer (Creek BPG 160°) | ļ.—_       |              | 4                       |               |             | ·    | $\overline{\cdot}$ | e        |     |        |    |             |             | <u> </u>  |          |        |
|                | jaken on tlomer                  |            | <u> </u>     | 4                       |               |             |      |                    |          |     |        |    |             |             |           |          |        |
| 6007           | Takan on Homan                   |            |              | <b>2</b> [              |               |             |      | И                  |          |     |        |    |             |             |           |          |        |
| LOID           | the half and have the            | <b> </b>   |              | $\rightarrow$           |               |             |      | Å                  |          |     |        |    |             |             |           |          |        |
|                | Tallan under code to LOIO T      |            |              | <u>×</u> +              |               |             |      |                    |          |     |        |    |             |             |           | <u> </u> |        |
|                | (neek pk6- 200°)                 |            |              |                         |               |             |      |                    |          |     |        |    | <b></b>   - |             | <b></b> _ |          |        |
|                |                                  |            |              |                         |               |             |      | -+                 |          |     |        |    |             |             |           |          |        |
|                |                                  |            |              |                         |               |             |      |                    |          |     |        |    |             |             |           |          |        |
|                |                                  |            | <del> </del> |                         | $\rightarrow$ |             | •    |                    |          |     |        |    |             |             |           |          |        |
|                |                                  |            |              |                         |               |             |      |                    | +        |     |        |    |             |             | -+        |          | {      |
|                |                                  | ·          |              |                         |               | <del></del> |      |                    |          |     |        |    |             |             |           |          |        |
|                |                                  |            |              | -                       |               |             |      |                    |          |     |        |    | —-          | <del></del> |           |          |        |
|                |                                  |            |              |                         | $\uparrow$    |             |      |                    |          |     |        |    |             |             |           |          | $\neg$ |
|                |                                  |            |              |                         |               |             |      |                    |          |     |        |    |             | i,          |           |          | الممسي |

|                                         | the protocol of the protocol of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K                                       | EEWATIN ENGINEERING INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project: 321 Home (                     | STREAM SEDIMENTS Results Plotted By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Area (Grid): 1500 (ontour, 1000 (ontour | Map:NTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|              | ,    |            |  |
|--------------|------|------------|--|
| Collectors : | Harm | 1 Wordwell |  |
|              |      |            |  |

## Date: 5-pt. 7/90

| Samala  |                                              |            |     | SED  | IMEN | IT DA | ATA  |       | STR  |        | DATA  |          |          |          | T          |          | 1                |              |
|---------|----------------------------------------------|------------|-----|------|------|-------|------|-------|------|--------|-------|----------|----------|----------|------------|----------|------------------|--------------|
| Sample  | NOTES                                        |            |     | Ţ    |      | ~     | anid | 4     | ive. | 5      | ۲.    | · 6 .    |          |          |            | ĺ        |                  |              |
| AM321   | 1500' Contory Sert 7/90                      |            | ŏ   | S    | l is | C.    | ļŏ   | Ba    | Act  | N N    | ő     | 5.5      | - S      | Ha       | 3          |          |                  |              |
| 1.001   | 214. I ku, Sub-anayler recks in bed, 2+851 1 | วัตถาไ     | 40% | 15%  | 401  | :     |      | ·     | Yee  | 1.7    | 15    | Cet      |          |          |            |          | +                |              |
| 4002    | 140" FICW, Silt, 8+44W                       | 500<br>500 | 80% | 41.7 | 90%  |       | 10%  |       | Yee  | 11     | 5/11  | di la si |          |          |            |          | +                |              |
| 4003    | 147° and ME. Silt, 10+CCW                    | 360        | 30% | 20%  | 30%  |       | 20%  | ·     | Yes  | 2.3    | 150   | IZST     |          | ·        | ╢──        | +        |                  |              |
| LC04    | 298 - Flow, Silt, 11+75W                     | 525'       | 30% | 20%  | 30%  | 1     | 20%  | 1     | Yes  | 1-Zm   | ISIM  | Fact     |          | -        | -          | ╺┤───    | <b>-</b>         |              |
| 90AU321 | 1000 contour, Sapt. 11/90                    |            |     |      |      |       |      | 1     |      |        |       |          |          | 1.       | ╢          |          | +                |              |
| 1005    | 280° Flow, Silt, 27+45W 10                   | <u>ምም</u>  | #C% | 2%   | 30%  | ,     |      |       | 1es  | 1-2-n  | 10 on | Mal      |          |          | -          |          | +                | +            |
| LCOE    | 296" Flow, Silt, 27+90W 10                   | xe '       | 40% | 30%  | 30%  |       | 1    |       | 404  | 2.3    | Cia   | Frs 1    |          | =        | 1          |          | +                | ┾╼──         |
| - 4007  | 330" Flow, silt, 30+37 W 10                  | 1251       | 30% | 30%  | 40%  |       |      | 1 .   | 105  | 1-2m   | 10cm  | Mod      | <u> </u> | -        | <u> </u>   |          | ┼──              | +            |
| 7008    | 358° Flas, silt, 31+43W, Main Draining 10    | <u>voʻ</u> | 10% | 10%  | 80%  | ,     |      |       | Yes  | 10 5 m | Secon | tast     |          |          | ∦ ──       | †        | <u>+</u>         | f            |
|         |                                              |            |     |      |      |       | 1.   | 1     | 1    | 1      |       |          |          |          | <u> </u>   |          | <del>† – –</del> |              |
| ·       |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          | [          | <b>}</b> | <del> </del>     |              |
|         |                                              |            |     |      |      |       | 1    |       |      |        |       |          |          |          |            | +        | <u> </u>         | <u>├──</u> - |
|         |                                              |            |     |      |      |       | -    |       |      |        |       |          |          | 1        |            |          |                  | <u></u>      |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          | <u> </u> | <b> </b> - |          |                  |              |
|         |                                              |            |     |      | •    |       | 1    |       |      |        |       |          |          | <u> </u> |            |          | <b>-</b> -       |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          |            |          | <b>-</b>         |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          |            |          |                  | ·            |
|         |                                              |            | •   |      |      |       |      |       |      |        |       | .        |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      |       |      |        | 1     |          |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      | · · · |      |        |       |          |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       | •    |       |      |        |       |          |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          | _        |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          |            |          |                  |              |
|         | · · · · · · · · · · · · · · · · · · ·        |            |     |      |      |       |      |       |      | †      |       |          |          |          |            |          | <del> </del>     | <u> </u>     |
|         |                                              | Ĩ          |     |      |      |       |      |       |      |        |       |          |          |          |            |          |                  |              |
|         |                                              |            |     |      |      |       |      |       |      |        |       |          |          |          |            |          | -+               |              |
|         |                                              | Ĩ          |     |      |      |       | 1    |       |      |        |       |          |          |          |            |          | <del></del>      |              |
|         |                                              |            |     |      |      |       |      |       | ·    |        |       |          |          |          |            |          | <del></del> +    |              |

| ect:<br>ı (Grid):_<br>ectors: | Flory Fault -<br>B. Mc Intyr     | Lang<br>C.                                                                          | 2 | <u>k</u> – | -<br>-<br>- |      |   |           | Results Plotted By:<br>Map:NTS:<br>Date:SurfaceUndergrou                                                               | und_ |
|-------------------------------|----------------------------------|-------------------------------------------------------------------------------------|---|------------|-------------|------|---|-----------|------------------------------------------------------------------------------------------------------------------------|------|
| Ct:                           | LOCATION NOTES                   | IOTES REP. SAMPLE TYPE (LENGTH)<br>SAMPLE B L J V V V V V V V V V V V V V V V V V V |   |            |             |      |   |           |                                                                                                                        | MAP  |
| 201                           | Siside loke & ppty bdry<br>900'  |                                                                                     | ~ |            |             |      |   | diorite   | course grained diorite, calcareous<br>chloritic alteration, carries 71%<br>Sulphide fine PV + macrotto a Po            |      |
| 201                           | E shareline @ B20'               |                                                                                     | ~ |            |             |      |   | 5ed. ?    | highly altered banded unit (remain bodding)<br>Siliceous, sheared, brown weathering,                                   | )    |
| 203                           | E. shoreline @ 8201              |                                                                                     | ~ |            |             |      |   | interm.   | Tightly banded, Some what Shistose,<br>chloritic green, time grain vole carries 627, PV.                               |      |
| 3204                          | E shoreline @ 8201               |                                                                                     | ~ |            |             |      |   | gtz vn.   | highly exidized and disintegrating<br>gtz vn in a tight shear (fold?) within                                           |      |
| 3205                          | E thereline a Bio!               |                                                                                     |   |            |             |      | ~ | interm.   | banded to Shistose volce 2=10 Py<br>Sharp angular float of local origin<br>weathers knubbly brown to green and carries |      |
| 3206                          | Eside e 10301<br>rock fall. from |                                                                                     |   | /2 m       | bon         | der. | ~ | linestone | 4 5% s-lohide - Py, Po, Chalco. gray to elive tan with discontinuous black black black black black                     |      |
|                               | /50' c/;+ <u></u> *s             |                                                                                     |   |            |             |      |   |           | dissen Py, tourd with 2-3m shale blocks                                                                                |      |
|                               |                                  | •                                                                                   |   |            |             |      |   |           |                                                                                                                        |      |
|                               |                                  |                                                                                     |   |            |             |      |   |           |                                                                                                                        |      |
|                               |                                  |                                                                                     |   |            |             |      |   |           |                                                                                                                        |      |

| ect: H                  | OMER 321               |                   |                          |             | KE           | EW                                    |       | N E     | SAMPLES                                | ING INC.                                           |              |  |  |  |  |
|-------------------------|------------------------|-------------------|--------------------------|-------------|--------------|---------------------------------------|-------|---------|----------------------------------------|----------------------------------------------------|--------------|--|--|--|--|
| 3 (Grid):_              |                        |                   |                          |             |              |                                       |       |         |                                        | Map: HOMER NTS: 104 B/7                            |              |  |  |  |  |
| ectors:                 | STHIMPSON              |                   |                          |             |              |                                       |       |         |                                        | Date: <u>4.9.90</u> Undergro                       |              |  |  |  |  |
| MPLE<br>MBER<br>デスフル・・・ | LOCATION NO            | TES               | REP.<br>SAMPLE<br>NUMBER | SAM<br>GRAB | CHIP<br>CHIP | HANNEL                                | (LENC | LOAT (H | ROCK<br>TYPE                           | SAMPLE DESCRIPTION                                 | MAP<br>Sheet |  |  |  |  |
| , <u>178</u>            | 1120"; 70 . E of water | Fall Steve Mother | Guk ST                   |             |              |                                       |       |         | siltstone                              | 5 (2°20 purites 5 discourse to 8 5 blobs with the  |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       | <br>    |                                        | silicified; green/black/brown; strike 100, dip 753 |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              | · · · · · · · · · · · · · · · · · · · |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             | <br>         |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         |                                        |                                                    |              |  |  |  |  |
|                         |                        |                   |                          |             |              |                                       |       |         | ······································ |                                                    |              |  |  |  |  |

KEEWATIN ENGINEERING INC.

Project: Homer #321

ROCK SAMPLES

| •                       |          |       |       |
|-------------------------|----------|-------|-------|
| Area (Grid): ikuner 1.4 | Chinns . | Thurk | RIVER |
| Collectors: G.L. WESA   |          |       |       |

~

| Results | Platted | Av: |
|---------|---------|-----|
|         |         |     |

Map: <u>Homen</u> NTS: <u>104 B/7</u> Date: <u>SEPT 7 - 14, 1990</u> Surface. .Surface\_\_\_\_Underground\_\_\_

٦

\*

 $\gamma(-)$ 

1

7 N

|              |                                        |            | REP.  | SAM                | IPLE | TYPE  | (LENG     | этн)     |                  |                                                             |                                         |  |  |
|--------------|----------------------------------------|------------|-------|--------------------|------|-------|-----------|----------|------------------|-------------------------------------------------------------|-----------------------------------------|--|--|
| NUMBER       | LOCATION                               | NOTES      | SAMPL | RAB                | НГР  | ANNEL | ORE       | OAT      | ROCK<br>TYPE     | SAMPLE DESCRIPTION                                          | MAP<br>SHEET                            |  |  |
| 706W321      |                                        |            | ļ     |                    |      | E     |           | <u> </u> |                  |                                                             |                                         |  |  |
| <u>K3059</u> | HUMER #2 14                            | 100' ELEV. | 90GN3 | 21 1               | L    |       |           |          | ANDEDITE         | RIZ-CARD Yod, CHICSITIC, SUCARDSWIR W 15-101 m Cova         |                                         |  |  |
| 63560        | HOMER #2 17                            | CO'ELEV    |       |                    |      |       |           |          | ANDEDITE         | GTZ- CARD ALTRED SHETTE ZONE W SIZ DISS OU                  |                                         |  |  |
| 63561        | Homen #3, 50                           | S CORNER   |       | $\checkmark$       |      |       |           |          | ANDESITE         | RUSTY BAN WEATHERING 2-3% DISTER BLERS OU                   | <u> </u>                                |  |  |
| R3562        | HomER # 3, 5, E                        | NO OF LAKE |       | K                  |      |       |           |          | ANDESITE         | APHANNTIC STROUGH ALTIPET 2-3 Z DISE D                      |                                         |  |  |
| <u> </u>     | HEMER #3 LAN                           | <u>4</u>   |       |                    |      |       |           |          | LITTIC TOFF      | ANDESITIC - CHUCENON ALTER OF 1-22 For Sine AN              |                                         |  |  |
| <u> </u>     | HUMER*3; UN                            | HK RIVER   |       | 12                 |      |       |           |          | ANDESITE         | FRACIO LUMONITIC 1-22 OF 10 CHARE-LARA ALTEN IN             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |  |
| R3565        | 11 11 NORI                             | H-CENTROL  |       | V                  |      |       |           |          | ANDESITE         | CHLOR-CORDALTROSHE ZOAR TO 2-5% OUT RISTON FRANK TO DU O    | <u>a</u>                                |  |  |
| R 3566       | NORTH CONTRA                           | - Homer 3  |       |                    |      |       |           | ~        | ASH TUFF         | SumED For Longiation in VE Direct Fance Fill                | 1~/:                                    |  |  |
| R3567        | 41 11                                  | 1,         |       | 1                  |      |       |           |          | DIORITIE         | CHARLES CARDED ALLED WY F. GIZ CE FRIES + 2-1 to FY.        |                                         |  |  |
| R 3568       | ii 4                                   | ~          |       | 1.7                |      |       |           |          | Durate           | CARE ON GIZ METERS, MICHAELS INCHARED I TO AISS P           | L                                       |  |  |
| R3564        | <u>4</u> 4                             | 11         |       |                    |      |       |           |          | Dusce            | VIKU WTZ CHECK SULF MINKLID SHEDHR ZONE; 2-5/0 PY           | <u> </u>                                |  |  |
| K3570        | 11 11                                  | 14         |       |                    |      |       |           |          | Asy THER         | I'm WIDE 912 ORD CHICA SHUTR ZONE; 1 220 FY DISS, St        | KINDETS                                 |  |  |
| R3571        | <u>u v</u>                             | 11         | 1     |                    |      |       |           |          | ANDER TO         | N. KAMIN MADES, TUFF, SILICEDIS, 3-77, BANDED + DISS.5.     | :F.                                     |  |  |
| R3572        | S.E. HEMER# 2,                         | 40201      |       |                    | 7    |       |           |          | MARY LAND -      | PHEMILIS, LIMON, THE, GAL-CARD HETR'D I SFF + FULL'S & 3476 | FУ                                      |  |  |
| R3573        | 41 44                                  | 4100       |       | 17                 | ¥    |       |           |          | nain Andris, The | hubiy with cheroniaetou's w 2-32 dissem py                  |                                         |  |  |
| R3574        | 11 11                                  | 4160       |       |                    |      | ~     |           | — ł      | ALL SILL         | KHIMAT TOFF-OTZ-CARB ALTR'S W 5-176 Fy + FyRR, NIMENY       | 70                                      |  |  |
| R3575        | 4 11                                   | HIGO       |       |                    |      |       | <b></b> ∤ |          | ANDEDITIE        | QT2 CORB ANALTRIDE I PY ALTR'D VOLONGICLASTIC, V. SILICE    | <u>, c 5</u>                            |  |  |
| R3576        |                                        | 4460'      |       | 17                 |      |       |           |          | ANDESITE         | Q12-CC-ANK VAS, VALETS, STOCKUARK, 1-270 py Diss - FRAC     | کـــــــ                                |  |  |
| R3577        |                                        | ill of     |       | $ \mathbf{r} $     |      | —     |           |          | HNDESITE         | 1-21. Diss + FRAC FALLING FY IN GAZ-CC-ANK ALTRIS VOLCA     | ucus.                                   |  |  |
| R3579        | · · · · · · · · · · · · · · · · · · ·  | 4160       |       | V                  |      |       |           |          | NNOLSITE         | SHME AS 3574 - 77                                           |                                         |  |  |
|              |                                        | -7140      | ¥     | +                  |      |       |           | ŀ        | ANDESITE         | BIERCHED, LINOUTIC, STR. SILICIFIED, OF2-CC-ANA METED W     |                                         |  |  |
|              | ····                                   |            |       | +                  |      |       |           |          | 4                | 1-22 DASS + FRAC AY, FERNASKE ALLERITE SILICA FLOUDING      |                                         |  |  |
|              |                                        |            |       |                    |      |       |           |          |                  |                                                             |                                         |  |  |
|              |                                        |            |       | $\left  - \right $ |      |       |           |          |                  |                                                             |                                         |  |  |
|              |                                        |            |       |                    |      |       |           |          |                  |                                                             |                                         |  |  |
|              |                                        |            |       | <b> </b>  -        |      |       |           |          |                  |                                                             |                                         |  |  |
|              |                                        |            |       | ┠──┤               |      |       |           | İ-       |                  |                                                             |                                         |  |  |
|              | ······································ |            |       | ┼──┞               |      |       | -+        |          |                  |                                                             | <u> </u>                                |  |  |
|              | ·····                                  |            |       |                    |      |       |           |          |                  |                                                             |                                         |  |  |
|              |                                        |            |       | <b>  </b>          |      |       |           |          |                  |                                                             |                                         |  |  |
| F            |                                        | I          |       |                    | 1    | !     | ļ         | I        | 1                |                                                             |                                         |  |  |





 $\Sigma$ 90000088 Sample number RA SAMPLE LOCATION ЭZ MAP C H R T . NTS: 1048/7E DATE: DEC, 1990 G. Vesa PROJECT: HOMER BY SCALE: 1 : 10,000 . Keewatin Engineering Inc. 2 MAP No. (

i



10/1.4/34 Au(ppb)/Ag(ppm)/As(ppm)

.

•

#25/#1.5/#50 Threshold of anomalous values used for soil and silt samples

NDTE : Values below the detection limit are plotted as one-half the detection limit.

GEOCHEMISTRY (AU/Ag/AS) DATE: DEC, 1990 NTS: 104B/7E PRDJECT: HOMER BY: G. Vesa SCALE: 1: 10,000 Keewatin Engineering Inc. MAP No. (3)



GEOCHEMISTRY (CU/Pb/Zn) DATE: DEC, 1990 NTS: 104B/7E PRDJECT: HOMER BY: G. Wesa SCALE: 1 : 10,000 Keewatin Engineering Inc. MAP No. (4)

95/35/175 Cu(ppm)/Pb(ppm)/Zn(ppm)

.

.

-

\*150/\*50/\*250 Threshold of anomalous values used for soil and silt samples

NDTE + Values below the detection limit are plotted as one-half the detection limit.