LOG NO: 23-01	RD.
ACTION:	
FILE NO:	

SUB-RECORDER RECEIVED			
JAN 18 1991			
M.R. #\$			

GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL

ASSESSMENT REPORT

ON THE

NEWMAC AND NEWMAC EAST

GROUPS OF CLAIMS

N.T.S. 92N/10, 15E

CLINTON MINING DIVISION

Latitude 51°44'N Longitude 124°39'W

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,860 Ogist) PART 10F 2

D.G. Gill (Project Geologist) T. Wong (Geophysicist) Noranda Exploration Company, Ltd. January, 1991

TABLE OF CONTENTS

		PAGE				
Ι.	INTRODUCTION 1. Location & Access 2. Topography & Physiography 3. Previous Work 4. Owner-Operator 5. Economic Potential	4 4 4-5 6 6				
II.	SUMMARY OF WORK DONE 1. Airborne Survey 2. Linecutting 3. Geological Survey 4. Geochemical Survey 5. Geophysical Survey	7 7 7 7 7				
III.	DETAILED TECHNICAL DATA					
	<pre>1. AIRBORNE SURVEY</pre>	8-9 9 9-11 12-14 14-17 17 17-18				
	 GEOLOGICAL SURVEY Purpose Regional Geology Detailed Geology 	18 18-19 19-22				
	 GEOCHEMICAL SURVEY Purpose Techniques Discussion of Results 	22 22 23-26				
	 GEOPHYSICAL SURVEY Instrumentation	26 27 27-29 29-30				
IV.	CONCLUSIONS	31-32				
	REFERENCES					

PAGE

APPENDICES

3000000000000

IV. V.	General Interpretative Considerations - Airborne Airborne Anomaly List Laboratory Analytical Techniques Geochemical Results Statement of Costs Statement of Qualifications				
	DRAWINGS				
		<u>SCALE</u>			
la).	Claim Location Map	1: 50,000			
	Regional Geology - Government	1:125,000			
2.	Airborne Flight Path and Claim Boundaries	1: 20,000			
3.	Airborne Electromagnetic Survey Interpretation	1: 20,000			
4.	Airborne Total Field Magnetic Contours & Grid Outline	1: 20,000			
5.	Airborne Calculated Vertical Magnetic Gradient Contours	1. 20.000			
6.	Airborne Apparent Resistivity Contours	1: 20,000 1: 20,000			
7.	Airborne Apparent Resistivity Contours & Grid Outline	1: 20,000			
8.	Airborne VLF-EM Total Field Contours	1: 20,000			
9.					
Ο.	Detailed Geology	1: 2,500 1: 10,000			
11.					
12.					
13.					
14.	4. Contoured Au Soil Geochem - Detailed Grid1: 5,000.5. Contoured Chargeability1: 5,000				
16.					
17.	Geophysical Compilation and Contoured Magnetometer	1: 5,000			
	Results	1. 3,000			
18.	Magnetometer Profile Map	1: 5,000			
	I.P. Pseudosection - L97N	1: 5,000			
	I.P. Pseudosection - L99N	1: 5,000			
	I.P. Pseudosection - L101N	1: 5,000			
22. 23.		1: 5,000			
23.	I.P. Pseudosection - L105N I.P. Pseudosection - L107N	1: 5,000			
25.	I.P. Pseudosection - L109N	1: 5,000 1: 5,000			
26.	I.P. Pseudosection - L111N	1: 5,000			
27.	I.P. Pseudosection - L113N	1: 5,000			
28.	I.P. Pseudosection - L115N	1: 5,000			
29.	I.P. Pseudosection - L117N	1: 5,000			
30.	I.P. Pseudosection - L119N	1: 5,000			

I. INTRODUCTION

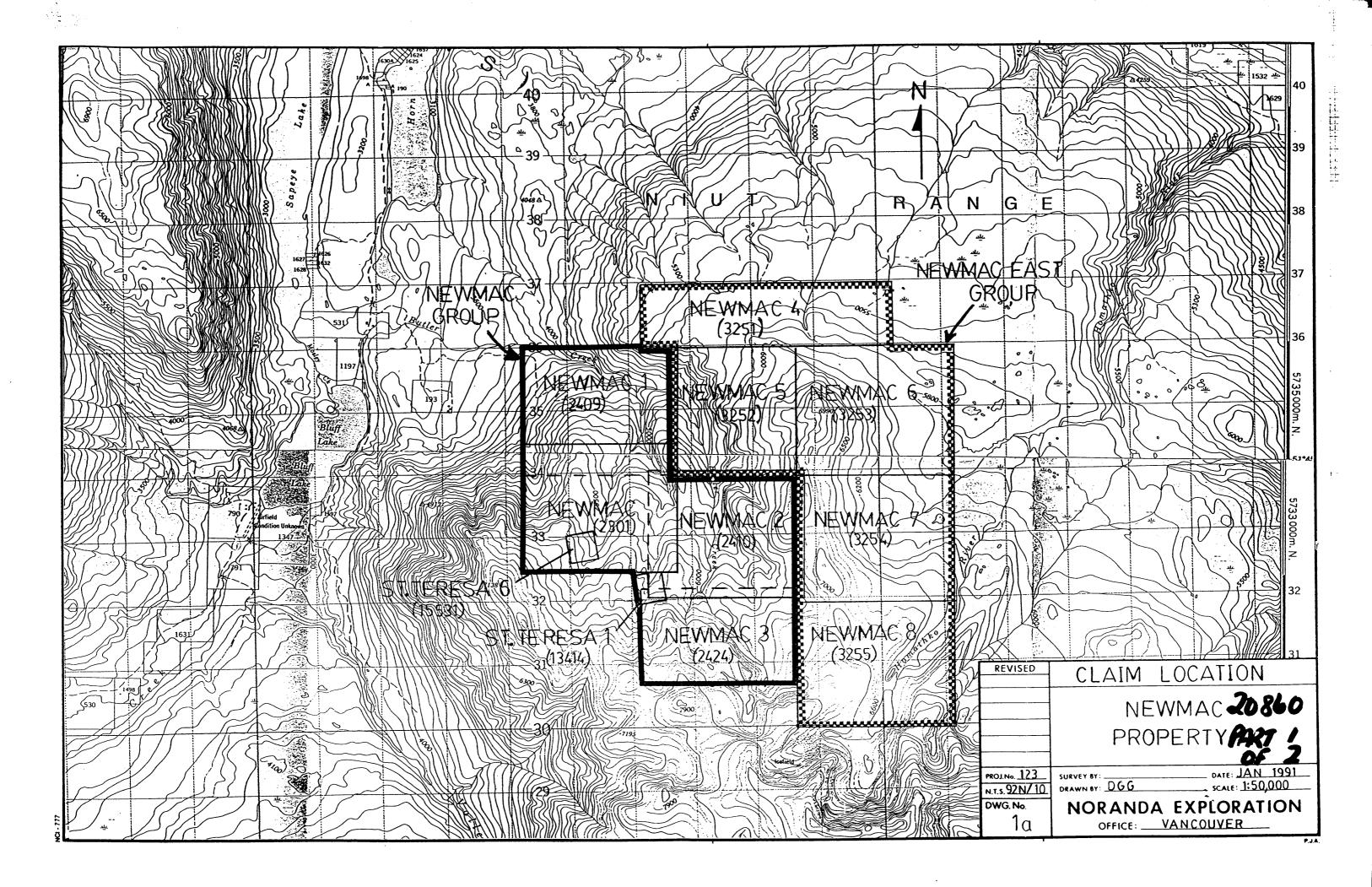
1. Location and Access

The Newmac property is located approximately 180 km WSW of Williams Lake, B.C. and about 23 km south of the town of Tatla Lake, B.C. in the Clinton Mining Division at latitude 51°44'N and longitude 124°39'W. The claims are accessible via Highway 20 from Williams Lake to Tatla Lake then southward down the West Branch Road to Bluff Lake. A 4 x 4 road beginning from the north end of Bluff Lake reaches the western claims although parts of this road have been washed out. Helicopter service is available from White Saddle Air Service (located at the south tip of Bluff Lake) and provides the best access to all parts of the property.

2. <u>Topography and Physiography</u>

The claim group is situated within the Niut Mountain Range which straddles the boundary between the Coast Mountains to the west and the Interior Plateau to the east. Steep and rugged terrain is encountered on the west and south sides of the property while rolling hills and drift covered plains exist to the north and east. Alpine conditions occur above 6500 ft. with vegetation consisting of grasses and mosses. At lower elevations pine forests occur with some thick alder growth present along creek valleys. Butler Creek and it's north & west flowing tributaries provide most of the drainage in this area.

3. <u>Previous Work</u>


Due to the lack of accessibility much of the work conducted in this area did not begin until the mid-1960's. Below is a brief synopsis of the recorded work performed from 1966 to present. Refer to Drawing #9 for location of the grids described below.

ł

1966: A. Macdonald staked the St. Teresa claims after discovering a polymetallic (Pb-Zn-Ag-Au) quartz vein known now as the "Cow Trail" vein.

- Noranda Exploration Company, Limited staked the BU claims 1972: as a follow-up to anomalous copper values in stream Subsequent geological, geophysical and sediments. geochemical surveys were conducted over the upper portion of Butler Creek and near Butler Lake. These surveys outlined a 1100 m x 800 m (maximum) copper geochemical I.P. chargeability with coincident high anomaly No further work was performed. responses.
- 1984: Ryan Explorations staked the M.S.B. claims on Butler Creek based on anomalous copper/arsenic silt samples.
- 1984: Imperial Metals acquired an option on the St. Teresa claims and subsequently staked the Mac claims. Soil sampling, bulldozer trenching and a two hole diamond drilling programme (133.8 m) were completed on the Cow Trail vein. The option was dropped after low assay results were returned from the drill core.
- 1987: Canevex Resources Ltd. purchased the St. Teresa claims from A. Macdonald's estate and staked the Newmac claims. Jacqueline Gold Corporation then optioned the property and contracted Mincord Exploration Consultants to conduct a programme of geological mapping, soil sampling and backhoe trenching. The results of this programme revealed:
 - 1) extensions of the Cow Trail vein;
 - 2) a quartz-sulphide stockwork zone on the "A Grid";
 - 3) gold-silver-copper-zinc anomalies on the "C Grid"; and
 - 4) a 1300 m long copper-gold soil anomaly on the "B Grid".
- 1988: Mincord Exploration Consultants Ltd. conducted further soil sampling, geological mapping, an I.P. survey and a two hole diamond drilling programme (487.99 m) on the "B Grid". The best results returned from the drill programme revealed 157 m of 0.178% Cu and 0.34 gm/T Au including 17.98 m of 0.291% Cu and 0.323 gm/T Au.
- 1989- Noranda Exploration optioned the property from Canevex 1990: Resources Ltd. and subsequently conducted a programme consisting of an airborne EM-Mag survey, additional claim staking, linecutting, soil sampling, mapping and I.P. and magnetometer surveys.

NMACAR90.DGG

4. <u>Owner - Operator</u>

At present 77 units of the Newmac property are owned by Canevex Resources Ltd. of 110-325 Howe Street, Vancouver, B.C. The remaining 92 units are owned by Noranda Exploration Company, Limited of 1050 Davie Street, Vancouver, B.C. Noranda is the sole operator of the property.

The following is a list of all claims comprising the Newmac property:

<u>Claim Name</u>	Record #	Anniv. Date	Group	Owner
17				
Newmac	2301	June 18, 2000	Newmac	Canevex
Newmac 1	2409	Sept.22, 1991	11	Resources
Newmac 2	2410	Sept.22, 1991	**	Ltd.
Newmac 3	2424	Oct. 26, 2000	11	TE 18
St. Teresa l	13414	July 13, 2000	11	11 11
St. Teresa 6	15531	July 25, 2000	11	87 88
Newmac 4	3251	Mar. 30, 1994	Newmac East	st Noranda
Newmac 5	3252	Mar. 29, 1994	ft ft	Exploration
Newmac 6	3253	Mar. 29, 1994	11 11	Co., Ltd.
Newmac 7	3254	Mar. 29, 1994	11 11	11 [°] 11
Newmac 8	3255	Mar. 29, 1994	\$F F	11 11

5. <u>Economic Potential</u>

The surveys covered in this report were performed due to the belief that previous exploration had provided clues indicating the potential of a copper-gold porphyry deposit existing on the Newmac property. These clues consist of:

- similar aged host and intrusive rocks to those found at the Fish Lake deposit;
- a large copper-gold soil anomaly coincident with high I.P. chargeability responses;
- 3) auriferous quartz veins distal to the main porphyry zone, ie. the Cow Trail vein and "C Grid"; and
- 4) propylitically altered andesite tuffs and diorites grading 0.178% Cu and 0.34 gm/T Au over 157 m in one hole drilled in 1988.

NMACAR90.DGG

II. SUMMARY OF WORK DONE

1. Airborne Survey

A combined helicopter-borne magnetic, electro-magnetic and VLF-E.M. survey was flown over the Newmac property between November 14 and November 21, 1989 by Aerodat Ltd. of Toronto, Ontario. A total of 435 line km of flight line were flown along azimuths of 090-270° at an interval of approximately 200 m.

2. Linecutting

A total of 89.125 line km of slashed and metrically chained grid was cut in order to establish control for geological, geochemical and geophysical surveys. The grid itself consists of two baselines, 4.6 km and 3.0 km long with winglines spaced at 100 m to 400 m apart ranging in length from 0.6 km to 5.2 km. Station intervals are 25 m apart.

3. <u>Geological Survey</u>

Geological mapping at a scale of 1:2,500 was conducted over the detailed grid from Lines 97N to 119N, Stations 93E to 107E which covered an area of approximately 3.08 square km. Regional mapping at a scale of 1:10,000 outside of the detailed grid covered an area of approximately 12.75 square km.

4. <u>Geochemical Survey</u>

The geochemical survey consisted of collecting soil and rock samples. A total number of 1203 soils and 158 rocks were collected and analyzed for 30 element I.C.P. plus geochem Au.

5. <u>Geophysical Survey</u>

A total of 30.3 km and 37.4 km of I.P. and magnetometer surveys respectively were completed on the Newmac property in order to aid in the mapping of rock types, mineralized zones and structures.

NMACAR90.DGG

III. DETAILED TECHNICAL DATA

1. <u>Airborne Survey</u>

Due to the size of the Newmac property and the type of deposit being explored for, it was decided to fly a combined helicopterborne magnetic, electro-magnetic, VLF-E.M. survey across the claim group. This was done in an effort to delineate:

TETERESCOCIDA COLORISON COLORISON

- regional magnetic highs and lows which might represent intrusive sources or large regional structures respectively, in conjunction with;
- resistivity signatures that could reflect volcanic/intrusive contacts as well as conductive zones related to porphyry style mineralization.

The text below (Sections i through vi) has been extracted from the report compiled by George Podolsky, P.Eng. of Aerodat Ltd. for Noranda Exploration.

Refer to Drawings 2 through 8 and Appendices I & II for General Interpretative Considerations and the Airborne Anomaly List.

i) <u>Introduction</u>

This report describes an airborne geophysical survey carried out on behalf of Noranda Exploration Company, Limited ("Noranda") of Toronto, Ontario, by Aerodat Limited ("Aerodat") under a contract dated November 3, 1989.

Equipment operated included a four frequency electromagnetic system, a high sensitivity cesium vapour magnetometer, a two frequency VLF-E.M. system, a power line monitor, a video tracking camera, and an altimeter. Electromagnetic, magnetic, and altimeter data were recorded both in digital and analog form. Visual checks of position were recorded on the flight path navigation map by the operator during the flight and flight path was recovered from this and the video records.

This airborne survey, consisting of a block of ground in the Tatla Lake area (Niut Range, Pacific Ranges) of west-central British Columbia, was flown during the period of November 14 to 21, 1989. Six flight were required to complete the survey with flight lines oriented along azimuths of 090-270°, and flown at a nominal spacing of 200 metres. Coverage and data quality were generally considered to be within the specifications described in the contract.

The purpose of the survey was to record electromagnetic, magnetic and VLF-E.M. data over ground that is of interest to Noranda. A total of 435 line kilometres of the recorded data were compiled in map form and are presented as part of this report according to specifications outlined by Noranda.

ii) Survey Area Location

The survey area is centred at Latitude 51°44'N, Longitude 124°38'W (UTM grid reference CN875323 Zone 10U), approximately fifteen kilometres south of Tatla Lake in the Niut Range (Coast Mountain, Pacific Ranges) of west-central British Columbia. The town of Williams Lake lies about 250 kilometres to the east.

The survey area covers very rugged, mountainous terrain, particularly in the southeastern quarter; maximum relief exceeds 5,300 feet (1,640 metres) from the northwest to southeast corners. The northwestern corner of the area may be accessed by roads and trails off the all-weather gravel road through the community of Tatla Lake (British Columbia Road #20).

iii) Aircraft

Aerospatiale A-Star 350D helicopter, (C-GXYM), owned and operated by Ranger Helicopters Limited, was used for the survey. Installation of the geophysical and ancillary equipment was carried out by Aerodat. The survey aircraft was flown at a mean terrain clearance of 60 metres.

<u>Electromagnetic System:</u>

The electromagnetic system was an Aerodat 4-frequency system. Two vertical coaxial coil pairs were operated at 935 Hz and 4,600 Hz and two horizontal coplanar coil pairs at 4,175 Hz and 32 Hz. The transmitter-receiver separation was 7 metres. Inphase and quadrature signals were measured simultaneously for the 4 frequencies with a time constant of 0.1 seconds. The electromagnetic bird was towed 30 metres below the helicopter.

VLF-EM System

The VLF-EM System was a Herz Totem 2A. This instrument measured the total field and quadrature components of two selected transmitters, preferably oriented at a right angle to one another. The sensor was towed in a bird 12 metres below the helicopter. The transmitters monitored were NLK, Jim Creek, Washington, broadcasting at 24.8 Khz for the "Line" station and NAA, Cutler, Maine, broadcasting at 24.0 Khz for the "Ortho" station, depending on availability of transmission and suitability of transmitter location.

Magnetometer

The magnetometer employed was a Scintrex Model VIW-2321 H8 cesium, optically pumped magnetometer sensor. The sensitivity of this instrument was 0.1 nanoTeslas at a 0.1 second sampling rate. The sensor was towed in a bird 12 metres below the helicopter.

Magnetic Base Station

An IFG-2 proton precession magnetometer was operated at the base of operations to record diurnal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to facilitate later correlation.

<u>Radar Altimeter</u>

A King Air KRA-100 radar altimeter was used to record terrain clearance. The output from the instrument is a linear function of altitude.

Tracking Camera

A Panasonic video camera was used to record flight path on VHS video tape. The camera was operated in continuous mode and the fiducial numbers and time marks for cross reference to the analog and digital data were encoded on the video tape.

Analog Recorder

An RMS dot-matrix recorder was used to display the data during the survey. In addition to manual and time fiducials, the following data were recorded:

<u>Channel</u>	Input	<u>Scale</u>
CXII	935 Hz Coaxial Inphase	2.5 ppm/mm
CXQ1	935 Hz Coaxial Quadrature	2.5 ppm/mm
CX12	4600 Hz Coaxial Inphase	2.5 ppm/mm
CXQ2	4600 Hz Coaxial Quadrature	2.5 ppm/mm
CPI1	4175 Hz Coplanar Inphase	10 ppm/mm
CPQ1	4175 Hz Coplanar Quadrature	10 ppm/mm
CP12	32 kHz Coplanar Inphase	20 ppm/mm
CPQ2	32 kHz Coplanar Quadrature	20 ppm/mm
PWRL	Power Line	60 Hz
VLT	VLF-EM Total Field, Line	2.5%/mm
VLQ	VLF-EM Quadrature, Line	2.5%/mm
VOT	VLF-EM Total Field, Ortho	2.5%/mm
VOQ	VLF-EM Quadrature, Ortho	2.5%/mm
RALT	Radar Altimeter	10 ft./mm
MAGF	Magnetometer, fine	2.5 nT/mm
MAGC	Magnetometer, coarse	25 nT/mm

Digital Recorder

A DGR-33 data system recorded the survey on magnetic tape. Information recorded was as follows:

Equipment

<u>Recording</u> Interval

EM System0.1 secondsVLF-EM0.2 secondsMagnetometer0.1 secondsAltimeter0.5 seconds

iv) Data Presentation

Flight Path Map (Drawing #2)

The flight path map was derived from the video tracking record and the navigator's recognition points. It is estimated that the flight path is generally accurate to about 50 metres with respect to the topographic detail of the base map but accuracy may vary considerably due to the substantial variations in aircraft speed in mountainous terrain.

The flight path map showing all flight lines, is presented on a Cronaflex copy of the photomosaic base map, with navigator's manual fiducials for cross reference to both the analog and digital data.

Airborne Electromagnetic Survey Interpretation Map (Drawing #3)

The electromagnetic data were recorded digitally at a sample rate of 10 per second with a time constant of 0.1 seconds. A two stage digital filtering process was carried out to reject major sferic events and to reduce system noise.

Local sferic activity can produce sharp, large amplitude events that cannot be removed by conventional filtering procedures. Smoothing or stacking will reduce their amplitude but leave a broader residual response that can be confused with geological phenomena. To avoid this possibility, a computer algorithm searches out and rejects the major sferic events.

The signal to noise ratio was further enhanced by the application of a low pass digital filter. It has zero phase shift which prevents any lag or peak displacement from occurring, and it suppresses only variations with a wavelength less than about 0.25 seconds. This low effective time constant permits maximum profile shape resolution.

Following the filtering process, a base level correction was made. The correction applied is a linear function of time that ensures the corrected amplitude of the various inphase and quadrature components is zero when no conductive or permeable source is present. The filtered and levelled data were used in the interpretation of the electromagnetics. An interpretation map was prepared showing flight lines, fiducials, peak locations of anomalies and conductor axes. The data have been presented on a Cronaflex copy of the photomosaic base map.

Total Field Magnetic Contours (Drawing #4)

The aeromagnetic data were corrected for diurnal variations by adjustment with the recorded base station magnetic values. No correction for regional variation was applied. The corrected profile data were interpolated onto a regular grid at a 25 metre true scale interval using an Akima spline technique. The grid provided the basis for threading the presented contours at a 5 nanoTesla interval. The contoured aeromagnetic data have been presented on a copy of the photomosaic base map.

Vertical Magnetic Gradient Contours (Drawing #5)

The vertical magnetic gradient was calculated from the gridded total field magnetic data. Contoured at a 0.2 Nt/m interval, the gradient data were presented on a Cronaflex copy of the base map.

Apparent Resistivity Contours (Drawings #6 & 7)

The electromagnetic information was processed to yield a map of the apparent resistivity of the ground (Drawing #6). The approach taken in computing apparent resistivity was to assume a model of a 10 metre thick conductive layer (i.e. effectively a half space) over a resistive bedrock. The computer then generated, from nomograms for this model, the resistivity that would be consistent with the bird elevation and recorded amplitude for the 32,000 Hz **#7).** coplanar frequency pair used (Drawing The apparent resistivity profile data were interpolated onto a regular grid at a 25 metres true scale interval using an Akima spline technique. The contoured apparent resistivity data were presented on a Cronaflex copy of the base map with the flight path.

VLF-EM Total Field (Drawing #8)

The VLF-EM signals from NLK (Jim Creek, Washington) broadcasting at 24.8 kHz were compiled as contours in map form and presented on a Cronaflex overlay of the base map along with flight lines. The orthogonal VLF data was not utilized in the compilation as the line direction data set was complete. The orthogonal data remains valid, and may be processed at a later date. The data was recorded on the analog records and on digital tape.

v) <u>Interpretation</u>

<u>Geology</u>

The survey block is located within an area of metasedimentary, metavolcanic, and granitic rocks on the east side of the Coast Range of west-central to southwest British Columbia. No geologic data or geophysical data, detailed or regional, were supplied to Aerodat by Noranda and no discussions have been held with Noranda as to the type of mineralization being sought. The report therefore makes no attempt to speculate on the geology or the geologic setting of the areas surveyed.

Magnetics

The magnetic data from the high sensitivity cesium magnetometer provide virtually a continuous magnetic reading when recording at one-tenth second intervals. The system is also noise free for all practical purposes.

The sensitivity of 0.1 nanoTeslas (nT) allows for the mapping of very small inflections in the magnetic field, resulting in a contour map that is equal to or exceeds ground data in quality and accuracy. Both the fine and coarse magnetic traces were recorded on the analog charts.

The Total Field Magnetic map (Drawing #4) shows a series of north-south to north-northwesterly trending magnetic highs predominantly in the eastern half of the area - that are interrupted by an east-northeasterly trending low through the southern third of the area. Maximum magnetic relief is almost 2,000 nT (Line 1330 @ 13:37:20 to Line 1101 @ 09:37:20). The magnetic highs themselves appear to consist of groupings of narrower, steeply dipping magnetic bodies (dikes or sills) and

NMACAR90.DGG

would more likely be representative of ultramafic intrusive rocks than more massive syenite stocks or more extensive basalts. The magnetic lows may be from more recent granitic stocks or plugs.

The primary structural trends, as inferred from the Total Field data (Drawing #4) and as shown on the Interpretation map (Drawing #3) are generally northeasterly, ranging from northnortheasterly to east-northeasterly. One northwesterly fault system appears to cut diagonally across almost the entire survey area and a possible north-south to north-northwesterly fault occurs in the east-central part of the block. These faults may have controlled or may otherwise be related to the intrusive activity.

These data, and more so from the gradient data, give the impression of a series of magnetic highs (to the east) curved around a central magnetic low. A possible northwesterly trending dike cuts the southwestern corner of the area.

Vertical Gradient Magnetics

The Vertical Gradient map (Drawing #5) may be regarded as a pseudolithologic map. It is believed to give a fairly good rendition of the outline of the underlying magnetic bodies generally inside of the "zero" contour.

The "banded" nature of the north-south to north-northwesterly magnetic highs is clearly portrayed. However, one must be aware of the tendency of computer generated derivative maps such as this to bias data in a direction orthogonal to the flight lines (i.e. north-south trends for east-west lines), particularly in areas of low magnetic relief and high topographic relief. A compilation of magnetic contours onto a topographic contour map may also assist in the expanding of the structural interpretation.

Electromagnetics

The electromagnetic data were first checked by a line-to-line examination of the plotted profiles in conjunction with the analog records. Record quality was generally good to excellent. Any minor levels of sferic noise were removed from the plotted traces by an appropriate smoothing filter. Geologic noise, in the form of surficial conductors, is present on the higher frequency responses and, to a minor extent, on the low frequency quadrature response.

NMACAR90.DGG

Conductive anomalies, where believed to be present, were picked off the plotted profile traces of the multi-frequency responses using the vertical sheet conductor model as a guide; the negative inphase anomalies were picked off the 935 Hz coaxial channel. These selections were then checked with a proprietary computerized selection programme which can be adjusted for ambient and instrumental noise. Each conductor or group of conductors was evaluated on the bases of magnetic (and lithologic, where applicable) correlations apparent on the analog and profile data and from the topographic map, man-made or surficial features not obvious on the analog charts.

The anomalies that have been identified on the Interpretation map are all classed as possible bedrock conductors, more likely due to minor conductance from overburden than from sulphide/graphite mineralization or shearing. There is no apparent correlation of these zones with magnetic (i.e. lithologic) trends. Without any correlation to known mineralization, these possible conductors would not merit any attention in the field. They would be difficult to locate on the ground with standard electromagnetic techniques but should show up on resistivity or I.P. profile data.

Apparent Resistivity

The Apparent Resistivity maps were calculated from both the 32,000 Hz coplanar (Drawing #7) and the 4,600 coaxial (Drawing #6) channels. Whereas the 32 kHz channel has produced a map showing resistivities largely within the lower portion of the resistivity spectrum (i.e. 10 to 500 ohm-m), the 4,600 Hz channel gives resistivity values well up into the higher range of better than 2,000 ohm-m. In both cases, lower resistivities appear to correlate with the areas of lower elevation, that is, alluvium and detritus-filled valleys and stream cuts. If the target mineralization is a porphyry copper, it may be of benefit to compile the areas of resistivity lows with reference to geology and inferred structures.

VLF-EM Total Field

The VLF map (Drawing #8) shows a series of north-south trends across the width of the survey area. Minor variations in these trends and alignments of breaks in the trends may be indicative of structure, but the magnetic data is far more clear-cut and reliable in this regard. The writer is generally reluctant to rely on VLF data in mountainous terrain, the principal problem being one of

NMACAR90.DGG

sorting real bedrock trends from those due to topographic effects and surficial conductors. In this case, the topographic effects i.e. the tendency for the VLF fields to follow the terrain - could be expected to quite severe.

vi) <u>Recommendations</u>

The lack of any obvious conductive targets and any information on geology or mineralization relative to the survey area precludes any recommendations for additional geophysical work. The possible electromagnetic conductors that have been shown on the Interpretation map might be detected with gradient array I.P. or resistivity profiles but follow-up with VLF is not recommended. The magnetic map probably exceeds ground magnetic data in overall quality and sensitivity and ground magnetics should not be necessary.

vii) <u>Discussion</u>

A review of the data obtained from this airborne survey reveals that the most pertinent information in regards to exploring for porphyry Cu-Au deposits is found using total field magnetics (Drawing #4) and apparent resistivity (Drawing #7). In this case two sets of apparent resistivity (coplanar & coaxial) have been provided. However, the information provided by coplanar resistivity is superior to that supplied by coaxial resistivity as the latter is only suitable for defining steeply dipping, thin bedrock conductors in resistive environments. Also, coplanar resistivity provides for more accurate & detailed information within the lower portion of the resistivity spectrum where disseminated Cu (Au) mineralization would likely be found.

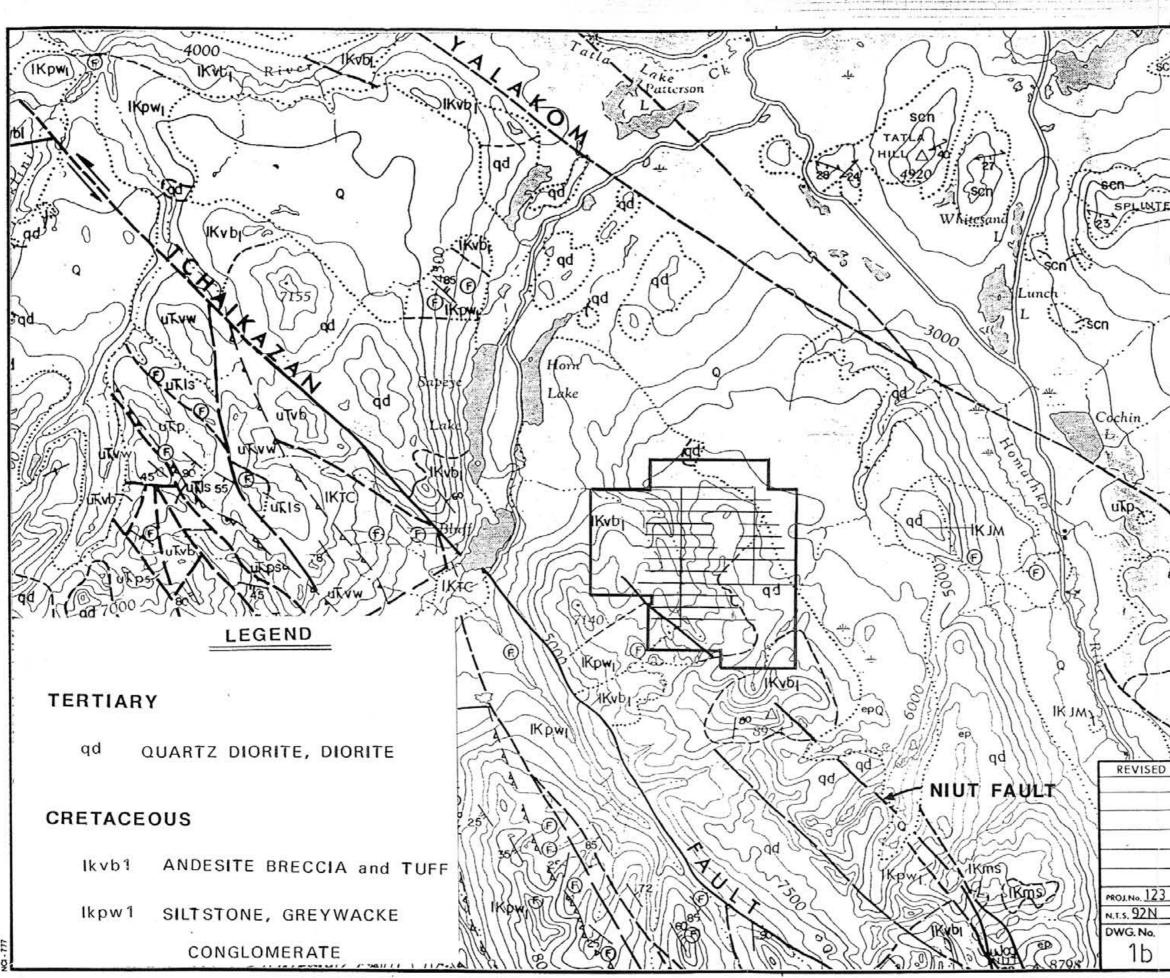
Referring to Drawings 4 & 7 it is apparent that the survey area is underlain by high magnetic signatures surrounding a central magnetic low. A large magnetic high, independent of the other high magnetic signatures, measuring approximately 5.4 kms x 0.5-1.8 kms is coincident with a circular zone of high resistivity measuring $4.5 \text{ kms x } 1.5-2.0 \text{ kms and is located in the north-central portion$ of the survey area extending across flight lines 1210 to 1450.This coincident high magnetic/high resistivity anomaly most likelyoutlines a roughly circular stock of quartz diorite and is bestrepresented by the 57,400 gamma contour on Drawing #4 and the 1259ohm·m contour on Drawing #7. It is also interesting to note thatthe intersection of two large NW-SE and NNE-SSW regional faultsoccurs at the southern tip of this coincident anomaly (see Drawing#3) & may have controlled the emplacement of the stock.

NMACAR90.DGG

This high magnetic/high resistivity anomaly is also enveloped by a zone of lower resistivity (represented by contours \leq 1000 ohm·m). Porphyry copper models suggest that within these zones of lower resistivity and/or along the transition between the high and low resistivity zones, sulfide enrichment can occur. In fact it is along one north-south trending, low resistivity/high resistivity transition zone that the copper-gold soil anomaly and the drill hole (Canevex, 1987-1988) which returned 157 m of 0.178% Cu, 0.323 gm/T Au are located. This zone can be seen on Drawing #7 extending from Line 119N to Line 101N parallel to the western baseline.

The idea of additional copper-gold mineralization occurring within the lower resistivity zones surrounding the coincident high magnetic/high resistivity anomaly led to the establishment of the grid configuration seen on Drawings 4 & 7 and to the other surveys discussed within the remainder of this report.

2. <u>Geological Survey</u>


i) <u>Purpose</u>

The detailed portion (Lines 97N to 119N) of the grid established on the Newmac property was mapped at a scale of 1:2,500 over 32.5 kms of grid line in an effort to delineate rock types, alteration and structure associated with the known Cu-Au soil anomaly found by Noranda in 1972 and confirmed by Canevex in 1987.

Regional mapping of the ground surrounding the detailed grid was conducted at a scale of 1:10,000 in an attempt to discover other zones of copper-gold mineralization, alteration, and/or deformation related to a porphyry Cu-Au deposit.

ii) <u>Regional Geology (Drawing 1b)</u>

The NewMac property is situated on the southwest side of the Tyaughton Trough, a Late Jurassic depositional basin and is located between the right lateral strike-slip Yalakom fault to the north and the left lateral strike-slip Tchaikazan fault to the south. A northwest-southeast trending splay fault (Niut fault) from the Tchaikazon fault cuts through the southwest corner of the property.

444341434

scn. scn Q 62/88 SPLINTER HILL 1N /mJv 5000 JuTv mJy 30.vlm 1 2/2 Duckfoot azz uKcg 15835 NNAFA qd ImJew REVISED NEWMAC PROPERTY 0360 DATE: JAN 1991 SURVEY BY: SCALE: 1:125,000 DRAWN BY: DGG NORANDA EXPLORATION 1b OFFICE: VANCOUVER

The claims are underlain by Lower Cretaceous aged andesite and basalt breccias and tuffs, rhyolites and lesser shales, greywackes and conglomerates. This volcano-sedimentary pile has been intruded by Tertiary Coast Plutonic Complex rocks which range in composition from granites through diorites.

iii) <u>Detailed Geology</u>

Mapping of the detailed grid (Lines 97N to 119N) on the NewMac property was conducted at a scale of 1:2,500 (Drawing #10) while the surrounding ground was mapped at 1:10,000 scale (Drawing #9). Much of the exposure is restricted to the bluffs to the south of Butler Lake, along the north-south trending ridge on the far eastern extensions of the grid and to the cliffs located in the northeast corner of the detailed grid. Most of the lower areas of the property are covered by a relatively thick blanket of locally derived glacial till resulting in approximately 5% outcrop exposure in these areas. Due to the lack of exposure a large percentage of the underlying geology is inferred from the mapping of subcrop and float.

A large package of poorly stratified andesite crystal/ash tuffs, plagioclase +/- hornblende/augite porphyry flows, andesite lapilli tuffs, andesite flow breccias, and andesite dust tuffs (Unit 2) are the most common rock types observed and dominate the central portion of the grid and much of the surrounding ridge tops.

Interbedded with these intermediate flows and pyroclastics are rocks of Unit 3 described as grey to green colored rhyolites or rhyodacites. Most of these rhyolites occur as fine grained flows or tuffs exhibiting a cherty or sugary texture with 1-2 mm wide quartz eyes up to 5%. However, a coarser grained quartz-feldspar porphyry (Q.F.P.) variety was also observed in association with the finer grained version of this felsic rock type. It is thought that some of the coarse grained, porphyritic variety of this felsic pile constitutes flow rock. However, in other locations of the grid as well as in the core of hole NM-88-1 (Canavex, 1988) the quartzfeldspar porphyry appears to crosscut the andesitic pile in the form of sills or dykes. This suggests that portions of the coarser grained, porphyritic phase represents the intrusive equivalent of the finer grained flows or tuffs. These rhyolitic units are most commonly seen along the western edge of the detailed grid and in the cliffs to the northeast on lines 113N to 119N.

NMACAR90.DGG

Locally dark green, vesicular basalt flow breccia with angular to subrounded fragments ranging in size from 0.5 cms to several centimeters in diameter and pillow basalts (pillows up to 1 meter) were observed interbedded with the rhyolitic and andesitic units.

Minor units of pebble conglomerate, arkosic sandstone and siltstone (Units 7, 8, & 9 respectively) were also noted during regional mapping on the bluffs south of Butler Lake.

Six different phases of intrusive (including the felsic quartz-feldspar porphyries described above) were observed on the Newmac property including three separate varieties of dioritic composition. The first, Unit 4a is described as a mottled dark to light green and white, medium grained diorite with up to 10-20% This phase occurs in hornblende +/- biotite phenocrysts. association with rusty, siliceous gossan zones between lines 104N & 107N centered at approximately 99+25E and as a small stock or plug in the southeast corner of the property intruding andesite tuffs. The second dioritic phase is similar to the latter in composition but contains up to 10-15% interstitial quartz and is described as a quartz diorite or tonalite (Unit 4b). Minor amounts of this intrusive type were observed between 104+50N and 105+50N at approximately 99+50E. Mapping of the north-south trending ridge on the eastern side of the property failed to locate this unit as reported by government mapping. However as the airborne magnetics and resistivity responses reveal an intrusive signature in this vicinity it is believed that the contact between the volcanics and the intrusive is most likely near surface or covered by the talus and till to the east of this ridge. A hornblende porphyry diorite constitutes Unit 4c and contains 15-20% hornblende phenocrysts up to 0.5 cm in size set within a dense, fine grained, greyish matrix. magnetic and contains up to 5% This unit is commonly pyrite/pyrrhotite in contrast to the other dioritic phases which are only locally magnetic and contain only trace to 2% sulfides. Unit 4c is also closely associated with the gossan zones between lines 4a mentioned previously. 104N and 107N as is Unit Examination of the core from hole NM-88-2 (Canevex, 1988) drilled at 105+05N/97+70E toward the east revealed a feldspar-hornblende porphyry with up to 20% sub to euhedral plagioclase phenocrysts and 5% hornblende laths (Unit 6) which appears to occur as a dyke crosscutting the medium grained diorite of Unit 4a. Due to the pervasive propylitic & siliceous alteration which has destroyed much of the original textures of the andesites & diorites observed in hole NM-88-2 and although the apparent percentages of the mineral constituents of Units 4c and 6 differ, it is postulated that these two phases may represent a single dyke cutting the dioritic phase of Unit 4a.

NMACAR90.DGG

The last intrusive phase mapped was seen at only one location (100+25N/99+75E) as a dyke of coarse grained, leucocratic monzonite intruding an outcrop of andesite lapilli tuff.

Fracturing, faulting and shearing trends observed on the Newmac property consistently occurred at NNE-SSW, NW-SE, NNW-SSE and NE-SW orientations. Major faults were inferred from zones of shattering, oxidation, alignment of intrusive occurrences and topographic linears. One fault trending NW-SE and thought to be the Niut Fault is located to the south of Butler Lake and is represented by the alignment of 4 small tarns along the western tributary of Butler Creek and by the prominent rusty scarp on Lines 97N and 99N at approximately 94E (see Discussion of Results, Geochemical Survey section). Another NW-SE fault is inferred in the northeast corner of the detailed grid located immediately NE of the gossanous diorite exposure paralleling the eastern tributary of Butler Creek. Smaller NW-SE and NE-SW shear zones are located on the ridge top at the eastern end of line 99N where grab sample 11731 returned 24,503 ppm Cu and 58.9 ppm Ag from a sheared andesite tuff containing malachite, azurite, +/- covellite. On the north side of the property where Butler Creek swings to the west several NNE and NNW trending, vertical shear zones were also observed.

Of course the main structural feature of importance is the one represented by the main drainage of Butler Creek which trends NNE-SSW.

Here at least six subparallel zones of highly fractured, silicified, hematite & limonite stained gossans occur extending from approximately L97N, 93E to L109N, 100E and probably further north as suggested by the western limbs of both the moderate-high I.P. chargeability response (Drawing #17) and the Cu-Au soil anomaly (Drawings # 13 & 14). At ground level these gossan zones appear discontinuous although the till cover hinders mapping the total extent of these zones. However, it is concluded that each of these zones may be connected at depth and are certainly related to the same tectonic event which has allowed the emplacement of small intrusive bodies and caused sufficient ground preparation for hydrothermal solutions to migrate along the entire structure (1300 These solutions have subsequently deposited fine m minimum). grained pyrite, pyrrhotite and chalcopyrite as disseminations, veinlets and fracture fillings up to 15%. The largest of these gossan zones measures approximately 400 m x 60 m and extends across Lines 105N to 109N. It should be noted that the gossan is not restricted to one rock type but is found in rhyolites, diorites and andesites. The main fracture orientations measured within the zone are 0°-180°, 90°-270° and 45°-225°.

NMACAR90.DGG

Other forms of alteration ranging from propylitic to strong silicification were also noted within the main Butler Creek drainage in both outcrop and drill core. Strong pervasive silica alteration was observed within the felsic intrusives and locally within the andesites & diorites. Chloritization of mafic minerals, zones of epidotization, bleaching caused by pervasive calc-silicate flooding, quartz & calcite veining and sericitization of feldspar phenocrysts were commonly seen within propylitized andesites & diorites. Locally small clots and vein selvages of pink to brownish garnet were noted.

3. <u>Geochemical Survey</u>

i) <u>Purpose</u>

A total of 1203 soils and 158 rocks were collected on the Newmac claims in order to delineate the extent of the known coppergold geochemical anomaly and any other base or precious metal zones associated with a porphyry deposit.

ii) <u>Techniques</u>

Soil sampling of the A & B soil horizons was completed along all winglines of the grid at a sample interval of 50 m. Sampling was done with the aid of a shovel or maddock to a depth of 15-30 cms depending on the bedrock exposure. In alpine areas, where little or no soil development had taken place talus fines were collected in lieu of a proper soil sample. Soils collected were placed in brown 3 1/2" x 6 1/8" open-ended Kraft envelopes for shipping and storage purposes.

Rock specimens were collected as grab or chip samples from various locations on the property wherever mineralization, alteration or a favourable representative rock type was encountered.

All of the soils and rocks taken during this programme were sent to either the Noranda laboratory at 1050 Davie Street in Vancouver or Acme Analytical Laboratories Ltd. at 852 E. Hastings Street in Vancouver. Appendix III shows the analytical techniques used by both companies while Appendix IV reveals a list of all soil & rock samples with geochemical results and descriptions (where applicable).

NMACAR90.DGG

iii) <u>Discussion of Results</u>

All samples collected were analyzed for 30 elements by I.C.P. method plus geochem-ed for gold. For the purposes of this report only copper and gold results have been plotted and contoured. Refer to Drawings 11 & 12 for contoured Cu and Au results for the detailed and reconnaissance grid combined and Drawings 13 & 14 for contoured values of Cu and Au for the detailed grid only. Contour values for each element represent threshold, first and second order anomalies obtained by statistical methods.

COPPER:

Copper results returned from the soil survey ranged from a low of 9 ppm to a high of 2426 ppm. Threshold, first and second order anomalies were determined to be 100 ppm, 200 ppm and 500 ppm respectively.

The main copper anomaly outlined by this survey parallels Butler Creek from Line 101N, 96+50E to Line 119N, 99+25E for a distance of 1.8 kms and ranges in width from approximately 50 m to 600 m. A continuation of this anomaly can also be projected to extend from Line 119N to Line 127N, 96+75E although the line However, if this separations at this point are 400 metres. projection is valid a further 800 m can be added to the original 1.8 kms to create a total strike length of 2.6 kms open to the north to perhaps Line 131N. To the south the copper soil anomaly appears to end at Line 101N where a large, steep, talus covered north facing bluff begins. It is suggested that the disappearance of the copper soil anomaly at this location may be due only to the effect of thick talus and scree cover as the high I.P. chargeability response (seen on Drawing #15 or 17) continues to at least Line 99N. However, government mapping suggests the northwest trending Niut fault (Tertiary in age) should truncate the geochemical anomaly within this vicinity. It is likely that the bluff mentioned above is probably a fault scarp.

On closer inspection it is apparent that there may actually be two different geochemical components which create the signature of this main anomaly to form the shape of a rough annulus centered at about 116N/100E. The first component (or western arm of the annulus) follows Butler Creek from Line 101N to Line 119N and trends parallel to one of the main foliations (NNE) observed in the gossanous zones while mapping (see Drawing #11). Of important note is that this western arm of the annulus is coincident with the boundary between high & low resistivities as depicted on Drawing #7 by the 1000 ohm•m contour.

The second geochemical component which forms the eastern arm of the annulus extends from 116N/100E southeast to approximately 110N/104E where it ends in a thick cover of glacial till which has filled a wide valley formed by the junction of two arms of an eastern tributary of Butler Creek. This component also parallels a main structural trend which has been represented on Drawing #9 by the NW-SE fault. Similar trending shears and foliations (malachite/azurite stained) have also been observed while prospecting on the eastern ends of lines 97N, 99N, 101N and 103N.

A strikingly good correlation can also be made between the rough annulus shaped geochemical anomaly and the semi-circular moderate to high I.P. chargeability responses outlined on Drawing #17. Here the western limbs of both the chargeability response and the geochemical anomaly are coincident. However, the eastern arm of the geochemical anomaly does not appear to completely overly the eastern limb of the chargeability signature. This may be explained, as stated earlier, by a masking of the geochemistry by thick till cover in this area.

Relating the copper soil anomalies to the geology mapped and the rock samples collected, it appears that the main copper zone is coincident with areas underlain by andesitic tuffs, flows and flow breccias in close association with the dioritic intrusive phase.

Below is a list of some of the more significant copper (gold) results returned from rock samples collected on the property. Note that only one anomalous result was obtained from the felsic rock types encountered.

Sample No.	Grid Location	<u>Cu (ppm)</u>	مم Au (ppm)	Ag (ppm)	Rock <u>Type</u>	Sample Type
119451	103+05N/96+95E	1182	5	0.7	And tf.	Chip (1.0 m)
119605	105+25N/98+80E	2093	84	1.0	Diorite	Grab
119606	104+68N/98+43E	31193	2410	19.0	Alt. and	11
					tf.	
119607	104+90N/98+50E	1711	74	1.2	11	11
119608	104+95N/98+30E	1455	112	2.0	11	11
*119609	104+83N/98+20E	1755	42	1.6	11	Chip (1.5 m)
*119610	11	2109	80	2.3	11	Chip (1.5 m)
*119611	18	1842	53	1.5	11	Chip (2.0 m)
119612	106+68N/99+30E	1209	32	0.7	Q.F.P.	Grab
119617	105+30N/98+38E	1805	39	1.2	Alt. and	11
					tf.	
119618	105+25N/98+37E	2276	84	2.3		Grab
59779	106+70N/118E	2285	37	9.6	11	"
117131	99+10N/120+15E	24503	44	58.9	And. tf.	•• .

* Continuous chip

As mentioned earlier in the "Discussion" section of the Airborne Survey it was hoped that soil sampling of the areas covered by the reconnaissance grid underlain by the high/low resistivity contact on the flanks of the main magnetic high would reveal other Cu (Au) rich zones. Although this may have helped in delineating an extension of the main copper zone across lines 123N to 127N, the remaining copper anomalies appear mainly as spot highs. However, due to the thick till cover on the northeast side of the regional magnetic high, soil sampling may not be the definitive exploration tool to test this theory.

GOLD:

Gold results returned from this survey ranged from a low of 1 ppb to a high of 500 ppb. Threshold, first and second order anomalies were determined to be 30 ppb, 50 ppb and 100 ppb respectively. These values have been contoured on Drawing #14. The contoured value of 20 ppb used on Drawing #12 represents both gold elevated and gold anomalous zones in order to form a better regional trend to the gold occurrences.

NMACAR90.DGG

As with the copper rich zones, the main gold anomalies tend to occur parallel to Butler Creek and along the western limb of the moderate and high I.P. chargeability response as well as to the north crossing lines 111N to 119N. Still other anomalies occur inboard (eastward) of the western limbs of the copper - I.P. anomalies. The positions of these zones are listed below;

- 1) between lines 107N & 109N centered at 101E
- 2) between lines 107N & 109N centered at 102+50E
- 3) between lines 97N & 103N centered at 100+50E
- and 4) between lines 97N & 99N centered at 103+50E.

It is unclear whether these latter anomalies represent some type of mineral zonation.

Most other gold anomalies on the property occur only as spot highs but all occur roughly within the circular high/low resistivity contact zone surrounding the large, regional magnetic high.

4. <u>Geophysical Survey</u>

i) <u>Instrumentation</u>

The surveys were conducted by Lloyd Geophysics of Vancouver. Instrumentation used for the survey included the Huntec 7.5Kw transmitter powerecd by a motor generator with a BRGM IP-6 as the receiver unit. The pole-dipole electrode array was used with an electrode spacing of 50 m with n=1 to n=5 being recorded. The magnetic survey utilized EDA Omni4 magnetometers with a recording basestation to accurately correct for diurnal variations of the magnetic field. The EDA system records the Total Magnetic Field with an accuracy of within 1 nanoTesla. Magnetic readings were taken every 12.5 m.

A total of 30.4 line-Km of I.P. was surveyed while 37.4 line-Km of magnetics work was completed.

NMACAR90.DGG

ii) <u>Data Presentation</u>

The I.P. results are presented in pseudo-section format at a scale of 1:5000 while the magnetic results are presented in contoured map format and as profiles at a scale of 1:5000. Contoured chargeability and apparent resistivity maps of filtered values are also presented at a scale of 1:5000. The compilation of the geophysical interpretation is presented on the magnetics map as well.

iii) Discussion of Results

I.P. Survey

Development of anomalous I.P. zones can be seen from the pseudosections. Background chargeability values are considered to be 7 mV/V and less.

<u>L.9700N:</u> Hole in I.P. data due to lake. Edges of an anomalous I.P. response can be seen at the west edge of the line.

<u>L.9900N:</u> Hole in data due to lake and at East end probably due to poor current contacts. Two strong I.P. zones, one a shallow pod and the other a deeper body, lies at 9400E and 9725E respectively.

L.10100N: The two discrete zones have strengthened. A moderate response to the east appears at depth at 10600E.

<u>L.10300N:</u> Possibly 3 discrete responses at 9550E, 9725E, and 9875E at the wider of the 2 strong zones. The moderate zone to the east strengthens and shallows somewhat.

<u>L.10500N:</u> The wider of the two strong I.P. responses has diminished in size and appears to be sourced by a shallow pod at 9850E. The narrower response has weakened. Further development of the eastern zone into possibly 2 discrete deep sources.

<u>L.10700N:</u> The strong I.P. zone at the west has weakened and narrowed. Strengthening and shallowing of the moderate eastern zone into a single strong zone centred at 10725E.

NMACAR90.DGG

<u>L.10900N:</u> The two zones of L.10700N appear continous at depth with the eastern expression being sourced closer to surface than the western one.

<u>L.11100N:</u> From the pseudosections of Lines 10100N to 10900N two zones of varying strength and narrowing separation appear to gradually shallow and merge into one body centred at 10250E on this line. This body or source is sharply cut off at its western edge while weak sources occur at the eastern edge. It is speculated that the two zones are controlled by southerly dipping, oppositely trending structures.

<u>L.11300N:</u> Weakening of the merged "main" zone into a moderate response. Development of a moderate zone at 10700E which can be seen more clearly on the next line.

<u>L11500N:</u> Further moderation of the main response while the eastern response shallows and strengthens.

<u>L11700N:</u> A moderate shallow pod appears at 10800E. The main zone has weakened to slightly above background chargeability values.

<u>Ll1900N:</u> The shallow pod continues while the main zone strengthens somewhat.

The chargeability and apparent resistivity plan maps shows an arcuate chargeability zone lying on the immediate inside perimeter of a discontinuous ring-like high resistivity zone. The high chargeability zones are generally associated with moderate resistivity values between 750 and 1000 ohm - m with no chargeability expressions found with the low resistivity values.

The arcuate chargeability zone may be the result of a merger of two strong zones at L.11100N/10250E as discussed above or the folding of a single zone with the nose at L.11100N/10250E.

Structural features and/or lineations interpreted from the chargeability and resistivity plan maps appear to control the occurence and extent of the chargeability features. The moderate zone lying to the northwest of the "main" zone at L.11100N narrows at location L.11700N/10000E while the moderate zone to the northeast appears to be a cut off extension of the east limb of the arcuate zone. The arcuate zone itself consists of pinched pods.

The resistivity plan map presents 2 very high resistivity areas of abundant outcrop, the NE, where interbedded rhyolite and andesites are mapped and the SE where andesite and rhyolite are also mapped. The high resistivity feature found immediately west of the baseline on Lines 9700N and 9900N corresponds closely to mapped basalts. In the central as well as the NW portion of the grid till cover is relatively thick and this is reflected in part by low resistivity values.

Magnetics

There is a high degree of correspondance between the magnetics and resistivity results. The dominant magnetic trend on the grid is NW - SE with an overall NE gradient. Two active and high bands corresponding to andesite flows are found in the eastern ends of the lines separated by a slight magnetic trough lineament. A ring of relatively high magnetic values surrounding low values coincident with the eastern pod of the arcuate zone poses an interesting target.

iv) <u>Conclusions</u>

The geophysical surveys has delineated an anomalous broad, arcuate chargeability zone that is controlled to a large extent by structural features. The dominant geophysical trend is NW - SE. The geophysical surveys have also successfully mapped the local geology which also appears to be controlled to an extent by structural features.

Targets have been generated by the geophysical surveys and these include:

L.10100N/9400E/ depth to top = surface 1.

2.

L.10300N/9700E/ depth to top = surface L.10700N/9900E/ depth to top = surface L.10900N/10700E/ depth to top = 35 m3.

4.

5. L.11100N/10275E/ depth to top = 60 m

6. L.11300N/10150E/ depth to top = 60 m 7. L.11700N/10800E/ depth to top = 25 m

ť

The above targets should be constrained with geological and geochemical information. Geophysical, geological and geochemical data should be compiled to effectively evaluate the property.

IV. CONCLUSIONS

Conclusions based on the surveys conducted on the Newmac property by Noranda Exploration in 1989-1990 are listed below.

- A combined helicopter-borne magnetic, electromagnetic and VLF-EM survey has outlined a large regional magnetic high (5.4 kms x 0.5-1.8 kms) coincident with a roughly circular zone of high resistivity (4.5 kms x 1.5-2.0 kms) thought to represent a Tertiary quartz diorite stock intruding a Lower Cretaceous volcanic/sedimentary assemblage.
- 2. Enveloping the aforementioned high magnetic/high resistivity anomaly is a zone of low to moderate resistivity. A 2.6 km x 0.15-0.6 km Cu-Au soil anomaly has been found to exist along the transition between the high and low resistivity zones. Previous drilling in this transition zone returned 157 m of 0.178% Cu, 0.34 gm/T Au while another hole drilled outside of the transition zone returned no significant Cu-Au mineralization.
- 3. Geological mapping has revealed that a poorly stratified Lower Cretaceous assemblage of rhyolites and propylitically altered andesite flows and pyroclastics with minor interbedded sediments underlys the Newmac property. Cretaceous aged quartz feldspar porphyries, intrusive equivalents to the rhyolitic flows/tuffs have also been mapped. Intruding this volcanic/sedimentary package are stocks, plugs and dykes of monzonite to diorite composition.
- 4. Alteration of the andesites and diorites is commonly propylitic with minor zones of silicification or calc-silicate flooding containing minor garnet. Pervasive silicification dominates the quartz-feldspar porphyry.
- 5. Mineralization consists mainly of disseminations, veinlets and fracture fillings of pyrite, pyrrhotite and chalcopyrite. Areas of best sulfide development are found in silicified and gossanous structural breaks which appear to have controlled the emplacement of the dioritic intrusives.

NMACAR90.DGG

- 6. Geophysics including I.P. and magnetometer surveys have outlined a broad semi-circular moderate to high I.P. chargeability response lying on the immediate inside perimeter of a discontinuous ring-like high resistivity zone measuring approximately 1.0-1.5 kms in diameter. A roughly annular shaped Cu-Au soil anomaly exists on the western, northern and northeastern edges of the chargeability/resistivity anomaly and appears to be controlled by intersecting NNE and NW trending, hydrothermally altered structural breaks.
- 7. It is conceivable that the structural breaks mentioned above may have controlled the emplacement of a Cu-Au porphyry deposit hidden by a thick cover of a glacial till central to the chargeability/geochemical anomaly. It is concluded that the presence of the anomalous Cu-Au soil values and the sulfide rich zones are caused by the migration of hydrothermal solutions along the NNE and NW structural breaks derived from this buried source.
- 8. An initial 5000' diamond drill hole programme is recommended to test the Cu-Au porphyry potential in this area based upon the recent chargeability, resistivity and geochemical results.

REFERENCES

Heim, R.C. & Fraser, J.R. & Walker, J.T. & Knauer, J.D.:	Geological, Geophysical, Geochemical Report on the B.U. 1, 3-7, 19-26, 74, 76 and 78 Claims, 1972.
Fraser, John :	Report on the Butler Creek Property, 92N/10E, 1972.
Tipper, H.W. :	GSC Paper 68-33 and Map 5-1968 Mesozoic & Cenozoic Geology of the Northeast Part of Mount. Waddington Map Area (92N), Coast District, B.C. 1969.
McLaren, G.P. :	Geological Fieldwork, 1985, Paper 1986-1, Geology & Mineral Potential of the Chilko-Taseko Lakes Area (920/4,5; 92J/13; 92N/1).
McLaren, G.P. :	Geological Fieldwork, 1986, Paper 1987-1, Geology and Mineral Potential of the Chilko Lakes Area (92N/1,8; 920/4).
Glover, J.K. & Schiarizza :	Geological Fieldwork, 1986, Paper 1987-1, Geology and Mineral Potential of the Warner Pass Map Sheet (920/3).
Rusmore, M.E. & Woodsworth, G.J :	GSC Paper 88-1E, p. 185-190, 1988 Eastern Margin of the Coast Plutonic Complex, Mount Waddington Map Area, B.C.
Roddick, J.A. & Tipper, H.W.	: Geology, Mount Waddington (92N) Map Area; GSC Open File Map 1163, 1985.

NMACAR90.DGG

Page 33

,

- Podolsky, G. : Report on Combined Helicopter-borne Magnetic, Electromagnetic and VLF-EM Survey, Williams Lake Area, West-Central B.C. by Aerodat Ltd., 1989.
- Morton, J.W. : Assessment Report No. 12422, Geochemical Report on the Mac Claim Group, July 12 1984.
- Morton, J.W. : Assessment Report No. 13780, Geological & Geochemical Report on the Mac Claim Group, May, 1985.

Chapman, J. & Tregaskis, S.W. : Preliminary Geologic Report on the NewMac Claim by Mincord Exploration Consultants Ltd., January, 1988.

Garratt, G.L. & Conan-Davies, M. & Morton, J.W. : Geological, Geophysical, Geochemical and Diamond Drilling Report on the NewMac Property by Mincord Exploration Consultants Ltd., November, 1988.

APPENDICES I - VI

Ì

.

APPENDIX I

<mark>ออนสมองรรษยวินิธิสินสนายแห่ง</mark>แห่งในออยออ<mark>สนาพีที่สุนสนาพันธุรณิศิทธิ์สินศิทธิ์สินศิทธิ์สินศิทธิ์สินศิทธิ์สินสินศิทธิ์สินศิทธิ์สินศิทธิ์สินศิทธิ์ (1975) (1</mark>

· v· và

GENERAL INTERPRETATIVE CONSIDERATIONS (AIRBORNE)

ŕ

APPENDIX I

GENERAL INTERPRETIVE CONSIDERATIONS

Electromagnetic

1

1

The Aerodat four frequency system utilizes two different transmitter-receiver coil geometries. The traditional coaxial coil configuration is operated at two widely separated frequencies and the horizontal coplanar coil pair is operated at a frequency approximately aligned with one of the coaxial frequencies.

The electromagnetic response measured by the helicopter system is a function of the "electrical" and "geometrical" properties of the conductor. The "electrical" property of a conductor is determined largely by its electrical conductivity, magnetic susceptibility and its size and shape; the "geometrical" property of the response is largely a function of the conductor's shape and orientation with respect to the measuring transmitter and receiver.

Electrical Considerations

For a given conductive body the measure of its conductivity or conductance is closely related to the measured phase shift between the received and transmitted electromagnetic field. A small phase shift indicates a relatively high conductance, a large phase shift lower conductance. A small phase shift results in a large inphase to quadrature ratio and a large phase shift a low ratio. This relationship is shown quantitatively for a non-magnetic vertical half-plane model on the accompanying phasor diagram. Other physical models will show the same trend but different quantitative relationships.

The phasor diagram for the vertical half-plane model, as presented, is for the coaxial coil configuration with the amplitudes in parts per million (ppm) of the primary field as measured at the response peak over the conductor. To assist the interpretation of the survey results the computer is used to identify the apparent conductance and depth at selected anomalies. The results of this calculation are presented in table form in Appendix II and the conductance and inphase amplitude are presented in symbolized form on the map presentation.

1

1.200

The conductance and depth values as presented are correct only as far as the model approximates the real geological situation. The actual geological source may be of limited length, have significant dip, may be strongly magnetic, its conductivity and thickness may vary with depth and/or strike and adjacent bodies and overburden may have modified the response. In general the conductance estimate is less affected by these limitations than is the depth estimate, but both should be considered as relative rather than absolute guides to the anomaly's properties.

Conductance in mhos is the reciprocal of resistance in ohms and in the case of narrow slab-like bodies is the product of electrical conductivity and thickness.

Most overburden will have an indicated conductance of less than 2 mhos; however, more conductive clays may have an apparent conductance of say 2 to 4 mhos. Also in the low conductance range will be electrolytic conductors in faults and shears.

The higher ranges of conductance, greater than 4 mhos, indicate that a significant fraction of the electrical conduction is electronic rather than electrolytic in nature. Materials that conduct electronically are limited to certain metallic sulphides and to graphite. High conductance anomalies, roughly 10 mhos or greater, are generally limited to sulphide or graphite bearing rocks.

33

° 1

Sulphide minerals, with the exception of such ore minerals as sphalerite, cinnabar and stibnite, are good conductors; sulphides may occur in a disseminated manner that inhibits electrical conduction through the rock mass. In this case the apparent conductance can seriously underrate the quality of the conductor in geological terms. In a similar sense the relatively non-conducting sulphide minerals noted above may be present in significant consideration in association with minor conductive sulphides, and the electromagnetic response only relate to the minor associated mineralization. Indicated conductance is also of little direct significance for the identification of gold mineralization. Although gold is highly conductive, it would not be expected to exist in sufficient quantity to create a recognizable anomaly, but minor accessory sulphide mineralization could provide a useful indirect indication.

In summary, the estimated conductance of a conductor can provide a relatively positive identification of significant sulphide or graphite mineralization; however, a moderate to low conductance value does not rule out the possibility of significant economic mineralization.

Geometrical Considerations

71

.1

Geometrical information about the geologic conductor can often be interpreted from the profile shape of the anomaly. The change in shape is primarily related to the change in inductive coupling among the transmitter, the target, and the receiver.

In the case of a thin, steeply dipping, sheet-like conductor, the coaxial coil pair will yield a near symmetric peak over the conductor. On the other hand, the coplanar coil pair will pass through a null couple relationship and yield a minimum over the conductor, flanked by positive side lobes. As the dip of the conductor decreased from vertical, the coaxial anomaly shape changes only slightly, but in the case of the coplanar coil pair the side lobe on the down dip side strengthens relative to that on the up dip side.

As the thickness of the conductor increases, induced current flow across the thickness of the conductor becomes relatively significant and complete null coupling with the coplanar coils is no longer possible. As a result, the apparent minimum of the coplanar response over the conductor diminishes with increasing thickness, and in the limiting case of a fully 3 dimensional body or a horizontal layer or half-space, the minimum disappears completely.

A horizontal conducting layer such as overburden will produce a response in the coaxial and coplanar coils that is a function of altitude (and conductivity if not uniform). The profile shape will be similar in both coil configurations with an amplitude ratio (coplanar:coaxial) of about 4:1*. In the case of a spherical conductor, the induced currents are confined to the volume of the sphere, but not relatively restricted to any arbitrary plane as in the case of a sheet-like form. The response of the coplanar coil pair directly over the sphere may be up to 8* times greater than that of the coaxial pair.

In summary, a steeply dipping, sheet-like conductor will display a decrease in the coplanar response coincident with the peak of the coaxial response. The relative strength of this coplanar null is related inversely to the thickness of the conductor; a pronounced null indicates a relatively thin conductor. The dip of such a conductor can be inferred from the relative amplitudes of the side-lobes.

1

1

Massive conductors that could be approximated by a conducting sphere will display a simple single peak profile form on both coaxial and coplanar coils, with a ratio between the coplanar to coaxial response amplitudes as high as 8*.

Overburden anomalies often produce broad poorly defined anomaly profiles. In most cases, the response of the coplanar coils closely follows that of the coaxial coils with a relative amplitude ration of 4*.

Occasionally, if the edge of an overburden zone is sharply defined with some significant depth extent, an edge effect will occur in the coaxial coils. In the case of a horizontal

conductive ring or ribbon, the coaxial response will consist of two peaks, one over each edge; whereas the coplanar coil will yield a single peak.

* It should be noted at this point that Aerodat's definition of the measured ppm unit is related to the primary field sensed in the receiving coil without normalization to the maximum coupled (coaxial configuration). If such normalization were applied to the Aerodat units, the amplitude of the coplanar coil pair would be halved.

Magnetics

24

The Total Field Magnetic Map shows contours of the total magnetic field, uncorrected for regional variation. Whether an EM anomaly with a magnetic correlation is more likely to be caused by a sulphide deposit than one without depends on the type of mineralization. An apparent coincidence between an EM and a magnetic anomaly may be caused by a conductor which is also magnetic, or by a conductor which lies in close proximity to a magnetic body. The majority of conductors which are also magnetic are sulphides containing pyrrhotite and/or magnetite. Conductive and magnetic bodies in close association can be, and often are, graphite and magnetic. It is often very difficult to distinguish between these cases. If the conductor is also magnetic, it will usually produce an EM anomaly whose general pattern resembles that of the magnetics. Depending on the magnetic permeability of the conductivity is also weak, the inphase EM anomaly may even be reversed in sign.

VLF Electromagnetics

The VLF-EM method employs the radiation from powerful military radio transmitters as the primary signals. The magnetic field associated with the primary field is elliptically polarized in the vicinity of electrical conductors. The Herz Totem uses three coils in the X, Y, Z configuration to measure the total field and vertical quadrature component of the polarization ellipse.

The relatively high frequency of VLF (15-25) kHz provides high response factors for bodies of low conductance. Relatively "disconnected" sulphide ores have been found to produce measurable VLF signals. For the same reason, poor conductors such as sheared contacts, breccia zones, narrow faults, alteration zones and porous flow tops normally produce VLF anomalies. The method can therefore be used effectively for geological mapping. The only relative disadvantage of the method lies in its sensitivity to conductive overburden. In conductive ground to depth of exploration is severely limited.

The effect of strike direction is important in the sense of the relation of the conductor axis relative to the energizing electromagnetic field. A conductor aligned along a radius drawn from a transmitting station will be in a maximum coupled orientation and thereby produce a stronger response than a similar conductor at a different strike angle. Theoretically, it would be possible for a conductor, oriented tangentially to the transmitter to produce no signal. The most obvious effect of the strike angle consideration is that conductors

favourably oriented with respect to the transmitter location and also near perpendicular to the flight direction are most clearly rendered and usually dominate the map presentation.

The total field response is an indicator of the existence and position of a conductivity anomaly. The response will be a maximum over the conductor, without any special filtering, and strongly favour the upper edge of the conductor even in the case of a relatively shallow dip.

3

The vertical quadrature component over steeply dipping sheet-like conductor will be a cross-over type response with the cross-over closely associated with the upper edge of the conductor.

The response is a cross-over type due to the fact that it is the vertical rather than total field quadrature component that is measured. The response shape is due largely to geometrical rather than conductivity considerations and the distance between the maximum and minimum on either side of the cross-over is related to target depth. For a given target geometry, the larger this distance the greater the depth.

The amplitude of the quadrature response, as opposed to shape is function of target conductance and depth as well as the conductivity of the overburden and host rock. As the primary field travels down to the conductor through conductive material it is both attenuated and phase shifted in a negative sense. The secondary field produced by this

- 8 -

altered field at the target also has an associated phase shift. This phase shift is positive and is larger for relatively poor conductors. This secondary field is attenuated and phase shifted in a negative sense during return travel to the surface. The net effect of these 3 phase shifts determine the phase of the secondary field sensed at the receiver.

A relatively poor conductor in resistive ground will yield a net positive phase shift. A relatively good conductor in more conductive ground will yield a net negative phase shift. A combination is possible whereby the net phase shift is zero and the response is purely in-phase with no quadrature component.

10000

A net positive phase shift combined with the geometrical cross-over shape will lead to a positive quadrature response on the side of approach and a negative on the side of departure. A net negative phase shift would produce the reverse. A further sign reversal occurs with a 180 degree change in instrument orientation as occurs on reciprocal line headings. During digital processing of the quadrature data for map presentation this is corrected for by normalizing the sign to one of the flight line headings.

- 9 -

APPENDIX II

.....

AIRBORNE ANOMALY LIST

1

.

•

FLIGH	IT LINE	ANOMALY CATEGOR	AMPLITUDE (PPM) INPHASE QUAD.	CTP DEE MHOS MI	
1	1011	A MGNTITE 0	-13.9 3.2	0.0	0 176
1	1011	B MGNTITE 0	-42.0 4.3	0.0	0 129
			-22.1 1.2		
1	1011	D MGNTITE 0	-14.6 1.9	0.0	0 136
1	1011	E MGNTITE 0	-6.0 2.1	0.0	0 162
1	1011	F MGNTITE 0	$\begin{array}{ccc} -14.6 & 1.9 \\ -6.0 & 2.1 \\ -6.2 & 3.1 \end{array}$	0.0	0 181
1	1011	G MGNTITE 0	-9.7 5.2	0.0	0 152
			-5.9 5.0	0.0	0 187
1		J MGNTITE 0	$\begin{array}{ccc} -5.0 & 4.7 \\ -6.4 & 3.6 \\ -19.2 & 0.5 \end{array}$	0.0	0 211
1	1011	K MGNTITE 0	-6.4 3.6	0.0	0 180
1	1011	M MGNTITE 0	-19.2 0.5	0.0	0 145
1	1011	N MGNTITE 0	-10.0 3.9	0.0	0 187
1	1011	O MGNTITE 0	-52.8 2.5	0.0	0 154
1	1011	P MGNTITE 0	-62.7 6.1	0.0	0 113
1	1011	Q MGNTITE 0	-62.7 6.1 -12.2 4.9	0.0	0 166
1	1020	A 0	8.9 27.4	0.2	0 168
1	1020	в 0	6.3 12.6	0.3	0 236
1	1020	C MGNTITE 0	-2.7 0.6	0.0	0 198
1	1020	D MGNTITE 0	$\begin{array}{rrr} -2.7 & 0.6 \\ -7.1 & 3.4 \\ -9.4 & 5.3 \end{array}$	0.0	0 204
1	1020	E MGNTITE 0	-9.4 5.3	0.0	0 195
1	1020	F MGNTITE 0	-9.5 3.8	0.0	0 197
1	1020	G MGNTITE 0	-8.8 2.0	0.0	0 200
1	1020	H MGNTITE 0	-16.4 2.4	0.0	0 184
1		J MGNTITE 0	-10.1 3.5	0.0	0 189
1	1020	K MGNTITE 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	0 175
1	1020	M MGNTITE 0	-14.4 3.1	0.0	0 166
1	1020	N MGNTITE 0	-8.8 2.3	0.0	0 179
1	1020	O MGNTITE 0	-3.8 0.4	0.0	0 250
1		P MGNTITE 0	-3.8 0.4 -6.9 3.8 -8.3 10.5	0.0	0 214
1	1020	Q MGNTITE 0	-8.3 10.5	0.0	0 173
3	1031	A MGNTITE 0	-33.4 1.9	0.0	0 145
3		B MGNTITE 0	-4.9 0.4	0.0	0 210
3	1031		-3.1 0.6 -5.4 0.5	0.0	0 227
3	1031	D MGNTITE 0	-5.4 0.5	0.0	0 227 0 200
3	1031		-5.6 2.1	0.0	0 215
3	1031		-5.3 12.7	0.0	0 188
3	1041		-27.7 4.5	0.0	0 193
3	1041		-5.7 3.3	0.0	0 223
3	1041	C MGNTITE 0	-16.9 1.9	0.0	0 157
3	1041	D MGNTITE 0	-33.9 2.4	0.0	0 173
3	1041	E MGNTITE O	-7.5 1.9	0.0	0 203

Estimated depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or overburden effects.

1

...

98 93

1

1

FLIGHT	LINE	ANOMALY CATEGORY	AMPLITUDE (H INPHASE QUA	PPM) CTP	MTRS	HEIGHT MTRS
3	1041	F MGNTITE 0	-9.1 3	3.6 0.0	0	198
3	1041	G MGNTITE 0	-93 1		Õ	
3	1041	H MGNTITE 0			ŏ	
3	1041		-13.0 1		õ	
3	1041	K MONTITE O	-8 1 1		õ	
3	1041	M MONTITE O	-8.1 1 -5.1 0	L.4 0.0 D.5 0.0	0	198
3	1041	K MGNTITE 0 M MGNTITE 0 N MGNTITE 0	-3.4 -(1 0.0	0	199
	1041		-4.1 -(0	
3		P MGNTITE 0	-2.0			
3						228
3	1041	Q MGNTITE 0	-4.4 -0)./ 0.0	U	236
1	1050	A MGNTITE 0				186
1	1050	B MGNTITE 0	-6.9 ().4 0.0	0	198
1	1050	C MGNTITE 0	-14.9	1.4 0.0	0	189
1	1050	D MGNTITE 0	-23.1 2	2.6 0.0	0	170
1	1050	E MGNTITE 0 F MGNTITE 0	-20.9 2	2.6 0.0	0	175
1	1050	F MGNTITE 0	-19.3 2	2.6 0.0	0 0	185
1	1050	G MGNTITE 0	-5.6	5.9 0.0	0	221
1	1060	A MGNTITE 0	-6.0	5.9 0.0	0	179
1	1060	B MGNTITE 0	-9.1	4.8 0.0	Ő	180
1	1060	C MGNTITE 0	-4.5	4.8 0.0 1.2 0.0		240
1	1060		-30 (0.0 0.0		208
1	1060					186
2	1070		10.0		0	1
3	1070	A MGNTITE 0 B MGNTITE 0	-10.6	4.2 0.0	0	157
	1070	B MGNTITE U	-13.9 4	4.0 0.0	0	155
	1070	C MGNTITE 0			0	147
3	1070	D MGNTITE 0	-4.0		0	212
3	1070	E MGNTITE 0	-4.5	J.9 0.0	0	194
3	1070	F MGNTITE 0	-6.6	1.2 0.0 1.4 0.0	0	210
3	1070	G MGNTITE 0	-4.8 .	1.4 0.0	0	212
	1070		-20.8			
3	1070	J MGNTITE 0	-6.3 -0	J.1 0.0	0	291
3 ՝	1080	A MGNTITE 0		4.2 0.0	0	150
3	1080	B MGNTITE 0		1.1 0.0	0	225
3	1080	C MGNTITE 0		0.0 0.0	0	166
3	1080	D MGNTITE 0	-14.0	0.5 0.0	0	216
3	1080	E MGNTITE O	-4.9	0.4 0.0	0	194
3	1080	F MGNTITE 0		0.1 0.0	0	209
3	1080	G MGNTITE 0		3.0 0.0	0	188
3	1080	H MGNTITE 0		0.5 0.0	0	192
• 3	1090	A MGNTITE 0	-6.1	2.0 0.0	0	172

1

 \mathbb{S}^{n}

20000

3

FLIGHT	LINE	ANOMALY CATEGORY	AMPLITUDE (PPM) INPHASE QUAD.	CTP MHOS	
3	1090	B MGNTITE 0	-3.7 1.9	0.0	0 156
3	1090	C MGNTITE 0	-3.7 1.9 -4.8 0.6	0.0	0 232
3	1090	D MGNTITE 0	-9.5 0.1	0.0	0 217
3	1090	E MGNTITE O	-3.3 0.2	0.0	0 249
3	1100	A MGNTITE 0	-6.5 1.4 -12.7 2.3	0.0	0 176
3	1100	B MGNTITE 0	-12.7 2.3	0.0	0 161
	1100		-4.4 2.9		
3	1100	D MGNTITE 0	-14.8 1.8	0.0	0 142
3	1100 1100	E MGNTITE 0	$\begin{array}{ccc} -5.0 & 1.7 \\ -24.7 & 1.2 \\ -25.0 & 0.0 \end{array}$	0.0	0 180 0 177
	1100	F MGNTITE 0	-24.7 1.2	0.0	0 177
3	1100	G MGNTITE 0	-25.0 0.0	0.0	0 172
3		A MGNTITE 0	-4.5 0.1	0.0	0 206
3	, 1110	B MGNTITE 0	$\begin{array}{ccc} -2.7 & 0.7 \\ -7.4 & 0.3 \\ -12.1 & 0.1 \end{array}$	0.0	0 222
3	, 1110	C MGNTITE 0	-7.4 0.3	0.0	0 189
3 3	1110	D MGNTITE 0	-12.1 0.1	0.0	0 180
3	1110	E MGNTITE 0	-21.7 0.8	0.0	0 172
3	1110	F MGNTITE 0	-13.5 0.6	0.0	0 190
3	1120	A MGNTITE 0	$\begin{array}{rrr} -1.2 & -0.5 \\ -3.2 & 0.0 \\ -8.4 & 2.4 \end{array}$	0.0	0 283
3	1120	B MGNTITE 0	-3.2 0.0	0.0	0 253
3	1120	C MGNTITE 0	-8.4 2.4	0.0	0 226
3			-3.5 2.6		
3	1120	E MGNTITE 0	-2.4 0.7	0.0	0 311
3	1120	F MGNTITE 0	-4.2 0.5	0.0	0 234
3	1130	A MGNTITE 0	-6.3 0.9	0.0	0 176
3 3	1130	B MGNTITE 0	-26.3 0.6	0.0	0 155
3	1140	A MGNTITE 0	-7.1 2.0	0.0	0 205
3	1140	B MGNTITE 0	-9.8 3.6	0.0	0 204
			-17.8 11.5		
4	1160	B MGNTITE 0	-26.9 14.0	0.0	0 173
4	1160	C MGNTITE 0	-23.7 11.4	0.0	0 173
6	1190	A MGNTITE 0	-2.8 12.4	0.0	0 143
6	1190	B MGNTITE 0	-4.5 11.2	0.0	0 164
6	1190	C MGNTITE 0	-0.9 9.1	0.0	0 213
6	1190	D MGNTITE 0	1.6 6.5	0.0	0 235
6	1190	E MGNTITE 0	-7.9 5.0	0.0	0 205
6	1190	F MGNTITE 0	-9.0 7.1	0.0	0 191
6	1200	A MGNTITE 0	3.5 15.4	0.0	0 213

1

J

FLIGHT	LINE	ANOMALY CATE	GORY	AMPLITUD INPHASE	QUAD.	CTP	MTRS	HEIGHT MTRS
6	1200	B MGNTITE	0	-4.7	18.6	0.0	0	157
6	1200	C MGNTITE	0	-12.3	19.5	0.0	0	
		D MGNTITE						
6	1200	E MGNTITE	0	-3.0	11.6	0.0	0	235
6	1210	A MGNTITE B MGNTITE	0	-0.4	30.7	0.0	0	192
6	1210	B MGNTITE	0	-5.2	7.6	0.0	0	201
6	1210	C MGNTITE	0	-24.0	7.3	0.0	0	200
6	1210	D MGNTITE	0	-5.5	14.4	0.0	0	171
		A MGNTITE	0	-3.9	39.2	0.0	0	103
6	1220	B MGNTITE	0	-4.1	31.2	0.0	0	114
6	1220	C MGNTITE	0	-7.0	11.2	0.0	0	184
6	1220	D MGNTITE	0	-24.5	5.8	0.0	0	175
6	1220	E MGNTITE	0	-6.7	8.2 5.7	0.0	0	22 4 227
6	1220	F MGNTITE	0	-4.4	5.7	0.0	0	227
		A MGNTITE						
6	1230	B MGNTITE	0	-5.6	7.1	0.0	0	208
6	1230	C MGNTITE	0	-15.7 -1.8 5.9	4.6	0.0	0	
6	1230	D MGNTITE	0	-1.8	10.4	0.0	0	
6	1230	E	0	5.9	20.3	0.1	0	196
6	1240	A MGNTITE	0	-1.6	13.7	0.0	0	153
6	1240	в	0	5.5	19.0	0.1	0	279
6	1240	B C D MGNTITE	0	4.2	23.0	0.0	0	205
6	1240	D MGNTITE	0	-6.1	3.4	0.0	0	199
6	1240	E MGNTITE	0	-8.5	5.6	0.0	0	200
6	1240	F MGNTITE	0	-8.5	3.7	0.0	0	182
5	1250	A MGNTITE	0	-7.6	6.5	0.0	0	231
5	1260	A MGNTITE	0	3.3	22.6	0.0	0	168
5	1270	А	0	4.9	18.5	0.1	0	212
5	1270	В	0	4.9 6.3	18.5 15.3	0.2	<i>.</i> 0	283
5	1280	A	0	6.6	23.2	0.1	0	254
5	1280	B MGNTITE		-4.0	12.8	0.0	0	177
5	1280	C MGNTITE		-3.6	3.4	0.0	0	265
5	1280	D MGNTITE	0	-6.3	5.8	0.0	0	172
5	1290	А	0	20.6	39.8	0.5	0	228
5	1290	В	0	7.2	17.3	0.2	Õ	225
5	1290	C MGNTITE	•	-0.4	5.6	0.0	Ő	231
5	1200	0 11014111D	-	v			v	

ł

1

1

\$

•.;

FLIGHT	LINE	ANOMALY CATEG			CTP	MTRS	
5	1300	-		39.0			149
5 5	1300 1300	B (C MGNTITE () 7.4) -3.3				183 212
5	1313			6.9	0.0	0	182
5	1313	B MGNTITE (C MGNTITE ($3.4 \\ 5.1$			180 168
5 5	1313	D MGNTITE (7.6			
· 5	1313 1313	E 1	J -0.9	22.8	1 5	0	234
5	1313		1 24.3 17.9	22.8 51.1	0.3	0	165
5	1313	G MGNTITE (3.4	0.0	0	167
5	1320	A MGNTITE (0 -7.6	3.8	0.0	0	164
5	1320	B MGNTITE () -11.2	2.0	0.0	0	144
5	1320	C MGNTITE (0 -8.8	1.9 29.3	0.0	0	150,
5	1320	D (0 11.3	29.3	0.2	0	190
5	1320	Е (0 19.1	43.7	0.4	0	204
5	1330	A MGNTITE (7.7	0.0	0	218
5	1330	B MGNTITE (0 -10.3	4.3	0.0	0	165
5	1330	C MGNTITE (n <u></u>	·/ A	0 0	0	157
5	1330	D MGNTITE (7.4		0	
5	1330	Е (0 5.5	22.1	0.1	0	180
5	1340	A MGNTITE (0 -15.1	10.4	0.0	0	130
5	1340	B MGNTITE (3.2 9.3	0.0	0	175
5	1340	C MGNTITE (0 -31.2	9.3	0.0	0	
5	1340	D MGNTITE (0	
5	1340	E MGNTITE (0	148 135
5 5	1340 1340	F MGNTITE (G (0 -51.6 0 2.4	9.3 16.6	0.0	0 0	255
2	1350	A (0 11.2	22 8	0.4	0	258
2	1350	B MGNTITE (202
2	1350	C MGNTITE (6.4		Õ	181
2	1350	D MGNTITE (0 -6.6	1.9	0.0	0	199
2	1360	A MGNTITE (0 -5.5	5.9	0.0	0	165
2	1360	B MGNTITE (0 -25.3	5.9	0.0	0	152
2	1360	C MGNTITE		14.3	0.0	0	140
2	1360	D MGNTITE		6.9	0.0	0	154
2	1360	E MGNTITE (0 -5.1	1.7	0.0	0	213
2	1370	A MGNTITE	0 -3.9	9.3	0.0	0	172

33

1

PAGE 6

J8984 NORANDA EXPLORATION COMPANY, LIMITED WILLIAMS LAKE AREA, B.C. EM ANOMALIES

FLIGHT	LINE	ANOMALY	CATEG	ORY	AMPLITUDI INPHASE		CTP	MTRS	HEIGHT MTRS
2	1370	в	0		3.8	14.7	0.0	0	196
2	1370	С	0		9.9	26.1	0.2	0	180
2	1370	D	0		9.6	17.1	0.4	0	
2	1370	E	. 0		9.4	20.4	0.3	0	227
2	1380	A MGN	TITE O		-3.3	2.4			234
2	1380	B MGN	TITE O		-4.9	3.4	0.0	0	213
2	1390	A MGN	TITE O		-9.7			0	173
2	1390	B MGN	TITE O		-9.5	5.5	0.0	0	
2	1390	C MGN	TITE O		-12.1			-	200
2	1390	D MGN	TITE O		-18.1	5.1	0.0	0	
2	1390	E	0	ł	3.9	12.7	0.1	0	199
2	1400	А	C	,	1.9	12.9	0.0	0	
2	1400	B MGN	TITE O	,	-4.7	6.4	0.0		208
2	1400	C MGN	TITE C	ŀ	-4.8	10.3	0.0		165
2	1400	D MGN	TITE O			3.7			216
2	1400	E MGN	TITE C	¢.	-7.0	2.6	0.0	0	223
2	1410	A MGN	TITE C)	-23.9	13.1	0.0	0	160
2	1410				-46.1			0	149
2	1410				-37.0			0	154
2	1410	D MGN	TITE ()	-7.8	3.8	0.0	0	192
2	1410	E MGN	TITE (1	-9.9	5.3	0.0	0	196
2	1420	A MGN	TITE ()	-8.7	0.9	0.0	0	214
2	1441	A MGN	TITE ()	-9.8	9.2	0.0	0	173
2	1441		TITE ()	-10.2	-0.6	0.0	0	191
1	1450	A MGN	TITE ()	-10.4	0.5	0.0	0	188

.]

APPENDIX III

CONTRACTOR CONT CONTRACTOR CON

100320100

LABORATORY ANALYTICAL TECHNIQUES

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver.

Preparation of Samples:

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples * from constant volume), are analysed in its entirety, when it is to be determined for gold without further sample preparation.

Analysis of Samples:

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method:

Antimony – Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at 95° C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to measure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with MIBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

N.B.: If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

LOWEST VALUES REPORTED IN PPM:

Ag - 0.2	Mn - 20	Zn – 1	Au - 0.01
Cd - 0.2	Mo – 1	Sb - 1	W - 2
Co - 1	Ni - 1	As - 1	U - 0.1
$C_{ij} - 1$	Pb - 1	Ba - 10	
Fe - 100	V - 10	Bi - 1	

ANALYTICAL METHOD DESCRIPTION FOR ICP BY ACME ANALYTICAL LABORATORIES LTD.

A .500 gram sample is digested with 3 ml of $HC1-HN0_3-H_20$ (3:1:2) at 95°C for one hour and is diluted to 10 ml with water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Au detection limit by ICP is 3 ppm. Au* analysis by acid leach/AA from 10 gm sample.

----- ****** ...-

ŕ

APPENDIX IV

ward ward ward wards and wards

and the second of the second second

GEOCHEMICAL RESULTS

ŕ

NORANDA VANCOUV 1 LABORATORY Geochemical Analysis

Project Name & No.: NEWMAC - 123 Material: 267 SOILS Remarks:

Geol.: G.G. Sheet: 1 of 7 Date rec'd: JUL. 17 <u>LAB CODE:</u> 9007-055 Date compl: AUG. 07 LEOUDERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERSERVERS Name

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

ICP ~ 0.2 g sample digested with 3 ml HCiO4/HNO3 (4:1) at 203 deg. C for 4 hours diluted to 11 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, Ga, La, Li are rarely dissolved completely from geological materials with acid dissolution methods.

T.T.	SAMPLE	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga	К	La	Li	Mg	Mn	Мо	Na	NI	P	Pb	Sr	TI	V	Źn	7
No.	No.	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	
2	9700N-9000E	0.2	3.86	13	145	0.7	2	0.55	0.2	43	11	32	32	3,24	11	0.41	15	17	0.71	1076	1	0.07	17	0.14	8	55	0.23	105	94	
3	9050	0.2	4.54	12	142	0.8	2	0.54	0.2	54	12	34	36	3.57	12	0.48	18	19	0.82	536	1	0.07	22	0,10	7	51	0.24	105	91	- {
4	9100	0.2	3.88	14	157	0.7	2	0.60	0.2	53	10	36	27	3.45	15	0.43	19	19	0.68	581	1	0.07	20	0.12	8	58	0.25	94	90	
5	9150	0,2	4.06	15	154	0.7	2	0.62	0.2	44	12	26	28	3,32	17	0.43	15	21	0.79	587	1	0.08	19	0.12	8	51	0.18	113	99	
6	9700N-9200E	0.2	3,98	15	154	0.9	2	0.77	0.2	74	15	45	46	3.48	14	0.37	29	17	0.78	711	1	0.08	27	0.14	10	58	0.27	109	88	
7	9700N-9250E	0.2	2.99	21	142	0.7	2	0.92	0.3	71	13	36	32	3.10	17	0.34	28	14	0.73	653	1	0.06	23	0.10	11	68	0.28	94	92	
8	9300	0.2	3.05	22	146	0,7	2	0.95	0.2	67	12	30	30	3.05	17	0.38	23	14	0.73	617	1	0.08	19	0.08	10	68	0.26	93	74	
9	9350	0.2	4.45	56	192	0.7	2	0.47	0.2	54	10	24	27	3,30	17	0.62	18	18	0.62	551	1	0.08	14	0.10	14	48	0.23	85	148	
10	9400	0.2	6.23	226	327	1.4	2	0.96	2.2	92	19	10	37	3.35	25	1.39	31	14	0.65	2445	1	0.11	13	0.09	51	81	0.17	60	410	
11	9700N-9550E	0.2	4.64	22	158	1.0	2	0.69	0.2	42	21	35	43	3.57	7	0.53	17	18	1.29	1387	1	0.05	33	0.08	10	55	0.24	117	141	
12	9700N-9600E	0.2	4.35	10	151	0.9	2	0.64	0.2	36	16	36	32	3.67	4	0.56	13	19	1.21	811	1	0.06	26	0.06	9	54	0.25	125	126	
13	9650	0.2	4.80	6	156	0.7	2	0.70	0.2	38	- 4	27	33	3.65	4	0.60	13	17	1.19	800	1	0.08	22	0.08	14	58	0.22	108	117	
14	9700	0.2	4.82	9	149	0.7	2	0.72	0.2	38	17	31	38	4.21	3	0.54	13	19	1.28	820	1	0.06	27	0.08	11	57	0.25	144	142	
15	9750		4.23		152	0.6	2	0.73	0.2	38	10	28	19	3.83	6	0.50	13	19	0.84	705	1	0.07	16	0.09	7	62	0.24	104	106	
16	9700N-9800E	0.2	4.04	11	167	0.6	2	0.67	0.2	37	10	22	28	3,77	5	0.46	13	18	0.81	1217	1	0,08	14	0.13	8	60	0.23	106	104	ĺ
17	9700N-9850E	0,2	4,37	16	206	0.9	2	0.88	0.2	47	15	20	46	3.32	8	0.59	15	17	0.94	1748	1	0.08	18	0.15	25	67	0.19	89	114	1
18	9900	0.2	4.01	7	201	0.6	2	0.77	0.2	34	10	20	23	3,54	9	0.53	11	19	0.79	1557	1	0.06	13	0.17	8	61	0.19	99	115	
19	9950	0.2	3.83	9	138	0.6	2	0.79	0.2	40	11	33	27	3.52	6	0.42	13	17	1.03	781	1	0.05	17	0.11	9	58	0.24	96	95	
20	10000	0.2	4.22	9	148	0.7	2	0.83	0.2	42	16	29	42	3.73	8	0.55	13	17	1.33	1036	1	0,06	23	0.12	9	60	0.24	113	104	
21	9700N-10300E	0.2	4.53	16	209	0.9	2	1.04	0.2	47	15	31	54	3.25	14	0.77	17	14	1.19	853	1	0.04	36	0.08	6	74	0.20	87	82	
22	9700N-10350E	0.2	4.12	21	207	0.8	2	0.96	0.2	31	15	34	57	3,49	10	0.62	10	19	1.48	1176	4	0,05	21	0.10	6	58	0.17	125	168	
23	10400	0.2	4.07	6	138	0.5	2	0.50	0.2	37	9	33	16	3.18	7	0.42	14	18	1.11	453	1	0.08	18	0.06	3	50	0.23	91	105	
24	10450	0.2	4.27	11	137	0.5	2	0.47	0.2	35	11	41	28	3.71	6	0.43	13	18	1.08	590	1	0.07	22	0.06	5	51	0.21	103	118	
25	10500	0.2	3.95	13	112	0.5	2	0.62	0,2	33	12	28	25	3,60	8	0.44	12	19	1.07	656	1	0,05	15	0.06	7	55	0.20	105	115	
26	9700N-10550E	0.2	3.89	8	91	0,4	2	0.86	0.2	38	9	24	15	2.87	11	0.37	12	18	0.84	448	1	0.05	12	0.05	7	73	0.19	86	100	
27	9700N-10800E	0.2	4.48	10	137	0,5	2	0.77	0.2	31	13	34	30	3.55	8	0.46	11	19	1.37	617	1	0.05	22	0.06	6	66	0.20	108	124	
28	10650	0.2	3.97	15	123	0.5	2	0.72	0.2	34	10	38	25	3.18	9	0.37	12	19	0.95	581	1	0.08	19	0.07	6	64	0.23	104	102	
29	10700		3.72	10	86	0.5	2	0.58	0.2	32	10	37	24	2,83	8	0.39	10	18	1.05	450	1	0.04	19	0.06	5	46	0.17	79	69	
30	10750	0.2	3.49	10	116	0.5	2	0,60	0.2	35	7	25	20	2.42	10	0.36	13	16	0.61	484	1	0.08	11	0.07	5	60	0.23	80	75	ł
31	9700N-10800E	0.2	3.66	11	116	0.7	2	0.64	0.2	36	8	26	24	2.87	9	0.40	14	15	0.59	465	1	0.05	15	0.07	7	62	0.19	75	78	
32	9700N-10850E	04	4.12	4	115	0.7	2	0.59	0.2	31	5	14	16	2.55	6	0.47	10	15	0.44	337	1	0.05	9	0.06	4	45	0.18	52	70	
33	10900	0.4	3.34		88	0.6		0.92	0.2	38	5	24	12	2.01	9	0.29	13	9	0.35	374		0.05		0.04	6		0.23	69	49	
34	10950		4.18	_		0.8	-	1.24	0.2	40	11	38	28	3.48	11	0.35	13	21		562	-	0.08	-	0,08	7		0.33	112	174	1
35	11000	- 36363643	4.53		141	0.6	-	0.77	0.2	38	10	27	33	3.78	8	0,45	13		0.72	781		0.08	18	0.13	5				100	}
36	9700N-11050E		3.35		149	0.5	-	0.93	0.2	35	8	28	23	2.73	12	0.39	11	1000	0.54	824		0.06	15	0.17	6	72	0.25	95	85	1
<u> </u>		×4.7		<u> </u>						<u></u>					<u> </u>		<u>·</u>	1000000				<u></u>			نستعمد	<u>www.</u> web				

T.T.	SA' T'E	An	A	1	As	Ba	Be	BI	Ca	Cd	Ce	Co	Cr	Cu	Fe	6.	К	La	LI	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	TI	V	Zn	900
. I . 10.	5/ ".E 0.	Ag ppm	- A 96			ррп				ppm	ppm	ppm		ppm	ге %		. N. 96		ppm	•	мп ppm	мо ppm		ppm			or ppm	96		2n ppm	.900 2 g. 2
7	9700N-11100E	0.2			12	138		10.			35	10	72	25	3.23	10		12		0.88		1	0.07	31	0.08	7	West Profiles	0.27		92	
8	11150	0.2				127	- 8886283	8 7			33	10	27	36	3.11	9	0.35	11	100000	0.70	809	1	0.07	15	0.19	7	64	0.23		90	
9	11200	0.4				119	3033333	38			41	8	24	21	2.72	7		17		0.69		1	0.07	15	0.08	6	59	0.24		72	
0	11250	0.6				137	- 333-333	8	0.42		29	5	11	13	2.11	6		10		0.32		1	0.05	8	0.12	4	35	0.12		74	
11	9700N-11300E	0.2				150		8	0.53		40	8	26	20	2.55	9		17	10000000	0.44		1	0.05		0.13	7		0,18		78	
••	0/0011 110002								•.••	•.=		•				-		••				•				•		••••	•••		
2	9700N-11350E	0.2	3.6	A	10	152	0,7	,	0.52	0.2	52	9	31	22	2.96	8	0.54	19	12	0,54	554	1	0.06	18	0.11	6	48	0.20	72	82	
13	11400	0.4				177	3000328		0.58		40	8	21	20	2.74		0.52	15		0.49		4	0.06		0.18	5	52	0.18		93	
4	11450	0,4		-		224		S8	0.63		60	11	23	27	3.24	.0		21	803933	0.65		4	0.06		0.09	6	52	0.22		74	
							- 3993999	88				5		2/	2.22				1000000	0.65		1	100000000		0.07	6	10000000	0.22		54	
15	11500	0.2	1			108		8	0.58		40		18				0.32	14					0.05	8		-					
6	9700N-11550E	0.2	3.7	0	1	202	0.6	2	0.56	0.2	43	8	20	17	2.86	Я	0.52	14	10	0.61	513	1	0.08	10	0.10	6	44	0.16	61	77	
																					-					-				400	
17	9700N-11600E	0.2				236	- 996996	2	0.60		40	8	13	20	3.11	12		13		0.65		1	0,10	12		7	44	0.11	59	108	
8	11650	0.2				182	- 396666	8	0.53		48	8	16	14	2.82	10	0.60	17		0.66		1	0.07	11	0.09	7	39	0.15		70	
19	9700N-11700E	0.2				241		1	0.45		39	11	18	27	3.12	7		14		0.81	807	1	0.07	14		5	34	0.11	61	78	
51	9700N-11750E	0.2				193		8	0.52		40	14	43	53	3.12	6	0.54	16		0.95		· 1	0.06		0.11	6		0.17		77	
2	9700N-11800E	0,2	2.9	9	6	160	0.8	2	0.64	0.2	49	10	25	21	2.84	5	0,50	18	12	0.70	475	1	0.07	16	0.09	4	50	0.20	69	63	
								8																						_	
3	9700N-11850E	0.2				186		2	0.64	0.2	54	13	32	33	3.43	6	0,65	21		0.99		1	0.07		0.08	5		0.24		68	
4	11900	0.2	3.9	0	12	161	0.6	2	0.54	0.2	44	14	46	40	3.47	7	0.49	16	18	1.01	470	1	0.06	31	0.11	6		0.22		71	
5	11950	0.2	4.2	5	9	178	0.6	2	0.39	0.2	39	12	36	34	3.56	6	0.60	14	17	0.82	853	1	0.08	23	0.19	6	45	0.20	105	86	
6	12000	0.2	4.5	3	17	173	0.7	2	0.74	0.2	45	13	29	41	4.03	7	0.48	16	19	0.78	954	1	0.08	17	0.14	6	61	0.30	130	99	
7	9700N-12050E	0.2	4.0	2	14	116	0.7	2	1.18	0.2	41	14	40	40	4.11	10	0.33	12	15	0.93	869	1	0.09	21	0.19	5	69	0.38	144	93	
8	9700N-12150E	0.2	4.3	2	10	135	0.8	2	1.41	0.2	48	18	29	60	3.90	8	0.29	16	18	1.04	1065	1	0.08	22	0.14	4	70	0.34	138	97	
9	12200	0.2	3.7	0	14	61	0.6	4	3.23	0.8	31	30	15	109	5.55	7	0.20	8	9	1.57	1229	1	0.07	26	0.07	7	115	0.46	221	97	
0	12250	0.2	3.4	0	14	100	0,5	2	1.32	0.2	38	13	24	62	3.96	10	0.28	11	13	0.79	812	1	0.06	16	0.12	5	69	0.35	169	79	
1	12300	0.6	3.9	6	13	111	0.7	2	1.16	0.2	39	18	33	62	3.56	15	0,44	13	14	1.08	1145	1	0.06	24	0.15	8	55	0.23	133	95	
2	9700N-12350E	0.2	4.1	3	12	138	0.7	2	0.60	0.2	38	10	30	31	3.06	10	0.55	12	17	0.78	437	1	0.06	19	0.08	8	51	0.19	87	92	
3	9700N-12400E	0.2	3.2	6	9	133	0.5	2	0.73	0.2	38	5	27	23	1.91	10	0.53	11	11	0.35	198	1	0.06	10	0.16	5	57	0,19	74	46	
4	12450	0.2	4.0	2	12	147	0.7	2	0.80	0.2	47	12	32	42	3.47	9	0.38	17	16	0.86	515	1	0.07	22	0.12	7	66	0.31	111	78	
5	9700N-12500E	0.2	4.4	4	10	130	0.6	2	0.89	0.2	38	15	20	50	3.62	13	0.33	12	16	0.95	1167	1	0.07	16	0.13	9	62	0.23	121	103	
6	9900N-9000E	0.2	3.2	4	12	138	0.6	2	0.65	0.2	45	11	38	23	3.10	12	0.36	16	18	0.67	824	1	0.08	17	0.07	7	65	0.23	108	77	
7	9900N-9050E	0.2	3.7	0	17	140	0.5	2	0.53	0.2	41	11	39	32	3.54	12	0.41	15	18	0.79	877	1	0.07	19	0.12	9	51	0.22	117	91	
																				•											
B	9900N-9100E	0.4	3.4	1	16	159	0.5	2	0.58	0.2	40	11	36	31	3.39	12	0,39	14	18	0.68	1563	1	0.07	18	0.17	9	53	0.20	106	90	
9	9150	0.2	3.3	2	13	131	0,6	2	0.76	0.2	57	12	42	30	3.33	10	0.34	21		0.73	606		0.08	20	0.09	7	59	0.26	103	74	
0	9200	0.4	3.8				0.6	ξ î.	0.72		44	11	42	36	3.77	11	0,38	15		0.77		1	0,08		0.13	8	54	0.27		109	
1	9250		- · ·				0.7	\$ 	0.65	1	43	11	34	46	2.98		0.32			0.77			0.06		0.08	18		0.24		102	
2	9900N-9300E	0,8					1.2	6	0.35		45	17		189	4.34		0.69				939		0.06		0,10	9		0.20		190	
								-								-						•		_,		-					
3	9900N-9350E	0.2	5.4	4	74	289	0.9	2	0.74	0.9	,65	24	18	111	3.91	12	0.81	20	14	0.83	1267	1	0.08	25	0.08	9	60	0.17	85	246	
4	9400	0.2					0.8	8	0.50	1.1	67	18	23	84	3.69			19			1256		0.06		0.10			0.17		271	
5	9450	0.6					0.7	2	0.43		44	11	24	70	5.05		0.50	16			1053		0.07		0.12			0.26			
6 6	9500	0.4					0.7	5	0.43	2	42	12	31	41	4.01		0.30			0.80			0.06		0.12			0.26			
	9900N-9550E	0000000000					0.7	2	0.52		+4 42						0.42				750	:									
7	990011-9000E	0.2	0.3		23	108	0.7	2	0.50	v.2	44	10	49	34	4.23	19	0.57	14	66	1.40	100	1	0.05	28	0.14	28	-+3	0.23	131	121	
•					~~	400			A =-				07	~~							570	_		••	A A 7			0.05			
8	9900N-9600E	0.2					0.6		0.71	9	40	14	37	33	3.69			13		1.19			0.06		0.07			0.25			
9	9650	0.2					0.5	4	0.64	2	43	9	28	20	3.45			14		0.80			0.07		0.07			0.26			
0	9700	0.2					0,5	8	0.56		40	11	32	26	3.19		0.46	14		0.84			0.07		0.09	7		0.26			
1	9900N-9750E	0.2	4.03	3	17	123	0.6	2	0.62	0.2	40	13	48	26	3.57	15	0.43	16	18	1.08	651	1	0.08	_ 27	0.06	14	59	0.26	126	101	

+ +					De										0.	~			11-	14-		Na	N.11		01	<u>.</u>	71		7-	
T.T. No.	SAMOUR	Ag	Al %	As	Ba	Be	Bi	°Ca %	Cd	Ce		Cr	Cu	Fe %	GA	К %	La	Li	Mg %	Mn		Na %	Ni	Р %	Pb	Sr	Ті %	V	Zn	9007055 3.3 of 7
82	9900N-9800E	ppm 02	3.73		121	ppm 0,8	<u> </u>	0.58	ppm 0.2	ppm 43	9 9	ppm 39	21	1010111111111111	<u>+</u> 1.	0.38	ppm 15	18		 572		0.07	ppm 15		ppm 13	110.010.000	0.26	_	_ppm	
			0.70				•	0.00			•					0.00			0.00	012	•		10	•.•.			0.20			
83	9900N-9850E	0.2	3.74	14	121	0,5	2	0.62	0.2	41	7	28	16	2.78	20	0.46	13	14	0.64	439	1	0.07	13	0.06	11	59	0.23	98	82	
84	9900	0,2			116	0,5	2	0.69		39	10	30	25	3.20		0.40	13		0.93			0.05	18	0.07	13	52	0.22	95	90	
85	9950		4.46	73	77	0.7		1.83		<u>_</u> 43	23	65	50	3.96	23	0.29	12		1.41	708		0.05	85	0.08	11		0.31		102	
86	10000	148-66-66	4.60	130	47	0.6	:	1.27		1	221		1616	10.19		0.20	9		0.61			0.04		0.13	17		0.15		111	
87	9900N-10050E	2000000	4.39		133	0,6	-			40	15	25	54	3.14		0.52				704		0.06		0.10	9		0.20		75	
88	9900N-11000E	0.8	3.69	26	120	0.4	2	0.80	0.2	39	6	25	35	3.29	19	0.33	12	14	0.57	421	1	0.05	12	0.08	22	57	0.19	82	154	
89	11050	0.2	3.64	20	108	0.5	2	0.95	0.2	43	9	28	29	3.07	23	0.42	13		0.70	660	1	0.06	17	0.09	18	71	0.24	96	113	
90	11100	0.2	3.33	22	113	0.6	2	1.05	0.2	40	11	32	36	3.62	24	0.35	11		0.75	599		0.05	18	0.13	13	61	0.23	114	117	
91	11150	606676	3.03	11	88	0.4	2	0.91	0.2	39	10	30	25	2.35	17	0.24	15		0.76	377		0.06	18	0.08	9		0.23	86	81	
92	9900N-11200E		3.43			0.7		0.39		32	6	15	17	2.22		0.57			0.45	543		0.06	9		5		0.14	71	69	
															_															
93	9900N-11250E	0.2	4.13	13	184	0.6	2	0.65	0.2	38	6	15	16	2.67	13	0.66	14	14	0.54	406	1	0.08	11	0.11	5	47	0.13	65	82	
94	11300		3.43		138	0.5	:	0.42		35	7	19	14	2.55		0.49	12		0.60	272		0.07	12	0.08	5		0.14	58	64	
95	11350	00000000	4.29		159	0.7		0.39		45	9	21	31	3,12		0.61	16		0.58	520		0.06		0.12	9		0.17	70	82	
96	11400	0.2	3.93	13	177	0.6	2	0.60	0.2	41	7	19	19	2.73	18	0.56	14	14	0.53	378	1	0.06	13	0.13	6	40	0.16	71	69	
97	9900N-11450E		3.55		128	0.6		0.47		44	8	20	21	2.83		0.47	15		0.53	534		0.07		0.11	9		0.17	74	72	
98	9900N-11500E	0.2	3.63	12	169	0,6	2	0.45	0.2	43	9	21	27	2.89	16	0.50	14	16	0.69	671	1	0.06	16	0.13	8	43	0.16	75	83	
99	9900N-11550E	0.2	3.20	10	134	0.5	2	0.54	0.2	51	8	20	21	2.80		0.43	18		0.64	379	1	0.06	13	0.09	8	45	0.18	63	64	
101	9900N-11600E	0.1	3.45	11	166	0.8	2	0.49	0.2	38	10	30	25	2.81	12	0.53	15	14	0.65	601	1	0.07	18	0.13	7	44	0.13	69	71	
102	11700	0.2	3.54	8	151	0.7	2	0.57	0.2	43	9	25	29	2.76	11	0.49	15	15	0.72	502	1	0.08	16	0.11	6	55	0.19	74	74	
103	9900N-11750E	0.2	4.27	10	194	0.7	2	0.54	0.2	45	11	37	37	3.21	10	0.56	16	18	0.88	442	1	0.08	21	0.14	7	51	0.23	83	80	
104	9900N-11800E	0.2	3.85	10	180	0,6	2	0.53	0.2	42	11	29	33	3.13	10	0.56	15	16	0.82	509	1	0.06	18	0.10	6	46	0.19	82	79	
105	11850	0.2	3.91	12	152	0,6	2	0.43	0.2	34	10	25	33	3.00	9	0.56	11	16	0.80	750	1	0.08	15	0.19	5	37	0.14	76	93	
108	11900	0.2	3.71	9	106	0.7	2	0.84	0.2	51	13	26	53	3.29	9	0.28	17	14	0.78	710	1	0.07	20	0.12	6	59	0.31	115	71	
107	12000	0.2	3.52	5	104	0.7	2	2.06	0.2	58	19	28	97	4.24	17	0.26	20	13	1.10	799	1	0.07	24	0.09	4	91	0.38	154	77	
108	9900N-12050E	0.2	4.66	17	95	0.9	2	1.76	0.2	42	23	23	132	5,00	19	0.28	12	16	1.22	1693	1	0.07	22	0.18	4	79	0.43	208	100	
109	9900N-12100E	0.2	4.53	15	93	0.8	2	1.69	0.2	46	21	22	134	4.71	17	0.27	14	15	1.44	1270	1	0.07	22	0.14	4	81	0.39	189	91	
110	12150	0.2	3.00	10	80	0.6	2	1.23	0.2	36	11	23	59	2.95	17	0.19	10	12	V.71	811	1	0,05	15	0.22	4	54	0.26	121	71	
111	12200	0.2	3.53	24	66	0.5	2	1.64	0.5	41	19	28	102	4.70	16	0.18	14	15	1.10	790	2	0.06	21	0.11	6	82	0.42	196	82	
112	12250	0.2	3.83	17	87	0.9	2	1.88	0.2	41	20	27	126	4.25	13	0.22	11	12	1.22	1227	1	0.06	22	0.13	5	85	0.36	170	88	
113	9900N-12300E	0.2	3.91	19	101	0.7	2	1.27	0.2	37	17	24	74	4.15	14	0.33	10	15	1.02	913	1	0.06	19	0.14	5	70	0.34	158	92	1
	9900N-12350E		3.80	16	95	0.9		1.45		42	15	28	69	4.15		0.23	13		0.99	658		0.06		0.10	5		0.35		88	
115	12400	1000000000	3.76		101	1000000000		1.15		39	11	25	45	4.74		0.25	13		0.87	478		0.06		0.09	6		0.40		79	
116	12450	00000000	3.92		100			1.02		39	13	24	50	3.55		0.33	12		0.97			0.06		0.09	2			111	72	
	9900N-12500E	30303000000	3.90		120	2008030300		0.93		40	11	24	40	3,55		0.32	13		0.80	573		0.07		0.14	5	20200000	0.31		89	
118	10100N-9000E	0.2	3.09	9	130	0,4	2	0.65	0.2	37	7	47	21	2.27	13	0.38	13	14	0.52	530	1	0.08	13	0.10	8	62	0.21	96	59	
	1							_																	_			~ ~	•	
	10100N-9050E	0.2			117			0.46		40	10		25	2.86		0.29			0.71			0.06		0.08	6		0.18	93	69	1
120	9100	0.2			108	8888888		0.45	1	34	7		22	2.34		0.32	12		0.57	298		0.08		0.07	5		0.19	86	58	
121	9150	2012/2012/201	2.86		110	00000000		0.44		38	10		35	2,80		0.32	15			418		0.05		0.06	7		0.18	92		
122	9200	0.2			111	10.000000000		0.45	3	37	9	30	28	2.67		0.29	14		0.61	355		0.05		0.06	4		0.19	89	55	
123	10100N-9250E	0.2	3.63	10	136	0.5	2	0.44	0.2	38	8	34	34	2.53	9	0.38	15	16	0.69	336	1	0.07	16	0.13	6	46	0.19	90	68	ĺ
								- ·					_		_					. .				• • •			• • •	465		
	10100N-9300E	0.2			148			0.35	3	33	11		46	3.44		0.44	12		0.63			0.12		0.10				106		
125	10100N- 9350E	0.4	3.47	34	140	0.5	2	0.46	0.2	37	9	37	38	3.44	8	0.35	13	16	0.59	732	1	0.07	18	0.13	6	48	0.24	105	94]

للأرث وليح والمعاملة والمراجع والمحافظة والمحافظ

												1.41	19.14						angal karapang				2.001-00100000000		and an inclusion of						
T.T.	SAN' E	Ag	A	A	8	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga	ĸ	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	TI	V	Zn	9007-055
No.).	ppm	%	pp	m	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	;	%	ppm	ppm	96	ppm	ppm	%	ppm	%	ppm	ppm	96	ppm	ppm	∛g.4 of 7
126	10100N-9400E	0,4	3.6	7 5	7	145	0,5	2	0.43	0.2	38	9	28	58	3.36	v	0.39	13	15	0.64	463	1	0.08	16	0.08	6	41	0.20	85	94	
127	9450		3.4			138	0.4		0.48	0.2	37	8	26	39	3.11	11	0.42	13	1000000	0.53	351	1	0,07	12	0.11	7	200303	0.20	82		
128	10100N-9500E	0.8	3.5	73	9	136	0.5	2	0.42	0.2	42	8	24	42	3.13	14	0.44	14	19	0.59	399	1	0.06	13	0.09	7	41	0.19	76	159	
129	10100N-9550E	0.4	3.6	0 2	2	112	0.4	2	0.48	0.2	39	8	30	29	3,38	10	0.37	13	15	0.66	369	1	0.08	13	0.08	6	45	0.22	104	129	
130	9600	0.2	3.8	53	0	121	0.4	2	0.46	0.2	44	9	36	37	4.08	11	0.37	16	19	0.73	401	1	0.06	17	0.08	10	45	0.25	116	102	
131	9650	0.2	4.7	23	0	152	0.6	3	0.56	0.3	40	25	34	125	4.84	16	0.57	14	17	1.33	911	2	0,05	36	0.08	12	38	0.21	126	90	
132	9700	0.4	3.4	31	5	122	0.8	2	0.68	0.2	39	13	47	43	2.82	16	0.33	13	14	0.69	834	1	0.08	28	0.16	8	50	0.20	88	62	
133	10100N-9750E	0.4	4.1	0 1	4	156	0.5	2	0.50	0.2	40	10	31	27	3.28	15	0.59	14	14	0.67	921	1	0.07	15	0.10	9	53	0.22	100	92	
134	10100N-9800E	0.2	4.3	2 1	5	124	0.5	2	0.58	0.2	39	13	34	30	3.78	16	0.49	12	19	1.13	535	1	0.06	25	0.06	11	49	0.25	122	88	
135	9850	0.2	3.5	4	9	109	0.4	2	0.75	0.2	42	9	30	21	3.25	19	0.38	14	17	0.74	574	1	0.08	16	0.08	9	59	0.24	102	98	
136	9900	0.6	5.4	12	5	152	0.7	3	0.94	0.2	41	21	37	77	4.35	17	0.55	12	17	1.17	706	1	0.05	40	0.13	13	48	0.19	104	118	
137	9950	0.2	4.84	4 1	2	148	0.6	2	0.97	0.2	42	13	32	37	3.66	20	0.46	13	1.	0.97	643	1		22	0.08	9	3336233	0.21	105	117	
138	10100N-10000E	0.4	4.4	12	8	120	0.6	3	0.88	0.2	41	18	48	52	3.48	19	0.37	12	16	1.17	577	1	0.05	46	0.07	9	47	0.22	86	86	
139	10100N-10200E	0.4	3.54	41	8	123	0.5	2	0.87	0.2	45	10	43	35	3.49	21	0.38	13	18	0.69	560	1	0.06	26	0.12	7	55	0.24	88	129	
140	10250	8 ,0	3.84	4 1	1	125	0.5	2	0.53	0.2	42	8	28	17	2,66	17	0.43	13	15	0.82	459	1	0.07	15	0.07	6	50	0.17	68	165	
141	10300	0.2				133	0.5		0.37	0.2	39	10	38	26	3,14		0.41	15		1.06	480	1	0.06	22	0.08	10		0.17		103	
142	10350	0.4				131	0.7		0.54	0.2	40	10	35	19	2.92		0.40	13		1.06	454	1	0.08	16	0.08	8		0.21	78	104	
143	10100N-10400E	0.4	4.18	3	8	131	0.5	2	0.45	0.2	33	11	36	25	3.03	8	0.45	11		1.26	599	1	0.05	19	0.06	8		0.17	81	98	
	10100N-10450E	0.2					0.5		0.54	0.2	33	12	39	30	3,82		0.43	10	1.1.1.1.1.1.1.1.1.1	1.25	642	1	0.05	19	0.08	8		0.17			
145	10500		4.5	-		124	0.5		0.49	0.2	30	12	33	31	3.74		0.46	9	1000000000	1.40	737	1	0.05	20	0.08	9		0.17		121	
146	10550	0.4				117	0.5		0.71	0.2	32	11	39	28	3.49		0.41	10		1.19	526	1	100000000	18	0.07	7		0.20	101	99 102	
147 148 ·	10600 10100N-10650E	0.2 0.2	3.50			106 123	0,5 0.5		0.70 0.68	0.2 0.2	33 30	10 12	36 41	29 31	3,16 3,50		0.32 0.40	10 9	16 16		74 9 682	1	0.05 0.04	17 22	0.09 0.07	9 6	59 52	0.20 0.18	93 102	103 80	
140	10100N 10700E		0.70					•	0.65		0 E	40	40	00	9 E E	10	0.36			0.04	515	1	0.05	10	0.07	8	==	0.22	105	103	
	10100N-10700E 10100N-10750E	0.2 0.2			9	103 94	0.5		0.85	0.2 0.2	35 40	10 7	43 23	20 15	3.55 2.53	16	0.30	11 13		0.94 0.44	580	1	88888888	9	0.06	7	69	0.21	77	73	
153	10800	0.2			6	76	0.4		0.89	0.2	35	6	17	14	2.67		0.37	10		0.42	433	1		9	0.08	5		0.18	68	60	
154	10850	0.2			6	96	0.4		0.82	0.2	38	7	25	19	3.03		0.35	13		0.53	401	1		13	0.08	10		0.23	86	103	
155	10100N-10900E	0.2			1	88	0.5	-	1.18	3	41	9	32	23	3.40		0.34	12		0.75	467	1	0.05	20	0.08	7	87	0.28	107	84	
158	10100N-10950E	0.2	3.96	3 1	1 1	108	0.5	2	0.92	0.2	39	9	28	33	2.94	15	0.37	12	18	0.75	467	1	0.06	18	0.08	9	68	0.24	93	97	
157	11000	0.2				147	0.9		0.96	0.2	47	15	24	50	2.91	18	0.32	19		0.64		1		15	0.18	14		0.22	99	125	
158	11050	0,4	3.25	5 2	0 1	111	0.5	2	0.85	0.2	43	10	31	34	3.51	18	0.35	13	17	0.72	437	1	0.05	19	0.11	13	60	0.24	99	119	1
159	11100	0.6	3.66	31	2 1	152	0,8	2	1.90	0.9	49	16	25	58	2.72	21	0.32	21	17	0.52	3607	1	0.05	16	0.37	11	65	0.13	85	98	
160	10100N-11150E	0.2	3.63	3	9 1	154	0.7	2	1.19	0.2	49	9	20	23	2,79	24	0,55	17	12	0.75	474	1	0.06	12	0.19	8	66	0.17	78	66	
161	10100N-11200E	0.2	4.87	1	2 1	169	0.5	2	0.29	0.2	34	10	25	24	3.42	10	0,66	13	19	0.65	335	1	0.07	16	0.10	8	40	0.11	71	93	
162	11250	0,1				3	0.7		0.53	6	41	7	28	19	2,83		0.35	14		0.45	264	1	0.06	11	0.08	6	51	0.21	84	59	
163	11800	0.2	3.76	31	1 1	135	0.5	2	0.46	0.2	37	8	23	21	3.47	12	0.45	13	16	0.55	331	1	0.06	15	0.14	6	42	0.16	79	94	
164	11850	0.2					0.5		0.54	2	43	8	27	22	2.92		0.44			0.62			0.07		0.07	8		0.20	75	72	
165 1	10100N-11400E	0.2	3.54	l :	91	138	0.5	2	0.65	0.2	48	8	30	20	2.75	17	0.40	16	14	0.68	334	1	0.07	18	0.06	7	51	0.21	72	73	
166 1	10100N-11450E	0.2	3.41		9 1	141	0.5	2	0.55	0.2	43	9	24	22	2.93	15	0.44	14	14	0.72	377	1	0.07	18	0.08	6	48	0.19	72	73	
167	11500	0.1	3.83			167		2	0.48	0.2	48	8	22	23	2.86		0.57	16		0.57		1	0.09	14	0.14	9	52	0.19	76	71	
168	11550	0.2	2.88	i 1	7 1	158	0.6	2	1.54	0.2	49	7	31	21	2.24	27	0.38	16	13	0.54	358	1	0.07	13	0.16	7	67	0.17	6 5	57	
169	11600	0.2	3.19) :	51	113	0.4	2	0.61	0.2	44	7	23	15	2.22	15	0.31	15	13	0.56	285	1	0.07	13	0.06	8	58	0.23	67	56	
170 1	10100N-11650E	0.2	3.71	1	2 1	119	0.5	2	0.67	0.2	48	10	29	32	3.10	15	0.34	14	15	0.65	515	1	0.07	18	0.11	7	54	0.25	94	88	

TT.T.	SA!	Ag	AI	As	Ва	Be	Bi	Ca	Cd	Сө	Co	Cr	Cu	Fe	ç	к	La	LI	Mg	Mn	Мо	Na	NI	Р	Pb	Sr	TI	V	Zn	¥¥707-055
No.		ppm	%			ppm	ppm	%	ppm				ppm		Pi	%					ppm		ppm	%	ppm		96	ppm		J. 5 of 7
	10100N-11700E	0.2		11	107	0.5	- ما أما أ	1.11	0.2	42	15		51	3.84	<u> </u>		17		0.83	532	1	0.07	23	0.09	7	*******	0.30	125	81	
172	11750	0.0000000	3.75		132	0.8		1.20	0.2	44	14	33	44	3.40		0.32	17	17		921	1	0.07		0.15	5		0.31		121	
173	11800	333333333	3,60	11	123	0.7	5	0.93	0.2	45	14	29	63	3.26	9		16	13	8	508	1	0.06	20	0.10	5	00000000			75	
174	11850		4.01		154	0,8	8	1.55	0.2	43	23	26	96	3.82		0.34	14		0.94		1	0.07	21	0.21	7	3336663	0.28		101	
	10100N-11900E	333733763	3.37		118	0.6		1.75	0.2	59	19	33	96	4.04		0.26	21		1.35	842	1	100000000		0.08	6		0.37			
1													•••												-					
176	10100N-11950E	02	3.38	16	85	0.6	2	1.19	0.2	41	18	26	104	3.47	13	0.23	12	14	1.02	1226	1	0.07	20	0.19	9	58	0.31	158	83	
1	10100N-12000E		3.19	13	83	0.6		1.13	0.2	35	12	22	55	2.93		0.25	10		0.73		1			0.20	7	60	0.26	123	70	
	10300N-9000E		2.94		108	0.4		0.49	0.2	39	8	39	21	2.87	14		14		0.58	349	1	0.07		0.08	9	54	0.21	103	64	
179	9050	10000000	3.13	9	106	0.4		0.57	0.2	45	7	40	19	2.49	17		16		0.59	317	1	0.07		0.06	10	58	0.24	95	58	
	10300N-9100E	100000	2.96	12	105	0.5	;	0.54	0.2	44	15	39	31	2.57		0.30	14		0.54		1	0.06		0.14	10	50	0.19	87	56	
1.00			2.00				-	•.• ·	•			•••	•.			0.00	•••		••••		•			••••			••••			
181	10300N-9150E	04	4.20	21	147	0.5	,	0.99	0.2	43	14	41	40	3.07	12	0.34	17	97	0.70	983	1	0.08	22	0.13	7	85	0.21	107	122	
182	9200		3.63	16	128	0.8		0.46	0.2	33	9	45	31	2.81		0.38	12	-, 17	8	354	1	0.06	16	0.05	5	44	0.19	94	74	
183	9250		3.81	12	126	0.6	-	0.49	0.2	35	8	34	24	3.23		0.38	13		0.67	384	1			0.07	6	51		108	80	
184	9300		3.29		115	0.4		0.54	0.2	38	8	32	20	2.97		0.33	14		0.55	332	1	0.07		0.08	6	54	0.23	92	79	
	10300N-9350E		4.33		139	0.5		0.57	0.2	39	9	29	34	3.38		0.39	14		0.66	413		0.07		0.07	7		0.25		109	
1.00		×.7	4.00		. 55		-	0.07	v.2		0	-0	~~		•	v.00				-10	•		.,	,	,					
186	10300N-9400E	0.6	4.23	55	152	0.6	2	0.50	0.2	43	9	34	75	3.75	8	0.44	15	17	0.67	404	1	0.07	15	0.10	7	45	0.22	86	136	
187	9450		3.97	34	148	0.6	-	0.55	0.2	49	8	33	31	3.39		0.41	18		0.58	429	1	0.08		0.08	8	19990	0.25		118	
188	9500	333233433	3.89	22	130	0.5	÷	0.59	0.2	47	9	34	27	2.89	12		16	20	8	480		0.08	16	0.07	8	58	0.24		158	
189	9550		4.02	31	137	0.5		0.60	0.2	50	11	34	36	3.31		0.39	18		0.69	492	1	0.07		0.07	10	54	0.25	94	136	
	10300N-10250E		3.79		103	0.5	9	0.66	0.2	42	9	36	23	3.68		0.34	13		0.68	402		0.08		0.11	10	51	0.25	93	98	
	1000011 102002		0.70	20			-	0.00			•					0.04					•			••••			0.20	•••		
191	10300N-10300E	02	3.74	15	120	0.4	2	0.38	0.2	31	10	37	22	3.20	9	0.38	14	15	0.98	466	1	0.05	19	0.07	8	41	0.17	80	98	
192	10350		4.03	12	135	0.7		0.38	0.2	33	10	35	20	3.38		0.45	12		1.24	535	1	8989998		0.07	6	1000000	0.18	81	108	
193	10400	0.2			108	0.5	:	0.49	0.2	34	9	32	19	3.08		0.36	12	14	8	487	1	0.06		0.07	6	222222	0.18	82	99	
194	10450	0.2			102	0.4		0.54	0.2	34	9	35	18	3.21		0.35	12		0.88	516	1	0.06	13	0.06	8	60	0.19	94	87	
	10300N-10500E	333333333	3.70		123	0.5		0.55	0.2	35	9	28	20	2.73		0.42	12	14	1.04	508	1	0.08	15	0.04	8	52	0.18	83	84	
196	10300N-10550E	0.4	3.84	10	119	0.6	2	0.72	0.2	38	11	32	23	3,15	14	0.39	13	18	1.05	557	1	0.06	17	0.06	8	65	0.23	100	100	
197	10600	0.2	4.02	13	119	0.8	2	0.72	0.2	38	10	38	23	3.15	14	0.37	13	18	0.96	601	1	0.06	17	0.09	9	66	0.22	96	90	
198	10650	0.2	4.30	15	114	0,5	2	0.66	0.2	36	12	38	31	3.89	11	0.39	12	20	1.12	550	1	0.06	22	0.07	7	55	0.23	109	87	
199	10300N-10700E	0.2	3.55	18	83	0.4	2	0.61	0.2	36	11	29	36	3.86	15	0.33	12	18	0.78	383	1	0.08	13	0.12	8	50	0.24	120	68	
201	10300N-10750E	0.2	3.43	15	99	0.5	2	0.80	0.2	35	9	27	20	2.97	9	0.33	15	18	0.49	511	1	0.06	14	0.07	7	73	0.23	90	92	
202	10300N-10800E	0.2	3.20	9	66	0.5	2	0.73	0.2	29	4	16	11	2.21	5	0.29	10	12	0.30	307	1	0.04	7	0.07	3	53	0.17	55	53	
203	10850	0.2	3.44	13	99	0.4	2	0.85	0.2	34	7	29	18	3.22	6	0.34	13	16	0.53	477	1	0.07	13	0.08	4	71	0.28	102	84	
204	10900	0.2	3.36	14	84	0.4	2	0.80	0.2	28	9	22	25	3.75	3	0.32	10	15	0.66	541	1	0.05	12	0.08	5	63	0.25	138	87	
205	10950	0.2	3.11	13	71	0.4	2	0.89	0.2	30	5	22	13	2.65	4	0.26	10	10	0.39	314	1	0.05	8	0.07	4	65	0.21	85	57	
206	10300N-11000E	0.2	3.44	15	135	0.4	2	0.91	0.2	37	8	29	21	2.92	7	0.36	14	15	0.57	474	1	0.08	12	0.08	5	78	0.28	105	72	
207	10300N-11050E	0.2	3.70	14	106	0.5	2	0.92	0.2	40	9	31	24	3.48	10	0.31	13	17	0.67	413	1	0.07	17	0.10	5	0000000000			88	
208	11100	0.2	3.91	14	112	0.5	2	0.66	0.2	35	8	32	36	3.48	9	0.33	13	18	0.51	320	1	0.06	18	0.13	7	58	0.24	100	121	
209	11150	0.2	3.16	14	105	0.4	2	0.84	0.2	42	8	28	23	3.22		0.29	14	15	0.68	357	1	0.06	16	0.09	6		0.24	92	84	
210	11200	0.2	3.47	12	101	0,4	2	0.73	0.2	39	7	27	20	3.03		0.27	14	15	0.59	319	1	0.05	14	0.08	6	58	0.23	89	80	
211	10300N-11250E	0.2	4.20	7	136	0.7	2	0.85	0.2	44	10	34	34	2.68	15	0.27	18	16	0.61	354	1	0.08	22	0.08	9	73	0.26	87	81	
																			-											
212	10300N-11300E	0.2	3.78	9	96	0.6	2	0.77	0.2	38	9	31	28	3.78	9	0.22	14		0.64	343	1	0.06	17	0.10	5	20000000000	0.28	110	72	
213	11350	0,2	3.81	5	115	0.8	2	1.15	0.2	41	10	29	33	2.80		0.21	14		0.69	366	1	0.07	20	0.07	5	100000000000000000000000000000000000000	0.29	92	70	
214	11400	0.2	3.05	6	86	0.5	2	0.94	0.2	43	8	33	26	2.94	9	0.20	15	11	0.59	348	1	0.06	16	0.07	4		0.27		72	
215	10300N-11450E	0.2	3.28	9	102	0.5	2	1.06	0.2	45	10	33	31	3.81	11	0.25	16	14	0.65	421	1	0.07	17	0.08	5	74	0.31	114	80	

TT.T.	SAN	Ag	AI	As	Ba	Be	Bi		Ca (Cd	Ce	Co	Cr	Cu	Fe	G	К	Ĺa	LI	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	v	Zn	9007-055
No.	JAr	ppm	~~ %			n ppn				pm			ppm		%	Pi	**		ppm		ppm	ppm		ppm	, %		ppm	%	ppm		6 of 7
·	10300N-11500E		2.84					2 1.).2	45	7	مستغبه	19	2.68	- <u></u>				0.54	357		0.07		0.08		79			62	
				-								•														-					
217	10300N-11550E	0.2	3.25	9	98	3 0.5		2 1	.22 ().2	41	11	25	33	3.31	14	0,32	15	19	0.66	561	1	0.07	15	0.13	5	77	0.29	116	84	
218	11600	0.2	3.96	11	84	1 0.6	1	2 0	.81 ().2	38	11	30	49	3.13	9	0.23	12	13	0.61	774	1	0.06	15	0.19	4	54	0.24	97	87	
219	11650	3036666	3.10		8:	199666	333	2 1).2	48	9	32	31	3.34	14	0.22	17	15	0.64	421	1	0.06	16	0.10	7	72	0.29	103	82	
220	11700		3.36			334393	80	2 0	.78 ().2	41	10	24	37	3.15	13	0.29	15	16	0.65	482	1	0.06	16	0.10	7	60	0.24	93	96	
	10300N-11750E	0.2	3.42	20	9	5 0.5		2 1	.20 ().2	49	14	39	64	3,80	13	0.23	20	15	0.87	569	1	0.07	23	0.08	10	81	0.32	126	85	
										1000																					
222	10300N-11800E	0.2	3.12	14	9	5 0.7	2	2 1	.31 ().2	50	13	41	80	3.54	11	0.24	18	12	0.85	673	1	0.07	20	0.11	6	79	0.31	122	74	
223	11850	.0.2	4.02	20	82	2 0.8	2	2 1.	.84 ().3	40	23	35	113	4.61	12	0.29	12	17	1.63	1287	1	0.05	30	0.17	5	.83	0.38	172	88	
224	10300N-11900E	0.2	3.17	15	13:	0,6	2	2 1.	.65 ().2	55	11	27	56	3.40	15	0.32	20	9	0.68	643	1	0.05	15	0.07	9	116	0.29	102	58	
225	10500N-9000E	0.2	3.75	13	106	3 0.5	<u> </u>	2 0.	.92 ().2	38	15	150	42	3.31	9	0.27	14	17	1.44	428	1	0.07	58	0.06	6	54	0.23	105	66	
226	10500N-9050E	0.4	3.78	26	137	0.8	2	2 1.	.03 0).2	48	11	70	44	3.07	11	0.30	26	19	0.92	478	1	0.07	30	0.08	6	65	0.22	101	84	
1										00000																					
227	10500N-9100E	0.2	3.22	8	98	3 0.4	2	2 0.	.62 ().2	39	8	43	20	2,91	8	0.30	14	17	0.69	346	1	0.06	15	0.06	7	58	0.24	102	71	
228	9150	0.4	3.22	15	103	3 0.4	2	2 0.	.53 ().2	36	8	39	26	3.42	11	0.28	12	19	0.68	314	1	0.06	16	0.09	6	48	0.20	102	70	
229	9200	0.2	3.18	10	95	5 0.4	2	2 0	.51 0).2	40	8	34	28	2.75	12	0.21	13	15	0.67	339	1	0.08	15	0.07	6	45	0.21	92	60	
230	9250	0.2	3.01	10	90	0.3	2	2 0.	.50 0).2	39	6	31	18	2.19	11	0.19	13	14	0.47	289	1	0.07	11	0.05	8	50	0.21	79	58	
231	10500N-9300E	0.2	3.30	22	107	7 0,5	1	2 0.	.53 ().2	41	10	38	31	2.79	10	0.32	18	17	0.55	391	1	0.07	16	0.08	8	54	0.20	88	94	
										Annan A																				• •	
	10500N-9350E	1000000	3.85		111			2 0.).2	43	8	29	30	2.51		0.31	16	3333533	0.52	305	1	0.08		0.09	6		0.23	77	84	
233	9400	0.2			157			20.		0.2	39	11	26	119	3.78		0.50	13	10000000	0.71	426	1	0.06		0.10	7		0.18	68	104	
234	9450		3.91	25	127	10000		20.).2	42	8	36	29	3.07		0.36	15	1000000	0.63	385	1	0.08	14	0.07	11		0.25	96	88	
235	9500		3.84		126	863962	÷. –	20.).2	46	11	45	38	3.32		0.39	16	3836369	0.64	441	1	0.07	18	0.08	8		0.23		137 116	
236	10500N-9550E	0.2	3.57	22	110) 0.5	4	2 0.	.59 L).2	50	9	33	23	2.93	18	0.33	17	19	0.53	395	1	0.08	13	0.08	9	91	0.25	67	110	
227	10500N-10150E	• •	3.79	26	92	2 0.5	8.	s 0.	82 0).2	47	10	40	31	3.68	21	0.31	15	18	0.65	323	1	0.06	23	0.08	9	55	0.29	108	83	
237	10200	00000000	3.79	30	97	- 203636	60 - E	20.).2	44	11	40	36	3.93	21		14	300000	0.77	399	1	0.07	26	0.09	11		0.29	112	90	
239	10250		3.76		104	- 98000-0	88	2 0.).2	48	10	38	28	3.58		0.34	15		0.67	385	1	0.08	20	0.08	11		0.25		101	
240	10200	0.2		20	84	0.2655	89 E E	. o.).2	39	8	35	19	3.14		0.22	12	15	0.71	411	1	0.06	19	0.06	8		0.23	87	75	
1	10500N-10350E		3.86	-	127	- 333334		2 0.).2	34	11	37	24	3.35		0.42	15		0.97	565	1	0.06		0.07	8		0.20	93	91	
242	10500N-10400E	0.2	3.53	12	102	2 0.5	2	2 0.	.46 0).2	28	9	38	19	3.42	6	0.36	10	16	0.93	535	1	0.05	15	0.06	5	43	0.18	95	89	
243	10450	0,1	3.26	9	97	0,4	2	: O.	.58 0).2	32	7	32	14	2.94	8	0.28	11	11	0.65	519	1	0.06	11	0.06	7	54	0.20	89	74	
244	10500	0.2	3.91	7	123	8 0.4	2	2 0.	.61 0).2	34	10	32	21	2.98	9	0.42	12	15	1.08	556	1	0.08	16	0.06	6	58	0.20	93	97	
245	10550	0.2	3.47	10	119	0.4	2	2 0.	.90 0).2	40	11	34	17	3.12	17	0.30	12	18	1.03	606	1	0.05	17	0.04	8	70	0.20	103	94	
246	10500N-10600E	0.2	3.91	14	104	0.5	2	. 0.	.74 C).2	38	11	38	22	3.48	17	0.34	12	20	1.04	526	1	0.05	20	0.09	11	62	0.23	104	94	
	10500N-10650E	0.1	3.56	11	100	0.5		0.	-).2	39	10	33	21	3,13		0.36	13		0.91	603	1	0.06		0.06	11		0.22		80	
248	10700	0.1		13	74	1963-1963		0.).2	41	6	25	12	2.49		0.25	13	1000000	0.51	346		0.06		0.04			0.22		57	
1	10500N-10750E	0.2		12	91	- 8000000	32: 		.72 0		45	7	23	15	2.81		0.33			0.51	351		0.08	:	0.08	11		0.23		68	
J	10500N-10800E	0.1			85		- CC		.84 0		38	6	26	17	2.95		0.31		100000000	0.38	368		0.06		0.07		71			65	
252	10500N-10850E	0.1	4.05	16	109	0.7	2	0.	.99 0).2	40	11	37	40	3.28	11	0.41	14	14	0.80	539	1	0.05	22	0.10	8	69	0.23	90	84	
	1											_														-			444	07	
1	10500N-10900E	0.2			90	- 800868	10 I.		.79 C		36	7	27	19	3.18		0.29		100000000000000000000000000000000000000	0.48	451		0.07		0.08	5	Section 6		108	67 80	
254	10950	0.2			96		89 - E		.14 0		38	8	32	19	2.90		0.31			0.65	382		0.05		0.06		74			68 101	
255	11000			31					.90 00.		43	13		35	3.64		0.32		-3225222222	0.79			0.07		0.07	7			98 97		
256	11050	0.1			116	399999			.88 0		44	10	26	32	3.47		0.35		90000000	0.73	401	1	0.07		0.07	8		0.24			
257	10500N-11100E	0,1	4.18	39	181	0.8	2	1.	.34 4	ы 8 8	48	14	30	60	3.32	21	0.30	23	30	6.70	1284	1	0.08	18	0.17	12		V.21	112	003	
250 .	10500N-14150E	<u>^</u> +	2 70	20	107	, <u> </u>		•	80 0		42	19	24	~~	277	10	0.32	1.4	20	0.61	895	1	0.08	15	0.06	9	RA.	0.22	89	273	
1	10500N-11150E 10500N-11200E	0.1				0.5	2404		.82 0 .70 0		43 46	12 7	24 24	23 17	2.77 2.77					0.53			0.08	:					88		
200	100001-11200E	V	3.38	<u> </u>	114		<u> </u>			• • • •		1	44	17	6	6 I	0.00	10	100000000	0.00			<u></u>		v.vu			v.22			

•

Т.Т.	SAMPLE	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga	ĸ	La	u	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sr	Ti	٧	Zn	9007-055
No.		ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	p!	36	ppm	ppm	%	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm	.7 of 7
260	10500N-112	0.2	3.27	22	111	0.4	2	0.79	0.2	45	9	22	21	2.90	2.	J. 33	14	14	0.62	683	1	0.08	13	0.07	9	71	0.22	93	89	
261	11300	0,2	3.62	36	237	0.5	2	1.52	0.4	41	14	34	40	3.02	18	0.38	14	27	0.79	777	3	0.06	21	0.08	11	87	0.21	127	103	
262	10500N-11350E	0.2	3.87	15	134	0.7	2	1.05	0 .2	42	13	28	35	3.58	17	0.35	13	21	0.87	874	1	0.07	18	0.10	12	87	0.27	119	113	
263	10500N-11400E	0.1	3.53	17	100	0.8	2	1.09	0.2	43	11	34	32	3,41	12	0.27	15	17	0.76	900	1	0.07	20	0.11	8	83	0.31	111	92	
264	11450	0,1	3.36	15	93	0,5	2	1.36	0.2	45	13	35	28	3.11	15	0.26	16	19	0.82	683	1	0.09	24	0.09	9	86	0.34	111	86	
265	11500	0.1	2.87	15	96	0.6	2	1.35	0.2	61	13	38	39	3.28	16	0.24	20	11	0.82	555	1	0,07	26	0.08	7	82	0.31	108	62	
266	11550	0.2	3.72	22	98	0.6	2	1.39	0.2	47	16	45	42	3.73	15	0.28	16	18	0.96	606	1	0.09	33	0.09	8	78	0.35	129	82	
267	10500N-11600E	0.2	3.82	22	131	0.9	2	1.77	0.2	46	21	35	64	3.95	16	0.24	14	14	1.21	1922	1	0.08	37	0.16	10	72	0.33	132	91	
268	10500N-11650E	0.1	4.11	24	131	0.7	2	1.28	0.2	45	17	43	56	4.52	17	0.31	15	22	1,10	953	1	0.08	30	0,18	10	80	0.37	139	123	
269	11700	0.1	3.42	19	191	0.7	2	1.31	0.2	40	21	29	71	3.70	16	0.29	13	16	0.80	1840	1	0.07	21	0.22	21	74	0.28	123	113	
270	11750	0.1	3.16	18	310	0.6	2	2.14	0.2	44	21	27	93	3.40	17	0.24	14	15	0.86	1800	1	0.07	19	0.26	12	102	0.23	114	126	
271	11800	0.1	2.79	25	119	0,3	2	2.43	0.2	30	19	16	75	3.95	10	0.21	10	9	1.01	1194	1	0.08	15	0.14	7	95	0.26	143	71	
272	10500N-11850E	0,1	2.99	12	117	0.7	2	1.43	0.2	44	15	30	59	3.61	6	0.23	16	12	0.78	883	1	0,06	19	0.17	6	79	0.31	127	85	
273	10500N-11900E	0.2	2.45	23	115	0.6	2	1.36	0.2	29	15	19	51	3.15	6	0.24	9	11	0.54	1379	1	0.05	11	0.29	5	66	0.26	132	75	
274	10500N-11950E	0.2	3.33	17	153	0.6	2	1.33	0.2	31	20	41	33	4,18	5	0.34	11	18	1.01	2158	1	0.08	20	0.27	7	86	0.35	130	90	

ACME ANALYTICAL LABORATORIES LTD. - 852 É. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: AUG 1 1990

PHONE (604) 253-3158 FAX (604) 253-1716

DATE REPORT MAILED: (1994,4/9.0.

GEOCHEMICAL ANALYSIS CERTIFICATE

N<u>oranda Exploration Co. Ltd. PROJECT 9007-055 123</u> FILE # 90-3054 Page 1 P.O. Box 2380, 1050 Davie, Vancouver BC V6B 315

SAMPLE#	AU* ppb
9700N 9000E	7
9700N 9050E	6
9700N 9100E	7
9700N 9150E	4
9700N 9200E	6
9700N 9250E	9
9700N 9300E	20
9700N 9350E	7
9700N 9400E	38
9700N 9550E	15
9700N 9600E	6
9700N 9650E	16
9700N 9700E	16
9700N 9750E	19
9700N 9800E	2
9700N 9850E	5
9700N 9900E	23
9700N 9950E	6
9700N 10000E	4
9700N 10300E	75
9700N 10350E	38
9700N 10400E	25
9700N 10450E	33
9700N 10500E	12
9700N 10550E	37
9700N 10600E	15
9700N 10650E	7
9700N 10700E	7
9700N 10750E	2
9700N 10800E	7
9700N 10850E	16
9700N 10900E	16
9700N 10950E	3
9700N 11000E	7
9700N 11050E	10
9700N 11100E	20
STANDARD AU-S	48

- SAMPLE TYPE: Soil Pulp ____ AU* ANALY

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY. A. D. D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE#	AU* ppb
9700N 11150E	5
9700N 11200E	2
9700N 11250E	5 2 2 13
9700N 11250E	12
9700N 11300E	13
9700N 11350E	31
9700N 11400E	10
9700N 11450E	12
9700N 11500E	2
9700N 11550E	4
9700N 11600E	2
9700N 11650E	16
9700N 11700E	5
0700N 11750P	6
9700N 11750E 9700N 11800E 9700N 11850E	7
0700N 11050E	4
2100M T1920F	4
9700N 11900E	8
9700N 11950E	6
9700N 12000E	43
9700N 12050E	14
9700N 12150E	2
9700N 12200E	13
9700N 12250E	2
9700N 12300E	2
9700N 12350E	2
9700N 12400E	2 2 3 4
9700N 12450E	7
9700N 12500E	7 6
9900N 9000E	
	5 3
	1
9900N 9100E	4
9900N 9150E	3
9900N 9200E	2
9900N 9250E	7
9900N 9300E	14
9900N 9350E	28
9900N 9400E	9
STANDARD AU-S	55

SAMPLE#	AU* ppb
9900N 9450E	3
9900N 9500E	11
9900N 9550E	106
9900N 9600E	18
9900N 9650E	4
9900M 9050E	4
9900N 9700E	12
9900N 9750E	7
9900N 9800E	5
9900N 9850E	8
9900N 9900E	6
9900N 9950E	46
9900N 10000E	410
9900N 10050F	48
9900N 11000E	52
9900N 11050E	6
9900M 11090H	
9900N 11100E	13
9900N 11150E	4
9900N 11200E	3
9900N 11250E	6
9900N 11300E	6
9900N 11350E	6
9900N 11400E	
9900N 11450E	~ 7 7
9900N 11500E	3
9900N 11550E	9
9900N 11600E	4
9900N 11700E	42
9900N 11750E	-42
9900N 11800E	0 75
	1 1
9900N 11850E	5
9900N 11900E	4
9900N 12000E	5
9900N 12050E	6
9900N 12100E	4
9900N 12150E	6
9900N 12200E	4
STANDARD AU-S	51

	055 12.
SAMPLE#	AU*
	ppb
9900N 12250E	16
9900N 12250E 9900N 12300E	3
9900N 12350E	9
9900N 12400E	9 3 2
9900N 12450E	2
9900N 12500E	3 9 2 1 3
10100N 9000E	9
10100N 9050E	2
10100N 9100E	1
10100N 9150E	3
10100N 9200E	2
10100N 9250E 10100N 9300E	3
10100N 9300E	13
10100N 9350E	1
10100N 9400E	1
10100N 9450E	1
10100N 9500E	10
10100N 9550E	8
10100N 9600E	1
10100N 9650E	1
10100N 9700E	1
10100N 9750E	5
10100N 9800E	5 4
10100N 9850E	5
10100N 9900E	5 7
10100N 9950E	4
10100N 10000E	14
10100N 10200E	
10100N 10250E	5 2 2
10100N 10200E	
	4
10100N 10350E	1
10100N 10400E	i
10100N 10450E	

10100N 10400E 10100N 10450E 10100N 10500E

10100N 10550E

10100N 10600E

STANDARD AU-S

3 1

9

5

55

and dealers in the restrict statement waves and a second waves in the particular statement in the second secon

SAMPLE#	AU* ppb
10100N 10650E	10
10100N 10700E	4
10100N 10750E	4
10100N 10800E	18
10100N 10850E	12
10100N 10900E	5
10100N 10950E	4
10100N 11000E	2
10100N 11050E	15
10100N 11100E	15
10100N 11150E	10
10100N 11200E	34
10100N 11250E	4
10100N 11300E	5
10100N 11350E	5 37
10100N 11400E	9
10100N 11450E	3
10100N 11500E	7
10100N 11550E	5
10100N 11600E	9 3 7 5 2
10100N 11650E	6
10100N 11700E	7
10100N 11750E	30
10100N 11800E	7
10100N 11850E	8
10100N 11900E	4 3 3 2
10100N 11950E	3
10100N 12000E	3
10300N 9000E	2
10300N 9050E	2
10300N 9100E	4
10300N 9150E	3
10300N 9200E	
10300N 9250E	5
10300N 9250E	3 2 5 9
10300N 9350E	4
STANDARD AU-S	50
OTANDARD AU-3	

SAMPLE	ł	AU* ppb
10300N	9400E	12
10300N		6
10300N		3
10300N		3
10300N	10250E	25
10300N	10300E	40
10300N	10350E	17
10300N	10400E	7
	10450E	8
	10500E	10
10300N	10550E	6
	10600E	16
	10650E	13
		, ,
	10700E	6
10300N	10750E	9
10300N	10800E	4
10300N	10850E	8
	10900E	5
	10950E	4
	11000E	4
10300N	11050E	13
	11100E	
10300N	11150E	
102001	112005	4 5 5 3
10300N	11200E	5
10300N	11250E	3
	11300E	7 5 6
	11350E	5
	11400E	6
10300N	11450E	3
	11500E	5
10300N	11550E	20
	11600E	3
	11650E	10
	11700E	11
10300N	11750E	7
	11800E	6
STANDAL	RD AU-S	52

7-055	123	FILE	#	9
- T				

SAMPLE#	AU* ppb
10300N 11850E 10300N 11900E 10500N 9000E 10500N 9050E 10500N 9100E	6 2 6 2 2 2
10500N 9150E	1
10500N 9200E	2
10500N 9250E	7
10500N 9300E	9
10500N 9350E	5
10500N 9400E	10
10500N 9450E	2
10500N 9500E	5
10500N 9550E	10
10500N 10150E	11
10500N ,10200E	16
10500N 10250E	8
10500N 10300E	10
10500N 10350E	6
10500N 10400E	23
10500N 10450E	9
10500N 10500E	3
10500N 10550E	1
10500N 10600E	4
10500N 10650E	10
10500N 10700E	2
10500N 10750E	13
10500N 10800E	22
10500N 10850E	5
10500N 10900E	38
10500N 10950E	6
10500N 11000E	4
10500N 11050E	15
10500N 11100E	2
10500N 11150E	6
10500N 11200E	48
STANDARD AU-S	55

Noranda Exploration Co. Ltd. PROJECT 9007-055 123 FILE # 90-3054 Page 8

SAMPLE#	AU* ppb
10500N 11250E 10500N 11300E	4
10500N 11350E 10500N 11400E	3 7
10500N 11450E	2
10500N 11500E 10500N 11550E	4
10500N 11600E	1
10500N 11650E 10500N 11700E	18 11
10500N 11750E	6
10500N 11800E 10500N 11850E	2 6
10500N 11900E 10500N 11950E	1 3
STANDARD AU-S	54

NORANDA VANCOUVI LABORATORY

Geochemical Analysis

Project Name & No.:	NEWMAC – 123	Geol.: J.R.	Ň	Date rec'd:	AUGUST 09	LAB CODE: 9008-034	
Material:	368 SOILS	Sheet: 1 of 9		Date compl:	AUGUST 24		
Remarks:							

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

ICP - 0.2 g sample digested with 3 mi HCIO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 11 mi with water. Leeman PS3000 ICP determined elemental contents. N.B. The major oxide elements and Ba, Be, Ce, Ga, La, Li are rarely dissolved completely from geological materials with acid dissolution methods.

T.T.	SAMPLE	Au	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Sr	Ti	V	Zn
No.	No.	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm
2	9900N-10300E	45	0.2	4.07	14	109	0.4	2	0.71	0.2	38	7	27	16	3.03	0.38	12	20	0.71	452	1	0.07	15	0.09	6	58	0.23	79	132
3	10350	5	0.2	4.19	17	139	0.4	2	0.58	0.2	36	9	29	17	3.33	0.46	12	20	0.96	530		0.07	16	0.09	6	56	0.21	88	111
4	10400	5	0.2	3.89	17	141	0.5	2	0.45	0.2	34	9	41	29	3.20	0.32	11	12	0.75	627	1	0.06	14	0.08	10	47	0.17	88	85
5	10450	5	0.2	4.39	14	124	0.5	2	0.46	0.2	31	11	31	29	3.45	0.43	10	18	1.22	638	1	0.05	19	0.08	10	43	0.17	90	128
6	9900N-10500E	5	0.2	4.53	13	175	0.3	2	0.46	0.2	37	8	21	14	2.68	0.52	12	18	0.70	545	1	0.04	9	0.06	9	45	0.15	81	91
7	9900N-10550E	5	0.2	3.06	18	100	0.3	2	0.71	0.2	38	4	25	13	1.76	0.27	12	10	0.40	274	1	0.07	7	0.04	10	72	0.23	80	44
8	10600	5	0.2	4.28	15	130	0.5	2	0.76	0.2	33	12	35	31	3.52	0.44	9	18	1.30	574	1	0.05	19	0.06	15	68	0.20	106	96
9	10650	70	0.2	4.07	16	127	0.5	2	0.65	0.4	34	12	40	29	3.63	0.42	10	19	1.07	626	1	0.05	19	0.08	11	59	0.21	114	95
10	10700	5	0.2	3.84	15	120	0.5	2	0.66	0.2	34	9	32	28	3.22	0.42	10	16	0.96	521		0.05	17	0.07	9	59	0.20	89	82
11	9900N-10750E	5	0.2	3.74	23	124	0.6	2	0.63	0.2	34	8	23	23	2.92	0.40	12	16	0.70	429	1	0.05	12	0.06	8	58	0.20	81	74
12	9900N-10800E	5	0.2	3.77	16	122	0.5	2	0.69	0.2	38	7	18	19	3.37	0.41	12	17	0.55	396		0.07	10	0.07	5	66	0.23	90	87
13	10850	5	0.2	3.46	20	87	0.4	2	1.01	0.2	37	6	20	14	2.94	0.32	11	13	0.46	408	1	0.06	9	0.06	4	79	0.24	90	65
14	10900	5	0.2	4.03	18	104	0.4	2	0.95	0.2	42	7	26	17	2.83	0.39	13		0.59	447	1	0.07	12	0.07	5	79	0.26		115
15	9900N-10950E	5	0.2	4.10	24	128	0.5	2	0.94	0.2	39	10	27	30	3.48	0.45	12		0.72	738	8000000	0.07	15	0.09	8	79	0.26		108
16	10100N-10050E	15	0.2	4.54	22	132	0.6	2	1.96	0.2	43	17	56	26	3.33	0.30	12	19	1.07	1152	1	0.07	47	0.09	7	74	0.36	115	113
17	10100N-10100E	35	0.2	3.70	23	101	0.4	2	1.02	0.2	39	11	57	23	3.46	0.39	11	335538	0.76	426		0.06	33	0.10	9				132
18	10150	10	0.2		37	146	0.5	2	0.85	0.4	36	12	46	41	4.50	0.44	11	30323333	1.00	587	303.0356	0.06	35	0.11	10	57			127
19	10100N-10200E	5'	0.2			131	0.4	2	0.69	0.2	46	8	25	28	3.23	0.53	14		0.63	431		0.10	13	0.09	5	69	0.22	94	97
20	10300N-9600E	5	0.2	4.06		146	0.4	2	0.50	0.2	40	8	37	40	3.55	0.41	14	333666	0.68	358		0.07	18	0.08	8	47	0.21		108
21	10300N-9650E	5	0.2	4.62	102	133	0.7	3	0.61	0.6	39	14	32	158	5.13	0.37	13	20	0.91	537	6	0.06	21	0.09	8	47	0.23	129	118
					-			•			~~									000			46	0.07		40	0.10	104	81
22	10300N-9700E	5	0.2	4.62	71	130	0.5	2	0.50	0.2	33	10	21	166	4.14	0.39	12	30000000	0.65	333		0.06	15	0.07	8	40		3	93
23	9750	10	0.4	4.44	48	130	0.5	2	0.62	0,5	32	12	33	252	4.65	0.42	10	20		657	3396369	0.05	22 60	0.11	8	43 48			115
24	9800	60	0.4			194	0.9	2	0.85	1.3		82	44	2426	5.35	0.57	13	20000000	1.64	1099	8888888		•••	0.09	10			3	97
25	9850	5	0.2	4.29	25	144	0.5	2	0.75	0.2	43	14	31	66	3.82	0.50	15	30300033	0.97	523	100000000	0.06		0.05	12	56 66	0.24 0.26	96	82
26	10300N-9900E	5	0.2	3.71	17	99	0.4	2	0.91	0.2	39	8	32	27	2.97	0.34	12	10	0.56	312		0.06	14	0.07	8	00	0.20	80	02
~7	100001 00505	_	~ ~			400		•	0.70		40	-			0.67	0.00	10	4.0	~ ~~	617		0.07	14	0.00	6	66	0.23	84	77
27	10300N-9950E	5	0.2	3.60	15	128	0.4	2	0.76	0.2	40	7	29	20	2.67	0.36	13	34000000	0.63	517		0.07	23	0.06			0.23	84 92	84
28	10000	15	0.2	4.00	17	117	0.4	2	0.89	0.2	37	9	36	24	3.23	0.38	11	200200	0.82	488	3000000	0.06		0.06	8	61		92 98	76
29	10050	40	0.2	4.03	30	104		3	0.88	0.2	35	12	56	36	3.76	0.35	10	0000000	0.97	515		0.05	38	0.10	8	51	0.25 0.28	105	105
30	10100	5	0.2	3.48	13	118	0.4	2	0.86	0.2	39	8	34	21	3.24	0.31	12	1000000000	0.61	562		0.07	16	0.06	9	66 58			
31	10300N-10150E	45	0.8	3.94	27	104	0.6	2	0.83	0.2	38	10	45	30	3.47	0.33	13	18	0.75	432		0.06	29	0.10	9	56	0.25	93	113
20	100001 100005					~	A 4	~	0 67	~ ~		•		~~	2 . 4	A 95	10		^ 50	200		0.07	10	0 10		54	0.22	86	72
32	10300N-10200E	10	0.2	3.31	15	99	0.4	2	0.67	0.2	34	6	27	20	3.04	0.35	12	3000000	0.52	382 816		0.07	13 22	0.10 0.10	7	54 50			213
33	10500N-9600E	15 5	0.2	4.19	24	143	0.6	2	0.64	0.6	40 46	12 13	38 34	41 30	3.89 3.24	0.41 0.35	14 16	10000000	0.80	1867	200000	0.06	22 15	0.10	16 12	50 69	0.23	:	213 177
34	9650 9700	5 5	0.2	3.71	16	152	0.5	2	0.89	0.3		13 7	34 64	30 20	3.24 2.79	0.35	16	20000000	0.62	310	8863588	0.07	15	0.10	12	63	0.25	100	73
35 36	9700 10500N-9750E	5	0.2	3.32 4.44	13 40	96 160	0.4 0.5	2	0.65 0.46	<u> </u>	44 38	8	55	20 54		0.29	14	200000000	0.59	494	333333333	0.08		0.05	12				144
30	1030011-8730E	5	0.2	4,44	40	100	0.5		0.40	v.2	- 30	•			4.20	0.52	14		0.13	434		5.00	20	0.12	<u></u>		<u>v.23</u>		

T.T.	SAMPLE	Au	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Сө	Co	Cr	Cu	Fe	к	La	L	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	ТІ	v	Zn	9008-034
No.		ppb	ppm	%	ррп	n ppm	ppm	ppm	%	ppm	ррт	ppm	ppm	ррп	6	%	ppm	ррп	96	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	n p	'j.2 of 9
37	10500N-9000E	5	2.2	5.45	128	177	0.7	3	0.91	1.3	187	24	33	1088	J.67	0.46	10	19	1.14	678	12	0.04	31	0.10	11	42	0.19	125	.	
38	9850	100	1.0	4.70	19	104	0.6	2	0.62	0.2	- 39	12	35	1110	4.41	0.31	13	17	0.66	464	13	0.07	22	0.10	10	54	0.23	101	72	
39	9900	60	0.8	4.75	43	102	0.6	2	0.68	0.4	37	14	66	698	4.38	0.36	12	20	1.24	362	2	0.06	56	0.07	8	49	0.25	113	77	
40	9950	35	0.2	3.93	21	108	0.5	2	0.74	0.2	35	11	37	52	3.65	0.32	12	18	0.75	449	1	0.06	22	0.08	9	56	0.27	111	75	
41	10500N-10000E	5	0.2	3.73	16	117	0.6	2	0.73	0.2	39	10	29	35	2.94	0.35	14	17	0.61	452	1	0.07	17	0.09	5	60	0.26	93	84	
																			3 2											
42	10500N-10050E	5	0.2	4.06	20	111	0.5	2	0.75	0.4	41	11	43	38	4.01	0.36	13	19	0.85	399	1	0.06	28	0.07	8	54	0.27	110	91	
43	10500N-10100E	5	0.4	3.27	15	83	0.3	2	0.95	0.2	41	6	34	18	2.58	0.29	12	11	0.53	336	1	0.07	16	0.06	5	56	0.29	89	6 2	
44	10700N-8800E	5	0.2	3.57	3	76	0.4	2	1.04	0.3	41	19	256	40	3.49	0.18	13	15	1.65	323	1	0.07	82	0.06	5	52	0.30	115	68	
45	8850	5	0.2	3.84	2	75	0.5	2	1.18	0,4	41	25	257	62	3.95	0.20	12	13	2.07	388	1	0.06	113	0.09	5	43	0.27	115	75	
46	10700N-8900E	5	0.2	4.10	2	80	0.5	2	0.98	0.5	47	22	238	62	4.03	0.20	16	12	2.05	381	1	0.06	103	0.11	4	41	0.30	121	74	
																			ŝ.											
47	10700N-8950E	5	0.2	3.52	2	82	0.5	2	1.17	0.2	42	22	230	47	3.78	0.20	13	14	1.89	491	1	0.06	85	0.06	5	45	0.26	122	77	
48	9000	5	0.2	3.47	2	99	0.4	2	0.97	0.2	41	17	145	41	3.55	0.25	13	14	1.36	481	1	0.07	61	0.09	4	49	0.27	114	74	
49	9050	5	0.2	3.26	2	87	0.4	2	0.71	0.2	40	12	125	29	3.25	0.26	14	16	0.97	314	1	0.06	40	0.08	3	48	0.24	102	69	
51	9100	5	0.2	3.51	2	104	0.6	2	0.61	0.2	40	13	101	37	3.24	0.29	15	18	1.08	338	1	0.06	42	0.08	6	49	0.23	96	67	
52	10700N-9150E	5	0.2		2	117	0.4	2	0.59	0.2	39	9	38	29		0.30	14		0.64	315	1000000	0.06	17	0.08	6	58	0.23	93	73	
53	10700N-9200E	5	0.2	3.73	18	131	0.5	2	0.49	0.2	39	10	30	36	3.56	0.40	14	17	0.63	750	1	0.06	15	0.13	6	45	0.22	84	121	
54	9250	5		3.72		- 1993-999		2	0.57	0.2	40	8	30	30	3.08		14	- 628-6286	0.57	904	20000	0.08	13	0.10	8	54	0.22	83		
55	9300	5	0.2	3.75	21			2	0.56	0.2	37	8	54	40	3,18		13	- 2020203	0.63	343		0.07	18		9	47	0.23	79		
56	9350	5	0.2	4.18		100000000		2	0.49	0.2	39	11	28	34	3.38		14		0.77	723	30336666	0.06	18	0.11	9	44	0.23	83		
57	10700N-9400E	5		4.39		- 3636666		2	0.48	0.2	40	11	31	47		0.37	15	100000	0.71	373	- 666 666 666	0.07		0.11	9	46	0.23	82		
58	10700N-9450E	5	0.2	4.57	26	144	0.5	2	0.40	0.3	34	14	54	54	3.82	0.42	12	16	0.96	530	1	0.06	32	0.12	9	35	0.20	86	173	
59	9500	5	0.2	3.32	14	123	0.4	2	0.53	0.2	34	9	45	25	2.94	0.36	12	15	0.56	1009	1	0.06	14	0.10	3	45	0.18	90	102	
60	9550	5	0.2	3.96	5	129	0.5	2	0.50	0.2	44	10	36	29	3.27	0.39	16	18	0.73	362	1	0.08	18	0.09	9	45	0.23	83	153	
61	9600	5	0.2	3.84	12	134	0.7	2	0.60	0.3	44	15	44	29	3.36	0.38	17	19	0.73	982	1	0.07	21	0.11	11	55	0.23	92	198	
62	10700N-10050E	130	0.2	3.56	7	89	0.4	2	0.67	0.2	38	7	33	25	3.28	0.26	13	15	0.60	282	1	0.06	14	0.06	5	57	0.28	107	71	
							8																							
63	10700N-10100E	30	0.2	2.99	7	100	0.4	2	0.71	0.2	37	6	34	25	2.43	0.29	12	9	0.45	302	1	0.07	12	0.06	8	60	0.23	82	61	
64	10150	80	0.2	3.37	10	89	0.4	2	0.63	0.2	39	7	38	18	3.56	0.28	12	12	0.66	338	1	0.06	14	0.06	7	50	0.24	91	83	
65	10700N-10200E	5	0.2	3.18	7	99	0.4	2	0.57	0.2	36	6	30	19	2.92	0.28	13	12	0.57	304	1	0.06	13	0.07	11	50	0.23	81	66	
66	11100N-8600E	5	0.2	4.30	9	88	0.5	2	0.61	0.4	36	27	209	65	4.10	0.21	12	12	2.24	407	1	0.06	119	0.08	9	37	0.26	115	73	
67	11100N-8650E	5	0.2	4.01	10	101	0.5	2	0.65	0.3	34	24	209	49	4.03	0.22	11	16	1.92	698	1	0.07	89	0.11	11	47	0.25	112	87	
																			8											
68	11100N-8700E	5	0.2	3.96	13	56	0.5	2	0.86	0.6	32	29	276	58	4.56	0.12	9	11	3.28	452	1	0.05	152	0.07	8	38	0.27	129	75	
69	8750	5	0.2	4.61	10	82	0.5	2	0. 6 0	0.5	31	32	270	72	4.56	0.18	9	11	3.14	466	1	0.06	155	0.08	12	33	0.24	125	85	
70	8800	5	0.2	4.99	7	184	0.8	3	1.75	0.9	59	38	294	94	4.83	0.18	18	9	4.40	807	1	0.05	223	0.10	8	79	0.28	119	79	
71	8850	5	0.2	4.31	2	46	0.6	3	1.94	0.7	32	34	244	87	4.31	0.09	9	8	4.65	452	1	0.05	217	0.05	4	43	0.25	150	77	
72	11100N-10050E	5	0.4	4.02	29	108	0.6	2	0.66	0.2	40	12	67	121	3.56	0.32	14	16	0.88	375	1	0.07	31	0.12	7	52	0.23	103	92	
																			l.											
73	11100N-1010QE	5	0.2	3.83	21	141	0.5	2	0.95	0.2	41	13	48	40	3.61	0.40	13	14	0.94	974	1	0.06	20	0.09	7	69	0.22	110	95	
74	10150	5	0.2	3.42	21	107	0.4	2	0.92	0.2	38	8	32	24	3.07	0.34	12	12	0.73	603	1	0.06	15	0.07	8	69	0.22	103	75	
75	10200	5	0.2	4.32	27	132	0.6	2	0.66	0.2	40	13	44	107	3.98	0.35	14	18	0.99	498	1	0.07	29	0.08	11	55	0.24	109	108	
76	10250			4.06			0.5	2	0.65	0.2		10	47	37		0.34	13	10000000	0.82			0.08		0.16	11		0.27			
77	11100N-10300E	5	0.6	5.19	24	2000000000	1.0	2	1.09		51	14	31	829	3.85	0.26	31	27	0.93	1002		0.07	29	0.07	14	73	0.22	113	123	
							4 2												i i i i i i i i i i i i i i i i i i i											
78	11100N-10350E	5	0.4	4.44	20	114	0.8	2	1.59	0.3	<i>,</i> 51	14	31	817	3.74	0.32	24	22	0.95	939	1	0.06	24	0.06	13	96	0.21	119	90	
79	10400	1200	2.0			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.5	5	0.85			18	51	1417			12	1000000000	0.60			0.04		0.14			0.20		- 202020202	
80	13050	0.0000.0000000		3.13		- 2000000000	0.3	2	1.03	0.2			14	26		0.30	12		0.47		1000000000	0.05		0.05			0.26		- 200000000	
81	11100N-13100E			3.31			0.5	2	0.90	0.2		10	21	26		0.22	13	200000000	0.54		10000000000	0.07		0.07	00000000000		0.31		2000000000	
														2002/00000000000				200000000	59		10000000000				00000000000				100000000	÷.

.

T.T.	SAMP'E	Au	Ag	AI	A	48	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	к	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	ТІ	V	Zn	9008-034
No.		ppb	ррп	1%	þ	pm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	96	ppm	Pſ	े. 3 of 9
82	11100N-13150E	5	0.2	4.42	2	8	91	0.5	2	1.16	0.3	43	11	18	60	J.71	0.24	12	17	0.80	462	1	0.06	13	0.12	11	85	0.26	121	11/	
	11100N-13200E	5				9	81	0.6	4	1.55	0.8	38	15		62	4.65	0.24	10		1.03		1	0.05		0.07	12		0.27		100000	
84	13250	5	0.2			3	93	0.4	2	1.35	0.2	42	11	20	42	4.03	0.26	12	200000	0.82	504	1			0.06	12	95	0.30		108	
85	13300	5		3.15		2	67		2	1.18	0.2	43	6		18	2.91	0.19	13	3000000	0.51	366	10000000	0.07		0.05	13	91	0.31		70	
86	13350			4.55		9	74		5	2.05	0.9		17	20	70	4.46	0.21	9	30306433	1.26			0.05		0.07	12		0.27		137	
87	11100N-13400E	5	0.2	4.29	•	5	74	0.5	3	1.75	0.5	39	12	21	42	4.43	0.22	10	18	0.81	598		0.06	11	0.07	16	112	0.31	167	110	
88	11100N-13450E	5	0.2	4.08	3	5	79	0.5	2	1.72	0.5	39	13	27	48	4.41	0.23	10	17	0.89	623	1	0.06	13	0.06	13	110	0.30	173	101	
89	13500	5	0.4	3.90) [.]	8	72	0.5	3	1.57	0,5	41	12	29	42	4.38	0.22	12	20	0.79	586	2	0.06	12	0.06	15	98	0.30	169	116	
90	13550	5	0.2	4.78	3 1	11 🖁	73	0.5	4	1.87	0.9	36	17	26	91	4.92	0.23	9	21	1.35	760	1	0.05	17	0.09	17	104	0.27	179	131	
91	13600	5	0.2	4.29) 1	16	71	0.6	3	2.09	0.8	39	16	22	71	4.47	0.24	11	18	1.11	731		0.06	15	0.07	15	118	0.27	169	112	
92	11100N-13650E	5	0.2	4.32	2	8	71	0.6	4	2.36	0.6	37	15	19	55	4.61	0.24	10	18	0.97	1040	1	0.06	13	0.07	16	127	0.28	183	122	
93	11100N-13700E	5	0.4	4.36	3	8	72	0.5	4	2.20	0.4	37	15	20	53	4.22	0.20	9	18	0.97	875	1	0.06	13	0.07	12	119	0.29	161	154	
94	13750			4.45		8	63	0.5	3	2.27	0.6	34	15	18	77	4.68	0.20	8		1.20	835	1	0.05	14	0.08	18	118	0.27	178	108	
95	11100N-13800E	5	0.4	4.03	3	5	83	0.5	2	1.54	0.4	38	14	28	45	4.14	0.22	10	20	1.01	657	1	0.06	14	0.07	11	93	0.28	157	131	
96	11300N-8800E	5	0.2	4.07	7	8	68	0.5	2	0.64	0.3	31	29	273	51	4.28	0.17	10	13	2.49	437	1	0.06	133	0.11	5	40	0.23	122	81	
97	11300N-8850E	5	0.2	3.82	2	8	71	0.4	3	0.68	0.2	30	17	157	38	3.94	0.19	9	12	1.54	356	1	0.07	61	0.05	9	51	0.20	124	58	
98	11300N-8900E	5	0.2	4.24	i .	4	77	0.5	3	0.77	0.2	31	25	207	63	4.10	0.17	9	11	2.23	453		0.06	112	0.10	6	39	0.22	117	74	
99	8950	5	0.2	3.91	1	2	97	0.5	2	0.68	0.2	34	19	146	38	3.45	0.20	11	15	1.61	660		0.07	73	0.07	7	49	0.21	104	71	
101	9000	5	0.2	5.07	7	2	101	0.7	4	1.17	0.7	38	30	246	85	4.33	0.31	11	13	2.88	705	ŧ	0.08	123	0.10	11	48	0.23	119	94	
102	9050	5	0.2	4.79	•	5	112	0.5	3	0.78	0.3	37	22	210	61	4.24	0.27	12	14	2.01	546	1	0.08	88	0.08	12	52	0.28	126	82	
103	11300N-9100E	5	0.4	4.24	ļ	5	100	0.5	4	0.90	0.4	39	21	176	52	4.27	0.24	12	17	1.84	412	1	0.07	79	0.07	10	49	0.24	130	82	
						ġ																									
104	11300N-9150E	5	0.2	4.28	3	2	70	0.5	4	1.17	0.7	39	31	287	60	4.62	0.16	11	15	2.56	399	1	0.06	153	0.09	9	41	0.31	127	83	
105	9200	5	0.2	4,10)	5	86	0.5	3	0.63	0.2	38	20	167	44	4.05	0.22	12	19	1.67	390	1	0.07	75	0.07	8	50	0.25	127	70	
106	9250	5	0.2	3.83	3	4	96	0.5	2	0.60	0.2	41	8	48	26	3.49	0.28	14	18	0.58	315	1	0.07	17	0.16	8	53	0.24	90	98	
107	9300	5	0.2	4.11	2	22	113	0.5	2	0.53	0.2	38	9	45	48	3.66	0.35	13	17	0.73	380	1	0.06	19	0.10	6	44	0.22	90	114	
108	11300N-9350E	5	0.2	4.00) 4	46	141	0.5	2	0.72	0.2	41	10	42	55	4.28	0.40	13	19	0.88	477	1	0.0 6	22	0.09	9	46	0.23	105	118	
									•				•	~~																	
	11300N-9400E	5		4.02		26	115		3	0.58	0.2	39	9	38	37		0.35	13	- 83833333	0.73	522		0.06		0.09	8	43	0.25			
110	9450	5	0.4			9	79	0.4	2	0.71	0,2	36	15		36	3.71		11	33334434	1.29	307		0.08	59	0.07	B	41	0.24		76	
111	9500	5	0.2			5	81		2	0.83	0.2	36	7	54	22	2.56	0.19	11	- 2200 0000	0.41	225	8386466	0.06		0.03	8	60	0.22		50	
112	9550	15	0.4			10	126	0.6	2	1.12	0.2	42	12	66	57	3.24	0.33	14	3999993	0.90	465	1			0.07		58	0.20	94	162	
113	11300N~9600E	15	0.2	4.08	5	17	121	0.5	2	0.54	0.2	36	12	73	40	3.82	0.36	12		0.95	363		0.06	29	0.11	8	42	0.21	101	102	
	11000N 00505		~ •	4 4 4		<u>,</u> ,	105	0 E	•	A 47			40	40	40	0.05				. 70	410		0.00	10	A 1A		44	0.00	00	4.64	
	11300N-9650E			4.11			135		2	0.47	0.2		10		49 34		0.41	14		0.79			0.06		0.10	8		0.23 0.23		121	
115	9700	5		4.32			118		2	0.49	(1981) 1981)		9	36			0.38	13	20000000	0.72		1	0.06		0.12	8				151	
116	9750	10. E		3.38			105		2	0.68	0.2	41	11		22		0.31	14		0.70		100000000000000000000000000000000000000	0.06		0.05			0.25			
117		190000000		3.73			100		2	0.70	1000000				33		0.32			0.75		000000000	0.06		0.06	2000000000		0.28			
ιıð	11300N-9850E	0	U.4	4.70	, 5	74	132	0.0	3	0.78	v./	41	20	53	199	4.71	0.37	13	10	1,25	486	2	0.05	42	0.07	11	47	0.24	124	85	
110	} 11300N-9900E	5	<u>م</u> ۸	3.83		51	109	0.5	3	0.65	07	39	11	67	136	4 10	0.32	12	18	0.81	373	•	0.07	21	0.08	10	51	0.26	129	92	
120	9950			3.66			2000000000	0.5	2	0.65	0.7		7		130		0.32	13	20000000	0.61		100000000	0.07		0.08	8		0.26			
120	10000	 Constant 		0.51		6		0.4	2	2.77	0.2		4		160	0.45		6	2000000000	0.01		100000000000	0.00		0.07			0.20		20020000	
122		5		4.02			42 116		2	0.61	0.2				115		0.32	12	2000000	1.01	363	- 4940949999	0.02		0.08			0.02			
	11300N-10100E	0.00.000		4.02 3.41		5.2	102		2	0.61	0.2		15 10		72		0.32		100000000	0.60		20000000	0.08		0.09	8		0.20		000000000	
123	1.000N-10100E	а С	0.0	J.4 I		•	172	V.4	2	0.03	v.4	30	10	30	16	0.04	v.20	13		0.00			0.00	17	0,00		55	v.22	50	1.44	
124	11300N-10150E	90	0.4	4.07		29	121	0.5	2	0. 65	0 2	38	14	56	158	3 80	0.36	12	18	1.01	453	4	0.06	38	0.04	7	50	0.22	111	85	
12.4	11300N-10200E	000.0000000		3.79			10.000			0.65					100000000000000000000000000000000000000	3.17			- 200000000	0.72		2000000000	0.08			7		0.22		159	

T.T. SAMPLE Au Ag Al No. ppb ppm % 126 11300N-16. - 5 0.4 4.22 127 10300 20 0.2 4.55 128 11300N-10350E 5 0.6 3.89		Bi Ca Cd Ce	Co Cr Cu	Fe K	La Li Mg N	In Mo Na	NI P	Dh O-	71 1/ 7-	
126 11300N-10. ± 5 0.4 4.22 127 10300 20 0.2 4.55	000 000 000				-		INI F	Pb Sr	TIV Zn	9008-034
127 10300 20 0.2 4.55		ррт % рртррт	monorm.	%	ppm ppm % p	om ppm %	opm % (ppm ppm	% ppm p	7.4 of 9
	2002202	2 0.54 0.2 37	16 48 150		3333333333	39 1 0.07	29 0.07	7 49	0.20 103 16	88
1128 11300N-10350E		3 0.86 0.4 52		4.07 0.70	16 16 1.54 19	103396363	20 0.09	10 49	0.17 113 87	
	9 5 143 0.7	2 0.79 0.2 43	16 15 45	3.10 0.67	14 12 0.64 28	99 1 0.04	9 0.16	11 58	0.16 74 103	
		0 0.04 0.0 FO	11 01 00	0.05 0.50	17 17 0.07 10	40 4 0.00	46 0.00	^	A AE A4 AA	
129 11300N-10400E 5 0.4 4.03 130 10450 5 0.2 4.15		2 0.94 0.2 50 2 0.93 0.2 57	11 31 30 9 30 24	3.05 0.50 2.80 0.61	17 17 0.87 12 20 15 0.67 7	42 1 0.06 13 1 0.06	15 0.08 15 0.06	9 69 11 78	0.25 84 83 0.24 73 74	
131 10500 5 0.2 3.86		2 0.93 0.2 57	11 30 26	2.80 0.81		78 1 0.06	15 0.06	6 76	000000	
132 10550 5 0.2 3.86		2 0.83 0.2 47	9 33 23	2.65 0.33	2022/02/02	74 1 0.07	15 0.07	3 80	0.22 82 80	
133 11300N-10600E 5 0.2 3.40	000000000	2 1.06 0.2 52		2.82 0.31	8888 8886	93 1 0.05	16 0.04	386363		
	/ 20 100 0.5	2 1.00 0.2 32	10 04 27	2.02 0.01	18 20 0.07 4		10 0.04		0.25 81 00	
134 11300N-10650E 5 0.4 4.43	3 21 85 0.8	3 0.93 0.8 43	46 27 187	5.11 0.23	13 26 2.02 15	09 1 0.05	26 0.08	7 62	0.29 182 ;00	
135 10700 5 0.4 3.52		2 1.03 0.2 44	13 33 30	3.28 0.28	000000000	30 1 0.06	16 0.10	8 81	0.25 102 81	88
136 11300N-10750E 5 0.4 3.42		2 1.05 0.2 50	11 35 31	3.31 0.25	33333368	00 1 0.06	18 0.07	8 79		
137 11500N-9750E 5 0.4 3.35		2 0.67 0.2 39	8 38 33	3.15 0.27		79 1 0.08	12 0.08	7 61	0.25 105 78	82
138 11500N-9800E 5 1.0 4.33		2 0.70 0.4 43		4.10 0.32		98 1 0.07	24 0.11		0.25 111 115	
139 11500N-9850E 5 0.6 4.46	62 117 0.5	2 0.81 0.5 39	16 47 264	4.74 0.38	11 19 0.98 7	71 2 0.06	31 0.08	8 47	0.25 134 99	
140 9900 180 0.8 4.54		3 0.97 0.7 41	18 41 179	4.63 0.37	0000000	44 1 0.06	30 0.09	29 54	0.26 126 112	
141 11500N-9950E 10 0.6 4.23		2 0.78 0.3 46	18 51 432	4.02 0.37		10 2 0.05	40 0.06	12 50	0.21 105 75	
142 11900N-9450E 5 0.4 4.90) 2 98 0.5	3 1.63 0.6 36	38 201 130	4.55 0.12	9 9 3.27 11	12 1 0.05	162 0.08	10 37	0.27 122 85	
143 11900N-9500E 5 0.4 4.31	2 78 0.4	2 1.46 0.4 35	33 184 78	4.07 0.12	9 10 2.67 6	41 1 0.05	149 0.06	8 40	0.24 105 84	
144 11900N-12050E 5 0.2 3.13	3 2 70 0.5	2 1.74 0.2 47	11 36 35	2.80 0.14	14 13 0.84 4	69 1 0.05	17 0.04	18 116	0.33 104 62	
145 12100 5 0.2 3.19	2 84 0.5	2 1.71 0.2 45	11 31 47	2.99 0.15	14 11 0.90 4	30 1 0.05	20 0.04	15 121	0.29 100 48	
146 12150 5 0.6 3.25	5 2 106 0.5	2 1.67 0.2 46	12 31 30	3.04 0.16	14 13 0.84 5	23 1 0.06	20 0.05	12 113	0.31 102 70	
147 12200 5 0.2 2.94	l 5 76 0.4	2 1.13 0.2 43	9 34 29	3.40 0.18	14 13 0.63 3	41 1 0.05	16 0.11	10 81	0.29 102 71	
148 11900N-12250E 5 0.2 3.32	2 92 0.5	2 1.38 0.2 46	11 34 36	3.28 0.20	15 14 0.80 4	56 1 0.06	22 0.08	8 98	0.30 100 83	
149 11900N-12300E 5 0.2 2.99		2 1.34 0.2 45	7 30 21	2.74 0.17		00 1 0.06	12 0.04		0.31 103 44	
152 12350 5 0.2 2.97		2 1.26 0.2 41	6 23 23	2.45 0.16		89 1 0.05	11 0.05	2 111		65
153 12400 5 0.2 3.41		2 1.23 0.2 39	10 24 41	2.62 0.18	303330000	19 1 0.05	17 0.06	4 100	0.27 88 54	
154 12450 5 0.2 3.10		2 1.15 0.2 40	7 20 26	2.29 0.22	0000000	87 1 0.06	11 0.06	3 109	0.27 83 45	88
155 11900N-12500E 5 0.2 2.87	4 70 0.4	2 1.11 0.2 40	6 14 18	2.51 0.22	12 10 0.45 2	58 1 0.05	8 0.04	3 105	0.28 87 39	
156 11900N-12550E 5 0.2 3.37	2 94 0.4	2 1.39 0.2 41	8 14 22	2.28 0.27	11 11 0.62 3	15 1 0.04	11 0.05	5 125	0.25 69 48	
156 11900N-12550E 5 0.2 3.37 157 12600 5 0.2 3.29		2 1.39 0.2 41 2 1.19 0.2 41	7 15 17	2.88 0.23	200000000	21 1 0.05	9 0.08	6 106	0.29 86 59	
158 12650 5 0.2 5.18		2 1.19 0.2 41	14 20 47	3.43 0.29		70 1 0.05	20 0.11	6 94	0.29 101 68	8
159 12700 5 0.2 3.91		2 1.28 0.2 44	14 20 47	2.58 0.27		14 1 0.04	14 0.09	2 86	0.23 76 59	
160 11900N-12750E 5 0.2 5.48		3 2.00 0.2 52	14 10 40	3.68 0.29	222222222	24 1 0.04	13 0.07	6 196	332232	88
100 1100010-127002 3.40	, 2 100 0.7		14 10 40	0.00 0.20			10 0.07		0.04 101 20	
161 11900N-12800E 5 0.2 4.11	2 163 0.6	2 1.60 0.2 37	10 11 39	2.68 0.28	11 16 0.67 8	36 1 0.04	11 0.12	2 71	0.20 83 56	
162 12850 5 0.2 3.30	10.000.000000	2 1.19 0.2 40	4 10 14	1.76 0.19	000000000	28 1 0.06	4 0.03	6666666	0.32 77 37	22 I
163 129 0 0 5 0.2 4.14	000000000	2 1.12 0.2 36	6 10 23	2.98 0.32	000000000	85 1 0.05	7 0.12	2002020000	0.28 92 57	33
164 12950 5 0.2 4.80	0.000.000000	2 1.53 0.2 40	9 11 38	3.42 0.27	86666666	06 1 0.04	10 0.07	100000000	0.28 101 55	
165 11900N-13000E 5 0.2 3.80	10000000000	2 1.26 0.2 34	8 9 34	2.77 0.26	2000000000	98 1 0.04	9 0.08	200000000	0.23 90 45	83
166 11900N-13050E 5 0.2 3.51	2 132 0.4	2 1.75 0.2 40	9 9 42	2.56 0.23	11 10 0.73 4	38 3 0.04	9 0.05	2 172	0.25 85 60	
167 13100 5 0.2 4.06	2 85 0.5	2 1.42 0.2 38	7 11 29	2.87 0.23	11 14 0.53 3	18 1 0.05	9 0.08	2 155	0.28 90 66	
168 13150 5 0.2 4.12	55555555555555555555555555555555555555	2 1.54 0.2 42	8 11 32	3.00 0.26	11 13 0.58 3	54 1 0.05	9 0.07	3 173	0.29 100 71	
169 13200 5 0.2 3.98		2 1.59 0.2 44	9 10 36	3.10 0.26	11 11 0.66 3	99 1 0.06	10 0.06	5 171	0.28 103 67	
170 11900N-13250E 5 0.2 3.48	2 77 0.4	2 1.26 0.2 36	6 11 22	2.70 0.25	9999699999	20 1 0.05	8 0.06	2 133	0.26 92 82	
171 11900N-13300E 5 0.2 3.56	2 81 0.5	2 1.33 0.2 37	7 13 26	2.85 0.22	10 13 0.50 3	34 1 0.04	9 0.08	2 135	0.25 87 59	

T.T.	SAMPI_E	Au	Ag	Ai	A	e F	a E	le	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	ĸ	La	Li	Mg	Mn	Ma	No	AL:		Dh	Cr	TI	v	70	0000 004
No.	OAWF 1L	ppb	ppn					om p		%	ppm					ГØ	к %	ppm			ppm	Mo	Na %	Ni	Р %	Pb	Sr	Ti %	v ppm	Zn	9008-034
	11900N-133	<u> </u>			<u> </u>		68 0		2	1.33	0.2	37	5	14	20			10		0.41	346		0.05	ppm 8		ppm 3	ppm 127	0.24	<u>91</u>	 5∠	
173		5		3.20		- 333	888	.4	2	1.43	0.2	39	6	13	22	2.26		11	- 800 776	0.40	302		1	7		3	136	0.25	87	45	
174	13450	5	0.2	3.20)	2	72 0	.4	2	1.09	0.2	35	6	14	19	2.78	0.21	10		0.39	282	1		. 7		2	99	0.25	91	65	
175	11900N-13500E	5	0.2	3.63	3	2	7 9 0	.4	2	1.12	0.2	38	8	17	49	2.93		11		0.56	342	- 81336498	0.05	-	0.08	6	97	0.26	94	71	
176	12300N-8800E	5	0.2	3.45	5	2	76 0	.3	2	0.64	0.2	30	14	171	26	3.68	0.17	10	17	1.17	297	1	0.07	52	0.05	2	51	0.22	135	52	
177	8850	5	0.2	3.55	5	3	76 0	.4	2	0.76	0.2	32	17	168	34	3.69	0.20	10	15	1.34	430	1	0.07	62	0.06	3	51	0.25	120	63	
178	8900	5	0.2	3.34	ŧ	7	70 0	.4	2	0.96	0.2	35	15	196	30	4.06	0.17	10	15	1.27	313	1	0.07	58	0.05	3	55	0.24	136	55	
1 79	8950	15	0.2	4.35	5	3	88 0	.5	2	0.83	0.2	38	23	197	47	4.45	0.21	11	15	1.89	412	1	0.10	92	0.06	2	49	0.25	137	74	
180	12300N-9000E	5	0.2	3.59	•	3	45 0	.4	3	1.69	0.5	38	38	373	76	4.53	0.11	10	6	3.59	906	1.	0.05	167	0.05	2	46	0.22	122	67	
181	12300N-9050E	5	0.2	4.00)	2	39 0	4	2	2.08	0.3	32	47	297	108	4.66	0.06	8	\$	5.08	670	4	0.03	285	0.04	2	30	0.20	105	68	
182	9100	5				7 1996	50 0		3	1.65	0.4	33		277	72	4.62		8		4.74	638		0.04			2	28	0.21		77	
183	9150	10					78 0		2	1.08	0.2	34	38	237	57	4.32		9		2.88	940		0.06			2	40	0.20		78	
184	9200	20		3.64		- S888	68 0		2	0.90	0.3	31		183	82		0.17	8	-83888888	2.30			0.05			2	40	0.18		81	
185	12300N-9250E	5		4.67			24 0		2	0.81	0.3	30		200	95		0.36	8		8	1164				0.05	3		0.15		94	
186	12300N-9300E	5	0.2	4.74	5	٥ 1	15 0	5	4	0.78	0.5	31	13	256	105	5.55	0.37	8		2.49	1280		0.05	100	0.05	5	29	0.12	158	82	
187	9350	i terdesette		5.08			57 O		4	2.15	0.5	31		171	119		0.13	6		3.62	674		0.03			2	20	0.12		•4 71	
188	9400	5	0.2				3 7 0		3	1.46	0.7	33		301	100	5.36		8		3.60	486		0.04			3	27	0.26	136	99	
189	9450	5		4.14			64 0		2	1.22	0.9	35		219	67		0.15	8		2.68	848		0.06		0.08	5		0.25	128	145	
190	12300N-9500E	5		4.03		5	57 0		2	1.18	1.1	32		223	57		0.14	8	- 30000000	2.60	443		0.06			7		0.27		167	
191	12300N-9550E	10	0.2	3.78	6	8	33 0.	5	2	0.74	0.9	32	19	176	38	3.82	0.25	10	19	1.47	343	1	0.10	82	0.04	4	41	0.23	121	173	
192	9600	5	0.4	3.64	5	1	30 0.	4	2	0.95	0.3	34	21	187	124	4.06	0.24	9	15	1.36	330	3	0.09	85	0.05	3	50	0.25	129	97	
193	9650	5	0.2	3.45	; i	8	92 0.	4	2	1.16	0.2	33	23	183	66	3.79	0.23	9	16	1.66	593	100 –	0.06	87	0.05	3	44	0.28	131	73	
194	9700	30	0.2	3.72	6	9 1	99 0.	4	2	0.58	0.2	31	14	74	118	3.61	0.34	10	19	0.77	377	4	0.08	32	0.05	4	43	0.21	107	93	
195	12300N-9750E	5	0.2	3.60	1	1 1	30 0.	4	2	0.60	0.2	31	10	61	39	2.96	0.38	10	17	0.60	682	1	0.07	17	0.0 6	4	45	0.18	89	84	
196	12300N-9800E	5	0.2	3.68	1:	3 1	12 0.	4	2	0.55	0.2	31	9	46	48	3.02	0.33	10	20	0.62	297		0.07	17	0.07	4	45	0.19	89	104	
197	9850	5	0.2	3.59	2	4	32 0.	4	2	0.49	0.2	30	8	51	54	3.62	0.26	10	19	0.58	231	5	0.07	17	0.06	5	42	0.21	107	81	
198	9900	5	0.2	3.75	4	5 1:	34 0.	5	2	1.15	0.3	45	15	28	422	4.02	0.41	12	13	0.98	481	4	0.07	24	0.09	6	61	0.21	110	70	
199	9950	5	0.2	3.25	. (6 8	36 0.	4	2	0.95	0.2	42	8	41	28	3.22	0.29	12	17	0.64	313	1	0.07	14	0.04	4	76	0.25	112	56	
201	12300N-10000E	5	0.2	3.64	1	1 10	03 0.	6	2	0. 69	0.2	42	11	36	28	3.33	0.31	15	24	0.64	328	2	0.07	19	0.0 9	9	62	0.24	95	95	
202	12300N-10050E	5	0.2	3.91	2:	2 17	71 0.	6	2	0.92	0.2	34	13	29	70	3.47	0.46	9	20	0.91	452	1	0.06	22	0.08	7	63	0.20	106	96	
203	10500	5	0.2	4.22			2 0.		2	0.85	0.2	43	7	13	18	2.45	0,68	14	0.0000000	0.59	831	30339303	0.06	8	0.06	6	84	0.21	66	63	
204	10550	380	0.2	3.96		2 1	6433		2	0.85	0.2	44	9	16	22	2.67	0.46	14	-2020-040	0.58	263	0000000	0.06	-	0.07	6	82	0.24	68	44	
205	10600	5		3.21		2 8	33 0.	4	2	0.73	0.2	41	4	14	12	1.92		14	100000000	0.30	318		0.06	5	0.10	8	64	0.20	61	40	
206	12300N-10650E	5	0.2	4.13		4 12	29 0.	5	2	0.97	0.2	40	9	17	28	2.99	0.33	12	17	0. 6 0	363	1	0.08	12	0.06	7	84	0.22	90	84	
207	12300N-10700E	5	0.2	4.47		2 12	23 0.	5	2	1.21	0.2	42	10	13	82	3.07	0.32	12	18	0.69	391	1	0.06	13	0.08	10	94	0.22	92	89	
208	10750	5		3.52			2 0.			1.08	0.2		11	19	97	3.26		14		0.63	494	- 00000000	0.07		0.06	5000000		0.25		89	
209	10800	5		3.62		200,000	26 0.			0.94	0.2	52	19	28	156	3.34		18	100000000	9	1412	1000000000	0.07		0.06	4		0.27		35263266	
210	10850	5		3.17			6 0.			0.95	0.2	44	11	22	42	3.72		14	10000000	0.68	649		0.08		0.09	6		0.29		94	
	12300N-10900E	5		2.91		C 200000	30.				0.2		9	38	32	2.70		16		:	404		0.06		0.04	2		0.27		50	
	12300N-11000E			2. 9 0		5 8	4 0.	5		1	0.2	44	11	30	35	3.05	0.23	15	17	0.69	485	1	0.07	18	0.06	2	73	0.32	111	61	
213	11050	5		3.42		10.0040	8 0.			1.24	0.2	48	14	40	42	3.29	0.26	17	19	0.94	487	1	0.08	29	0.07	2	84	0.34	112	82	
214	11100	5		3.27			8 0.		2	1.03	0,2	52	12	38	37	3.50	0.25	20	17	0.74	497	1	0.07	26	0.09	3	76	0.32	109	64	
215	11150	5		3.47		2000000	24 0.		2		0.2	45	15	30	44	3.32		17	100000000	0.80	894	1	0.08	18	0.13	6		0.32		10000000000	
216	12300N-11200E	5	0.2	3.25	11	। ि	17 0.	5	2	1.14	0.2	36	11	23	39	3.95	0.25	11	16	0.84	528	1	0.08	18	0.12	4	77	0.39	141	76	

T.T.	SAMPLE	Au	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	. Fe	К	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	V	Zn	9008034
No.		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		%	ppm	n ppm		ppm	ppm	96	ppm	96	ppm	ppm	%	ppm	Pr	j. 6 of 9
217	12300N-11	5	0.2	2.59	10	79	0.4	2	1.08	0.2	40	8	29	36	.46	0.21	13	11	0.60	364	1	0.06	15	0.16	8	75	0.28	100	5.	
218	12000	5	0.2	3.26	2	118	0.6	2	1.07	0.2	48	11	28	47	3.21	0.24	16	13	0.80	452	1	0.06	21	0.08	4	74	0.29	95	61	
219	12050	5	0.2	3.61	2	185	0.7	2	1.09	0.2	54	10	29	40	3.17	0.35	21	13	0.73	368	1	0.07	19	0.06	8	78	0.32	92	58	
220	12100	.5	0.2	3.67	5	217	0.7	2	1.12	0.2	49	11	30	41	3.06	0.31	20	14	0.68	720	1	0.07	18	0.15	7	73	0.28	96	74	
221	12300N-12150E	5	0.2	3.26	7	132	0.8	2	1.17	0.2	44	13	30	74	2.65	0.20	22	12	0.52	829	2	0.06	16	0.20	2	74	0.24	104	51	
222	12300N-12250E	5	0.2	3.87	2	124	0.7	2	0.87	0.2	41	15	26	39	3.24	0.20	16	19	0.72	954		0.07	16	0.06	2	75	0.28	118	78	
223	12300	5	0.2	2.99	2	91	0.5	2	1.29	0.2	47	11	23	41	2.87	0.20	15	11	0.78	445	1	0.06	16	0.07	5	97	0.29	93	53	
224	12350	5	0.2	3.38	2	73	0.5	2	1.51	0.2	45	7	15	30	2.67	0.19	12	14	0.61	382	1	0.06	12	0.05	2	137	0.32	97	57	
225	12400	5	0.2	5.02	2	178	0.7	2	1.08	0.2	38	12	20	47	3.62	0.21	11	22	0.66	292	1	0.05	21	0.10	5	83	0.23	100	62	
226	12300N-12450E	5	0.2	3.30	3	75	0.5	2	1.31	0.2	43	6	19	24	2.41	0.16	13	12	0.47	305	1	0.07	10	0.04	6	111	0.35	95	47	
							5												8											
227	12300N-12600E	5	0.2	3.38	2	67		2	1.10	0.2	36	6	16	31	2.48	0.20	10	13	0.44	253	1	0.05	11	0.05	3	98	0.27	95	42	
228	12650	5	0.2	2.76	3	74	0.4	2	1.12	0.2	41	6	18	21	2.50	0.17	13	11	0.45	278	1	0.06	9	0.05	4	94	0.29	90	44	
229	12800	5	0.2	3.20	2	68	0.4	2	1.30	0.2	43	7	17	22	2.82	0.23	12	11	0.53	304	1	0.05	11	0.07	3	117	0.29	93	66	
230	12850	5	0.2	4.12	2	91	0.6	4	1.37	0.2	42	9	19	29	3.50	0.24	12	16	0.66	376	1	0.05	14	0.13	6	118	0.30	101	90	
231	12300N-12900E	5	0.2	3.36	2	92	0.5	2	1.34	0.2	40	8	17	32	2.79	0.25	12	15	0.67	365	1	0.05	12	0.09	3	125	0.27	90	66	
1																														
1	12300N-12950E	5	0.2	5.35	2	179	0.7	2	1.20	0.2	50	12	16	47	3.23	0.27	12	29	0.72	1254	1	0.05	16	0.09	6	68	0.24	96	79	
233	13000	5		3.25	2	-9494949	0.5	2	1.49	0.2	43	8	16	23	2.49	0.21	13	13	0.62	366	1	0.06	12	0.05	3	135	0.30	89	69	
234	13050	5	0.2	6.23	2	171	0.8	2	0.93	0.2	33	14	18	53	3.90	0.23	9	27	0.80	487	1	0.05	21	0.13	8	52	0.23	103	139	
235	13100	5		3.19	2		0.4	2	1.42	0.2	42	5	15	19	2.68		12		0.45	314	20000000	0.06	9	0.07	3		0.30	100	- 69	
236	12300N-13150E	5	0.2	4.40	2	131	0.6	2	1.56	0.2	40	10	11	35	3.34	0.29	10	13	0.70	349	1	0.05	12	0.06	5	155	0.29	105	57	
	12300N-13200E			2.63	2		0.3	2	1.25	0.2	37	4	14	14	1.59		10	- 8038839	0.27	226	3000000	0.06		0.03	6		0.26	75	27	
238	13250	5		3.95	2		0.4	2	1.31	0.2	42	7	12	20	2.83	0.19	12	- 3333333	0.50	279	200000	0.06	9	0.03	8	140	0.31	102	42	
239	13400	5		4.12	2	100000000	0.5	2	1.26	0.2	44	8	17	28	3.35		12		0.57	352		0.07	12	0.08	9		0.29		69	ĺ
240	13450	5		3.45	2		0.4	2	1.30	0.2	38	7	22	21		0.23	11	- 202222022	0.54	330		0.06	10	0.05	7	107	0.26	94	61	
241	12300N-13500E	5	0.2	3.70	2	99	0.5	2	1.07	0.2	38	8	19	22	2.96	0.26	11	16	0.50	454	1	0.07	10	0.09	2	105	0.26	100	78	
242	12700N-8850E	10	0.2	4.87	3	93	0.5	2	1.35	0.5	37	39	256	141	4.85	0.20	10	16	4.13	780	1	0.06	200	0.05	2	38	0.22	138	78	
243	8900	5		4.59	7	100000000	0.6	3	1.16	0.4	32		289	84	4.94		8		4.86	896			262		2	27			88	
244	8950	5		4.96	35	50.00000	0.6	2	1.30	0.5	32		293	120	5.27	0.25	9	- 3665666	4.57	747		0.04		0.04	2	29	0.19		76	
245	9000	5	0.2	4.69	2	62	0.5	2	1.44	0,4	33	48	348	66	4.81	0.12	9	2000000		642	1000000	0.06		0.04	2	36	0.25		81	1
246	12700N-9050E	5	0.2	4.83	2	10000	0.5	4	1.39	0.4	35		326	70		0.17	10		4.04	940			252		3	40	0.25		90	1
247	12700N-9100E	5	0.2	4.51	4	90	0.5	3	1.45	0.4	38	41	352	59	4.55	0.16	10	18	3.98	666	1	0.06	242	0.05	4	37	0.23	114	74	
248	9150	5	0.2	4.47	2	125	0.5	2	1.19	0.2	38	33	214	95	4.12	0.33	10	17	3.10	1115	1	0.07	172	0.06	4	38	0.20	102	89	
249	9200	5	0.2	4.30	3	122	0.5	2	0.69	0.2	38	20	178	34	3.39	0.29	13	17	1.61	531	1	0.08	94	0.0 6	4	45	0.21	89	90	
251	9250	5	0.2	3.57	2	111	0.4	2	0.73	0.2	37	27	227	33	3.34	0.20	12	20	1.78	809	1	0.06	112	0.07	5	51	0.21	96	125	
252	12700N-9300E	55	0.2	3.29	8	87	0.4	2	0.78	0.4	33	30	243	35	4.05	0.17	10	22	1.90	766	1	0.06	119	0.07	2	44	0.22	1 26	97	
	107001 00705						• •	-			• •		o				-											400		
	12700N-9350E	20200000000		3.51			0.4	4	0.96	0.4	34		247	48		0.16	9	200000000000000000000000000000000000000	2.32	429				0.06	2	36	0.25		1000000000	
254	9400	1000000000		3.18	7	<	0.4	2	0.74				226	27		0.23	10		1.50	302	11111111111	0.07		0.04	2		0.23			
255	9450	5		3.04			0.4	2		0.2	34		213	28		0.23	10		0.93	362		0.08	49	0.04	3		0.22		- 969666666	
256	9500	5		3.48		10000 0000000	0.4	2	0.62	3000000000			164	55		0.23	10	100000000000000000000000000000000000000	1.06	268	20000000	0.09		0.04	2		0.22		2000000000	
257	12700N-9550E	10	0.2	3.44	28	82	0.4	2	0.63	0.2	35	16	102	59	3.47	0.23	11	19	0.89	298	1	0.07	41	0.07	2	45	0.22	105	59	
258	12700N-9600E	5	0.2	3.73	37	101	0.5	2	0.64	0.2	35	17	133	105	3.82	0.29	11	19	1.09	458	2	0.08	48	0.06	2	42	0.21	109	75	
259	9650	5	0.2	3.40	48		0.4	2	0.62		34	12	91	136		0.25	10		0.86	300		0.07	30	0.08	6		0.20		200000000	
260	9700			4.15		111		2	0.53		33	14		266		0.37	10	000000000	0.96	512		0.10		0.10	4		0.17			
	12700N-9750E	5		3.81		119		2	0.98	***********		21	92	309		0.40	11	1000000000	1.51	659	in the second second	0.07		0.05	4		0.18	99		
																	····				<u>eense teks</u>				200000000000					

. -

T.T.	SAMPI E	Au	Ag	AI	As	Ва	Be	Bi	Са	Cd	Се	Co	Cr	Cu	Fe	ĸ	La	Li	Mg	Mn	Mo	Na	Ni	Р	Pb	Sr	TI	v	Zn	9008-034
No.	CAND	ppb	ppm		ppm		ppm		%		ppm			ppm		%		ppm		ppm		%	ppm			ppm	%	ppm		3.7 of 9
262	12700N-96-26	5		3.54				2	1.73	0.2		14	39	57	J.60	0.29	10		0.90	566		0.06		0.04			0.23		10000	<u>p</u>
263	12700N-9850E	15	0.2	3.44	13	82	0.4	2	0.86	0.2	36	12	42	68	3.47	0.25	11	17	0.77	348	1	0.06	23	0.07	2	65	0.22	107	83	
264	9900	5	0.2	3.12	12	84	0.4	2	0.79	0.2	36	10	45	34	3.30	0.22	11	16	0.63	333	1	0.06	17	0.07	8	62	0.23	105	65	
265	9950	5	0.2	3.05	5	86	0.4	2	0.83	0.2	37	9	32	24	3.13	0.23	11	17	0.60	370	1	0.06	14	0.05	5	66	0.24	105	71	
266	10000	5	0.2	3.35	8	107	0.5	2	0.94	0.2	38	14	36	27	3.19	0.32	11	21	0.66	576	1	0.06	19	0.07	3	68	0.24	106	100	
267	12700N-10050E	5	0.2	3.47	7	111	0.5	2	0.98	0.2	39	14	34	29	3.31	0.35	12	22	0.71	527	1	0.06	20	0.07	5	73	0.25	111	103	
268	12700N-10100E	5	0.2	3.64	14	104	0.5	2	1.11	0.2	38	14	39	47	3.66	0.36	12	19	0.89	402	1	0.06	24	0.05	4	76	0.25	122	75	
269	10250	70	0.2	3.84	229	96	0.7	2	2.24	0.2	40	46	21	111	4.11	0.26	10	17	0.73	1449	1	0.06	24	0.09	7	128	0.25	119	88	- - - - -
270	10350	5	0.2	3.44	25	123	0.5	2	1.17	0.2	41	18	26	39	3.25	0.27	12	21	0.61	1152	1	0.07	15	0.08	6	91	0.25	111	86	
271	10400	5	0.2	3.62	2	119	0.4	2	0.87	0.2	40	11	24	26	2.78	0.31	14	20	0.51	728	1	0.07	12	0.05	2	92	0.25	94	100	
272	12700N-10450E	5	0.2	4.16	2	125	0.5	2	0.96	0.2	43	16	30	52	3,56	0.28	14	18	0.66	773	1	0.07	18	0.06	3	92	0.28	123	107	6 6 7
273	12700N-10500E	5	0.2	3.42	2	121	0.4	2	0.91	0.2	40	13	27	52	3.12	0.28	13	17	0.62	58 9	1	0.06	16	0.05	8	84	0.25	108	116	- -
274	10550	5	0.2	3.45	2	121	0.4	2	0.94	0.2	40	12	28	43	2.88	0.26	12	17	0.55	702	1	0.06	16	0.06	2	93	0.23	95	108	
275	10600	5	0.2	3.01	2	130	0.4	2	0.87	0.2	40	11	22	19	2.69	0.25	13	19	0.50	913	1	0.08	12	0.06	4	74	0.24	93	106	
276	10650	5	0.2	3.37	2	136	0.4	2	0.97	0.2	39	10	27	17	2.67	0.29	12	17	0.55	687	1	0.06	15	0.06	3	85	0.23	84	76	
277	12700N-10700E	5	0.2	3.16	2	105	0.4	2	0.99	0.2	45	10	32	22	3.04	0.23	15	15	0.58	468	1	0.06	17	0.06	3	83	0.26	95	59	
i																														
278	12700N-10750E	5	0.2	3.58	5	136	0.5	2	0.98	0.2	50	11	30	64	3.25	0.27	17	14	0.59	587	1	0.06	16	0.08	5	86	0.27	95	85	
279	10800	5	0.2	4.36	2	137	0.6	2	1.08	0.2	44	16	27	58	3.99	0.30	13	18	0.98	1172	1	0.07	22	0.08	9	74	0.30	136	96	
280	10950	5	0.2	2.99	7	102	0.5	2	1.28	0.2	53	11	42	30	3.05	0.21	18	15	0.79	407	1	0.06	23	0.05	7	77	0.2 9	110	61	1 6 1
281	11000	5	0.2	3.16	4	109	0.4	2	1.25	0.2	51	11	41	30	3.07	0.22	16	14	0.77	428		0.06	22	0.05	2	78	0.29	109	52	
282	12700N-12000E	5	0.2	3.42	2	114	0.6	2	1.02	0.2	57	10	30	41	3.27	0.25	17	12	0.76	423	1	0.06	17	0.06	2	81	0.27	96	50	
283	12700N-12050E	5	0.2	3.89	2	124	0.6	2	0.89	0.2	58	11	36	57	3.25	0.26	18	13	0.76	409	- 55555566	0.06	21	0.08	2	70	0.28	93	55	
284	12100	5	0.2	4.06	2	175	0.5	2	1.17	0.2	38	14	31	50	3.52	0.35	11	16	1.00	793	1	0.07	25	0.10	2	84	0.24		79	* * *
285	12150	5	0.2	3.59			(i)	2	1.06	0.2	44	8	25	37		0.24	15	200000000	0.57	628				0.05	000000000	81	0.25			
286	12200	5	0.2		-			2	1.28	0.2	40	6	28	18		0.22	11		0.52	377		0.07		0.04		85	0.23		53	
287	12700N-12250E	5	0.2	2.93	2	132	0.6	2	1.09	0.2	44	8	21	39	2.65	0.19	15	14	0.52	376	1	0.05	11	0.06	3	79	0.23	72	51	
288	12700N-12300E	5	0.2	3.14	2	91	0.4	2	1.07	0.2	44	8	23	27	3.44	0.24	14	16	0.61	425	1	0.06	12	0.07	3	85	0.27	101	75	
289	12350	5	0.2					2	1.16	0.2	40	6	19	15	2.12	0.18	13		0.41	380	1	0.06	8	0.03	- 363352636	89	0.25		39	
290	12400	5	0.2		4	98	8	2	0.88	0.2	44	8	21	22		0.23	13	000000000	0.52	511		0.07	10	0.07	- 000000000	72	0.25	80	83	
291	12450	5	0.2	2.89	2	80	0.3	2	0.99	0.2	41	6	16	19	2.34	0.23	11	13	0.51	318	1	0.06	8	0.04	2	88	0.25	80	52	
	12700N-12500E	5	0.2			91		2	0. 76	0.2	34	7	18	30	2.79	0.31	10	17	0.58	313	1	0.05	10	0.08	2	67	0.20	85	63	
293	12700N-12550E	5	0.2	2.65	2	76	0.3	2	1.15	0.2	42	6	19	21	2.37	0.19	13	12	0.52	320	1	0.08	9	0.04	2	98	0.27	83	55	
294	12600	5	0.2	2.84	2	92	0.4	2	1.04	0.2	40	7	16	24	2.40	0.24	12	13	0.46	330	1	0.06	8	0.05	2	91	0.25	83	55	
295	12650	5	0.4	2.61	2	68	0.4	2	1.32	0.2	41	6	19	20	2.18	0.16	12	9	0.45	283	1	0.05	9	0.05	2	111	0.25	84	40	
296	12700	5	0.2	2.85	2	67	0.3	2	1.16	0,2	42	6	16	19	2.60	0.20	12	13	0.43	288	1	0.06	8	0.08	2	97	0.29	94	68	
297	12700N-12759E	5	0.2	3.28	2	100	0.4	2	1.46	0.2	40	8	14	32	2.50	0.23	11	13	0.58	449	1	0.04	11	0.03	2	114	0.24	86	39	
	}							-				-				• • •							-							
	12700N-12800E			2.81			0.3		1.32	100000000000000000000000000000000000000		6	15	17		0.16		-20000000	0.44			0.06		0.03	32333333		0.27		- 3999993	
299	12850	5		2.92			0.4	2	2.10	0.2	44	6	12	18		0.17	12	2000000000	0.37	367	1000000000	0.05		0.03	000000000		0.28		1000000000	
2	12950			3.61			0.5		1.19	0.2		13	22	29		0.20	10		0.70			0.08		0.05	- 100000000		0.22			
3	13000			3.12		- 00000000	0.4	2				6	17	22		0.18	10	- 0000000000	0.50		3333333333	0.05		0.03			0.24		202000000	
4	12700N-13050E	5	0.2	3.14	2	/8	0.4	z	1.37	V.2	38	7	16	22	2.60	0.18	10	13	0.56	300		0.05	10	0.06	2	121	0.24	100	66	-
5	12700N-12100E	,	~ ~	9 60	~	64	Å	•	1.00	~ ^	24	7	14	••	0 17	0.23			0 50	250		0.02	10	0.05		0.4	0.18	75	37	
	12700N-13100E			2.63 2.20		- 2000 2000 20	0.4 0.3	2 2		10000000000		7	14 16	30 18	1.73		8	1000000000	0.58	259 194	- 200000000000	0.03 0.04		0.05			0.18			
Ľ	12700N-13150E	0	0.2	2.20	2		0.3		0.80	v.2	33	3	10	10	1./3	0.13	9	00000000	v.28	184	00000	0.04	,	0.03	- 1000 - 5 00	00	0.20	/0		

T.T.	SAMPLE	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	К	La L	i Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sr	TI	V	Zn	9008-034
No.		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ррт	ppm	ppr	n ppm	<u>`</u>	%	ррт рр	m %	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	<u>p</u> r	3.8 of 9
7	12700N-13. 🖃	5		3.96	2	141	0.7	2	0.97	0.2	34	11	17		.84	0.22		0 0.71	408	- 333333333	0.05	18		2	56	0.15	87	.	- -
8	12700N-13400E	5		3.39	2	84	0.5	2	1.23	0.2	40	8	26		3.36	0.19	2222	4 0.54	307		0.04	14	0.06	2	105	0.24	105		
9	13100N-8800E	5	0.2	1.94	14	101	0.4	2	0.68	0.2	31	14	71	1 31	2.08	0.29	9 1	4 0.93	534	1	0.05	46	0.02	2	42	0.14	73	44	
10	13100N-8850E	5	0.2	3.12	14	180	0.5	4	0.82	0.2	41	22	135	5 66	3.28	0.28	11 1	9 2.02	593	1	0.06	94	0.03	3	42	0.17	105	55	
11	8900	5	0.2	2.70	10	86	0.5	2	0.66	0.2	30	19	98	3 30	2.65	0.16	10 1	5 1.23	539	1	0.04	73	0.03	8	35	0.15	81	61	
12	8950	45	0.2	3.42	73	92	0.5	2	0.89	1.1	31	28	187	7 85	3.53	0.26	8 1	8 2.01	688	1	0.05	116	0.03	7	33	0.17	107	142	
13	9000	5	0.2	1.75	12	47	0.3	2	0.72	0.2	26	16	136	3 21	2.03	0.13	7 1	1 1.21	253	1	0.04	66	0.02	3	27	0.13	75	36	
14	13100N-9050E	5	0.2	2.54	15	59	0.4	2	0.79	0.2	31	21	172	2 26	2.79	0.13	91	5 1.44	272	1	0.04	82	0.03	6	34	0.18	97	63	
15	13100N-9100E	5	0.2	1.74	15	48	0.3	2	0. 79	0.2	29	17	169	9 23	2.28	0.13	8 1	3 1.26	452	1	0.04	71	0.03	4	33	0.16	84	52	
16	9150	5	0.2	1.77	8	47	0.3	2	0.50	0.2	30	7	85	5 12	1.86	0.14	9 1	3 0.48	181	1	0.05	20	0.03	5	36	0.16	69	38	
17	9200	5	0.2	1.87	28	62	0.3	2	0.48	0.2	28	11	85	5 6 7	2.24	0.23	9 1	8 0.78	189	2	0.05	31	0.03	5	26	0.12	79	43	
18	9250	5	0.2	2.36	27	62	0.4	2	0.53	0.2	28	11	104	\$ 55	2.62	0.21	9 1	7 0.74	208	1	0.05	34	0.06	7	31	0.16	84	58	
19	13100N-9300E	5	0.2	1.52	21	53	0.3	2	0.46	0.2	26	7	51	1 42	1.66	0.16	8 1	0 0.47	199	1	0.05	19	0.04	5	30	0.13	60	45	
20	13100N-9350E	10	0.2	1.86	28	59	0.3	2	0.52	0.2	27	10	63	3 30	1.99	0.16	7 1	2 0.51	220	1	0.05	22	0.05	8	33	0.14	68	57	
21	9400	25	0.2	2.52	32	62	0.5	2	0.52	0.2	30	9	44	1 52	2.71	0.17	11 📑	3 0.57	222	1	0.05	23	0.07	6	39	0.15	74	45	
22	9450	10	0.2	2.47	64	72	0.4	2	0.50	0.2	30	8	40) 35	2.57	0.19	9 1	5 0.53	245	1	0.06	18	0.05	6	40	0.16	77	75	
23	9500	15	0.2	2.36	53	74	0.4	2	0.47	0.2	29	10	37	7 57	2.54	0.20	9 1	3 0.59	249	1	0.05	22	0.07	3	37	0.16	76	80	
24	13100N-9550E	15	0.2	2.57	19	78	0.4	2	0.62	0.2	35	8	39	9 32	2.63	0.22	12 1	4 0.53	257	1	0.07	16	0.06	5	51	0.21	85	74	
25	13100N-9600E	5	0.2	2.35	12	65	0.4	2	0.71	0.2	35	9	40) 28	1.99	0.16	10 1	2 0.57	332	1	0.06	15	0.03	2	50	0.17	66	55	
26	9650	5	0.2	2.41	15	84	0.4	2	1.01	0.2	32	12	34	55	2.73	0.28	8 1	3 0.90	465	1	0.05	23	0.04	5	65	0.16	94	57	
27	9700	10	0.2	1.95	11	85	0.4	2	0.66	0.2	34	11	29	9 47	2.11	0.30	11 1	1 0.71	447	1	0.05	22	0.04	3	44	0.14	67	47	
28	9750	5	0.2	3.10	4	138	0.5	2	0.66	0,2	36	9	23	3 21	2.25	0.45	11 1	7 0.63	391		0.09	13	0.07	5	57	0.15	65	74	
29	13100N-9800E	5	0.2	2.62	4	170	0.5	2	0.73	0.2	33	7	11	17	1.86	0.60	91	5 0.52	590	1	0.04	9	0.03	6	57	0.10	50	50	
30	13100N-9850E	5	0.2	2.99	4	110	0.4	2	0.74	0.2	34	11	30) 19	2.50	0.35	11 1	5 0.71	404	1	0.05	16	0.05	6	55	0.16	75	72	é.
31	9900	5	0.2	3.30	2	139	0.6	2	0.85	0.2	39	13	31	18	2.67	0.33	13 1	8 0.64	1089	1	0.06	16	0.10	8	66	0.18	84	94	ŝ
32	9950	5	0.2	2.83	2	116	0.5	2	0.69	0.2	36	10	30) 22	2.40	0.34	11 1	3 0.67	612		0.05	15	0.04	8	54	0.16	73	55	
33	10000	5	0.4	3.04	2	151	0.6	2	0.73	0.2	39	10	24	l 21	2.30	0.43	12 1	8 0.70	865	1	0.07	15	0.10	6	53	0.16	67	78	
34	13100N-10050E	5	0.4	3.21	2	163	0.5	2	0.62	0.2	40	9	30) 14	2.21	0.46	13 1	4 0.58	853	1	0.05	13	0.06	5	47	0.15	62	86	
35	13100N-10100E	5	0.4	2.55	2	135	0.5	2	0.68	0.2	37	12	19	29	2.56	0.42	11 1	4 1.02	752	1	0.05	17	0.07	8	52	0.18	92	79	
36	10150	5	0.2	2.48	2	104	0.5	2	0.54	0.2	34	12	24	l 31	2.44	0.36	11 1	4 0.92	624	1	0.04	16	0.04	7	43	0.14	82	61	
37	10200	5	0.2	3.15	2	166	0.5	2	0.61	0.2	35	12	24	1 20	2.47	0.46	10 1	5 0.75	989	1	0.06	17	0.06	8	47	0.14	76	77	
38	10250	5	0.2	3.25	15	129	0.6	4	1.38	0.3	44	18	18	383	3.79	0.28	12 1	5 1.25	899	1	0.05	17	0.06	9	78	0.21	127	84	
39	13100N-10300E	5	0.4	3.46	6	178	0.5	4	1.20	0.3	39	16	20) 185	3.49	0.23	10 1	7 0.84	1138	1	0.06	18	0.10	9	56	0.19	141	79	
40	13100N-10350E	5	0.6	3.54	8	145	0.7	2	1.03	0.2	42	13	23	8 83	3.22	0.34	12 1	6 0.89	967	1	0.05	17	0.11	11	75	0.19	94	68	
41	10400	5	0.2	2.35	6	77	0.5	2	0.77	0,2	39	9	25	5 24	2.38	0.19	13 1	4 0.49	279	1	0.05	13	0.02	5	64	0.20	82	37	
42	10450	5	0.2	2.85	10	-000000000000	0.5	2	0.86	0.2	37	10	44	1 27	2.88	0.25	000000	6 0.60	428	1	0.06	14	0.04	6	76	0.24	100	57	
43	10500	5	0.2	2.47	4	89	0.4	2	0.85	0.2	36	9	27	27	2.52	0.24	11	2 0.56	367	1	0.05	13	0.05	5	66	0.21	84	48	
44	13100N-10550E	5	0.2	2.99	10	10000000000	0.4	2	0.90	0.2	38	9	32	2 32	2.90	0.2 9	11 1	4 0.63	324	2	0.06	14	0.04	8		0.23	97	53	
45	13100N-10600E	5	0.4	4.14	15	131	1.2	2	0.74	0.2	45	16	22	2 66	3.33	0.20	16 1	9 0.58	956		0.06	21	0.09	12	50	0.20	115	69	
46	10650			2.68	5	80		2	0.95	0.2	42	10	23			0.19		5 0.58	435	00000000	0.06	14	0.04	11		0.24		2000000	
47	10700	5		3.39	3		0.6	2	1.00	0.2	43	14	23	33333333333333		0.21		3 0.78	636		0.07		0.05	11		0.26		000000000000000000000000000000000000000	é.
48	10750	5	0.4	3.58	9	118		2	1.14	0.2	43	15	24			0.20	2002-2002 2002-2002	0 0.79	706	100000000	0.06		0.06	10		0.24			
	13100N-10800E	5		2.40	9	COOM 2000	0.4	2	1.20	0.2		7	23	000000000000000000000000000000000000000		0.20	000000	5 0.44	285		0.06		0.06	9	82	0.24	79	38	
	13100N-10850E			2.85	7	111100.0000	0.5	2	1.16	0.0000000000		11	33	000000000000000000000000000000000000000	2.74	0.22	200000	7 0.68	397	2000000000	0.07	20	0.06	7		0.26			

. •

T.T.	SAMPLE	Au	Ag	AI	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	ĸ	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	V	Zn	90
No.		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	5	%	ppm	ppm	%	ppm	ppm	96	ppm	%	ppm	ррт	%	ppm	P'	9
52	13100N-16. 2	6	0.2	2.57	2	79	0.4	2	1.11	0.2	41	10	28	48	58	0.23	13	15	0.61	371	1	0.06	19	0.09	3	76	0.24	79	ā.	
53	10950	5	0.2	3.01	2	113	0.5	2	1.01	0.2	41	13	27	42	2.78	0.26	13	15	0.68	785	1	0.06	19	0.10	2	74	0.24	85	75	
54	11000	5	0.2	2.94	3	95	0.5	2	0.81	0.2	39	11	30	31	2.42	0.23	13	14	0.67	373	1	0.06	21	0.08	2	63	0.22	73	56	÷
55	13100N-12000E	5	0.2	2.41	3	81	0.5	2	0.82	0.2	48	9	27	34	2.80	0.21	15	10	0.54	358	1	0.05	16	0.07	2	59	0.23	85	62	
56	13100N-12050E	5	0.2	2.58	4	188	0.5	2	1.01	0.2	43	9	24	24	3.12	0.26	14	13	0.54	784	1	0.06	14	0.10	2	80	0.25	89	115	į
57	12100	5	0.2	2.36	5	100	0.5	2	0.82	0.2	41	8	22	34	2.64	0.19	14	10	0.56	413	1	0.05	16	0.07	2	60	0.22	77	59	į.
58	12150	5	0.2	2.77	4	94	0.4	2	0.98	0.2	49	10	39	25	3.44	0.23	16	15	0.66	453	1	0.07	20	0.09	4	70	0.30	107	81	i.
59	12200	5	0.4	2.65	6	85	0.4	3	0.99	0.2	36	11	27	31	2.73	0.23	10	16	0.70	458	1	0.07	21	0.08	3	63	0.23	89	83	į.
60	13100N-12250E	5	0.2	2.55	- 8	95	0.4	2	1.04	0.2	43	12	31	30	2.57	0.24	13	14	0.66	561	1	0.07	21	0.0 9	5	69	0.24	87	96	
61	13100N-12300E	5	0.2	2.51	2	76	0.6	2	1.12	0.2	42	12	38	39	2.80	0.17	14	11	0.70	492	1	0.06	24	0.08	7	72	0.23	91	64	ļ
62	12350	5	0.2	3.39	2	139	0.5	2	1.19	0.2	46	14	38	46	3.32	0.27	14	16	0.86	853	1	0.08	24	0.07	5	76	0.27	110	79	
63	12400	5	0.2	2.99	2	103	0.4	2	1.00	0.2	37	11	27	31	3.12	0.27	10	16	0.81	554	1	0.07	19	0.07	6	63	0.26	102	71	
64	12450	5	0.2	2.51	2	130	0.4	2	0. 9 7	0.2	42	10	28	26	2.71	0.24	14	16	0.59	919	1	0.07	14	0.08	5	71	0.26	92	73	
65	13100N-12500E	5	0.2	2.85	2	90	0.5	2	1.17	0.2	54	12	39	39	3.27	0.24	18	15	0.78	435	1	0.07	23	0.11	6	76	0.30	104	64	
66	13100N-12550E	5	0.2	2.94	2	115	0.4	2	1.37	0.2	41	14	18	23	2.79	0.20	12	18	0.83	933	1	0.06	14	0.04	7	85	0.26	100	86	į.
67	12600	5	0.2	2.15	2	77	0.3	2	0.88	0.2	37	7	24	17	2.44	0.19	11	12	0.56	302	1	0.06	13	0.07	7	57	0.23	79	59	
68	12650	5	0.4	2.93	2	76	0.4	2	1.43	0.2	42	10	30	19	2.64	0.17	11	15	0.88	470	1	0.08	21	0.03	6	75	0.25	76	80	ł
69	12700	5	0.4	2.76	3	82	0.4	2	1.20	0.2	44	12	46	21	3.07	0.22	13	18	0.88	461	1	0.12	26	0.10	10	67	0.30	104	93	
70	13100N-12750E	5	0.4	2.28	2	76	0.3	2	1.02	0.2	46	8	39	15	2.33	0.17	12	11	0.56	298	1	0.08	18	0.06	7	64	0.26	89	56	
71	13100N-12800E	5	0.2	3.05	2	163	0.6	2	1.02	0.2	43	11	35	22	2.84	0.16	15	23	0.65	325	1	0.06	21	0.03	8	68	0.24	85	56	
72	12850	5	0.2	3.20	3	96	0,6	2	0.82	0.2	41	11	31	29	3.03	0.22	14	15	0.66	329	1	0.06	19	0.08	7	63	0.25	85	77	ŝ
73	12900	35	0.2	4.05	3	103	0.6	2	0.88	0.2	43	11	32	32	3.47	0.24	15	17	0.68	345	•	0.07	20	0.08	8	64	0.27	98	77	
74	12950	10	0.2	2.57	2	72	0.3	2	0.93	0.2	39	6	19	13	2.02	0.19	13	9	0.46	278	1	0.07	10	0.03	6	70	0.25	72	44	
75	13100N-13100E	5	0.2	2.53	4	70	0.3	2	1.02	0.2	37	6	19	16	1.82	0.15	11	10	0.40	224	1	0.05	10	0.03	5	76	0.23	67	52	
76	13100N-13150E	5	0.2	2.90	3	75	0.4	2	1.04	0.2	40	8	19	17	2.48	0.17	12	19	0.53	292	1	0.06	10	0.03	7	76	0.24	75	71	
77	13200	5	0.2	2.79	7	99	0.4	2	1.02	0.2	38	8	15	20	2.54	0.23	11	12	0.58	305	1	0.05	9	0.03	9	71	0.22	76	53	
78	13100N-13300E	5	0.2	2.21	3	60	0.3	2	1.12	0.2	33	6	18	12	1.87	0.15	8	11	0.45	281	1	0.07	10	0.03	5	71	0.21	77	75	

/

-

NORANDA VANCOUVEF LABORATORY

Geochemical Analysis

Project Name & No.:	NEWMAC - 123	Geol.: G.G.	
Material:	346 SOILS	Sheet: 1 of 9	
Remarks:	Sample screened @ -35 M	AESH (.05 mm)	

Date rec'd: AUGUST 13 Date compl: AUGUST 30

AUGUST 13 <u>LAB CODE:</u> 9008-042 AUGUST 30

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

ICP ~ 0.2 g sample digested with 3 ml HCiO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 11 ml with water. Leeman PS3000 ICP determined elemental contents. N.B. The major oxide elements and Ba, Be, Ce, Ga, La, Li are rarely dissolved completely from geological materials with acid dissolution methods.

T.T.		Au		Ag	AL	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fø	к	La	Li	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sr	Ti	۷	Zn
No.	No.	ppb		pm	%	ppm			<u> </u>	%	ppm			سي المكت	ppm	%	%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm				
2	10700N-9650E	10		0.2	4.16	15	114	0.6	2	0.49	0.2	36	9	33	32	3.46	0.34	15		0.71	463	1	0.07	15	0.08	8	51	0.24		114
3	9700	A 153		0.2	4.20	17	124	0.6	2	0.53	0.2	38	13	50	51	4.11		15	18	0.97	449	1	0.06	29	0.08	11	45	0.25		112
4	9750	5		0.2	5.18	22	174	0.6	2	0.50	0.2	36	16	35	45	4.23		14		1.12	612		0.06	25	0.06	14	42	0.25	116	163
5	9800	5		0.2	3.42	3	124	0.5	2	0.75	0.2	40	10	31	30	2.99	0.32	14	20202020	0.63	785		0.09	14	0.07	13	72		108	126
6	10700N-9850E	5	· (0.2	3.87	19	114	0.5	2	0.94	0.2	41	13	28	47	3.21	0.29	15	23	0.85	605		0.09	20	0.07	11	75	0.30	116	111
7	107001 00005	50		• •	5.01	100	100		3	A 00		40	05		1000	E 70	0.40			1 10			0.05	40	A 1A		40		1 47	
6	10700N-9900E 9950	50 30		0.4 1.0	5.91 4.40	128 30	166 101	0.8 0.5	3 2	0.90 0.77	0.8 0.2	40 36	35 11	34 60	1398 397	5.79 4.34	0.46	13 12	10.000000	1.40	696 353	-2020-026	0.05	46 43	0.10	16 9	45 59	0.24 0.29	147 120	87
9 9	10000	15		0.6	4.40	30	115	0.5	2	0.74	0.2	40	10	42	203	4.34 3.31		14	0077500	0.86	353	4		43 24	0.08	9	59 61	0.29	120	88
10	10250	25	8	0.0	3.80	2	139	0.5	2	0.52	0.2	38	11	42	203	3.59	0.39	14		1.14	510		0.06	24	0.07	9	46	0.28	88	105
11	10700N-10300E	4 5 5		0.2	3.95		114		3	0.56	0.2	35	11	38	1.20177-1244	3.93		14		0.94	472	1		22	0.05	10	40	0.21	87	103
	1070014-10300L	Š	``	0.4	5.85		1.17	0.7	5	0.50		55	• •	30		3.83	0.35	14		0.84	472		0.00	~~	0.00	10	40	0.21	0/	102
12	10700N-10350E	5	6	0.2	3.83	2	136	0.8	2	0.63	0.2	39	11	35	32	2.89	0.41	16	17	0.89	447	1	0.08	18	0.05	12	61	0.22	86	83
13	10400		s	0.4	4.47	2	144	0.7	2	0.47	0.2	33	17	36		3.86	0.47	13		1.20	847	0.100000	0.06	20	0.08	12	43	0.19	101	100
14	10450	10		0.2	4.60	2	151	0.5	2	0.65	0.2	31	14	36	68	4.40	0.53	10		1.58	673		0.06	28	0.08	11	49			112
15	10500	5			4.35	2	147	0.5	2	0.58	0.2	32	11	39	43	3.98	0.48	12	18	1.22	514		0.06	21	0.12	8	50	0.20		111
16	10700N-10550E	5	6	0.4	4.26	2	132	0.5	2	0. 69	0.2	38	11	38	34	3.91	0.38	14	22	0.84	445	1	0.07	19	0.08	9	61			118
17	10700N-10600E	5	(0.4	4.53	5	143	0.5	2	0.74	0.2	33	14	40	54	3.76	0.43	11	17	1.27	933	1	0.05	25	0.09	11	58	0.20	106	122
18	10650	45	C	0.2	4.45	2	109	0.5	2	0.67	0.2	34	9	30	24	3.77	0.40	12	18	0.85	509	1	0.05	17	0.09	11	55	0.22	98	88
19	10700	5	0	0.2	3.61	2	86	0.4	2	0.70	0.2	32	7	26	18	3.16	0.31	11	15	0.52	358	1	0.05	11	0.07	10	55	0.21	86	68
20	10750	5	C	0.2	4.26	2	109	0.5	2	0.78	0.2	41	10	35	26	3.81	0.34	15	19	0.74	406	1	0.06	18	0.11	12	64	0.25	98	94
21	10700N-10800E	10	C	0.2	4.33	2	150	0.9	2	0.80	0.2	42	15	33	49	3.68	0.37	17	17	0.93	517	1	0.06	25	0.07	12	65	0.24	99	100
22	10700N-10850E	5	. 0	0.2	4.48	3	119	0.8	2	0.7 6	0.2	40	11	34	39	3.62	0.31	16	19	0.74	438		0.06	19	0.11	12	64	0.25	99	92
23	10900	5	୍	0.4	4.34	14	177	0.7	2	1.14	0.2	40	12	33	35	3.47	0.47	13	17	0.85	402		0.06	22	0.08	11	77	0.23	101	87
24	10950	5		8.0	4.86	13	255	1.2	3	1.37	1.0	53	16	32	131	3.92		47	00000000	0.86	1739	1	0.07	23	0.20	13	67	0.21	126	118
25	11000	- 5).4	4.04	6	127	0.6	3	1.05	0,4	42	13	32	34	4.11	0.34	15	20	0.86	470	1	0.07	19	0.08	9	82	0.27	130	140
26	10700N-11050E	5	ୁ ୯).2	4.00	3	123	0.6	2	0.97	0.2	42	12	25	47	3.36	0.47	13	13	1.01	401	1	0.05	20	0.07	9	67	0.20	94	71
																				_										
27	10700N-11100E	5).4	3.47	10	96	0.6	4	1.32	0.2	43	16	35		4.10		14		0.97	588			24	0.09	9	95	0.31	137	76
28	111/50	5	ý 1	0.6	3.69	7	140	0.7	3	1.51	0.2	49	13	34	2000000000	3.32		18		1.01	616	3233333	0.06	25	0.09	8	105	0.29	115	58
29	11200	5	<u> </u>		3.76	7	119	0.5	4	1.47	0.2	45	15	36		3.68	0.30	14		1.03	486		0.07	26	0.07	10	107		119	104
30	11250	5	8 T		3.23	9	147	0.5	3	1.36	0.2	49	12	38		2.84	0.26	16		0,94	459	1	0.06	26	0.04		101	0.28	91	58
31	10700N-11300E	5	្).2	3.83	6	130	0.8	2	1.27	0.2	40	15	40	35	3.33	0.30	16	19	0.87	479	1	0.07	28	0.08	9	106	0.30	107	83
~~	107001 110505				4.05				•	4.00		40	40			o o=				• -										
32	10700N-11350E	25			4.05	10	124	0.8	2	1.09	0.2	40	12	38	10.000049400	3.37		15		0.77	527	1000000	0.08	22	0.10	13	95	0.31		95
33	11400	5	9 7).2	4.01	9	98	0.7	2	1.26	0.2	43	14	43	1	3.54	0.23	16		0.85	497	1		28	0.15	11	87	0.31	109	82
34 35	11450	5	817		4.14		146	0.8	3 3	1.50	0.2	53 50	19	53 50		3.89	0.23	19		1.17	479	1		50	0.07	9	94	0.34	127	69
	11500 10700N-11750E	þ	0		3.70 1.68		118 170	0.8 0.4	3	1.82 2.10	0.3	50 32	25 18	58 27		3.95 2.00	0.28	19 9		1.18 0.43	1120 1483	33233333	0.09	47	0.20	15 9	99 90	0.35 0.18	117	110
30	10700N-11750E		<u> </u>	7.0	1.08	0	170	0.4	<u></u>	2.10	U.Z	32	10	21	30	2.00	0.30	8	0	0.43	1483	<u></u>	0.05	11	0.29		80	0.18	62	60

T.T	SAMPLE	Au	F	g	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	к	La	Li Mg	Mn	Мо	Na	Ni	P	Pb	Sr	TI	V	Zn	9008-042
No.		ppt	o pr	, m	9⁄6	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	pprr	<u>ن</u>	96	ppm	ppm %	ppm	ppm	%	ppm	%	ppm	ppm	96	ppm	PP'	2 of 9
37	10700N-11	5	0	.2	4.96	17	120	0.9	5	1.36	0.5	50	25	29	185	65	0.27	15	19 1.48	938	1	0.08	33	0.13	18	79	0.34	163	99	
38	11850	5	i 0	.2	2.85	3	106	0.6	2	1.63	0.2	62	14	35	47	3.90	0.23	22	12 1.01	666		0.08	21	0.08	10	91	0.40	123	75	
39	10700N-11900E	* 60	0	.8	4.19	14	96	0.7	7	2.40	0.9	49	20	30	537	4.62	0.31	15	14 1.45	1172		0.08	29	0.14	85	112		149	161	
40	10900N-8700E	6	5 0	.2	4.46	7	92	0.5	5	0. 96	0.3	35	29	237	60	4.33	0.20	12	15 2.54	426	1	0.06	140	0.08	12	48	0.27	118	91	
41	10900N-8750E	5	5 0	.2	3.84	2	77	0.7	2	0.95	0.2	37	27	301	54	3.92	0.20	15	13 2.15	385	1	0.06	124	0.09	4	50	0.28	113	75	
42	10900N-8800E	5	0	.2 :	3.94	2	57	0.7	4	1.47	0.2	34	34	383		4.25	0.13	12	9 3.01	495		0.05	165	0.07	2	39			70	
43	8850	5	S 0	.2 :	3.45	2	106	0.5	2	1.14	0.2	33	18	231	44	3.94	0.23	12	13 1.59	562	1	0.08	75	0.09	4	53		133	69	
44	8900	5	5 O	.2 :	3.80	2	98	0.5	2	1.20	0.2	33		163		3.48	0.24	11	15 1.44		1		69	0.06	3			114	88	
45	8950	5	5 0	.2	4.04	7	164	0.5	2	0.65	0.2	28		136	49	4.08	0.51	10	16 1.48		1		49	0.08	5	39		119	81	
46	10900N-9000E	5	; O	.2	4.55	2	71	0.5	2	1.37	0.2	35	37	220	92	4.68	0.19	11	17 3.07	730		0.06	145	0.07	2	36	0.22	124	78	
47	10900N-9050E		្រុ		3.48		100	0.4	2	1.11		35	17			3.80	0.26	12	19 1.31		1		58	0.06	3	50	0.29		70	
48	9100		5 O		3.45		100	0.4	2	1.22	0.2	37		109		3.21	0.25	13	17 1.10			0.07	43	0.06	2		0.20	106	74	
49	9150				3.10		101	0.4	2	0.83	0.2	43	9	82		3.06	0.26	17	18 0.75		1	0.07	23	0.07	3		0.26	107	81	
51	9200				3.42		119	0.6	2	0.62	0.2	43	9	66		3.13	0.31	20	19 0.67			0.07	22	0.08	8		0.27	103	72	
52	10900N-9250E	5	်	.2 :	3.82	19	151	0.8	2	0.62	0.2	47	11	45	. 28	3.70	0.42	21	21 0.65	521	3	0.08	19	0.08	12	62	0.27	94	179	
									•														47	A AA					170	
53	10900N-9300E		0		4.00		139	0.6	2	0.56	0.2	40	11	27	0.000.000	3.52		17	17 0.70		1000000	0.07	17	0.08	9		0.24	87	176	
54	9350	1966	0	-	3.41		118	0.5	2	0.51	0.2	36	7	39	ta ka	3.23	0.35	15	17 0.56			0.07	12	0.10	6	54 52	0.25	91 98	95 136	
55	9400		0		3.74		114	0.5	2	0.55	0.2	40	9	39		3.87	0.33	16	19 0.63 17 0.52		10000000	0.07	19	0.12	9 8		0.28 0.26	95	111	
56	9450		0	.2 :	3.78		111	0.5 0.4	2 2	0.52 0.52	0.2	38 37	7 7	31 36		3.24 3.33	0.34	15 14	17 0.52			0.07	11 13	0.10 0.09	10		0.20	93	333336	
57	10900N-9500E	2	v		3.00	•	116	0.4	2	0.52	V.2	37	'	30	25	3.33	0.35	14	14 0.58	440		0.07	10	0.05		01	V.24	83		
58	10900N-9550E	5	0	· ·	3.60	22	128	0.4	2	0.48	0.2	33	7	57	52	3.40	0.43	12	13 0.64	293		0.07	14	0.09	9	39	0.21	102	81	
59	9600		o		3.86		118	0.5	2	0.59	0.2	40	10	46		3.33	0.39	15	17 0.69		100000000	0.06	18	0.11	10		0.24	95	142	
60	9650		0		3.45		123	0.4	2	0.59	0.2	44	8	38		3.11	0.33	18	16 0.55		866668	0.07	12	0.07	13	59	0.26	101	105	
61	9700				5.10		167	0.8	2	0.44	0.2	38	15	33		4.03	0.48	16	20 1.00		1000000	0.06	22	0.07	12		0.24	107	172	
62	10900N-9750E		0		3.89		129	0.7	3	0.60	0.2	41	14	32	29	3.66	0.37	17	20 0.67	1064	1	0.07	16	0.08	14	55	0.25	104	166	
63	10900N-9800E	5	0	.2 4	4.28	14	134	0.6	2	0.56	0.2	40	12	36	35	3.78	0.41	16	20 0.84	437	1	0.06	19	0.07	11	48	0.26	106	137	:
64	9850	5	0	.2 4	4.15	24	109	0.7	3	0.68	0.2	39	13	52	139	4.34	0.30	15	20 0.88	352	1	0.07	35	0.11	10	53	0.27	112	100	:
65	9900	5	0	.2 :	3.52	17	121	0.5	3	0.83	0.2	41	11	47	117	3.70	0.33	15	14 0.68	363	1	0.07	24	0.07	11	58	0.28	121	76	
66	9950	5	0	.4 4	4.00	18	96	0.5	5	0.70	0.3	40	13	94	85	4.36	0.29	14	19 0.92	381	1	0.07	36	0.09	13	51	0.30	126	84	
67	10900N-10000E	5	0	.2 4	4.54	77	67	0.7	6	1.08	1.4	38	28	64	220	7.27	0.19	11	16 0.66	519	2	0.05	41	0.20	14	51	0.23	134	87	
68	10900N-10050E	30	0	.2 :	3.88	10	97	0.5	5	1.36	0.5	47	12	46	38	3.90	0.31	15	18 0.72	404	1	0.07	26	0.07	12	71	0.29	104	104	
69	10100	35	0	.2 :	3.92	141	107	0.5	6	0.79	0.2	41	12	85	212	4.10	0.31	13	15 0.80	316	5	0.09	43	0.07	14	61	0.26	105	101	
70	10150	5	0	.2 :	3.52	7	93	0.4	4	0.77	0.2	38	9	40	55	3.70	0.31	12	16 0.69	371	1	0.07	19	0.07	12	63	0.26	121	76	
71	10200	40			3.72	7	97	0.6	2	0.49	0.2	31	8	42		3.79	0.28	13	17 0.75		1	0.06	16	0.08	10	50	0.22	103	91	
72	10900N-10250E	45	0	.2 :	3.98	11	134	0.6	2	0.51	0.2	33	10	40	42	4.09	0.41	14	17 1.00	488	1	0.06	22	0.06	10	44	0.22	99	112	
				_					-			••											•••			~				
	10900N-1030QE				4.09		118		2	0.61	0.2	39	10	40		4.12		16	20 0.74		1000440	0.08		0.09			0.28			
74	10350			.2 4			125		2	0.59	0.2	38	9	35		4.30		15	21 0.83		50000000	0.07		0.12	10				98	
75	10400				3.74		156		2	0.90	0.3	39	11	41			0.41		19 0.77		0.00000000	0.06		0.10	11		0.27		140	
76	10450				0.95	2		0.2	2		0.2	24	3	24		0.65		5	5 0.13		100000000	0.04		0.11	4		0.06	27	50	
17	10900N-10500E	5	0	.2 4	4.34	18	129	0.5	3	0.72	U.Z	37	13	67	57	4.40	0.35	13	22 0.96	4/9	1	0.07	30	0.09	10	96	0.29	138	134	
70	100001 105505					F	147	0.0	•	0 70	~~	44		67	100	4 00	0.04	44	00 1 AF	E 40		0.07	20	0.10	4.0	60	0 00	101	0E	
	10900N-10550E	5			4.40		147			0.79				67 45			0.34		200000000			0.07		0.10 0.09			0.28 0.23		95	
79 00	10600	5	88		4.21 3.83		121 115	0.5	4	0.73 0.64	0.2 0.2	40	12 10	45 40		3.91	0.38	14 14	16 1.02 17 0.75			0.06		0.10	16 15		0.23	98 96	100 82	
80 81	10650 - 10900N-10700E	000000	90 - E		3.83 3.63	5		0.5	2 2		1.		10	49 31			0.32		15 0.78			0.05		0.06	200000000		0.24	98	75	
9 1	10000 - 10/00E		<u> </u>		0.00	5	90	0.7	۲	0.00	V.4	- 37	10	. 91		0.41	0.30	10				0.00	10	0.00	802000000	~	v.6.4.		00000000	

್ರಾಂಗ್ ಮಾರ್ಟ್ ಮಾಡಿದ್ದಾರೆ.

No. 82			Ag		As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	ĸ	La	LI M	g Mn	Mo i	Na I	Ni	Ρ	Pb	Sr	Ti	V	Zn	9008-042
82		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppr	<u>ن</u>	%	ppm	ppm 9	o ppm	ppm	% pj	m	%	ppm	ppm	%	ppm	PF 1	3 of 9
	10900N-10. E	5	0.2	3.79	2	132	0.8	2	0.82	0.2	43	12	33	36		0.32	18	18 0.8	1 589	2 0	.07	18	0.05	9	68	0.25	88	103	
83	10900N-10800E	5	0.2	4.30	5	126	0.8	2	1.03	0.2	44	14	35	91	4.08	0.34	16	19 1.(0 569	1 0	.06	25	0.12	10	79	0.26	111	103	
84	10900		0.2			136	0.7	2	1.35	0.2	38	25	28	10.0000000	4.11		12	333333333	9 1793	1 0			0.20	9	94	0.22		130	
85	10950	1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -	0.2			146	0.7	2	1.82	0.2	42	18	25		4.06		14	17 1.0		1 0			0.08	86620		0.27		98	
86	11000		0.2			126	0.6	2	1.51	0.2	40	17	27		3.76		14	15 1.0		1 0		18	0.10	1000000			118	92	
87	10900N-11050E		0.4			107	0.5	2	1.66	0.2	43	13	27	41	3.37	0.21	15	15 1.(1 0	.06	16	0.05	5	120	0.27	121	69	
88	10900N-11100E	5	0.2	3.42	30	118	0.6	3	1.72	0.2	45	11	34	41	3.23	0.26	16	14 1.0	7 452	1 0	.06	21	0.07	4	109	0.28	119	64	
89	11150		0.4		17	113	1.1	2	1.47	0.2	52	18	43	83	3.54	0.27	23	16 0.8	3 1069	1 0	.06	25	0.08	8	100	0.29	130	72	
90	11200	60	0.2	2.81	6	107	0.4	2	1.36	0.2	43	8	39	29	3.05	0.24	14	13 0.0	2 369	1 0	.06	16	0.12	4	98	0.29	104	70	
91	11250	5	0.2	3.18	9	96	0.7	2	1.37	0.2	46	12	42	37	3.74	0.22	18	18 0.8	3 445	1 0	.06	28	0.11	6	94	0.31	116	68	
92	10900N-11300E	5	0.2	2.93	20	80	0.6	2	1.56	0.2	42	12	41	36	3.38	0.20	16	17 0.1	4 439	1 0	.06 2	23	0.14	7	92	0.30	112	73	
															i i														
93	10900N-11350E	5	0.2	4.25	24	168	0.7	2	1.40	0.2	47	18	45	83	3.52	0.29	18	16 1.0	2 876	1 0	.06	41	0.10	8	100	0.31	125	61	
94	11400	5	0.2	3.31	11	96	0.6	2	1.58	0.2	45	14	35	164	3.51	0.23	15	11 1.0	4 460	1 0	.06 ;	32	0.08	6	109	0.29	114	54	
95	11450	5	0.2	3.31	4	130	0.6	2	1.54	0.2	45	18	44	. 44	3.67	0.25	16	18 1.0	6 692	1 0	.08 3	36	0.11	6	88	0.32	111	93	
96	11500	5	0.2	3.30	6	122	0.7	2	1.55	0.2	72	18	49	55	3.79	0.28	26	14 0.9	0 732	1 0	.07 :	31	0.13	6	94	0.35	115	73	
97	10900N-11550E	5	0.2	3.05	5	90	0.5	2	1.57	0.2	51	14	37	51	3.64	0.21	17	12 0.8	9 457	1 0	.07 2	27	0.07	5	96	0.34	113	64	
98	10900N-11600E	5	0.2	2.93	3	89	0.6	2	1.63	0.2	47	13	48	50	3.14	0.19	16	10 0.1	8 498	1 0	.06 2	26	0.21	5	90	0.29	96	58	
99	11650	1.000	0.2		4	109	0.7	3	2.29	0.2	53	21	55	65	3.92	0.26	17	14 1.2	2 986	1 0	.08	45	0.14	7	124	0.35	120	70	
	10900N-11700E			3.49	2	0.88866	0.8	4	2.39	0.2	53	22	47	51	3.85		18	12 1.0	4 899	1 0	.07	52	0.09	6	143	0.40	124	58	
102	11100N-8900E *	1204980	0.2		6	20	0.3	2	1.75	0.2	22	3	23	14	0.64	0.05	4	3 0.3	0 84	1 0	.03	8	0.08	2	58	0.02	33	43	
103	11100N-8950E			4.53	2	89	0.7	3	0.95	0.2	36	32	261	79	4.43	0.20	14	12 2.0	0 490	1 0	.06 14	42	0.09	4	41	0.26	128	78	
104	11100N-9000E *	5	0.2	4.44	2	96	0.6	2	1.67	0.2	34	20	135	84	3.83	0.24	10	17 1.7	0 780	1 0	.06 8	86	0.13	8	52	0.16	147	75	
105	9050	5	0.2	4.09	2	78	0.5	2	1.33	0.2	33	25	218	54	4.40	0.19	11	15 2.4	3 385	1 0	.06 1	17	0.05	3	39	0.25	133	70	
10 6	9100 *	5	0.2	6.08	2	107	0.7	3	1.17	0.2	38	26	135	96	4.65	0.23	14	24 2.3	1 1272	1 0	.06 12	22	0.07	··· 4	44	0.18	159	79	
107	9150	5	0.2	4.00	2	99	0.5	2	0.68	0.2	34	15	105	38	3.48	0.30	14	17 1.1	2 353	1 0	.06	47	0.13	5	43	0.23	88	112	
108	11100N-9200E	5	0.4	3.87	26	130	0.5	2	0.57	0.2	35	8	35	40	3.58	0.40	14	19 0.9	9 364	1 0	.07	11	0.12	5	50	0.24	82	128	
109	11100N-9250E	5	0.2	3.60	13	113	0.5	2	0.51	0.2	39	7	37	27	3.38	0.33	16	15 0.9	2 308	1 0	.06	11	0.08	7	47	0.24	78	98	1
110	9300	5	0.2	4.07	4	113	0.6	2	0.53	0.2	37	10	35	28	3.33	0.36	15	17 0.0	3 377	1 0	.06	15	0.11	7	47	0.23	80	201	
111	9350	5	0.2	3.85	10	122	0.5	2	0.58	0.2	36	8	35	25	3.00	0.36	15	20 0.6	4 441	1 0	.08	13	0.10	10	57	0.24	86	143	
112	9400	5	0.2	3.71	17	103	0.6	2	0.49	0.2	33	8	35	35	3.26	0.30	14	16 0.9	8 346	1 0	.07	14	0.10	9	47	0.23	87	117	
113	11100N-9450E	5	0.2	3.97	8	106	0.7	2	0.50	0.2	33	13	55	43	3.64	0.36	14	16 0.8	8 418	1 0	.06 :	24	0.08	8	40	0.19	106	81	
114	11100N-9500E	5	0.2	4.18	5	145	0.5	2	0.45	0.2	31	8	51	21	3.19	0.47	12	17 0.9	7 445	1 0	.11	12	0.07	11	49	0.18	119	75	
115	9550	5	0.2	3.89	7	129	0.6	2	0.83	0.2	39	11	50	32	3.11	0.30	15	15 0.9	0 429	1 0	.08 2	26	0.04	9	56	0.21	91	96	
116	9650	5	0.4	4.44	25	149	0.7	4	0.50	0.2	41	14	46	55	3.96	0.39	17	18 0.8	8 401	1 0	.07 :	27	0.09	14	45	0.25	100	127	
117	9700	25	0.2	4.91	22	149	0.6	3	0.54	0.2	35	14	72	45	4.17	0.43	14	19 1.0	8 447	1 0	.07 3	31	0.12	12	41	0.23	101	171	
	11100N-9750E			4.21		0000000000			0.60	1000000000			42	31	3.71	0.37	15	20 0.7	8 409	1 0	.07 2	20	0.07	12	49	0.25	96	227	
119	11100N-9800E	15	02	4.74	27	136	0.6	4	0.55	0.2	34	15	49	72	4,22	0.39	13	18 0 9	5 478	1 0	.06 :	33	0.10	12	42	0.23	110	124	
120	9850			4.34		20030300000			0.63	-000000000			53	1000 () () () () () () () () ()	8			18 0.8		00000000	.07			11		0.25		3000000000	
121				4.09					0.69	10000000000			79		9	0.32			9 457	0000000000	.07			9		0.26		200000000	
122	9950	1.111		4.40		124				0.8		33			8	0.44		141202-042020-0-	8 1140	90			0.09	11		0.18			
	11100N-10000E			3.78		2 0300000			0.70	10000000000					-C	0.29		100000000	8 582	200000000	.07			11		0.26			
124	11100N-10450E	5	0.2	3.37	4	107	0.4	2	0.83	0.2	42	10	48	79	3.09	0.28	16	17 0.0	8 409	1 0	.07	20	0.05	10	62	0.26	102	71	
	11100N-10500E																	18 0.5								0.22		100000000000000000000000000000000000000	

bb. pp b pp m 4 pp m pp	<u></u>	SAMPLE	Au	Ag	AI	As	Ва	Be	Bi	Са	Cd	Се	Co	Cr	Cu	Fe	к	La	LI	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	TI	V	Zn	9008-042
127 10000 15 0.2 3.0 0.73 0.2 47 15 0.1 2.2 0.05 17 0.06 17 0.07 16 0.05 17 0.7 0.2 0.7 0.2 47 15 0.1 2.2 0.05 15 0.1 1.6 0.05 15 0.1 1.6 0.05 15 0.1 1.6 0.05 15 0.1 1.6 0.05 1.5 0.1 1.6 0.05 1.6 0.05 1.6 0.05 1.6 0.05 1.6 0.05 1.6 0.05 1.2 0.05 0.2 4.6 1.0			ppb	•	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppr			ppm	ppm	96	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	PP	4 of 9
128 11100N-10700E 6 0.2 3.78 0.8 0.8 0.2 0.70 0.30 15 0.11 12 19 0.06 15 0.11 12 19 0.06 15 0.11 12 19 0.06 15 0.11 12 10 0.05 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 15 0.06 16 0.0 2 0.02 2 4 10 0.25 43 0.01 15 0.01 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 <	26 1	1100N-100-JE	5	0.2	3.39	3	99	0.5	3	1.01	0.2	43	9	37	32	J.26	0.30	16	19	0.64	377	1	0.06	15	0.14	11	74	0.25	99	108	;
1190N-10700E 5 0.2 4.15 2 130 0.6 2 0.76 0.2 44 13 22 24 330 0.8 16 17 0.06 12 0.16 16 65 0.2 3.76 0.2 3.76 0.2 44 10 22 24 3.30 0.38 15 16 0.77 47 10.06 13 0.06 14 0.16 17 0.24 25 75 10 0.06 14 0.16 17 0.24 25 24 13 12 0.04 14 1.16 10 27 26 86 10 12 10 23 24 13 24 3.41 10.25 10 16 13 25 14 12 16 16 16 16 17 16 16 27 16 16 16 17 16 16 17 16 16 16 17 16 16 16 17 16 17 16 16 16 16 17	127	10600	5	0.2	3.9 0	3	140	0.7	3	0.73	0.2	47	15	31	42	3.53	0.33	18	18	1.00	804		0.06	17	0.07	9	57	0.22	90	122	į
100 10750 6 0 3 0 0 2 4 10 25 68 3.6 0.7 10 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 14 0.06 13 0.06 10 <t< td=""><td>128 1</td><td>1100N-10650E *</td><td>5</td><td>0.2</td><td>3.78</td><td>2</td><td>134</td><td>0.6</td><td>2</td><td>0.84</td><td>0.2</td><td>43</td><td>11</td><td>23</td><td>30</td><td>2.97</td><td>0.39</td><td>16</td><td>18</td><td>0.73</td><td>1001</td><td>1</td><td>0.05</td><td>15</td><td>0.11</td><td>12</td><td>59</td><td>0.22</td><td>71</td><td>108</td><td></td></t<>	128 1	1100N-10650E *	5	0.2	3.78	2	134	0.6	2	0.84	0.2	43	11	23	30	2.97	0.39	16	18	0.73	1001	1	0.05	15	0.11	12	59	0.22	71	108	
100 1750 5 0 2 1 0 0 3 0 0 0 0 1 0 <td></td> <td>8</td> <td></td>																8															
11 10800 5 0.2 3.8.3 2 12 0.7.7 2 0.8.3 13 16 0.8.7 0.0.8 10.0.8 11 10.7 10.2 14 0.1.1 10.7 10.2 12 0.8.7 12 0.8.7 13 3.3.6 3.8.3 3.8.3 16 16 0.0.8 17 0.0.8 17 0.2.4 18 133 11100 5 0.2 4.0.6 5 12 0.0.6 1 0.0.6 13 0.1.0 9 77 0.2.6 8 134 11100 5 0.2 4.0 1.1.0 0.2 4.1 1.2.2 62 4.1 0.3.7 17 0.4.7 0.0.8 12 0.0.6 13 0.1.0 13 0.1.0 13 0.0.7 12 0.4 13 10.0 13 0.0.6 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0.7 13 0.0									-		00000000				000000000	£			- 333 3333							- 6949993			80	132	
122 10650 40 0 2 0.33 100 10 10 2 0.34 10.2 0.45 10.2 24 10 10.2 10<						-													- 2323-222	*		10000000				- 3939333			79	97	
133 11100N-10900E 5 0.2 4.2 0.8 0.2 0.4 10.2 0.4 10.3 0.10 2 0.0 13 0.00 0.00 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00							1000000					÷				8						3333333				- 33333233			82	132	1
14 1100N-10956E 5 0.2 4.0 0.2 4.1 14 22 5.2 4.1 0.00 13 0.15 11 0.06 13 0.15 11 0.04 13 0.15 11 0.04 13 0.15 11 0.04 0.07 13 0.05 13 0.05 15 0.09 10 0.02 0.15 0.1 0.05 15 0.09 10 0.02 0.11 0.05 0.05 15 0.09 10 0.02 0.05 0.05 0.05 15 0.09 10 0.02 0.05 0.05 0.05 0.01 0.05 0.05 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 <th< td=""><td>32</td><td>10850</td><td>40</td><td>0.2</td><td>4.53</td><td></td><td></td><td></td><td></td><td></td><td>10000</td><td></td><td></td><td></td><td></td><td></td><td></td><td>19</td><td>1000000</td><td>\$</td><td>1542</td><td>1</td><td>0.06</td><td></td><td></td><td>13</td><td></td><td></td><td>97</td><td>120</td><td></td></th<>	32	10850	40	0.2	4.53						10000							19	1000000	\$	1542	1	0.06			13			97	120	
155 1000 5 0.2 4.0 6 13 26 73 2.6 73 74 74 6.0 755 1 0.05 15 0.02 16 100 2.7 11 137 11100 15 0.4 500 7 138 0.9 3 1.47 0.2 38 17 35 72 1.14 0.33 14 20 1.13 10.07 17 0.08 22 0.11 15 0.2 0.11 12 0.2 0.23 11 0.2 0.2 1.14 0.2 0.2 1.14 0.2 0.2 1.14 0.2 0.2 1.2 1.4 0.2 1.1 1.2 0.2 1.1 2.2 0.2 1.1 0.2 0.2 1.1 0.2 0.2 1.2 1.3 0.2 1.1 0.2 1.1 1.2 0.2 1.2 1.3 0.2 1.3 0.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 <th1.3< th=""> 1.3 1.3 1</th1.3<>	33 1	1100N-10900E	5	0.2	4.24	2	108	0.7	2	0.84	0.2	40	10	23	34	3.41	0.36	16	21	0.72	519	1	0.06	13	0.10	9	77	0.26	89	83	
155 1000 5 0.2 4.0 6 13 26 73 2.6 73 74 74 6.0 755 1 0.05 15 0.02 16 100 2.7 11 137 11100 15 0.4 500 7 138 0.9 3 1.47 0.2 38 17 35 72 1.14 0.33 14 20 1.13 10.07 17 0.08 22 0.11 15 0.2 0.11 12 0.2 0.23 11 0.2 0.2 1.14 0.2 0.2 1.14 0.2 0.2 1.14 0.2 0.2 1.2 1.4 0.2 1.1 1.2 0.2 1.1 2.2 0.2 1.1 0.2 0.2 1.1 0.2 0.2 1.2 1.3 0.2 1.1 0.2 1.1 1.2 0.2 1.2 1.3 0.2 1.3 0.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 <th1.3< th=""> 1.3 1.3 1</th1.3<>	134 1	1100N-10950E	5	0.2	4.60	5	122	0.9	4	1.06	0.2	44	14	22	52	4.13	0.30	16	21	0.92	675	1	0.08	13	0.15	11	94	0.28	107	102	
186 11050 5 0.2 2.4.3 6 3 1.4 0.2 34 10 20 30 2.5 0.41 13 2.6 0.04 11 2.6 0.08 11 0.06 11 0.06 12 0.00 12 0.00 12 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 12 0.00 10 0.00 10 0.00 10 0.00 10 0.00 11 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>- 3839363</td> <td></td> <td></td> <td>118</td> <td>86</td> <td></td>									4																	- 3839363			118	86	
137 11100 15 0.4 500 7 188 0.7 6 1.40 0.2 39 17 36 71 38 100 180 10.07 27 0.11 18 100 28 0.13 0.11 10 0.06 28 0.13 12 82 0.30 12 139 1100 112 0.07 28 0.11 12 12 0.03 14 10 0.06 22 0.11 12 82 0.30 12 10 12 82 0.30 12 10 10 65 0.6 3.07 0.26 16 17 1.40 60 7 3.0 10 12 14 110 10 10 65 0.65 0.66 3.08 0.25 16 3.08 0.25 111 111 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 </td <td></td> <td>000000000</td> <td>3</td> <td></td> <td></td> <td>199999</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 3325-53</td> <td></td> <td></td> <td>101</td> <td>107</td> <td>:</td>															000000000	3			199999	8						- 3325-53			101	107	:
138 11100N-11150E 5 0.2 4.16 6 1.40 0.2 9 17 96 51 0.92 0.22 12 18 1.09 1899 1 0.08 22 0.11 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 12 82 0.30 13 10 10 85 0.33 11 10<			· · · ·						_		0000000	-			0.0000000000000000000000000000000000000	5				÷		10000000							135	101	
139 1100N-11200E 5 0.2 4.1 12 174 0.9 6 1.51 0.2 46 16 38 71 3.76 0.26 16 17 1.14 680 1 0.08 32 0.11 12 92 0.33 11 140 11250 5 0.2 3.74 6 88 0.8 5 1.60 0.2 50 16 55 66 3.00 16 17 1.14 680 1 0.07 38 0.11 10 95 0.33 11 10 0.06 32 0.11 10 0.07 31 0.10 0.2 47 12 48 49 3.25 0.23 15 10 0.07 33 0.16 0.2 37 17 48 49 3.25 0.23 15 10 0.07 33 0.16 10 0.07 33 0.16 10 0.07 33 0.16 10 0.06 31 10 10.06 11 0.06 10 0.07 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td>10000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>116</td><td></td></th<>																				8		10000000								116	
140 11250 5 0.2 3.74 6 8.8 0.8 5 1.60 0.2 60 1.60						-		••••	-																						
141 11300 15 0.2 4.03 7 101 0.9 4 1.74 0.2 49 18 62 53 3.98 0.25 18 19 1.17 825 1 0.09 43 0.19 102 0.38 12 142 11350 5 0.2 4.14 16 188 1.7 0.2 54 17 54 56 3.48 0.27 15 2.0 0.09 42 0.19 10 0.07 31 0.19 10 0.07 31 0.19 10 0.07 31 0.10 0.2 0.01 12 144 11500 5 0.2 3.74 19 2.1 10.2 1.4 1.4 1.66 0.2 3.7 1.6 0.2 3.7 1.4 3.8 0.23 1.5 10.07 32 0.15 10 0.2 0.31 10 1.4 1.4 1.2 1.43 3.8 3.69 0.23 11 1.4 0.2 3.2 1.5 0.2 1.4 1.4 2.	39 1	1100N-11200E	5	0.2	4.41	12	174	0.9	6	1.51	0.2	46	16	38	71	3.76	0.26	16	17	1.14	680	1	0.08	32	0.11	12	92	0.33	118	84	
142 11360 5 0.2 4.14 16 168 1.1 2 1.34 0.2 43 19 52 56 3.48 0.27 15 28 0.89 2210 1 0.06 32 0.12 8 117 0.35 12 143 11100N-11400E 5 0.2 3.72 11 98 0.7 3 1.66 0.2 37 17 48 49 3.52 0.23 10 0.07 31 0.19 10 0.07 31 0.19 10 0.07 31 0.10 10 0.07 31 0.10 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.02 11 10 0.02 11 10 0.02 1.01 0.02 1.01 0.02 1.01 0.02 1.01 0.02 1.01 0.02 1.01 0.02 1.01 0.02 1.01	40	11250	5	0.2	3.74	6	88	0.8	5	1.60	0.2	50	16	55	66	3.60	0.19	18	14	1.05	627	1	0.07	38	0.11	10	85	0.35	121	71	
143 11100N-11400E 5 0.2 3.62 7 90 0.8 2 1.77 0.2 54 17 54 58 3.79 0.23 20 13 1.01 796 1 0.06 32 0.12 8 117 0.35 12 144 11100N-11450E 5 0.2 3.72 11 98 0.7 3 1.66 0.2 377 17 48 49 3.82 0.24 12 16 1.12 1081 1 0.07 33 0.15 10 0.31 10 144 11500 5 0.2 5.74 19 215 1.0 4 1.81 0.2 30 0.53 12 16 1.0 0.73 0.15 10 0.32 0.33 11 144 11100N-11700E 5 0.2 4.21 7 1.44 0.2 61 12 48 3.26 0.34 18 11 0.06 54 1 0.06 10 116 0.32 0.22 1.3	41	11300	15	0.2	4.03	7	101	0.9	4	1.74	0.2	49	18	66	63	3.98	0.25	18	19	1.17	825	1	0.09	43	0.13	10	102	0.38	128	92	
144 11100N-11450E 5 0.2 3.7 1 6 0.7 3 1.66 0.2 37 17 48 49 3.82 0.24 12 16 1.12 108 1 0.07 33 0.16 0 0.03 10 0.05 11 0.07 20 11 20 20 20 20 20 20 20 20 20 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20	42	11350	5	0.2	4.14	16	168	1.1	2	1.34	0.2	43	19	52	55	·3.48	0.27	15	28	0.89	2210	1	0.07	31	0.19	11	82	0.27	131	113	
145 11500 5 0.2 3.09 5 98 0.6 2 1.0 0.2 47 12 34 38 3.52 0.23 15 10 0.87 522 1 0.06 21 0.09 8 100 0.31 10 146 11550 5 0.2 3.41 18 10 0.52 1.7 10.13 10.07 40 0.13 15 102 0.33 11 148 11100N-11650E 5 0.2 3.41 5 0.2 3.9 43 3.87 0.33 11 18 10.06 24 1 0.06 24 1 0.06 24 1 0.06 24 1 0.06 13 125 0.28 11 144 11 0.84 10 10.06 14 10.06 14 10.06 14 10.06 14 10.06 14 10.06 14 10.06 14 10.06 14 10.06 14 10.06 16 10.06 14 10.06 16 <	43 1	1100N-11400E	5	0.2	3.52	7	90	0.8	2	1.77	0.2	54	17	54	58	3.79	0.23	20	13	1.01	796	1	0.06	32	0.12	8	117	0.35	122	65	
145 11500 5 0.2 3.09 5 98 0.6 2 1.50 0.2 47 12 34 38 3.52 0.23 15 10 0.87 522 1 0.06 21 0.09 8 100 0.31 10 146 11550 5 0.2 3.41 9 1.25 10 0.87 522 1 0.06 21 0.09 8 100 0.31 10 147 11600 5 0.2 3.41 5 158 0.7 4 2.19 2 36 20 39 43 3.87 0.33 11 18 10.06 25 0.28 13 97 0.32 11 148 11100N-11700E 5 0.2 4.71 2 1.44 0.2 51 11 24 33 3.03 0.39 19 11 0.06 17 0.06 17 0.06 17 0.06 17 0.06 10 0.16 16 0.06 10 0.16																				į.											
146 11550 5 0.2 5.7 1 0 1 0.07 40 0.13 1 1 1 1 1 1 1 0.07 40 0.13 1 1 1 1 0.07 40 0.13 1 1 1 1 0.07 40 0.13 1 1 2 2 3 3 3 3 1 1 1 1 1 1 0.08 1 1 0.08 1 1 0.08 1 1 0.08 1 1 0.08 1 1 0.08 1 0.08 1 0	44 1	1100N-11450E	5	0.2	3.72	11	98	0.7	3	1.66	0.2	37	17	48	49	3.82	0.24	12	16	1.12	1081	1	0.07	33	0.15	10	102	0.31	120	84	
147 11600 5 0.2 3.75 5 158 0.7 4 2.19 0.2 41 23 43 53 3.96 0.28 12 15 1.12 1601 1 0.07 32 0.15 10 132 0.33 11 144 11100N-11650E 5 0.2 4.1 7 12 6 7 12 2 38 20 39 43 3.87 0.33 11 18 1.0 10.06 18 0.08 13 125 0.28 1 149 11100N-11700E 5 0.2 4.21 7 12 1.44 0.2 24 7 12 43 3.03 0.39 19 11 0.05 18 0.08 13 125 0.28 12 115 1150 1.4 0.2 40 7 24 31 2.99 0.23 14 15 0.5 2 1.8 0.30 16 17 0.67 10 0.11 6 0.2 3.6 118	45	11500	5	0.2	3.09	5	98	0.6	2	1.50	0.2	47	12	34	38	3.52	0.23	15	10	0.87	522	1	0.06	21	0.09	8	100	0.31	109	59	
148 11100N-11650E 5 0.2 3.41 9 165 0.6 3 1.42 0.2 36 20 39 43 3.87 0.33 11 18 1.01 2085 1 0.06 25 0.28 13 97 0.32 1 149 11100N-11700E 5 0.2 3.71 3 142 0.7 2 1.44 0.2 61 11 24 33 3.03 0.39 19 11 0.75 18 0.06 17 0.09 9 116 0.29 9 153 11800 5 0.4 2.77 10 128 0.6 2 1.00 2 40 7 22 35 2.75 0.32 14 15 0.52 374 1 0.06 10 0.11 61 18 0.30 9 105 1100N-11900E 5 0.2 3.50 3 116 0.6 2 1.20 2 40 7 2.2 35 2.55 5.50 1 0.06	46	11550	5	0.2	5.74	19	215	1.0	4	1.61	0.2	50	22	43	77	4.19	0.52	17	20	1.38	917	1	0.07	40	0.13	15			119	92	
149 1100N-11700E 5 0.2 4.21 7 126 0.7 2 1.55 0.2 4.7 12 26 48 3.26 0.34 16 11 0.80 541 1 0.05 18 0.08 18 125 0.28 27 13 142 0.7 2 1.44 0.2 51 11 24 33 3.03 0.39 19 11 0.73 623 12 0.06 17 0.09 9 116 0.29 9 153 11800 5 0.4 2.77 10 128 0.6 2 0.10 0.2 40 7 24 31 2.99 0.23 14 16 0.55 37.4 1 0.06 10 0.11 61 0.30 9 107 0.31 9 10.5 12 0.57 550 1 0.06 10 0.11 61 8 0.30 9 105 0.30 9 105 0.30 9 105 0.30 9 105 0.2<	47	11600				5	158	0.7	4	2.19		41	23	43	53	3.96	0.28	12	15	1.12	1601	1	0.07	32	0.15	10			123	87	
152 11750 5 0.2 3.71 3 142 0.7 2 1.44 0.2 51 11 24 33 0.33 0.39 19 11 0.73 623 1 0.06 17 0.09 9 116 0.29 9 153 11800 5 0.4 2.77 10 128 0.6 2 0.91 0.2 28 6 22 43 2.40 0.31 10 8 0.43 421 1 0.06 17 0.09 9 16 0.27 4 86 0.21 7 155 11100N-11900E 5 0.2 3.50 3 116 0.6 2 1.20 0.2 42 8 23 30 3.21 0.30 16 17 0.66 14 0.08 9 105 0.30 9 156 11100N-11900E 5 0.4 3.3 0.5 2 1.26 0.2 39 3.19 0.32 14 16 0.66 1 0.66 <td< td=""><td>48 1</td><td>1100N-11650E</td><td>5</td><td>0.2</td><td>3.41</td><td>9</td><td>165</td><td>0.6</td><td>3</td><td>1.42</td><td>0.2</td><td>36</td><td>20</td><td>39</td><td>43</td><td>3.87</td><td>0.33</td><td>11</td><td>18</td><td>1.01</td><td>2085</td><td>1</td><td>0.06</td><td>25</td><td>0.28</td><td>13</td><td>97</td><td>0.32</td><td>115</td><td>146</td><td></td></td<>	48 1	1100N-11650E	5	0.2	3.41	9	165	0.6	3	1.42	0.2	36	20	39	43	3.87	0.33	11	18	1.01	2085	1	0.06	25	0.28	13	97	0.32	115	146	
152 11750 5 0.2 3.71 3 142 0.7 2 1.44 0.2 51 11 24 33 0.33 0.39 19 11 0.73 623 1 0.06 17 0.09 9 116 0.29 9 153 11800 5 0.4 2.77 10 128 0.6 2 0.91 0.2 28 6 22 43 2.40 0.31 10 8 0.43 421 1 0.06 17 0.09 9 16 0.27 4 86 0.21 7 155 11100N-11900E 5 0.2 3.50 3 116 0.6 2 1.20 0.2 42 8 23 30 3.21 0.30 16 17 0.66 14 0.08 9 105 0.30 9 156 11100N-11900E 5 0.4 3.3 0.5 2 1.26 0.2 39 3.19 0.32 14 16 0.66 1 0.66 <td< td=""><td>49 1</td><td>1100N-11700E</td><td>5</td><td>0.2</td><td>4.21</td><td>7</td><td>126</td><td>0.7</td><td>2</td><td>1.55</td><td>0.2</td><td>47</td><td>12</td><td>26</td><td>48</td><td>3.26</td><td>0.34</td><td>16</td><td>11</td><td>0.80</td><td>541</td><td>1</td><td>0.05</td><td>18</td><td>0.08</td><td>13</td><td>125</td><td>0.28</td><td>91</td><td>68</td><td></td></td<>	49 1	1100N-11700E	5	0.2	4.21	7	126	0.7	2	1.55	0.2	47	12	26	48	3.26	0.34	16	11	0.80	541	1	0.05	18	0.08	13	125	0.28	91	68	
153 11800 5 0.4 2.77 10 128 0.6 2 0.91 0.2 28 6 22 43 2.34 0.31 10 8 0.43 421 1 0.05 9 0.27 4 86 0.21 7 154 11850 5 0.2 3.50 3 79 0.5 2 1.30 0.2 40 7 24 31 2.99 0.23 14 16 0.52 374 1 0.06 10 0.11 6 118 0.30 9 155 11100N-11900E 5 0.4 3.43 6 103 0.5 2 1.19 0.2 42 8 23 30 3.21 0.30 16 17 0.67 409 1 0.06 14 0.08 9 105 0.30 9 15 12007 15 1.06 12 1.26 0.2 3.9 3.19 0.28 14 16 0.44 1 0.06 17 0.10 5 0.28 <td></td> <td></td> <td>19 Jack</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2002000</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td>200000</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 36363633</td> <td></td> <td></td> <td>90</td> <td>61</td> <td></td>			19 Jack								2002000					8			200000	2						- 36363633			90	61	
154 11850 5 0.2 3.50 3 79 0.5 2 1.30 0.2 40 7 24 31 2.99 0.23 14 16 0.52 374 1 0.06 10 0.11 6 118 0.30 9 155 11100N-11900E 5 0.2 3.50 3 116 0.6 2 1.20 0.2 40 7 22 35 2.75 0.32 15 12 0.57 550 1 0.06 14 0.08 9 105 0.31 9 156 11100N-11950E 5 0.4 3.43 6 103 0.5 2 1.35 0.2 39 11 22 56 3.39 0.27 13 14 0.67 409 1 0.06 14 0.08 9 105 0.30 9 155 1100 15 10 0.5 2 1.20 0.2 39 3.19 0.28 14 16 0.66 13 0.08 12 17									2					22		8			10000000	8	421	1	0.05	9	0.27	4	86	0.21	75	70	
156 11100N-11950E 5 0.4 3.43 6 103 0.5 2 1.19 0.2 42 8 23 30 3.21 0.30 16 17 0.67 409 1 0.06 14 0.08 9 105 0.30 9 157 12000 5 0.2 3.68 4 115 0.6 2 1.35 0.2 39 11 22 56 3.39 0.27 13 14 0.79 466 1 0.05 17 0.10 5 106 0.28 10 159 12100 5 0.4 2.91 3 105 0.4 2 1.23 0.2 37 5 19 26 2.08 0.25 13 7 0.35 274 1 0.06 18 0.06 5 130 0.33 11 160 11100N-12200E 5 0.2 3.51 9 109 0.5 2 1.31 0.2 39 8 24 42 3.28 0.26 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.5</td><td>2</td><td></td><td></td><td>40</td><td>7</td><td>24</td><td>31</td><td>2.99</td><td></td><td>14</td><td>15</td><td>0.52</td><td>374</td><td>t</td><td>0.06</td><td>10</td><td>0.11</td><td>8</td><td>118</td><td>0.30</td><td>91</td><td>98</td><td></td></td<>								0.5	2			40	7	24	31	2.99		14	15	0.52	374	t	0.06	10	0.11	8	118	0.30	91	98	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55 1	1100N-11900E	5	0.2	3.50	3	116	0.6	2	1.20	0.2	40	7	22	35	2.75	0.32	15	12	0.57	550	1	0.06	11	0.15	7	107	0.31	95	67	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																															
158 12050 5 0.2 3.75 4 106 0.5 2 1.26 0.2 40 8 20 39 3.19 0.28 14 16 0.64 421 1 0.06 13 0.08 12 117 0.31 9 159 12100 5 0.4 2.91 3 105 0.4 2 1.23 0.2 37 5 19 26 2.08 0.25 13 7 0.35 274 1 0.06 7 0.09 4 116 0.30 8 160 11100N-12200E 5 0.2 3.51 9 109 0.5 2 1.31 0.2 39 8 24 42 3.28 0.26 14 13 0.64 508 1 0.07 13 0.08 8 107 0.34 11 161 11100N-12200E 5 0.2 3.39 7 0.4 2 1.25 0.2 39 7 23 34 2.89 0.28 14 13	56 1	1100N-11950E	5	0.4	3.43	6	103	0.5	2	1.19	0.2	42	8	23	30	3.21	0.30	16	17	0.67	409	1	0.06	14	0.08	9	105	0.30	91	70	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	12000	5	0.2	3.68	4	115	0.6	2	1.35	0.2	39	11	22	56	3.39	0.27	13	14	0.79	466	ſ	0.05	17	0.10	5	106	0.28	100	74	
160 11100N-12150E 5 0.2 3.51 9 109 0.5 2 1.62 0.2 43 11 30 34 3.40 0.27 15 13 0.76 510 1 0.06 18 0.06 5 130 0.33 11 161 11100N-12200E 5 0.2 3.36 2 109 0.5 2 1.31 0.2 39 8 24 42 3.28 0.26 14 13 0.64 508 1 0.07 13 0.08 8 107 0.34 11 162 12250 5 0.2 3.48 2 71 0.5 2 1.25 0.2 39 7 23 34 2.89 0.28 14 13 0.60 450 1 0.07 12 0.06 5 104 0.29 9 163 123p0 5 0.2 3.48 2 71 0.5 2 1.28 0.2 37 7 18 38 3.33 0.23	58	12050	5	0.2	3.75	4	106	0.5	2	1.26	0.2	40	8	20	39	3.19	0.28	14	18	0.64	421	1	0.06	13	0.08	12	117	0.31	97	58	
161 11100N-12200E 5 0.2 3.36 2 109 0.5 2 1.31 0.2 39 8 24 42 3.28 0.26 14 13 0.64 508 1 0.07 13 0.08 8 107 0.34 11 162 12250 5 0.2 3.29 3 97 0.4 2 1.25 0.2 39 7 23 34 2.89 0.28 14 13 0.60 450 1 0.07 12 0.06 5 104 0.29 9 163 123p0 5 0.2 3.48 2 71 0.5 2 1.28 0.2 37 7 18 38 3.33 0.23 13 15 0.62 356 1 0.05 11 0.16 6 112 0.28 9 164 123p0 5 0.2 3.25 8 82 0.4 2 1.38 0.2 42 5 17 18 2.28 0.23 14	59	12100	5	0.4	2.91	3	105	0.4	2	1.23	0.2	37	5	19	26	2.08	0.25	13	7	0.35	274	1	0.06	7	0.09	4	11 6	0.30	84	40	
162 12250 5 0.2 3.29 3 97 0.4 2 1.25 0.2 39 7 23 34 2.89 0.28 14 13 0.60 450 1 0.07 12 0.06 5 104 0.29 9 163 123p0 5 0.2 3.48 2 71 0.5 2 1.28 0.2 37 7 18 38 3.33 0.23 13 15 0.62 356 1 0.05 11 0.16 6 112 0.28 9 164 123p0 5 0.2 3.29 2 72 0.4 2 1.44 0.2 42 5 17 18 2.28 0.23 14 10 0.38 312 2 0.07 7 0.03 6 139 0.31 9 165 11100N-12450E 5 0.2 3.28 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292	6 0 11	1100N-12150E	5	0.2	3.51	9	109	0.5	2	1.62	0.2	43	11	30	34	3.40	0.27	15	13	0.76	510	1	0.06	18	0.06	5	130	0.33	112	63	
162 12250 5 0.2 3.29 3 97 0.4 2 1.25 0.2 39 7 23 34 2.89 0.28 14 13 0.60 450 1 0.07 12 0.06 5 104 0.29 9 163 123p0 5 0.2 3.48 2 71 0.5 2 1.28 0.2 37 7 18 38 3.33 0.23 13 15 0.62 356 1 0.05 11 0.16 6 112 0.28 9 164 123p0 5 0.2 3.29 2 72 0.4 2 1.44 0.2 42 5 17 18 2.28 0.23 14 10 0.38 312 2 0.07 7 0.03 6 139 0.31 9 165 11100N-12450E 5 0.2 3.28 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292	e1 1	1100N. 19900E		0.0	2 26	•	100	0.5	•	1 21	• •	20	0	24	40	2 20	0.26	1.4	10	0.84	509	4	0.07	12	0.09	•	107	0 34	110	70	
163 123p0 5 0.2 3.48 2 71 0.5 2 1.28 0.2 37 7 18 38 3.33 0.23 13 15 0.62 356 1 0.05 11 0.16 6 112 0.28 9 164 12350 5 0.2 2.98 2 72 0.4 2 1.44 0.2 42 5 17 18 2.28 0.23 14 10 0.38 312 2 0.07 7 0.03 6 139 0.31 9 165 11100N-12450E 5 0.2 3.28 2 0.4 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292 1 0.05 8 0.10 8 134 0.34 9 166 11100N-12450E 5 0.2 3.48 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292 1 <td></td> <td>10000000000</td> <td></td> <td>_</td> <td></td> <td>100000000000000000000000000000000000000</td> <td></td> <td></td> <td></td> <td>00000000</td> <td>8</td> <td></td> <td>10000000</td> <td></td> <td></td> <td></td> <td>- 2000-562</td> <td></td> <td></td> <td>99</td> <td>71</td> <td></td>											10000000000		_		100000000000000000000000000000000000000				00000000	8		10000000				- 2000-562			99	71	
164 12350 5 0.2 2.98 2 72 0.4 2 1.44 0.2 42 5 17 18 2.28 0.23 14 10 0.38 312 2 0.07 7 0.03 6 139 0.31 9 165 11100N-12400E 5 0.2 3.25 8 82 0.4 2 1.38 0.2 42 8 18 22 2.64 0.21 14 15 0.61 358 4 0.05 10 0.03 7 135 0.30 9 166 11100N-12450E 5 0.2 3.88 2 87 0.5 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292 1 0.05 8 0.10 8 134 0.34 9 167 12500 5 0.2 3.49 2 91 0.4 3 1.55 0.2 47 9 17 23 2.57 0.26 15							1.00000000								-00000000000000000000000000000000000000	6			30000000	2		100000000							98	59	
165 11100N-12400E 5 0.2 3.25 8 82 0.4 2 1.38 0.2 42 8 18 22 2.64 0.21 14 15 0.61 358 4 0.05 10 0.03 7 135 0.30 9 166 11100N-12450E 5 0.2 3.88 2 87 0.5 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292 1 0.05 8 0.10 8 134 0.34 9 167 12500 5 0.2 3.49 2 91 0.4 3 1.55 0.2 47 9 17 23 2.57 0.26 15 12 0.72 421 1 0.05 11 0.04 10 136 0.30 8		,													2004030000	9			30003603	8						266666			91	37	
166 11100N-12450E 5 0.2 3.88 2 87 0.5 2 1.24 0.2 39 6 14 18 3.13 0.24 13 14 0.51 292 1 0.05 8 0.10 8 134 0.34 9 167 12500 5 0.2 3.49 2 91 0.4 3 1.55 0.2 47 9 17 23 2.57 0.26 15 12 0.72 421 1 0.05 11 0.04 10 136 0.30 8		,	0.00000000				10000000000000000000000000000000000000									<i></i>													92	44	
167 12500 5 0.2 3.49 2 91 0.4 3 1.55 0.2 47 9 17 23 2.57 0.26 15 12 0.72 421 1 0.05 11 0.04 10 136 0.30 8	00 1	110011-12400L		v.2	3.20	0	UL.	v.4	2	1,00	¥.6	74	0	10		£.04	V.£1	1.4					0.00	10	0.00			0.00	52		
167 12500 5 0.2 3.49 2 91 0.4 3 1.55 0.2 47 9 17 23 2.57 0.26 15 12 0.72 421 1 0.05 11 0.04 10 136 0.30 8	66 1	1100N-12450E	5	0.2	3.88	2	87	0.5	2	1.24	0.2	39	6	14	18	3.13	0.24	13	14	0.51	292	1	0.05	8	0.10	8	134	0.34	97	50	
							3.00000000								101000000000000000000000000000000000000								÷			10000000			85	48	
							00000000						11		900000000000000000000000000000000000000	9			2000000000	e	322		:	14	0.05	12	110	0.31	92	52	
	69								2		2000000000			26					14	0. 6 8	369	1	0.05	16	0.09	11	96	0.25	86	79	
	70 1 [.]	1100N-12650E	5	0.2	3.82	5	115	0.5	2	1.21	0.2	45	10	22				14	14	0.73	368	1	0.05	12	0.06	12	127	0.31	90	51	
	71 1 [.]	1100N-12700E	6	0.2	5.57	19	133	0.6	2	0. 96	0.2	34	9	18	000000000000			13				2	0.05	14	0.05	5	100	0.34	123	73	

T.T.	SAMPI E		Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	к	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	v	Zn	9008-042
No.			ppb	ppm	n %	ppn	n ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		%		ppm			ppm		ppm			ppm		•	ppr	1 of 9
172	11100N-127		5	0.4	7.82	7	307	1.0	2	0.60	0.2	35	14	18	119	۔ 5د. ا	0.27	19	26	0.91	425		0.06				66	0.32			101 0
173		•	5	0.4	0.83	2	200	0.2	2	0.71	0,2	17	2	12	17	0.68	0.13	5	3	0.07	86	1	0.03	3	0.11	2	45	0.08	21	79	
174			5	0.2	2.06	2	76	0.2	2	0.74	0.2	20	3	12	23	1.71	0.15	7	4	0.19	205	1	0.03	4	0.13	2	53	0.14			
175	11100N-12900E	•	5	0.2	0.35	2	81	0.2	2	1.49	0.2	18	3	9	10	0.35	0.08	3	2	0.08	180	1	0.01	2	0.07	2	62	0.03	11	129	
176	11100N-12950E	*	5	0.8	4.19	2	174	0.9	2	1.46	0.2	40	11	22	80	2.86	0.24	23	14	0.56	563	1	0.05	13	0.21	14	78	0.18	92	71	
177	11100N-13000E_		5	0.2	3.63	7	120	0.5	3	1.08	0.2	43	9	26	- 202000000000		0.29	16	- 2012/02/02	0.66	423		0.06		0.14	10	90	0.31		98	
178	11300N-10800E		5	0.2	3.59	5	83	0.4	2	1.30	0.2	41	11	25	333333333	8	0.23	14	1000000000	0.90		0.0000	0.06		0.06	12		0.28			
179	10850		5	0.6	3.62	10	114	0.5	4	1.47	0.7	43	16	27	- 300 300 300 300	5	0.28	14	20000000	0.73		12.28.03	0.07		0.11	36		0.27		128	
180	11300N-10900E		5	0.2	3.96	11	116	0.6	4	1.41	0.2	45	14	38		8	0.30	15	- 2009 2000	0.93			0.07		0.13	10		0.30			
181	11300N-10950E		5	0.2	3.50	3	100	0.6	2	1.36	0.2	48	12	38	13	2 52	0.24	19		0.74	574		× ~~	~~			~7				
182	11000	•	5		4.89	3	200000	0.9	6	3.46	0.2	35	24	41	333333333		0.24			1.51			0.07		0.15	4				S.3333433	
183	11050		5			52		1.0	5	2.06	0.2	40	28	65	\$333333333	÷	0.20	11 12				- 2010 2020	0.11		0.12	- (10. 107 m)		0.41		88	
184	11100		90		4.91	17	94	0.8	3	1.74	0.2	36	18	36	100000000					1.35			0.08		0.14	5	99	0.48		90	
	11300N-11150E				4.12		150		2	1.69	0.2	44		77		4.37		12	- 383 (1993)	8	746		0.07		0.14			0.28		78	
				0.2	4.12	-	1.50	0.0	2	1.09	V.2	44	22	"	99	3./3	0.29	15	21	1.25	10/6		0.11	56	0.22	5	89	0.35	110	113	
186	11300N-11200E	•	5	0 2	1.02	5	215	0.2	2	3.24	2.9	00	10	20		4 00															
187	11250				3.34		124		5	3.24 1.89		23	10	30			0.18	4		0.54			0.04		0.16			0.12		33333333	
188	11300	•		0.2	3.94 3.94	6	1.000	0.6	7		0.2	54	20	47		3.54		18		0.97			0.07		0.22			0.35		77	
189	11350			0.4	2.50	-	155	0.5		3.38	0.3	35	24	63			0.16	10	1000000	1.83			0.08		0.12			0.40		98	
	11300N-11400E				3.33				2 3	1.68	0.2	34	17	54		2.64	0.24	9	10000000	0.74		222000	0.06		0.19	7		0.21	76	59	
100	100011-114002			0.2	3.33	12	100	0.7	3	1.14	0.2	34	18	53	45	3.17	0.29	11	16	0.78	2429	1	0.07	27	0.33	11	68	0.28	9 9	78	
191	11300N-11450E		5	0.2	3.86	5	301	0.6	2	1.49	0.2	36	20	45	39	3.96	0.31	12	18	1.13	2466	1	0.10	33	0.20	9	03	0.35	121	144	
192	11500N~8800E		5	0.4	4.75	2	78	0.5	3	1.01	0.2	30	35	283	n na hairte	5.06		10	10000000	4.58	678	3666666		215		2		0.23		78	
193	8850		5	0.2	5.07	2	76	0.5	2	0.63	0.2	31	35	239		5.13		12	10000000	4.06	646	2000000		201		2		0.19		74	
194	8900		5	0.2	4.62	2	82	0.5	3	0.72	0.2	27		252	0000034693	4.70		11		3.30	512			175		2				83	
195	11500N-8950E		5	0.2	4.72	2	87	0.5	3	0.67	0.2	27	32			4.77		11		3.21	484			155		3		0.24		78	
196	11500N-9000E		5	0.2	3.35	8	79	0.4	2	0.93	0.2	35	16	152	37	3.49	0 17	13	14	1.31	337		0.07	56	0.04		50	0.05			
197	9050			0.2	3.69		74	0.4	2		0.2	29	15			3.42		11		1.60	425		0.07		0.04	4		0.25		57	
198	9100			0.2	5.74		170	0.7	2	1.10	0.2	34	23			4.62		13		8	1362		0.08		0.05	4		0.21 0.19		85 80	
199	9150		5 55 E 1	0.8	3.79	2	77	0.6	4		0.2	34	19		0.0000000	3.70		15		1.78	516			103		5		0.19		55	
201	11500N-9200E				5.00	2	66	0.7	7		0.2	40	35			4.83		13		3.10	516			185		6		0.17		00 75	
202	11500N-9250E				3.86	2	96	0.6	3	1.09	0.2	38	22			3.91		15		1.61	631		0.08		0.09	7	56	0.29	123	78	
203	9300			0.2	4.86	2	68	0.6	5	1.44	0.3	34		265	9-99-94489	4.75		12	11	3.37	436	1	0.06	205	0.07	3	37	0.27	124	85	
204	9350		5	0.2	3.83	12	97	0.6	3	0.69	0.2	37	12	86		3.93		14	19	1.00	391	1	0.07	38	0.09	8	48	0.25	107	92	
205	9400				4.09		113	0.6	2	0.63	0.2	37	11	66		4.16		14	18	0.91	373	1	0.07	32	0.10	8	45	0.26	106	137	
206	11500N-9450E		5	0.2	3.85	8	96	0.5	3	1.04	0.2	35	19	172	70	4.13	0.25	12	15	1.61	439	1	0.06	71	0.08	5	44	0.26	121	100	
207	11500N-9500E		5	0.4	3.55	2	82	0.5	3	1.26	0.2	40	21	219	45	3.96	0.20	14	10	1.84	393		0.06	02	0.10		40	0.00	100		
208	9550				3.43		110		2	0.74		•		65		3.11		14		0.64	593 521		0.08					0.28 0.25			
209	9600				3.11		104			0.87			11			3.28		14		0.64	628					5					
210	9650				4.05		104		2		0.2		11	38		3.28		15		0.73			0.08		0.09	5		0.28			
	11500N-9700E				4.02	2			2	0.67		33	8	86		3.51		13		0.62	380 308		0.07 0.07		0.14 0.10	9 3		0.25 0.28			
010	11500N-10050F		2	• •	6.07																										
212	11500N-10050E				5.87		167			1.17			15	50		4.05		23		1.05	630		0.09		0.07	8		0.23			
	10100				4.63		118			0.72		34	14		.155			13		0.98	368		0.08		0.09	3		0.32			
214	10150				4.45		133			0.98			15		155			14			577		0.08	35				0.28			
215	10200 11500N-10250E				4.17		142			0.77			15		138			16			571		0.07		0.04	4		0.25			
. 10	11500N-10250E		D	0.2	4.39	2	148	0.7	3	0.88	0.2	42	26	25 -	* 104	5.02	0.35	15	19	1.69	3224	1	0.07	23	0.13	8	64	0.29	173	111	

.

`

T.T.	SAMPLE	Au	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Сө	Co	Cr	Cu	Fe	к	La Li Mo	Mn	Мо	Na	Ni	Р	РЪ	Sr	Ti	V	Zn	9008-042
No.	Grant LL	ppb	•			ı ppm			%	ppm					10	%	ppm ppm %			%	ppm			ppm	96	-		8 of 9
217	11500N-10	100	0.2		4	118	0.6	3	0.83	0.2	43	20	32	89		0.33	16 19 1.4			0.07	22		6	62	0.29	163	96	
218	10350	5	0.2	4.90	2	112	0.8	6	0.65	0.2	49	32	24	108	5.79	0.34	17 22 2.4	3 2146	1	0.07	24	0.09	8	50	0.19	209	99	
219	10400	5	0.2	3.88	2	152	0.6	2	0.62	0.2	45	10	25	26	2.93	0.53	17 15 0.76	3 489	1	0.06	13	0.07	7	51	0.21	75	82	
220	10450	5	0.2	4.22	2	163	0.6	2	0.85	0.2	49	10	30	21	2.82	0. 6 4	17 17 0.69	9 1266	1	0.07	13	0.07	10	71	0.24	76	111	
221	11500N-10500E	5	0.2	3.79	2	141	0.6	2	1.03	0.2	52	10	37	23	2.95	0.39	21 16 0.6	7 597	1	0.09	17	0.09	3	86	0.33	81	92	
			ģ.																									
222	11500N-10550E	5	0.2	4.03	2	163	0.6	2	0.65	0.2	35	12	24	21	3.58	0.33	14 19 0.4:	3 1501	1	0.07	11	0.16	6	66	0.26	89	130	
223	10600	5	0.2	3.88	2	158	0.6	2	0.87	0.2	51	10	30	23	2.97	0.40	21 16 0.5	3 604	1 .	0.07	17	0.11	5	75	0.29	78	111	
224	10650	5	0.2	4.87	17	204	0.7	4	1.39	0.2	49	16	41	83	3.80	0.22	16 16 0.80		1	0.06	36	0.18	5	91	0.29	135	62	
225	10700		0.2		2	113	0.6	3	0.97	0.2	43	11	28	44	3.22	0.32	16 15 0.76	3 422	1	0.06	18	0.11	.4	74	0.27	95	66	
226	11500N-10750E	5	0.2	4.17	3	99	0.5	2	1.02	0.2	38	9	23	28	3.08	0.32	13 18 0.70	5 405	1	0.06	13	0.08	7	89	0.26	93	87	
	11500N-10800E		0.2		4		0.5	5	1.12	0.2	38	12	27	0.00000000	3.68	0.26	15 19 0.88			0.06	22	0.08	12	99	0.26	109	91	
228	10850		0.2		6	-693960	0.5	5	1.07	0.2	42	9	30		3.46	0.26	14 17 0.70			0.07	16	0.08	10	88	0.28	109	72	
229	10900		0.2			109	0.6	5	1.09	0.2	42	14	35		3.86	0.30	15 19 0.90			0.07	20	0.12	12	82	0.30	128	93	
230	10950		0.2			124	0.7	6	1.31	0.2	42	20	55	161366666	4.36	0.29	14 23 0.89			0.10	30	0.16	12	80	0.31	135	117	Ì
231	11500N-11000E	5	0.2	4.17	8	139	0.8	2	1.38	0.2	54	22	42	, 102	3.85	0.25	20 17 0.90	735	1	0.08	34	0.07	7	89	0.35	128	75	
					-			•					~7								~~			~~				
	11500N-11050E	30		3.24		113	0.5	2	1.33	0.2	43	14	37		3.59		16 15 0.79		2000000	0.08	22	0.10	4	89	0.32		68 74	
233	11200	5				277	0.7	2	1.23	0.2	40	19	39	51		0.25	15 15 0.80			0.07	24	0.30	4	84	0.32		74	
234	11300 11350		0.2 0.2			101		2 5	0.84	0.2	36	16	38		3.56	0.23	13 13 0.82 11 14 1.69		- 9898888	0.06 0.07	27	0.25				112	64	
	11500N-11400E			4.17 3.79	2		0.7 0.7	3	2.20 1.21	0.2	38 58	27 16	31 39		4.85 4.16	0.19	11 14 1.69 24 14 0.89			0.07	45 21	0.15 0.15	6 5	101 86	0.46 0.42	158 141	82 67	
230	11500M-11400E	5	0.2	3.79	2	00	0.7	3	1.21	V.2	56	10	39	02	4.10	0.21	24 14 0.03	9 307		0.00	21	0.15		80	0.42	141	•••	
237	11500N-11450E	5	0.2	1.87	4	131	0.3	2	1.02	0.2	24	14	20	57	2.58	0.17	7 8 0.6	5 2209		0.04	13	0.16	7	54	0.23	85	100	
	11500N-11500E		0.2			183	0.5	2	1.37	0.2	36	15	23	444134443	4.44		12 15 0.80		- 20200000	0.07	14	0.17	5		0.45	169	63	
239	11700N-8800E		0.2		2		0.5	3	0.61	0.2	30		232		4.07	0.18	12 15 2.22				109	0.08	5	48	0.20	129	76	
240	8850	100 B B B B B B B B B B B B B B B B B B	0.2		2		0.5	5	0.63	0.2	31		240	19661000000		0.21	12 16 1.64		1000000	0.07	86	0.14	6		0.23		88	
241	11700N-8900E			4.27	2		0.4	4		0.2	24		250	10000000	4.39		10 14 2.94		- 59636363			0.04	2	39	0.23	134	62	
1																												
242	11700N~8950E	5	0.2	4.60	3	76	0.5	2	1.27	0.2	29	31	252	79	5.08	0.17	10 10 4.00	765	1	0.06	184	0.10	2	45	0.18	140	76	
243	9000	5	0.2	4.49	2	88	0.5	3	0.65	0.2	29	29	195	63	4.39	0.18	11 14 2.98	3 732	1	0.06	142	0.06	2	44	0.25	122	77	
244	9050	5	0.2	4.20	2	100	0.5	2	0.69	0.2	34	21	147	31	4.02	0.21	14 16 1.3 [.]	688	1	0.08	63	0.15	6	55	0.29	116	101	
245	9100	5	0.2	4.61	2	104	0.5	4	1.08	0.2	33	31	222	64	4.27	0.17	12 13 2.5 ⁻	I 703	1	0.08	141	0.11	5	47	0.28	113	91	
246	11700N-9150E	5	0.2	4.75	2	76	0.5	5	1.53	0.2	33	37	243	72	4.73	0.13	11 12 3.38	3 488	1	0.0 6	187	0.07	3	41	0.29	116	79	
247	11700N-9200E	5	0.2	4.19	4	131	0.5	4	1.26	0.2	38	31	287	- 66	4.47	0.37	13 14 2.44	1074	1	0.06	110	0.08	5	45	0.18	124	78	
248	9250		0.2			131	0.8	4	1.72	0.2	44		310		3.91		18 17 1.30			0.07	64	0.12	9		0.18	136	71	ŀ
249	9300	0.000			2		0.5	4	0.92	0.2	34		161	0.000000000	3.83	0.17	13 14 1.33		- 8393338	0.06	71	0.05	8		0.28	124	82	
251	9350			4.38		101	0.6	5	1.31	0.2	38	19	93		3.60	0.28	12 14 1.48		- 3333333	0.06	51	0.06	12	60		116	79	
252	11700N-9400E	5	0.2	4.00	2	90	0.5	4	1.16	0.2	37	15	88	45	3.22	0.20	12 14 1.23	3 534	1	0.07	37	0.04	8	65	0.25	105	68	
								_																	•			
1	11700N-9450E			4.41	12		0.6	5	0.91					105			13 17 1.73		1638648	0.08		0.10	10		0.26		94	
254	9590			4.21		118		4	0.79			17			3.79		14 16 1.29		- 999999999	0.06		0.10	11		0.24		322222422	
255	9550			6.87		148	0.8			0.2	40		70	00.000000000	4.34		18 22 1.50		- 20000000	0.09		0.07	15		0.18		85	
256	9600			4.72		111		3		0.2			92	2000.000000	3.62		13 16 1.12			0.07		0.09	12		0.26		105	
257	11700N-9650E	5	0.2	4.18	10	100	0.6	4	0.78	0.2	37	15	106	63	3.66	0.31	14 16 1.10	9 404	1	0.06	43	0.10	11	51	0.27	105	105	
050	11700N 07007						• •		0 70	<u>~</u> ~	0 4	15	70		4 4 7		10 13 1 0			A 64	40	0.00		47	~ ~~	44E		
1	11700N-9700E		2	4.49		000000000		4	0.73				76		4.17		555555555		- 20202020303	0.08		0.09			0.26 0.24		85	
259	9750 9800			4.53 5.34		107		3	0.70 0.56	0.2			89 72		3.91 4.65		12 18 1.14 14 19 1.10		2000000000	0.08 0.10		0.08 0.08	11		0.24		322222222222	
260	9800 11700N-9850E		÷.	5.34 3.92	39 7	212000000		4 2		0000000000		8	72 59	2000000000000000	4.65 3.89		000000000		400000000			0.08	2000000000		0.24		0000000000	
201	11/0011-9000E	0	0.2	3.82	/	- 50	0.5		0.04	V.2		0	29	99	3.03	0.28	13 10 0.08	- 330	80000	0.07	~ 1	V.11			V.20			

No. 262 1			Ag	AI	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	ĸ	La	Li N	/lg	Mn	Mo Na	NI	Ρ	Pb	Sr	Ti	V	Zn	9008-042
262 1		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		%	ppm	ppm 9	γō	ppm	ppm %	ppm	96	ppm	ppm	%	ррт	ppn	7 of 9
	11700N-99	40	0.6	5.12	34	120	0.6	3	0.70	0.2	33	19	65	699		0.35	13	18 1.	28	446	5 0.06	59	0.08	4	47	0.25	117	83	
														•															
263 1	11700N-9950E	25	0.6	4.42	8	98	0.6	2	0.71	0.2	35	13	57	247	4.02	0.27	13	18 0.	70	372	1 0.07	28	0.08	8	58	0.29	112	108	
264	10000	230	0.4	4.01	43	118	0.5	3	1.08	0.2	36	23	38	320	4.45	0.50	12	14 1.	07	900	2 0.06	29	0.11	6	56	0.21	116	92	
265	10050	5	0.2	4.07	15	127	0.6	2	0.7 9	0.2	40	14	63	113	3.91	0.32	14	17 0.	80	536	1 0.07	31	0.07	5	59	0.25	109	94	
266	10100	260	0.2	4.14	11	145	0.5	2	0.80	0.2	36	15	51	108	3.54	0.44	12	19 0.	94	638	1 0.07	30	0.06	7	56	0.22	104	102	
267 11	1700N-10150E	5	0.2	3.70	2	118	0.5	2	0.85	0.2	42	12	55	26	3.04	0.43	16	18 0.	87	415	1 0.06	21	0.04	9	66	0.20	92	58	
											. .																		
268 11	1700N-10200E	10	0.2	4.08	5	151	0.6	2	0.84	0.2	39	15	47	109	3.43	0.50	13	19 0.	85 1	156	1 0.07	29	0.07	9	59	0.24	98	93	
269	10300	5	0.2	4.84	2	164	0.9	4	0.81	0.2	50	9	27	28	3.43	0.82	18	20 0.	75	467	1 0.06	15	0.12	13	96	0.25	80	73	
270	10350	5	0.2	4.69	2	199	0.8	5	0.93	0.2	51	12	27	45	3.78	0.56	18	19 0.	78	646	1 0.06	16	0.10	13	95	0.27	84	84	
271	10400 *	5	0.2	4.15	2	87	0.7	2	0.25	0.2	27	5	4	13	2.13	1.39	12	60.	78	915	1 0.02	3	0.05	7	10	0.11	32	63	
272 11	1700N-10450E	√35	0.2	4.26	2	154	0.8	2	0.63	0.2	53	10	19	32	3.08	0.71	21	15 0.	91	919	1 0.05	14	0.08	32	51	0.22	68	65	
273 11	1700N-10500E	5	0.2	4.78	2	149	0.6	2	0.69	0.2	35	9	19	. 30	2.89	0.55	13	17 0.	67	456	1 0.07	15	0.10	8	64	0.23	68	104	
274	10550	5	0.2	3.24	2	110	0.6	2	0.81	0.2	55	9	40	28	3.16	0.32	22	13 0.	66	380	1 0.07	18	0.09	7	67	0.28	84	68	
275	10600	5	0.2	3.62	2	132	0.5	2	0.64	0.2	40	8	26	18	2.54	0.34	16	17 0.	51	399	1 0.06	12	0.09	7	63	0.24	67	93	
276	10650	5	0.2	3,15	2	108	0.4	2	0.69	0.2	47	5	35	16	2.86	0.36	20	15 0.	42	355	1 0.06	11	0.15	8	62	0.25	76	79	
277 11	1700N-10700E	5	0.2	4.00	2	163	0.6	2	0.81	0.2	41	14	25	22	2.98	0.40	16	22 0.	53	720	1 0.07	12	0.07	11	74	0.24	82	95	
	1700N-10750E	100,000	0.2	3.38		146	0.6	2	0.92	0.2	56	9	32	30	3.03	0.43	21	13 0.		413	1 0.08	16	0.07	11	70	0.26	80	69	
279	10800	20	0.2	3.57	2	- 6666	0.5	2	1.22	0.2	45	10	32		4.13	0.26	15	14 0.0		376	1 0.05	12		8	101	0.26		50	
280	10850	5	0.4	4.36		138	0.6	3	0.90	0.2	40	11	31		÷	0.38	14	19 0.9		481	1 0.05		0.09	11	81	0.28	131	75	
281	10900		0.2	3.07		136	0.6	2	1.13	0.2	50	12	36		3.44	0.27	20	13 0.		526	1 0.06	21		3	86	0.25	109	58	
282 11	1700N-10950E	5	0.4	3.68	2	86	0.5	2	0.81	0.2	34	10	26	66	3.64	0.25	13	16 0.	72	400	1 0.06	13	0.10	4	68	0.26	121	70	
	2000			• ••	•			•				•	•••																
283 II 284	11000E	5	0.2	3.39	2	93 98	0.6	2 2	1.15	0.2	46	9	39		3.21		18	15 0.		370	1 0.06	23		5	88	0.32		70	
285 285	11050 11100	5	0.2 0.2	3.28	_	103	0.6 0.7	2	1.04 1.21	0.2 0.2	51 50	11 15	43 35	Ni barada	3.42 3.69		20	14 0.		378 861	1 0.06		0.08	5	81	0.31		6 1	
286	11150	5		3.20 4.24	2	74		2 5	1.71	0.2	40	21	33		4.17		20	15 0.0 15 1.		783	1 0.06 1 0.06		0.12 0.21	6 7	84 92	0.37 0.39	123 137	73 73	
	1700N-11200E			4.33	-	137	0.8	2	1.04	0.2	40	23	23		3.92		13 14	18 0.1		824	1 0.08	31	0.21	9	75	0.38		87	
		•	0.2	4.00	-		0.0	-	1.04	V . L	40	20	20		0.32	0.52	14	10 0.1	o v 1	024	1 0.00	20	0.17		75	0.30	135	•	
288 11	700N-11250E	5	0.2	3 76	2	100	0.7	2	0. 9 4	0.2	39	15	32	51	3.71	0 27	14	18 0.	77	820	1 0.06	17	0.19	5	64	0.36	120	75	
289	11300	5		3.16		137	0.6	2	1.21	0.2	35	19	39	ter ter de seg	3.56	0.26	11	14 0.1		238	1 0.06	16		7	76	0.37		75	
290	11350	40		3.51	2	95	0.7	3	1.34	0.2	50	14	49		3.86	0.23	18	16 0.		725	1 0.06	21		8	85	0.35	129	80	
291	11400	10		3.54		134	0.7	2	1.78		111	21	58	92	4.51		46	14 1.0		826	1 0.06	26			109	0.45	157	71	
	700N-11450E	5	0.2	3.60		132		2	1.31	0.2	36	23	38	80			12	16 0.		352	1 0.07	20		3	87	0.33		77	
293 11	700N-11500E	5	0.4	4.53	3	191	0.9	2	1.13	0.2	50	30	50	85	4.21	0.27	17	18 1.	14 1	231	1 0.06	48	0.18	6	77	0.34	131	71	
294 1	1900N-8800E	5	0.2	3.92	2	78	0.5	2	0.50	0.2	23	30	276	46	4.71	0.16	10	17 2.	54 1	334	1 0.05	120	0.14	3	40	0.19	152	87	
295	8850	5	0.2	3.59	2	79	0.4	2	0.59	0.2	29	21	240	32	3.60	0.17	11	15 1.4	82	564	1 0.07	82	0.10	4	50	0.23	111	73	
296	8900	5	0.2	3.64	2	80	0.5	2	0.71	0.2	32	17	194	26	3.95	0.19	12	17 1.	32	378	1 0.07	62	0.06	5	57	0.26	130	65	
297 1	1900N-895QE	5	0.2	4.36	2	84	0.5	2	0.65	0.2	26	30	254	71	4.71	0.17	10	11 2.	90	557	1 0.06	143	0.07	4	40	0.21	136	75	
298 1	1900N-9000E	5	0.2	4.03	2	106	0.6	4	2.07	0.2	35	23	185	69	3.82	0.21	12	12 2.	11 1	908	1 0.07	102	0.09	5	75	0.14	112	65	
299	9050			3.94		73			1.41				25			0.16					1 0.05			8		0.23			
2	9100			3.21		76			1.73				23	38	2.31	0.22	10	000000000			1 0.05			4		0.20	78	48	
3	9150			4.16	5	42	0.5	2	1.50	1.0	33		117			0.10		0000000000	74 1	063	1 0.04			4	34	0.20	134	111	
F 1	1900N-9300E	5	0.4	4.50	2	43	0.5		1.60						6	0.08		2000000000		2	1 0.04			5		0.23			
5 1	1900N-9350E	5	0.2	3.68	2	66	0.4	2	1.15	0.2	31	27	149	48	3.71	0.15	10	12 2.0	02	369	1 0.05	118	0.03			0.24			
31	1900N-9400E	10	0.4	4.10	2	85	0.5	2	1.15	0.2	29	31	149	73	4.01	0.17	10	11 2.	51	435	1 0.05	133	0.06	4	36	0.26	107	88	

T.T.	SAMPLE	Au	Ag	AJ	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	ĸ	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	v	Zn	9008-042
No.			ppm				ppm		%	ppm				ppm		%				ppm	ppm	96	ppm	%		ppm		ppm		8 of 9
7	11900N-9t	5	0.2	3.97	2	116	0.5	2	1.13	0.2			152	56	.6	0.20	11	15	1.65	693		0.06	95	0.12	4		0.26	101	104	
8	9600	5	0.4	3.68	6	87	0.4	2	0.97	0.2	29	23	178	47	3.83	0.21	9	15	1.59	572	1	0.05	86	0.07	4	36	0.23	122	80	
9	11900N-9650E	5	0.6	3.66	2	85	0.4	2	0.80	0.2	30	18	125	35	3.71	0.21	10	17	1.08	446	1	0.06	56	0.04	6	41	0.22	124	67	
10	11900N-9700E	E	0.4	3.65	13	82	0.5	2	1.07	0.2	32	24	171	50	3.83	0.19	10		1.87	207		0.05	00	0 0E		20	0.22	110	•	
11	9750		0.6	4.03	7	- 333366633	0.5	2	0.81	0.2	26	18	137	2010 AND 10	3.79	0.19		1000000	1.07	337	3222223	0.05	98	0.05	3				69 70	
12	9800			3.23	2	76	0.5	2	0.70	0.2	26	16	90		3.11	0.22	10 9		0.95	307 389		0.06	64 42	0.07 0.05	2	41	0.26 0.22	121 98	76	
13	9850	10	0.4	4.56		109	0.4	2	0.83	0.2	28	19	69		3.95	0.22	10	10000000	1.55	487		0.05 0.05	42 62	0.05	3		0.22		81 73	
14	11900N-9900E	25	5	3.97	12		0.5	2	0.64	0.2	31	11	46			0.34	12		0.87			0.05		0.09	-				73 80	
14	1180011-99002	20	0.2	3.87	12	90	0.5	2	0.04	V.2	31	1.1	40	141	3.05	0.30	12	14	V.07	405		0.07	31	0.09		51	0.25	107	οv	
15	11900N-9950E	15	0.4	4.57	20	108	0.6	2	0.95	0.2	30	19	54	219	4.04	0.42	10	13	1.28	504	1	0.05	46	0.08	4	54	0.20	108	77	
16	10000	10		4.15			0.6	2	0.74	0.2	37	15	52		3.89	0.37	14	1000000	1.13		1	0.06	41	0.08	7	58	0.24		76	
17	10050	5		4.30		177	0.6	2	1.06	0,2	36	20	47	1:04033666	4.09	0.49	12	202000000	-	2218		0.07		0.11	5		0.26	126	91	
18	10100	5		4.04		139	0.5	2	0.99	0.2	35	19	64		4.16	0.34	12	1000000		1682	1	0.06	38	0.07	4	77			87	
19	11900N-10150E			4.26			0.6	2	0.90	0.2	37	16	69		3.74		13				1000000	0.06		0.07	5				79	
					-		•••	-			•,									,		0.00		0.07			0.20			
20	11900N-10200E	5	0.2	3.98	2	141	0.6	2	0.90	0.2	37	12	39	46	3.39	0.44	14	19	0.89	709	1	0.06	22	0.10	7	74	0.22	92	91	
21	10250	5	0.2	3.93	2	183	0.7	2	1.01	0.2	40	13	37	35	3.32	0.49	15	19	0.79	1547	1	0.06	22	0.11	5	83	0.23	89	97	
22	10300	5	0.2	3.65	4	153	0.6	2	0.93	0.2	38	12	35	30	3.22	0.38	14	18	0.68	1659	1	0.06	20	0.12	8	80	0.25	88	99	. 1
23	10350	5	0.2	4.17	2	152	0.6	2	0.86	0.2	36	12	24	30	3.13	0.49	14	18	0.72	617	1	0.06	19	0.08	8	75	0.25	84	110	1
24	11 90 0N-10400E	5	0.4	3.46	2	88	0.4	2	0.70	0.2	34	5	28	15	2.38	0.31	13	14	0.44	255	1	0.05	10	0.06	3	63	0.23	65	60	
25	11900N-10450E	5	0.4	3.43	2	112	0.5	2	0.87	0.2	39	8	28	22	2.71	0.45	15	11	0.63	481	1	0.05	15	0.05	8	70	0.27	77	60	
26	10500	5	0.2	3.37	2	100	0.5	2	0.7 9	0.2	42	8	34	25	3.33	0.31	17	19	0.62	410	1	0.08	15	0.10	7	70	0.29	92	82	
27	10550	5	0.4	3.92	2	109	0.5	2	0.68	0.2	38	6	27	19	2.98	0.45	15	16	0.49	406	1	0.07	10	0.07	10	68	0.27	82	72	
28	10600	5	0.2	3.55	2	107	0.4	2	0.94	0.2	37	9	37	37	3.29	0.47	13	15	0.72	374	1	0.06	16	0.05	10	73	0.26	97	68	
29	11900N-10700E	5	0.4	5.49	2	97	0.4	2	2.59	0.2	2 9	9	8	101	3.07	0.36	7	9	0.57	302	10	0.03	6	0.08	9	135	0.10	66	32	
30	11900N-10750E	¢.	0.4	3 25	6	104	04	2	0.87	0.2	32	7	26	69	3.28	0.30	11	•	0.44	278	7	0.06	٩	0.13	9	74	0.23	124	50	
31	10800			4.10		113	0.6	2	1.39	0.2	40	, 17	38	9.20 2 6000	3.44	0.20	16			1197	1000000	0.07	26	0.05	3	:	0.27		77	
32	10850		0.2	4.06		110	0.6	2	1.23	0.2~		16	55		3.83		18		1.05	529		0.07		0.07	5	2	0.35	128	75	
33	10900		0.2		2	88	0.5	2	1.43	0.2	37	15	45	49.000 BBBBBBB		0.23	14	1040404	1.09	500	0.000000	0.08		0.05	8	:	0.34	130	72	
34	11900N-10950E		0.2		3	60	0.4	2	1.56	0.2	36	17	74		2.99		14	10000000	1.75	543	10000000	0.10		0.03	5		0.30	102	55	
																														. }
35	11900N-11000E		0.4	3.54	2	100	0.5	2	1.03	0.2	33	11	34			0.26	13	1.	0.84	554		0.07		0.15	-363668	71	0.33		81	
36	11050	5	0.2		2	83	0.5	2	1.53	0.2	45	14	35		3.39	0.17	17	100000000	1.00	589	1	0.07		0.05	366626	:	0.38	127	63	
37	11100	5	0.2	3.60	2	99	0.5	2	1.43	0.2	39	12	37		3.45		14		0.89	539	1	0.08		0.05	5	91	0.38	131	60	
38	11150		0.2	3.41	2	99	0.5	2	1.03	0.2	37	12	30	33	3.81	0.28	14		0.74	606		0.08		0.11		£	0.36	132	77	
39	11900N-11200E	5	0.2	3,38	4	87	0.5	2	1.24	0.2	37	12	37	31	4.06	0.23	13	17	0.75	487	1	0.07	17	0.09	5	83	0.45	153	85	
40	11900N-11250E	5	0.2	3 66	2	73	0.6	2	1.41	02	38	18	35	85	3.64	0 18	13	12	1.03	480	•	0.05	28	0.12	3	77	0.35	125	56	
41	11300		0.2		-	118		2		0.2		15	35		3,62			1000000	:	1152	1000000	0.06		0.12	5		0.30		79	
42	11350		0.2			143		2	1.00			17	30		3.62		12	Sec. 1999.000		1165	20000000000	0.06		0.19	7		0.27		85	1
43	11400		0.2			103		2	1.08			15	36		3.42		19			922		0.05		0.14	100000000		0.31		63	
	11900N-11450E	- CONSIGURE	0.2			153		2	1.45			20	34		3.43			*****	9	1355	**************	0.05		0.14	8	:	0.28		65	
					•			-			.•													Ba /						
45	11900N-11500E	5	0.2	3,16	5	111	0.5	2	1.16	0.2	39	15	32		3.23			14	0.70	1259	1	0.06		0.13	200000000	84	0.30	106	79	
46	11550	5	0.4	2,90	9	104	0.6	2	1.22	2000 C.	46	16	39	an sa an	3.14					1026	20000000000	0.05		0.18	7	() () () () () () () () () ()	0.26		69	
47	11600	5	0.2	3.25	10	61	0.6		1.36			22	32		3.33				0		1	0.05		0.10	7	79	0.28	124	51	
48	11650					136		2	1.33			23	35	110						1758	2004000000	0.05	18	0.18	9	74	0.28	125	59	[
	11900N-11700E	400000071				114		2	1.54	000000000		17	47		3.89					784	-00000000	0.06		0.10	7	:	0.34		63	
51	11900N-11750E	5	0.2	3.72	12	102	0.9	3	1.47	0.2	36	22	51	114	3.97	0.22	12	14	1.03	1375	ા	0.05	24	0.18	7	75	0.33	160	81	

T.	SAME			Ag	A	As			Bi	Ca	Cd			Cr	Cu	Fe	K		LI N				Ni	P	Pb	Sr	Ti	V		9008-042
0.	1900N-11800E		ppb		% 3.26		ppm 73	ppm					ppm 15		<u>ppm</u> 80			ppm p	pm 9 14:0.			0.05	ppm	% 0.10	ppm 7		% 0,32	ppm	<u>рр</u> г 64	9 of 8
2 3	11850 11850				3.20 3.11	6	73 87		2	1.15			12	38	20000000000	3.50			14 O. 14 O.			0.05		0.10			0.32		(2000-000) -	
s 	11900				3.25	6	(*************************************	0.7		1.33			13	38 44		3.50		2000	14 0. 14 0.			0.05		0.14	6		0.34		70 70	
	11900N-11950E				3.42		83			1.27			12	44		3.72			16 0.			0.06			- 20000000000		0.35		79	
				•••	0.12				-				•=				•													
1	1900N-12000E		5	0.2	3.22	8	81	0.5	2	1.41	0.2	36	11	40	37	3.79	0.23	12	17 0.	78 534	l	0.06	16	0.13	12	93	0.35	133	88	
	0700N-11550E	Talus/Rx			4.17	2	22		8	3.37			35		1.000	4.60		1.11	11 4.			0.16			1000000000		0.38		76	
	0700N-11700E				4.12	2	21		9	4.65	-0010000000		24	59		4.76			11 2.			0.21		0.08			0.49		51	
	1500N-11100E				4.49		23			4.54			27			5.10				26 86		0.16		0.08			0.52		92	
																			-											
																		×												
	3																													
	ş																													

. .

a concept a component

Jeh ist

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL . ALYSIS CERTIFICATE New mac (SR)

PHONE (604) 253-3158 FAX (604) 253-1716

Noranda Exploration Co. Ltd. PROJECT 8-87 File # 90-4337 Page 1 P.O. Box 2380, 1050 Davie, Vancouver BC V6B 315

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	11	В	AL	Na	ĸ
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppn	*	*	ppm	ppm	*	ppm		ppm	*	*	Х ррп
NL CHECK	20	48	56	166	1.0	30	24	581	2.79	94	6	ND	1	137	2.7	2	6	. 1	1.15	.057	17	149	.51	141	.16	41 1	05	.13	5/
13500N-8800E	1	37	16	545		23		1150		222	š	ND	1		4.3	ź	4			.037	9	33	.80	134	.21	41 1		.09	.54 1
13500N-8850E	3	61	22	917	.2	13	15		4.12	409	5	ND		57	5.3	2	6	66		.030	6	21	.80	145	19	49 4		.10	.30
13500N-8900E	Ĩ	19	11	397	.3	19	16		3.77	102	5	ND	1	68	3.2	2	10	74		.024	7	34	.74	155	18	42 4			.41
13500N-8950E	i i	54	7	127		38	17		3.97	122	5	ND	i	80	2.0	2	3			042	8	59	.99	107	.22	38 4		.11	.33 1
	1										-		•			-	-	.,			•		• • •			50 4		•••	
13500N-9000E	2	112	20	156	.3	62	24	439	5.05	138	5	ND	1	66	1.3	2	13	99	.92	.043	9	91	1.19	88	.25	30 4	.76	.09	.25
13500N-9050E	2	200	19	80	.3	79	29	392	5.28	261	6	ND	1	52	1.2	2	2	83		.056	8		1.54	149	.23	39 6			.36 1
13500N-9100E	2	39	6	53	•3	13	10	280	3.70	90	5	ND	1	73	.9	2	3	84	.71	.043	6	22	.44	86	.21	51 4			.30 1
13500N-9150E	1	37	9	65		17	9	285	3.63	59	5	ND	1	66	.8	2	4	81		.044	7	49	.61	89	.24	28 3		.09	.26 1
13500N-9200E	1	82	7	94	.3	26	17	413	3.74	55	5	ND	1	58	1.6	2	9	81		.036	11	58	.93	97	.26	39 4			.26
	1															_	-									••••			
13500N-9250E	2	172	20	87		49	16	450	4.90	99	5	ND	1	56	1.0	2	17	92	.85	079	6	80	1.32	121	.23	37 5	.33	.10	.35 1
13500N-9300E	1	25	5	- 99	.2	16	9	303	3.42	41	5	ND	1	63	.3	4	5	84	.89	.035	10	60	.60	82	.26	33 3	.67	.08	.22
13500N-9350E	1	41	2	96	.4	25	12	317	3.93	54	5	ND	1	66	.8	4	2	90	.93	.046	9	65	.77	94	.26	32 4	.31	.08	.24 1
13500N-9400E	i 1	27	3	106		23	10	332	3.61	32	5	ND	1	67	1.1	4	8	89	.91	.040	10	53	.75	88	.29	27 3	.94	.09	.23 1
13500N-9450E	1	71	2	95	1	34	16	388	3.90	81	6	ND	1	65	-8	2	2	83	1.03	.036	11	53	.87	96	.23	41 4	.60	.09	.26 1
	1																		8										
13500N-9500E	1	79	13	87		32	14	671		41	5	ND	1	69	.6	3	3	81	1.32	.075	11	74	1.12	130	.23	31.3	.77	.09	.41
13500N-9550E	2	194	11	72	1	42	30	969	4.58	- 34	5	ND	1	73	1.0	2	2	98	1.28	.033	11	51	1.35	148	.23	34 5	.29	.10	.51
13500N-9600E	1	93	9	106		26	25	1053		31	5	ND	1	63	6	4	5	105	.98 🖁	.022	7	36	1.71	211	.18	60 6	.71	.10	.72 1
13500N-9650E	3	65	28	58	.2	8	14	371		17	5	ND	1	91	.6	2	8	84	.70 🖁	.017	9	13	.54	137	.13	71 6	.02	.28	.55
13500N-9700E	1	20	17	68	.1	11	10	354	3.25	15	5	ND	1	74		2	5	76	.94	.018	8	18	.59	146	.16	59 5	. 19	.16	.54 1
											_					_			8										
13500N-9750E	2	57	8	45		6	10		3.62	12	5	ND	1	60	.8	2	6	53	.59		10	14	.70	177	.12	59 5			.65 1
13500N-9800E	1	10	10	87		9	11		2.69	5	5	ND	1	79	8	2	9			.050	9	27	.61	159	.21	34 3		.08	.40 1
13500N-9850E	1	17	2	103		13	12		2.87	10	5	ND	1	81	.9	2	7			.048	10	25	.73	162	.21	32 4		.09	.40 1
13500N-9900E	1	16	7	78		6	11		3.19	6	5	ND	1	67	.4	2	2	73		.036	8	27	.68	143	.15	40 4			.47 1
13500N-9950E	1	23	3	57		10	9	327	3.43	16	5	ND	1	66	.2	2	8	77	.76	.025	9	26	.69	104	.16	35 4	.09	.11	.44 1
13500N-10000E	4	10	8	75		10	8	295	7 07	15	5	ND	4			•	c	71		070	40	27		445		** /	20		,,
13500N-10050E		21	2	64	.3	10	11	385		16	5	ND ND	4	64 68	4	2	5	76 81		.030	10	27 35	.60	115	.20	33 4		.10	.44
13500N-10100E	. 1	49	26	96	.2	18	17	584		000000000	5		4			2	ź			.029	10		.82	127	.19	41 4		.10	.48
13500N-10150E	. 1	78	20	111	1	10	17	588		23 22	5	ND	4	75 85	.8	4 7	2	93 122	· %	.041	12	30	.78	144	.21	39 5		.11	.48 1
13500N-10200E	. 1	63	13	130		14	17	605		10	5	ND ND	4	65 81	.4 .2	3	2			.076	10	24	.96	110	.25	35 4		.09	.30 1
IJJUUN TUZUUE	1	60	13	120		14	15	000	4.32	ιu	2	NU	1	01		د	2	113	1.06	UYI	9	28	1.07	112	.27	30 4	• / 9	.10	.32 1
STANDARD C	19	60	41	133	7.0	73	31	1056	3.98	40	16	7	38	53	19.0	15	20	55	.52	093	37	61	.90	182	.07	35 1	.90	.06	.14 12
					100000000					000076		·										<u> </u>			200 4040		· / ·	<u></u>	

ICP - ANALYSED AS RECEIVED, DILUTION FACTOR .2 G/11 ML. - SAMPLE TYPE: SOLUTION (Scil)

DATE RECEIVED:

Noranda Exploration Co. Ltd. ROJECT 8-87 FILE # 90-4337

•

1

SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca P X X	La ppm	Cr ppm	Mg X	8a ppm	TI X	B ppm	Al X	Na X	K W X ppm
13500N-10250E 13500N-1040DE 13500N-10450E 13500N-10500E 13500N-10550E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	84 20 20 25 25	9 13 3 2 3	108 105 58 91 82	.1 .2 .2 .3 .2	11 7 11 10 13	14 10 8 10 11	1197 703 449 393 439	3.13 3.02 3.51	15 9 14 10 2	5 5 5 9 5	ND ND ND ND ND	1 1 1 1	102 111 106 80 88	.5 .2 .7 .2 .3	4 3 7 2 2	2 2 8 8	72 70 82	1.39.067 1.49.035 1.39.023 .98.105 1.11.052	10 12 12 13 15	29 25 30 30 30	1.03 .86 .85 .70 .72	172 136 133 107 112	.21 .23 .23 .27 .29	48 4. 44 4. 43 3. 32 3. 28 3.	31 . 98 . 78 .	07 06 08	.37 3 .33 1 .34 1 .28 3 .25 1
13500N - 10600E 13500N - 10650E 13500N - 10650E 13500N - 10700E 13500N - 10750E 13500N - 10800E	1 1 1 1	17 22 24 65 46	14 6 2 10 11	75 81 84 94 144	.2 .3 .3 .3 .2	15 16 23 26 32	11 11 12 13 18	409 378 462 450 912	3.47 3.47 3.66 4.55	13 7 5 8 14	7 5 5 5 5	ND ND ND ND	1 1 1 1	97 81 88 82 106	.9 .3 .5 .6 1.0	- 7 2 4 3 5	7 8 4 14 16	90 85 88 116	1.34 .052 1.07 .064 1.20 .053 1.12 .104 1.58 .071	13 15 14 12 12	36 37 44 34	.78 .73 .89 1.08 1.21	87 101 107 93	.34 .30 .31 .35 .36	28 3. 30 3. 33 3. 30 4. 40 4.	68 . 56 . 82 . 52 .	08 08 08 08	.21 1 .26 1 .29 1 .25 1 .26 1
13500N - 10850E 13500N - 10900E 13500N - 10950E 13500N - 11050E 13500N - 11050E	1 1 1 1	49 32 30 51 26	12 2 5 11	73 69 107 94 70	.2 .2 .5 .1 .3	29 26 20 27 15	13 13 14 15 10		3.87 3.66 4.06 4.06	15 16 8 13 7	5 5 6 5 5	ND ND ND ND	1 1 1 1 1	107 133 104 105 115	.3 1.0 .8 .7 .3	5 2 2 3 2	6 4 2 9	90 81 95 94	1.43 .073 1.60 .056 1.43 .077 1.41 .109 1.62 .082	13 11 13 14 11		1.04 .94 .92 .94 .74	115 114 109 122	.33 .32 .34 .30 .30	39 4. 31 4. 30 4. 28 4. 38 3.	42 . 44 . 10 . 44 .	07 06 09 08	.25 4 .24 1 .26 2 .29 1 .29 1
13500N-11100E 13500N-11150E 13500N-11200E 13500N-11250E NL CHECK	1 1 1 20	16 43 24 33 50	2 3 13 17 57	85 73 84 95 158	.2 .3 .1 .1 .9	5 25 18 14 27		600 528 909 1030 512	4.29 3.61 3.95	9 14 3 15 91	7 5 5 5 5	ND ND ND ND	2 1 2 1 5	104 110 96 79 137	.5 .3 .2 .9 2.3	2 3 2 4 4	2 5 2 6 4	102 98 93	1.17 .091 1.48 .071 1.41 .050 .95 .101 1.09 .062	15 12 19 12 21	30 39 54 28 142	.53 .95 .89 .86 .49	93 99 131 125 142	.35 .31 .33 .31 .17	32 3. 29 3. 34 3. 44 4. 54 1.	91 86 54	08 08 10	.24 1 .22 1 .22 2 .33 1 .54 1
13500N - 11300E 13500N - 11350E 13500N - 11400E 13500N - 11450E 13500N - 11500E	1 1 1 1	16 25 36 33 27	11 8 5 13	78 88 93 107 109	.1 .1 .2 .3	15 15 20 16 20	10 13 13	420 661 958 1288 682	3.49 3.83 3.61	8 6 6 2 8	6 9 5 5 6	ND ND ND ND	3 1 1 1 1	95 84 87 83 88	.7 .2 .6 .7 .6	3 3 4 2 5	2 3 11 6 2	89 90 85	1.26 .041 1.11 .069 1.31 .108 1.10 .106 1.24 .099	22 11 14 12 13	49 28 35 27 33	.74 .80 .91 .86 .86	85 100 129 133 119	.36 .30 .31 .29 .31	37 3. 31 4. 29 4. 31 4. 31 4.	10 . 28 . 51 .	10 10 10	.21 2 .28 1 .33 1 .34 1 .32 1
13500N-11550E 13500N-11600E 13500N-11650E 13500N-11700E 13500N-12150E	1 1 1 1	20 44 54 28 43	10 11 6 2 13	72 113 59 69 96	.1 .2 .1 .2 .1	14 20 19 13 20	22 13 9	492 3120 828 593 1707	3.45 3.55 3.57	3 2 7 13 10	5 5 6 5	ND ND ND ND	2 1 2 2 1	98 95 82 90 91	1.0 .8 .9 .7 1.0	2 7 2 3 2	12 7 13 2 6	86 90 95	1.22 .055 1.52 .160 1.14 .141 1.10 .157 1.27 .162	19 16 18 19 15	33 36 38 41 37	.73 .84 .75 .62 .80	109 167 175 117 217	.35 .29 .31 .39 .31	37 3. 42 3. 36 4. 44 3. 42 3.	83 . 26 . 32 .	09 09 08	.22 2 .28 1 .30 1 .24 1 .29 1
STANDARD C	19	61	37	131	7.0	71	31	1054	3.97	39	20	8	38	52	18.9	15	22	56	.51 .100	40	60	.89	181	.07	35 1.	89 .	.06	.13 13

ige 2

a series and the series of the

Noranda Exploration Co. Ltd. COJECT 8-87 FILE # 90-4337

•

) 1

SAMPLE#	Mo ppm	Cu ppm	Pb	Zn ppm	Ag ppm		Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	20222	B	Al X	Na %	K W X ppm
13500N-12200E		42		109	.4		12	1190	4 45	10	5	ND	7		1.3	5			1.54		14	35	.78	160			3.91	.11	
13500N-12250E		40	12	77	1	17		1092		8	5	ND	1	112	1.4	2	2			.058	22	51	.82	128	.36		3.71	.09	.37 3 .26 1
13500N-12300E		16	10	54	1		6	384		ž	5	ND	1	115		5	13		1.79		15	33	.53	80	.42		3.05	.10	.20 2
13500N-12350E	1	22	10	72	1		11	524		2	5	ND	1	114	14	6	10		2.03		13	42	.93	100	.38		3.82	.14	.26 2
13500N-12400E	1	22	8	69	1		9	505		8	5	ND	i	109	1.4	5	8			.052	13	36	.81	93	.39		3.71	.12	.24 1
13500N-12450E	4	21	8	56		12	7	403	3 72	9	5	ND	4	108	.7	2	2	110	1.65	\$07	16	39	.64	84	.39	74	3.71	.12	77
13500N-12500E		29	16	95	:1		11	566		6	5	ND	4	97	1.8	6	ģ		1.55		13	- 	.90	115	.37		4.40	.12	.23 1 .30 1
13500N-12550E		18	2	36	1		7	406		2	5	ND	4	101	.4	2	2		1.58		15	40	.78	94	.37		3.81	.13	.22
13500N-12600E		15	5	52	1		6	325		3	Ś	ND	4	93	1.0	2	8				19	39	.57	98			3.71	.10	.27 1
13500N-12650E	1	35	ś	63	1		12	417		8	5	ND	1	95 95	1.0	3	2		1.49		16	51	.80	121	.33		4.55	.12	.32 2
			-								-		•			•	-	•••										• • •	
13500N-12700E	1	40	6	71	.3	28	13	438	3.99	7	5	ND	2	94	1.8	9	2	96	1.50	.073	14	51	.86	104	.30	37	4.38	.08	.26
13500N-12750E	1	23	11	73	.1	18	12	701	3.04	10	5	ND	1	84	.8	7	2	80	1.20	.048	14	34	.67	134	,28	39	4.18	.10	.33 2
13500N-12800E	1	20	8	94	.3	13	10	633		2	8	ND	1	72	.6	2	6	84	1.00	.048	11	20	.66	134	.24	50 -	4.87	.10	.32
13500N-12850E	1	24	8	131	1	15	12	720	3.63	2	5	ND	1	79	.9	2	- 4	90	1.07	.083	10	25	.75	146	.25	53	5.33	.11	.38
13500N-12900E	1	10	3	48	.1	6	6	275	2.36	7	5	ND	1	95	1.0	2	4	75	1.18	.028	15	21	.43	81	.31	36 3	3.66	.09	.19 3
13500N-12950E	• 1	19	4	58	.1	24	9	419	3.06	4	11	ND	1	98	1.1	6	2	77	1.66	-018	13	33	.92	115	.28	36	3.88	.10	.20 1
13500N-13000E	1	21	3	79	.1		10	401		8	12	ND	1	81	1.6	2	2		1.16	20.00 C - 20.00 C	12	28	.73	106			4.39	.09	.28
13900N-8800E	2	32	11	74	.2		14	570		27	. 5	ND	1	79	.2	5	5			.025	13	57	.80	120	.24		3.52	.09	.38 1
13900N-8850E	2	61	12	84	1	38	15	829	3.74	25	5	ND	1	81	.9	7	2		1.39		13		1.01	158			4.32	.08	.50 1
13900N-8900E	1	73	15	80	.1	40	15	589	3.65	16	5	ND	1	81	2.1	5	2			.053	13		1.05	132			4.19	.09	.47 2
13900N-8950E	1	34	15	115	1	45	16	1039	3.34	29	5	ND	1	74	1.0	6	2	74	1.34	075	11	96	.98	153	.22	44	4.12	.09	.52 2
13900N-9000E	1	37	6	78	.3		14	527		17	5	ND	1	74	2	2	7			.025	13	89	.91	102			3.69	.08	.36
13900N-9050E	1	21	19	81	.4		11	324		20	8	ND	1	70	8	6	ģ		1.29		12	96	.67	95	.26		3.25	.08	.31 1
13900N-9100E	1	19	13	52	1	36	13	368		17	5	ND	1	70		2	2		1.23		11	80	.80	95	.25		3.45	.08	.27 2
13900N-9150E	1	31	6	106	.4		13	704		10	8	ND	1	78	.4	5	2		1.33		12	59	.78	120	.24		3.59	.08	.33 1
13900N-9200E	1	24	6	100	.2	32	14	350	3.15	23	5	ND	1	70	1.4	5	2	75	1.16	.014	14	63	.85	101	.25	37	3.67	.09	.32 1
13900N-9250E	1	39	6	94	- 1		14	478		27	5	ND	1	66	2	6	2		1.24		9	107	.96	92			3.62	.08	.30 1
13900N-9300E	1	21	15	569	.3	30	14			30	15	ND	1	60	2.6	ž	5	73		.031	14	58	.89	127	27		4.22	.07	.35 1
13900N-9350E	3	99	2	458	1		10	369		40	5	ND	1	36	1.7	2	4	48	.46		15	23	.68	320	.13		5.80	.05	.87 1
13900N-9400E	Ĩ	13	3	88	•1		10	301		13	5	ND	1	71	1.5	2	11		1.14		13	74	.65	81	.24		2.98	.08	.27 1
STANDARD C	19	62	40	133	7.3	72	32	1057	3.99	43	16	7	39	52	18.4	16	21	58	.52	.094	40	59	.90	182	.08	38	1.90	.07	.13 13

.ge 3

. . . .

Noranda Exploration Co. Ltd. JJECT 8-87 FILE # 90-4337

•

ł

a second s

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	- 200000-770	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th prm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	р Х	La ppm	Cr ppm	Mg X	Ba ppm		B	Al X	Na %	K W X ppm
13900N-9450E	1	29	2	79	.2	16	11	457	3.62	23	5	ND	1	67	1.3	2	7	74	82	.030	9	46	.79	123	.18	50	4.27	.08	
13900N-9500E	l i	18	5	80		19	11	427		7	7	ND		77	1.2	2				.019	10	49	.73	96			3.49	.08	.40 5
13900N-9550E	i	17	2	85		22	12	531		17	Ś	ND	1	85	13	2	7			.039	11	53	.76	108	.25		3.77	.08	.20
13900N-9600E	1	12	9	143	.2	16		1164		2	5	ND	1	82	1.5	2	ż		1.10		12	37	.72	142			3.39	.08	.30 3
13900N-9650E	1	22	4	96	.1	15	12	487		13	5	ND	1	79	1.0	2	3			2089	13	38	.80	140			4.22	.08	.30 5
13900N-9700E	1	20	4	111	.1	18	12	907		2	5	ND	1	78	1.2	2	11	76	1.03	.058	13	36	.89	165	.23	48	4.18	.10	.43 1
13900N-9750E	1	15	8	66		16	8	633			5	ND	1	64		2	7	58	.84	.037	13	25	.78	220	. 18	66	5.08	.08	.91 1
13900N-9800E	1	27	5	78		18	12	934		10	5	ND	1	73		2	3	- 74		.028	13	41	.95	205	.19	56	4.77	.09	.67 1
13900N-9850E	1	23	8	72		19	10	585		10	5	ND	1	68	-2	2	6	69		.026	13		1.19	247	.16		5.84	.11	.89 1
NL CHECK	21	52	70	168	1.1	34	24	541	2.81	99	5	ND	5	146	2.7	4	8	43	1.16	.065	23	155	.51	148	.17	48	1.84	.14	.56 1
13900N-9900E	1	23	11	61	.1	14	9	494	3.14	7	5	ND	1	63	.5	2	2	64	.70	.024	11	39	1.10	227	.14	60	5.33	.09	.82 1
13900N-9950E	1	103	12	86	.2	20	16	979	4.45	12	5	ND	1	92	4	3	· 3			.052	11		1.44	226	20		4.90	.07	.76 1
13900N-10000E	1	173	2	93		19	25	1574	6.29	37	5	ND	1	107	.4	2	2			067	8		1.47	138	.27		5.34	.08	.31 1
13900N-10050E	1	51	3	94		19	18	1052	4.35	54	5	ND	1	93	1.5	2	3	110	1.32	.053	10		1.09	188	.23		5.12	.08	.58
13900N-10100E	2	63	14	76	.1	15	12	421	4.53	29	6	ND	1	108	.7	2	5			.058	11	24	.96	142			5.20	.08	.37 1
13900N-10150E	· 1	30	10	102	.1	9		537		9	5	ND	1	106	1.4	2	8	103	1.31	.057	12	24	.71	106	.28	31	3.85	.09	.28 1
13900N-10200E	5	248	2	168	.5	16	• •	1100		29	5	ND	1	65	1.7	2	4	95	1.98	.063	8	25	.86	134	16	63	6.22	-08	.30
13900N-10250E	2	65	3	123		13		1039		88	5	ND	1	127	1.2	2	5			.038	9	31	1.14	135	.24	47	4.61	.08	.28
13900N-10300E	1	116	2	120	•3	13	17	801		13	5	ND	1	172		2	2			.020	9		1.47	126	.27	62	5.02	.05	.29 3
13900N-10350E	2	115	22	86	.2	20	13	905	3.96	18	5	ND	1	79		2	6	111	1.37	.057	17	36	.91	136	.27	44	5.07	.09	.25 1
13900N-10400E	1	66	2	69		22	14	448	4.63	23	5	ND	1	113	.7	2	4	109	1.38	.066	11	35	1.02	117	.26	43	4.39	.06	.31 1
13900N-10450E	1	51	2	65		11	15	538	4.00	7	5	ND	1	97	1.3	2	4		1.32		10		1.10	89	.28		3.69	.07	.20 1
13900N-10500E	1	60	12	93	.1	11	14	444	4.05	14	8	ND	1	83	.9	2	5	108	1.02	.062	10	24	.86	91	.27		4.15	.08	.23 1
13900N-10550E	1	47	- 4	99	.1	11	11	502	4.00	6	5	ND	1	87		2	2	92	1.09	124	12	24	.73	108	.28		3.95	.08	.27 1
13900N-10600E	1	31	2	66	.1	6	8	370	3.70	15	5	ND	1	92	1.1	2	7	92	1.16	.089	14	27	.70	92	.29	29	3.92	.09	.24 2
13900N-10650E	1	31	2	94	.1	10	11	488		20	5	ND	1	85	1.6	2	2			.152	15	26	.63	120	.34		3.78	.09	.22 1
13900N-10700E	1	20	7	60		16	8	384		12	5	ND	1	96	1.6	2	2			.093	15	37	.72	95	.36		3.74	.10	.24
13900N-10750E	1	34	2	82	•1	19	11	418		15	6	ND	1	84		2	4			.099	13	30	.80	94	.31		3.96	.09	.25
13900N-10800E		36	12	76	1	15	11	404		- 14	11	ND	1	86	8. -	2	2			.076	12	31	.76	83	.29		3.82	.08	.22 1
13900N-10850E	1	59	15	86	.2	21	14	550	5.86	6	5	ND	1	73	1.3	4	6	91	1.12	-097	8	30	1.14	97	.25	40	4.51	.08	.30 1
STANDARD C	19	62	39	133	7.1	73	32	1055	3.99	40	15	7	38	52	18.4	15	19	57	.51	.094	39	59	.90	182	.08	38	1.89	.06	.13 13

ge 4

Noranda Exploration Co. Ltd. .OJECT 8-87 FILE # 90-4337

.

-

•

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe As % ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	TI X	B ppm	Al X	Na %	K W X ppm
13900N-10900E	1	45	6	91	.5	20	12	413	3.51 5	5	ND	2	76	.4	2	2	84	1.01	104	13	34	.89	99	,28	43 /	4.48	.07	.26 5
13900N-10950E	2	32	8	117	.2	19	12	482	4.07 3	5	ND	1	74	1.8	2	5	96		.112	11	31	.88	128	.27		4.51	.08	.33 4
13900N-11000E	3	36	9	66	.3	20	17	1173	3.31 10	5	ND	1	93	.7	4	5	93	1.71		13	29	.91	108	.26		3.59	.07	.22 2
13900N-11050E	4	45	10	92	.4	28	17	1442	4.44 7	5	ND	1	85	.6	2	2	126	1.41	.187	14	41	1.02	135	.29		5.31	.07	.22 2
13900N-11100E	4	40	19	75	.4	29	15	413	4.60 10	5	ND	1	101	.7	2	2	106	1.43	.068	12	38	.96	142	.35		4.73	.07	.33 4 .22 2 .22 2 .23 1
13900N-11150E	3	17	2	80	.1	14	8	345		5	ND	1	88	.4	2	6		1.35		13	35	.60	96	-31	30 3	3.22	.07	.20 2 .18 1
13900N-11250E	3	21	11	57		14	7	299		5	ND	1	95	1.2	2	2		1.22		15	39	.48	106	.32		3.08	.07	.18
13900N-11400E	2	27	10	67	•1	15	. 9	419	2000002-000	5	ND	1	95	.6	2	2		1.88		11	35	.71	167	.27		3.48	.06	.24 1
13900N-11450E	1	33	4	59	.3	21	11	372		5	ND	1	95		5	6		1.34		15	38	.80	109	.30		4.10	.06	.24 2 .31 1
13900N-11500E	2	49	2	91	.1	24	15	518	3.78 13	5	ND	1	97	1.7	9	3	88	1.28	.079	12	34	1.05	128	.30	41 4	4.80	.07	.31 1
13900N-11550E	1	33	18	97	.1	18	11	474	3.65 8	5	ND	2	90		2	2	82	1.22	.105	14	40	.78	102	.29	46 (4.15	.08	.27 1
13900N-11600E	1	26	10	93	.3	17	9	375	3.26 2	5	ND	2	84	1.5	2	13		1.06		15	33	.69	106	.30		3.94	.08	.23 1
13900N-11650E	1	30	33	90		26	11	524	3.93 4	5	ND	1	100	.5	3	2	89	1.21	.077	11	43	.95	110	.29		4.30	.10	.30 3
13900N-11700E	1	42	10	78		30	12	481	3.65 5	5	ND	1	91	.8	2	7	83	1.32	.088	13	51	.99	94	.28		3.97	.07	.25 1
13900N-11750E	1	23	16	73	.2	20	8	441	3.47 8	8	ND	1	87	1.3	2	2	90	.98	.091	13	38	.64	105	.31	33 3	3.46	.10	.28 3
13900N-11800E	· 1	35	2	88	.2	14	9	434	3.61 10	6	ND	2	77		2	10	79	.96	.081	14	24	.73	95	.29	32 4	4.05	.08	.25 1
13900N-11850E	1	19	13	64		12	7	360		5	ND	2	87	1.0	4	3		1.09		15	29	.50	85	.36	30 3	3.31	.08	.18
13900N-11900E	1	28	17	71		22	10	564	200000000000000000000000000000000000000	5	ND	1	94	1.6	2	4		1.28		15	36	.79	104	.33	27 3	3.71	.08	.24 1
13900N-11950E	1	25	15	107	1	16	11	830	MARGANTA	5	ND	1	97	1.5	6	2		1.30		14	33	.71	131	.32	26 3	3.95	.09	.26 2 .23 2
13900N-12000E	1	33	2	85	.2	24	11	562	3.54 11	5	ND	1	91	.2	6	2	90	1.38	.066	12	39	.79	110	-28	30 3	3.52	.07	.23 2
13900N-12050E	1	41	11	82	1	20	12	580	4.12 8	5	ND	2	97	.7	4	15	100	1.44	.072	11	36	.88	116	.30	46 3	3.94	.08	.21
13900N-12100E	1	18	16	71	1	17	10	403		5	ND	2	82	5	4	2		1.11		19	33	.69	125	.31		4.40	.11	.24 2
13900N-12150E	1	23	9	85	.2	19	10	440		8	ND	1	110	.8	2	2	91	1.58	.059	13	42	.73	96	.30		3.77	.07	.22 1
13900N-12200E	1	11	8	61		13	7	311	2.86 5	5	ND	3	76	.5	2	11	72		.053	16	24	.46	123	.28	35 3	3.94	.07	.27 1
13900N-12250E	1	12	4	129	•1	15	9	389	2.50 2	7	ND	3	78	.9	2	2		1.04		17	32	.61	131	.28		3.65	.07	.15 1
13900N-12300E	1	16	8	64	.1	18	8	306		5	ND	3	65	.7	2	8	66		.067	13	25	.52	128	.23		4.07	.07	.28 1
13900N-12350E	1	15	12	81	.1	16	9	513		5	ND	1	84	.8	2	3		1.31		14	29	.71	112	.29		3.69	.08	.19 1
13900N-12400E	1	12	20	91		15	6	308	000000000	5	ND	1	- 77	.2	2	2		1.00		12	21	.50	99	.29	29 1	3.82	.09	.19
13900N-12450E	1	19	15	113	.2	16	9	988		5	ND	2	79	.7	6	15		1.08		14	27	.64	139	.25		4.73	.10	.20 3
NL CHECK	20	52	62	142	1.0	38	23	520	2.84 91	5	ND	6	133	2.5	4	4	42	1.08	. 063	20	148	.48	147	.18	37	1.75	.12	.52 4
STANDARD C	19	60	37	131	7.0	72	31	1054	3.97 39	15	7	37	53	18.9	14	19	56	.52	.098	37	61	.89	182	.07	35	1.89	.06	.14 12

.ge 5

Noranda Exploration Co. Ltd. .OJECT 8-87 FILE # 90-4337

•

.

1

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm		Bi ppm	V ppm	Ca P X X		Cr ppm	Mg %	Ba ppm	TI X	8 ppm	Al X	Na %	K W X ppm
NL CHECK	20	52	81	155	1.4	28	23	528	2.70	90	5	ND	6	141	2.2	2	10	42	1.24 .063	23	146	.49	144	.17	34 1	.76	.13	.55 1
13900N-12500E	1	26	20	57	.5	16	11		3.47	6	5	ND	2	67	22	2	3	79	.92 .041	12	25	.71	131	24	33 4		.08	.27
13900N-12550E	l i	19	14	55	.2	14	8		3.85	3	5	ND	2	79	2	2	6		1.01 .077	12	29	.57	105	29	43 4		.09	.28 1
13900N-12600E	1	15	18	67	.4	14	7	301	2.97	8	5	ND	2	73	.2	2	9		1.04 .087	12	25	.55	100	.24	36 4		.08	.25 1
13900N-12650E	1	22	18	72	.4	8	9		3.63	2	5	ND	1	68	.2	2	10	82	.97 .065	11	22	.68	113	.26	35 4		.09	.25 1
13900N-12700E	1	17	14	95	.3	12	10	336	3.70	5	5	ND	1	79	.2	2	6	85	1.07 .058	11	24	.59	101	.29	26 4	.72	.08	.22 1
13900N-12750E	1	17	27	51	.2	19	9		3.73	10	5	ND	1	84	.4	2	5	82	1.16 .043	10	31	.66	101	.28	32 3	.95	.08	.24 1
13900N-12800E	1	14	18	81	.4	13	8		3.53	4	5	ND	1	81	.4	2	14	80	1.18 .060	11	29	.61	107	.29	30 4	.26	.09	.23 2
13900N-12850E	1	19	15	68	.4	15	9		3.88	6	5	ND	1	- 77	2	3	7		1.15 .056	9	26	.64	111	.26	32 4		.08	.29
13900N-12900E	1	10	23	33	.4	8	5	295	1.94	2	5	ND	1	85	•2	2	10	56	1.23 .018	10	32	.51	118	.23	39 3	.59	.07	.26 1
13900N-12950E	1	15	12	92	.4	13	10	373	3.31	3	10	ND	2	84	.2	2	10	76	1.20 .054	10	30	.67	102	.28	40 4	.00	.08	.24 2
13900N-13000E	1	17	10	100	.1	15	9	443	3.34	2	5	ND	1	88	.2	2	5	- 77	1.24 .054	11	30	.69	98	.28	30 3	.99	.08	.24 2 .25 1
14300N-9000E	1	57	5	662	.7	32	20	1485	4.02	22	5	ND	2	78	2.6	3	2	72	1.23 .137	11	57	1.00	231	.22	36 4	.18	.07	.52
14300N-9050E	1	65	19	416	-5	28		1942		17	5	ND	1	72	1.0	6	5	75	1.23 .140	12	42	.98	345	.20	474	.94	.11	.69
14300N-9100E	1	57	17	219	.4	27	17	1151	4.43	24	6	ND	1	66	.8	2	9	74	1.01 .052	11	57	.99	219	.19	42 4	.79	.09	.70 1
14300N-9150E	1	60	14	252	1	30	17	1494	4.63	27	5	ND	i	67	.2	3	2	77	1.02 .066	13	54	.99	286	.21	48 4	.92	.08	.69
14300N-9200E	1	84	15	116	.4	32	16	577	5.16	40	8	ND	1	59	3	2	3	82		11		1.02	219	.19	47 4		.09	.75
14300N-9250E	1	55	23	159	2	12	15	2819	2.52	11-	5	ND	1	78	1.8	2	8	35	2.85 .161	10	20	.61	474	.10	46 2		.04	.51 1
14300N-9300E	1	59	19	425	.4	29	15	1591	3.91	10	5	ND	1	78	1.5	5	12		1.52 .116	12	69	.99	272	.19	46 4	.16	.07	.59
14300N-9350E	1	36	24	251	.2	33	14	1348	3.86	11	5	ND	1	74	-2	2	7	72	1.29 .074	11	75	.97	307	.20	48 4	.71	.12	.63 1
14300N-9400E	1	41	18	382	.3	29	16	2458	3.61	12	5	ND	1	69	44	2	2	70	1.45 .083	11	67	.84	230	.21	34 3	. 65	.07	.39 1
14300N-9450E	1	31	15	168		14		1872		2	5	ND	1	63	1.2	4	4		1.80 .042	8	29	.58	384	37	36 2		.07	.45 1
14300N-9500E	1	40	10	101		24	13		4.13	16	5	ND	1	64	7	ż	2	77	.97 .035	12	58	.96	176	.20	34 4		.11	.53
14300N-9550E	1	24	32	119	1	23	14	2212	3.70	2	5	ND	1	69	1.0	4	7	73	1.20 .086	11	48	.99	257	.22	43 4		.10	.53 1
14300N-9600E	1	32	14	64	.5	25	12	493	3.61	11	5	ND	1	58	.2	2	2	81	1.00 .018	7	81	1.00	127	.19	29 3		.07	.41 1
14300N-9650E	1	27	20	62	.3	23	14	371	3.89	2	5	ND	1	67	.2	2	10	105	.92 .017	10	65	1.21	142	.20	35 4	.34	.07	.37 1
14300N-9700E	1	30	26	69	S i	21	15		4.03	2	5	ND	1	67	2	2	3	103	.97 .023	9		1.20	195	21	38 4		.07	.43 1
14300N-9750E	2	56	18	63		27	15	467	4.20	4	7	ND	1	66	3	2	12		1.04 .016	10		1.25	157	21	38 4		.07	.45 1
14300N-9800E	2	31	10	59	1	22	13	406	3.64	2	5	ND	1	74	3	2	3		1.14 .013	11		1.12	131	.23	32 3		.07	.31 1
14300N-9850E	2	34	24	88	.4	24	15	1056	4.09	7	5	ND	1	81	.2	5	9		1.07 .043	12		1.21	179	.25	36 4		.08	.32 1
STANDARD C	19	62	37	133	7.3	73	31	1055	3.98	39	16	7	38	52	18.9	16	20	56	.52 .094	39	61	.90	183	.08	37 1	.89	.06	.13 13

.ge 6

Noranda Exploration Co. Ltd. ROJECT 8-87 FILE # 90-4337

.

ì

age 7

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	2000000222	B ppm	AL X	Na X	K W X ppm
14300N-9900E	1	31	7	89	.2	24	15	2078	3.68	4	5	ND	1	76	1.3	3	4	92	1.40	.075	9	50	1.21	175	.22	40	3.89	.07	.35 1
14300N-9950E	1	112	9	106	.3	23	19	622	4.68	5	7	ND	1	87	1.3	7	3	117	1.30	.037	8	44	1.74	166	.24	32	5.52	.07	.38 1
14300N-10000E	1	42	2	87	.2	39	18	712	4.34	2 2	5	ND	1	86	.2	2	2		1.10		7	69	1.80	130	.24		5.07	.07	.34
14300N-10050E	3	68	8	103	.2	17	13	863	3.95		5	ND	1	80	.3	3	2	100	1.49	.031	10	38	1.10	165	.22	38	4.66	.08	.30
14300N-10100E	1	30	3	137	1	16	12	762	3.57	10	5	ND	1	89	.5	4	2	99	1.33	.083	10	30	.83	127	.29	32	3.73	.09	.24 1
14300N-10150E	1	35	6	80	.1	12	11	452		4	5	ND	1	100	1.6	2	4		1.45		9		1.01	105			4.09	.08	.26 1
14300N-10200E	1	31	6	110	.2	13	13	580		2	5	ND	1	105		8	2		1.51	2.0.0	9	25	.90	105			4.34	.08	.28 1
14300N-10250E	1	25	2	100	.2	10	9		3.36	7	5	ND	1	87	.2	- 4	3			.033	9	28	.70	104			3.59	.08	.26
14300N-10300E	1	56	12	114	.3	14	12	466		2	5	ND	1	101	1.3	5	2		1.44		8	40	.91	126			4.41	.09	.30
14300N-10350E	1	28	10	116	.6	19	12	1271	3.28	3	5	ND	2	88	.7	6	3	80	1.43	.054	11	37	.85	208	.24	46	3.95	.09	.35 1
14300N-10400E	1	51	19	98	1	19	12	457	3.79	4	5	ND	1	100	1.0	4	2	88	1.30	.043	10	37	1.00	146	.25	50	5.21	.09	.31 1
14300N-10450E	1	47	2	141	.2	12	13	1307	3.80	2	5	ND	1	107	.5	2	2	92	1.44	.100	9	22	.79	152	.25	47	5.02	.09	.31
14300N-10500E	1	21	2	53	.3	5	6	218	2.49	2	8	ND	1	93	1.5	5	3	71	1.14	.032	9	7	.42	168	.14	124	4.98	.21	.57
14300N-10550E	1	45	16	113	.2	15	13	528		2	5	ND	1	87		4	5	85	1.42	.037	11	31	.89	120	.26	34	4.33	.10	.22 1
14300N-10600E	1	33	2	98	1	13	14	667	3.28	2	5	ND	1	87	1.1	4	2	80	1.22	.057	11	28	.82	140	.27	36	4.02	.09	.31 1
14300N-10650E	· 1	58	2	84	-3	16	13	470	4.40	15	5	ND	1	121	1.0	4	8	110	1.55	,050	8	27	.97	127	.26	. 44	5.10	.10	.31 1
14300N-10700E	1	29	5	72	1	14	10	506	3.73	9	5	ND	1	128	.7	2	2	99	1.71	.050	7	23	.77	117	.27	36	4.14	.09	.27
14300N-10750E	1	45	2	98	.4	- 77	18	1098	4.51	13	5	ND	1	89	1.2	2	6	99	1.74	.056	7	69	1.54	132	.32	32	4.93	.13	.25
14300N-10800E	1	42	9	68	. 1	24	12	466	4.00	8	5	ND	1	99		5	2	95	1.48	.049	9	37	1.05	116	.29	33	4.37	.10	.26
NL CHECK	19	54	88	147	.9	31	23	522	2.85	93	5	ND	5	145	2.7	6	2	42	1.31	.064	21	135	.50	156	.17	29	1.86	.14	.58 2
14300N-10850E	1	43	8	59	.1	29	13	742	3.66	2	5	ND	1	111	.8	2	2	93	1.72	.030	10	47	1.04	124	.29	32	3.93	.10	.26 1
14300N-10900E	1	113	22	90	1 .	33	15	829	4.47	9	5	ND	1	100	2	2	6	113	1.54	.055	10	36	1.24	126	.35	30	5.09	.09	.26 2
14300N-10950E	1	29	11	85	.2	21	12	488	3.48	4	5	ND	1	92	1.2	3	5	83	1.39	.053	9	38	.89	91	.29	32	3.94	.09	.25
14300N-11000E	1	48	13	73	.2	28	12	481	3.89	11	5	ND	1	94	.8	2	2	91	1.43	.056	11	41	1.03	112	.28	37	4.34	.09	.31 1
14300N-11050E	1	39	2	112	-1	18	12	637	4.14	15	7	ND	1	101	1.6	4	2	94	1.47	.071	10	31	.89	120	.32	30	4.48	.08	.29 2
14300N-11100E	1	24	12	100	.4	13	9	434	;	9	10	ND	3	104	1.5	8	3			.061	13	26	.76	118			4.61	.09	.30 1
14300N-11150E	1	18	15	49	1	10	7	507		2	5	ND	1	102	1.1	2	2			.050	11	22	.69	113		27	4.15	.10	.27 1
14300N-11200E	1	30	15	54	.2	16	10	424		8	5	ND	1	111	1.3	2	2			.063	10	22	.77	127			4.08	.08	.26
14300N-11250E	1	24	22	59	.1	14	11	921		10	5	ND	1	109		2	3		1.48		11	22	.71	115			3.96	.09	.25 2 .23 3
14300N-11300E	1	34	26	76	.2	14	14	560	4.32	12	5	ND	1	112	1.6	2	2	103	1.73	-138	10	26	.85	101	.37	26	4.13	.08	.23 3
STANDARD C	18	61	38	131	7.2	72	31	1057	3.98	40	22	7	38	53	18.9	15	23	55	.52	.098	37	60	.90	182	.07	36	1.89	.06	.14 13

--

•

ł

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	11	_	AL	Na	K W
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u> </u>	<u> </u>	ppm	ppm		ppm		ppm	~		% ppm
14300N-11350E	1	151	15	86	.2	33	14	473	4.96	37	7	ND	2	58	4	7	3	126	.66	.102	22	48	.74	209	.25	32 7	7.22	.07	.25 1
14300N-11400E		15	7	47		11	7	295		12	Ś	ND	1	93		2	2			057	14	32	.45	79	.34			.07	.18
14300N-11450E	4	9	13	44		8	Å	310		8	ŝ	ND	ż	96		2	5			.017	17	25	.46	116	.31			.09	.23
		20	12	67	3	13	10	372		ă	5	ND	1	90	.6	2	6			.064	13	31	.69	104	.30			.08	.24 2
14300N-11500E	4	15	20	59		11	7	341		8	5	ND	4	95	2	ž	2			.050	10	23	.61	96	.31			.09	.25
14300N-11550E	1	15	20	29		11		341	3.14		,	NU	ı	75		2	2	76	1.67		10	23	-01	70		67 3		.07	· C
14300N-11650E	4	23	11	55	.2	15	10	443	4 24	-	5	ND	1	133		2	2	106	1 82	.059	13	42	.77	117	.34	31 4		.08	.26 2
			8	54	20225-79	23	12		4.00	17	5	ND		93	.	2	6			.048	14	43	.81	120	.29	35 4		.08	.28
14300N-11700E		32	17	88			11		3.58	12	5	ND	-	90		5	8			.049	14	32	.64	111	31			.09	.26
14300N-11750E		21				20					5					2	ő				12	34	.68	99	.30			.08	.25 1
14300N-11800E	1	21	14	72		15	ž		3.78	13	2	ND	1	85		ć,	y y											.08	.29
14300N-11850E	1	21	25	83	88 C	14	10	405	3.91	16	(ND	2	ΥI		4	2	97	1.11	.067	12	34	.82	117	.29	36 4	+.02	.09	.27
			•				~	107	2 05		-					,	2	71	4 45			34	17	446	3	20 2	5.57	.07	.32 1
14300N-11900E	1	17	2	69		13	9		2.85	12	2	ND	1	87	.2	<u> </u>	4			.051	11	26	.67	115	.25				
14300N-11950E	1	28	17	77		13	11		3.76	14	<u> </u>	ND	1	81			5			.039	10	34	.75	129	.24			.07	.24
14300N-12000E	1	27	- 3	76		11	10		3.99	15	5	ND	1	85	39 4	2	8			.044	10	27	.74	102	.25	25 4		.08	.24 1
14300N-12050E	1	41	9	78	-2	19	12	454		10	5	ND	1	81	∷ ⊶Z	2	3			.063	11	37	.91	112	.25			.08	.28
14300N-12100E	1	9	11	86	.2	6	6	345	2.43	9	5	ND	1	92		2	- 4	71	1.29	.035	14	22	.49	86	.28	31 2	2.90	.07	.18
14300N-12150E	1	20	6	82		13	10	339	3.82	20	5	ND	1	76	.2	3	7	87	1.04	.082	9	26	.63	92	.24		4.08	.07	.21 1
14300N-12200E	1	13	21	61	88 1	8	6	351	3.20	9	5	ND	1	87	.2	2	8	82	1.11	.040	13	26	.55	89		28 3	5.44	.08	.26
14300N-12250E	1	18	12	80		7	8	387	3.37	13	5	ND	1	88	.5	2	2	84	1.11	.065	9	26	.60	92	25	28 3	3.74	.08	.26 1
NL CHECK	23	54	74	151	.9	34	25	554	3.18	108	5	ND	5	141	2.1	4	9	46	1.26	.076	22	159	.51	159	.21	37 1	1.87	.14	.57 1
STANDARD C	18	60	41	132	7.1	72	31	1055	3.97	41	15	7	37	53	18.7	15	21	55	.51	.100	36	61	.89	181	07	34 1	1.89	.06	.14 12

. Je 8

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$; [] &		NORANDA VA	NCO	UVER LAB	ORATORY	Y	
Values in PPM, except where noted. T.T. SAMPLE PPB No. Au 86 13500N-8800E 10 87 8850 35 88 8900 20 90 9000 80 91 9050 20 92 9100 10 95 9250 15 96 9300 5 97 9350 5 98 9400 5 99 9450 5 97 9350 5 98 9400 5 99 9450 5 100 9550 5 3 9600 30 4 9650 5 5 9700 5 7 9800 5 9 9990 5 12 10050 5 14 10150 5 15	PI	ERTY/LOCATION	I:NEWMAC				CODE : 9008-087	
T.T. SAMPLE PPB No. Au 86 13500N-8800E 10 87 8850 35 88 8900 20 99 9000 80 91 9050 20 92 9100 10 93 9150 30 94 9200 10 95 9250 15 967 9350 5 97 9350 5 98 9400 5 997 9350 5 979 9450 5 970 9350 5 100 9500 5 12 9650 5 13 9600 5 14 9950 5 15 10200 5 14 10050 5 15 10200 5 16 10250 5 17	Pro Mat Rem	ject No. erial arks	123 222 SOILS					
No. Au $\overline{86}$ 13500N-8800E 10 $\overline{87}$ 8850 35 $\overline{89}$ 8950 20 $\overline{90}$ 9050 20 $\overline{91}$ 9050 20 $\overline{92}$ 9100 10 $\overline{93}$ 9150 30 $\overline{94}$ 9200 10 $\overline{95}$ 9250 15 $\overline{96}$ 9300 5 $\overline{97}$ 9350 5 $\overline{98}$ 9400 5 $\overline{97}$ 9350 5 $\overline{98}$ 9400 5 $\overline{97}$ 9350 5 $\overline{3}$ 9660 30 4 9650 5 $\overline{9}$ 9700 5 $\overline{9}$ 9700 5 $\overline{10}$ 9950 5 $\overline{9}$ 9960 5 $\overline{11}$ 10050 5 $\overline{12}$ 10050 5				===:	Values	in PPM,	, except where noted.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	No.		Au				
4! 12200 5 4٤ 12250 5 47 12300 5 48 13500N-12350E 5	N-87890123456789023456789C1234567890123456789012345678901 1111111111122222222222233333333333333	No. 13500N-8800H 8850 8900 9050 9050 9100 9250 9250 9300 9450 10050		Au 10 35 205 800 105 55 50 105 30 30				

.

- ton Dec CR. Dr

* . . + ?

-087 of 4	
9008- Pg. 2	
PPB Au	55555555555555555555555555555555555555
SAMPLE No.	13500N-12400E 12450 12500 12500 12600 12750 12700 12750 12800 12900 12950 13500N-13000E 13900N-8800E 13900N-8800E 9000 9050 9000 9050 9100 9250 900 9250 900 900 900 900 900 900 900 10050 10000 10000 10050 10000
Г.Т. No.	- 45 111111111111111111111111111111111111

الى لەلەر مەرىمەرىمەر مەرىمەرىتەرىغ نىڭ ئە مەر

•

T.T.	SAMPLE	PPB	9008-087
No.	No.	Au	Pg. 3 of 4
-123456789012345	13900N-11850E 11900 11950 12050 12100 12250 12250 12300 12350 12450 12450 12550 12600 12650 12750 12800 12850 12900 12950 13900N-13000E 14300N-9000E 9050 9250 9300 9400 9450 9250 9300 9400 9450 9550 9600 9750 9800 9550 9600 9750 9800 9550 9600 10050	5 5 5 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

T.T.	SAMPLE	PPB	9008-087
No.	No.	Au	Pg. 4 of 4
42 44 45 46 47 48 50 23 45 67 89 10	.4300N-11400E 11450 11500 11550 11600 11650 11700 11750 11800 11850 11900 11950 12000 12050 12100 12150 12200 14300N-12250E	10 55 55 55 55 55 55 55 55 55 55 55 55 55	

,

このなるなななななないができた。 シー・シー・システムなないです かんたいしゃ かんし

•

ACME ANA' "ICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL A LYSIS CERTIFICATE

Noranda Exploration Co. Ltd. PROJECT 9007-055 123 File # 90-2610 Page 1 P.O. Box 2380, 1050 Davie St., Vancouver BC V6B 375

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr C ppm pp	d Sb na ppm	Bi ppm	V ppm	Ca P X X		Cr ppm	Mg X	Ba Ti pom X	B AL ppm X	Na X	K W X ppm	Au* ppb
R 114051 R 115401	1	73 8	2	64 27	.1	18 59	21 14	581. 626		8 29	5 5-	ND ND	1	19 . 30 .		9 13		1.60 .039	32	27 76	1.63	10 .24 6 .27	5 2.35 2 1.40	.04	.03 1	2
R 115402		6	ž	75		4	3	580		5	5	ND	i		2 3	2		1.42 .051	2	7	.93	23 .05	7 1.35	.01	.12 1	4
R 115403	i	237	2	18	.2	10	5	200		7	5	ND	i	23		9		1.13 082	2	42	.22	11 .17	2 1.38	.08	.07 1	1
R 115404	1	118	- 4	21	•1	27	11	362		8	5	ND	ź	12 1.		8	45 2		2	81	.74	5.16	14 2.15	.03	.02 1	z
R 115407	1	33	3	48	.1	3	5	688		14	5	ND	2	43 .	1414) e	2		2.27 .052	3	6	.89	32 .01	3 1.51	.03	.12 1	z
R 115408		81	2	71	.2	5	7	529		14	5	ND	1	32		2	23 1	1 T T T 1005-54030	3	5	.93	21 .01	2 1.53	.02	.10 1	3
R 115409		25	2	26		18 5	11	661 942		8	5 5	ND	1	49 67 1.		6		5.43 .071 1.86 .042	2	10	.64	4 .20 15 .13	2 1.11 2 3.23	.04	.03	3
R 115410 R 115411	1	25 36	6	82 61	.1	43		1110		10 74	5	ND ND	1 2	67 1. 152 .	.00	2		7.99 .034	2 3	13 101		15 .13 9 .01	2 3.23	.18 .01	.03 1 .01 1	1 29
R 115412	1	15	2	57		12	5	367	1.96	3	5	ND	1	14	2 2	2	17 1	.35 .021	4	7	.29	16 .02	4.87	.04	.09 1	2
R 115413	1	133	2	27	-3	13	10	264	4.83 🕴	8	5	ND	(1	51 1.	4 2	4	80 1	.36 .027	2	12	1.06	13 .17	2 2.78	.23	.04 1	2
R 115414	1	42	2	68	.2	30	28	614		- 14	5	ND	1	14 🏼		7	173	.66 .032	2		3.02	7 .21	2 3.22	.10	.08 1	3
R 115415	1	109	2	33		26	20	301		5	5	ND	1	22		3		.17 .050	2	29		8 .13	6 2.12	.10	.08 1	8
R 115416	6	47	6	58	.1	7	3	658	5.77	9	5	ND	1	14 1.	1 4	7	25	.70 .060	3	9	1.42	24 .16	2 1.91	.07	.05 1	1
R 115417	1	144	2	29	.2	22	19	540	7.53	19	5	ND	1	19 1.	5 3	6	96 1	.55 .089	2	42	1.29	7 .14	5 2.43	.06	.04 1	5
R 115418	1	120	2	26	.	22	17	513 (X	11	5	ND	1	14 1.	200	3	93 1		2	40 ·		6 .14	4 2.41	.05	.06 1	10
R 115419	1	128	2	19	1	22		446		16	5	ND	2	14 1.		6	84 1		2		.91	8 .12	2 2.04	.05	.06 1	7
R 115420	1	218	6	30	.3	21	17	549 8		35	5	ND	1	16		5		2.28 .057	2	44		6 .15	13 2.79	.04	.04 1	6
R 115421	1	150	2	22	.1	17	13	320 (5.8/	12	5	ND	1	33 +1	52	(72 1	.17 .039	2	34	.82	7.17	4 2.24	.14	.05 1	8
R 115422	1	140	2	22	.1	72	21	381 !		30	5	ND	1	24 1.	3	9	67 2		2	104	.85	8 .23	10 2.90	.10	.06 1	4
R 115423	1	30	2	455		9		500 3		7	5	ND	2	16 4.1		2		.16 .039	5	13	.83	28 .02	3 1.49	.07	.06 1	6
R 115424	2	22	2	221		8	-	114 2	X	12	5	ND	3	6 1.		2	15	.09 .024	5	5	.12	70 .03	3.59	.05	.07 1	4
R 115425	1	102	12	250		23		337 4		24	5	ND	1	8 6.		3		.09 .020	6	43	.75	48 .06	5 1.50	.03	.08 1	3
R 115451	1	189	2	24	-2	16	5	301 5		14	5	ND	1	14	82	6	47 1	.19 .126	2	45	.61	4 .16	3 1.57	.06	.03 1	1
R 115452	1	304	9	29	-1	20		389 4		18	5	ND	1	16		5	42 1		2	44	.47	6 .16	2 1.41	.07	.05 1	3
R 115453	1	242	2	23	•1	17		348 5		15	5	ND	1	16 1.		8	51 1	200000000	2	45	.41	6 .19	2 1.15	.05	.04 1	1
R 115454	1	297	6	38	.3	30			.66	12	5	ND	1	17		2	50 1		2	64	.64	5.20	11 1.65	.08	.03 1	1
R 115455	1	346	5	43	-2	43		587 3		15	5	ND	1	28		7	42 2		2		.76	6 .20	11 1.84	.11	.05 1	2
R 115456	1	322	12	58	.4	57	23	592 5	••81	15	5	ND	1	14 1.*	4	8	75 1	.51 .052	2	77 1	.42	5 .25	3 2.12	.17	.05 1	5
R 115457	1	259 490	2	59 72	-2	53 63		528 é 883 é		11	5 5	ND	1	14		6 10		.41 .047	2	74 1		6.25 5.20	12 2.00 6 2.25	.27 .13	.07 3	4
R 115458 R 115459	1	490 ć61	2	75	.5 1.3	63 37		727 8	5.17	20 57	5	ND ND	1	22 1.0		9	70 2 61 1		2	82 1 87	.22	7 .19	2 1.86	.12	.05 1	13
R 115460	1	749	2	86	.9	43		717 5		31	5	ND	1	25		10	57 2		ź	74	.85	8 .19	4 1.85	.09	.06 1	10
R 115461	1	463	6	63	.6	44		686 7		56	5	ND	ź	18		5	61 2		2	82	.93	6 15	4 1.55	.08	.04 1	12
	•												•			•			-							
R 115462 STANDARD C/AU-R	1 18	195 57	4 42	28 133	.2 7.2	37 73		341 5 027 3		11 41	5 18	ND 7	1 37	14 .4 53 18.4		5 20		.94 .079	2 38	44 59	.69 .88	5 .19 179 .07	2 1.32 36 1.86	.09 .06	.04 5 .14 13	3 530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 17 1990 DATE REPORT MAILED: July 21/90

N. 4

F.

Noranda Exploration Co. Ltd. PR JCT 9007-055 123 FILE # 90-2610

.age 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag pm	Ni ppm	Co ppm	Mn ppm		As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	AL X	Na X	K k X ppr	Au* ppb
R 115463	1	134	2	27	.2	39	20	469	6.70	24	5	ND	2	26	.2	2	4			.082	2		1.12	10	.32	4 2	2.02	.09	.07 3	1
R 115464	1 1	149	2	25	1	44	21	526	4.26	10	5	ND	1	36	.2	2	5	58	2.10	.059	2	65	.96	13 🕴	.24	3 '	1.69	.11	.08	3
R 115465	1	188	4	32 💹	.1	85	22	688	5.10	23	5	ND	2	28	.2	2	2	87	1.68	.037	2	119	1.28	15	.29	13 2	2.18	.17	.07	3
R 115470	1 1	423	3	17 🚿	1	51	16	404		2	5	ND	1	28	.2	2	2	86	1.35	2063	3	66	.80	23	.27	4 2	2.06	.12	.04	<u> </u>
R 115471	i	195	5	29	.1	73	10	357		10	5	ND	2	36	.2	2	2	69	.42	.017	8		1.08	50	.12	4 1	.76	. 05	.04	3
R 115472	7	226	L	29	.1	54	17	421	4 33	14	5	ND	2	24	.2	3	5	41	75	.020	7	23	.82	50	.11	8 5	.68	.05	.04	7
R 115473	2	308	3		.2	34	14	431		•4	Ś	ND	2	51	.2	ž	ź			056	4	66	.93	26	.23		2.08	.15		1
	10	247	3	5553	.2	41	13	387		6	5	ND	ž	76	.2	2	3			038	3	45	.99	45	.28		2.68	.22	.08	
R 115474		317				32		355			5	ND	ž	19	.2	2	3			.063	2	44	.56	23	.24		.48	.12	.05	
R 115475	4		5		.2					9 7	5	ND	1	33	:2	2				.070	ž	72	.61	13	31		.82	.05	.09 2	
R 115626	1	35	2	23	.1	44	13	476	2.52		2	RU		22	• 6	2	. •	40	2.20		2	12	.01		•••	U	.02	.05	•••	10
R 115627	15	2192	4	42 2	.0	159	26	211	6.16	6	5	ND	1	9 9	.6	2	2			.045	2	135	.88	7	.21		3.54	.15	12220000	64
R 115628	1	805	4	32 💮	.7	12	16	378	4.56	6	5	ND	1	17	.3	2	2			.046	2		1.80		.18		2.79	.07	.04	
R 115629	13	967	3	19 📖	.7	25	20	275	5.28	- 4	5	ND	2	13	.2	2	2	113	1.15	.04Z	2	15		9	.20		2.31	.07	.03	
R 117126	1	2	3	118	.1	4	4	1.236	3.72	5	5	ND	1	39	.2	2	3	12	2.62	.067	3	3	.83	14	.11	2 2	2.01	.03	.13	1
R 117127	1	24	3	90	.1	6	3	1117	3.33	7	. 5	ND	1	28	.2	2	3	12	1.89	.063	4	5	.85	17	.11	3 1	.76	.04	.07	1
R 117128		218	3	45	.1	22	44	313	/ 10	7	5	ND	•	122	.2	2	4	07	2.23	2053	2	46	.96	13	.40	12 1	96	.03	.01 2	4
		1182 3	. 5			14		368		12	5	ND	ź	20	.6	ž	2		1.45	- Charles - Char	2		1.19	8	11		.98	.04	.03	
R 119451	10	364	5		.7	39		443		10	5	ND	1	47	.2	2	2		2.04		2	74	.56	26	29	12 2	=	.23	.04	í í
R 119452	33		-		1	39		443 1419 :		5	5	ND	1	29	.2	2	2			.075	5	3	.90	15	.03		.93	.05	.05	2
R 119453		2	4		.1	3 8		1079		4	5	ND	1	45	.3	2	2		2.25		6		1.20	28	.09		2.21	.02	.10	÷
R 119601	'	0	2	90		٥	4	1079	4.01	•	2	ND	1	- -		۲	2				U	5							•••	-
R 119602	1	70	7	56	.6	6	17	716	3.27	39	5	ND	2	23	.2	2	2		1.85		3	5	.54	46	.01	4 1	.21	.04	.08	82
R 119603	1 1	91	Ĺ		.2	21	5	248	3.76	10	5	ND	1	23	.2	2	4	40	2.80	.033	2	92	.53	4	.32	52	.61	.01	.02 1	3
R 119604	Ż	57	4		1	15	11	264	2.97	2	5	ND	1	79	.2	2	2			.047	2	21	.92	14	.16	33	.12	.29	.06	3
R 119605	1	2093	3	32 1		9		190		2	5	ND	2	35	.3	2	2			.038	3	15	.70	20	.11	4 2	.05	.16	.04	84
R 119606		31193	2	195 19		18		197		10	5	3	1	13	3.4	ž	3		1.14		2	48	.92	4	.09	4 2	.01	.06	.04 1	2410
			_								_		_				•									- /	.,			_ ,
R 119607	3	1711	2	18 1		120		160		13	5	ND	2	163	-2	2	2		3.13				.61	6	.23		.44	.15	- T T - 2000000	74
R 119608	72	1455	4	23 2		103		221		7	5	ND	2	28	.4	2	3				2	205			.24		.92	.12	.04 1	
R 119609	6	1755	4	43 1		173		269		19	5	ND	1	101	.8	2	2					177 '		7	-24		.93	.15	.05	
R 119610	17	2109	7	37 2		174		218		9	5	ND	2	76	.8	2	3		2.12				.94	7	.20		.42	.12	.05 2	
R 119611	9	1842	4	35 1	.5	157	27	161	5.01	8	5	ND	2	86	-4	2	2	31	1.89	-041	2	98	.63	6	.18	4 2	.90	.14	.04 1	53
R 119612	1	1209	5	41	7	13	10	571	3.44	25	5	ND	2	44	.4	2	2	62	3.39	.038	4	20	1.58	9	.01	52	.34	.03	.04 1	32
	· ·		3		6	21	• -	621		9	5	ND	2	29	3	2	2	146		- 57 C - 54 C - 6	2	29 '		Ś	.17	32		.04	.02	
R 119613	13	511	-			9		105			5	ND	3	6	.2	ź	ź			.017	5		.47	14	.01	3		.04	.05 2	
R 119614	6	331	3	2.2.2.1	3	-				24	5		2	69	.5	2	ź			042	2	123			15	14 3		.18	.03 3	
R 119615	69	920	3		3	58		392 (12	5	ND	2	20	.2	ź	ź			.040	2		1.88		.16		.98	.06	.02 1	
R 119616	31	539	4	34	.2	15	18	511	4.07	5	2	ND	2	20		۷	۲	07 (2.0/	*U4U	4	2		7	• 10	02	. 70			
R 119617	1	1805	2	39 1	2	220			5.10	7	5	ND	1	61	.7	2	2			.038		154 1			.19		.12	.25	.06 1	s I.
STANDARD C/AU-R	18	60	37	132 7	.2	71	31 1	025 3	3.99	40	18	7	39	53	18.5	15	19	57	.51	2093	38	59	.93	181	.09	35 1	.97	.06	.14 11	490

7. 5

Noranda Exploration Co. Ltd. PROL .T 9007-055 123 FILE # 90-2610

Je 3

! ₹

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	N1 ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm		Cd ppn	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti Z	B ppm	Al X	Na X	K W X ppm	Au* ppb
R 119618	43	2276	7	139	2.3	24	16	233	3.24	8	5`	ND	1	10	1.3	3	3	48	.88	.050	2	27	1.14	12	.08			.07	.03 2	84
R 119619	1	254	4	22	.3	25	36	300	4.00	54	5	ND	1	15	1.4	3	10	40 (2.59	.038	2	71	.52	9	.23	14 2	.52	.02	.10 2	1
R 119620	1	238	5	23	.1	27	17	222	4.84	6	5	ND	1	26	.6	2	8	67	1.42	.099	2	10	.52	5	.22	51	.71	.13	.06 001	1
R 119621	1	170	5	26	.2	49	22	226	2.77	2	5	ND	1	15	.9	2	9	29	2.94	.057	2	42	.43	_ 1	. 17	72	.14	.01	.01 1	1

NORANDA EXPLORATION COMPANY, LIMITED

PROPERTY New MAC

ROCK SAMPLE REPORT

	RUC	-	AWIPLC I							12		
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	width	G 🗌 A 🗍	G A A	G A A	G□ A□) † 9	eoch	G A D	G A II	SAMPLED BY
117126	L97N/94tSOE		Grab	·								GM.
V	Fg, quey-green rhyo-dacite lapilli tull											
,,,,,,	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1		qual.									GM
	Ac above - Contains frac.		- quan									
	contings of chalcedony + manganere stein. Mg,											
	manganère stein. Mig,											
14051	diss pyrite 199N /119+50E		grab									DR
	Ma, neen-black baseltic How.		770-0									
	Mg, geen-black baseltic How. Veux dence + macpubic. cc. veening										 	
	veining											·····
	<u> </u>											
						· · · · · · · · · · · · · · · · · · ·						
											·	
							· · · · · · · · · · · · · · · · · · ·					
								,	. /	· I	1	

N.T.S. 92N/10,15

DATE 4

· 1/4 10

an da an air an		a the second										
*		5	\bigcirc			-					\sim	
	NORANDA	EXPLOP	ATION C	OMPANY,	LIMITE	U		N	тс	4	3211	linsis
	PROPERTY New Mac							- IN.		July	10 19	10+15 (90
		CK SA	MPLE	REPOR	т		-	0/		Ne	w no	rc /23
1		%		1			G				G , A 🗌	-
SAMPLE NO.	LOCATION & DESCRIPTION	SULPHIDES	TYPE	WIDTH								BY
<u>R-11405</u>	Located at L99N, 119+50E											
/	Talus Grab Sample - Many assorted Fragments of propylitically altid volcs.					ļ						
,	Fragments of propylitically alt'd volcs.					 						
	Abundant culc Fract. healings, Fragments								[
	are very fractured, poorly competent, Grey											
- <u></u>	on weathered surface (some orangish frags.)					 						·
· · · · · · · · · · · · · · · · · · ·	Mottled green -grey on Fresh surfaces. Most		<u> </u>									
	Frags. appear to be andesitic and tuffaceous		<u></u>			 						
	(ash size per ejecta)											
D IIJNT	h h h m h h	-										
K-11/12	Anleste type - yeathing dark		<u></u>									
V	aven weathers to dull gripy		;;									
	Fine grained. Epidote : cakite										Ŷ	
	on tracture gurtaces. No visible											
	gulphides Location LYTH A 21E								. <u></u>			
	· · · · · · · · · · · · · · · · · · ·				<u> </u>							
 												
<u> </u>	· · · · · · · · · · · · · · · · · · ·											
												<u> </u>
	``````````````````````````````````````											<u> </u>
			·	<b>1</b>	·	L						

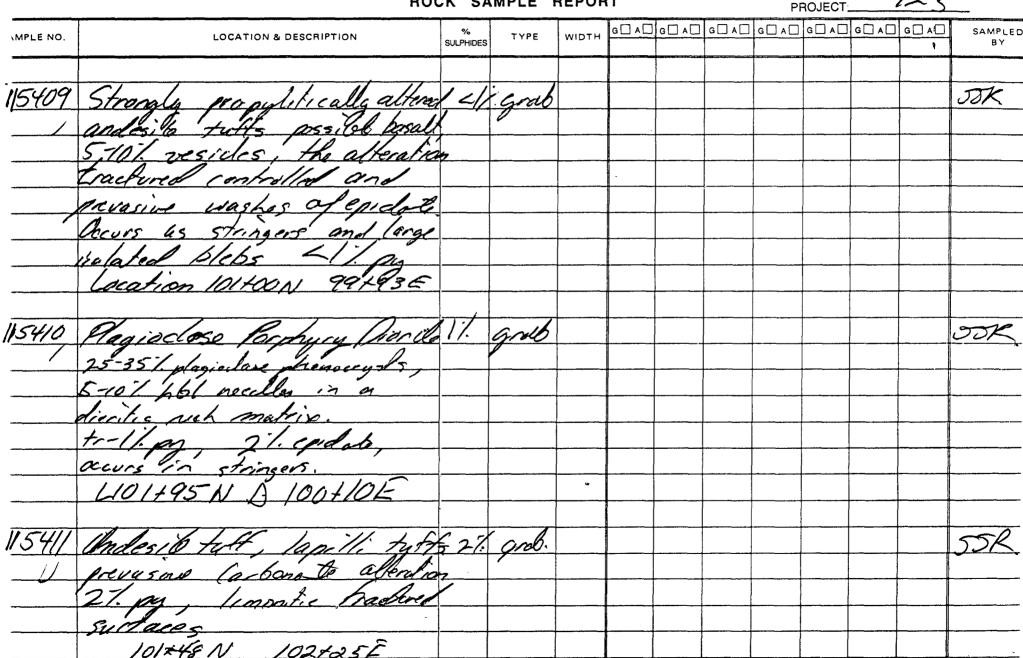
G = GEOCHEM A = ASSAY

.

A state of the sta

1											$\overline{}$	
•	NORANDA	EXPLO	RATION CO	OMPANY,	LIMITE	D						
	PROPERTY_Newmac											
		CK SA	MPLE	REPOF	RT		-		ROJECT	·		
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗌 A 🗌	G 🗆 A 🗆	G 🗌 A 🗌	G 🗌 A 🗌	G 🗌 A 🗌	] G □ A □	G □ A'□ 1	SAMPLED BY
15401	Andesile Tuff		grab									JJK
	- slightly altered, fine grained	/		-								
	-51. endote and carbonate traces of pyrile Instion 99+50E 99+98N	-										
110/107										<u></u>		7512
15402	Strongly altered indesite T - possible pasalt, primary tertur		zno									<u>75R</u>
	Unsists of Ch/, epidetics Shink the manuality											
	100 +93 N 99 +25E											
<u> 15403-</u>	Cossan - strongly altered											
	and hymatile Straining 1-2%.	1-2	Grab									Joh
	Location .											
	102+00N 1 99+25E	-										
		· · · · · · · · · · · · · · · · · · ·				<u>ب</u>	= GFOCH	FM	A = ASSA	7 <u>^</u>		

•			$\frown$									
	NORANDA	A EXPLO	RATION CO	MPANY,	LIMITE	D						
								N	.T.S			
	PROPERTY			<i></i> .			-	D	ATE			<del>_,,</del>
	RO	CK SA	MPLE	REPOR	Т			Р	ROJECT			
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗌 A 🗌	G □ A □	G 🗆 A 🗌	G 🗌 A 🗌	G□ A□	G	G 🗌 🗚 🗌 1	SAMPLED 8Y
115404	Gossan - similar to	1-2	Crab									ITR.
	115403 probably same zone, 10-20° structure	· ·										
	(acation					   						
	(101+12N & 98+95E											
115407	Calc- Silicale altered volcomic	<u>s /</u>	Grab									JOK
	proposi andesite, sint											
	Siliceous, up to 12 pyrite Occurs as smull isolated	/										
	Cubes 1-2mm		· · ·									
	L100+65N & 102+33E											
	Similar to 115407, 5% prevasive Carbonale,	21%	grab									JJK.
	minor silica fleeding, Small											
	resides present indicate Audesile or pasalt -11 py		· · · · · · · · · · · · · · · · · · ·									
	possible S/C. Location 101+15N 102 +20E											


G = GEOCHEM $\Delta = \Delta SS \Delta V$ 

The state of the second s

PROPERTY_Newmac

92 N N.T.S. DATE PROJECT

ROCK SAMPLE REPORT



•	$\frown$		$\frown$								$\frown$	
	NORANDA PROPERTY	EXPLO	RATION CO	MPANY,	LIMITE	D	_		.T.S	t2x July	1071 10/2	5
	ROO	CK SA	MPLE	REPOR	T			PI	ROJECT	á	23	
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗆 A 🗆	G□ A□	G 🗌 A 🗌	G 🗌 A 🗌	G 🗌 A 🗌	G	G 🗋 A 🗌	SAMPLED BY
⁷ -115412	Rhyg - Parile very silicous	1%	Gral									JOR
	Bull grup is grun 11. pyrile 19775 Nr D 95450E											
8-115413	Gossan Zone - weathers	17.	grab									JOR
	a dup rusty redfaringe Streaus - 11- py occurs as disseminations and time				•							
	Stringers 2100+95 N 97HOE		] 									
² -1154 <del>14</del>	60550 Jone - 5mall 0/C Similiar to 115413 101+48N 9800E	17.	grab									Jok.
- 15415		17.	yrab		Ngan.							Jok.
	Silicenys Gossan Zone Similar to previous Zones 100+90N 98+47E		•									

G = GFOCHEM A = ASSAY

SSAV

•			$ \frown $					ı			$\sim$	
-	Ala, M	A EXPLO	RATION CC	MPANY,	LIMITE	D		N	ر 1.T.S	12	K/}	$\frac{10}{10}$
	PROPERTY ////////////////////////////////////	CK SA	AMPLE	REPOR	T		-		ATE		uly.	<u>_</u> 0[]0 23
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗆 A 🗍	g 🗌 a 🗌	G			G 🗆 A 🗌	G [] A _i []	SAMPLED BY
115416	Siliceous Khyolilo - Pacil,											
	US - dull light grey, fS	2-3	Grub									<u>IK</u>
	appearance contains											
	minon frecture Controlled											
	nearbes a gossan come P				·							
	2-31 00											
	Location 0 100 +20 N 94+00 E											
			chips				·····					
154170	(hip sample bussan lone. 11.5417-115422 taken Wost to		gnto	1.5m.								JJK
	East 1.5 metre chips 9 metre											
	and Aumonitic staining											
	OIC very brittle 0.5 - 1.0%.p	y						•				
1-1122	100+10N D98+00E	0.5	h									JJK
15423	Phyo-Dacite Flows-Cossan	11. J	grab									
	in pulle to dull grey fine grand	111										
	providences 10-15% tracking contra	×1.4										- <u></u>
	USI no Lovation 971401 AA2LANE	_ <del></del>	<b></b>		A	G	= GEOCH	EM A	= ASSA	Υ	······································	

			C									
	NORANDA	A EXPLO	RATION CO	MPANY,	LIMITE	D		N	L.S.	A2N	1100	4/5-
	PROPERTY New Mac								ATE	July	1/1/	190
		CK S/	AMPLE I	REPOF	۲۲				ROJECT		123	
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗌 A 🗌	) g 🗆 A 🗆	G 🗋 A 🗌	G 🗌 A 🗌	G 🗌 A 🗌	] G ☐ A []	G A D	SAMPLED BY
115424	Cossan - similar to	7	grab									JJR.
	115423 Khyo Pacilo Plows 0.5 - 1.0% py, Timonitic and	-										
	Hematike Fractured Surfaces Location 97+90N A93+55E											
115425	Cossan - similiar to 115423	1	grub									JJR
	And 115424, however Cherty appearance near contact											
	Location 98765N D 43+00E											
					·							
	· · · · · · · · · · · · · · · · · · ·											
		-						······································				
		 				6	- GEOCH		A - ACCA			

,

NAME OF

#### G - GEOCHEM A - VOGVA

• •			$\frown$									
•	NORANDA	EXPLOF	RATION CO	MPANY,	LIMITE	D				<b>A</b> -	/	
	m/ m				•			N	.T.S	<u>92</u> N	1/10+	,
	PROPERTY New Mac					- <u></u>	-		ATE	Jul	1 1à	
	ROG		MPLE						ROJECT			<u>۲</u>
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	GLIAL					G A D		SAMPLED BY
115451	Chio samples - 1.5 metre	1-2	Chip	1.5								
	9 metre long 0/C Gossan		Chip									
115456	Silkcovs, fractured 10 90											
	hematile / limanie on tractured surface 1-2%		<u></u>			+						
	Sulphides traces of cpy									<u> </u>		
	L99+10N A 99+88E -> 99+89	Ę.										
	sample takin west to east.											
115457	Chip sumples -1.5 metres 13.5 metre O/C, same											
115465	as 115451- 115457											
	L99+00N A 99+95-700+08	E1-2	chips	1.5						<u></u>		
<u> </u>												
										+		
			<u>, , , , ,, , ,</u>				· · · · · · · · · · · · · · · · · · ·	 		ļ		<u></u>
							- 65004		A - A991			 

7.000

· ·			$\frown$								$\langle \gamma \rangle$	
-	NORANI	DA EXPLO	RATION CO	MPANY,	LIMITE	D				0-	. /.	
<u>Yestitetee</u>	PROPERTYNew Mac							N	.T.S	921	<u>v / /0</u>	100
1. 1947 March 6			MPLE I	REPOR			_		ATE	jul	120	10
				}					ROJE			
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH								SAMPLED BY
115470	Chip sample Series	3-4	chips	1.5								USR.
115475	Gossan LIGItosN											
1 <u>51.5</u>	D 96+80 → 96+89 F	···			<u> </u>		<u> </u>					
	Rece risty arange/red,											
	Silicente Je to 3-4/ au	il			1		 		ļ			
	slightly magnetic, in place	er										
	is quilte brittle											
	tr- 0.5/. cpg									+		
				,								
	· · · · · · · · · · · · · · · · · · ·											
•												
# # 					-	C	= GEOCH		A = ASSA			

PROPERTY NOUMAC

N.T.S. 92N/10,15	-
------------------	---

DATE JULY 10, 1990

## ROCK SAMPLE REPORT

MPLE NO.	LOCATION & DESCRIPTION	%	TYPE	WIDTH	G 🗆 A 🗆	G □ A □	G	G	GOAD	G □ A □	G 🗆 A 🗖	SAMPLED
		SULPHIDES			ICF	(30	+400	KHEN	(A	$\mathcal{O}_{-}$	•	
115626	104+50+/104+50E								,			
V	ALTERED ANDESITE TUFF	€190	GPAB								 	Kipenes
	W.S. RUST-FED BROWN, DUST TEHALKY)											
	TAPMISHED SULFIDES. F.S. NIGHT GREY-	 			L		 				 	
- <u></u>	GREEN. ARDONREANS SKICIFIED SOMEWHAT	 										
	FRACTURES SOMEWAAT PERUSINE; HOSTING				<u> </u>	ļ				 		
	SULADES OF PY OR HEMATITICALLY					ļ						
• 	STANED. FINE GRAND				<u></u>		ļ			·		
				ļ	ļ	ļ						<b>.</b>
15627	104+75N /98+00E						 					
· ·	ALTERED ANDES, TE. TUFF.	1/22	CHAP	1.5m								K.PEAK
	W.S. RUST. PERVASING HEMATITIC											
	STAINING -SPECIFICALLY KLIDNIG											
	FRACTURE SCIRFACES. F.S. L. GPEY	-										
	GREEN, HEAUILY SILLIFIED MOTTLED											
,	ATPEARMECE DISSEMINIATED PO, PY,											
	THROUGHOUT, MINUE BORN, TE MOTED								<u></u>			
	Somewith 7 CHEDRATIC.											
	V. FINE GRANIED									i 		
					-		 					4
115628	103+15N/ 97+25E											
V	DIDRITE	1/2 %	GIAB		ļ		ļ					K. PEARSO
	MED GRAINED W.S. LIGHT GLEY.			<u> </u>			ĺ					

٠.

								N	.T.S. 22	NIO	15	
	PROPERTY NOW MAC						-			•	0,199	0
	RO	CK S/	AMPLE	REPOF	RT.						<u>.</u>	
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G□ A□	G□ A□	G	G □ A □	G □ A □	G 🗆 A 🗆	G□ A'□ ₹	SAMPLED BY
USB28 COMT	TO PUST. PLACE WEATHERING											
	GHARKY, HOLAN BEENDES WEATHERENG		1									
	OUT. F.S. MED GREY-MED											
	GRANG TEXTURE, PLACE - HORNBLD											
	SUB-EUHEDRAL TO SILIGEIOD											
	SOMENHAT; DISSEMINATED											
	SULFIDES (Py 3) YEAU FINE											
	M OCCASSIONAL DECURAENCEOF											
	NORACHITE											
2115629	103+05N/94+50E	<i>i</i>										· · ·
$\checkmark$	ALTORED ANDES, TE TUFF.	12:27	GRAB									K. Peaks
	W.S. RUST-LIGHT GREAMY			T								
	(WH, TE (CREAL)											
	F.S. MED - DK GREEN/GREY											
	JAME AS RIIS627	,										
219451	103+05N/96+95E	1-2%	HOLPER THE CHIP	IM.								<u></u>
$\checkmark$	ALTER DANDESITE TUFF											
	W.S. RUST - PY IS TARNISHED.											1 - K.
	ES. MED GREY/LIGHT GREEN											1.
	FINE GRAINED HEAVILY SILICIEIED	1-22										-
	FINE GEATHED HEAVILY SILICIEIED PY - 12-2%, REMAINT FEEDSPAR							**************************************				

PROPERTY NEWME

## ROCK SAMPLE REPORT

N.T.S. 921/10,15 3 DATE JULY 10,1990 PROJECT 123

MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G A D	G A A	GAD	G A A	6 A D 4 GE	GAR	G ALA	SAMPLED BY
119451 CONIT	PLAG + HORNBLENDE PRESENT	1										
	ANDEDRAL CRYSTAL SHAPE.		1		<u> </u>							
<u></u>	FRACTURE SURPACE HEMATITE	-	1					<b></b>				
	STANED.		1		<u></u>							
		-										
) 10	103+15×1/96+90E		GRAB									
- <u>1945</u> -	ALTERED ANDESITE TUFE	~29.										K.POAR.
	DESCRIPTION AS 119451 - TAKEN											
	XIDETH ACROSS (REEK FROM											
	R119451, FINE DESSEMINIATIONS											
	OF SUIFIDES. (PY) PRIMARILY ADDIG											
	FRACTURES (AS FRACT UPE FILMAG)		<u> </u>									
1/9453	109+25N/92+75E											
V	RHUDDACITE (CALCSILICATE ALTERED)	4/2	GEAB									
	W.S. WHITE - BROWALISH RUST F.S LIGHT											
	GREY - VE. FATE GRANED - FADING FRADSARS	ĺ <u></u>										
	SOME OCCASSONAL OTZEVES - FRE											
	AEAVILY CALCITIC - APPEARS PERVASIVE											
	TAROUGHOUT ROCK PRIMARILY ADDIG		l									
	PRACTURES. FINE DISSEMINATIONS											
	Q AUFIDES (PN). HOWATITIC STAINING	£1.	L				= GFOCH		A = ASSA			<u></u>

	$\cdot$		$\bigcap$				•			مىر يې مې	
	NORANDA	EXPLOF		MPANY,	LIMITED	)			~	. /	_ 1/
								N	.T.S. 7	N/10,15	= /
	PROPERTY New Mrc.						-	D		u/y 10/1	0
	ROC	CK SA	MPLE I	REPOR				P		-123	
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G A D To				G A	GOAD GOAD	SAMPLED BY
119601	LIDEN/10 TE Pervarively		gral								DEG.
	altered (c.c + sil+) ander.										
	tuff +/- minor biotite +					<u></u>					
	trace henatite.		1								il
ingeoz	tuff/flow? Cale-silicate		qual					<b>_</b>			
	Altered with fe dire by										
<u> </u>	(2-3 To)			1		. <u></u>		<u></u>			
U9603	3 106+25N/10++43E Mighly		grab								U
	gossand float / subcrop of	 	<i>c</i>	 		<u></u>					
	Extremely siliceous, hematitic.	ļ									
•	No original texture - sulfides							- <u></u>			
	weathered out.										u
11960	+ 105+95N/99+55E /4nific (2-3%)		grab								4
/	dess) forphyritic plag/hode				-	<u></u>		<u> </u>			
19105	dirite. Lastisal/95tone Mad ->	ļ	gral.					~ ~			U
	contenamined acrests limite		(								
. <u></u>	E malachite stain minorpy.										
117606	105+25N/98+80E. Med.→ coarse grained quartz divite E nalachite stain, minor py. 104+68N/98+43E (2053AN)		grab.								"
	alt. and toff. 5-10 20 py 120 cpy							<u></u>			
	plt. and. tuff. 5-10 20 py 120 cpy										
		L									L~

enma PROPERTY_

## ROCK SAMPLE REPORT

J N.T.S. 92N/10,15 DATE Juby 10/20 DATE -PROJECT:

			1		1						G □ ∧ □	
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH					Len			SAMPLED BY
119/02	104+90N/98+50E GOSSAN ZONE.		grals				- <u>T</u>					NGG
11-1601			9-00		 	1				<u> </u>		<u></u>
	U-fg. silic., pyritic, rusty and ff? 5-10 20 dire py		- ¹ 0	<u> </u>	 	1						
liaind	104+95N/98+30E Fg, chloritic		Daule			1						11
	and - ff. with 1-3 % fg, diss.		1100									
	& forac. copated py.											
119609			chio	1.5m				<u></u>				//
/	Farcilic and to Chlorific											
- <u></u>	rear outer edges of o.c.											
	Procease in silica + bleaching											 
	Foward center with horasels											
	'spotting', Eq, diss p(t/- Po)								 			
	2-490 tas frac. coating +											
	blebs.				 							
117610	Asabove (middle of o.c.)		chip	1.5m						 		()
119611-		 	16	20m		-						()
119612	106+68N/99+30E Clay offered		grafr.	1	 					 		<u>i</u> ł
	cc/sil veined quarty-beld											· ·
	parphyry - printic - malachite	[ +			 				 	 		
	stain on fractures		<u>.</u>	· .	 	ļ						
119613	106+82N/99+27E Fg, sil andes		gode		 							
	H. Rusty, with fing py on frac.				 					ļ		
·	+ as diss. cc/qt3/epid verdets					GF			A = ASSA	L		<u> </u>

PROPERTY New MAC

## ROCK SAMPLE REPORT

N.T.S. 92N/0,15 E DATE 10/4 12/90 PROJECT:

SAMPLED % WIDTH TYPE AMPLE NO. LOCATION & DESCRIPTION BЧ SULPHIDES (30) + Gearban Tr Kyrific Dute 119614 106+67N/99+25E goal veined, rusty aFP. 11 106+65N/97+23E 119615 GossAN. gral 1- cc veria Fracture coated 5-8% (1 119616 106+65N 99+ 18F gral dirite tered liss t yrite (5-10% Siliceous, 11 11 119617 105 + 30N/98 + 38 E 1 +f. with 10-15% fa and Siliceously 11 11 119618 198+37E 105+ -25N holder alag parph -15% frac coate din IS inor malar Lite. Ri. 11 119619108+30N 1 99 + 30 asus

PROPERTY New Mac

N.T.S. 92N/10,15 DATE July 12/20

	RO	CK SA	AMPLE							12		
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH		P(3)	G□A□	G A	G□∧□ ) + fg	G A D	G A	SAMPLED BY
119620	107+50N/99+52E Ext. siliceously altered, rusty, pyritic and th, dio.?, rhyodac? 3-570 diss		grate									046
/	altered, rusty pritic and the	-				+		<u> </u>				
	dio?, rhyodac? 3-570 diss							<u> </u>				
	Py.	_										(1.
117621	108+25N/99+50E Silic		10		<u> </u>			 				
	Py. 108+25N/99+50E Silic. alt., rus ty, pyritic and. 45. 3-570 diss pyrite.				<u> </u>							
	Ff. 3-3 la della / yeire.	-										
											-	<u> </u>
<u></u>		-						+				
	· · · · · · · · · · · · · · · · · · ·											
												······
								ļ				
					<b> </b>							
		ļ										
							ļ					
												<u> </u>

#### 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ALYSIS CERTIFICATE New Mac (JR)

Noranda Exploration Co. Ltd. PROJECT 9008-034 123 File # 90-3350 Page 1

P.O. Box 2380, 1050 Davie, Vancouver BC V68 315

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	fe %	As ppm	U ppm	Au ppm	Th ppm		d Si Sm ppr		-		P La X ppm		Mg X	Ba Ti ppm X		Na %	K W X ppm	Au* ppb
59776	1	40	2	27	.1	14	12	366		2	12	ND	1		.2		65	6.48 .02		34	.85	4.19	2 1.57	.01	.01 1	- 1
59777	1 ]	63	4	123	100 C C C	12	16	610		5	5	ND	1	44553	.8					21	1.65	6 .23	2 2.40	.02	.03 1	- 1
59778		25	28	78		10	13	476		8	5	ND	1		5	-					.51	5.23	4 1.41	.01	.01 1	
59779		2885 381	726 8	56 48	11111111111111111	11	12	309 892		8	5	ND ND	1	105 2 55				1.43 .03	·		.42	2.24	3 1.07	.03	.01 1	
59780	'	100	0	40	.1	(	15	072	5.24	14	2	RD	1	22	.6 7		166	2.31 .07	82	12	1.21	26 .17	7 2.24	.02	.01 1	3
59781	1	62	2	3	1	19	47	320		29	5	ND	1		2 1		72			16	.57	6 .43	4 1.02	.05	.01 1	6
59782	1	39	3	12		29	13	321		12	5	ND	1		2			2.19 .04			1.01	8.30	3 1.28	.04	.01 1	1
59783		47	4	35		11	26	402		2	5	ND	1		9			.19 .02	566		1.41	18 .10	2 1.65	.04	.07 1	
59784	7	123	5	44		10	28	249		5	5	ND	1		7			.12 .01		9	.62	31 .14	2 1.16	.01	.18 1	
59785	1	70	4	38	.1	7	14	482	6.08	15	5	ND	1	15	.4 :	2 2	181	.90 .04	12	18	1.46	3 .19	5 1.98	.04	.03 1	6
59786	1	211	6	80	.5	15	30	627		6	5	ND	1		7 7	2		.86 .02			2.52	31 .13	4 3.59	.19	.59 1	29
114052	1	40	2	54	<b>.</b> 1	18	18	639		7	5	ND	1	1.7 5335	.7 4	2		.55 .02			1.82	17 .13	3 1.87	.05	.03 1	4
114053	3	8	3	32	.2	5	3	898		4	5	ND	1		6 2	2		.11 .02			1.31	19 _01	2 1.39	.03	.06 1	8
114054	2	7	4	33	1	3	3	997		3	5	ND	1		2 2			.24 .02			1.22	23 .01	2 1.33	.03	.07 1	3
114055	3	11	5	39	.1	5	د	1177	2.68	9	5	ND	1	4	2 2	3	15	.15 .02	64	9	1.42	30 .01	5 1.54	.03	.08 1	7
114056	2	30	9	49	.1	13	8	1315	3.06	6	5	ND	1	8	6 3	2	28	.56 .03	34	27	1.56	33 .01	2 1.71	.03	.07 1	7
114057	2	11	3	- 33	.2	6	3	965	2.44	8	5	ND	1	3	3 2	2	13	.15 .02	B 4		1.15	35 .01	2 1.32	.03	.07 1	
114058	2	20	6	- 33	-2	2	3	948		6	5	ND	1		7 2			.08 .02		8	1.03	122 .01	3 1.20	.03	.09 1	4
114059	4	18	5	22	1	5	3	947		9	5	ND	1		3 2			.16 .02		19	.96	66 .01	2 1.15	.02	.08 1	6
114060	3	7	4	26	.1	4	2	654	2.35	4	5	ND	1	5	3 2	2	11	.10 .02	B 5	9	.99	26 .01	2 1.17	.04	.08 1	3
114061	4	9	4	32	1	5	3	1013	2.31	9	5	ND	1	2	2 2	2	13	.09 .02	7 4	21	1.17	25 .01	2 1.28	.03	.07 1	5
114062	3	9	5	26	.3	5	2	1051	2.46	7	5	ND	1	8 🛞	2 2	2	12	.32 .02	9 4	8	1.07	35 .01	3 1.23	.03	.08 1	8
114063	4	9	12	19	1	3	3	<b>88</b> 0		9	5	ND	1		6 2	_		.13 .02			1.03	33 .01	3 1.20	.03	.10 1	7
114064	3	13	14	90	.3	7	3	793	4.30	21	5	ND	1		5 2			.04 .06	1.11		1.37	111 .01	3 1.56	.02	.09	7
114065	1	61	7	67	.7	10	15	2669	5.45	13	5	ND	1	337	6 (	2	38	20.21 .00	92	26	2.90	10 .01	2 2.02	.01	.01 1	5
114066	2	8	3	18	.1	6	2	168	1.89	7	9	ND	1	5	7 2	2	4	.11 .01	2 2	5	.33	37 401	3.88	.01	.07 1	8
114067	3	11	9	34		4	3	397	1.35	2	9	ND	1		4 2	3	5	3.37 .01	5 4	21	.25	408 .01	2.26	.03	.08 1	1
114069	1	5	2	26	1	4	4	461	1.62	2	5	ND	1	30 📖	4 2	3	5	1.55 .02	75	6	.45	127 .01	4.32	.02	.14 1	1
116151	1	134	2	53	.4	30	22	776	4.56	5	5	ND	1	11 🎆	8 8	2	105	.89 .02			2.82	16 .15	6 2.72	.04	.08 1	4
116152	1	185	4	<b>8</b> 6	.4	13	26	1142	8.30	21	5	ND	1	18	4 E	2	208	.63 .04	02	10	3.12	32 .20	5 3.59	.07	.35	4
116153	1	55	8	64	.4	55	29	2338	6.01	8	5	ND	1	51	7 2	2	132	4.69 .03	5 3	76	4.64	116 .01	4 3.66	.02	.06 1	2
116154	9	5	2	34	.4	6	2	844		8	5	ND	1	2000	5 2		17	.07 .03			1.29	28 .01	5 1.48	.01	.11 1	12
116155	12	8	2	37	.5	10	3	885	5.05	21	5	ND	1		7 3	2	25	.14 .03			1.45	35 .01	3 1.71	.01	.11	11
116156	6	18	17	33	.9	12	4	854		49	5	ND	1		8 3		23	.15 .02		21	.87	37 -01	3 1.39	.01	.07 1	58
116157 🔒	2	6	2	31	.3	5	2	781	2.80	8	5	ND	1	3.	2 2	2	11	.12 .03	24	18	1.05	47 .01	2 1.34	.01	.09 1	8
116158 '	2	25	7	43	.2	13	9	1155	2.93	12	5	ND	1	17	5 2	2	20	.44 .03	5 4	16	1.07	56 .01	2 2.02	.01	.10 1	12
STANDARD C/AU-R	18	59	41	131	7.1	72		1051		40	17	7	38	53 18.				.51 .09		61	.89	181 .07	37 1.90	.06	.13 12	540

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: AUG 9 1990 DATE REPORT MAILED: Hug 16/90.

× 5. r

مايا بالا ويويتون ويتحوي والاستعام والرواب والأراب العاليات

PHONE(604)253-3158 FAX(604)253-1716

Noranda Exploration Co. Ltd. PRO. JT 9008-034 123 FILE # 90-3350

.

ik −r مار المار الماري الماري الماري الماري الماري ماري الموسول والماري الماري الماري الماري الماري الماري الماري ال المارية الماري الماري

200

.ge 2

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P *	La	Cr	Mg	Ba	Ti	B	AL	Na	ĸ		
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u>^</u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	^		ppm	ppm		ppm	<b>.</b>	ppm			<u>^</u>	ppn	ppb
116159	1	14	2	64	.1	3	10	1568	5.18	4	5	ND	1	24	.2	2	2	67	2.43	.031	2	6	1.79	35	.01	2	2.72	.05	.07	2	3
116160	1	13	2	62	<b>.</b> 1	10	11	1641	4.98	5	5	ND	1	46	.8	2	2	61	3.50		2	13	2.20	58	.01	2 :	2.98	.03	.08	1	3
116161	4	14	11	36	.2	6	3	781	4.50	12	5	ND	1	6	-2	3	2	23	.29	.051	4	- 4	1.15	24	.01	3	1.41	.04	.08	1	4
116162	2	10	7	49	.2	2	6	1223	4.04	13	5	ND	1	5	.2	3	2	23	.26	.044	4	3	1.64	41	.01	4	1.79	.03	.08	1	5
116163	5	7	4	48	.3	4	6	1224	3.71	16	5	ND	1	3	.2	2	2	23	.09	.041	4	4	1.84	41	.01	2	1.97	.02	.12	1	8
																															-
116164	1	23	4	69	.2	20	22	2705	4.94	17	5	ND	1	32	.9	2	2	119	2.95	.033	3	42	4.14	101	.02	2	3.28	.02	.05	1	6
116165	1	20	2	61	1	1	11	1361	5.02	6	5	ND	1	30	.5	4	2	73	3.26	.031	2	5	1.98	31	.01	2	2.76	.04	.06	2	1
116166	1	34	2	62	1	18		1453		13	5	ND	1	7	.6	2	2	66	.39		3	23	2.54	60	.01	2	2.93	.02	.09	1	5
116167	3	7	3	49	1	8		1114		34	5	ND	1	4	.6	2	2	75	.15		2		2.25	32	.01		2.28	.02	.09	1	3
116168	3	7	3	51	1	7		1236		30	5	ND	1	4	.3	2	2	62	.20		3		2.27	25	.01		2.16	.02	.07	1	4
	-	•	•				-				-					-	_			- 84940		2.				_		• - •			1
116169	4	9	5	44	1	5	4	1099	2.76	12	5	ND	1	3	.3	2	4	13	.10	.028	4	15	1.51	45	.01	2	1.57	.02	.11	2	2
116170	6	23	2	59	1	10	6		3.80	13	5	ND	1	2	.3	3	2	29	.03	- 1994 - 1994 1997 - 1997 - 1997	4		1.73	69	.01		2.01	.02	.10	1	8
116171	4	50	-	73	ា	24	-	1406		12	5	ND	1	4	.2	2	2	44	.16		4		2.07	33	.01		2.35	.03	.07	1	6
116172	3	23	7	42	1	- ý		1159		17	5	ND	1	2	.2	2	2	39	.03		3		1.74	36	.01	-	1.94	.02	.08	2	7
116173	ž	ō	2	44	1	ź			3.28	10	5	ND	1	2	2	2	3	22	.04		3		1.53	47	.01		1.68	.03	.10		- si
110115	-		-				-		2120		-		•	-		-	-				-			••		-					-
116174	3	8	4	33	1	3	4	1354	2.26	5	5	ND	1	7	2	2	2	14	.65	.022	4	2	1.19	45	.01	2	1.40	.02	.09	1	4
116175	3	22	3	38		8		1189		10	5	ND	1	3	5	2	2	19	.11	027	ż		1.33	39	.01		1.49	.03	.10	2	2
STANDARD C/AU-R	19	62	40	-	7.2	71			3.97	42	21	8	38	52	18.4	15	19	57	.52		39	60	.89	187	.08		1.89	.06		12	510

-

PROPERTY	Newmac
PROPERTY	NEWMAC

## ROCK SAMPLE REPORT

N.T.S. <u>92 N/10,15</u> DATE <u>Aug. 8/90</u> PROJECT<u>/23</u>

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗌 ∧ 🗌	G □ A □	g 🗌 a 🗌	g 🗌 A 🗌	G	G	G□∧□	SAMPLED BY
259776												O. Renpel
	Andesitic Flows: slightly porphyritic w/											
	5%. med gr. fold. Luths, intensely											
	propylitically alt'd w/ abundant calc+									 		
	ep on frocts and vemlets with halos							 				
	Accetrating up to several an deep into											
	matrix. Many veinlets are vuggy Tr mal											·
	on fract's. Very fract'd + sheared.											
R59777												D. Renpel
	Dark grey andesite w/ < 5%. plag. phenor	Yo								 		
	Abundont stockwork calc + gtz veralets		<u></u>									
	S Icm thick. Very sheared and		•									
	Fract'd. Ep common on fracts and in											
	alt'a halos extending several on into											
	rock. from veinlets.											
R 59778												D. Rempe
	Andesite: intensely propylitically altid							· · · · · · · ·				
	abundant at 2 + cale stockwork veralets,											
	veinlets often vuggy w/ minor limonitic											
	staining intensely sheared + Fract'd		<u></u>			ļ						
	tr mal on fract's, tr py + bø in				r	ļ						
	Veinlets, Ep pervisive and in Fract's.						L					

× 77

PROPERTY	wrac
----------	------

1

## ROCK SAMPLE REPORT

N.T.S. <u>92 N/10,15</u> DATE <u>AUG. 8/90</u> PROJECT: 123

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G□ A□	G□∧□	G□∧□	G□ A□	G 🗌 A 🗌	G	G	SAMPLED BY
R59779												D. Renpe
	Dark grey andesitic ash tuff, highly											
	Fract'd + sheared abundant calc+ gtz								 			
	veinlets & Icm thick w/ep altin								-			
	halos penetrating several cm into andesite									ļ		
	No vis. sulph. Voialets both parallel to											
	and crosscutting dominant shearing											
	FOBRIC LIGGTOND INSTOOE											
259780	Smith											O. Renpe
57 100	Dark-med grey andesite, abundant gtz+											
	culc versiets with ep alt'n halos											
	Common, penetrating several cm into rock,		•									
	Frequent limonitic staining w/ minor								 			
	borwork developed, veinlets often											
	vuggy, rock highly fract'd											
259781								 				D. Rempe
	Durk grey andesite, moder fract'd,											
	abundant gtz + cale + ep veinlets, ep											
	often in hulos per penetrating several								······			
	cm into host frequent limonitic											
	staining on weathered surfaces		<u></u>		<b></b>							
	no vis. sulph.											

j

( )

•											10,15	
	PROPERTY Newmac						_				8/90	
	ROC	CK SA	MPLE	REPOR	TF						123	
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗆 A 🗆	G□ A□	G□ A□	G 🗆 A 🗌	G	G	G 🗆 A 🗌	SAMPLED BY
R 59782												D. Renpe
	Med grey andesitic as h tuff abundant atz+calc veinlets in stockwork.				-			 				
	Atz + calc veinlets in stockwork, highly sheared + fractid, frequent limonatic											
	staining on weathered surfaces ef Common											
	as alt's halos several cm from veinle	ý										
	and weakly pervasive no vis. sulph											
				···								
•			 									 
	1											
			<u>,,</u>									-
												<u>,</u>

1

.

.

NORANDA	EXPLORA	ION COMPANY,	LIMITED
---------	---------	--------------	---------

ROCK SAMPLE REPORT

PROPERTY Newmac

# N.T.S. <u>92N/10,15</u> DATE <u>Aug. 8/90</u> PROJECT <u>123</u>

				•					NUSEOI.		·····	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	GOAD	g 🗆 a 🗋	G□A□	G 🗌 A 🗍	G 🗌 A 🗌	G 🗌 A 🗌	G	SAMPLEI BY
R114052	L109/108+50E : Talus Grab			Grab								D. Rem
	Andesitic Tuffs (Ash) + Flows:					[						
	Contain ~ 5% feldsp + 5% hrall fine.	 			<b> </b>							
med. g	r. phenoxts, duck green-grey fresh,				<b></b>							
	ned grey weathered, no vis. sulph.											
	minor chitep on fract. surfaces				<u> </u>	 						
	weakly fractured.											
R59783	2.0 Km SE of Butler 1k - Gossen Zone	5-10		Grab					 			D. Rempe
1-57100	above tarn : Andesivic Flow - contains							·····				
	~ 10% med gr. evhedral feldsy. phenoxts				 							
	in durk-med grey matrix (fresh),		l		<b> </b>							
	intensely silicif'd, 5%. Py fire-coorse	 										
	gr. dissem + in fracts, locally up to 10%.											
···	intense limonitic stoining on weathered											
	surfaces, highly fract'd											K. Pears
R59784	2.0 Km SE of Butler LK (10m above	10-15		Grab								
	59783 to N): Intensely solicit'd											
	andesite A/A contains 10-15%. Py											
	Fine-med gr dissem + on fracts.								- <u></u>			
	intense limonitic staining on weathered											
	surfaces, highly fract'd + sheared			ļ								
	· • •											

PROPERTY	Newmac
	-

1

## ROCK SAMPLE REPORT

N.T.S. 92 N /10, 15 DATE Aug. 8 /90 PROJECT 123 PROJECT_

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	<u>g 🗆 a 🗆</u>	GDAD	G 🗆 A 🗔	GOAO	G	G	G	SAMPLED BY
R 59785	2.1 Km SE of Butler LK:	5-10										D. Rempe
	Andesitic Flow: slightly porphyritic,											
	highly sheared + intensely silicif'd,											
	5-10% med. gr. euhedral plug, phenoxis											
	5-10% Ane - v. time gr. py dissemt											
	on fracts, intense limonitic alt'n											
	on weathered surfaces + fracts. Sample											
	taken near contact w/ granodiorite											
	intrusive											
R 59786	2.0 Km SE of Butler LK: (100 m	10										D. Reape
< 59786	to w of 59785) - derk grey											
	andesitic flow, < 5% med. gr. euhedral	,	•									
	pleg, laths, highly solicif'd, 10% v.fine-				-							
	Fine gr. py in dissem + along fracts.											
	intense limonitic staining on weathered											
	surfaces + fracts, highly sheared											
,												
	•											

G = GFOCHEM A = ASSAV

PROPERTY	Ne	v	ma	? C

5

## BROCK SAMPLE REPORT

N.T.S. <u>92 N/10,15</u> DATE <u>Aug. 8/90</u> PROJECT 123

•

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G□A□		G 🗆 A 🗆	G	G	G 🗌 A 🗌	G □ A □	SAMPLED BY
R114067	Taken 1.4 8 km SE of Butler LK.			GRAB								D. Rempe
	Rhyodactic Flow - highly silicif'd, very											
	Fractured slightly porphyritic : 5% med											
	Fine gr. 9tz + feldsp. phenoxts, moderate											
	limenific staining on fractures many											
	preces are very breccuited. No visible					<u></u>						
	sulph. Light tan -grey weathered, Light			_							 	
	bluish grey fresh											
R114069	Taken 1.4 Km SE of Sutler LK 150 m			GRAB								K. Pearson
. <u></u>	downslope to w of 114067											
	Rhyodacitic flow-slightly porphysitic:											
	5-10% fine gr. gtz eyes slight bxx		•			 				 		
	intensely silicitid, moderate limonitic											
	staining on the weathered surfaces, no											
	vis. sulph.											
211.6151	1Qm From LII9N/ 106E: Basaltie			1.5 m								K. Pearson
	Flow - dark grey fresh, med grey weathered, veinlets minor silicic minor limonite on											
	Frocts. No vis. sulph., weakly fractured											
R/16152	Continuation of above chip: Basaltic flow A/A			1.5 m								K. Pearson
	very corpetent no vis. sulph., very minor											
	limonific staining											

1

Newmac PROPERTY_

1

## ROCK SAMPLE REPORT

N.T.S. <u>92N/10,15</u> DATE <u>AUG. 8/90</u> PROJECT

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G□ A□	G □ A □	G 🗆 A 🗋	G 🗌 A 🗌	G 🗌 A 🗌	G 🗆 A 🗌	G □ A □	SAMPLED BY
116 153	I km ME of Butler Lake			1.5 m								K. Pearson
	1.5 michop sample (wall rock of faulted											
	gossan) first in series of chips across gossan											
	basaltic flow - slightly vesicular dark grey	1.										
	fresh, med. grey weathered, moder. sheared w/											
	calc + ep on sheared surfaces		·								 	
	No vis. sulph.											
116154-	1.5 m chip samples across gossanous zone			15 m each								K. Pearson
116158	116154: contractor of 5 on faulth garge								1	 		
	highly sheared, andesithe flow -				 							
	contains ~ 5-10%. feldsp. phenoxts med-light								İ			
	green Fresh, abundant limonite + calc on		•	_								
	Fracts and weathered surfaces, tr py (v.											
	fine gr.) in Fracts. minor ep on sheared									ļ		
	surfa ces											
	116155: the sheared andesites A/A									ļ		
	moder. sheared, no vis. sulph., abundant									<u> </u>		
	limonitic staining + calc in fracts.					ļ				ļ		
	116156 moder sheared andesite A/A				·							
	intense limonitic staining + minor boxwork									ļ		
	in Fe. Oxides, 1%, v. fine gr. py dussen		<u></u>		<b> </b>					ļ		
	and in fracts.									ļ		

the second s

		-				/10,15 1,90	
Т			PF	ROJECT	123	) 	
G 🗆 A 🗖	G□ A□	g 🗌 a 🗌	G□A□	G□ A□	G□ A□	g □ A □	SAMPLED BY
							D. Rempe

Newmac PROPERTY_

LOCATION & DESCRIPTION

9

AMPLE NO.

## ROCK SAMPLE REPORT

TYPE

WIDTH

% SULPHIDES

								1	
R 116 161	Gosson Zone Ikm NE of Butler LK.	1	1.5m						D. Rempe
	Continuation of chip series.								<b>F</b>
	Moder sheared andesites. Contains a 0.5m	ta a ta							
	fault gouge zone - extreme shearing.								
	Abundant limonite on weathered surfaces	<del></del>							
	1% fire-v.fire gr. py on fracts + dissem								
	Anderite has ~ 5%. Ane gr. feldsp. phenox	Ь.							
	Dark grey fresh, light grey weathered.								
	MINOF calc in Fracts.	******							
R116162			1.5 m	~					D. Rempel
	limonitic staining on weathered surfaces.								
	No us. sulph. Shightly more competent						,		
	than 116161								
R116163	Nighly sheared andesite A/A. Abundant-		1.5 m						D. Rempel
	Intense limonite coatings on weathered surfaces								
	Frequent boxwork developed in Fe-Oxider.	2							
v	Tr v. fine gr. py in Fracts + dissem		·						
R116164	Basaltic flow - slightly vesicular, slightly		 1.5m		<u> </u>			 	D. Rempel
	shared slight silic. alt'd., abundant					 			
	trad limonite + cale on fracts.					 		 	
	Tr v. fire gr py disser and growths in							 	
	Vesicles. Dark grey fresh, light grey								
	weathered. Last chip in series								

N.T.S. 921/10-15 PROPERTY NEWMIC DATE Aug 8/90 PROJECT 23. ROCK SAMPLE REPORT SAMPLED % TYPE WIDTH AMPLE NO. LOCATION & DESCRIPTION SULPHIDES No TE: SAMPLES 116165 - 116175, 114053-114063 FROM SAME CHIP SAMPLE LINE BEGIN CHIP SAMPLE LINE. 2116765 CHIP HOEZ. K. PEAQJON 1.54 ANDEBRIC (PORTHATIC) FLOW LOCATION 1.0KM SIE BUTLER LAKE NED GREEN/LREY - CALC. SILICATE ALTORED WALL ROCK TO GOSSAN ZONE - Governing C.N.S. C. Dr. UKD W.74 PHONOGENST (63mm) PLACENCELASE. NO VISIBLE SULFIDES MINOR SULLEFERTON. 416166 and \$19 .C M ACTORED VOLCANIL (ANDESITIC FLOW) LOCATION! Loez 1.0KM S.E. BUTLER LAKE, GENCEAUY FOR CRANNES, SUME CALCITIC MUSS. MUSS. MUSS. MUSS. MUSS. F.S. GRON/GREEN - W.S. MED BROWN TO BUST. SULPIDES OF PY DISSEMIMARD FINE (LOS MM) IN SIZE. REMINANT PHENOCRYSTS OF PLACIOCLASE, C/ma ALTERED VOLCANIC (ANDESTIE FLOW?) LOCATION 619. HOLE K, AEAKSON .116167 1.5m 1.5 KM Q.E. BUTLER LAKE Gossanous in CHARACICE . W.S. RUST -

DARK BROWN. PA F.S. SAME

j

**ROCK SAMPLE REPORT** 

		N.	T.S	32~/	10/15	
_	-	DA		enc 8	190	
]	G □ A □	g 🗌 a 🗌	G □ A □	G 🗋 ∧ 🗌	G□ A□	SAMPLEI BY
					1	

PROPERTY NEWMAL

### % TYPE WIDTH AMPLE NO. LOCATION & DESCRIPTION SUL PHIDES 16167 QUMBLY - APPEARS HEAVILY ATTACKOD CONT. BA GEMENTING FLUIDS, MOST SUCFIPES WERTHERED 037 MANGANESE FROCTURE LOATING IS COMMON Approprie. Somewhan BRECHATED; CLAMEL (SOF 1) WHITE MATRIK LOCATLY BETWEEN BROCENA FRAGMONTS. - VERY MINOR REMAINE SILICIENER 1100. 610% CANP HORZ 1.5m :16168 ALTERID VOLANIC LOCATION AS ABOUE. Generany SAME DESCHPTION AS RIGIGT LOW TED WITHIN GUSSIN ZONE. 2143 Cotip Horriz 116169 K. PEARSON ALTERED VOLGANIC - LOCATION AS ABOUE DESCRIPTION AS RIGIGZ - LOWSTION WITHIN GOSSAN ZONE ALTERED VOLCANIC - (ANDESITIC FLOW, )BUTLER LK D. REMPEL 2116170 . W.S. BUST-PK. BROWN FR.S. RUST-LIGHT GREY GREEN, DISPLANS REMNART PHENOS OF PLAGIOLIASE WITHIN FINER GRANNED MATRIX SILCIFICATION EVIDENT . NO CALCITE ALTERATION PLESENT

s i tra

PROPERTY _____

1

.

N.T.S. _____

DATE _____

a children an e construction de la construction de la

J.

ROCK SAMPLE REPORT

PROJECT

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	GOAD	G	G□ A□	G	g □ A □	G□ A□	G □ A □	SAMPLED BY
116170 601	SUMPIDES EVIDENT (PY ONLY)	~ 1%	CHAND HOR	1.5 m								
	EINELY DISSEMINATED, MWOR MANGANE.	٤										
	STAINING OF ERALT SURFALTS SAMPLEOSTOF				-		 					
	Gossin zavé											
2116171	ALTERED VOICONIC ( DNOES ) TE FLOW? ).	~6	CHHP HORIEN.	1.5m								K. PEARSON
	LOCATION: ISKM N.E BUTLERLK.											
	DESCRIPTION AS RIIGITO - SAMPLE OUT OF GUSSAN											
			Grip	1.5M								D. Penter
116172		412	Grap HOR.	1.5M								D. CLARE
	LOCATION: 1.5 KM S.E. BUTLERLK											
	DESCRIDION AS RIGITO. SAMPLEODIOF	[										
	GOSSAN ZONE.											
2116173	ALTERED VOLCANIC . LOCATION 1.5KM B.E	1%	CH IP HOR.	1.5m								K. P.A.ASa
	BUTLER LK. NOTE INCREASE IN											
	SKICIFICATION CONTRAT - SULFIDES											
<u>*</u>	OF Py UP TO 1.90, GENERALY SAME											
	DESCRIPTION AT RUGITO . WITHIN GUSSAN											
<u></u>	ZONG											
116174	ALTERO VOLGHIC, LOCATION 1.5KMH.E	419	Cattor Holeiz									D.REMAEL
	BUTLER LIK. GENERALLY FINE GROWED, SOME											
	WHAT SILL OFFICE, CALCITE OLLAS A LAHG											

- a she in the Carlora

PROPERTY ALEWMAL

1

## ROCK SAMPLE REPORT

N.T.S. 924/10/15 DATE <u>Aug 08,1990</u> PROJECT: 123.

		%	TYPE	WIDTH	G 🗆 A 🗆	G□ A□	G 🗆 A 🗖	GOAD	G 🗌 A 🗖	G	SAMPLED
AMPLE NO.	LOCATION & DESCRIPTION	SULPHIDES	ITTE	WIDTH							BY
1,174 CONT	TRACTURE SURFACETS AND SOMEWHAT										
	PORUASINELY (~23) SULFIDE CONTENT										
	OF RY ( E14.) OLLER AS FINE DISSOUNAT	260									
	LIGHT GREENISH/GREY IN COLOD (F.S.										
	PACK BROWN / RUST TO GREENISH		 					L			
	GREY ON WEATHERED SUPFACE.					 					
Kace -	MA STAINING OFFICES LOCALUON FRACT. SUPT. WITHIN GOSSAN ZONE.					 					
116175	ALTERED VOLCONIC. LOCATION I.SKM	4170	CHID HOR	1.5 m							K. PEARSON
	S.E BUTLER LK. DEULIDTION					 					
	45 R116174	[									
14053	ALTERED VOLCANIL - LOCATION 1.5Km	£1%	CHIP HOR	1.5m							P.Rema
	S.C. BUTLERLK. FRESH SUEFACE										
	LEHT GROY/GREEN - W.S. DACK BROWN										
	- RUST (OVERAL LOLOR MUD BROWS).										
•	(REMMANT) PLAG. PLEN OS ~/ M. IN SIZE WITHIN	 			[						
	(REMNONT) PLAG. PHENOS ~/ MA IN SIZE WITHIN	<u> </u>			·	 					
	MATRIX - LOCAL CALCITE (VAING) DRESEN	7		+	-	 					
	SULFIDIS OF Py 51% PRESENT-			<u> </u>		 					
	TINGY DISSEMINOTED THEOREHOUT					 		 			
	SAMPLE WITHIN GOSSIN ZONE.					 					
				<u> </u>		 05001					L

PROPERTY NEWMAC

1 1

## ROCK SAMPLE REPORT

N.T.S. <u>92N10/15</u> DATE <u>AUG 08/90</u> PROJECT: 123

				فتقوي ومعوالة بتساهير أست	1						The second s	and the second s
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G	GOAD	G□ A□	G□ ▲□	G	G	G□A□	SAMPLED BY
14054	ALTERIO VOLGANIC - 1.5 Km - OF	41%	CALIA	1.5m						,		K. Peranson
	BUTLER LAKE DECAPTION AS											
	R114053 -WITHN GUSSON ZONE							1 				
114055	ALTERED VOLANIC 1.5 Km S.E OF	£ 140	CHAP HOR	1.5M								D.RENACZ
	BUTLERUK. DESCRIPTION AS RUIGOS				ļ							
	WITHOU GOSSAN ZONE											
114056	ALTERED VOLGANIC I.SICM S.G. OF				<b>_</b>							K. PEARson .
	BUTLORLK. DESURIPTION A RIKUSS	41%	CI+IP Har	1.5m		 	 			 		
	WITHN GOSSAN ZONE				<b>.</b>	ļ				ļ		
14057	ALTERETLED VOLCANIC I.SEN S.EOF	£ =19.	ComPile	1.5M	 						 	D. R EMAS
	BUTCK LK. INCREASE IN HOMATITIC		·		<b></b>							
	STA MING ( ON FRANCILE SURFICES ).					ļ						<b></b>
	PESCEIPTINN AS RILAOS - MITNER GUSSANZONE											
1114058	ALTERNO VOLCANIC 1.5Km S.E BUTLER	<u>+ 10/0</u>	em P Hor	1.5m								K, Perfejon
	LACE. SUGHT DECRETE IN HOME TIDIC					 						
	STATILING - SAME DECRIPTION AS RILAUS 3										 	
2114059	ALTERED VOLCANSIC 1.5 KM S. & BUTLER	£1%	asid Hor	1. Sri								P. PEMPEZ.
	LAKZ. SAMEAS RILAOSS	-										
. <u></u>				<u> </u>	L	L	0500				L	L

PROPERTY Nowman

## ROCK SAMPLE REPORT

## PROJECT 123

N.T.S. 92 N/10/15 DATE Augor/90

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	1	WIDTH	G□∧□	G A	G □ A □	G□ ∧□	G □ A □	G□ ∧□	GOAD	SAMPLED BY
114060	ATTERED VOLCANIC (ANDESITE FLOW ) SUTURE LET	1 - 29.	CASS D NOR	1.5m								K. PERESON
	F.S. LIGHT GREEN/GREEN/WS.											
	PUST - LIGHT TO MOD BROWN.											
	PUST - LIGHT TO MED BROWN. PHENOS OF DUAG IN A FINE CARAMAD											
	MATRIX. SAMPLE IS SHEAPED;	<u> </u>										
	FARCTURE COATING OF HEMILTITE											
	STRINIAG, OR VERY PIRE DESSEN.											
	OF PY THROUGHOUR SAMPLE E/MAN									 		
	HOMMY SILLIFICATION, NO INDICATION											
	OF OACCITIC ALTERTION. CHACKY											
	(GLAMETY) MATRIAL OCUMS											
	WITHIN MATRIX WITHIN STOTE ZONE.											
2114061	ALTERED VOULANIC (ANTIBATE FLOW) Since	~1%	NOR	ISM		ļ						D. RIMPER.
	anveny BOSCAPTION AS											
	ABOJE . LOCAL CALGETE AS VHING						 					
	1.5 KM N.& BUTLOR LK. PY AS						 					
	SUCFIDES. FINDLY DISSEMINATOD	}										
	ROMNANT HORN BLENDIGS - Elman.	 										
	WITHIN GOSSAN TONE							:				-
2114062	ALTERED VOLCANEICS ( ANDESITE FLOW) S.E	F19.	Hor	1.5m								K. Pereson
	PUTLER LIC. DESCRIPTION KOR 114060.											
			L			<u> </u>	05001					L

 $\pm j$ 

N.T.S.	92 N/10/15
	Aug 08/40

1

i

PROPERTY NEWMAL

s. .

~

1

## ROCK SAMPLE REPORT

PROJECT 123

AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES		width	GOAD	G□ A□	GOAD	g 🗌 a 🗌	G 🗌 A 🗌	G	G 🗆 A 🗌	SAMPLED BY
2114063	ALTERIA VOLCANIC (ANDBITIE FROM) 1.5 Km. S.E. BUTLER LARCE	1/2 AT	CANP HOR E	1.5~						·		D. Randez
	DESCRIPTION AS RULAO63											
	END OF CHIP SAMPLE LINE											
					L							
												······································
	,											
	-											

- ACMA ANALYTICAL LABORATORIES LTD.

ł

#### 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

a second s

GEOCHEMICAL ALYSIS CERTIFICATE Newman (GG)

Noranda Exploration Co. Ltd. PROJECT 9008-042 123 File # 90-3430

P.O. Box 2380, 1050 Davie, Vancouver BC V6B 3T5

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	ĸ	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppre	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	<u>×</u>	ppm	<b></b>	ppm	. *	<u> </u>	% ppre	ppb
R 114876	1	8	4	35	.1	7	4	375	1.64	15	5	ND	1	10	.2	2	3	13	.47	.026	3	6	.52	12	.06	2	.85	.04	.08 1	3
R 114877	li	79	ġ	61	.2	50	21		4.72	4	5	ND	1	25	.9	2	3			.068	4	22	2.09	92	.31	4 2	2.57	.13	.07	4
R 114878		71	6	50	.2	37	18		3.58	6	5	ND	1	45	.7	2	2	84	1.34	.056	2	14	1.60	35	.24	2 2	2.44	.16	.03	7
R 115466	3	32	2	45	1	15	9	467		4	5	ND	1	13	.2	2	2	43	.41	.042	3	10	.86	22	.11	2 1	1.30	.07	.07	3
R 115467	1	64	4	6	.2	60	12		3.18	30	5	ND	1	39	.5	2	4	35	1.55	.032	2	128	.21	4	.35	6 1	.20	.01	.01 1	3
R 115468	27	141	7	12	.3	26	15	327	3.88	3	7	ND	1	27	.5	2	2			.114	Ź	16	.43	8			1.64	.16	.05 2	4
R 117129	1	51	2	27	.1	81	21	346	2.22	2	5	ND	1	32	.5	2	2	60		.070	2		1.87	8	.25		1.89	.07	.02	2
R 117130	1	15	6	22	•1	- 74	27	386	2.75	4	5	ND	1	- 44	.8	2	2	71		1062	2	29	2.18	5	.29		2.44	.11	.06 💮 1	2
R 119454	1	3	4	52	.1	5	4	538	2.09	2	5	ND	1	8	.2	2	5	15	.21	.034	- 5	- 3	.91	14	.08		1.24	.04	.06 💮 2	4
R 119455	2	2	8	77	.1	7	5	661	2.21	4	5	ND	1	11	.2	2	4	23	.26	.032	4	11	1.24	16	.10	2 1	1.41	.04	.04 2	4
R 119456	2	5	5	51	.1	3	3	545	2.24	3	5	ND	1	8	.3	2	2	14	.21	.034	5	3	.88	28	.09		1.24	.04	.06 1	9
R 119457	2	6	2	80	.2	5	3	590	2.86	2	5	ND	1	5	.2	2	2	10	.14	.040	- 3	4	1.07	13	.04		1.50	.04	.06 1	2
R 119458	1 2	1	2	72		4	4	618	2.97	5	5	ND	1	5	.2	2	2	8	.13	.039	4	3	1.05	- 31	.03	-	1.43	.04	.04 🔅 1	3
R 119459	3	63	7	29	.3	16	14	374	4.66	2	5	ND	1	27	.4	2	2	82	1.48	.042	2	33	1.60	- 14	.09		2.82	.11	.05 2	2
STANDARD C	19	57	39	131	6.8	68	31	1050	3.92	38	18	6	37	53	18.4	15	20	55	.51	.091	37	57	.89	181	.07	34 '	1.90	.06	.14 11	· •

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Ż

							N.T.S. 921/10,15								
	PROPERTY Newmal						-	6							
	RO	CK SA	MPLE	REPOR	T		PROJECT 123								
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G□ A□	G □ A □	G□ A□	G □ A □	G	G	G□∧□	SAMPLED BY			
117129	Andeste tuff with minur calife														
	veinlets. No visible sulfides. Locution - LIOTH A 16 E											fn			
17130	Durk green fine-grain anlesite toff with calling millio-fractives - No visible											GM			
	Sulfiles Location - LOTN A 116+50 E														
114976	Dull green-grey, Bhyplite-dacites Fedgerry											<u>P</u> IA			
	No visible sulfides											<u>GM</u>			
	Locution LIIIN A 102+5012		,												
114777	Durk green fine to medium prin anlests fulf, with 1-2 mm pyrozenc orystals Location LIISN & 112+50 E											<u>GM</u>			
114977	· Dark green grey andeste tof No											14			
	Visible Bulfiller Location LIISN A 111+50 E											GM			
	<u>`</u>														

N.T.S. <u>92 N 10/15</u> DATE <u>July 19/90</u> PROPERTY Newmac . SAMPLE REPORT ASSAYS SAMPLED SAMPLE NO. TYPE WIDTH LOCATION & DESCRIPTION ΒY 115466 - Rhydib - Nacile - Fine grained - tr- 11 pg very Siliceous LIIOtOSN 93+25E Grab 16P elemen 31 JJR 5 Gossan, possible Grab obobly SIC slightly magnetic, 15467 - 51 JJR 0/C probat 99+70E 113 + 15N 15468 tatver brab SH 640N 1 95+75 F 95

#### NORANDA EXPLORATION COMPANY, LIMITED

SAMPLE REPORT

9

PROPERTY NEW MAL

N.T.S. <u>92N 10/15</u> DATE J<u>DUY 20, 1990</u> PBN 123

SAMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH		- <u>07/</u>	ASSAYS			SAMPLED
SAMPLE NO.	LOCATION & DESCRIPTION			30	16p -+	GEOG	Here	Arl	BY
R119454	PHUDDACITE - L112+40N/104+80E	CHIP	1.5						K. PEARS
· .	W.S. Dr BROWN - PUST (PINK) F.S.	and the state							
· ·	LIGHT - MED GREAT GREEN " GONISPACINY								
	MODERATEEN SLICIFIED, INTENSUY								
	FRACTURED, MER GENERATURE FINE								
	GPAINED, PLAG? (FELDSPAC) PHENOLPUSTS								
·····	<1 MM, TRACE SULFIDES (PY) CUBIC,								
	LISMMINSIZE, HEMATITE STATING								
:	ON ARACTURES SURFACES, MINOR								
	MALANH TE ON FRACTURE SUPFACES, EDIDOTE								
. <u></u>	A CLOTS ON FLACTURES AND PERMISINELY.								
2119455	RH40DALITE - L112+40N/104+BOE	Y							125 
	DESCRIPTION AS ABOUE	1702 01410	1.01						K. POArso,
2119456	RH400ALITE - L/12+35/104+90E	HORE	1.5m						K.PEARS
SILIAS P	W.S. RUST - ANKISH BROWN / F'S.	VIIP			1				
	GREEMISH BROWN/GREY - SILLIFIED	\$							
. <u></u>	MODERATELY, TRACE ~ 1% PY . FINELY								
	DISSEMINHTED, MIDIOR MACAELTITE								
	L/% (TRACE)								
	_ •								

#### NORANDA EXPLORATION COMPANY, LIMITED

PROPERTY NEWMAC.

.

### ROCK SAMPLE REPORT

N.T.S. <u>92 × 10/15</u> DATE <u>JULY ZO 1990</u> PROJECT: 123

SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH		GOAO	G	G 🗆 A 🗆	G	G	SAMPLED BY
RII9457	RHYDDACITE - 112+75~/104+75E	TPARE	HORIZ	1.5M							K. PETARSO
·	W.S CREAMY BIELE TO RUST.										
	DSPLAUS MINOR EPIDOTE IN DUTCHOP										
	F.S. GREY/GREAT APPOALS HEAVING	,									
	SILICIFIED. SAMPLE INTENSLY										
	ERACTURED. HEAVY HOMITITIL				-						
	STATING ON FRACTURE STRACTS	-									
	TRACE SUIFIDE THOUGH ON ON				 				_		
	FRESH SURFACE VORY MINOR				 						
	MOTLACH TE STATMING										
219458	RHYDDACITE - AS ABONE . Samelocution .	TPACE	Harlt CHIP	1.0M				 			K. Pertrison
21191459	DIORITE - 1124/103E										K POARSO
	W.S. RUST RED BROWN (GOSSANDUS	59	GORA								
	F.S. CREY/WHITE - PUST.	/- <b>-</b> /0									
	FINIE TO MED GRAINED. MINERALIZAT	row									
	OF PO- HEAVILY SILICIFIED,										
	MINEWALIZATION DISSOMINATION										
	AS CLOTS ARED FINELY THROUGH										
,	007 SAMPLE.										

#### ACME ANA ICAL LABORATORIES LTD.

#### 852 E. HASTINGS ST. VAN OUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

# GEOCHEMICAL ALYSIS CERTIFICATE New Mac (IR)

Noranda Exploration Co. Ltd. PROJECT 9008-087 123 P.O. Box 2380, 1050 Davie, Vancouver BC V6B 375 File # 90-3698

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	ĸ	W Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppn	ppm	ppm	ppn	ppm	ppm	ppm	*		ppm	ppm	<b>X</b>	ppm	7	ppm	*	*	Х р	om ppb
R 115469	1	12	2	32	.1	7	6	359	2.22	2	5	ND	1	82	.2	2	2	36	1.46	.024	2	7	.93	41	.09	12	1.90	.05	.14	4
R 117131	1	24503	185	29	58.9	14	4	256	2.19	2	5	ND	1	350 1	11.8	2	110	97	2.67	-032	2	20	.34	2	.31	8 '	1.97	-01	.02	1 44
R 124126	1	200	3	68	.6	12	23	499	7.23	11	5	ND	1	10	.2	2	2	224	.32	.020	2	7	1.86	6	.22	4 2	2.39	.08	.05 🛞	1 9
R 124251	34	254	17	51	.6	14	17	439	4.37	28	5	ND	1	78	.2	3	2	105	.90	.029	2	21	1.54	9		5 2	2.08	.03	.03 🛞	1 21
R 124252	1	513	3	4	7	90	50	162	2.03	4	5	ND	1	254	.2	2	2	33	2.79	.015	2	10	. 14	5	.13	5 2	2.09	.01	.01	1 3
																_		_						_		-				
R 124253	1	13	- 3	29	-2	15	4	170	1.59	- 4	5	ND	1	238	.2	2	3	70	2.46		2	34	.27		.48		1.64	.02	.01 🛞	SE 1'
R 124254	1	274	3	33	.4	82	20	411	5.77	11	- 5	ND	1	18 🖁	2	2	2	87		.033	2		2.07		.35		2.62	.11	.10 🛞	1 8
R 124255	4	351	2	78	.7	138	24	1087	9.76	135	5	ND	1	7 🖇	5	5	5	169		.035	2	310	3.44	6	. 31		4.05	.03	.05 🛞	1 13
R 124256	1	23	6	21		5	3	238	1.78	17	5	ND	1	20	.2	2	2	6	1.16	,040	- 3	5	.39	21		-	1.10	.05	.09 🛞	1 34
R 124257	1	130	2	98	.8	23	18	2175	12.45	2	5	ND	2	26	.8	2	2	159	2.33	.037	2	37	2.09	35	.16	2 2	2.95	.02	.07 🛞	1 13
														8																
R 124258	1	13	3	43	.2	3	4	874	4.15	26	5	ND	1	20 🖉	.2	2	2	30	.58	.049	2	2	1.22	45	11		2.11	.12	.14 📖	2 7
R 124259	1 1	21	7	75	.3	5	5	1003	4.11	37	5	ND	1	29	.2	2	2	52	.72	.044	2	- 4	1.78	- 36		5 2	2.32	.02	.10 🛞	11
R 124260	1	30	14	49	.5	4	4	538	4.81	40	5	ND	1	10	.2	2	2	- 44	.25	.035	2	3	1.17	- 31	.23	<b>4</b> '	1.35	.02	.13 💹	1 33
R 124261	1	15	5	81	.3	4	8	923	3.38	2	5	ND	1	39	.2	3	2	42	.71	.044	2	- 4	1.88	15	.25	3 2	2.21	.02	.04	1 7
R 124262	1	21	14	31	.2	3	3	766	3.33	33	5	ND	1	47	.2	2	2	42	.61	.046	2	2	1.20	27	.27	6	1.72	.03	.09	1 7
	· ·	-		•																									🕷	×
STANDARD C/AU-R	18	63	41	132	7.1	73	31	1047	3.94	39	20	7	39	52	18.7	15	21	58	.52	.096	39	61	.89	182	.09	<u> </u>	1.89	.06	.13 🛞	13 550

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

/ ASSAY RECOMMENDED

	NORANDA	EXPLO	ATIC ,	MPANY,	LIMITE	D						
								N	.T.S	92.	<u>N 10,1</u>	ప
	PROPERTY NENMAL						<u>-</u>	D	ATE	92. Bug	20	
	ROO	CK SA	MPLE	REPOF	۲۲	•		Р	ROJECT		23	
APLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗆 A 🗆		G□ A□	G 🗌 A 🗌	G 🗆 A 🗆	G □ ▲ □	G 🗌 A 🗌	SAMPLED BY
115469	altered pyrorene - Hbl		grab	-								JJR
	perphyry, possible andorite											
	filled vesicles calcile on tradund							 		+		
· · · · · · · · · · · · · · · · · · ·	Surfaces ~ LIZOHOON DIDEHOOE											
12\$251	Cosson - minor silico flooding,	1/2	grab									JJK
	Wathers a deep rosty drange red tr-0.5% by in anderse L 120+25N 12 104450											
	L 120+25N 10 104450											
- 12 425	Fine grained andesite tutts, up to 10-15! tractured	-	grah				· · ·					JJR
	controlled epidote, occurs							· · · · · · · · · · · · · · · · · · ·				
	mainly is small random winkers slightly magnetic LI20+25N DI0740E											
	L120+25N D107HOE											

•

1

, , , , , , , , , , , , , , , , , , ,			( )								$\langle \cdot \rangle$	
	NORAND	A EXPLO	RATIC D	OMPANY,	LIMITE	C						
								N.	T.S	<u> </u>		
	PROPERTY Newmac		<u> </u>				-	D	ATE	<u> </u>		
	RO	CK S/	AMPLE	REPOR	<b>T</b>			Pl	ROJECT			
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗌 A 🗌	G□ A□	G □ A □	G□ A□	G □ ▲ □	G 🗌 🔺 🗌	G 🗌 A 🗌	SAMPLE BY
- 129253	Strangly altered volcanic,	-	grab									JJK.
	epidote alteration, slightly				-							
. ^	LIZITOON () IIITOOE											
124254	Strongly altered fire grained	-1].	grab	-	-							55R
	andesites weathers deep with erange, silicous											
	possible grano diacité dype											
	Cutting the Olc tr-11. sulpin tr-0.31. cpg tr bornile				-							
	1% pg, occurs mainly As fine sisseminations									• •		
	-L 137+50N 13 88+00E~ Possible Barnie Showing		-									
-12425	Gosson zone, possible		grab	-							<u>`````````````````````````````````````</u>	JJR
	Shine Showing as K-124254 weathers a deep rusty						-					
	natoringe, Juggy in places				-		-	 				
	mainly pgrile											
tenior	137+50N DE7450E			<u> </u>		G	= GEOCH	EM /	A = ASSA	Y		l

1 . . .

ALC: A DESCRIPTION OF A DESCRIPTION

NORANDA EXPLORATIC JOMPANY, LIMITED

PROPERTY_NewMAC

## ROCK SAMPLE REPORT

N.T.S. <u>92N 10/15</u> DATE <u>Aug 20/00</u> PROJECT

MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G□ ∧□	G A D	g 🗆 a 🗌	G 🗌 A 🗌	G□ A□	G A	G □ A □	SAMPLEC BY
-124256	- Felsic volconics cut by		grab	-								55R
	with rando n orientation			· · · · · · · · · · · · · · · · · · ·								
·	Sample taken in gouge 2000, large structures 390° 90°, dull light grey NLI39N 1385+00E											
)_/2//200	NLI39N D85+00E - shifting yossan undeside		grab	-								e510
`·	Valcanics, fine graned taken in some clifts as		<i>y</i>									J.
	previous sample, weathing deep red, only traces											
	of sulphides N LI39N D 85+00E	-						<u></u>				
24258	- Gouse - 505500, very rosty											
	weathers a drop holy ronge/red and brittle, fraces											
1259-	LIB shear zone 12 bossan a/c											
	Andesific Udramies Slighty						= GEOCH	FM 4				

			i A								, v	
	NORANDA	EXPLO		OMPANY,	LIMITE	C					· .	
								Ν	.T.S			. <u></u>
	PROPERTY		<u> </u>				_	D	ATE			<u> </u>
	RO	CK SA	AMPLE	REPOF	RT .	<b>`</b> ,		PI	ROJECT	·		
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH		G□A□	9 🗌 A 🗌	G□ A□	G 🗆 A 🗌	G	G 🗆 A 🗆	SAMPLED BY
cont												
124257	Silitied, traces of sulprices							 		ļ		
	mainly parily shears	,							<u> </u>	i		
- <u></u>	strike LISANA 81400E										┠────┨	
-12424	taken 3 metres usst of	tr	9000	5 -								JJK
	previous sumple, highly	· · · · · · · · · · · · · · · · · · ·										
	gossan gouge, very battle							1		 		<u> </u>
									 	<b> </b>		
<u> </u>	LI39N DELLOOF	-			 		}					
-12426	- Fine around andesites.	1-2	goab	-								536
124262	- Fine grand andesites, 1-2% parile throughout											
	possible traces of cpg											
	maisly fradure a controlled						<u> </u>					
	Aumerers Small gtz-cc veril	5		<u> </u>				·•				
	1-139N 1) 80+90N				<b>_</b>							
<u>م</u>												
-12426	- Sameas previous Ola	71	grab									
<u></u>	2- Sameos previous Ole only traces of por taken 5 metres to the wort											
	Similars (-o' the west											
		I		1	L					1 . I		

しん たんえいちんしょうち

xxxxxxxxxxxxxxxxxxxxxxx

222

	NORANDA PROPERTY <u>Acumac</u>	EXPLOF	RATIO, J	MPANY,	LIMITE	D		N	.T.S	921	123	
	-	CK SA	MPLE I	REPOR	T			D. Pl	ATE ROJECT		<u>720/</u> 123	20
PLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G 🗆 A 🗆	G□ A□	G□ A□	and the second	the second s		G □ ∧ DÌ	
124126	· taken 2 Km's south		grab	_								JOR
-	- taken 2 Km's southe of Bulfer Laken altered andesitic How 5 Nomatile (specularite) an tractured sortion		-						f			
	(specularite) en tracturel sortions											
		-										
		-			·							; 
		-										
												<u> </u>
							-					

· · · · ·

NORANDA EXPLORAI COMPANY, LIMITED

N.T.S. 92N /10. DATE Aug 20/80

PROPERTY NewMAC

SAMPLE REPORT

AMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH				ASSAYS				SAMPLED
AMPLE NO.	LOCATION & DESCRIPTION	1 1 / L									BY
<u> </u>											
117131	Malachile - Azurile - Covellite									(	55R
	Showing host Fine grained					 					
مەربىي مىرىي	andesite tuff, 10-15% malachile				 				<u></u>		·
<u>.</u>	2-3% azurile 2-5% covellite					<u> </u>					
<u>`</u>	sample also contains up to					ļ					
	201. epidate, accurs as thin veins	<u> </u>									
	miner caule on fractured										
	susfaces sample taken from	<u></u>			 			 			
·	a small strear zone (20-30 cm)										<u>,,</u>
	130° 90° +r bornile								ļ		
					ļ						·
	99+10 A 120+15E										
					ļ		[ 				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						 				
								ļ			
		<u> </u>							<u> </u>		<u></u>
				· · · · ·			ļ				
						İ					

## APPENDIX V

-

. . . . . . . . . . . . . . . . . . .

a a state a a state a

and the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of th

### STATEMENT OF COSTS

,

## NORANDA EXPLORATION COMPANY, LIMITED STATEMENT OF COSTS

DATE: PROJECT: Newmac (Newmac, St. Teresa 1, St. Teresa 6) January 7, 1991 TYPE OF REPORT: GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL a) Wages: No. of Days 166 Mandays Rate per Day \$ 119.67 Dates From: June 15 - July 21/90 166 × \$119.67 \$19,865.22 Total Wages b) Food & Accomodations: No. of Days 166 Mandays Rate per Day \$31.05 Dates From: June 15 - July 21/90 Total Costs 166.× \$31.05 \$ 5,154.30 c) Transportation: No. of Days 37 Days Rate per Day \$52.34 Dates From: June 15 - July 21/90 Total Costs 37 × \$52.34 \$ 1,936.58 d) Instrument Rental: Type of Instrument No. of Days Rate per Day \$ Dates From: Total Costs x \$ Type of Instrument No. of Days Rate per Day Ş Dates From: Total Costs x ·\$

、				
e)	Analysis: (See attached s	chedule)	\$9	,439.90
f)	Cost of prepara	ition of Report		
	Author:		\$	320.00
	Drafting:		, \$	240.00
	Typing:		\$	240.00
g)	Other:			
	Contracto	pr		
	Lloyd Geophysics Magnetome	eter Survey 28.6 kms x \$167.21	\$4	,782.21
	I.P. Surv	<pre>(Includes food &amp; accommodation) vey 24.575 kms x \$1,409.33 (Includes food &amp; accommodation)</pre>	\$34	,634.29
<u>-</u>	√hite Saddle Air 10.7 hrs	@ \$700.00/hr (\$625.00 flight + \$75.00 fuel)	\$7	,490.00
Tot	al Cost	ŕ	\$84	,102.50
h)	Unit costs for	Geology		
	No. of Days	22 days		
	No. of Units	67 mandays		
	Unit costs	\$235.18 /manday		
	Total Cost	67 × \$235.18	\$15	,757.06
i)	Unit costs for No. of Days No. of Units Unit Costs Total Costs	Geochem 20 days 805 samples \$17.49/sample 805 x \$17.49	\$14	,080.86
;)	Unit Costs for No. of Days No. of Units Unit Costs Total Costs	Linecutting 14 days 56.025 kms \$238.73/km 56.025 x \$238.73	\$13	,374.85

k)	Unit Costs for No. of Days No. of Units Unit Costs Total Costs	Magnetometer Survey 6 days 28.6 kms \$169.83/km \$169.83 x 28.6 kms	\$ 4,857.01
1)	Unit Costs for No. of Days No. of Units Unit Costs Total Costs	I.P. Survey 18 days 24,575 km \$1,466.24/km 24.575 x \$1,466.24	\$36,032.72

.

GRAND TOTAL

\$84,102.50

# NORANDA EXPLORATION COMPANY, LIMITED (WESTERN DIVISION)

## DETAILS OF ANALYSES COSTS

#### PROJECT:

Ŷ

	ELEMENT N	O. OF DETERMINATIONS	COST PER DETERMINATION	TOTAL COSTS
SOILS	ICP (30 Element + Geochem Au	664	\$11.35	\$7,536.40
ROCKS	ICP, (30 Element + Geochem Au	141	\$13.50	\$1,903.50
			TOTAL	\$9,439.90

ŕ

.

## NORANDA EXPLORATION COMPANY, LIMITED STATEMENT OF COSTS

PROJECT:Newmac (Newmac East Group)DATE:January 7, 1991TYPE OF REPORT:GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL

a) Wages:

No. of Days	60 mandays	
Rate per Day	\$ 119.67	
Dates From:	July 22 - August 14/90	
Total Wages	60 × \$119.67	\$7,180.20

b) Food & Accomodations:

No. of Days	60 mandays
Rate per Day	\$ 31.05
Dates From:	July 22 - August 14/90
Total Costs	60 × \$31.05

c) Transportation:

No. of Days	23 days		
Rate per Day	\$ 52.34		
Dates From:	July 22 - August 14/90	Ť	
Total Costs	23 × \$52.34		\$1,203.82

\$1,863.00

 d) Instrument Rental: Type of Instrument No. of Days Rate per Day \$ Dates From: Total Costs x \$

> Type of Instrument No. of Days Rate per Day \$ Dates From: Total Costs x ·\$

e)	Analysis: (See attached schedule)	\$ 6,347.15
f)	Cost of preparation of Report	
	Author:	\$ 160.00
	Drafting:	\$ 120-00
	Typing:	\$ 120.00
g)	Other:	
	Contractor	
	Lloyd Geophysics Ltd.	
	Magnetometer Survey 8.8 kms x \$167.21/km (includes food & accommodation)	\$ 1,471.45
	I.P. Survey5.725 kms x \$1,409.33/km (includes food & accommodation)	\$ 8,068.41
	<u>White Saddle Air</u> 5.6 hrs @ \$700.00/hr (\$625.00 flight + \$75.00 fuel)	\$ 3,920.00
То	tal Cost	\$30,454.03
h)	Unit costs for Geology No. of Days 7 days No. of Units 10 mandays Unit costs \$249.16 / manday Total Cost 10 x \$249.16	\$ 2,491.60

Unit costs	\$249.16 / manday	
Total Cost	10 × \$249.16	\$ 2,491.60
Unit Costs for No. of Days No. of Units Unit Costs Total Costs	Geochem 9 days 556 samples \$18.23/sample 556 x \$18.23	\$10,136.05
Unit costs for No. of days No. of Units Unit Costs Total Costs	Linecutting 15 days 33.1 kms \$202.98/km 33.1 x \$202.98	\$ 6,718.52

i)

j)

k)	No. of Days No. of Units	Magnetometer Survey 2 days 8.8 kms \$201.30/km		
	Total Costs	8.8 x \$201.30		\$ 1,771.45
1)	Unit Costs for No. of Days No. of Units Unit Costs	4 days		
	Total Costs	5.725 x \$1,630.81		\$ 9,336.41
			GRAND TOTAL	\$30,454.03

•

.

ŕ

# NORANDA EXPLORATION COMPANY, LIMITED (WESTERN DIVISION)

## DETAILS OF ANALYSES COSTS

#### PROJECT:

•

T

•

	ELEMENT NO. OF	DETERMINATIONS	COST PER DETERMINATION	TOTAL COSTS
<u>SOILS</u>	ICP (30 Element + Geochem Au)	Š 539	\$11.35	\$6,117.65
ROCKS	ICP (30 Element + Geochem Au)	17	\$13.50	\$ 229.50
			TOTAL	\$6,347.15

•

# NORANDA EXPLORATION COMPANY, LIMITED STATEMENT OF COSTS

- PROJECT: Newmac (Newmac 3 Claim) TYPE OF REPORT: GEOPHYSICAL
- a) Wages: No. of Days Rate per Day \$ Dates From: Total Wages x \$
- b) Food & Accomodations:
   No. of Days
   Rate per Day \$
   Dates From:
   Total Costs .x \$

.

- c) Transportation:
   No. of Days
   Rate per Day \$
   Dates From:
   Total Costs x \$
- d) Instrument Rental: Type of Instrument No. of Days Rate per Day \$ Dates From: Total Costs x \$

Type of Instrument No. of Days Rate per Day \$ Dates From: Total Costs x ·\$ DATE: January 7, 1991

e) Analysis: (See attached schedule)

f) Cost of preparation of Report
 Author:
 Drafting:
 Typing:

g) Other:

Contractor

Aerodat Ltd.

Helicopter - Borne magnetic, electromagnetic & VLF-EM Survey \$62,200.00

,

Total Cost

\$62,200.00

ł

h)	Unit costs for	Airborne Survey	
	No. of Days	8 days	
	No. of Units	435 line kms	
	Unit costs	\$142.99 /km	
	Total Cost	435× \$142.99	\$62,200.00

### APPENDIX VI

# STATEMENT OF QUALIFICATIONS

.

Ŷ

# STATEMENT OF QUALIFICATIONS

I, D. Graham Gill of the city of Vancouver, Province of British Columbia, hereby certify that:

I am a geologist residing at #126-8600 General Currie Road, Richmond B.C.

I have graduated from the University of British Columbia in 1983 with a BSc in geology.

I have worked in mineral exploration since 1979.

I have been a temporary employee with Noranda Exploration Company, Limited since May, 1979 and a permanent employee since November, 1987.

D. Theaten thell

D. Graham Gill

#### STATEMENT OF QUALIFICATIONS

I, Ted Wong, of the City of Vancouver, Province of British Columbia, hereby certify that:

- 1. I am a geophysicist residing in Burnaby, B.C.
- 2. I have graduated from the University of British Columbia in 1983 with a B.Sc. in Geophysics.
- 3. I am a professional geophysicist, registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta. I am a licensed professional geophysicist, registered with the Association of Professional Engineers, Geologists and Geophysicists of the Northwest Territories.
- 4. I have practised by profession on a continual basis since 1984.
- 5. I have been employed by Noranda Exploration Company, Limited since September, 1989.

Ted T. Wong